WorldWideScience

Sample records for transduction mechanisms underlying

  1. Mechanical transduction via a single soft polymer

    Science.gov (United States)

    Hou, Ruizheng; Wang, Nan; Bao, Weizhu; Wang, Zhisong

    2018-04-01

    Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.

  2. Exploring Transduction Mechanisms of Protein Transduction Domains (PTDs in Living Cells Utilizing Single-Quantum Dot Tracking (SQT Technology

    Directory of Open Access Journals (Sweden)

    Yasuhiro Suzuki

    2012-01-01

    Full Text Available Specific protein domains known as protein transduction domains (PTDs can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs, we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT, to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  3. [Transduction peptides, the useful face of a new signaling mechanism].

    Science.gov (United States)

    Joliot, Alain; Prochiantz, Alain

    2005-03-01

    Transduction peptides that cross the plasma membrane of live cells are commonly used for the in vitro and in vivo targeting of hydrophilic drugs into the cell interior. Although this family of peptides has recently increased and will probably continue to do so, the two mainly used peptides are derived from transcription factors. Indeed, TAT is a 12 amino acid long arginine-rich peptide present in the HIV transcription factor, and penetratin - or its variants - corresponds to 16 amino acids that define the highly conserved third helix of the DNA-binding domain (homeodomain) of homeoprotein transcription factors. In this review, we shall recall the different steps that have led to the discovery of transduction peptides and present the most likely hypotheses concerning the mechanisms involved in their internalization. At the risk of being incomplete or, even, biased, we shall concentrate on penetratins and TAT. The reason is that these peptides have been studied for over ten years leading to the edification of robust knowledge regarding their properties. This attitude will not preclude comparisons with other peptides, if necessary. Our goal is to describe the mode of action of these transduction peptides, their range of activity in term of cell types that accept them and cargoes that they can transport, and, also, some of the limitations that one can encounter in their use. Finally, based on the idea that peptide transduction is the technological face of a physiological property of some transcription factors, we shall discuss the putative physiological function of homeoprotein transduction, and, as a consequence, the possibility to use these factors as therapeutic proteins.

  4. Transduction of Repetitive Mechanical Stimuli by Piezo1 and Piezo2 Ion Channels

    Directory of Open Access Journals (Sweden)

    Amanda H. Lewis

    2017-06-01

    Full Text Available Several cell types experience repetitive mechanical stimuli, including vein endothelial cells during pulsating blood flow, inner ear hair cells upon sound exposure, and skin cells and their innervating dorsal root ganglion (DRG neurons when sweeping across a textured surface or touching a vibrating object. While mechanosensitive Piezo ion channels have been clearly implicated in sensing static touch, their roles in transducing repetitive stimulations are less clear. Here, we perform electrophysiological recordings of heterologously expressed mouse Piezo1 and Piezo2 responding to repetitive mechanical stimulations. We find that both channels function as pronounced frequency filters whose transduction efficiencies vary with stimulus frequency, waveform, and duration. We then use numerical simulations and human disease-related point mutations to demonstrate that channel inactivation is the molecular mechanism underlying frequency filtering and further show that frequency filtering is conserved in rapidly adapting mouse DRG neurons. Our results give insight into the potential contributions of Piezos in transducing repetitive mechanical stimuli.

  5. Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction

    Science.gov (United States)

    Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude

    2016-01-01

    Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476

  6. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    Science.gov (United States)

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  7. Molecular mechanisms of root gravity sensing and signal transduction.

    Science.gov (United States)

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism. Copyright © 2011 Wiley Periodicals, Inc.

  8. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.

    2013-09-03

    Novel and improved analytical methods have led to a rapid increase in our understanding of the molecular mechanism underlying plant signal transduction. Progress has been made both at the level of single-component analysis and in vivo imaging as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well as the discovery and biochemical and biological characterization of an increasing number of complex multi-domain nucleotide cyclases that catalyze the synthesis of cAMP and cGMP from ATP and GTP, respectively. © Springer Science+Business Media New York 2013.

  9. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction.

    Science.gov (United States)

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.

  10. Falsification of the ionic channel theory of hair cell transduction.

    Science.gov (United States)

    Rossetto, Michelangelo

    2013-11-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.

  11. Cavity opto-electromechanical system combining strong electrical actuation with ultrasensitive transduction

    OpenAIRE

    McRae, Terry G.; Lee, Kwan H.; Harris, Glen I.; Knittel, Joachim; Bowen, Warwick P.

    2010-01-01

    A cavity opto-electromechanical system is reported which combines the ultrasensitive transduction of cavity optomechanical systems with the electrical actuation of nanoelectromechanical systems. Ultrasensitive mechanical transduction is achieved via opto-mechanical coupling. Electrical gradient forces as large as 0.40 $\\mu$N are realized, facilitating strong actuation with ultralow dissipation. A scanning probe microscope is implemented, capable of characterizing the mechanical modes. The int...

  12. Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Damien Thuau

    2018-04-01

    Full Text Available Polymer Micro ElectroMechanical Systems (MEMS have the potential to constitute a powerful alternative to silicon-based MEMS devices for sensing applications. Although the use of commercial photoresists as structural material in polymer MEMS has been widely reported, the integration of functional polymer materials as electromechanical transducers has not yet received the same amount of interest. In this context, we report on the design and fabrication of different electromechanical schemes based on polymeric materials ensuring different transduction functions. Piezoresistive transduction made of carbon nanotube-based nanocomposites with a gauge factor of 200 was embedded within U-shaped polymeric cantilevers operating either in static or dynamic modes. Flexible resonators with integrated piezoelectric transduction were also realized and used as efficient viscosity sensors. Finally, piezoelectric-based organic field effect transistor (OFET electromechanical transduction exhibiting a record sensitivity of over 600 was integrated into polymer cantilevers and used as highly sensitive strain and humidity sensors. Such advances in integrated electromechanical transduction schemes should favor the development of novel all-polymer MEMS devices for flexible and wearable applications in the future.

  13. Signal transduction pathways involved in mechanotransduction in bone cells

    International Nuclear Information System (INIS)

    Liedert, Astrid; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-01-01

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca 2+ channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus

  14. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper.

    Directory of Open Access Journals (Sweden)

    Gui-Jun Wan

    Full Text Available Although there are considerable reports of magnetic field effects (MFE on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i CRY1 and CRY2 as putative magnetosensors, (ii JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii CYP307A1 in the ecdysone pathway, and (iv reproduction-related Vitellogenin (Vg. The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.

  15. Olfactory transduction pathways in the Senegalese sole Solea senegalensis.

    Science.gov (United States)

    Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M

    2013-09-01

    This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms. © 2013 The Fisheries Society of the British Isles.

  16. Purinergic mechanosensory transduction and visceral pain

    Directory of Open Access Journals (Sweden)

    Burnstock Geoffrey

    2009-11-01

    Full Text Available Abstract In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.

  17. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems

    National Research Council Canada - National Science Library

    Caldwell, Kevin

    2001-01-01

    .... One and twenty-four hours following fear conditioning this learning deficit is associated with altered brain signal transduction mechanisms that are dependent on an enzyme termed phosphatidylinositol...

  18. Physical aspects of sensory transduction on seeing, hearing and smelling.

    Science.gov (United States)

    Yoshioka, Tohru; Sakakibara, Manabu

    2013-01-01

    What is the general principle of sensory transduction? Sensory transduction is defined as energy transformation from the external world to the internal world. The energy of the external world, such as thermal energy (heat), electro-magnetic energy (light), mechanical energy (sound) and the energy from molecules (chemicals), is converted into electrochemical events in the animal nervous system. The following five classes of special sense receptors are utilized for energy conversion: vision (photo); audition (sound); taste and smell (chemo); and tactile (mechano). There are also other special sense receptors, including thermo and noxious receptors. The focus of this study is on photoreceptors, sound-receptors and odorant-receptors because the transduction mechanisms of these receptors are explained biochemically and understood by a common physical principle; these biochemical models are well known in neuroscience. The following notable problems are inherent in these biochemical models: the cGMP ionophore model of the vertebrate photoreceptor cannot explain the fast photo-response (∼msec); the tip links connection model of stereocilia in the basilar membrane for opening the K(+) channel on the tip of a hair has difficulty explaining the high frequency vibration of hair cells without a damping of the oscillation, and the odorant shape-specific receptor model for olfactory transduction has difficulty in discriminating the minute differences among similar fragrant smells of essential oils with different molecular shapes. These difficulties might arise from a lack of the physical sense when the transduction models were proposed. This article will reconsider these problems and propose rational models for visual, olfactory and auditory transduction.

  19. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    Science.gov (United States)

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  20. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    Science.gov (United States)

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  1. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    Science.gov (United States)

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Cytoplasmic transduction peptide (CTP): New approach for the delivery of biomolecules into cytoplasm in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Daeyou; Jeon, Choonju; Kim, Jeong-Hwan; Kim, Mi-Seon; Yoon, Cheol-Hee; Choi, In-Soo; Kim, Sung-Hoon; Bae, Yong-Soo

    2006-01-01

    The protein transduction domain (PTD) of HIV-1 TAT has been extensively documented with regard to its membrane transduction potential, as well as its efficient delivery of biomolecules in vivo. However, the majority of PTD and PTD-conjugated molecules translocate to the nucleus rather than to the cytoplasm after transduction, due to the functional nuclear localization sequence (NLS). Here, we report a cytoplasmic transduction peptide (CTP), which was deliberately designed to ensure the efficient cytoplasmic delivery of the CTP-fused biomolecules. In comparison with PTD, CTP and its fusion partners exhibited a clear preference for cytoplasmic localization, and also markedly enhanced membrane transduction potential. Unlike the mechanism underlying PTD-mediated transduction, CTP-mediated transduction occurs independently of the lipid raft-dependent macropinocytosis pathway. The CTP-conjugated Smac/DIABLO peptide (Smac-CTP) was also shown to be much more efficient than Smac-PTD in the blockage of the antiapoptotic properties of XIAP, suggesting that cytoplasmic functional molecules can be more efficiently targeted by CTP-mediated delivery. In in vivo trafficking studies, CTP-fused β-gal exhibited unique organ tropisms to the liver and lymph nodes when systemically injected into mice, whereas PTD-β-gal exhibited no such tropisms. Taken together, our findings implicate CTP as a novel delivery peptide appropriate for (i) molecular targeting to cytoplasmic compartments in vitro, (ii) the development of class I-associated CTL vaccines, and (iii) special drug delivery in vivo, without causing any untoward effects on nuclear genetic material

  3. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes.

    Science.gov (United States)

    Shao, Yvonne Y; Wang, Lai; Welter, Jean F; Ballock, R Tracy

    2012-01-01

    Indian hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu

    2010-05-01

    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  5. Microenvironment Dependent Photobiomodulation on Function-Specific Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Timon Cheng-Yi Liu

    2014-01-01

    Full Text Available Cellular photobiomodulation on a cellular function has been shown to be homeostatic. Its function-specific pathway mechanism would be further discussed in this paper. The signal transduction pathways maintaining a normal function in its function-specific homeostasis (FSH, resisting the activation of many other irrelative signal transduction pathways, are so sparse that it can be supposed that there may be normal function-specific signal transduction pathways (NSPs. A low level laser irradiation or monochromatic light may promote the activation of partially activated NSP and/or its redundant NSP so that it may induce the second-order phase transition of a function from its dysfunctional one far from its FSH to its normal one in a function-specific microenvironment and may also induce the first-order functional phase transition of the normal function from low level to high level.

  6. Staurosporine Increases Lentiviral Vector Transduction Efficiency of Human Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Gretchen Lewis

    2018-06-01

    Full Text Available Lentiviral vector (LVV-mediated transduction of human CD34+ hematopoietic stem and progenitor cells (HSPCs holds tremendous promise for the treatment of monogenic hematological diseases. This approach requires the generation of a sufficient proportion of gene-modified cells. We identified staurosporine, a serine/threonine kinase inhibitor, as a small molecule that could be added to the transduction process to increase the proportion of genetically modified HSPCs by overcoming a LVV entry barrier. Staurosporine increased vector copy number (VCN approximately 2-fold when added to mobilized peripheral blood (mPB CD34+ cells prior to transduction. Limited staurosporine treatment did not affect viability of cells post-transduction, and there was no difference in in vitro colony formation compared to vehicle-treated cells. Xenotransplantation studies identified a statistically significant increase in VCN in engrafted human cells in mouse bone marrow at 4 months post-transplantation compared to vehicle-treated cells. Prostaglandin E2 (PGE2 is known to increase transduction efficiency of HSPCs through a different mechanism. Combining staurosporine and PGE2 resulted in further enhancement of transduction efficiency, particularly in short-term HSPCs. The combinatorial use of small molecules, such as staurosporine and PGE2, to enhance LVV transduction of human CD34+ cells is a promising method to improve transduction efficiency and subsequent potential therapeutic benefit of gene therapy drug products. Keywords: lentiviral, HSPC, transduction

  7. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  8. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  9. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    International Nuclear Information System (INIS)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-01

    Highlights: ► Very rapid generation of human iPS cells under optimized conditions. ► Five chemical inhibitors under hypoxia boosted reprogramming. ► We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of i

  10. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Xiaochuan Sun

    2017-07-01

    Full Text Available To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops.

  11. Influence of arsenate and arsenite on signal transduction pathways: an update

    Energy Technology Data Exchange (ETDEWEB)

    Druwe, Ingrid L.; Vaillancourt, Richard R. [The University of Arizona College of Pharmacy, Department of Pharmacology and Toxicology, Tucson, AZ (United States)

    2010-08-15

    Arsenic has been a recognized contaminant and toxicant, as well as a medicinal compound throughout human history. Populations throughout the world are exposed to arsenic and these exposures have been associated with a number of human cancers. Not much is known about the role of arsenic as a human carcinogen and more recently its role in non-cancerous diseases, such as cardiovascular disease, hypertension and diabetes mellitus have been uncovered. The health effects associated with arsenic are numerous and the association between arsenic exposure and human disease has intensified the search for molecular mechanisms that describe the biological activity of arsenic in humans and leads to the aforementioned disease states. Arsenic poses a human health risk due in part to the regulation of cellular signal transduction pathways and over the last few decades, some cellular mechanisms that account for arsenic toxicity, as well as, signal transduction pathways have been discovered. However, given the ubiquitous nature of arsenic in the environment, making sense of all the data remains a challenge. This review will focus on our knowledge of signal transduction pathways that are regulated by arsenic. (orig.)

  12. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  13. The mechanism underlying fast germination of tomato cultivar LA2711.

    Science.gov (United States)

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2015-09-01

    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters.

    Science.gov (United States)

    Ziegler, André; Seelig, Joachim

    2004-01-01

    The positively charged protein transduction domain of the HIV-1 TAT protein (TAT-PTD; residues 47-57 of TAT) rapidly translocates across the plasma membrane of living cells. This property is exploited for the delivery of proteins, drugs, and genes into cells. The mechanism of this translocation is, however, not yet understood. Recent theories for translocation suggest binding of the protein transduction domain (PTD) to extracellular glycosaminoglycans as a possible mechanism. We have studied the binding equilibrium between TAT-PTD and three different glycosaminoglycans with high sensitivity isothermal titration calorimetry and provide the first quantitative thermodynamic description. The polysulfonated macromolecules were found to exhibit multiple identical binding sites for TAT-PTD with only small differences between the three species as far as the thermodynamic parameters are concerned. Heparan sulfate (HS, molecular weight, 14.2 +/- 2 kDa) has 6.3 +/- 1.0 independent binding sites for TAT-PTD which are characterized by a binding constant K0 = (6.0 +/- 0.6) x 10(5) M(-1) and a reaction enthalpy deltaHpep0 = -4.6 +/- 1.0 kcal/mol at 28 degrees C. The binding affinity, deltaGpep0, is determined to equal extent by enthalpic and entropic contributions. The HS-TAT-PTD complex formation entails a positive heat capacity change of deltaCp0 = +135 cal/mol peptide, which is characteristic of a charge neutralization reaction. This is in contrast to hydrophobic binding reactions which display a large negative heat capacity change. The stoichiometry of 6-7 TAT-PTD molecules per HS corresponds to an electric charge neutralization. Light scattering data demonstrate a maximum scattering intensity at this stoichiometric ratio, the intensity of which depends on the order of mixing of the two components. The data suggest cross-linking and/or aggregation of HS-TAT-PTD complexes. Two other glycosaminoglycans, namely heparin and chondroitin sulfate B, were also studied with isothermal

  15. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  16. Dynamic behavior of ultra large graphene-based membranes using electrothermal transduction

    Science.gov (United States)

    Al-mashaal, A. K.; Wood, G. S.; Torin, A.; Mastropaolo, E.; Newton, M. J.; Cheung, R.

    2017-12-01

    This letter reports an experimental study of an electrothermal actuator made from an ultra-large graphene-based bilayer thin film with a diameter to thickness aspect ratio of ˜10 000. Suspended thin films consisting of multilayer graphene and 350-500 nm-thick Poly(methyl methacrylate) have been transferred over circular cavities with a diameter of 3.5 mm. The use of bilayer materials with different mechanical and thermal properties results in thin film structures that can be induced to vibrate mechanically under the electrothermal transduction mechanism. The dynamic response of the bilayer has been investigated electrothermally by driving the structures with a combination of alternating current and direct current actuation voltages ( Va c and Vd c) and characterizing their resonant frequencies. It has been found that the bilayer thin film structure behaves as a membrane. In addition, the actuation configurations affect not only the amplitude of vibration but also the tuning of the resonant frequency of the vibrating membranes. The existence of Joule heating-induced tension lowers the mechanical stiffness of the membrane and hence shifts the resonant frequency downwards by -108187 ppm. A resonant frequency of 3.26 kHz with a vibration amplitude of 4.34 nm has been achieved for 350 nm-thick membranes under actuation voltages of 1 V of Va c and 8 V of Vd c.

  17. Architectures and representations for string transduction

    NARCIS (Netherlands)

    Chrupala, Grzegorz

    2015-01-01

    String transduction problems are ubiquitous in natural language processing: they include transliteration, grapheme-to-phoneme conversion, text normalization and translation. String transduction can be reduced to the simpler problems of sequence labeling by expressing the target string as a sequence

  18. Effects of matrine on JAK-STAT signaling transduction pathways in ...

    African Journals Online (AJOL)

    The current study aims to investigate the effects of matrine on the JAK-STAT signaling transduction pathways in bleomycin (BLM)-induced pulmonary fibrosis (PF) and to explore its action mechanism. A total of 72 male C57BL/6 mice were randomized into the control, model, and treatment groups. PF models were ...

  19. Development of a CMOS MEMS pressure sensor with a mechanical force-displacement transduction structure

    International Nuclear Information System (INIS)

    Cheng, Chao-Lin; Chang, Heng-Chung; Fang, Weileun; Chang, Chun-I

    2015-01-01

    This study presents a capacitive pressure sensor with a mechanical force-displacement transduction structure based on the commercially available standard CMOS process (the TSMC 0.18 μm 1P6M CMOS process). The pressure sensor has a deformable diaphragm to support a movable plate with an embedded sensing electrode. As the diaphragm is deformed by the ambient pressure, the movable plate and its embedded sensing electrode are displaced. Thus, the pressure is detected from the capacitance change between the movable and fixed electrodes. The undeformed movable electrode will increase the effective sensing area between the sensing electrodes, thereby improving the sensitivity. Experimental results show that the proposed pressure sensor with a force-displacement transducer will increase the sensitivity by 126% within the 20 kPa–300 kPa absolute pressure range. Moreover, this study extends the design to add pillars inside the pressure sensor to further increase its sensing area as well as sensitivity. A sensitivity improvement of 117% is also demonstrated for a pressure sensor with an enlarged sensing electrode (the overlap area is increased two fold). (paper)

  20. Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor

    DEFF Research Database (Denmark)

    Reisberg, S.; Piro, B.; Noel, V.

    2008-01-01

    To elucidate the mechanism involved in the electrochemical transduction process of a conducting polymer-based DNA sensor, peptide nucleic acids (PNA) were used. PNA are DNA analogues having similar hybridization properties but are neutral. This allows to discriminate the electrostatic effect of D...... strands from the steric hindrance generated on the bioelectrode upon hybridization. It can be concluded that DNA conformational changes are determinant in the transduction process and that the electrostatic effect is negligible....

  1. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    International Nuclear Information System (INIS)

    Lesne, Annick; Victor, Jean–Marc; Bécavin, Christophe

    2012-01-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity. (perspective)

  2. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    Science.gov (United States)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  3. Signal Transduction Mechanisms Underlying Group I mGluR-mediated Increase in Frequency and Amplitude of Spontaneous EPSCs in the Spinal Trigeminal Subnucleus Oralis of the Rat

    Directory of Open Access Journals (Sweden)

    Ahn Dong-Kuk

    2009-09-01

    Full Text Available Abstract Group I mGluRs (mGluR1 and 5 pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs in the spinal trigeminal subnucleus oralis (Vo, we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 μM/5 min, activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region.

  4. Auxin apical control of the auxin polar transport and its oscillation - a suggested cellular transduction mechanism

    Directory of Open Access Journals (Sweden)

    Tomasz J. Wodzicki

    2014-01-01

    Full Text Available The proposed hypothesis concerns the transduction of auxin molecular signals arriving from the apoplast at the plasma membrane or recognized by the proteineous receptors of the responding cell, to the concentration gradients oscillating in the supracellular space, associated usually with the specific plant growth and differentiation. Acting as an agonist from outside the target cell auxin stimulates in this cell: (1 the liberation of auxin from the cytosolic pool of its conjugates directly into the basipetal efflux; (2 the synthesis of new auxin which restores the cytosolic reserve of auxin conjugates. The functioning of such a system may be effective in a series of processes initiated by the changing concentration of cytosolic calcium. The hypothesis suggests a molecular mechanism for the development and effective operation of the morphogenetic field in the supracellular space of the plant body, such as the field resulting from auxin waves discovered in cambium.

  5. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines

    International Nuclear Information System (INIS)

    Chen, Chien-Liang; Chou, Kang-Ju; Lee, Po-Tsang; Chen, Ying-Shou; Chang, Tsu-Yuan; Hsu, Chih-Yang; Huang, Wei-Chieh; Chung, Hsiao-Min; Fang, Hua-Chang

    2010-01-01

    Purpose: Tumor growth factor-β1 (TGF-β1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-β1-mediated EMT and fibrosis in kidney injury. Methods: We examined apoptosis and EMT in TGF-β1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-β1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-β1 signal pathway proteins and EMT markers. Results: We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-β1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-β1-mediated apoptosis and also partially inhibited TGF-β1-mediated EMT. We showed that EPO treatment suppressed TGF-β1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-β1-treated cells. Conclusions: EPO inhibited apoptosis and EMT in TGF-β1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.

  6. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long-te...

  7. Presence of Ca2+-dependent K+ channels in chemosensory cilia support a role in odor transduction.

    Science.gov (United States)

    Delgado, Ricardo; Saavedra, M Veronica; Schmachtenberg, Oliver; Sierralta, Jimena; Bacigalupo, Juan

    2003-09-01

    Olfactory receptor neurons (ORNs) respond to odorants with changes in the action potential firing rate. Excitatory responses, consisting of firing increases, are mediated by a cyclic AMP cascade that leads to the activation of cationic nonselective cyclic nucleotide-gated (CNG) channels and Ca2+-dependent Cl- (ClCa) channels. This process takes place in the olfactory cilia, where all protein components of this cascade are confined. ORNs from various vertebrate species have also been shown to generate inhibitory odor responses, expressed as decreases in action potential discharges. Odor inhibition appears to rely on Ca2+-dependent K+ (KCa) channels, but the underlying transduction mechanism remains unknown. If these channels are involved in odor transduction, they are expected to be present in the olfactory cilia. We found that a specific antibody against a large conductance KCa recognized a protein of approximately 116 kDa in Western blots of purified rat olfactory ciliary membranes. Moreover, the antibody labeled ORN cilia in isolated ORNs from rat and toad (Caudiverbera caudiverbera). In addition, single-channel recordings from inside-out membrane patches excised from toad chemosensory cilia showed the presence of 4 different types of KCa channels, with unitary conductances of 210, 60, 12, and 29 and 60 pS, high K+-selectivity, and Ca2+ sensitivities in the low micromolar range. Our work demonstrates the presence of K+ channels in the ORN cilia and supports their participation in odor transduction.

  8. Tuning piezoresistive transduction in nanomechanical resonators by geometrical asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, J.; Sansa, M.; Lorenzoni, M.; Pérez-Murano, F., E-mail: francesc.perez@csic.es [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, 08193 Bellaterra (Spain); Borrisé, X. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra Spain (Spain); San Paulo, A. [Instituto de Microelectrónica de Madrid (IMM-CSIC), 28760 Tres Cantos, Madrid (Spain)

    2015-08-17

    The effect of geometrical asymmetries on the piezoresistive transduction in suspended double clamped beam nanomechanical resonators is investigated. Tapered silicon nano-beams, fabricated using a fast and flexible prototyping method, are employed to determine how the asymmetry affects the transduced piezoresistive signal for different mechanical resonant modes. This effect is attributed to the modulation of the strain in pre-strained double clamped beams, and it is confirmed by means of finite element simulations.

  9. FY1995 transduction method and CAD database systems for integrated design; 1995 nendo transduction ho to CAD database togo sekkei shien system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Transduction method developed by the research coordinator and Prof. Muroga is one of the most popular methods to design large-scale integrated circuits, and thus used by major design tool companies in USA and Japan. The major objectives of the research is to improve capability and utilize its reusable property by combining with CAD databases. Major results of the project is as follows, (1) Improvement of Transduction method : Efficiency, capability and the maximum circuit size are improved. Error compensation method is also improved. (2) Applications to new logic elements : Transduction method is modified to cope with wired logic and FPGAs. (3) CAD databases : One of the major advantages of Transduction methods is 'reusability' of already designed circuits. It is suitable to combine with CAD databases. We design CAD databases suitable for cooperative design using Transduction method. (4) Program development : Programs for Windows95 and developed for distribution. (NEDO)

  10. FY1995 transduction method and CAD database systems for integrated design; 1995 nendo transduction ho to CAD database togo sekkei shien system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Transduction method developed by the research coordinator and Prof. Muroga is one of the most popular methods to design large-scale integrated circuits, and thus used by major design tool companies in USA and Japan. The major objectives of the research is to improve capability and utilize its reusable property by combining with CAD databases. Major results of the project is as follows, (1) Improvement of Transduction method : Efficiency, capability and the maximum circuit size are improved. Error compensation method is also improved. (2) Applications to new logic elements : Transduction method is modified to cope with wired logic and FPGAs. (3) CAD databases : One of the major advantages of Transduction methods is 'reusability' of already designed circuits. It is suitable to combine with CAD databases. We design CAD databases suitable for cooperative design using Transduction method. (4) Program development : Programs for Windows95 and developed for distribution. (NEDO)

  11. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  12. Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli.

    Science.gov (United States)

    Wang, Xiaohui; Gao, Bowen; Liu, Xiao; Dong, Xianjuan; Zhang, Zhongxiu; Fan, Huiyan; Zhang, Le; Wang, Juan; Shi, Shepo; Tu, Pengfei

    2016-05-26

    Agarwood, is a resinous portion derived from Aquilaria sinensis, has been widely used in traditional medicine and incense. 2-(2-phenylethyl)chromones are principal components responsible for the quality of agarwood. However, the molecular basis of 2-(2-phenylethyl)chromones biosynthesis and regulation remains almost unknown. Our research indicated that salt stress induced production of several of 2-(2-phenylethyl)chromones in A. sinensis calli. Transcriptome analysis of A. sinensis calli treated with NaCl is required to further facilitate the multiple signal pathways in response to salt stress and to understand the mechanism of 2-(2-phenylethyl)chromones biosynthesis. Forty one 2-(2-phenylethyl)chromones were identified from NaCl-treated A. sinensis calli. 93 041 unigenes with an average length of 1562 nt were generated from the control and salt-treated calli by Illmunina sequencing after assembly, and the unigenes were annotated by comparing with the public databases including NR, Swiss-Prot, KEGG, COG, and GO database. In total, 18 069 differentially expressed transcripts were identified by the transcriptome comparisons on the control calli and calli induced by 24 h or 120 h salinity stress. Numerous genes involved in signal transduction pathways including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors showed clear differences between the control calli and NaCl-treated calli. Furthermore, our data suggested that the genes annotated as chalcone synthases and O-methyltransferases may contribute to the biosynthesis of 2-(2-phenylethyl)chromones. Salinity stress could induce the production of 41 2-(2-phenylethyl)chromones in A. sinensis calli. We conducted the first deep-sequencing transcriptome profiling of A. sinensis under salt stress and observed a large number of differentially expressed genes in response to salinity stress. Moreover, salt stress induced

  13. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna W.; Satyshur, Kenneth A.; Morales, Neydis Moreno; Forest, Katrina T. (UW)

    2016-02-01

    ABSTRACT

    Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems.

  14. Subsumed complexity: abiogenesis as a by-product of complex energy transduction

    Science.gov (United States)

    Adam, Z. R.; Zubarev, D.; Aono, M.; Cleaves, H. James

    2017-11-01

    The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called subsumed complexity, organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  15. Efficiency of Energy Transduction in a Molecular Chemical Engine

    OpenAIRE

    Sasaki, Kazuo; Kanada, Ryo; Amari, Satoshi

    2006-01-01

    A simple model of the two-state ratchet type is proposed for molecular chemical engines that convert chemical free energy into mechanical work and vice versa. The engine works by catalyzing a chemical reaction and turning a rotor. Analytical expressions are obtained for the dependences of rotation and reaction rates on the concentrations of reactant and product molecules, from which the performance of the engine is analyzed. In particular, the efficiency of energy transduction is discussed in...

  16. Lipid rafts generate digital-like signal transduction in cell plasma membranes.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2012-06-01

    Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  18. Impact of radiations on the electromechanical properties of materials and on the piezoresistive and capacitive transduction mechanisms used in microsystems

    Science.gov (United States)

    Francis, Laurent A.; Gkotsis, Petros; Kilchytska, Valeriya; Tang, Xiaohui; Druart, Sylvain; Raskin, Jean-Pierre; Flandre, Denis

    2013-03-01

    The impact of different types of radiation on the electromechanical properties of materials used in microfabrication and on the capacitive and piezoresistive transduction mechanisms of MEMS is investigated. MEMS technologies could revolutionize avionics, satellite and space applications provided that the stress conditions which can compromise the reliability of microsystems in these environments are well understood. Initial tests with MEMS revealed a vulnerability of some types of devices to radiation induced dielectric charging, a physical mechanism which also affects microelectronics, however integration of novel functional materials in microfabrication and the current trend to substitute SiO2 with high-k dielectrics in ICs pose new questions regarding reliability in radiation environments. The performance of MEMS devices with moving parts could also degrade due to radiation induced changes in the mechanical properties of the materials. It is thus necessary to investigate the effects of radiation on the properties of thin films used in microfabrication and here we report on tests with γ, high energy protons and fast neutrons radiation. Prototype SOI based MEMS magnetometers which were developed in UCL are also used as test vehicles to investigate radiation effects on the reliability of magnetically actuated and capacitively coupled MEMS.

  19. Signal transduction in the footsteps of goethe and schiller.

    Science.gov (United States)

    Friedrich, Karlheinz; Lindquist, Jonathan A; Entschladen, Frank; Serfling, Edgar; Thiel, Gerald; Kieser, Arnd; Giehl, Klaudia; Ehrhardt, Christina; Feller, Stephan M; Ullrich, Oliver; Schaper, Fred; Janssen, Ottmar; Hass, Ralf

    2009-02-04

    The historical town of Weimar in Thuringia, the "green heart of Germany" was the sphere of Goethe and Schiller, the two most famous representatives of German literature's classic era. Not yet entirely as influential as those two cultural icons, the Signal Transduction Society (STS) has nevertheless in the last decade established within the walls of Weimar an annual interdisciplinary Meeting on "Signal Transduction - Receptors, Mediators and Genes", which is well recognized as a most attractive opportunity to exchange results and ideas in the field.The 12th STS Meeting was held from October 28 to 31 and provided a state-of-the-art overview of various areas of signal transduction research in which progress is fast and discussion lively. This report is intended to share with the readers of CCS some highlights of the Meeting Workshops devoted to specific aspects of signal transduction.

  20. Polyploidization without mitosis improves in vivo liver transduction with lentiviral vectors.

    Science.gov (United States)

    Pichard, Virginie; Couton, Dominique; Desdouets, Chantal; Ferry, Nicolas

    2013-02-01

    Lentiviral vectors are efficient gene delivery vehicles for therapeutic and research applications. In contrast to oncoretroviral vectors, they are able to infect most nonproliferating cells. In the liver, induction of cell proliferation dramatically improved hepatocyte transduction using all types of retroviral vectors. However, the precise relationship between hepatocyte division and transduction efficiency has not been determined yet. Here we compared gene transfer efficiency in the liver after in vivo injection of recombinant lentiviral or Moloney murine leukemia viral (MoMuLV) vectors in hepatectomized rats treated or not with retrorsine, an alkaloid that blocks hepatocyte division and induces megalocytosis. Partial hepatectomy alone resulted in a similar increase in hepatocyte transduction using either vector. In retrorsine-treated and partially hepatectomized rats, transduction with MoMuLV vectors dropped dramatically. In contrast, we observed that retrorsine treatment combined with partial hepatectomy increased lentiviral transduction to higher levels than hepatectomy alone. Analysis of nuclear ploidy in single cells showed that a high level of transduction was associated with polyploidization. In conclusion, endoreplication could be exploited to improve the efficiency of liver-directed lentiviral gene therapy.

  1. The effect of the inner-hair-cell mediated transduction on the shape of neural tuning curves

    Science.gov (United States)

    Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah

    2018-05-01

    The inner hair cells of the mammalian cochlea transform the vibrations of their stereocilia into releases of neurotransmitter at the ribbon synapses, thereby controlling the activity of the afferent auditory fibers. The mechanical-to-neural transduction is a highly nonlinear process and it introduces differences between the frequency-tuning of the stereocilia and that of the afferent fibers. Using a computational model of the inner hair cell that is based on in vitro data, we estimated that smaller vibrations of the stereocilia are necessary to drive the afferent fibers above threshold at low (≤0.5 kHz) than at high (≥4 kHz) driving frequencies. In the base of the cochlea, the transduction process affects the low-frequency tails of neural tuning curves. In particular, it introduces differences between the frequency-tuning of the stereocilia and that of the auditory fibers resembling those between basilar membrane velocity and auditory fibers tuning curves in the chinchilla base. For units with a characteristic frequency between 1 and 4 kHz, the transduction process yields shallower neural than stereocilia tuning curves as the characteristic frequency decreases. This study proposes that transduction contributes to the progressive broadening of neural tuning curves from the base to the apex.

  2. Microfluidic Transduction Harnesses Mass Transport Principles to Enhance Gene Transfer Efficiency.

    Science.gov (United States)

    Tran, Reginald; Myers, David R; Denning, Gabriela; Shields, Jordan E; Lytle, Allison M; Alrowais, Hommood; Qiu, Yongzhi; Sakurai, Yumiko; Li, William C; Brand, Oliver; Le Doux, Joseph M; Spencer, H Trent; Doering, Christopher B; Lam, Wilbur A

    2017-10-04

    Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1 + ) and human (CD34 + ) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Mechanically Gated Ion Channels in Mammalian Hair Cells

    Directory of Open Access Journals (Sweden)

    Xufeng Qiu

    2018-04-01

    Full Text Available Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS/LHFPL5, transmembrane inner ear (TMIE and transmembrane channel-like proteins 1 and 2 (TMC1/2. However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.

  4. Plasma Gelsolin Induced Glomerular Fibrosis via the TGF-β1/Smads Signal Transduction Pathway in IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-02-01

    Full Text Available Glomerular fibrosis has been shown to be closely related to the progression and prognosis of IgA nephropathy (IgAN. However, mechanism underlying IgAN glomerular fibrosis remains unclear. Recently, our study showed that plasma gelsolin (pGSN was decreased in the serum of an IgAN mouse model and that pGSN deposition was found in the glomeruli. Another cytokine, TGF-β1, which is closely related to glomerular fibrosis, was also found to be highly expressed in the glomeruli. In the present study, we report that pGSN induces glomerular fibrosis through the TGF-β1/Smads signal transduction pathway. This is supported by the following findings: human mesangial cells (HMCs show remarkable morphological changes and proliferation in response to co-stimulation with pGSN and polymeric IgA1 (pIgA1 from IgAN patients compared to other controls. Moreover, ELISA assays showed that more TGF-β1 secretion was found in HMCs supernatants in the co-stimulation group. Further experiments showed increased TGF-β1, Smad3, p-Smad2/3, Smad4, and collagen 1 and decreased Smad7 expression in the co-stimulation group. Our present study implied that the synergistic effect of pGSN and pIgA induced glomerular fibrosis via the TGF-β1/Smads signal transduction pathway. This might be a potential mechanism for the glomerular fibrosis observed in IgAN patients.

  5. Plasma Gelsolin Induced Glomerular Fibrosis via the TGF-β1/Smads Signal Transduction Pathway in IgA Nephropathy

    Science.gov (United States)

    Zhang, Lei; Han, Changsong; Ye, Fei; He, Yan; Jin, Yinji; Wang, Tianzhen; Wu, Yiqi; Jiang, Yang; Zhang, Fengmin; Jin, Xiaoming

    2017-01-01

    Glomerular fibrosis has been shown to be closely related to the progression and prognosis of IgA nephropathy (IgAN). However, mechanism underlying IgAN glomerular fibrosis remains unclear. Recently, our study showed that plasma gelsolin (pGSN) was decreased in the serum of an IgAN mouse model and that pGSN deposition was found in the glomeruli. Another cytokine, TGF-β1, which is closely related to glomerular fibrosis, was also found to be highly expressed in the glomeruli. In the present study, we report that pGSN induces glomerular fibrosis through the TGF-β1/Smads signal transduction pathway. This is supported by the following findings: human mesangial cells (HMCs) show remarkable morphological changes and proliferation in response to co-stimulation with pGSN and polymeric IgA1 (pIgA1) from IgAN patients compared to other controls. Moreover, ELISA assays showed that more TGF-β1 secretion was found in HMCs supernatants in the co-stimulation group. Further experiments showed increased TGF-β1, Smad3, p-Smad2/3, Smad4, and collagen 1 and decreased Smad7 expression in the co-stimulation group. Our present study implied that the synergistic effect of pGSN and pIgA induced glomerular fibrosis via the TGF-β1/Smads signal transduction pathway. This might be a potential mechanism for the glomerular fibrosis observed in IgAN patients. PMID:28208683

  6. Evidence that membrane transduction of oligoarginine does not require vesicle formation

    International Nuclear Information System (INIS)

    Zaro, Jennica L.; Shen Weichiang

    2005-01-01

    The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 deg. C as compared to the 37 deg. C control, and was only partially inhibited at 4 deg. C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine

  7. Polybrene inhibits human mesenchymal stem cell proliferation during lentiviral transduction.

    Directory of Open Access Journals (Sweden)

    Paul Lin

    Full Text Available Human mesenchymal stem cells (hMSCs can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1-8 µg/mL negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr. Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical.

  8. The role of the Frank-Starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis.

    Directory of Open Access Journals (Sweden)

    Steven A Niederer

    2009-04-01

    Full Text Available We have developed a multi-scale biophysical electromechanics model of the rat left ventricle at room temperature. This model has been applied to investigate the relative roles of cellular scale length dependent regulators of tension generation on the transduction of work from the cell to whole organ pump function. Specifically, the role of the length dependent Ca(2+ sensitivity of tension (Ca(50, filament overlap tension dependence, velocity dependence of tension, and tension dependent binding of Ca(2+ to Troponin C on metrics of efficient transduction of work and stress and strain homogeneity were predicted by performing simulations in the absence of each of these feedback mechanisms. The length dependent Ca(50 and the filament overlap, which make up the Frank-Starling Law, were found to be the two dominant regulators of the efficient transduction of work. Analyzing the fiber velocity field in the absence of the Frank-Starling mechanisms showed that the decreased efficiency in the transduction of work in the absence of filament overlap effects was caused by increased post systolic shortening, whereas the decreased efficiency in the absence of length dependent Ca(50 was caused by an inversion in the regional distribution of strain.

  9. Optimization of Liquid DiElectroPhoresis (LDEP Digital Microfluidic Transduction for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2011-06-01

    Full Text Available Digital microfluidic has recently been under intensive study, as an effective method to carry out liquid manipulation in Lab-On-a-Chip (LOC systems. Among droplet actuation forces, ElectroWetting on Dielectric (EWOD and Liquid DiElectroPhoresis (LDEP are powerful tools, used in many LOC platforms. Such digital microfluidic transductions do not require integration of complex mechanical components such as pumps and valves to perform the fluidic operations. However, although LDEP has been proved to be efficient to carry and manipulate biological components in insulating liquids, this microfluidic transduction requires several hundreds of volts at relatively high frequencies (kHz to MHz. With the purpose to develop integrated microsystems µ-TAS (Micro Total Analysis System or Point of Care systems, the goal here is to reduce such high actuation voltage, the power consumption, though using standard dielectric materials. This paper gives key rules to determine the best tradeoff between liquid manipulation efficiency, low-power consumption and robustness of microsystems using LDEP actuation. This study leans on an electromechanical model to describe liquid manipulation that is applied to an experimental setup, and provides precise quantification of both actuation voltage Vth and frequency fc thresholds between EWOD and LDEP regimes. In particular, several parameters will be investigated to quantify Vth and fc, such as the influence of the chip materials, the electrodes size and the device configurations. Compared to current studies in the field, significant reduction of both Vth and fc is achieved by optimization of the aforementioned parameters.

  10. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    International Nuclear Information System (INIS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-01-01

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology

  11. Signal transduction, receptors, mediators and genes: younger than ever - the 13th meeting of the Signal Transduction Society focused on aging and immunology

    Directory of Open Access Journals (Sweden)

    Klotz Lars-Oliver

    2010-02-01

    Full Text Available Abstract The 13th meeting of the Signal Transduction Society was held in Weimar, from October 28 to 30, 2009. Special focus of the 2009 conference was "Aging and Senescence", which was co-organized by the SFB 728 "Environmentally-Induced Aging Processes" of the University of Düsseldorf and the study group 'Signal Transduction' of the German Society for Cell Biology (DGZ. In addition, several other areas of signal transduction research were covered and supported by different consortia associated with the Signal Transduction Society including the long-term associated study groups of the German Society for Immunology and the Society for Biochemistry and Molecular Biology, and for instance the SFB/Transregio 52 "Transcriptional Programming of Individual T Cell Subsets" located in Würzburg, Mainz and Berlin. The different research areas that were introduced by outstanding keynote speakers attracted more than 250 scientists, showing the timeliness and relevance of the interdisciplinary concept and exchange of knowledge during the three days of the scientific program. This report gives an overview of the presentations of the conference.

  12. Modeling evolution of crosstalk in noisy signal transduction networks

    Science.gov (United States)

    Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-02-01

    Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.

  13. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    Science.gov (United States)

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  14. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis

    International Nuclear Information System (INIS)

    Mol, J.; Jenkins, G.; Schäfer, E.; Weiss, D.

    1996-01-01

    Anthocyanin pigments provide fruits and flowers with their bright red and blue colors and are induced in vegetative tissues by various signals. The biosynthetic pathway probably represents one of the best‐studied examples of higher plant secondary metabolism. It has attracted much attention of plant geneticists because of the dispensable nature of the compounds it produces. Not unexpectedly, several excellent reviews on anthocyanin biosynthesis have been published over the last 5 years (Dooner et al., 1991; Martin and Gerats, 1993a, 1993b; Koes et al., 1994; Holton and Cornish, 1995). These reviews emphasize the late steps of pigment biosynthesis rather than the early and intermediate events of signal perception and transduction. This review is broader and not only covers the identification of components of the anthocyanin signal perception/transduction networks but also provides a description of our current understanding of how they evoke the responses that they do. Progress has derived from a combination of biochemical, molecular and genetic studies. We discuss a range of relevant research to highlight the different experimental approaches being used and the diverse biological systems under investigation. (author)

  15. Signal Sensing and Transduction by Histidine Kinases as Unveiled through Studies on a Temperature Sensor.

    Science.gov (United States)

    Abriata, Luciano A; Albanesi, Daniela; Dal Peraro, Matteo; de Mendoza, Diego

    2017-06-20

    experiments and molecular simulations further showed that reversible formation of a two-helix coiled coil in the fifth TM segment and the N-terminus of the cytoplasmic domain is essential for the sensing and signal transduction mechanisms. Together with other structural and functional works, the emerging picture suggests that diverse HKs possess distinct sensing and transduction mechanisms but share as rather general features (i) a symmetric phosphatase state and an asymmetric kinase state and (ii) similar functional outputs on the conserved DHp and ABD domains, achieved through different mechanisms that depend on the nature of the initial signal. We here advance (iii) an important role for TM prolines in transducing the initial signals to the cytoplasmic coiled coils, based on simulations of DesK's TM helices and our previous work on a related HK, PhoQ. Lastly, evidence for DesK, PhoQ, BvgS, and DctB HKs shows that (iv) overall catalytic output is tuned by a delicate balance between hydration potentials, coiled coil stability, and exposure of hydrophobic surface patches at their cytoplasmic coiled coils and at the N-terminal and C-terminal sides of their TM helices. This balance is so delicate that small perturbations, either physiological signals or induced by mutations, lead to large remodeling of the underlying conformational landscape achieving clear-cut changes in catalytic output, mirroring the required response speed of these systems for proper biological function.

  16. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.

    Science.gov (United States)

    Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S

    1996-07-15

    Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.

  17. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  18. A functional TOC complex contributes to gravity signal transduction in Arabidopsis.

    Science.gov (United States)

    Strohm, Allison K; Barrett-Wilt, Greg A; Masson, Patrick H

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  19. The physiology mechanisms on drought tolerance and adaptation of biological soil crust moss Bryum argenteum and Didymodon vinealis in Tenger Desert

    Science.gov (United States)

    Zhao, X.; Shi, Y.; Chen, C.; Jia, R.; Li, X.

    2012-04-01

    Bryum argenteum Hedw. and Didymodon vinealis Brid are two dominant moss species in the restored vegetation area in Tenger Desert, which sampled from biological soil crusts and where is an extreme drought regions. We found that they resorted to different osmotic adjustment strategies to mitigate osmotic stress. Under the gradual drought stress, both Bryum argenteum and Didymodon vinealis accumulated K+ and soluble sugar such as sucrose and trehalose. Their glycine betaine contents both decreased, while their proline content had no significant change. With enhanced drought stress, Bryum argenteum's Na+ content was low and decreased significantly, whereas Didymodon vinealis's Na+ content increased sharply and reached to a high level. We found the different of the mechanism of between active oxygen scavenging on Enzymatic and non - enzymatic system in two species moss of Bryum argenteum Hedw and Didymodon vinealis Brid under extreme drought stress. The result showed that two species of Moss of SOD activity gradually enhanced, and they have the material basis for effectively eliminates in vivo of Superoxide free radical. POD in Didymodon nigrescen and CAT in Bryum argeneum are major resistance o oxidative stress effects. The content of GSH rise with the stress also enhanced. The mechanism of finding Bryum argenteum Hedw and Didymodon vinealis Brid tolerance of dehydration ability were focus on different direction, but they are all given positive response to stress and enhance resistance. We investigated the responses of signal transduction substances to gradual drought stress in Didymodon vinealis and Bryum argenteum. The results suggested that: under gradual drought stress, the activities of TP H+-ATPase and PM H+-ATPase of Didymodon vinealis and Bryum argenteum both increased, resulting in their increase of K+ contents and turgor pressures, and triggered biosynthesis of signal transduction substances. ABA had no obvious effect in signal transduction of Bryum argenteum

  20. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  1. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  2. Graph Regularized Meta-path Based Transductive Regression in Heterogeneous Information Network.

    Science.gov (United States)

    Wan, Mengting; Ouyang, Yunbo; Kaplan, Lance; Han, Jiawei

    2015-01-01

    A number of real-world networks are heterogeneous information networks, which are composed of different types of nodes and links. Numerical prediction in heterogeneous information networks is a challenging but significant area because network based information for unlabeled objects is usually limited to make precise estimations. In this paper, we consider a graph regularized meta-path based transductive regression model ( Grempt ), which combines the principal philosophies of typical graph-based transductive classification methods and transductive regression models designed for homogeneous networks. The computation of our method is time and space efficient and the precision of our model can be verified by numerical experiments.

  3. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    Science.gov (United States)

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  4. Mechanistic Insights in Ethylene Perception and Signal Transduction1

    Science.gov (United States)

    Ju, Chuanli; Chang, Caren

    2015-01-01

    The gaseous hormone ethylene profoundly affects plant growth, development, and stress responses. Ethylene perception occurs at the endoplasmic reticulum membrane, and signal transduction leads to a transcriptional cascade that initiates diverse responses, often in conjunction with other signals. Recent findings provide a more complete picture of the components and mechanisms in ethylene signaling, now rendering a more dynamic view of this conserved pathway. This includes newly identified protein-protein interactions at the endoplasmic reticulum membrane, as well as the major discoveries that the central regulator ETHYLENE INSENSITIVE2 (EIN2) is the long-sought phosphorylation substrate for the CONSTITUTIVE RESPONSE1 protein kinase, and that cleavage of EIN2 transmits the signal to the nucleus. In the nucleus, hundreds of potential gene targets of the EIN3 master transcription factor have been identified and found to be induced in transcriptional waves, and transcriptional coregulation has been shown to be a mechanism of ethylene cross talk. PMID:26246449

  5. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  6. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  7. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation.

    Science.gov (United States)

    Klip, Amira; Sun, Yi; Chiu, Tim Ting; Foley, Kevin P

    2014-05-15

    Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays ("software") that engage structural/mechanical elements ("hardware") to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane. Copyright © 2014 the American Physiological Society.

  8. Protein Transduction Based Therapies for Breast Cancer

    National Research Council Canada - National Science Library

    Robbins, Paul D

    2004-01-01

    We have demonstrated that certain transduction peptides such as 12 lysines and 12 arginines can facilitate internalization into breast tumor lines with higher efficiency than smaller polymers of cationic amino acids...

  9. Protein Transduction Based Therapies for Breast Cancer

    National Research Council Canada - National Science Library

    Robbins, Paul D

    2005-01-01

    We have demonstrated that certain transduction peptides such as 12 lysines and 12 arginines can facilitate internalization into breast tumor lines with higher efficiency than smaller polymers of cationic amino acids...

  10. Rapid lentiviral transduction preserves the engraftment potential of Fanca(-/-) hematopoietic stem cells.

    Science.gov (United States)

    Müller, Lars U W; Milsom, Michael D; Kim, Mi-Ok; Schambach, Axel; Schuesler, Todd; Williams, David A

    2008-06-01

    Fanconi anemia (FA) is a rare recessive syndrome, characterized by congenital anomalies, bone marrow failure, and predisposition to cancer. Two earlier clinical trials utilizing gamma-retroviral vectors for the transduction of autologous FA hematopoietic stem cells (HSCs) required extensive in vitro manipulation and failed to achieve detectable long-term engraftment of transduced HSCs. As a strategy for minimizing ex vivo manipulation, we investigated the use of a "rapid" lentiviral transduction protocol in a murine Fanca(-/-) model. Importantly, while this and most murine models of FA fail to completely mimic the human hematopoietic phenotype, we observed a high incidence of HSC transplant engraftment failure and low donor chimerism after conventional transduction (CT) of Fanca(-/-) donor cells. In contrast, rapid transduction (RT) of Fanca(-/-) HSCs preserved engraftment to the level achieved in wild-type cells, resulting in long-term multilineage engraftment of gene-modified cells. We also demonstrate the correction of the characteristic hypersensitivity of FA cells against the cross-linking agent mitomycin C (MMC), and provide evidence for the advantage of using pharmacoselection as a means of further increasing gene-modified cells after RT. Collectively, these data support the use of rapid lentiviral transduction for gene therapy in FA.

  11. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.

    Science.gov (United States)

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-10-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  12. Polymerase chain reaction-based detection of myc transduction in feline leukemia virus-infected cats.

    Science.gov (United States)

    Sumi, Ryosuke; Miyake, Ariko; Endo, Taiji; Ohsato, Yoshiharu; Ngo, Minh Ha; Nishigaki, Kazuo

    2018-04-01

    Feline lymphomas are associated with the transduction and activation of cellular proto-oncogenes, such as c-myc, by feline leukemia virus (FeLV). We describe a polymerase chain reaction assay for detection of myc transduction usable in clinical diagnosis. The assay targets c-myc exons 2 and 3, which together result in a FeLV-specific fusion gene following c-myc transduction. When this assay was conducted on FeLV-infected feline tissues submitted for clinical diagnosis of tumors, myc transduction was detected in 14% of T-cell lymphoma/leukemias. This newly established system could become a useful diagnostic tool in veterinary medicine.

  13. Information Thermodynamics of the Cell Signal Transduction as a Szilard Engine

    Directory of Open Access Journals (Sweden)

    Tatsuaki Tsuruyama

    2018-03-01

    Full Text Available A cell signaling system is in a non-equilibrium state, and it includes multistep biochemical signaling cascades (BSCs, which involve phosphorylation of signaling molecules, such as mitogen-activated protein kinase (MAPK pathways. In this study, the author considered signal transduction description using information thermodynamic theory. The ideal BSCs can be considered one type of the Szilard engine, and the presumed feedback controller, Maxwell’s demon, can extract the work during signal transduction. In this model, the mutual entropy and chemical potential of the signal molecules can be redefined by the extracted chemical work in a mechanicochemical model, Szilard engine, of BSC. In conclusion, signal transduction is computable using the information thermodynamic method.

  14. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  15. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  16. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  17. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    Science.gov (United States)

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  18. State–time spectrum of signal transduction logic models

    International Nuclear Information System (INIS)

    MacNamara, Aidan; Terfve, Camille; Henriques, David; Bernabé, Beatriz Peñalver; Saez-Rodriguez, Julio

    2012-01-01

    Despite the current wealth of high-throughput data, our understanding of signal transduction is still incomplete. Mathematical modeling can be a tool to gain an insight into such processes. Detailed biochemical modeling provides deep understanding, but does not scale well above relatively a few proteins. In contrast, logic modeling can be used where the biochemical knowledge of the system is sparse and, because it is parameter free (or, at most, uses relatively a few parameters), it scales well to large networks that can be derived by manual curation or retrieved from public databases. Here, we present an overview of logic modeling formalisms in the context of training logic models to data, and specifically the different approaches to modeling qualitative to quantitative data (state) and dynamics (time) of signal transduction. We use a toy model of signal transduction to illustrate how different logic formalisms (Boolean, fuzzy logic and differential equations) treat state and time. Different formalisms allow for different features of the data to be captured, at the cost of extra requirements in terms of computational power and data quality and quantity. Through this demonstration, the assumptions behind each formalism are discussed, as well as their advantages and disadvantages and possible future developments. (paper)

  19. Structural basis for energy transduction by respiratory alternative complex III.

    Science.gov (United States)

    Sousa, Joana S; Calisto, Filipa; Langer, Julian D; Mills, Deryck J; Refojo, Patrícia N; Teixeira, Miguel; Kühlbrandt, Werner; Vonck, Janet; Pereira, Manuela M

    2018-04-30

    Electron transfer in respiratory chains generates the electrochemical potential that serves as energy source for the cell. Prokaryotes can use a wide range of electron donors and acceptors and may have alternative complexes performing the same catalytic reactions as the mitochondrial complexes. This is the case for the alternative complex III (ACIII), a quinol:cytochrome c/HiPIP oxidoreductase. In order to understand the catalytic mechanism of this respiratory enzyme, we determined the structure of ACIII from Rhodothermus marinus at 3.9 Å resolution by single-particle cryo-electron microscopy. ACIII presents a so-far unique structure, for which we establish the arrangement of the cofactors (four iron-sulfur clusters and six c-type hemes) and propose the location of the quinol-binding site and the presence of two putative proton pathways in the membrane. Altogether, this structure provides insights into a mechanism for energy transduction and introduces ACIII as a redox-driven proton pump.

  20. Macro-Fiber Composite Based Transduction

    Science.gov (United States)

    2016-03-01

    substrate Material properties of single crystal macro fiber composite actuators for active twist rotor blades Park, Jae-Sang (Seoul National...Passive Smart Structures and Integrated Systems 2007 Material properties of single crystal macro fiber composite actuators for active twist rotor ...19b. TELEPHONE NUMBER (Include area code) 10-03-20 16 Final Report 01 Jan 2013 - 31 Dec 2015 Macro-Fiber Composite Based Transduction N000-14-13-1-0212

  1. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  2. Molecular mechanisms of BMP-induced bone formation: Cross-talk between BMP and NF-κB signaling pathways in osteoblastogenesis

    Directory of Open Access Journals (Sweden)

    Eijiro Jimi

    2010-02-01

    Full Text Available Osteoblasts are bone-forming cells that differentiate from mesenchymal stem cells. Differentiation processes are coordinately and dynamically controlled in the mesenchymal cells by specific signal transduction pathways. Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, induce not only bone formation in vivo, but also osteoblast differentiation of mesenchymal cells in vitro. BMP signals are transduced from plasma membrane receptors to the nucleus through both Smad-dependent and -independent pathways, and are regulated by many extracellular and intercellular proteins that interact with BMPs or components of BMP signaling pathways. To understand the molecular mechanisms underlying the role of BMPs in osteoblast differentiation, it is important to elucidate the BMP signaling transduction pathways that are active during osteoblast differentiation. In this review, we summarize the BMP signaling pathways that are known to function in osteoblast development. We also describe our recent findings regarding the molecular mechanisms underlying the cross-talk between BMP/Smad and NF-κB pathways in osteoblast differentiation.

  3. Notch2 transduction by feline leukemia virus in a naturally infected cat.

    Science.gov (United States)

    Watanabe, Shinya; Ito, Jumpei; Baba, Takuya; Hiratsuka, Takahiro; Kuse, Kyohei; Ochi, Haruyo; Anai, Yukari; Hisasue, Masaharu; Tsujimoto, Hajime; Nishigaki, Kazuo

    2014-04-01

    Feline leukemia virus (FeLV) induces neoplastic and nonneoplastic diseases in cats. The transduction of cellular genes by FeLV is sometimes observed and associated with neoplastic diseases including lymphoma and sarcoma. Here, we report the first natural case of feline Notch2 transduction by FeLV in an infected cat with multicentric lymphoma and hypercalcemia. We cloned recombinant FeLVs harboring Notch2 in the env gene. Notch2 was able to activate expression of a reporter gene, similar to what was previously reported in cats with experimental FeLV-induced thymic lymphoma. Our findings suggest that the transduction of Notch2 strongly correlates with FeLV-induced lymphoma.

  4. Repair of damage induced by ultraviolet radiation in mutator T-1 Escherichia coli transductants

    International Nuclear Information System (INIS)

    Sideropoulos, A.S.; Greenberg, J.; Warren, G.

    1975-01-01

    To ascertain whether a relationship commonly exists between azide resistance, ultraviolet (uv) resistance, and the mutator property (mut T-1), we performed uv survival and mutation frequency determinations with and without caffeine (2.571 mM) in nonmutator azide resistant (azi/sup r/) and phage mediated mut T-1 transductants of Escherichia coli K-12, B/r, B/r T-, Bs-1, and Bs-8. The strains constructed were assumed to be ''co-isogenic'' except for the mutator factor. The frequency of mutation to streptomycin resistance (str/sup r/) was relatively constant and approximated 2 x 10- 7 . Transductants carrying the azide marker with or without the mut T-1 gene had the same level of uv survival as the parent with the same mutator phenotype. Dark repair of the prelethal uv lesion is equally caffeine sensitive in the nonmutator and mutator HCR+ strains. Our results indicated that the mut T-1 strains possess an efficient dark repair system for uv damage and that the mechanism of mut T-1 action is independent of uv dark repair processes. (auth)

  5. Dyslipidemia modulates Müller glial sensing and transduction of ambient information

    Directory of Open Access Journals (Sweden)

    Monika Lakk

    2018-01-01

    Full Text Available Unesterified cholesterol controls the fluidity, permeability and electrical properties of eukaryotic cell membranes. Consequently, cholesterol levels in the retina and the brain are tightly regulated whereas depletion or oversupply caused by diet or heredity contribute to neurodegenerative diseases and vision loss. Astroglia play a central role in the biosynthesis, uptake and transport of cholesterol and also drive inflammatory signaling under hypercholesterolemic conditions associated with high-fat diet (diabetes and neurodegenerative disease. A growing body of evidence shows that unesterified membrane cholesterol modulates the ability of glia to sense and transduce ambient information. Cholesterol-dependence of Müller glia - which function as retinal sentinels for metabolic, mechanical, osmotic and inflammatory signals - is mediated in part by transient receptor potential V4 (TRPV4 channels. Cholesterol supplementation facilitates, whereas depletion suppresses, TRPV4-mediated transduction of temperature and lipid agonists in Müller cells. Acute effects of cholesterol supplementation/depletion on plasma membrane ion channels and calcium homeostasis differ markedly from the effects of chronic dyslipidemia, possibly due to differential modulation of modality-dependent energy barriers associated with the functionality of polymodal channels embedded within lipid rafts. Understanding of cholesterol-dependence of TRP channels is thus providing insight into dyslipidemic pathologies associated with diabetic retinopathy, glaucoma and macular degeneration.

  6. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1998-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway...

  7. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1999-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway. C...

  8. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Michael Plaksin

    2014-01-01

    Full Text Available Low-intensity ultrasonic waves can remotely and nondestructively excite central nervous system (CNS neurons. While diverse applications for this effect are already emerging, the biophysical transduction mechanism underlying this excitation remains unclear. Recently, we suggested that ultrasound-induced intramembrane cavitation within the bilayer membrane could underlie the biomechanics of a range of observed acoustic bioeffects. In this paper, we show that, in CNS neurons, ultrasound-induced cavitation of these nanometric bilayer sonophores can induce a complex mechanoelectrical interplay leading to excitation, primarily through the effect of currents induced by membrane capacitance changes. Our model explains the basic features of CNS acoustostimulation and predicts how the experimentally observed efficacy of mouse motor cortical ultrasonic stimulation depends on stimulation parameters. These results support the hypothesis that neuronal intramembrane piezoelectricity underlies ultrasound-induced neurostimulation, and suggest that other interactions between the nervous system and pressure waves or perturbations could be explained by this new mode of biological piezoelectric transduction.

  9. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    International Nuclear Information System (INIS)

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi; Lim, Soon Sung; Kang, Tae-Cheon; Kwon, Hyeok Yil; Kim, Duk-Soo; Cho, Sung-Woo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Hwang, Hyun Sook; Choi, Soo Young

    2011-01-01

    Research highlights: → We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. → PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. → PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. → PM increased anti-inflammatory activity of PEP-1-catalase. → PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1β, and tumor necrosis factor-α induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  10. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Lim, Soon Sung [Department of Food Science and Nutrition and RIC Center, Hallym University, Chunchon 200-702 (Korea, Republic of); Kang, Tae-Cheon [Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kim, Duk-Soo [Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090 (Korea, Republic of); Cho, Sung-Woo [Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Hwang, Hyun Sook, E-mail: wazzup@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2011-03-18

    Research highlights: {yields} We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. {yields} PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. {yields} PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. {yields} PM increased anti-inflammatory activity of PEP-1-catalase. {yields} PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1{beta}, and tumor necrosis factor-{alpha} induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  11. Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction

    Directory of Open Access Journals (Sweden)

    Lécluse Yann

    2007-07-01

    Full Text Available Abstract Background Hematopoietic development in vertebrate embryos results from the sequential contribution of two pools of precursors independently generated. While intra-embryonic precursors harbour the features of hematopoietic stem cells (HSC, precursors formed earlier in the yolk sac (YS display limited differentiation and self-renewal potentials. The mechanisms leading to the generation of the precursors in both sites are still largely unknown, as are the molecular basis underlying their different potential. A possible approach to assess the role of candidate genes is to transfer or modulate their expression/activity in both sites. We thus designed and compared transduction protocols to target either native extra-embryonic precursors, or hematopoietic precursors. Results One transduction protocol involves transient modification of gene expression through in situ electroporation of the prospective blood islands, which allows the evolution of transfected mesodermal cells in their "normal" environment, upon organ culture. Following in situ electroporation of a GFP reporter construct into the YS cavity of embryos at post-streak (mesodermal/pre-hematopoietic precursors or early somite (hematopoietic precursors stages, high GFP expression levels as well as a good preservation of cell viability is observed in YS explants. Moreover, the erythro-myeloid progeny typical of the YS arises from GFP+ mesodermal cells or hematopoietic precursors, even if the number of targeted precursors is low. The second approach, based on retroviral transduction allows a very efficient transduction of large precursor numbers, but may only be used to target 8 dpc YS hematopoietic precursors. Again, transduced cells generate a progeny quantitatively and qualitatively similar to that of control YS. Conclusion We thus provide two protocols whose combination may allow a thorough study of both early and late events of hematopoietic development in the murine YS. In situ

  12. Signal perception, transduction, and response in gravity resistance. Another graviresponse in plants

    Science.gov (United States)

    Hoson, T.; Saito, Y.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force is a serious problem that plants have had to solve to survive on land. Mechanical resistance to the pull of gravity is thus a principal graviresponse in plants, comparable to gravitropism. Nevertheless, only limited information has been obtained for this gravity response. We have examined the mechanism of gravity-induced mechanical resistance using hypergravity conditions produced by centrifugation. As a result, we have clarified the outline of the sequence of events leading to the development of mechanical resistance. The gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and it appears that amyloplast sedimentation in statocytes is not involved. Transformation and transduction of the perceived signal may be mediated by the structural or physiological continuum of microtubule-cell membrane-cell wall. As the final step in the development of mechanical resistance, plants construct a tough body by increasing cell wall rigidity. The increase in cell wall rigidity is brought about by modification of the metabolism of certain wall constituents and modification of the cell wall environment, especially pH. We need to clarify the details of each step by future space and ground-based experiments.

  13. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics

    Science.gov (United States)

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model’s components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis

  14. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

    Science.gov (United States)

    Zhao, Qingliang; Zhang, Quanli; To, Suet; Guo, Bing

    2017-03-01

    Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile-brittle transition) of cut (˜60 nm ± 15 nm) much lower than the theoretical calculated results (˜387 nm). Moreover, it also led to abnormal load-displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (˜270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

  15. Mechanical properties of cork under contact stresses

    International Nuclear Information System (INIS)

    Parralejo, A. D.; Guiberteau, F.; Fortes, M. A.; Rosa, M. E.

    2001-01-01

    In this work our interest is focussed on the mechanical behaviour of natural cork under contact stresses. Many of the applications of this curious material are related with its mechanical response under such a stress field, however this topic has not been still sufficiently considered in the scientific literature. For this purpose, we proposed the use of Hertzian indentation tests. By using this mythology we have investigated the cork structure influence on the corresponding mechanical properties. Our results reveal a clear mechanical anisotropy effect. Moreover, the elastic modulus corresponding to specific directions have been estimated. Several are the main advantages of this specific test mythology versus traditional uniaxial compression tests, specially simplicity and local character. (Author) 9 refs

  16. The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Laura Picas

    2016-03-01

    Full Text Available Phosphoinositides are master regulators of multiple cellular processes: from vesicular trafficking to signaling, cytoskeleton dynamics, and cell growth. They are synthesized by the spatiotemporal regulated activity of phosphoinositide-metabolizing enzymes. The recent observation that some protein modules are able to cluster phosphoinositides suggests that alternative or complementary mechanisms might operate to stabilize the different phosphoinositide pools within cellular compartments. Herein, we discuss the different known and potential molecular players that are prone to engage phosphoinositide clustering and elaborate on how such a mechanism might take part in the regulation of intracellular trafficking and signal transduction.

  17. Molecular and cellular mechanisms of cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waisberg, Michael; Joseph, Pius; Hale, Beverley; Beyersmann, Detmar

    2003-01-01

    Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd 2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate

  18. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    Science.gov (United States)

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  19. Single Amino Acid Modification of Adeno-Associated Virus Capsid Changes Transduction and Humoral Immune Profiles

    Science.gov (United States)

    Diprimio, Nina; Bowles, Dawn E.; Hirsch, Matthew L.; Monahan, Paul E.; Asokan, Aravind; Rabinowitz, Joseph; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus (AAV) vectors have the potential to promote long-term gene expression. Unfortunately, humoral immunity restricts patient treatment and in addition provides an obstacle to the potential option of vector readministration. In this study, we describe a comprehensive characterization of the neutralizing antibody (NAb) response to AAV type 1 (AAV1) through AAV5 both in vitro and in vivo. These results demonstrated that NAbs generated from one AAV type are unable to neutralize the transduction of other types. We extended this observation by demonstrating that a rationally engineered, muscle-tropic AAV2 mutant containing 5 amino acid substitutions from AAV1 displayed a NAb profile different from those of parental AAV2 and AAV1. Here we found that a single insertion of Thr from AAV1 into AAV2 capsid at residue 265 preserved high muscle transduction, while also changing the immune profile. To better understand the role of Thr insertion at position 265, we replaced all 20 amino acids and evaluated both muscle transduction and the NAb response. Of these variants, 8 mutants induced higher muscle transduction than AAV2. Additionally, three classes of capsid NAb immune profile were defined based on the ability to inhibit transduction from AAV2 or mutants. While no relationship was found between transduction, amino acid properties, and NAb titer or its cross-reactivity, these studies map a critical capsid motif involved in all steps of AAV infectivity. Our results suggest that AAV types can be utilized not only as templates to generate mutants with enhanced transduction efficiency but also as substrates for repeat administration. PMID:22593151

  20. Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae

    Directory of Open Access Journals (Sweden)

    Jacobs Michael A

    2007-05-01

    Full Text Available Abstract Background Maintenance of homeostasis requires that an organism perceive selected physical and chemical signals within an informationally dense environment. Functionally, an organism uses a variety of signal transduction arrays to amplify and convert these perceived signals into appropriate gene transcriptional responses. These changes in gene expression serve to modify selective metabolic processes and thus optimize reproductive success. Here we analyze a chloroplast-encoded His-to-Asp signal transduction circuit in the stramenopile Heterosigma akashiwo (Hada Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt F.J.R. Taylor]. The presence, structure and putative function of this protein pair are discussed in the context of their evolutionary homologues. Results Bioinformatic analysis of the Heterosigma akashiwo chloroplast genome sequence revealed the presence of a single two-component His-to-Asp (designated Tsg1/Trg1 pair in this stramenopile (golden-brown alga. These data represent the first documentation of a His-to-Asp array in stramenopiles and counter previous reports suggesting that such regulatory proteins are lacking in this taxonomic cluster. Comparison of the 43 kDa H. akashiwo Tsg1 with bacterial sensor kinases showed that the algal protein exhibits a moderately maintained PAS motif in the sensor kinase domain as well as highly conserved H, N, G1 and F motifs within the histidine kinase ATP binding site. Molecular modelling of the 27 kDa H. akashiwo Trg1 regulator protein was consistent with a winged helix-turn-helix identity – a class of proteins that is known to impact gene expression at the level of transcription. The occurrence of Trg1 protein in actively growing H. akashiwo cells was verified by Western analysis. The presence of a PhoB-like RNA polymerase loop in Trg1 and its homologues in the red-algal lineage support the hypothesis that Trg1 and its homologues interact with a sigma 70 (σ70 subunit (encoded by

  1. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wan L

    2016-12-01

    Full Text Available Li Wan,1,* Xinglei Yao,1–3,* Francesco Faiola,3 Bojun Liu,4 Tianyuan Zhang,2 Yasuhiko Tabata,5 Hiroyuki Mizuguchi,6 Shinsaku Nakagawa,7 Jian-Qing Gao,2 Robert Chunhua Zhao1 1Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, 2Institute of Pharmaceutics, Zhejiang University, Hangzhou, 3State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 4YouAn Hospital, Capital Medical University, Beijing, People’s Republic of China; 5Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 6Department of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 7Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan *These authors contributed equally to this work Abstract: Mesenchymal stem cells (MSCs are adult stem cells with multilineage potential, which makes them attractive tools for regenerative medicine applications. Efficient gene transfer into MSCs is essential not only for basic research in developmental biology but also for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors, but not into MSCs, which are deficient in coxsackievirus and adenovirus receptors expression. To overcome this problem, we developed an Adv coated with a spermine-pullulan (SP cationic polymer and investigated its physicochemical properties and internalization mechanisms. We demonstrated that the SP

  2. Adeno-associated virus vector-mediated transduction in the cat brain.

    Science.gov (United States)

    Vite, Charles H; Passini, Marco A; Haskins, Mark E; Wolfe, John H

    2003-10-01

    Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme beta-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AAV1 vector resulted in greater transduction of the gray matter than AAV2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.

  3. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  5. Early transduction produces highly functional chimeric antigen receptor-modified virus-specific T-cells with central memory markers: a Production Assistant for Cell Therapy (PACT) translational application.

    Science.gov (United States)

    Sun, Jiali; Huye, Leslie E; Lapteva, Natalia; Mamonkin, Maksim; Hiregange, Manasa; Ballard, Brandon; Dakhova, Olga; Raghavan, Darshana; Durett, April G; Perna, Serena K; Omer, Bilal; Rollins, Lisa A; Leen, Ann M; Vera, Juan F; Dotti, Gianpietro; Gee, Adrian P; Brenner, Malcolm K; Myers, Douglas G; Rooney, Cliona M

    2015-01-01

    Virus-specific T-cells (VSTs) proliferate exponentially after adoptive transfer into hematopoietic stem cell transplant (HSCT) recipients, eliminate virus infections, then persist and provide long-term protection from viral disease. If VSTs behaved similarly when modified with tumor-specific chimeric antigen receptors (CARs), they should have potent anti-tumor activity. This theory was evaluated by Cruz et al. in a previous clinical trial with CD19.CAR-modified VSTs, but there was little apparent expansion of these cells in patients. In that study, VSTs were gene-modified on day 19 of culture and we hypothesized that by this time, sufficient T-cell differentiation may have occurred to limit the subsequent proliferative capacity of the transduced T-cells. To facilitate the clinical testing of this hypothesis in a project supported by the NHLBI-PACT mechanism, we developed and optimized a good manufacturing practices (GMP) compliant method for the early transduction of VSTs directed to Epstein-Barr virus (EBV), Adenovirus (AdV) and cytomegalovirus (CMV) using a CAR directed to the tumor-associated antigen disialoganglioside (GD2). Ad-CMVpp65-transduced EBV-LCLs effectively stimulated VSTs directed to all three viruses (triVSTs). Transduction efficiency on day three was increased in the presence of cytokines and high-speed centrifugation of retroviral supernatant onto retronectin-coated plates, so that under optimal conditions up to 88% of tetramer-positive VSTs expressed the GD2.CAR. The average transduction efficiency of early-and late transduced VSTs was 55 ± 4% and 22 ± 5% respectively, and early-transduced VSTs maintained higher frequencies of T cells with central memory or intermediate memory phenotypes. Early-transduced VSTs also had higher proliferative capacity and produced higher levels of TH1 cytokines IL-2, TNF-α, IFN-γ, MIP-1α, MIP-1β and other cytokines in vitro. We developed a rapid and GMP compliant method for the early transduction of

  6. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.

    Science.gov (United States)

    Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu

    2018-02-05

    Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  8. Visualized Bond Scission in Mechanically Activated Polymers

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Yu-lan Chen

    2017-01-01

    Visualization and quantitative evaluation of covalent bond scission in polymeric materials are critical in understanding their failure mechanisms and improving the toughness and reliability of the materials.Mechano-responsive polymers with the ability of molecular-level transduction of force into chromism and luminescence have evoked major interest and experienced significant progress.In the current review,we highlight the recent achievements in covalent mechanochromic and mechanoluminescent polymers,leading to a bridge between macroscopic mechanical properties and microscopic bond scission events.After a general introduction concerning polymer mechanochemistry,various examples that illustrate the strategies of design and incorporation of functional and weak covalent bonds in polymers were presented,the mechanisms underlying the optical phenomenon were introduced and their potential applications as stress sensors were discussed.This review concludes with a comment on the opportunities and challenges of the field.

  9. Effects of the TAT peptide orientation and relative location on the protein transduction efficiency.

    Science.gov (United States)

    Guo, Qingguo; Zhao, Guojie; Hao, Fengjin; Guan, Yifu

    2012-05-01

    To understand the protein transduction domain (PTD)-mediated protein transduction behavior and to explore its potential in delivering biopharmaceutic drugs, we prepared four TAT-EGFP conjugates: TAT(+)-EGFP, TAT(-)-EGFP, EGFP-TAT(+) and EGFP-TAT(-), where TAT(+) and TAT(-) represent the original and the reversed TAT sequence, respectively. These four TAT-EGFP conjugates were incubated with HeLa and PC12 cells for in vitro study as well as injected intraperitoneally to mice for in vivo study. Flow cytometric results showed that four TAT-EGFP conjugates were able to traverse HeLa and PC12 cells with almost equal transduction efficiency. The in vivo study showed that the TAT-EGFP conjugates could be delivered into different organs of mice with different transduction capabilities. Bioinformatic analyses and CD spectroscopic data revealed that the TAT peptide has no defined secondary structure, and conjugating the TAT peptide to the EGFP cargo protein would not alter the native structure and the function of the EGFP protein. These results conclude that the sequence orientation, the spatial structure, and the relative location of the TAT peptide have much less effect on the TAT-mediated protein transduction. Thus, the TAT-fused conjugates could be constructed in more convenient and flexible formats for a wide range of biopharmaceutical applications. © 2011 John Wiley & Sons A/S.

  10. Simulation of mechano-electrical transduction in the cochlea considering basilar membrane vibration and the ionic current of the inner hair cells

    Science.gov (United States)

    Lee, Sinyoung; Koike, Takuji

    2018-05-01

    The inner hair cells (IHCs) in the cochlea transduce mechanical vibration of the basilar membrane (BM), caused by sound pressure, to electrical signals that are transported along the acoustic nerve to the brain. The mechanical vibration of the BM and the ionic behaviors of the IHCs have been investigated. However, consideration of the ionic behavior of the IHCs related to mechanical vibration is necessary to investigate the mechano-electrical transduction of the cochlea. In this study, a finite-element model of the BM, which takes into account the non-linear activities of the outer hair cells (OHCs), and an ionic current model of IHC were combined. The amplitudes and phases of the vibration at several points on the BM were obtained from the finite-element model by applying sound pressure. These values were fed into the ionic current model, and changes in membrane potential and calcium ion concentration of the IHCs were calculated. The membrane potential of the IHC at the maximum amplitude point (CF point) was higher than that at the non-CF points. The calcium ion concentration at the CF point was also higher than that at the non-CF points. These results suggest that the cochlea achieves its good frequency discrimination ability through mechano-electrical transduction.

  11. Genetic analysis of gravity signal transduction in roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate

  12. Towards a clinically relevant lentiviral transduction protocol for primary human CD34 hematopoietic stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Michelle Millington

    2009-07-01

    Full Text Available Hematopoietic stem cells (HSC, in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multi-potency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34(+ HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin.Using commercially available G-CSF mobilized peripheral blood (PB CD34(+ cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, pre-stimulation time, multiplicity of infection (MOI, transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV carrying enhanced green fluorescent protein (GFP was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin.This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34(+ cells.

  13. Peeling mechanism of tomato under infrared heating

    Science.gov (United States)

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  14. Regulation of autophagy by amino acids and MTOR-dependent signal transduction.

    Science.gov (United States)

    Meijer, Alfred J; Lorin, Séverine; Blommaart, Edward F; Codogno, Patrice

    2015-10-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.

  15. Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells.

    Science.gov (United States)

    Chang, John P; Sawisky, Grant R; Davis, Philip J; Pemberton, Joshua G; Rieger, Aja M; Barreda, Daniel R

    2014-09-15

    Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    Science.gov (United States)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  17. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  18. Second messenger/signal transduction pathways in major mood disorders: moving from membrane to mechanism of action, part I: major depressive disorder.

    Science.gov (United States)

    Niciu, Mark J; Ionescu, Dawn F; Mathews, Daniel C; Richards, Erica M; Zarate, Carlos A

    2013-10-01

    The etiopathogenesis and treatment of major mood disorders have historically focused on modulation of monoaminergic (serotonin, norepinephrine, dopamine) and amino acid [γ-aminobutyric acid (GABA), glutamate] receptors at the plasma membrane. Although the activation and inhibition of these receptors acutely alter local neurotransmitter levels, their neuropsychiatric effects are not immediately observed. This time lag implicates intracellular neuroplasticity as primary in the mechanism of action of antidepressants and mood stabilizers. The modulation of intracellular second messenger/signal transduction cascades affects neurotrophic pathways that are both necessary and sufficient for monoaminergic and amino acid-based treatments. In this review, we will discuss the evidence in support of intracellular mediators in the pathophysiology and treatment of preclinical models of despair and major depressive disorder (MDD). More specifically, we will focus on the following pathways: cAMP/PKA/CREB, neurotrophin-mediated (MAPK and others), p11, Wnt/Fz/Dvl/GSK3β, and NFκB/ΔFosB. We will also discuss recent discoveries with rapidly acting antidepressants, which activate the mammalian target of rapamycin (mTOR) and release of inhibition on local translation via elongation factor stimulation. Throughout this discourse, we will highlight potential intracellular targets for therapeutic intervention. Finally, future clinical implications are discussed.

  19. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    Science.gov (United States)

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  20. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  1. Comparative Analysis of Anther Transcriptome Profiles of Two Different Rice Male Sterile Lines Genotypes under Cold Stress

    Directory of Open Access Journals (Sweden)

    Bin Bai

    2015-05-01

    Full Text Available Rice is highly sensitive to cold stress during reproductive developmental stages, and little is known about the mechanisms of cold responses in rice anther. Using the HiSeq™ 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS rice Y58S and P64S (Pei’ai64S were analyzed at the fertility sensitive stage under cold stress. Approximately 243 million clean reads were obtained from four libraries and aligned against the oryza indica genome and 1497 and 5652 differentially expressed genes (DEGs were identified in P64S and Y58S, respectively. Both gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG analyses were conducted for these DEGs. Functional classification of DEGs was also carried out. The DEGs common to both genotypes were mainly involved in signal transduction, metabolism, transport, and transcriptional regulation. Most of the DEGs were unique for each comparison group. We observed that there were more differentially expressed MYB (Myeloblastosis and zinc finger family transcription factors and signal transduction components such as calmodulin/calcium dependent protein kinases in the Y58S comparison group. It was also found that ribosome-related DEGs may play key roles in cold stress signal transduction. These results presented here would be particularly useful for further studies on investigating the molecular mechanisms of rice responses to cold stress.

  2. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells

    Directory of Open Access Journals (Sweden)

    Dianne Lorton

    2015-03-01

    Full Text Available Cross-talk between the sympathetic nervous system (SNS and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs in immune cells activates the cAMP-protein kinase A (PKA intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells.

  3. Expression of SMAD signal transduction molecules in the pancreas

    DEFF Research Database (Denmark)

    Brorson, Michael; Hougaard, D.; Nielsen, Jens Høiriis

    2001-01-01

    Members of the TGF-beta superfamily of cytokines have been implicated in pancreatic cancer, pancreatitis and in regulation and differentiation of pancreatic endocrine and exocrine cells. Different TGF-beta members signal through phosphorylation of different signal transduction proteins, which eve...

  4. Molecular evidence of inefficient transduction of proliferating human B lymphocytes by VSV-pseudotyped HIV-1-derived lentivectors

    International Nuclear Information System (INIS)

    Serafini, M.; Naldini, L.; Introna, M.

    2004-01-01

    Lentiviral vectors are attractive tools to transduce dividing and nondividing cells. Human tonsillar B lymphocytes have been purified and induced to proliferate by the addition of anti-CD40 + IL-4 or anti-CD40 + anti-μ signals and transduced at high MOI with a VSV pseudotyped lentivector carrying the eGFP gene under the control of the PGK promoter. Parallel cultures of PHA-stimulated T lymphocytes containing a comparable amount of cycling cells during the infection reached over 70% eGFP transduction. By contrast, only less than 3% B lymphocytes became eGFP positive after 7 days from transduction. Molecular analysis of the viral life cycle shows that cytoplasmic retrotranscribed cDNA and nuclear 2LTR circles are detectable at lower levels and for a shorter period of time in proliferating B cells with respect to proliferating T lymphocytes. Moreover, FACS-sorted eGFP-positive and negative B cell populations were both positive for the presence of retrotranscribed cDNA and 2LTR circles nuclear forms. By contrast, nested Alu-LTR PCR allowed us to detect an integrated provirus in FACS-sorted eGFP-positive cells only. Together with the demonstration that infection in saturation conditions led to an increase in the percentage of transduced cells (reaching 9%), these findings suggest that in proliferating B lymphocytes, lentiviral transduction is an inefficient process blocked at the early steps of the viral life cycle possibly involving partially saturable restriction factors

  5. Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.

    Science.gov (United States)

    Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah

    2016-01-01

    Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.

  6. Effects of osmotic stress on the activity of MAPKs and PDGFR-beta-mediated signal transduction in NIH-3T3 fibroblasts

    DEFF Research Database (Denmark)

    Nielsen, M-B; Christensen, Søren Tvorup; Hoffmann, E K

    2008-01-01

    Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts...... in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-beta-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most...... likely via a pathway independent of PDGFR-beta and MEK1/2. Conversely, hyperosmolarity (cell shrinkage at 582 mosM) moved nuclear and phosphorylated ERK1/2 to the cytoplasm and induced the phosphorylation and nuclear translocation of p38 and phosphorylation of JNK1/2. In a series of parallel experiments...

  7. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  8. Signal transduction and chemotaxis in mast cells

    Czech Academy of Sciences Publication Activity Database

    Dráber, Petr; Hálová, Ivana; Polakovičová, Iva; Kawakami, T.

    2016-01-01

    Roč. 778, jaro (2016), s. 11-23 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA14-09807S; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-00703S Institutional support: RVO:68378050 Keywords : Mast cell * IgE receptor * KIT receptor * Signal transduction * Chemotaxis * Plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2016

  9. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue.

    Science.gov (United States)

    Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping

    2017-09-01

    Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.

  10. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors

    Directory of Open Access Journals (Sweden)

    Mayumi Oakland

    2013-01-01

    Full Text Available Persistent viral vector-mediated transgene expression in the airways requires delivery to cells with progenitor capacity and avoidance of immune responses. Previously, we observed that GP64-pseudotyped feline immunodeficiency virus (FIV-mediated gene transfer was more efficient in the nasal airways than the large airways of the murine lung. We hypothesized that in vivo gene transfer was limited by immunological and physiological barriers in the murine intrapulmonary airways. Here, we systematically investigate multiple potential barriers to lentiviral gene transfer in the airways of mice. We show that GP64-FIV vector transduced primary cultures of well-differentiated murine nasal epithelia with greater efficiency than primary cultures of murine tracheal epithelia. We further demonstrate that neutrophils, type I interferon (IFN responses, as well as T and B lymphocytes are not the major factors limiting the transduction of murine conducting airways. In addition, we observed better transduction of GP64-pseudotyped vesicular stomatitis virus (VSV in the nasal epithelia compared with the intrapulmonary airways in mice. VSVG glycoprotein pseudotyped VSV transduced intrapulmonary epithelia with similar efficiency as nasal epithelia. Our results suggest that the differential transduction efficiency of nasal versus intrapulmonary airways by FIV vector is not a result of immunological barriers or surface area, but rather differential expression of cellular factors specific for FIV vector transduction.

  11. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.

    Science.gov (United States)

    Kim, Young Mi; Kang, Yun Gyeong; Park, So Hee; Han, Myung-Kwan; Kim, Jae Ho; Shin, Ji Won; Shin, Jung-Woog

    2017-06-08

    Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.

  12. Mannotriose regulates learning and memory signal transduction in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Lina Zhang; Weiwei Dai; Xueli Zhang; Zhangbin Gong; Guoqin Jin

    2013-01-01

    Rehmannia is a commonly used Chinese herb, which improves learning and memory. However, the crucial components of the signal transduction pathway associated with this effect remain elusive. Pri-mary hippocampal neurons were cultured in vitro, insulted with high-concentration (1 × 10-4 mol/L) cor-ticosterone, and treated with 1 × 10-4 mol/L mannotriose. Thiazolyl blue tetrazolium bromide assay and western blot analysis showed that hippocampal neuron survival rates and protein levels of glucocorti-coid receptor, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor were al dramatical y decreased after high-concentration corticosterone-induced injury. This effect was reversed by mannotriose, to a similar level as RU38486 and donepezil. Our findings indicate that mannotriose could protect hippocampal neurons from high-concentration corticosterone-induced injury. The mechanism by which this occurred was associated with levels of glucocorticoid receptor protein, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor.

  13. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C),

  14. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells.

    Science.gov (United States)

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F

    2013-05-01

    Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Electro-Optomechanical Transduction & Quantum Hard-Sphere Model for Dissipative Rydberg-EIT Media

    DEFF Research Database (Denmark)

    Zeuthen, Emil

    by two key parameters, the signal transfer efficiency and added noise temperature. In terms of these, we may evaluate its performance in various tasks ranging from classical signal detection to quantum state conversion between, e.g., superconducting circuitry and traveling optical signals. Having...... transduction functionality into the well-established framework of electrical engineering, thereby facilitating its implementation in potential applications such as nuclear magnetic resonance imaging and radio astronomy. We consider such optomechanical sensing of weak electrical signals and discuss how...... in a cold, optically dense cloud with light fields propagating under the condition of electromagnetically induced transparency (EIT). This can lead to strong and non-linear dissipative dynamics at the quantum level that prevent slow-light polaritons from coexisting within a blockade radius of one another...

  16. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY...... that the putative histidine kinase has homology with conserved “transmitter” domains of sensor proteins in two-component signal transduction systems. RFLP analysis using the putative signal transduction system showed polymorphisms among the strains....

  17. Expression Patterns of OsPIL11, a Phytochrome-Interacting Factor in Rice, and Preliminary Analysis of Its Roles in Light Signal Transduction

    Directory of Open Access Journals (Sweden)

    Li LI

    2012-12-01

    Full Text Available The expression patterns of OsPIL11, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum. The expression of OsPIL11 was organ-specific and was regulated by leaf development, abscisic acid (ABA, jasmonic acid (JA and salicylic acid (SA. To further explore the role of OsPIL11 in plant light signal transduction, a plant expression vector of OsPIL11 was constructed and introduced into tobacco. When grown under continuous red light, OsPIL11-overexpressed transgenic tobacco exhibited shorter hypocotyls and larger cotyledons and leaves compared to wild-type seedlings. When grown under continuous far-red light, however, transgenic and wild-type seedlings showed similar phenotypes. These results indicate that OsPIL11 is involved in red light induced de-etiolation, but not in far-red light induced de-etiolation in transgenic tobacco, which lays the foundation for dissecting the function of OsPIL11 in phytochrome-mediated light signal transduction in rice.

  18. Semi-Supervised Transductive Hot Spot Predictor Working on Multiple Assumptions

    KAUST Repository

    Wang, Jim Jing-Yan; Almasri, Islam; Shi, Yuexiang; Gao, Xin

    2014-01-01

    of the transductive semi-supervised algorithms takes all the three semisupervised assumptions, i.e., smoothness, cluster and manifold assumptions, together into account during learning. In this paper, we propose a novel semi-supervised method for hot spot residue

  19. Elucidation of the Signal Transduction Pathways Activated by the Plant Natriuretic Peptide AtPNP-A

    KAUST Repository

    Turek, Ilona

    2014-11-01

    identify and relatively quantify proteins that are differentially expressed upon the treatment with nano- and picomolar concentrations of the biologically active AtPNP-A peptide at different time-points post-treatment. Characterization of both the AtPNP-A interactome and AtPNP-A dependent proteome afforded novel insights into the signal transduction pathways altered by PNPs and shed new light on the mechanisms by which these candidate interactants operate. Taken together, indications are that PNP dependent mechanisms can be harnessed for possible biotechnological applications.

  20. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  1. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  2. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  3. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction.

    Science.gov (United States)

    Stranava, Martin; Man, Petr; Skálová, Tereza; Kolenko, Petr; Blaha, Jan; Fojtikova, Veronika; Martínek, Václav; Dohnálek, Jan; Lengalova, Alzbeta; Rosůlek, Michal; Shimizu, Toru; Martínková, Markéta

    2017-12-22

    The heme-based oxygen sensor histidine kinase Af GcHK is part of a two-component signal transduction system in bacteria. O 2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His 183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH - and -CN - complexes of Af GcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN - and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length Af GcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of Af GcHK. We conclude that Af GcHK functions as an ensemble of molecules sampling at least two conformational states. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.; Gehring, Christoph A

    2013-01-01

    as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well

  5. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-26

    Mar 26, 2007 ... clients are essential nodes in signal transduction pathways and regulatory circuits, accounting for the .... respective contributions of genetics versus epigenetics ... authors succeeded in elucidating the molecular mechanism.

  6. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy. © 2015 AlphaMed Press.

  7. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2015-08-18

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. © 2015 Authors.

  8. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Comprehensive genomic characterization of campylobacter genus reveals some underlying mechanisms for its genomic diversification.

    Directory of Open Access Journals (Sweden)

    Yizhuang Zhou

    Full Text Available Campylobacter species.are phenotypically diverse in many aspects including host habitats and pathogenicities, which demands comprehensive characterization of the entire Campylobacter genus to study their underlying genetic diversification. Up to now, 34 Campylobacter strains have been sequenced and published in public databases, providing good opportunity to systemically analyze their genomic diversities. In this study, we first conducted genomic characterization, which includes genome-wide alignments, pan-genome analysis, and phylogenetic identification, to depict the genetic diversity of Campylobacter genus. Afterward, we improved the tetranucleotide usage pattern-based naïve Bayesian classifier to identify the abnormal composition fragments (ACFs, fragments with significantly different tetranucleotide frequency profiles from its genomic tetranucleotide frequency profiles including horizontal gene transfers (HGTs to explore the mechanisms for the genetic diversity of this organism. Finally, we analyzed the HGTs transferred via bacteriophage transductions. To our knowledge, this study is the first to use single nucleotide polymorphism information to construct liable microevolution phylogeny of 21 Campylobacter jejuni strains. Combined with the phylogeny of all the collected Campylobacter species based on genome-wide core gene information, comprehensive phylogenetic inference of all 34 Campylobacter organisms was determined. It was found that C. jejuni harbors a high fraction of ACFs possibly through intraspecies recombination, whereas other Campylobacter members possess numerous ACFs possibly via intragenus recombination. Furthermore, some Campylobacter strains have undergone significant ancient viral integration during their evolution process. The improved method is a powerful tool for bacterial genomic analysis. Moreover, the findings would provide useful information for future research on Campylobacter genus.

  10. Quantum Transduction with Adaptive Control

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-01

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  11. Quantum Transduction with Adaptive Control.

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  12. Cellular semiotics and signal transduction

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2007-01-01

    Semiosis, the processes of production, communication and interpretation of signs - coding and de-coding - takes place within and between organisms. The term "endosemiosis" refers to the processes of interpretation and sign transmission inside an organism (as opposed to "exosemiosis", which refers...... to the processes of sign interpretation and transmission between organisms of the same or different species). In Biosemiotics it is customary to recognise the cell as the most elementary integration unit for semiosis. Therefore intra and intercellular communication constitute the departure point for the study...... considering semiotic logic in order to construct our understanding of living phenomena. Given the central integrating role of signal transduction in physiological and ecological studies, this chapter outlines its semiotic implications. The multi-modality and modularity of signal molecules and relative...

  13. Reduced modeling of signal transduction – a modular approach

    Directory of Open Access Journals (Sweden)

    Ederer Michael

    2007-09-01

    Full Text Available Abstract Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good

  14. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    International Nuclear Information System (INIS)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N.

    1991-01-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation

  15. TRANSDUCTION OF BACILLUS LICHENIFORMIS AND BACILLUS SUBTILIS BY EACH OF TWO PHAGES1

    Science.gov (United States)

    Taylor, Martha J.; Thorne, Curtis B.

    1963-01-01

    Taylor, Martha J. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and Curtis B. Thorne. Transduction of Bacillus licheniformis and Bacillus subtilis by each of two phages. J. Bacteriol. 86:452–461. 1963.—A second transducing bacteriophage, designated SP-15, was isolated from the same soil-sample culture filtrate that supplied the Bacillus subtilis transducing phage, SP-10, reported earlier from this laboratory. SP-10 and SP-15 differ serologically and in several other respects, but share the ability to propagate on B. subtilis W-23-Sr (streptomycin-resistant) and B. licheniformis ATCC 9945a, and to mediate general transduction in either species when propagated homologously. Attempts to transduce between the species have failed. SP-10 forms plaques readily on both W-23-Sr and 9945a; SP-15 forms minute plaques on W-23-Sr and has shown no evidence of any lytic activity on 9945a. Maximal recoveries of prototrophic colonies from mixtures of SP-10 with auxotrophs of either W-23-Sr or 9945a were obtained only when excess phage was neutralized by post-transduction treatment with specific phage antiserum. Such treatment was not necessary for maximal recovery of transductants effected by SP-15. Unlike SP-10, SP-15 propagated on W-23-Sr did not transduce B. subtilis 168 (indole−). SP-15 transduced B. licheniformis more efficiently than did SP-10. Neither phage was able to transduce B. licheniformis as efficiently as it transduced B. subtilis. The differing influences of multiplicity of infection were compared for the two phages in both species. PMID:14066421

  16. Immunophilin ligands demonstrate common features of signal transduction leading to exocytosis or transcription.

    Science.gov (United States)

    Hultsch, T; Albers, M W; Schreiber, S L; Hohman, R J

    1991-01-01

    Investigations of the actions and interactions of the immunophilin ligands FK506, cyclosporin A (CsA), rapamycin, and 506BD suggest that complexes of FK506 with an FK506-binding protein or of CsA with a cyclophilin (CsA-binding protein) inhibit the T-cell receptor-mediated signal transduction that results in the transcription of interleukin 2. Now we report an identical spectrum of activities of FK506, CsA, rapamycin, and 506BD on IgE receptor-mediated signal transduction that results in exocytosis of secretory granules from the rat basophilic leukemia cell line RBL-2H3, a mast cell model. Both FK506 and CsA inhibit receptor-mediated exocytosis (CsA IC50 = 200 nM; FK506 IC50 = 2 nM) without affecting early receptor-associated events (hydrolysis of phosphatidylinositol, synthesis and release of eicosanoids, uptake of Ca2+). In contrast, rapamycin and 506BD, which share common structural elements with FK506, by themselves have no effect on IgE receptor-mediated exocytosis. Both compounds, however, prevent inhibition by FK506 but not by CsA. Affinity chromatography with FK506, CsA, and rapamycin matrices indicates that the same set of immunophilins present in RBL-2H3 cells have been found in Jurkat T cells and calf thymus; however, the relative amounts of these proteins differ in the two cell types. These results suggest the existence of a common step in cytoplasmic signaling in T cells and mast cells that may be part of a general signaling mechanism. Images PMID:1712484

  17. Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase

    DEFF Research Database (Denmark)

    Jorgensen, Peter L.; Pedersen, Per Amstrup

    2000-01-01

    Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction......Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction...

  18. Anagrelide represses GATA-1 and FOG-1 expression without interfering with thrombopoietin receptor signal transduction.

    Science.gov (United States)

    Ahluwalia, M; Donovan, H; Singh, N; Butcher, L; Erusalimsky, J D

    2010-10-01

     Anagrelide is a selective inhibitor of megakaryocytopoiesis used to treat thrombocytosis in patients with chronic myeloproliferative disorders. The effectiveness of anagrelide in lowering platelet counts is firmly established, but its primary mechanism of action remains elusive.  Here, we have evaluated whether anagrelide interferes with the major signal transduction cascades stimulated by thrombopoietin in the hematopoietic cell line UT-7/mpl and in cultured CD34(+) -derived human hematopoietic cells. In addition, we have used quantitative mRNA expression analysis to assess whether the drug affects the levels of known transcription factors that control megakaryocytopoiesis.  In UT-7/mpl cells, anagrelide (1μm) did not interfere with MPL-mediated signaling as monitored by its lack of effect on JAK2 phosphorylation. Similarly, the drug did not affect the phosphorylation of STAT3, ERK1/2 or AKT in either UT-7/mpl cells or primary hematopoietic cells. In contrast, during thrombopoietin-induced megakaryocytic differentiation of normal hematopoietic cultures, anagrelide (0.3μm) reduced the rise in the mRNA levels of the transcription factors GATA-1 and FOG-1 as well as those of the downstream genes encoding FLI-1, NF-E2, glycoprotein IIb and MPL. However, the drug showed no effect on GATA-2 or RUNX-1 mRNA expression. Furthermore, anagrelide did not diminish the rise in GATA-1 and FOG-1 expression during erythropoietin-stimulated erythroid differentiation. Cilostamide, an exclusive and equipotent phosphodiesterase III (PDEIII) inhibitor, did not alter the expression of these genes.  Anagrelide suppresses megakaryocytopoiesis by reducing the expression levels of GATA-1 and FOG-1 via a PDEIII-independent mechanism that is differentiation context-specific and does not involve inhibition of MPL-mediated early signal transduction events. © 2010 International Society on Thrombosis and Haemostasis.

  19. Effect of insulin resistance on intracellular signal transduction of vessels in diabetic

    International Nuclear Information System (INIS)

    Cen Rongguang; Wei Shaoying; Mo Xingju

    2003-01-01

    To investigate the relationship between the insulin resistance (IR) and the intracellular signal transduction of vessels, changes in fasting blood glucose (FBG), fasting insulin (FINS), triglyceride (TG), total cholesterol (TC), inositol triphosphate (IP 3 ), protein kinase C(PKC) and intracellular total calcium concentration in 31 diabetic patients were compared with those of 39 normal controls. The levels of FBG, FINS, TG and TC in diabetic patients were significantly higher than those of normal controls (P 3 and PKC in diabetic patients were significantly lower than those of normal controls (P<0.01). The results suggest that there is a causal relation between insulin resistance and abnormalities of cellular calcium metabolism and intracellular signal transduction of vessels

  20. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.

    Science.gov (United States)

    Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S

    2009-05-01

    The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.

  1. Amplitude calibration of 2D mechanical resonators by nonlinear optical transduction

    NARCIS (Netherlands)

    Dolleman, R.J.; Davidovikj, D.; van der Zant, H.S.J.; Steeneken, P.G.

    2017-01-01

    Contactless characterization of mechanical resonances using Fabry-Perot interferometry is a powerful tool to study the mechanical and dynamical properties of atomically thin membranes. However, amplitude calibration is often not performed or only possible by making assumptions on the device

  2. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction

    Energy Technology Data Exchange (ETDEWEB)

    Algar, W. Russ; Tavares, Anthony J. [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 (Canada)

    2010-07-12

    A comprehensive review of the development of assays, bioprobes, and biosensors using quantum dots (QDs) as integrated components is presented. In contrast to a QD that is selectively introduced as a label, an integrated QD is one that is present in a system throughout a bioanalysis, and simultaneously has a role in transduction and as a scaffold for biorecognition. Through a diverse array of coatings and bioconjugation strategies, it is possible to use QDs as a scaffold for biorecognition events. The modulation of QD luminescence provides the opportunity for the transduction of these events via fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), charge transfer quenching, and electrochemiluminescence (ECL). An overview of the basic concepts and principles underlying the use of QDs with each of these transduction methods is provided, along with many examples of their application in biological sensing. The latter include: the detection of small molecules using enzyme-linked methods, or using aptamers as affinity probes; the detection of proteins via immunoassays or aptamers; nucleic acid hybridization assays; and assays for protease or nuclease activity. Strategies for multiplexed detection are highlighted among these examples. Although the majority of developments to date have been in vitro, QD-based methods for ex vivo biological sensing are emerging. Some special attention is given to the development of solid-phase assays, which offer certain advantages over their solution-phase counterparts.

  3. Signal transduction in mitogenesis: Further evidence for multiple pathways

    International Nuclear Information System (INIS)

    Rozengurt, E.; Erusalimsky, J.; Mehmet, H.; Morris, C.; Nanberg, E.; Sinnett-Smith, J.

    1988-01-01

    Growth factors are implicated in a wide variety of physiological and pathological processes, including embryogenesis, hematopoiesis, would healing, immune responses, atherosclerosis, and neoplasia. An important link between growth factors and their receptors and oncogene products has also been established. Thus, the elucidation of the mechanism of action of growth factors has emerged as one of the fundamental problems in biology and may prove crucial for understanding the unrestrained proliferation of cancer cells. A new and intriguing development is the discovery that neuropeptides localized in neural and neuroendocrine cells of mammalian tissue can also act as growth factors for cells in culture. Furthermore, indirect evidence is accumulating that the mitogenic effects of neuropeptides may be relevant for a variety of long-term biological processes, including development and oncogenesis. In this context, the peptides of the bombesin family are of particular significance. These peptides are potent mitogens for Swiss 3T3 cells and may act as autocrine growth factors for small cell lung cancer. Here, the authors summarize their recent studies using bombesin-like peptides for elucidating the signal transduction pathways leading to mitogenesis and compare these pathways with those elicited by other growth factors

  4. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  5. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Semi-Supervised Transductive Hot Spot Predictor Working on Multiple Assumptions

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-05-23

    Protein-protein interactions are critically dependent on just a few residues (“hot spots”) at the interfaces. Hot spots make a dominant contribution to the binding free energy and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there exists a need for accurate and reliable computational hot spot prediction methods. Compared to the supervised hot spot prediction algorithms, the semi-supervised prediction methods can take into consideration both the labeled and unlabeled residues in the dataset during the prediction procedure. The transductive support vector machine has been utilized for this task and demonstrated a better prediction performance. To the best of our knowledge, however, none of the transductive semi-supervised algorithms takes all the three semisupervised assumptions, i.e., smoothness, cluster and manifold assumptions, together into account during learning. In this paper, we propose a novel semi-supervised method for hot spot residue prediction, by considering all the three semisupervised assumptions using nonlinear models. Our algorithm, IterPropMCS, works in an iterative manner. In each iteration, the algorithm first propagates the labels of the labeled residues to the unlabeled ones, along the shortest path between them on a graph, assuming that they lie on a nonlinear manifold. Then it selects the most confident residues as the labeled ones for the next iteration, according to the cluster and smoothness criteria, which is implemented by a nonlinear density estimator. Experiments on a benchmark dataset, using protein structure-based features, demonstrate that our approach is effective in predicting hot spots and compares favorably to other available methods. The results also show that our method outperforms the state-of-the-art transductive learning methods.

  7. CRISPR-cas-mediated phage resistance enhances horizontal gene transfer by transduction

    NARCIS (Netherlands)

    Watson, Bridget N.J.; Staals, Raymond H.J.; Fineran, Peter C.

    2018-01-01

    A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly

  8. Multiple signal transduction pathways in okadaic acid induced apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Jayaraj, R.; Gupta, Nimesh; Rao, P.V. Lakshmana

    2009-01-01

    Okadaic acid (OA) is the major component of diarrhetic shell fish poisoning toxins and a potent inhibitor of protein phosphatase 1 and 2A. We investigated the signal transduction pathways involved in OA induced cell death in HeLa cells. OA induced cytotoxicity and apoptosis at IC50 of 100 nM. OA treatment resulted in time dependent increase in reactive oxygen species and depleted intracellular glutathione levels. Loss of mitochondrial membrane permeability led to translocation of bax, cytochrome-c and AIF from mitochondria to cytosol. The cells under fluorescence microscope showed typical apoptotic morphology with condensed chromatin, and nuclear fragmentation. We investigated the mitochondrial-mediated caspase cascade. The time dependent activation and cleavage of of bax, caspases-8, 10, 9, 3 and 7 was observed in Western blot analysis. In addition to caspase-dependent pathway AIF mediated caspase-independent pathway was involved in OA mediated cell death. OA also caused time dependent inhibition of protein phosphatase 2A activity and phosphorylation of p38 and p42/44 MAP kinases. Inhibitor studies with Ac-DEVO-CHO and Z-VAD-FMK could not prevent the phosphorylation of p38 and p42/44 MAP kinases. Our experiments with caspase inhibitors Ac-DEVD-CHO, Z-IETD-FMK and Z-VAD-FMK inhibited capsase-3, 8 cleavages but did not prevent OA-induced apoptosis and DNA fragmentation. Similarly, pretreatment with cyclosporin-A and N-acetylcysteine could not prevent the DNA fragmentation. In summary, the results of our study show that OA induces multiple signal transduction pathways acting either independently or simultaneously leading to apoptosis

  9. Toxic effects of male Perna viridis gonad exposed to BaP, DDT and their mixture: A metabolomic and proteomic study of the underlying mechanism.

    Science.gov (United States)

    Song, Qinqin; Zheng, Pengfei; Qiu, Liguo; Jiang, Xiu; Zhao, Hongwei; Zhou, Hailong; Han, Qian; Diao, Xiaoping

    2016-01-05

    Benzo(a)pyrene and dichlorodiphenyltrichloroethane are typical persistent organic pollutants, and also the widespread environmental estrogens with known toxicity towards green mussels Perna viridis. In this study, the toxicological effects of BaP and DDT and their mixture were assessed in green mussel gonads using proteomic and metabolomic approaches. Metabolomics by NMR spectroscopy revealed that BaP did not show obvious metabolite changes in the gonad of male green mussel. DDT mainly caused some disturbance of osmotic regulation and energy metabolism by changing BCAAs, alanine, threonine, arginine, etc., unknown metabolite (3.53 ppm), glycine, homarine and ATP at different levels. However, the mixture of BaP and DDT mainly caused some disturbance in osmotic regulation and energy metabolism by differentially altering branched chain amino acids, glutamate, alanine, arginine, unknown metabolite (3.53 ppm), glycine, 4-aminobutyrate, dimethylglycine, homarine and ATP. The results suggest that DDT alone may cause most of metabolites changes in the mixture exposed male mussel gonad, and the results also show that the male P. viridis gonad was more sensitive to DDT than BaP exposures. Proteomic study showed that BaP, DDT and their mixture may have different modes of action. Proteomic responses revealed that BaP induced signal transduction, oxidative stress, spermatogenesis, etc. in the male green mussel gonad; whereas DDT exposure altered proteins that were associated with signal transduction, oxidative stress, cytoskeleton and cell structure, cellular organization, energy metabolism, etc. However, the mixture of BaP and DDT affected proteins related to cytoskeleton and cell structure, oxidative stress, cellular organization, etc. This research demonstrated that metabolomic and proteomic approaches could better elucidate the underlying mechanism of environmental pollutants gonad toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    Energy Technology Data Exchange (ETDEWEB)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N. (Sepulveda Veterans Administration, CA (USA))

    1991-05-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.

  11. FASEB summer research conference on signal transduction in plants. Final report, June 16, 1996--June 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, T.L.; Quatrano, R.S.

    1996-12-31

    This is the program from the second FASEB conference on Signal Transduction in Plants. Topic areas included the following: environmental signaling; perception and transduction of light signals; signaling in plant microbe interactions; signaling in plant pathogen interactions; cell, cell communication; cytoskeleton, plasma membrane, and cellwall continuum; signaling molecules in plant growth and development I and II. A list of participants is included.

  12. Regulation of autophagy by amino acids and MTOR-dependent signal transduction

    NARCIS (Netherlands)

    Meijer, Alfred J.; Lorin, Séverine; Blommaart, Edward F.; Codogno, Patrice

    2015-01-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins

  13. Discriminative clustering on manifold for adaptive transductive classification.

    Science.gov (United States)

    Zhang, Zhao; Jia, Lei; Zhang, Min; Li, Bing; Zhang, Li; Li, Fanzhang

    2017-10-01

    In this paper, we mainly propose a novel adaptive transductive label propagation approach by joint discriminative clustering on manifolds for representing and classifying high-dimensional data. Our framework seamlessly combines the unsupervised manifold learning, discriminative clustering and adaptive classification into a unified model. Also, our method incorporates the adaptive graph weight construction with label propagation. Specifically, our method is capable of propagating label information using adaptive weights over low-dimensional manifold features, which is different from most existing studies that usually predict the labels and construct the weights in the original Euclidean space. For transductive classification by our formulation, we first perform the joint discriminative K-means clustering and manifold learning to capture the low-dimensional nonlinear manifolds. Then, we construct the adaptive weights over the learnt manifold features, where the adaptive weights are calculated through performing the joint minimization of the reconstruction errors over features and soft labels so that the graph weights can be joint-optimal for data representation and classification. Using the adaptive weights, we can easily estimate the unknown labels of samples. After that, our method returns the updated weights for further updating the manifold features. Extensive simulations on image classification and segmentation show that our proposed algorithm can deliver the state-of-the-art performance on several public datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  15. Efficient transduction of neurons using Ross River glycoprotein-pseudotyped lentiviral vectors

    DEFF Research Database (Denmark)

    Jakobsson, J; Nielsen, T Tolstrup; Staflin, K

    2006-01-01

    , including the possibility to establish stable producer cell lines. After injection of RRV-LV expressing green fluorescent protein into different structures in the rat brain we found efficient transduction of both neurons and glial cells. By using two cell-type-specific promoters, neuron-specific enolase...

  16. A Biosensor for Urea from Succinimide-Modified Acrylic Microspheres Based on Reflectance Transduction

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2011-08-01

    Full Text Available New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294 for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97 with a limit of detection of 9.97 mM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5 with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  17. Turing mechanism underlying a branching model for lung morphogenesis.

    Science.gov (United States)

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  18. The crucial role of cyclic GMP in the eclosion hormone mediated signal transduction in the silkworm metamorphoses.

    Science.gov (United States)

    Shibanaka, Y; Hayashi, H; Okada, N; Fujita, N

    1991-10-31

    The signal transduction of the peptide, eclosion hormone, in the silkworm Bombyx mori appears to be mediated via the second messenger cyclic GMP throughout their life cycle. Injection of 8-bromo-cGMP induced the ecdysis behavior in pharate adults with similar latency to eclosion hormone-induced ecdysis; the moulting occurred 50-70 min after the injection. The potency of 8Br-cGMP was 10(2) fold higher than that of cGMP and the efficacy was increased by the co-injection of the phosphodiesterase inhibitor IBMX. On the other hand, in the silkworm pupal ecdysis the eclosion hormone and also 8Br-cGMP induced the moulting behavior in a dose-dependent manner. The adult development of the ability to respond to 8Br-cGMP took place concomitantly with the response to the eclosion hormone. Both the developmental time courses were shifted by a shift of light and dark cycles. Accordingly, the sensitivities to the peptide and cyclic nucleotide developed correspondently under the light and dark circadian rhythm. Thus throughout the silkworm life cycle, eclosion hormone is effective to trigger the ecdysis behavior and cGMP plays a crucial role as the second messenger in the eclosion hormone-mediated signal transduction.

  19. Fenspiride and membrane transduction signals in rat alveolar macrophages.

    Science.gov (United States)

    Féray, J C; Mohammadi, K; Taouil, K; Brunet, J; Garay, R P; Hannaert, P

    1997-07-15

    Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.

  20. Participation of intracellular signal transduction in the radio-adaptive response induced by low-dose X-irradiation in human embryonic cells

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu; Watanabe, Masami.

    1996-01-01

    To elucidate the induction mechanism of radio-adaptive response in normal cells, we searched the literatures of the intracellular signal transduction. Furthermore, we examined the induction of radio-adaptive response with or without inhibitors of several kinds of protein kinase. The major results obtained were as follows; (1) According to the literature survey it is revealed that there are 4 intracellular signal transduction pathways which are possibly involved in the induction of radio-adaptive response: pathways depending on cAMP, calcium, cGMP, or protein-tyrosine kinase. (2) Addition of either inhibitor of protein-tyrosine kinase or protein kinase C to the cell culture medium during the low-dose X-irradiation inhibited the induction of radio-adaptive response. However, the addition of inhibitor of cAMP-dependent protein kinase, cGMP-dependent protein kinase, or Ca 2+ -calmodulin kinase II failed to inhibit the induction of radio-adaptive response. (3) These results suggest that the signal induced in cells by low-dose X-irradiation was transduced from protein-tyrosine kinase to protein kinase C via either pathway of phosphatidylinositol 3-kinase or splitting of profilin binding phosphatidylinositol 4,5-bisphosphate. (author)

  1. Cancer classification through filtering progressive transductive support vector machine based on gene expression data

    Science.gov (United States)

    Lu, Xinguo; Chen, Dan

    2017-08-01

    Traditional supervised classifiers neglect a large amount of data which not have sufficient follow-up information, only work with labeled data. Consequently, the small sample size limits the advancement of design appropriate classifier. In this paper, a transductive learning method which combined with the filtering strategy in transductive framework and progressive labeling strategy is addressed. The progressive labeling strategy does not need to consider the distribution of labeled samples to evaluate the distribution of unlabeled samples, can effective solve the problem of evaluate the proportion of positive and negative samples in work set. Our experiment result demonstrate that the proposed technique have great potential in cancer prediction based on gene expression.

  2. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  3. Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys.

    Directory of Open Access Journals (Sweden)

    Laura Campello

    Full Text Available Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ± 1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to

  4. Analysis and logical modeling of biological signaling transduction networks

    Science.gov (United States)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  5. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    Directory of Open Access Journals (Sweden)

    Svetlana Jankovic-Raznatovic

    2014-01-01

    Full Text Available Background. This experimental study evaluates fetal middle cerebral artery (MCA circulation after the defined prenatal acoustical stimulation (PAS and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB and before PAS and Pulsatility index reactive after the first PAS (PIR 1 shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2 shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  6. Amount of fear extinction changes its underlying mechanisms.

    Science.gov (United States)

    An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo

    2017-07-03

    There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.

  7. The third helix of the murine Hoxc8 homeodomain facilitates protein transduction in mammalian cells

    International Nuclear Information System (INIS)

    Kong, Kyoung-Ah; Gadi, Jogeswar; Park, Hyoung Woo; Bok, Jinwoong; Kim, Myoung Hee

    2008-01-01

    Previously, we have demonstrated that purified Hoxc8 homeoprotein has the ability to penetrate the cellular membrane and can be transduced efficiently into COS-7 cells. Moreover, the Hoxc8 protein is able to form a complex with DNA molecules in vitro and helps the DNA be delivered intracellularly, serving as a gene delivery vehicle. Here, we further analyzed the membrane transduction activity of Hoxc8 protein and provide the evidence that the 16 amino acid (a.a.191-206, 2.23 kDa) third helix of murine Hoxc8 protein is an efficient protein transduction domain (PTD). When the 16 amino acid peptide was fused at the carboxyl terminal of enhanced green fluorescence protein (EGFP), the fusion proteins were transduced efficiently into the primary pig fetal fibroblast cells. The transduction efficiency increased in a concentration-dependent manner up to 1 μM, and appeared to plateau above a concentration of 1 μM. When tandem multimers of PTD, EGFP-PTD(2), EGFP-PTD(3), EGFP-PTD(4), and EGFP-PTD(5), were analyzed at 500 nM of concentration, the penetrating efficiency increased in a dose-dependent manner. As the number of PTDs increased, the EGFP signal also increased, although the signal maintained plateau after EGFP-PTD(3). These results indicate that the 16 amino acid third helix is the key element responsible for the membrane transduction activity of Hoxc8 proteins, and further suggest that the small peptide could serve as a therapeutic delivery vehicle for large cargo proteins

  8. Efficient, Broadband and Wide-Angle Hot-Electron Transduction using Metal-Semiconductor Hyperbolic Metamaterials

    KAUST Repository

    Sakhdari, Maryam; Hajizadegan, Mehdi; Farhat, Mohamed; Chen, Pai-Yen

    2016-01-01

    Hot-electron devices are emerging as promising candidates for the transduction of optical radiation into electrical current, as they enable photodetection and solar/infrared energy harvesting at sub-bandgap wavelengths. Nevertheless, poor

  9. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Chemori, Ahmed

    2015-01-01

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed

  10. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  11. Recombinant adeno-associated virus: efficient transduction of the rat VMH and clearance from blood.

    Directory of Open Access Journals (Sweden)

    Margriet A van Gestel

    Full Text Available To promote the efficient and safe application of adeno-associated virus (AAV vectors as a gene transfer tool in the central nervous system (CNS, transduction efficiency and clearance were studied for serotypes commonly used to transfect distinct areas of the brain. As AAV2 was shown to transduce only small volumes in several brain regions, this study compares the transduction efficiency of three AAV pseudotyped vectors, namely AAV2/1, AAV2/5 and AAV2/8, in the ventromedial nucleus of the hypothalamus (VMH. No difference was found between AAV2/1 and AAV2/5 in transduction efficiency. Both AAV2/1 and AAV2/5 achieved a higher transduction rate than AAV2/8. One hour after virus administration to the brain, no viral particles could be traced in blood, indicating that no or negligible numbers of virions crossed the blood-brain barrier. In order to investigate survival of AAV in blood, clearance was determined following systemic AAV administration. The half-life of AAV2/1, AAV2/2, AAV2/5 and AAV2/8 was calculated by determining virus clearance rates from blood after systemic injection. The half-life of AAV2/2 was 4.2 minutes, which was significantly lower than the half-lives of AAV2/1, AAV2/5 and AAV2/8. With a half-life of more than 11 hours, AAV2/8 particles remained detectable in blood significantly longer than AAV2/5. We conclude that application of AAV in the CNS is relatively safe as no AAV particles are detectable in blood after injection into the brain. With a half-life of 1.67 hours of AAV2/5, a systemic injection with 1×109 genomic copies of AAV would be fully cleared from blood after 2 days.

  12. Expression analysis of taste signal transduction molecules in the fungiform and circumvallate papillae of the rhesus macaque, Macaca mulatta.

    Directory of Open Access Journals (Sweden)

    Yoshiro Ishimaru

    Full Text Available The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP and circumvallate papillae (CvP of the rhesus macaque, Macaca mulatta, using in situ hybridization. TAS1R1, TAS1R2, TAS2Rs, and PKD1L3 were exclusively expressed in different subsets of taste receptor cells (TRCs in the FuP and CvP. This finding suggests that TRCs sensing different basic taste modalities are mutually segregated in macaque taste buds. Individual TAS2Rs exhibited a variety of expression patterns in terms of the apparent level of expression and the number of TRCs expressing these genes, as in the case of human TAS2Rs. GNAT3, but not GNA14, was expressed in TRCs of FuP, whereas GNA14 was expressed in a small population of TRCs of CvP, which were distinct from GNAT3- or TAS1R2-positive TRCs. These results demonstrate similarities and differences between primates and rodents in the expression profiles of genes involved in taste signal transduction.

  13. Deformation Mechanisms of Gum Metals Under Nanoindentation

    Science.gov (United States)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  14. Sensory cilia and integration of signal transduction in human health and disease

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Lotte B; Schneider, Linda

    2007-01-01

    The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the ...

  15. Short- and long-term memory: differential involvement of neurotransmitter systems and signal transduction cascades

    Directory of Open Access Journals (Sweden)

    MÔNICA R.M. VIANNA

    2000-09-01

    Full Text Available Since William James (1890 first distinguished primary from secondary memory, equivalent to short- and long-term memory, respectively, it has been assumed that short-term memory processes are in charge of cognition while long-term memory is being consolidated. From those days a major question has been whether short-term memory is merely a initial phase of long-term memory, or a separate phenomena. Recent experiments have shown that many treatments with specific molecular actions given into the hippocampus and related brain areas after one-trial avoidance learning can effectively cancel short-term memory without affecting long-term memory formation. This shows that short-term memory and long-term memory involve separate mechanisms and are independently processed. Other treatments, however, influence both memory types similarly, suggesting links between both at the receptor and at the post-receptor level, which should not be surprising as they both deal with nearly the same sensorimotor representations. This review examines recent advances in short- and long-term memory mechanisms based on the effect of intra-hippocampal infusion of drugs acting upon neurotransmitter and signal transduction systems on both memory types.

  16. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    Science.gov (United States)

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  17. Crack assessment of pipe under combined thermal and mechanical load

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae

    2009-01-01

    In this paper, J-integral and transient C(t)-integral, which were key parameters in low temperature and high temperature fracture mechanics, under combined thermal and mechanical load were estimated via 3-dimensional finite element analyses. Various type of thermal and mechanical load, material hardening were considered to decrease conservatism in existing solutions. As a results, V-factor and redistribution time for combined thermal and mechanical load were proposed to calculate J-integral and C(t)-integral, respectively.

  18. Signal transduction around thymic stromal lymphopoietin (TSLP in atopic asthma

    Directory of Open Access Journals (Sweden)

    Kuepper Michael

    2008-08-01

    Full Text Available Abstract Thymic stromal lymphopoietin (TSLP, a novel interleukin-7-like cytokine, triggers dendritic cell-mediated inflammatory responses ultimately executed by T helper cells of the Th2 subtype. TSLP emerged as a central player in the development of allergic symptoms, especially in the airways, and is a prime regulatory cytokine at the interface of virus- or antigen-exposed epithelial cells and dendritic cells (DCs. DCs activated by epithelium-derived TSLP can promote naïve CD4+ T cells to adopt a Th2 phenotype, which in turn recruite eosinophilic and basophilic granulocytes as well as mast cells into the airway mucosa. These different cells secrete inflammatory cytokines and chemokines operative in inducing an allergic inflammation and atopic asthma. TSLP is, thus, involved in the control of both an innate and an adaptive immune response. Since TSLP links contact of allergen with the airway epithelium to the onset and maintainance of the asthmatic syndrome, defining the signal transduction underlying TSLP expression and function is of profound interest for a better understandimg of the disease and for the development of new therapeutics.

  19. Proteome analysis of soybean roots under waterlogging stress at an ...

    Indian Academy of Sciences (India)

    Prakash

    To gain better insight into how soybean roots respond to waterlogging stress, ... death- and signal transduction-related proteins suggest that they have a role to play during stress. ...... work cooperatively to establish a new homeostasis under.

  20. FLT3 ligand preserves the uncommitted CD34+CD38- progenitor cells during cytokine prestimulation for retroviral transduction

    DEFF Research Database (Denmark)

    Nielsen, S D; Husemoen, L L; Sørensen, T U

    2000-01-01

    for transduction of CD34+ cells. The effect of cytokine prestimulation on transduction efficiency and the population of uncommitted CD34+CD38- cells was determined. CD34+ cells harvested from umbilical cord blood were kept in suspension cultures and stimulated with combinations of the cytokines stem cell factor......Before stem cell gene therapy can be considered for clinical applications, problems regarding cytokine prestimulation remain to be solved. In this study, a retroviral vector carrying the genes for the enhanced version of green fluorescent protein (EGFP) and neomycin resistance (neo(r)) was used...... in a higher percentage of cells than the EGFP gene, but there seemed to be a positive correlation between expression of the two genes. The effect of cytokine prestimulation was therefore monitored using EGFP as marker for transduction. When SCF was compared to SCF in combination with more potent cytokines...

  1. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  2. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  3. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  4. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  5. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts.

    Science.gov (United States)

    Mizoshiri, N; Kishida, T; Yamamoto, K; Shirai, T; Terauchi, R; Tsuchida, S; Mori, Y; Ejima, A; Sato, Y; Arai, Y; Fujiwara, H; Yamamoto, T; Kanamura, N; Mazda, O; Kubo, T

    2015-11-27

    Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.

    Science.gov (United States)

    Libonati, Flavia; Nair, Arun K; Vergani, Laura; Buehler, Markus J

    2013-04-01

    Geometric confinement to the nanoscale, a concept that refers to the characteristic dimensions of structural features of materials at this length scale, has been shown to control the mechanical behavior of many biological materials or their building blocks, and such effects have also been suggested to play a crucial role in enhancing the strength and toughness of bone. Here we study the effect of geometric confinement on the fracture mechanism of hydroxyapatite (HAP) crystals that form the mineralized phase in bone. We report a series of molecular simulations of HAP crystals with an edge crack on the (001) plane under tensile loading, and we systematically vary the sample height whilst keeping the sample and the crack length constant. We find that by decreasing the sample height the stress concentration at the tip of the crack disappears for samples with a height smaller than 4.15nm, below which the material shows a different failure mode characterized by a more ductile mechanism with much larger failure strains, and the strength approaching that of a flaw-less crystal. This study directly confirms an earlier suggestion of a flaw-tolerant state that appears under geometric confinement and may explain the mechanical stability of the reinforcing HAP platelets in bone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Believing versus interacting: Behavioural and neural mechanisms underlying interpersonal coordination

    DEFF Research Database (Denmark)

    Konvalinka, Ivana; Bauer, Markus; Kilner, James

    When two people engage in a bidirectional interaction with each other, they use both bottom-up sensorimotor mechanisms such as monitoring and adapting to the behaviour of the other, as well as top-down cognitive processes, modulating their beliefs and allowing them to make decisions. Most research...... in joint action has investigated only one of these mechanisms at a time – low-level processes underlying joint coordination, or high-level cognitive mechanisms that give insight into how people think about another. In real interactions, interplay between these two mechanisms modulates how we interact...

  8. Mechanical behavior of silicon carbide nanoparticles under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiuxiang; Fei, Jing; Tang, Chao; Zhong, Jianxin; Meng, Lijun, E-mail: ljmeng@xtu.edu.cn [Xiangtan University, Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Faculty of School of Physics and Optoelectronics (China)

    2016-03-15

    The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.

  9. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction

    Directory of Open Access Journals (Sweden)

    Kinnamon Sue C

    2001-04-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP3, which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste receptors, phospholipase C β2, and the G protein subunits α-gustducin, β3, and γ13. However, the identity of the IP3 receptor subtype in this pathway is not known. In the present study we used immunocytochemistry on rodent taste tissue to identify the IP3 receptors expressed in taste cells and to examine taste bud expression patterns for IP3R3. Results Antibodies against Type I, II, and III IP3 receptors were tested on sections of rat and mouse circumvallate papillae. Robust cytoplasmic labeling for the Type III IP3 receptor (IP3R3 was found in a large subset of taste cells in both species. In contrast, little or no immunoreactivity was seen with antibodies against the Type I or Type II IP3 receptors. To investigate the potential role of IP3R3 in bitter taste transduction, we used double-label immunocytochemistry to determine whether IP3R3 is expressed in the same subset of cells expressing other bitter signaling components. IP3R3 immunoreactive taste cells were also immunoreactive for PLCβ2 and γ13. Alpha-gustducin immunoreactivity was present in a subset of IP3R3, PLCβ2, and γ13 positive cells. Conclusions IP3R3 is the dominant form of the IP3 receptor expressed in taste cells and our data suggest it plays an important role in bitter taste transduction.

  10. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation

    Science.gov (United States)

    2012-07-01

    Std. Z39.18 Victoria Seewaldt, M.D. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation Duke University Durham...attomole- zeptomole range. Internal dilution curves insure a high-dynamic calibration range. DU -26 8L DU -26 6L DU -29 5R DU -22 9.2 L DU...3: Nanobiosensor technology is translated to test for pathway deregulation in RPFNA cytology obtained from 10 high-risk women with cytological

  11. A new highly conserved antibiotic sensing/resistance pathway in firmicutes involves an ABC transporter interplaying with a signal transduction system.

    Directory of Open Access Journals (Sweden)

    Stéphanie Coumes-Florens

    2011-01-01

    Full Text Available Signal transduction systems and ABC transporters often contribute jointly to adaptive bacterial responses to environmental changes. In Bacillus subtilis, three such pairs are involved in responses to antibiotics: BceRSAB, YvcPQRS and YxdJKLM. They are characterized by a histidine kinase belonging to the intramembrane sensing kinase family and by a translocator possessing an unusually large extracytoplasmic loop. It was established here using a phylogenomic approach that systems of this kind are specific but widespread in Firmicutes, where they originated. The present phylogenetic analyses brought to light a highly dynamic evolutionary history involving numerous horizontal gene transfers, duplications and lost events, leading to a great variety of Bce-like repertories in members of this bacterial phylum. Based on these phylogenetic analyses, it was proposed to subdivide the Bce-like modules into six well-defined subfamilies. Functional studies were performed on members of subfamily IV comprising BceRSAB from B. subtilis, the expression of which was found to require the signal transduction system as well as the ABC transporter itself. The present results suggest, for the members of this subfamily, the occurrence of interactions between one component of each partner, the kinase and the corresponding translocator. At functional and/or structural levels, bacitracin dependent expression of bceAB and bacitracin resistance processes require the presence of the BceB translocator loop. Some other members of subfamily IV were also found to participate in bacitracin resistance processes. Taken together our study suggests that this regulatory mechanism might constitute an important common antibiotic resistance mechanism in Firmicutes. [Supplemental material is available online at http://www.genome.org.].

  12. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction

    NARCIS (Netherlands)

    Green, J.; Nusse, R.; van Amerongen, R.

    2014-01-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their

  13. The sugarcane signal transduction (SUCAST catalogue: prospecting signal transduction in sugarcane

    Directory of Open Access Journals (Sweden)

    Glaucia Mendes Souza

    2001-12-01

    Full Text Available EST sequencing has enabled the discovery of many new genes in a vast array of organisms, and the utility of this approach to the scientific community is greatly increased by the establishment of fully annotated databases. The present study aimed to identify sugarcane ESTs sequenced in the sugarcane expressed sequence tag (SUCEST project (http://sucest.lad.ic.unicamp.br that corresponded to signal transduction components. We also produced a sugarcane signal transduction (SUCAST catalogue (http://sucest.lad.ic.unicamp.br/private/mining-reports/QG/QG-mining.htm that covered the main categories and pathways. Expressed sequence tags (ESTs encoding enzymes for hormone (gibberellins, ethylene, auxins, abscisic acid and jasmonic acid biosynthetic pathways were found and tissue specificity was inferred from their relative frequency of occurrence in the different libraries. Whenever possible, transducers of hormones and plant peptide signaling were catalogued to the respective pathway. Over 100 receptors were found in sugarcane, which contains a large family of Ser/Thr kinase receptors and also photoreceptors, histidine kinase receptors and their response regulators. G-protein and small GTPases were analyzed and compared to known members of these families found in mammalian and plant systems. Major kinase and phosphatase pathways were mapped, with special attention being given to the MAP kinase and the inositol pathway, both of which are well known in plants.O sequenciamento de ESTs (etiquetas de sequencias transcritas tem possibilitado a descoberta de muitos novos genes em uma ampla variedade de organismos. Um aumento do aproveitamento desta informação pela comunidade científica tem sido possível graças ao desenvolvimento de base de dados contendo seqüências completamente anotadas. O trabalho aqui relatado teve como objetivo a identificação de ESTs de cana de açúcar seqüenciadas através do projeto SUCEST (http://sucest.lad.ic. unicamp.br que

  14. The dynamic basis of energy transduction in enzymes.

    Science.gov (United States)

    Somogyi, B; Welch, G R; Damjanovich, S

    1984-09-06

    The most important idea underlying our treatment herein is the unity of the enzyme molecule and the medium. Appreciation of this relationship is vital, if enzymology is to graduate from its present reductionistic status to a more holistic posture. Enzymes are biological entities firstly, and isolated objects of physicochemical analysis secondly. Perhaps the most crucial 'biological lesson', particularly apropos of enzymes in intermediary metabolism, concerns the 'cytosociology' of enzyme action in vivo [94,128]. The natural habitat of many enzymes in the living cell is far different from that in bulk aqueous solution in vitro. In order to obtain a real grasp of the nature of enzyme function, one must ultimately couch enzymology in concepts emerging from contemporary cell biology [95]. Notwithstanding, analysis precedes synthesis; and one must needs begin with the individual enzyme molecule. The trenchant efforts of the physical chemist and the organic chemist have produced a wealth of information on the nature of the binding and catalytic events at the enzyme active site. While it is not yet possible to explain precisely the complete sequence of events in the catalytic process, nevertheless, the basic mechanisms by which enzymes effect catalysis (i.e., reduce activation energy) now seem apparent [81,129]. The new frontier is to be found, in exploring the dynamic role of the protein matrix [17]. Not only does the protein provide the 3-D scaffolding for active-site processes, but, more importantly, it serves as the local solvent for the bound chemical subsystem. Thus, the dynamical aspects of enzyme catalysis (for thermally based systems) must arise from the fluctuational properties of the protein molecule. This notion is the common denominator in all of the models in subsection IIC. It is the anisotropic nature of this fluctuational behavior, which would characterize the energy-transduction phenomenon leading to localized catalytic events at the active-site. In

  15. Decision Aggregation in Distributed Classification by a Transductive Extension of Maximum Entropy/Improved Iterative Scaling

    Directory of Open Access Journals (Sweden)

    George Kesidis

    2008-06-01

    Full Text Available In many ensemble classification paradigms, the function which combines local/base classifier decisions is learned in a supervised fashion. Such methods require common labeled training examples across the classifier ensemble. However, in some scenarios, where an ensemble solution is necessitated, common labeled data may not exist: (i legacy/proprietary classifiers, and (ii spatially distributed and/or multiple modality sensors. In such cases, it is standard to apply fixed (untrained decision aggregation such as voting, averaging, or naive Bayes rules. In recent work, an alternative transductive learning strategy was proposed. There, decisions on test samples were chosen aiming to satisfy constraints measured by each local classifier. This approach was shown to reliably correct for class prior mismatch and to robustly account for classifier dependencies. Significant gains in accuracy over fixed aggregation rules were demonstrated. There are two main limitations of that work. First, feasibility of the constraints was not guaranteed. Second, heuristic learning was applied. Here, we overcome these problems via a transductive extension of maximum entropy/improved iterative scaling for aggregation in distributed classification. This method is shown to achieve improved decision accuracy over the earlier transductive approach and fixed rules on a number of UC Irvine datasets.

  16. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-01-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear

  17. Insights into signal transduction by a hybrid FixL: Denaturation study of on and off states of a multi-domain oxygen sensor.

    Science.gov (United States)

    Guimarães, Wellinson G; Gondim, Ana C S; Costa, Pedro Mikael da Silva; Gilles-Gonzalez, Marie-Alda; Lopes, Luiz G F; Carepo, Marta S P; Sousa, Eduardo H S

    2017-07-01

    FixL from Rhizobium etli (ReFixL) is a hybrid oxygen sensor protein. Signal transduction in ReFixL is effected by a switch off of the kinase activity on binding of an oxygen molecule to ferrous heme iron in another domain. Cyanide can also inhibit the kinase activity upon binding to the heme iron in the ferric state. The unfolding by urea of the purified full-length ReFixL in both active pentacoordinate form, met-FixL(Fe III ) and inactive cyanomet-FixL (Fe III -CN - ) form was monitored by UV-visible absorption spectroscopy, circular dichroism (CD) and fluorescence spectroscopy. The CD and UV-visible absorption spectroscopy revealed two states during unfolding, whereas fluorescence spectroscopy identified a three-state unfolding mechanism. The unfolding mechanism was not altered for the active compared to the inactive state; however, differences in the ΔG H2O were observed. According to the CD results, compared to cyanomet-FixL, met-FixL was more stable towards chemical denaturation by urea (7.2 vs 4.8kJmol -1 ). By contrast, electronic spectroscopy monitoring of the Soret band showed cyanomet-FixL to be more stable than met-FixL (18.5 versus 36.2kJmol -1 ). For the three-state mechanism exhibited by fluorescence, the ΔG H2O for both denaturation steps were higher for the active-state met-FixL than for cyanomet-FixL. The overall stability of met-FixL is higher in comparison to cyanomet-FixL suggesting a more compact protein in the active form. Nonetheless, hydrogen bonding by bound cyanide in the inactive state promotes the stability of the heme domain. This work supports a model of signal transduction by FixL that is likely shared by other heme-based sensors. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    Science.gov (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  19. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    International Nuclear Information System (INIS)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-01-01

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8

  20. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  1. Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events.

    Science.gov (United States)

    Bhattacharyya, S; Ghosh, S; Jhonson, P L; Bhattacharya, S K; Majumdar, S

    2001-03-01

    Leishmania donovani, an intracellular protozoan parasite, challenges host defense mechanisms by impairing the signal transduction of macrophages. In this study we investigated whether interleukin-10 (IL-10)-mediated alteration of signaling events in a murine model of visceral leishmaniasis is associated with macrophage deactivation. Primary in vitro cultures of macrophages infected with leishmanial parasites markedly elevated the endogenous release of IL-10. Treatment with either L. donovani or recombinant IL-10 (rIL-10) inhibited both the activity and expression of the Ca2+-dependent protein kinase C (PKC) isoform. However, preincubation with neutralizing anti-IL-10 monoclonal antibody (MAb) restored the PKC activity in the parasitized macrophage. Furthermore, we observed that coincubation of macrophages with rIL-10 and L. donovani increased the intracellular parasite burden, which was abrogated by anti-IL-10 MAb. Consistent with these observations, generation of superoxide (O2-) and nitric oxide and the release of murine tumor necrosis factor-alpha were attenuated in response to L. donovani or rIL-10 treatment. On the other hand, preincubation of the infected macrophages with neutralizing anti-IL-10 MAb significantly blocked the inhibition of nitric oxide and murine tumor necrosis factor-alpha release by the infected macrophages. These findings imply that infection with L. donovani induces endogenous secretion of murine IL-10, which in turn facilitates the intracellular survival of the protozoan and orchestrates several immunomodulatory roles via selective impairment of PKC-mediated signal transduction.

  2. Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice

    Science.gov (United States)

    Nakai, Hiroyuki; Fuess, Sally; Storm, Theresa A.; Muramatsu, Shin-ichi; Nara, Yuko; Kay, Mark A.

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with β-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 × 1012 vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression. PMID:15596817

  3. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    Science.gov (United States)

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  4. Underlying mechanisms of improving physical activity behavior after rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, H.P.; Streppel, K.R.; van der Beek, A.J.; van der Woude, L.H.V.; van Harten, W.H.; van Mechelen, W.

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  5. Underlying Mechanisms of Improving Physical Activity Behavior after Rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P.; Streppel, Kitty R.M.; van der Beek, Allard J.; Woude, Luc H.V.; van Harten, Willem H.; Vollenbroek-Hutten, Miriam Marie Rosé; van Mechelen, Willem

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  6. Isolation of ionospheres from ion transport systems and their role in energy transduction

    Energy Technology Data Exchange (ETDEWEB)

    Shamoo, A E; Goldstein, D A

    1977-01-01

    In the past twenty-five years cell membrane transport has been studied from the point of view of kinetics and the biochemical correlation of enzyme function with that of transport. Artificial lipid bilayers have been used as a model for cell membrane transport. Antibiotics, such as valinomycin have also been studied as models of ion-transport mediators. Much effort has been invested on the study of model compounds as the possible molecular bases of transport. Information derived from the study of model systems throughout the years has been valuable and worthwhile. However, if the aim is to elucidate the mechanism of cell membrane transport, the time has come to merge the two lines of research into one and to shift emphasis from the study of model systems to the study of isolated transport machine components before and after reconstitution of its components into model membranes. These studies should be augmented at all times with the biochemical correlates of the transport proteins. A review is presented of the new avenues employed to elucidate the molecular mechanism of active transport. The new avenues are those of isolation of ion-transport mediators (ionophores) from membrane transport proteins. Reconstitution of ionophores and the various membrane transport proteins into artificial systems such as bilayers and vesicles presents a powerful tool to elucidate the molecular mechanism of active transport. More importantly, the new approach provides the first glimpse of evidence for a reasonable investigation of energy transduction from ATP hydrolysis to transport of an ion.

  7. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    International Nuclear Information System (INIS)

    Huang, Qiuyan; Pan, Hucheng; Tang, Aitao; Ren, Yuping; Song, Bo; Qin, Gaowu; Zhang, Mingxing; Pan, Fusheng

    2016-01-01

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10"−"3–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  8. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiuyan [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Hucheng [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tang, Aitao, E-mail: tat@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Ren, Yuping [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Mingxing [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-05-10

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10{sup −3}–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  9. Scraping through the ice: uncovering the role of TRPM8 in cold transduction

    Science.gov (United States)

    McCoy, Daniel D.; Knowlton, Wendy M.

    2011-01-01

    The proper detection of environmental temperatures is essential for the optimal growth and survival of organisms of all shapes and phyla, yet only recently have the molecular mechanisms for temperature sensing been elucidated. The discovery of temperature-sensitive ion channels of the transient receptor potential (TRP) superfamily has been pivotal in explaining how temperatures are sensed in vivo, and here we will focus on the lone member of this cohort, TRPM8, which has been unequivocally shown to be cold sensitive. TRPM8 is expressed in somatosensory neurons that innervate peripheral tissues such as the skin and oral cavity, and recent genetic evidence has shown it to be the principal transducer of cool and cold stimuli. It is remarkable that this one channel, unlike other thermosensitive TRP channels, is associated with both innocuous and noxious temperature transduction, as well as cold hypersensitivity during injury and, paradoxically, cold-mediated analgesia. With ongoing research, the field is getting closer to answering a number of fundamental questions regarding this channel, including the cellular mechanisms of TRPM8 modulation, the molecular context of TRPM8 expression, as well as the full extent of the role of TRPM8 in cold signaling in vivo. These findings will further our understanding of basic thermotransduction and sensory coding, and may have important implications for treatments for acute and chronic pain. PMID:21411765

  10. Animal behavior models of the mechanisms underlying antipsychotic atypicality.

    NARCIS (Netherlands)

    Geyer, M.A.; Ellenbroek, B.A.

    2003-01-01

    This review describes the animal behavior models that provide insight into the mechanisms underlying the critical differences between the actions of typical vs. atypical antipsychotic drugs. Although many of these models are capable of differentiating between antipsychotic and other psychotropic

  11. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective.

    Science.gov (United States)

    Bartoli, Claudia; Roux, Fabrice; Lamichhane, Jay Ram

    2016-02-01

    The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  12. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  13. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, A E; Skov, Svend; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...... and functioning, MHC-I molecules might be of importance for the maintenance of cellular homeostasis not only within the immune system, but also in the interplay between the immune system and other organ systems....

  14. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    Science.gov (United States)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7-742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  15. Modulation of signal transduction by tea catechins and related phytochemicals

    International Nuclear Information System (INIS)

    Shimizu, Masahito; Weinstein, I. Bernard

    2005-01-01

    Epidemiologic studies in human populations and experimental studies in rodents provide evidence that green tea and its constituents can inhibit both the development and growth of tumors at a variety of tissue sites. In addition, EGCG, a major biologically active component of green tea, inhibits growth and induces apoptosis in a variety of cancer cell lines. The purpose of this paper is to review evidence that these effects are mediated, at least in part, through inhibition of the activity of specific receptor tyrosine kinases (RTKs) and related downstream pathways of signal transduction. We also review evidence indicating that the antitumor effects of the related polyphenolic phytochemicals resveratrol, genistein, curcumin, and capsaicin are exerted via similar mechanisms. Some of these agents (EGCG, genistein, and curcumin) appear to directly target specific RTKs, and all of these compounds cause inhibition of the activity of the transcription factors AP-1 and NF-κB, thus inhibiting cell proliferation and enhancing apoptosis. Critical areas of future investigation include: (1) identification of the direct molecular target(s) of EGCG and related polyphenolic compounds in cells; (2) the in vivo metabolism and bioavailability of these compounds; (3) the ancillary effects of these compounds on tumor-stromal interactions; (4) the development of synergistic combinations with other antitumor agents to enhance efficacy in cancer prevention and therapy, and also minimize potential toxicities

  16. Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival.

    Science.gov (United States)

    Lok, James B

    2016-12-01

    Signaling or communication between host and parasite may occur over relatively long ranges to enable host finding and acquisition by infective parasitic nematode larvae. Innate behaviors in infective larvae transmitted from the soil that enhance the likelihood of host contact, such as negative geotaxis and hypermotility, are likely mediated by mechanoreception and neuromuscular signaling. Host cues such as vibration of the substratum, elevated temperature, exhaled CO 2 , and other volatile odorants are perceived by mechanosensory and chemosensory neurons of the amphidial complex. Beyond this, the molecular systems that transduce these external cues within the worm are unknown at this time. Overall, the signal transduction mechanisms that regulate switching between dauer and continuous reproductive development in Caenorhabditis elegans , and doubtless other free-living nematodes, have provided a useful framework for testing hypotheses about how the morphogenesis and development of infective parasitic nematode larvae and the lifespan of adult parasites are regulated. In C. elegans , four major signal transduction pathways, G protein-coupled receptor signaling, insulin/insulin-like growth factor signaling, TGFβ-like signaling and steroid-nuclear hormone receptor signaling govern the switch between dauer and continuous development and regulate adult lifespan. Parasitic nematodes appear to have conserved the functions of G-protein-coupled signaling, insulin-like signaling and steroid-nuclear hormone receptor signaling to regulate larval development before and during the infective process. By contrast, TGFβ-like signaling appears to have been adapted for some other function, perhaps modulation of the host immune response. Of the three signal transduction pathways that appear to regulate development in parasitic nematodes, steroid-nuclear hormone signaling is the most straightforward to manipulate with administered small molecules and may form the basis of new

  17. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Akiko Hashiguchi

    2016-12-01

    Full Text Available The efficiency of stress-induced adaptive responses of plants depends on intricate coordination of multiple signal transduction pathways that act coordinately or, in some cases, antagonistically. Protein post-translational modifications (PTMs can regulate protein activity and localization as well as protein–protein interactions in numerous cellular processes, thus leading to elaborate regulation of plant responses to various external stimuli. Understanding responses of crop plants under field conditions is crucial to design novel stress-tolerant cultivars that maintain robust homeostasis even under extreme conditions. In this review, proteomic studies of PTMs in crops are summarized. Although the research on the roles of crop PTMs in regulating stress response mechanisms is still in its early stage, several novel insights have been retrieved so far. This review covers techniques for detection of PTMs in plants, representative PTMs in plants under abiotic stress, and how PTMs control functions of representative proteins. In addition, because PTMs under abiotic stresses are well described in soybeans under submergence, recent findings in PTMs of soybean proteins under flooding stress are introduced. This review provides information on advances in PTM study in relation to plant adaptations to abiotic stresses, underlining the importance of PTM study to ensure adequate agricultural production in the future.

  18. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.

    Directory of Open Access Journals (Sweden)

    Weiping Shi

    2018-05-01

    Full Text Available Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L. production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways in M79, including photosystem II (PSII oxygen-evolving complex, peroxidase (POD activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.

  19. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Shi, Weiping; Cheng, Jingye; Wen, Xiaojie; Wang, Jixiang; Shi, Guanyan; Yao, Jiayan; Hou, Liyuan; Sun, Qian; Xiang, Peng; Yuan, Xiangyang; Dong, Shuqi; Guo, Pingyi; Guo, Jie

    2018-01-01

    Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet ( Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F 1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.

  20. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    Directory of Open Access Journals (Sweden)

    Gina A. Smith

    2017-10-01

    Full Text Available Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A and vascular endothelial growth factor receptor 2 (VEGFR2 regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

  1. Immunosuppressive mechanisms in protein-calorie malnutrition

    International Nuclear Information System (INIS)

    Redmond, H.P.; Shou, J.; Kelly, C.J.; Schreiber, S.; Miller, E.; Leon, P.; Daly, J.M.

    1991-01-01

    Protein-calorie malnutrition (PCM) induces immunosuppression leading to increased mortality rates. Impaired macrophage respiratory burst activity (superoxide anion [O2-] generation) occurs in PCM, but cellular mechanisms are unclear. The major pathway resulting in O2- production involves inositol lipid-dependent signal transduction. This study examined the effect of mild versus severe PCM on macrophage O2- generating signal transduction pathways specific for responses to Candida albicans. Mice (CFW/Swiss Webster: n = 300) were randomized to either control or low protein diets for 3 or 8 weeks. Peritoneal macrophages were harvested for O2- production, mannose-fucose receptor (MFR) expression, membrane phospholipid analysis, arachidonic acid (AA) content, prostaglandin E2 (PGE2) production, and protein kinase C levels. O2- release was impaired in both mild and severe PCM. MFR expression was also decreased at these time points. Inositol lipid content was significantly lower at the 8-week time point only, although PGE2 and AA were significantly higher in the low protein diet group at 3 weeks. Protein kinase C levels were unchanged by PCM. Thus, mild PCM significantly increases macrophage-PGE2 production secondary to increased AA phospholipid content, with subsequent inhibition of O2- and MFR expression. Severe PCM inhibits macrophage (O2-) through depletion of critical membrane phospholipid components with subsequent impairment in signal transduction

  2. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  3. Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0652 TITLE: Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER W81XWH-16-1-0652 Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity 5b. GRANT NUMBER W81XWH...to stress fracture risk. In particular, in Study 1, we will perform advanced skeletal imaging along with gait-assessments in subjects with history of

  4. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  5. Enhancing T cell activation and antiviral protection by introducing the HIV-1 protein transduction domain into a DNA vaccine.

    Science.gov (United States)

    Leifert, J A; Lindencrona, J A; Charo, J; Whitton, J L

    2001-10-10

    Protein transduction domains (PTD), which can transport proteins or peptides across biological membranes, have been identified in several proteins of viral, invertebrate, and vertebrate origin. Here, we evaluate the immunological and biological consequences of including PTD in synthetic peptides and in DNA vaccines that contain CD8(+) T cell epitopes from lymphocytic choriomeningitis virus (LCMV). Synthetic PTD-peptides did not induce detectable CD8(+) T cell responses. However, fusion of an open reading frame encoding a PTD to an epitope minigene caused transfected tissue culture cells to stimulate epitope-specific T cells much more effectively. Kinetic studies indicated that the epitope reached the surface of transfected cells more rapidly and that the number of transfected cells needed to stimulate T cell responses was reduced by 35- to 50-fold when compared to cells transfected with a standard minigene plasmid. The mechanism underlying the effect of PTD linkage is not clear, but transit of the PTD-attached epitope from transfected cells to nontransfected cells (cross presentation) seemed to play, at most, a minimal role. Mice immunized once with the plasmid encoding the PTD-linked epitope showed a markedly accelerated CD8(+) T cell response and, unlike mice immunized with a standard plasmid, were completely protected against a normally lethal LCMV challenge administered only 8 days post-immunization.

  6. CD4 expression on EL4 cells as an epiphenomenon of retroviral transduction and selection.

    Science.gov (United States)

    Logan, Grant J; Spinoulas, Afroditi; Alexander, Stephen I; Smythe, Jason A; Alexander, Ian E

    2004-04-01

    The EL4 murine tumour cell line, isolated from a chemically induced lymphoma over 50 years ago, has been extensively exploited in immunological research. The conclusions drawn from many of these studies have been based on the presumption that EL4 cells maintain a stable phenotype during experimental manipulation. To the contrary, we have observed 100-fold greater expression of cell surface CD4 (CD4(high)) on a subpopulation of EL4 cells following retroviral transduction and G418 selection when compared with unmodified populations. Although the mechanism responsible for this effect remains to be elucidated, the unexpected expression of CD4, a molecule that functions as both a coreceptor with the T-cell receptor and ligand for the pro-inflammatory cytokine IL-16, has the potential to influence experimental outcomes. Upregulation of CD4 should be excluded when EL4 cells are utilized in experiments requiring a consistent immuno-phenotype.

  7. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Science.gov (United States)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  8. Antiviral Defense Mechanisms in Honey Bees

    Science.gov (United States)

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  9. Information theory and signal transduction systems: from molecular information processing to network inference.

    Science.gov (United States)

    Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H

    2014-11-01

    Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi.

    Science.gov (United States)

    Pandit, Ramesh; Patel, Reena; Patel, Namrata; Bhatt, Vaibhav; Joshi, Chaitanya; Singh, Pawan Kumar; Kunjadia, Anju

    2017-04-01

    Nematode-trapping fungi are well known for their inherent potential to trap and kill nematodes using specialized trapping devices. However, the molecular mechanisms underlying the trapping and subsequent processes are still unclear. Therefore, in this study, we examined differential genes expression in two nematode-trapping fungi after baiting with nematode extracts. In Arthrobotrys conoides, 809 transcripts associated with diverse functions such as signal transduction, morphogenesis, stress response and peroxisomal proteins, proteases, chitinases and genes involved in the host-pathogen interaction showed differential expression with fold change (>±1.5 fold) in the presence of nematode extract with FDR (p-value nematode-trapping fungi for its host. The findings illustrate the molecular mechanism of fungal parasitism in A. conoides which may be helpful in developing a potential biocontrol agent against parasitic nematodes.

  11. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Skavland, J; Jørgensen, K M [Hematology Section, Institute of Medicine, University of Bergen, Bergen (Norway); Hadziavdic, K [Department of Informatics, University of Bergen, Bergen (Norway); Hovland, R [Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen (Norway); Jonassen, I [Department of Informatics, University of Bergen, Bergen (Norway); Computational Biology Unit, Bergen Centre for Computational Science, University of Bergen, Bergen (Norway); Bruserud, Ø; Gjertsen, B T, E-mail: bjorn.gjertsen@med.uib.no [Hematology Section, Institute of Medicine, University of Bergen, Bergen (Norway); Hematology Section, Department of Medicine, Haukeland University Hospital, Bergen (Norway)

    2011-02-01

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial.

  12. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein

    2014-06-01

    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  13. EGFR-targeted anti-cancer drugs in radiotherapy: Preclinical evaluation of mechanisms

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild; Dikomey, Ekkehard; Dittmann, Klaus; Doerr, Wolfgang; Kasten-Pisula, Ulla; Rodemann, H. Peter

    2007-01-01

    Preclinical and clinical results indicate that the EGFR can mediate radioresistance in different solid human tumours. Combination of radiotherapy and EGFR inhibitors can improve local tumour control compared to irradiation alone and has been introduced into clinical radiotherapy practice. So far several mechanisms have been identified in preclinical studies to contribute to improved local tumour control after radiation combined with EGFR inhibitors. These include direct kill of cancer stem cells by EGFR inhibitors, cellular radiosensitization through modified signal transduction, inhibition of repair of DNA damage, reduced repopulation and improved reoxygenation during fractionated radiotherapy. Effects and mechanisms may differ for different classes of EGFR inhibitors, for different tumours and for normal tissues. The mechanisms underlying this heterogeneity are currently poorly understood, and predictive assays are not available yet. Importantly, mechanisms and predictors for the combined effects of radiation with EGFR inhibitors appear to be considerably different to those for application of EGFR inhibitors alone or in combination with chemotherapy. Therefore to further evaluate the efficacy and mechanisms of EGFR-inhibition in combined treatments, radiotherapy-specific preclinical research strategies, which include in vivo experiments using local tumour control as an endpoint, as well as animal studies on normal tissue toxicity are needed

  14. Depression and Chronic Liver Diseases: Are There Shared Underlying Mechanisms?

    Directory of Open Access Journals (Sweden)

    Xiaoqin Huang

    2017-05-01

    Full Text Available The occurrence of depression is higher in patients with chronic liver disease (CLD than that in the general population. The mechanism described in previous studies mainly focused on inflammation and stress, which not only exists in CLD, but also emerges in common chronic diseases, leaving the specific mechanism unknown. This review was to summarize the prevalence and risk factors of depression in CLD including chronic hepatitis B, chronic hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease, and to point out the possible underlying mechanism of this potential link. Clarifying the origins of this common comorbidity (depression and CLD may provide more information to understand both diseases.

  15. ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome

    Directory of Open Access Journals (Sweden)

    Zhang Zhenhai

    2010-10-01

    Full Text Available Abstract Background Maize (Zea mays ssp. mays L. is an important model for plant basic and applied research. In 2009, the B73 maize genome sequencing made a great step forward, using clone by clone strategy; however, functional annotation and gene classification of the maize genome are still limited. Thus, a well-annotated datasets and informative database will be important for further research discoveries. Signal transduction is a fundamental biological process in living cells, and many protein families participate in this process in sensing, amplifying and responding to various extracellular or internal stimuli. Therefore, it is a good starting point to integrate information on the maize functional genes involved in signal transduction. Results Here we introduce a comprehensive database 'ProFITS' (Protein Families Involved in the Transduction of Signalling, which endeavours to identify and classify protein kinases/phosphatases, transcription factors and ubiquitin-proteasome-system related genes in the B73 maize genome. Users can explore gene models, corresponding transcripts and FLcDNAs using the three abovementioned protein hierarchical categories, and visualize them using an AJAX-based genome browser (JBrowse or Generic Genome Browser (GBrowse. Functional annotations such as GO annotation, protein signatures, protein best-hits in the Arabidopsis and rice genome are provided. In addition, pre-calculated transcription factor binding sites of each gene are generated and mutant information is incorporated into ProFITS. In short, ProFITS provides a user-friendly web interface for studies in signal transduction process in maize. Conclusion ProFITS, which utilizes both the B73 maize genome and full length cDNA (FLcDNA datasets, provides users a comprehensive platform of maize annotation with specific focus on the categorization of families involved in the signal transduction process. ProFITS is designed as a user-friendly web interface and it is

  16. Establishment of a universal and rational gene detection strategy through three-way junction-based remote transduction.

    Science.gov (United States)

    Tang, Yidan; Lu, Baiyang; Zhu, Zhentong; Li, Bingling

    2018-01-21

    The polymerase chain reaction and many isothermal amplifications are able to achieve super gene amplification. Unfortunately, most commonly-used transduction methods, such as dye staining and Taqman-like probing, still suffer from shortcomings including false signals or difficult probe design, or are incompatible with multi-analysis. Here a universal and rational gene detection strategy has been established by translating isothermal amplicons to enzyme-free strand displacement circuits via three-way junction-based remote transduction. An assistant transduction probe was imported to form a partial hybrid with the target single-stranded nucleic acid. After systematic optimization the hybrid could serve as an associative trigger to activate a downstream circuit detector via a strand displacement reaction across the three-way junction. By doing so, the detection selectivity can be double-guaranteed through both amplicon-transducer recognition and the amplicon-circuit reaction. A well-optimized circuit can be immediately applied to a new target detection through simply displacing only 10-12 nt on only one component, according to the target. More importantly, this property for the first time enables multi-analysis and logic-analysis in a single reaction, sharing a single fluorescence reporter. In an applicable model, trace amounts of Cronobacter and Enterobacteria genes have been clearly distinguished from samples with no bacteria or one bacterium, with ultra-high sensitivity and selectivity.

  17. Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2018-01-01

    Full Text Available In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.

  18. Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4α Transduction

    OpenAIRE

    Takayama, Kazuo; Inamura, Mitsuru; Kawabata, Kenji; Katayama, Kazufumi; Higuchi, Maiko; Tashiro, Katsuhisa; Nonaka, Aki; Sakurai, Fuminori; Hayakawa, Takao; Kusuda Furue, Miho; Mizuguchi, Hiroyuki

    2012-01-01

    Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is kn...

  19. Vascular mechanisms underlying the hypotensive effect of Rumex acetosa.

    Science.gov (United States)

    Qamar, Hafiz Misbah-Ud-Din; Qayyum, Rahila; Salma, Umme; Khan, Shamim; Khan, Taous; Shah, Abdul Jabbar

    2018-12-01

    Rumex acetosa L. (Polygonaceae) is well known in traditional medicine for its therapeutic efficacy as an antihypertensive. The study investigates antihypertensive potential of crude methanol extract (Ra.Cr) and fractions of Rumex acetosa in normotensive and hypertensive rat models and probes the underlying vascular mechanisms. Ra.Cr and its fractions were tested in vivo on normotensive and hypertensive Sprague-Dawley rats under anaesthesia for blood pressure lowering effect. In vitro experiments on rat and Oryctolagus cuniculus rabbit aortae were employed to probe the underlying vasorelaxant mechanism. In normotensive rats under anaesthesia, Ra.Cr caused fall in MAP (40 mmHg) at 50 mg/kg with % fall of 27.88 ± 4.55. Among the fractions tested, aqueous fraction was more potent at the dose of 50 mg/kg with % fall of 45.63 ± 2.84. In hypertensive rats under similar conditions, extract and fractions showed antihypertensive effect at same doses while aqueous fraction being more potent, exhibited 68.53 ± 4.45% fall in MAP (70 mmHg). In isolated rat aortic rings precontracted with phenylephrine (PE), Ra.Cr and fractions induced endothelium-dependent vasorelaxation, which was partially blocked in presence of l-NAME, indomethacin and atropine. In isolated rabbit aortic rings pre-contracted with PE and K + -(80 mM), Ra.Cr induced vasorelaxation and shifted Ca 2+ concentration-response curves to the right and suppressed PE peak formation, similar to verapamil, in Ca 2+ -free medium. The data indicate that l-NAME and atropine-sensitive endothelial-derived NO and COX enzyme inhibitors and Ca 2+ entry blocking-mediated vasodilator effect of the extract explain its antihypertensive potential.

  20. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  1. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2017-10-15

    Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. © 2017. Published by The Company of Biologists Ltd.

  2. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fathil, M.F.M., E-mail: faris.fathil@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Md Arshad, M.K., E-mail: mohd.khairuddin@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Ruslinda, A.R., E-mail: ruslinda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Nuzaihan, M.N.M., E-mail: m.nuzaihan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Gopinath, Subash C.B., E-mail: subash@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Adzhri, R., E-mail: adzhri@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hashim, U., E-mail: uda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia)

    2016-09-07

    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond. - Highlights: • The progression of cardiac troponin detection from past to future are presented. • Electrical label-free biosensors for cardiac troponin are discussed. • The discussion focused on field-effect transistor-and capacitor-based devices. • Surface functionalization, sensitivity, and innovation of devices are highlighted. • They presented high sensitivity and specificity of real-time AMI determination.

  3. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1979-06-01

    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  4. Benefits of gene transduction of granulocyte macrophage colony-stimulating factor in cancer vaccine using genetically modified dendritic cells.

    Science.gov (United States)

    Ojima, Toshiyasu; Iwahashi, Makoto; Nakamura, Masaki; Matsuda, Kenji; Nakamori, Mikihito; Ueda, Kentaro; Naka, Teiji; Katsuda, Masahiro; Miyazawa, Motoki; Yamaue, Hiroki

    2007-10-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) is a key cytokine for the generation and stimulation of dendritic cells (DCs), and it may also play a pivotal role in promoting the survival of DCs. In this study, the feasibility of creating a cancer vaccine using DCs adenovirally transduced with the carcinoembryonic antigen (CEA) gene and the GM-CSF gene was examined. In addition, the effect of the co-transduction of GM-CSF gene on the lifespan of these genetically modified DCs was determined. A cytotoxic assay using peripheral blood mononuclear cell (PBMC)-derived cytotoxic T lymphocytes (CTLs) was performed in a 4-h 51Cr release assay. The apoptosis of DCs was examined by TdT-mediated dUTP-FITC nick end labeling (TUNEL) assay. CEA-specific CTLs were generated from PBMCs stimulated with genetically modified DCs expressing CEA. The cytotoxicity of these CTLs was augmented by co-transduction of DCs with the GM-CSF gene. Co-transduction of the GM-CSF gene into DCs inhibited apoptosis of these DCs themselves via up-regulation of Bcl-x(L) expression, leading to the extension of the lifespan of these DCs. Furthermore, the transduction of the GM-CSF gene into DCs also suppressed the incidence of apoptosis of DCs induced by transforming growth factor-beta1 (TGFbeta-1). Immunotherapy using these genetically modified DCs may therefore be useful with several advantages as follows: i) adenoviral toxicity to DCs can be reduced; ii) the lifespan of vaccinated DCs can be prolonged; and iii) GM-CSF may protect DCs from apoptosis induced by tumor-derived TGFbeta-1 in the regional lymph nodes.

  5. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  6. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may

  7. First-principles investigation of mechanical and electronic properties of tetragonal NbAl3 under tension

    Science.gov (United States)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin

    2018-06-01

    Using the density functional theory calculations, the mechanical and electronic properties of NbAl3 under different tensile loads were investigated. The calculated lattice parameters, elastic constants and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's criterion and Cauchy's pressure) indicated that our results were in agreement with the published experimental and theoretical data at zero tension. With respect to NbAl3 under tension in this paper, the crystal structure was changed from tetragonal to orthorhombic under tension along the [100] and [101] directions. The NbAl3 crystal has been classified as brittle material under tension from 0 to 20 GPa. The obtained Young's modulus and Debye temperature monotonically decreased with increasing tension stress. Combining with mechanical and electronic properties in detail, the decreased mechanical properties were mainly due to the weakening of covalency.

  8. Transductive and matched-pair machine learning for difficult target detection problems

    Science.gov (United States)

    Theiler, James

    2014-06-01

    This paper will describe the application of two non-traditional kinds of machine learning (transductive machine learning and the more recently proposed matched-pair machine learning) to the target detection problem. The approach combines explicit domain knowledge to model the target signal with a more agnostic machine-learning approach to characterize the background. The concept is illustrated with simulated data from an elliptically-contoured background distribution, on which a subpixel target of known spectral signature but unknown spatial extent has been implanted.

  9. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Directory of Open Access Journals (Sweden)

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  10. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Science.gov (United States)

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  11. Second-chance signal transduction explains cooperative flagellar switching.

    Science.gov (United States)

    Zot, Henry G; Hasbun, Javier E; Minh, Nguyen Van

    2012-01-01

    The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).

  12. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia

    2015-11-05

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  13. Experimental and theoretical investigation of an impact vibration harvester with triboelectric transduction

    Science.gov (United States)

    Ibrahim, Alwathiqbellah; Ramini, Abdallah; Towfighian, Shahrzad

    2018-03-01

    There has been remarkable interest in triboelectric mechanisms because of their high efficiency, wide availability, and low-cost generation of sustainable power. Using impact vibrations, we introduce piece-wise stiffness to the system to enlarge frequency bandwidth. The triboelectric layers consist of Aluminum, which also serves as an electrode, and Polydimethylsiloxane (PDMS) with micro semi-cylindrical patterns. At the bottom of the PDMS layer, there is another Al electrode. The layers are sandwiched between the center mass of a clamped-clamped beam and its base. The center mass enhances the impact force on the triboelectric layers subjected to external vibrations. Upon impact, alternating current, caused by the contact electrification and electrostatic induction, flows between the Al electrodes. Because of the impact, the equivalent stiffness of the structure increases and as a result, the frequency bandwidth gets wider. The output voltage and power reach as large as 5.5 V, 15 μW, respectively at 0.8 g vibrational amplitude. In addition, we report how the surface charge density increases with the excitation levels. The analysis delineates the interactions between impact vibrations and triboelectric transductions. The ability of the system to achieve wider bandwidth paves the way for efficient triboelectric vibrational energy harvesters.

  14. Mechanisms underlying astringency: introduction to an oral tribology approach

    Science.gov (United States)

    Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe

    2016-03-01

    Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.

  15. Study on Mechanical Properties of Barite Concrete under Impact Load

    Science.gov (United States)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  16. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, L.

    2012-01-01

    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  17. Influence of Unweighting on Insulin Signal Transduction in Muscle

    Science.gov (United States)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  18. Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading

    Directory of Open Access Journals (Sweden)

    Wanlei Liu

    Full Text Available A multiscale model based bridge theory is proposed for the progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading. The ablation model is adopted to calculate ablation temperature changing and ablation surface degradation. The polynomial strengthening model of matrix is used to improve bridging model for reducing parameter input. Stiffness degradation methods of bridging model are also improved in order to analyze the stress redistribution more accurately when the damage occurs. Thermal-mechanical analyses of the composite plate are performed using the ABAQUS/Explicit program with the developed model implemented in the VUMAT. The simulation results show that this model can be used to proclaim the mesoscale damage mechanism of composite laminates under coupled loading. Keywords: Laser irradiation, Multiscale analysis, Bridge model, Thermal-mechanical

  19. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  20. Damage evolution of TBC system under in-phase thermo-mechanical tests

    International Nuclear Information System (INIS)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y.; Liu, Y.F.

    2010-01-01

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y 2 O 3 -ZrO 2 thermal barrier coating (TBC) system (8 wt% Y 2 O 3 -ZrO 2 /CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  1. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    Science.gov (United States)

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  3. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  4. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.

    2017-01-01

    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  5. Mechanical and tribological behaviour of molten salt processed self-lubricated aluminium composite under different treatments

    Science.gov (United States)

    Kannan, C.; Ramanujam, R.

    2018-05-01

    The aim of this research work is to evaluate the mechanical and tribological behaviour of Al 7075 based self-lubricated hybrid nanocomposite under different treated conditions viz. as-cast, T6 and deep cryo treated. In order to overcome the drawbacks associated with conventional stir casting, a combinational approach that consists of molten salt processing, ultrasonic assistance and optimized mechanical stirring is adopted in this study to fabricate the nanocomposite. The mechanical characterisation tests carried out on this nanocomposite reveals an improvement of about 39% in hardness and 22% in ultimate tensile strength possible under T6 condition. Under specific conditions, the wear rate can be reduced to the extent of about 63% through the usage of self-lubricated hybrid nanocomposite under T6 condition.

  6. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  7. Molecular mechanics of silk nanostructures under varied mechanical loading.

    Science.gov (United States)

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  8. Temporomandibular disorders and painful comorbidities: clinical association and underlying mechanisms.

    Science.gov (United States)

    Costa, Yuri Martins; Conti, Paulo César Rodrigues; de Faria, Flavio Augusto Cardoso; Bonjardim, Leonardo Rigoldi

    2017-03-01

    The association between temporomandibular disorders (TMDs) and headaches, cervical spine dysfunction, and fibromyalgia is not artefactual. The aim of this review is to describe the comorbid relationship between TMD and these three major painful conditions and to discuss the clinical implications and the underlying pain mechanisms involved in these relationships. Common neuronal pathways and central sensitization processes are acknowledged as the main factors for the association between TMD and primary headaches, although the establishment of cause-effect mechanisms requires further clarification and characterization. The biomechanical aspects are not the main factors involved in the comorbid relationship between TMD and cervical spine dysfunction, which can be better explained by the neuronal convergence of the trigeminal and cervical spine sensory pathways as well as by central sensitization processes. The association between TMD and fibromyalgia also has supporting evidence in the literature, and the proposed main mechanism underlying this relationship is the impairment of the descending pain inhibitory system. In this particular scenario, a cause-effect relationship is more likely to occur in one direction, that is, fibromyalgia as a risk factor for TMD. Therefore, clinical awareness of the association between TMD and painful comorbidities and the support of multidisciplinary approaches are required to recognize these related conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  10. Carbon Footprint Management of Road Freight Transport under the Carbon Emission Trading Mechanism

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-01-01

    Full Text Available Growing concern over environmental issues has considerably increased the number of regulations and legislation that aim to curb carbon emissions. Carbon emission trading mechanism, which is one of the most effective means, has been broadly adopted by several countries. This paper presents a road truck routing problem under the carbon emission trading mechanism. By introducing a calculation method of carbon emissions that considers the load and speed of the vehicle among other factors, a road truck routing optimizing model under the cap and trade mechanism based on the Travelling Salesman Problem (TSP is described. Compared with the classical TSP model that only considers the economic cost, this model suggests that the truck routing decision under the cap and trade mechanism is more effective in reducing carbon emissions. A modified tabu search algorithm is also proposed to obtain solutions within a reasonable amount of computation time. We theoretically and numerically examine the impacts of carbon trading, carbon cap, and carbon price on truck routing decision, carbon emissions, and total cost. From the results of numerical experiments, we derive interesting observations about how to control the total cost and reduce carbon emissions.

  11. Efficient transduction of equine adipose-derived mesenchymal stem cells by VSV-G pseudotyped lentiviral vectors.

    Science.gov (United States)

    Petersen, Gayle F; Hilbert, Bryan; Trope, Gareth; Kalle, Wouter; Strappe, Padraig

    2014-12-01

    Equine adipose-derived mesenchymal stem cells (EADMSC) provide a unique cell-based approach for treatment of a variety of equine musculoskeletal injuries, via regeneration of diseased or damaged tissue, or the secretion of immunomodulatory molecules. These capabilities can be further enhanced by genetic modification using lentiviral vectors, which provide a safe and efficient method of gene delivery. We investigated the suitability of lentiviral vector technology for gene delivery into EADMSC, using GFP expressing lentiviral vectors pseudotyped with the G glycoprotein from the vesicular stomatitis virus (V-GFP) or, for the first time, the baculovirus gp64 envelope protein (G-GFP). In this study, we produced similarly high titre V-GFP and G-GFP lentiviral vectors. Flow cytometric analysis showed efficient transduction using V-GFP; however G-GFP exhibited a poor ability to transduce EADMSC. Transduction resulted in sustained GFP expression over four passages, with minimal effects on cell viability and doubling time, and an unaltered chondrogenic differentiation potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Bulk Shear-Wave Transduction Experiments Using Magnetostrictive Transducers with a Thin Fe-Co Alloy Patch

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Ha; Cho, Seung Hyun; Ahn, Bong Young; Kwon, Hyu Sang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-08-15

    Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed: this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity.

  13. New insights into the organization of plasma membrane and its role in signal transduction.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2015-01-01

    Plasma membranes have heterogeneous structures for efficient signal transduction, required to perform cell functions. Recent evidence indicates that the heterogeneous structures are produced by (1) compartmentalization by actin-based membrane skeleton, (2) raft domains, (3) receptor-receptor interactions, and (4) the binding of receptors to cytoskeletal proteins. This chapter provides an overview of recent studies on diffusion, clustering, raft association, actin binding, and signal transduction of membrane receptors, especially glycosylphosphatidylinositol (GPI)-anchored receptors. Studies on diffusion of GPI-anchored receptors suggest that rafts may be small and/or short-lived in plasma membranes. In steady state conditions, GPI-anchored receptors form transient homodimers, which may represent the "standby state" for the stable homodimers and oligomers upon ligation. Furthermore, It is proposed that upon ligation, the binding of GPI-anchored receptor clusters to cytoskeletal actin filaments produces a platform for downstream signaling, and that the pulse-like signaling easily maintains the stability of the overall signaling activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  15. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    Science.gov (United States)

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  16. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have implicitly...

  17. Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de

  18. A mechanical deformation model of metallic fuel pin under steady state conditions

    International Nuclear Information System (INIS)

    Lee, D. W.; Lee, B. W.; Kim, Y. I.; Han, D. H.

    2004-01-01

    As a mechanical deformation model of the MACSIS code predicts the cladding deformation due to the simple thin shell theory, it is impossible to predict the FCMI(Fuel-Cladding Mechanical Interaction). Therefore, a mechanical deformation model used the generalized plane strain is developed. The DEFORM is a mechanical deformation routine which is used to analyze the stresses and strains in the fuel and cladding of a metallic fuel pin of LMRs. The accuracy of the program is demonstrated by comparison of the DEFORM predictions with the result of another code calculations or experimental results in literature. The stress/strain distributions of elastic part under free thermal expansion condition are completely matched with the results of ANSYS code. The swelling and creep solutions are reasonably well agreed with the simulations of ALFUS and LIFE-M codes, respectively. The predicted cladding strains are under estimated than experimental data at the range of high burnup. Therefore, it is recommended that the fine tuning of the DEFORM based on various range of experimental data

  19. Damage evolution of TBC system under in-phase thermo-mechanical tests

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Liu, Y.F., E-mail: yfliu@hyper.rcast.u-tokyo.ac.jp [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2010-10-15

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y{sub 2}O{sub 3}-ZrO{sub 2} thermal barrier coating (TBC) system (8 wt% Y{sub 2}O{sub 3}-ZrO{sub 2}/CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  20. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  1. Beacon Editor: Capturing Signal Transduction Pathways Using the Systems Biology Graphical Notation Activity Flow Language.

    Science.gov (United States)

    Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S

    2017-12-01

    The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.

  2. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks

    Directory of Open Access Journals (Sweden)

    Kirouac Daniel C

    2012-05-01

    Full Text Available Abstract Background Understanding the information-processing capabilities of signal transduction networks, how those networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases (Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID, PANTHER, Reactome, I2D, and STRING. We sought to determine whether these databases contain overlapping information and whether they can be used to construct high reliability prior knowledge networks for subsequent modeling of experimental data. Results We have assembled an ensemble network from multiple on-line sources representing a significant portion of all machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation. This ensemble network has many features expected of complex signalling networks assembled from high-throughput data: a power law distribution of both node degree and edge annotations, and topological features of a “bow tie” architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/AKT, MAPK/ERK, JAK/STAT, NFκB, and apoptotic signaling. Individual pathways exhibit “fuzzy” modularity that is statistically significant but still involving a majority of “cross-talk” interactions. However, we find that the most widely used pathway databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis factor, and wingless, we find a multiplicity of network topologies in which receptors couple to downstream

  3. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade

    Directory of Open Access Journals (Sweden)

    Yong-sen Jia

    2015-01-01

    Full Text Available Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined. Protein expression in PI3K/Akt-NF-κB signaling pathway was determined. Results. In vitro, TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P<0.05. In vivo, TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P<0.05. Conclusion. TDH inhibited esophageal carcinoma infiltration and proliferation both in vitro and in vivo. The anticancer activity has relation to arresting the cell cycle at the S phase, inhibited the PCNA expression of transplanted tumors in nude mice, and regulated the protein expression in the PI3K/Akt-NF-κB transduction cascade.

  4. Underlying mechanism in the water chemistry of nuclear systems

    International Nuclear Information System (INIS)

    Walton, G.N.

    1978-01-01

    The equilibrium between dissolved hydrogen and oxygen in the molecular decomposition of water, and the equilibrium between hydrogen ions and hydroxyl ions in the ionic dissociation of water, both constitute important underlying mechanisms in the corrosion behaviour of water. The two equilibria, and the rates of the reactions involved in water and steam, will be compared and contrasted as a function of temperature, pressure and radiation. The effects of the equilibria on the hydrolysis and solubility of ferrous and ferric ions, and the ions of other metals, will be discussed in relation to the control of conditions in the coolant circuits of nuclear reactors. A third mechanism to discussed is the electrochemical exchange reactions that can contribute to the contamination of circuits. (author)

  5. Molecular mechanism of apoptosis and characterization of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Li Yumin; Zhang Yuguang; Li Yukun

    1999-01-01

    The major discoveries of apoptosis research in recent years were reviewed briefly. The mechanisms of caspases/ICE gene family and bcl-2 gene family on apoptosis were analyzed. And the signal transduction pathway of apoptosis found currently has been summarized. The characterizations of apoptosis induced by radiation such as time-effects, dose-effects and the radiosensibility were summed up

  6. Signal transduction in artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] callus and cell suspension cultures under nutritional stress.

    Science.gov (United States)

    Lattanzio, Vincenzo; Caretto, Sofia; Linsalata, Vito; Colella, Giovanni; Mita, Giovanni

    2018-06-01

    Stimulated production of secondary phenolic metabolites and proline was studied by using cell cultures of artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] submitted to nutritional stress. Artichoke cell cultures accumulated phenolic secondary metabolites in a pattern similar to that seen in artichoke leaves and heads (capitula). This paper shows that both callus and cell suspension cultures under nutritional stress accumulated phenolic compounds and proline, at the same time their biomass production was negatively affected by nutrient deficiency. The results obtained strongly suggest that plant tissues respond to nutrient deprivation by a defensive costly mechanism, which determines the establishment of a mechanism of trade-off between growth and adaptive response. Furthermore, the results of this research suggest that perception of abiotic stress and increased phenolic metabolites are linked by a sequence of biochemical processes that also involves the intracellular free proline and the oxidative pentose phosphate pathway. The main conclusion of this paper is that, once calli and cell suspension cultures respond to nutrient deficiency, in acclimated cells the establishment of a negative correlation between primary metabolism (growth) and secondary metabolism (defence compounds) is observed. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Music and Memory in Alzheimer's Disease and The Potential Underlying Mechanisms.

    Science.gov (United States)

    Peck, Katlyn J; Girard, Todd A; Russo, Frank A; Fiocco, Alexandra J

    2016-01-01

    With population aging and a projected exponential expansion of persons diagnosed with Alzheimer's disease (AD), the development of treatment and prevention programs has become a fervent area of research and discovery. A growing body of evidence suggests that music exposure can enhance memory and emotional function in persons with AD. However, there is a paucity of research that aims to identify specific underlying neural mechanisms associated with music's beneficial effects in this particular population. As such, this paper reviews existing anecdotal and empirical evidence related to the enhancing effects of music exposure on cognitive function and further provides a discussion on the potential underlying mechanisms that may explain music's beneficial effect. Specifically, this paper will outline the potential role of the dopaminergic system, the autonomic nervous system, and the default network in explaining how music may enhance memory function in persons with AD.

  8. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  9. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Akira Yoshinari

    2017-11-01

    Full Text Available Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

  10. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  11. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  12. PHYSIOLOGICAL QUALITY OF SOYBEAN SEEDS UNDER MECHANICAL INJURIES CAUSED BY COMBINES

    OpenAIRE

    FÁBIO PALCZEWSKI PACHECO; LÚCIA HELENA PEREIRA NÓBREGA; GISLAINE PICOLLO DE LIMA; MÁRCIA SANTORUM; WALTER BOLLER; LORIVAN FORMIGHIERI

    2015-01-01

    The mechanical harvesting causes injuries on seeds and may affect their quality. Different threshing mechanisms and their adjustments may also affect the intensity of impacts that machines cause on seeds. So, this study aimed at diagnosing and evaluating the effect of two combines: the first one with a threshing system of axial flow and the other one with a threshing system of tangential flow, under adjustments of concave opening (10 mm, 30 mm and 10 mm for a combine with axial ...

  13. Frictional behaviour of polymer films under mechanical and electrostatic loads

    International Nuclear Information System (INIS)

    Ginés, R; Christen, R; Motavalli, M; Bergamini, A; Ermanni, P

    2013-01-01

    Different polymer foils, namely polyimide, FEP, PFA and PVDF were tested on a setup designed to measure the static coefficient of friction between them. The setup was designed according to the requirements of a damping device based on electrostatically tunable friction. The foils were tested under different mechanically applied forces and showed reproducible results for the static coefficient of friction. With the same setup the measurements were performed under an electric field as the source of the normal force. Up to a certain electric field the values were in good agreement. Beyond this field discrepancies were found. (paper)

  14. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    Science.gov (United States)

    Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  15. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P; Migne, C [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  16. Sindbis Virus-Pseudotyped Lentiviral Vectors Carrying VEGFR2-Specific Nanobody for Potential Transductional Targeting of Tumor Vasculature.

    Science.gov (United States)

    Ahani, Roshank; Roohvand, Farzin; Cohan, Reza Ahangari; Etemadzadeh, Mohammad Hossein; Mohajel, Nasir; Behdani, Mahdi; Shahosseini, Zahra; Madani, Navid; Azadmanesh, Kayhan

    2016-11-01

    Introduction of selectivity/specificity into viral-based gene delivery systems, such as lentiviral vectors (LVs), is crucial in their systemic administration for cancer gene therapy. The pivotal role of tumor-associated endothelial cells (TAECs) in tumor angiogenesis and overexpression of vascular endothelial growth factor receptor-2 (VEGFR2 or KDR) in TAECs makes them a potent target in cancer treatment. Herein, we report the development of VEGFR2-targeted LVs pseudotyped with chimeric sindbis virus E2 glycoprotein (cSVE2s). For this purpose, either sequence of a VEGFR2-specific nanobody or its natural ligand (VEGF 121 ) was inserted into the binding site of sindbis virus E2 glycoprotein. In silico modeling data suggested that the inserted targeting motifs were exposed in the context of cSVE2s. Western blot analysis of LVs indicated the incorporation of cSVE2s into viral particles. Capture ELISA demonstrated the specificity/functionality of the incorporated cSVE2s. Transduction of 293/KDR (expressing VEGFR2) or 293T cells (negative control) by constructed LVs followed by fluorescent microscopy and flow cytometric analyses indicated selective transduction of 293/KDR cells (30 %) by both targeting motifs compared to 293T control cells (1-2 %). These results implied similar targeting properties of VEGFR2-specific nanobody compared to the VEGF 121 and indicated the potential for transductional targeting of tumor vasculature by the nanobody displaying LVs.

  17. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-12-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  18. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  19. Understanding the role of nonlinearities in the transduction of vibratory energy harvesters

    Science.gov (United States)

    Masana, Ravindra Shiva Charan

    The last two decades have witnessed several advances in micro-fabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power source, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to power and maintain low-power electronics. While linear vibratory energy harvesters have received the majority of the literature's attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to the common belief that they can be utilized to improve performance especially in random and non-stationary vibratory environments. This dissertation aims to critically investigate this belief by drawing a clearer picture of the role of nonlinearities in the transduction of energy harvesters and by defining the conditions under which nonlinearities can be used to enhance performance. To achieve this goal, the Thesis is divided into three parts. The first part investigates the performance of mono- and bi-stable energy harvesters under harmonic excitations and carries a detailed analysis of their relative performance. The second part investigates their response to broadband and narrowband random excitations and again analyzes their relative behavior. The third part exploits the super-harmonic resonance bands of bi-stable energy harvesters for the

  20. Radiation-induced adaptive response and intracellular signal transduction pathways

    International Nuclear Information System (INIS)

    Tachibana, Akira

    2009-01-01

    As an essential biological function, cells can sense the radiation even at low dose and respond to it, and which is one of bases of the radiation-induced adaptive response (AR) where effects caused by high dose radiation are reduced by prior exposure to low dose radiation (LDR). Here described are studies of AR in well established m5S cells on the intracellular signal transduction that involves sensing of LDR and transmitting of its signal within the cell network. The first signal for AR yielded by LDR on the cell membrane is exactly unknown though hydrogen peroxide and phorbol ester (PMA) can reportedly cause AR. As PMA activates protein kinase C (PKC) and its inhibitors suppress AR, participation of PKC in AR has been suggested and supported by studies showing PKCα activation by LDR. In addition, p38 mitogen-activated protein kinase (MAPK) is shown to participate in AR by those facts that the enzyme is activated by LDR, a p38 MAPK inhibitor suppresses AR, and PKC inhibitors suppress the enzyme activation, which also suggesting that the signaling from PKC to p38 MAPK can become operative by LDR. However, the possible reverse signaling is also suggested, and thus the activation of positive feedback mechanism is postulated in PKC/p38 MAPK/phospholipase δ1/ PKC pathway. Cells introduced with siRNA against Prkca gene (coding PKCs) produce reduced amount of the enzyme, particularly, of PKCα. In those cells, AR by 5 Gy X-ray is not observed and thereby PKCα is involved in AR. The signaling in AR is only partly elucidated at present as above, and more detailed studies including identification of more PKC subtypes and signaling to DNA repair system are considered necessary. (K.T.)

  1. Effect of saw palmetto extract on PI3K cell signaling transduction in human glioma.

    Science.gov (United States)

    Yang, Yang; Hui, Lv; Yuqin, Che; Jie, Li; Shuai, Hou; Tiezhu, Zhou; Wei, Wang

    2014-08-01

    Saw palmetto extract can induce the apoptosis of prostate cancer cells. The aim of the present study was to investigate the effect of saw palmetto extract on the phosphatidylinositol 3-kinase (PI3K)/Akt signaling transduction pathway in human glioma U87 and U251 cell lines. Suspensions of U87 and U251 cells in a logarithmic growth phase were seeded into six-well plates at a density of 10 4 cells/well. In the experimental group, 1 μl/ml saw palmetto extract was added, while the control group was cultured without a drug for 24 h. The expression levels of PI3K, B-cell lymphoma-extra large (Bcl-xL) and p53 were evaluated through western blot analysis. In the experimental group, the U87 and U251 cells exhibited a lower expression level of PI3K protein as compared with the control group (t=6.849; Psaw palmetto extract induces glioma cell growth arrest and apoptosis via decreasing PI3K/Akt signal transduction.

  2. Towards understanding the nitrogen signal transduction for nif gene expression in Klebsiella pneumoniae.

    Science.gov (United States)

    Glöer, Jens; Thummer, Robert; Ullrich, Heike; Schmitz, Ruth A

    2008-12-01

    In the diazotroph Klebsiella pneumoniae, the nitrogen sensory protein GlnK mediates the cellular nitrogen status towards the NifL/NifA system that regulates transcription of the nitrogen fixation genes in response to ammonium and molecular oxygen. To identify amino acids of GlnK essential for this signal transduction by protein-protein interaction, we performed random point mutagenesis by PCR amplification under conditions of reduced Taq polymerase fidelity. Three thousand two hundred mutated glnK genes were screened to identify those that would no longer complement a K. pneumoniaeDeltaglnK strain for growth under nitrogen fixing conditions. Twenty-four candidates resulting in a Nif(-) phenotype were identified, carrying 1-11 amino acid changes in GlnK. Based on these findings, as well as structural data, several single mutations were introduced into glnK by site-directed mutagenesis, and the Nif phenotype and the respective effects on NifA-mediated nif gene induction was monitored in K. pneumoniae using a chromosomal nifK'-'lacZ fusion. Single amino acid changes resulting in significant nif gene inhibition under nitrogen limiting conditions were located within the highly conserved T-loop (A43G, A49T and N54D), the body of the protein (G87V and K79E) and in the C-terminal region (I100M, R103S, E106Q and D108G). Complex formation analyses between GlnK (wild-type or derivatives) and NifL or NifA in response to 2-oxoglutarate indicated that: (a) besides the T-loop, the C-terminal region of GlnK is essential for the interaction with NifL and NifA and (b) GlnK binds both proteins in the absence of 2-oxoglutarate, whereas, in the presence of 2-oxoglutarate, NifA is released but NifL remains bound to GlnK.

  3. The p75NTR mediates a bifurcated signal transduction cascade through the NFκB and JNK pathways to inhibit cell survival

    International Nuclear Information System (INIS)

    Allen, Jeffrey; Khwaja, Fatima; Byers, Stephen; Djakiew, Daniel

    2005-01-01

    p75 NTR is most abundantly expressed in the nervous system, but is also widely expressed in many other organs and tissues where it primarily functions as a negative regulator of cell survival. In the prostate, p75 NTR functions as an inhibitory protein capable of slowing proliferation and inducing apoptosis. It has been shown that p75 NTR is expressed in the normal prostate, progressively lost from malignant tumor cells in vivo, and largely absent from prostate cancer cell lines derived from metastases. Although the role of p75 NTR in prostate cancer has been well established, the signal transduction pathway that mediates its inhibitory activity has only been partially elucidated. This study demonstrates that exogenous expression of p75 NTR down-regulates, in a dose-dependent manner, a bifurcated signaling cascade that results in reduced expression of potent transcription effectors. This two-arm signal transduction cascade was directly linked to the upstream receptor by using dominant-negative deletion constructs of p75 NTR that rescued tumor cells from p75 NTR -induced loss of survival and promotion of apoptosis. Furthermore, the dominant negatives rescued alterations in the levels of signal transduction intermediates. Conversely, the use of kinase-inactive intermediates that are downstream of the receptor further reduced expression of involved transcription effectors and reduced survival of the cells. These results provide a definitive link between the proximate p75 NTR and signal transduction intermediates leading to the transcription effectors NFκB and JNK, with associated growth suppression and induction of apoptosis

  4. An analytical model of the mechanical properties of bulk coal under confined stress

    Science.gov (United States)

    Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.

    2007-01-01

    This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  6. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  7. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    Science.gov (United States)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  8. The Function of the Novel Mechanical Activated Ion Channel Piezo1 in the Human Osteosarcoma Cells

    OpenAIRE

    Jiang, Long; Zhao, Yi-ding; Chen, Wei-xiang

    2017-01-01

    Background The Piezo1 protein ion channel is a novel mechanical activated ion channel which is related to mechanical signal transduction. However, the function of the mechanically activated ion channel Piezo1 had not been explored. In this study, we explored the function of the Piezo1 ion channel in human osteosarcoma (OS) cells related to apoptosis, invasion, and the cell proliferation. Material/Methods Reverse transcription polymerase chain reaction (RT-PCR) and western-blotting were used t...

  9. An investigation of the mechanism underlying teacher aggression : Testing I3 theory and the General Aggression Model

    NARCIS (Netherlands)

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression

  10. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    Science.gov (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  11. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  12. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    International Nuclear Information System (INIS)

    Noor, M. Omair; Hrovat, David; Moazami-Goudarzi, Maryam; Espie, George S.; Krull, Ulrich J.

    2015-01-01

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  13. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    Science.gov (United States)

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  15. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M; Struis, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  16. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  17. Design options for cooperation mechanisms under the new European renewable energy directive

    International Nuclear Information System (INIS)

    Klessmann, Corinna; Lamers, Patrick; Ragwitz, Mario; Resch, Gustav

    2010-01-01

    In June 2009, a new EU directive on the promotion of renewable energy sources (RES) entered into effect. The directive 2009/28/EC, provides for three cooperation mechanisms that will allow member states to achieve their national RES target in cooperation with other member states: statistical transfer, joint projects, and joint support schemes. This article analyses the pros and cons of the three mechanisms and explores design options for their implementation through strategic and economic questions: How to counterbalance the major drawbacks of each mechanism? How to reflect a balance of costs and benefits between the involved member states? The analysis identifies a number of design options that respond to these questions, e.g. long term contracts to ensure sufficient flexibility for statistical transfers, a coordinated, standardised joint project approach to increase transparency in the European market, and a stepwise harmonisation of joint support schemes that is based on a cost-effective accounting approach. One conclusion is that the three cooperation mechanisms are closely interlinked. One can consider their relation to be a gradual transition from member state cooperation under fully closed national support systems in case of statistical transfers, to cooperation under fully open national support systems in a joint support scheme.

  18. Mechanisms underlying the associations of maternal age with adverse perinatal outcomes

    DEFF Research Database (Denmark)

    Lawlor, Debbie A; Mortensen, Laust; Andersen, Anne-Marie Nybo

    2011-01-01

    The mechanisms underlying the association between maternal age (both young and older maternal age) and adverse perinatal outcomes are unclear. Methods We examined the association of maternal age at first birth with preterm birth (<37 weeks gestation) and small for gestational age (SGA) in a cohor...

  19. A Systematic Review of Known Mechanisms of Hydroxyurea-induced Foetal Haemoglobin for Treatment of Sickle Cell Disease

    Science.gov (United States)

    Pule, Gift D.; Mowla, Shaheen; Novitzky, Nicolas; Wiysonge, Charles S.; Wonkam, Ambroise

    2016-01-01

    Aims To report on molecular mechanisms of foetal haemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of Sickle Cell Disease (SCD). Study Design Systematic review. Results Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways, that modulate γ-globin expression (cAMP/cGMP; Giα/JNK/Jun; methylation and microRNA). Three main molecular pathways have been reported: 1) Epigenetic modifications, transcriptional events and signalling pathways involved in HU-mediated response, 2) Signalling pathways involving HU-mediated response and 3) Post-transcriptional pathways (regulation by microRNAs). Conclusions The complete picture of HU-mediated mechanisms of HbF production in SCD remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome. PMID:26327494

  20. A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease.

    Science.gov (United States)

    Pule, Gift D; Mowla, Shaheen; Novitzky, Nicolas; Wiysonge, Charles S; Wonkam, Ambroise

    2015-10-01

    To report on molecular mechanisms of fetal hemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of sickle cell disease. Systematic review. Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways that modulate γ-globin expression (cAMP/cGMP; Giα/c-Jun N-terminal kinase/Jun; methylation and miRNA). Three main molecular pathways have been reported: i) Epigenetic modifications, transcriptional events and signaling pathways involved in HU-mediated response, ii) Signaling pathways involving HU-mediated response and iii) Post-transcriptional pathways (regulation by miRNAs). The complete picture of HU-mediated mechanisms of HbF production in Sickle Cell Disease remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome.

  1. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  2. Investigation of sheet steel St 37.2 under mechanical impact

    International Nuclear Information System (INIS)

    Berg, H.P.; Brennecke, P.; Koester, R.; Friehmelt, V.

    1990-01-01

    Special waste originating, e.g. from chemical industry and radioactive wastes are emplaced in disposal mines. Slinger stowing is an approved technique to fill up residual voids in emplacement rooms. If it should be applied, possible mechanical loads on the integrity of sheet steel containers have to be considered. By theoretical calculations and by experiments under variation of different parameters using test specimen and backfill material from the Konrad mine using the container type V as an example it has been shown that sheet steel St 37.2 with a wall thickness of 3 mm will withstand mechanical impact imposed by backfill particles having a speed of 24 m/s. (orig.) [de

  3. Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression

    Science.gov (United States)

    Lehman, McKenzie K.; Bose, Jeffrey L.; Sharma-Kuinkel, Batu K.; Moormeier, Derek E.; Endres, Jennifer L.; Sadykov, Marat R.; Biswas, Indranil; Bayles, Kenneth W.

    2015-01-01

    Summary Recent studies have demonstrated that expression of the Staphylococcus aureus lrgAB operon is specifically expressed within tower structures during biofilm development. To gain a better understanding of the mechanisms underlying this spatial control of lrgAB expression, we carried out a detailed analysis of the LytSR two-component system. Specifically, a conserved aspartic acid (Asp53) of the LytR response regulator was shown to be the target of phosphorylation, which resulted in enhanced binding to the lrgAB promoter and activation of transcription. In addition, we identified His390 of the LytS histidine kinase as the site of autophosphorylation and Asn394 as a critical amino acid involved in phosphatase activity. Interestingly, LytS-independent activation of LytR was observed during planktonic growth, with acetyl phosphate acting as a phosphodonor to LytR. In contrast, mutations disrupting the function of LytS prevented tower-specific lrgAB expression, providing insight into the physiologic environment within these structures. In addition, over activation of LytR led to increased lrgAB promoter activity during planktonic and biofilm growth and a change in biofilm morphology. Overall, the results of this study are the first to define the LytSR signal transduction pathway, as well as determine the metabolic context within biofilm tower structures that triggers these signaling events. PMID:25491472

  4. Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications

    Science.gov (United States)

    Bhardwaj, Mahesh C.

    2009-03-01

    Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.

  5. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms.

    Science.gov (United States)

    Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong

    2018-02-01

    As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.

  6. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  7. Detecting method for crude oil price fluctuation mechanism under different periodic time series

    International Nuclear Information System (INIS)

    Gao, Xiangyun; Fang, Wei; An, Feng; Wang, Yue

    2017-01-01

    Highlights: • We proposed the concept of autoregressive modes to indicate the fluctuation patterns. • We constructed transmission networks for studying the fluctuation mechanism. • There are different fluctuation mechanism under different periodic time series. • Only a few types of autoregressive modes control the fluctuations in crude oil price. • There are cluster effects during the fluctuation mechanism of autoregressive modes. - Abstract: Current existing literatures can characterize the long-term fluctuation of crude oil price time series, however, it is difficult to detect the fluctuation mechanism specifically under short term. Because each fluctuation pattern for one short period contained in a long-term crude oil price time series have dynamic characteristics of diversity; in other words, there exhibit various fluctuation patterns in different short periods and transmit to each other, which reflects the reputedly complicate and chaotic oil market. Thus, we proposed an incorporated method to detect the fluctuation mechanism, which is the evolution of the different fluctuation patterns over time from the complex network perspective. We divided crude oil price time series into segments using sliding time windows, and defined autoregressive modes based on regression models to indicate the fluctuation patterns of each segment. Hence, the transmissions between different types of autoregressive modes over time form a transmission network that contains rich dynamic information. We then capture transmission characteristics of autoregressive modes under different periodic time series through the structure features of the transmission networks. The results indicate that there are various autoregressive modes with significantly different statistical characteristics under different periodic time series. However, only a few types of autoregressive modes and transmission patterns play a major role in the fluctuation mechanism of the crude oil price, and these

  8. Mechanical properties of the human spinal cord under the compressive loading.

    Science.gov (United States)

    Karimi, Alireza; Shojaei, Ahmad; Tehrani, Pedram

    2017-12-01

    The spinal cord as the most complex and critical part of the human body is responsible for the transmission of both motor and sensory impulses between the body and the brain. Due to its pivotal role any types of physical injury in that disrupts its function following by shortfalls, including the minor motor and sensory malfunctions as well as complicate quadriplegia and lifelong ventilator dependency. In order to shed light on the injuries to the spinal cord, the application of the computational models to simulate the trauma impact loading to that are deemed required. Nonetheless, it has not been fulfilled since there is a paucity of knowledge about the mechanical properties of the spinal cord, especially the cervical one, under the compressive loading on the grounds of the difficulty in obtaining this tissue from the human body. This study was aimed at experimentally measuring the mechanical properties of the human cervical spinal cord of 24 isolated fresh samples under the unconfined compressive loading at a relatively low strain rate. The stress-strain data revealed the elastic modulus and maximum/failure stress of 40.12±6.90 and 62.26±5.02kPa, respectively. Owing to the nonlinear response of the spinal cord, the Yeoh, Ogden, and Mooney-Rivlin hyperelastic material models have also been employed. The results may have implications not only for understanding the linear elastic and nonlinear hyperelastic mechanical properties of the cervical spinal cord under the compressive loading, but also for providing a raw data for investigating the injury as a result of the trauma thru the numerical simulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    Science.gov (United States)

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  10. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Jayet-Gendrot, S.; Gilles, P.

    2000-01-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  12. Contact force and mechanical loss of multistage cable under tension and bending

    Science.gov (United States)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  13. Signal transduction mechanisms of K+-Cl- cotransport regulation and relationship to disease.

    Science.gov (United States)

    Adragna, N C; Ferrell, C M; Zhang, J; Di Fulvio, M; Temprana, C F; Sharma, A; Fyffe, R E W; Cool, D R; Lauf, P K

    2006-01-01

    The K+-Cl- cotransport (COT) regulatory pathways recently uncovered in our laboratory and their implication in disease state are reviewed. Three mechanisms of K+-Cl- COT regulation can be identified in vascular cells: (1) the Li+-sensitive pathway, (2) the platelet-derived growth factor (PDGF)-sensitive pathway and (3) the nitric oxide (NO)-dependent pathway. Ion fluxes, Western blotting, semi-quantitative RT-PCR, immunofluorescence and confocal microscopy were used. Li+, used in the treatment of manic depression, stimulates volume-sensitive K+-Cl- COT of low K+ sheep red blood cells at cellular concentrations 3 mM, causes cell swelling, and appears to regulate K+-Cl- COT through a protein kinase C-dependent pathway. PDGF, a potent serum mitogen for vascular smooth muscle cells (VSMCs), regulates membrane transport and is involved in atherosclerosis. PDGF stimulates VSM K+-Cl- COT in a time- and concentration-dependent manner, both acutely and chronically, through the PDGF receptor. The acute effect occurs at the post-translational level whereas the chronic effect may involve regulation through gene expression. Regulation by PDGF involves the signalling molecules phosphoinositides 3-kinase and protein phosphatase-1. Finally, the NO/cGMP/protein kinase G pathway, involved in vasodilation and hence cardiovascular disease, regulates K+-Cl- COT in VSMCs at the mRNA expression and transport levels. A complex and diverse array of mechanisms and effectors regulate K+-Cl- COT and thus cell volume homeostasis, setting the stage for abnormalities at the genetic and/or regulatory level thus effecting or being affected by various pathological conditions.

  14. Structure of Concatenated HAMP Domains Provides a Mechanism for Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Airola, Michael V.; Watts, Kylie J.; Bilwes, Alexandrine M.; Crane, Brian R. (Cornell); (Lorma Linda U)

    2010-08-23

    HAMP domains are widespread prokaryotic signaling modules found as single domains or poly-HAMP chains in both transmembrane and soluble proteins. The crystal structure of a three-unit poly-HAMP chain from the Pseudomonas aeruginosa soluble receptor Aer2 defines a universal parallel four-helix bundle architecture for diverse HAMP domains. Two contiguous domains integrate to form a concatenated di-HAMP structure. The three HAMP domains display two distinct conformations that differ by changes in helical register, crossing angle, and rotation. These conformations are stabilized by different subsets of conserved residues. Known signals delivered to HAMP would be expected to switch the relative stability of the two conformations and the position of a coiled-coil phase stutter at the junction with downstream helices. We propose that the two conformations represent opposing HAMP signaling states and suggest a signaling mechanism whereby HAMP domains interconvert between the two states, which alternate down a poly-HAMP chain.

  15. Vascular endothelium receptors and transduction mechanisms

    CERN Document Server

    Gillis, C; Ryan, Una; Proceedings of the Advanced Studies Institute on "Vascular Endothelium: Receptors and Transduction Mechanisms"

    1989-01-01

    Beyond their obvious role of a barrier between blood and tissue, vascular endothelial cells are now firmly established as active and essential participants in a host of crucial physiological and pathophysiological functions. Probably the two most important factors responsible for promoting the current knowledge of endothelial functions are 1) observations in the late sixties-early seventies that many non-ventilatory properties of the lung could be attributed to the pulmonary endothelium and 2) the establishment, in the early and mid-seventies of procedures for routine culture of vascular endothelial cells. Many of these endothelial functions require the presence of receptors on the surface of the plasma membrane. There is now evidence for the existence among others of muscarinic, a-and /3-adrenergic, purine, insulin, histamine, bradykinin, lipoprotein, thrombin, paf, fibronectin, vitronectin, interleukin and albumin receptors. For some of these ligands, there is evidence only for the existence of endothelial ...

  16. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  17. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  18. Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells

    Directory of Open Access Journals (Sweden)

    Corneo Gianmarco

    2007-07-01

    Full Text Available Abstract Background Tumor cell contamination of the apheresis in multiple myeloma is likely to affect disease-free and overall survival after autografting. Objective To purge myeloma aphereses from tumor contaminants with a novel culture-based purging method. Methods We cultured myeloma-positive CD34+ PB samples in conditions that retained multipotency of hematopoietic stem cells, but were unfavourable to survival of plasma cells. Moreover, we exploited the resistance of myeloma plasma cells to retroviral transduction by targeting the hematopoietic CD34+ cell population with a retroviral vector carrying a selectable marker (the truncated form of the human receptor for nerve growth factor, ΔNGFR. We performed therefore a further myeloma purging step by selecting the transduced cells at the end of the culture. Results Overall recovery of CD34+ cells after culture was 128.5%; ΔNGFR transduction rate was 28.8% for CD34+ cells and 0% for CD138-selected primary myeloma cells, respectively. Recovery of CD34+ cells after ΔNGFR selection was 22.3%. By patient-specific Ig-gene rearrangements, we assessed a decrease of 0.7–1.4 logs in tumor load after the CD34+ cell selection, and up to 2.3 logs after culture and ΔNGFR selection. Conclusion We conclude that ex-vivo culture and retroviral-mediated transduction of myeloma leukaphereses provide an efficient tumor cell purging.

  19. Subretinal Fluid Levels of Signal-Transduction Proteins and Apoptosis Molecules in Macula-Off Retinal Detachment Undergoing Scleral Buckle Surgery.

    Science.gov (United States)

    Carpineto, Paolo; Aharrh-Gnama, Agbeanda; Ciciarelli, Vincenzo; Borrelli, Enrico; Petti, Francesco; Aloia, Raffaella; Lamolinara, Alessia; Di Nicola, Marta; Mastropasqua, Leonardo

    2016-12-01

    To evaluate signal transduction and early apoptosis protein levels in subretinal fluid collected during scleral buckling surgery for macula-off rhegmatogenous retinal detachment (RRD). Our aim was to assess both their relation with RRD features and their influence on the posttreatment outcome. Thirty-three eyes of 33 RRD patients scheduled for scleral buckle surgery were enrolled in the study. Undiluted subretinal fluid samples were collected during surgery and analyzed via magnetic bead-based immunoassay. All patients underwent a complete ophthalmologic evaluation at baseline and at each follow-up visit (months 1, 3, and 6). Moreover, both at baseline and at the postsurgery month 6 visit, the patients were tested by means of spectral-domain optical coherence tomography (SD-OCT) in order to evaluate the average ganglion cell-inner plexiform complex thickness, as well as the photoreceptor inner segment/outer segment junction status. Patients' clinical features (retinal detachment size, detachment duration, and occurrence of proliferative vitreoretinopathy) were associated with several early apoptotic factors (caspase-8, caspase-9, and B-cell lymphoma 2 [Bcl-2]-associated death promoter [BAD]). Furthermore, both early apoptosis factors (caspase-8, Bcl-2, and p53) and signal-transduction proteins (ERK 1/2) were found to influence the postsurgery month 3 OCT characteristics. Signal-transduction proteins and early apoptosis proteins are associated with different clinical features and postsurgery outcomes.

  20. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    CUI, Yu Jun; DING, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  1. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    Science.gov (United States)

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  2. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  3. Mechanical Behaviour of Bolted Joints Under Impact Rates of Loading

    Science.gov (United States)

    2012-01-01

    M. (1995). Bearing Strength of Autoclave and oven cured kevlar / epoxy laminates under static and dynamic loading. Compostes, 451-456. Kretsis, G...Joints in Glass Fibre/ Epoxy Laminates. Composites, Volume 16. No 2. Kolsky, H. (1949). An Investigation of the Mechanical Properties of Materials at...elongating the pulse width. The responses are read by the strain gages bonded on the incident and transmission bar with Vishay AE-10 epoxy . The gages

  4. Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Mu Ller, Bernhard; Forsting, Michael; Gizewski, Elke; Leygraf, Norbert; Hodgins, Sheilagh

    2014-04-30

    Results of meta-analyses suggested subtle deficits in cognitive control among antisocial individuals. Because almost all studies focused on children with conduct problems or adult psychopaths, however, little is known about cognitive control mechanisms among the majority of persistent violent offenders who present an antisocial personality disorder (ASPD). The present study aimed to determine whether offenders with ASPD, relative to non-offenders, display dysfunction in the neural mechanisms underlying cognitive control and to assess the extent to which these dysfunctions are associated with psychopathic traits and trait impulsivity. Participants comprised 21 violent offenders and 23 non-offenders who underwent event-related functional magnetic resonance imaging while performing a non-verbal Stroop task. The offenders, relative to the non-offenders, exhibited reduced response time interference and a different pattern of conflict- and error-related activity in brain areas involved in cognitive control, attention, language, and emotion processing, that is, the anterior cingulate, dorsolateral prefrontal, superior temporal and postcentral cortices, putamen, thalamus, and amygdala. Moreover, between-group differences in behavioural and neural responses revealed associations with core features of psychopathy and attentional impulsivity. Thus, the results of the present study confirmed the hypothesis that offenders with ASPD display alterations in the neural mechanisms underlying cognitive control and that those alterations relate, at least in part, to personality characteristics. Copyright © 2014. Published by Elsevier Ireland Ltd.

  5. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography

    NARCIS (Netherlands)

    Nonnekes, J.H.; Kam, D. de; Geurts, A.C.; Weerdesteijn, V.G.M.; Bloem, B.R.

    2013-01-01

    Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also

  6. Feeding Problems and Their Underlying Mechanisms in the Esophageal Atresia–Tracheoesophageal Fistula Patient

    Science.gov (United States)

    Mahoney, Lisa; Rosen, Rachel

    2017-01-01

    Feeding difficulties such as dysphagia, coughing, choking, or vomiting during meals, slow eating, oral aversion, food refusal, and stressful mealtimes are common in children with repaired esophageal atresia (EA) and the reasons for this are often multifactorial. The aim of this review is to describe the possible underlying mechanisms contributing to feeding difficulties in patients with EA and approaches to management. Underlying mechanisms for these feeding difficulties include esophageal dysphagia, oropharyngeal dysphagia and aspiration, and aversions related to prolonged gastrostomy tube feeding. The initial diagnostic evaluation for feeding difficulties in a patient with EA may involve an esophagram, videofluoroscopic imaging or fiberoptic endoscopic evaluation during swallowing, upper endoscopy with biopsies, pH-impedance testing, and/or esophageal motility studies. The main goal of management is to reduce the factors contributing to feeding difficulties and may include reducing esophageal stasis, maximizing reflux therapies, treating underlying lung disease, dilating strictures, and altering feeding methods, routes, or schedules. PMID:28620597

  7. Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats.

    Science.gov (United States)

    Chow, S K H; Leung, K S; Qin, J; Guo, A; Sun, M; Qin, L; Cheung, W H

    2016-10-01

    Estrogen receptor (ER) in ovariectomy-induced osteoporotic fracture was reported to exhibit delayed expression. Mechanical stimulation enhanced ER-α expression in osteoporotic fracture callus at the tissue level. ER was also found to be required for the effectiveness of vibrational mechanical stimulation treatment in osteoporotic fracture healing. Estrogen receptor(ER) is involved in mechanical signal transduction in bone metabolism. Its expression was reported to be delayed in osteoporotic fracture healing. The purpose of this study was to investigate the roles played by ER during osteoporotic fracture healing enhanced with mechanical stimulation. Ovariectomy-induced osteoporotic SD rats that received closed femoral fractures were divided into five groups, (i) SHAM, (ii) SHAM-VT, (iii) OVX, (iv) OVX-VT, and (v) OVX-VT-ICI, where VT stands for whole-body vibration treatment and ICI for ER antagonization by ICI 182,780. Callus formation and gene expression were assessed at 2, 4, and 8 weeks postfracture. In vitro osteoblastic differentiation, mineralization, and ER-α expression were assessed. The delayed ER expression was found to be enhanced by vibration treatment. Callus formation enhancement was shown by callus morphometry and micro-CT analysis. Enhancement effects by vibration were partially abolished when ER was modulated by ICI 182,780, in terms of callus formation capacity at 2-4 weeks and ER gene and protein expression at all time points. In vitro, ER expression in osteoblasts was not enhanced by VT treatment, but osteoblastic differentiation and mineralization were enhanced under estrogen-deprived condition. When osteoblastic cells were modulated by ICI 182,780, enhancement effects of VT were eliminated. Vibration was able to enhance ER expression in ovariectomy-induced osteoporotic fracture healing. ER was essential in mechanical signal transduction and enhancement in callus formation effects during osteoporotic fracture healing enhanced by vibration

  8. [Study on mechanism of SOM stabilization of paddy soils under long-term fertilizations].

    Science.gov (United States)

    Luo, Lu; Zhou, Ping; Tong, Cheng-Li; Shi, Hui; Wu, Jin-Shui; Huang, Tie-Ping

    2013-02-01

    Fourier transform infrared spectroscopy (FTIR) was applied to study the structure of soil organic matter (SOM) of paddy soils under long-term different fertilization treatments. The aim was to clarify the different distribution of SOM between different fertilization methods and between topsoil and subsoil, and to explore the stability mechanism of SOM under different fertilization treatments. The results showed that the content of topsoil organic carbon (SOC) was the highest under organic-inorganic fertilizations, with the increment of SOC by 18.5%, 12.9% and 18.4% under high organic manure (HOM), low organic manure (LOM) and straw returning (STW) respectively compared with no fertilization treatment (CK). The long-term fertilizations also changed the chemical structure of SOM. As compared with CK, different fertilization treatments increased the functional group absorbing intensity of chemical resistance compounds (aliphatic, aromaticity), carbohydrate and organo-silicon compounds, which was the most distinctive under treatments of HOM, LOM and STW. For example, the absorbing intensity of alkyl was 0.30, 0.25 and 0.29 under HOM, LOM and STW, respectively. These values were increased by 87% , 56% and 81% as compared with that under CK treatment. The functional group absorbing intensity of SOM in the topsoil was stronger than that in the subsoil, with the most distinctive difference under HOM, LOM and STW treatments. The present research indicated that the enhanced chemical resistance of functional group of SOM may contribute to the high contents of SOC in the paddy soils under long-term organic-inorganic fertilizations, which also suggested a chemical stabilization mechanism of SOM in the paddy soils.

  9. Mechanical properties of cellulose electro-active paper under different environmental conditions

    International Nuclear Information System (INIS)

    Kim, Heung Soo; Kim, Jaehwan; Jung, Woochul; Ampofo, Joshua; Craft, William; Sankar, Jagannathan

    2008-01-01

    The mechanical properties of cellulose-based electro-active paper (EAPap) are investigated under various environmental conditions. Cellulose EAPap has been discovered as a smart material that can be used as both sensor and actuator. Its advantages include low voltage operation, light weight, low power consumption, biodegradability and low cost. EAPap is made with cellulose paper coated with thin electrodes. EAPap shows a reversible and reproducible bending movement as well as longitudinal displacement under an electric field. However, EAPap is a complex anisotropic material which has not been fully characterized. This study investigates the mechanical properties of cellulose-based EAPap, including Young's modulus, yield strength, ultimate strength and creep, along with orientation directions, humidity and temperature levels. To test the materials in different humidity and temperature levels, a special material testing system was made that can control the testing environmental conditions. The initial Young's modulus of EAPap is in the range of 4–9 GPa, which was higher than that of other polymer materials. Also, the Young's modulus is orientation dependent, which may be associated with the piezoelectricity of EAPap materials. The elastic strength and stiffness gradually decreased when the humidity and temperature were increased. Creep and relaxation were observed under constant stress and strain, respectively. Through scanning electron microscopy, EAPap is shown to exhibit both layered and oriented cellulose macromolecular structures that impact both the elastic and plastic behavior

  10. Analysis of Cell Signal Transduction Based on Kullback–Leibler Divergence: Channel Capacity and Conservation of Its Production Rate during Cascade

    Directory of Open Access Journals (Sweden)

    Tatsuaki Tsuruyama

    2018-06-01

    Full Text Available Kullback–Leibler divergence (KLD is a type of extended mutual entropy, which is used as a measure of information gain when transferring from a prior distribution to a posterior distribution. In this study, KLD is applied to the thermodynamic analysis of cell signal transduction cascade and serves an alternative to mutual entropy. When KLD is minimized, the divergence is given by the ratio of the prior selection probability of the signaling molecule to the posterior selection probability. Moreover, the information gain during the entire channel is shown to be adequately described by average KLD production rate. Thus, this approach provides a framework for the quantitative analysis of signal transduction. Moreover, the proposed approach can identify an effective cascade for a signaling network.

  11. Highly efficient transduction of human plasmacytoid dendritic cells without phenotypic and functional maturation

    Directory of Open Access Journals (Sweden)

    Plumas Joel

    2009-01-01

    Full Text Available Abstract Background Gene modified dendritic cells (DC are able to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific manner. Among the different DC subsets, plasmacytoid DC (pDC are well known for their ability to recognize and respond to a variety of viruses by secreting high levels of type I interferon. Methods We analyzed here, the transduction efficiency of a pDC cell line, GEN2.2, and of pDC derived from CD34+ progenitors, using lentiviral vectors (LV pseudotyped with different envelope glycoproteins such as the vesicular stomatitis virus envelope (VSVG, the gibbon ape leukaemia virus envelope (GaLV or the feline endogenous virus envelope (RD114. At the same time, we evaluated transgene expression (E-GFP reporter gene under the control of different promoters. Results We found that efficient gene transfer into pDC can be achieved with VSVG-pseudotyped lentiviral vectors (LV under the control of phoshoglycerate kinase (PGK and elongation factor-1 (EF1α promoters (28% to 90% of E-GFP+ cells, respectively in the absence of phenotypic and functional maturation. Surprisingly, promoters (desmin or synthetic C5–12 described as muscle-specific and which drive gene expression in single strand AAV vectors in gene therapy protocols were very highly active in pDC using VSVG-LV. Conclusion Taken together, our results indicate that LV vectors can serve to design pDC-based vaccines in humans, and they are also useful in vitro to evaluate the immunogenicity of the vector preparations, and the specificity and safety of given promoters used in gene therapy protocols.

  12. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  13. Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells

    International Nuclear Information System (INIS)

    Muzio, Giuliana; Maggiora, Marina; Trombetta, Antonella; Martinasso, Germana; Reffo, Patrizia; Colombatto, Sebastiano; Canuto, Rosa Angela

    2003-01-01

    Low concentrations of some peroxisome proliferators have been found to decrease apoptosis in rat liver cells, whereas higher but pharmacological concentrations have been found to inhibit cell proliferation or to induce apoptosis in human and rat hepatoma cells. The highly deviated JM2 rat hepatoma cell line was used to examine the mechanisms underlying the inhibitory effect on cell proliferation. Clofibrate chiefly inhibited cell proliferation in these cells. Parallel to the decrease in cell proliferation there was an increase of peroxisome proliferator activated receptor (PPAR) gamma and of protein phosphatase 2A, whose importance was confirmed, respectively, by using antisense oliginucleotides (AS-ODN) or okadaic acid. The increase of protein phosphatase 2A induced by PPARgamma caused a decrease of MAPK, an intracellular signaling transduction pathway, as shown by evaluation of Erk1,2 and c-myc. In light of these results, clofibrate, like conventional synthetic ligands of PPARgamma, may be regarded as a possible prototype anti-tumour drug

  14. How diagnostic tests help to disentangle the mechanisms underlying neuropathic pain symptoms in painful neuropathies.

    Science.gov (United States)

    Truini, Andrea; Cruccu, Giorgio

    2016-02-01

    Neuropathic pain, ie, pain arising directly from a lesion or disease affecting the somatosensory afferent pathway, manifests with various symptoms, the commonest being ongoing burning pain, electrical shock-like sensations, and dynamic mechanical allodynia. Reliable insights into the mechanisms underlying neuropathic pain symptoms come from diagnostic tests documenting and quantifying somatosensory afferent pathway damage in patients with painful neuropathies. Neurophysiological investigation and skin biopsy studies suggest that ongoing burning pain primarily reflects spontaneous activity in nociceptive-fiber pathways. Electrical shock-like sensations presumably arise from high-frequency ectopic bursts generated in demyelinated, nonnociceptive, Aβ fibers. Although the mechanisms underlying dynamic mechanical allodynia remain debatable, normally innocuous stimuli might cause pain by activating spared and sensitized nociceptive afferents. Extending the mechanistic approach to neuropathic pain symptoms might advance targeted therapy for the individual patient and improve testing for new drugs.

  15. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    International Nuclear Information System (INIS)

    Mizoshiri, N.; Kishida, T.; Yamamoto, K.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mori, Y.; Ejima, A.; Sato, Y.; Arai, Y.; Fujiwara, H.; Yamamoto, T.; Kanamura, N.; Mazda, O.; Kubo, T.

    2015-01-01

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  16. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  17. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zheng, Jingui

    2017-12-15

    Black rice ( Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3-10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  18. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  19. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  20. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios

    NARCIS (Netherlands)

    Sahraei, E.; Bosco, E.; Dixon, B.; Lai, B.

    2016-01-01

    One of the least understood mechanisms of Li-ion batteries is the development of internal short circuits under mechanical loads. In this study, a micro mechanical model is developed and subjected to various loading scenarios to understand the sequence of failure in the multi-layer, multi-material

  1. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.

    2008-01-01

    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper

  2. The pathologic mechanisms underlying lumbar distraction spinal cord injury in rabbits.

    Science.gov (United States)

    Wu, Di; Zheng, Chao; Wu, Ji; Xue, Jing; Huang, Rongrong; Wu, Di; Song, Yueming

    2017-11-01

    A reliable experimental rabbit model of distraction spinal cord injury (SCI) was established to successfully simulate gradable and replicable distraction SCI. However, further research is needed to elucidate the pathologic mechanisms underlying distraction SCI. The aim of this study was to investigate the pathologic mechanisms underlying lumbar distraction SCI in rabbits. This is an animal laboratory study. Using a self-designed spine distractor, the experimental animals were divided into a control group and 10%, 20%, and 30% distraction groups. Pathologic changes to the spinal cord microvessels in the early stage of distraction SCI were identified by perfusion of the spinal cord vasculature with ink, production of transparent specimens, observation by light microscopy, and observation of corrosion casts of the spinal cord microvascular architecture by scanning electron microscopy. Malondialdehyde (MDA) and superoxide dismutase (SOD) concentrations in the injured spinal cord tissue were measured after 8 hours. With an increasing degree and duration of distraction, the spinal cord microvessels were only partially filled and had the appearance of spasm until rupture and hemorrhage were observed. The MDA concentration increased and the SOD concentration decreased in the spinal cord tissue. Changes to the internal and external spinal cord vessels led to spinal cord ischemia, which is a primary pathologic mechanism of distraction SCI. Lipid peroxidation mediated by free radicals took part in secondary pathologic damage of distraction SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    OpenAIRE

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the ...

  4. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable latch, an actuator and locking devices. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  5. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable actuator and a latch which engages the tubular opening. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  6. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  7. An Investigation of the Mechanism Underlying Teacher Aggression: Testing I[superscript 3] Theory and the General Aggression Model

    Science.gov (United States)

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression follows I[superscript 3] theory or General Aggression…

  8. Cyclic life of superalloy IN738LC under in-phase and out-of-phase thermo-mechanical fatigue loading

    International Nuclear Information System (INIS)

    Chen Hongjun; Wahi, R.P.; Wever, H.

    1995-01-01

    The cyclic life of IN738LC, a widely used nickel base superalloy for blades in stationary gas turbines, was investigated under thermo-mechanical fatigue loading using a temperature variation range of 1023 to 1223 K, with temperature variation rate in the range of 6 to 15 K/min. Simple thermo-mechanical cycles with linear sequences corresponding to in-phase (IP) and out-of-phase (OP) tests were performed. Both the IP and OP tests were carried out at different constant mechanical strain ranges varied between 0.8 to 2.0% and at a constant mechanical strain rate of 10 -5 s -1 . Thermo-mechanical fatigue lives under both test conditions were compared with each other and with those of isothermal LCF tests at a temperature of 1223 K. The results show that the life under thermo-mechanical fatigue is strongly dependent on the nature of the test, i.e. stress controlled or strain controlled. (orig.)

  9. Mechanism for maintaining homeostasis in the immune system of the intestine.

    Science.gov (United States)

    Taniguchi, Yoshie; Yoshioka, Noriko; Nakata, Kazue; Nishizawa, Takashi; Inagawa, Hiroyuki; Kohchi, Chie; Soma, Gen-Ichiro

    2009-11-01

    Every organism possesses a mechanism for maintaining homeostasis. We have focused on the immune system as a system that helps maintain homeostasis of the body, and particularly on the intestine as the largest organ of immunity in the body. We have also focused our research on the mechanism that responds to foreign substances in the intestine, especially the toll-like receptors (TLR). The activation of myeloid differentiation primary response gene 88 (MyD88) signal transduction as a response to TLR in the intestine is believed to contribute to the maintenance of homeostasis of the body through the homeostasis of the intestine. Furthermore, significant findings were reported in which signal transduction from TLR4 was essential for the maintenance and regulation of the intestine. These results strongly suggest the possibility that homeostasis in the intestine is maintained by TLR4, and signaling by TLR4 after exposure to lipopolysaccharide (LPS) probably has a role in regulating homeostasis. It is expected that the prevention and treatment of various diseases using TLR4 will continue to develop. As LPS is a substance that enhances the activity of TLR4, it will also attract attention as a valuable substance in its own right.

  10. DMPD: Gram-negative endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1916089 Gram-negative endotoxin: an extraordinary lipid with profound effects oneuk...ep;5(12):2652-60. (.png) (.svg) (.html) (.csml) Show Gram-negative endotoxin: an extraordinary lipid with profound effects...tive endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. Authors Raetz

  11. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    Science.gov (United States)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  12. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  13. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease.

    Science.gov (United States)

    Presti, Rachel M; Flores, Sonia C; Palmer, Brent E; Atkinson, Jeffrey J; Lesko, Catherine R; Lau, Bryan; Fontenot, Andrew P; Roman, Jesse; McDyer, John F; Twigg, Homer L

    2017-11-01

    Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  14. Neural mechanisms underlying human consensus decision-making.

    Science.gov (United States)

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2015-04-22

    Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas-the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction, and intraparietal sulcus-and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others, and environments, processed in distinct brain modules. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  16. Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells.

    Science.gov (United States)

    Ishihara, Seiichiro; Inman, David R; Li, Wan-Ju; Ponik, Suzanne M; Keely, Patricia J

    2017-11-15

    In response to chemical stimuli from cancer cells, mesenchymal stem cells (MSC) can differentiate into cancer-associated fibroblasts (CAF) and promote tumor progression. How mechanical stimuli such as stiffness of the extracellular matrix (ECM) contribute to MSC phenotype in cancer remains poorly understood. Here, we show that ECM stiffness leads to mechano-signal transduction in MSC, which promotes mammary tumor growth in part through secretion of the signaling protein prosaposin. On a stiff matrix, MSC cultured with conditioned media from mammary cancer cells expressed increased levels of α-smooth muscle actin, a marker of CAF, compared with MSC cultured on a soft matrix. By contrast, MSC cultured on a stiff matrix secreted prosaposin that promoted proliferation and survival of mammary carcinoma cells but inhibited metastasis. Our findings suggest that in addition to chemical stimuli, increased stiffness of the ECM in the tumor microenvironment induces differentiation of MSC to CAF, triggering enhanced proliferation and survival of mammary cancer cells. Cancer Res; 77(22); 6179-89. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  18. Evidence for some signal transduction elements involved in UV-light-dependent responses in parsley protoplasts

    International Nuclear Information System (INIS)

    Frohnmeyer, H.; Bowler, C.; Schäfer, E.

    1997-01-01

    The signalling pathways used by UV-light are largely unknown. Using protoplasts from a heterotrophic parsley (Petroselinum crispum L.) cell culture that exclusively respond to UV-B light between 300 and 350 nm with a fast induction of genes encoding flavonoid biosynthetic enzymes, information was obtained about the UV-light signal transduction pathway for chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL) gene expression. Pharmacological effectors which influence intracellular calcium levels, calmodulin and the activity of serine/threonine kinases also changed the UV-light-dependent expression of these genes. This evaluation indicated the participation of these components on the UV-B-mediated signal transduction cascade to CHS. In contrast, neither membrane-permeable cyclic GMP nor the tyrosine kinase inhibitor genistein affected CHS or PAL expression. Similar results were obtained in protoplasts, which have been transiently transformed with CHS-promoter/GUS (β-glucuronidase) reporter fusion constructs. The involvement of calcium and calmodulin was further indicated in a cell-free light-responsive in vitro transcription system from evacuolated parsley protoplasts. In conclusion, there is evidence now that components of the UV-light-dependent pathway leading to the CHS-promoter are different from the previously characterized cGMP-dependent pathway to CHS utilized by phytochrome in soybean (Glycine max) and tomato seedlings (Lycopersicon esculentum). (author)

  19. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  20. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  1. Structure of the P{sub II} signal transduction protein of Neisseria meningitidis at 1.85 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Charles E. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Sainsbury, Sarah; Berrow, Nick S.; Alderton, David [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Stammers, David K. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2006-06-01

    The structure of the P{sub II} signal transduction protein of N. meningitidis at 1.85 Å resolution is described. The P{sub II} signal transduction proteins GlnB and GlnK are implicated in the regulation of nitrogen assimilation in Escherichia coli and other enteric bacteria. P{sub II}-like proteins are widely distributed in bacteria, archaea and plants. In contrast to other bacteria, Neisseria are limited to a single P{sub II} protein (NMB 1995), which shows a high level of sequence identity to GlnB and GlnK from Escherichia coli (73 and 62%, respectively). The structure of the P{sub II} protein from N. meningitidis (serotype B) has been solved by molecular replacement to a resolution of 1.85 Å. Comparison of the structure with those of other P{sub II} proteins shows that the overall fold is tightly conserved across the whole population of related proteins, in particular the positions of the residues implicated in ATP binding. It is proposed that the Neisseria P{sub II} protein shares functions with GlnB/GlnK of enteric bacteria.

  2. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  3. Transcriptome-Wide Profiling and Expression Analysis of Diploid and Autotetraploid Paulownia tomentosa × Paulownia fortunei under Drought Stress

    Science.gov (United States)

    Xu, Enkai; Fan, Guoqiang; Niu, Suyan; Zhao, Zhenli; Deng, Minjie; Dong, Yanpeng

    2014-01-01

    Paulownia is a fast-growing deciduous hardwood species native to China, which has high ecological and economic value. In an earlier study, we reported ploidy-dependent differences in Paulownia drought tolerance by the microscopic observations of the leaves. Autotetraploid Paulownia has a higher resistance to drought stress than their diploid relatives. In order to obtain genetic information on molecular mechanisms responses of Paulownia plants to drought, Illumina/Solexa Genome sequencing platform was used to de novo assemble the transcriptomes of leaves from diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei seedlings (PTF2 and PTF4 respectively) grown under control conditions and under drought stress and obtained 98,671 nonredundant unigenes. A comparative transcriptome analysis revealed that hundreds of unigenes were predicted to be involved mainly in ROS-scavenging system, amino acid and carbohydrate metabolism, plant hormone biosynthesis and signal transduction, while these unigenes exhibited differential transcript alteration of the two accessions. This study provides a comprehensive map of how P. tomentosa × P. fortunei responds to drought stress at physiological and molecular levels, which may help in understanding the mechanisms involve in water-deficit response and will be useful for further study of drought tolerance in woody plants. PMID:25405758

  4. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  5. Inspection Mechanism and Experimental Study of Prestressed Reverse Tension Method under PC Beam Bridge Anchorage

    Science.gov (United States)

    Peng, Zhang

    2018-03-01

    the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.

  6. Cyclic phosphopeptides for interference with Grb2 SH2 domain signal transduction prepared by ring-closing metathesis and phosphorylation

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Fischer, Marcel J E; Kemmink, Johan; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    Cyclic phosphopeptides were prepared using ring-closing metathesis followed by phosphorylation. These cyclic phosphopeptides were designed to interact with the SH2 domain of Grb2, which is a signal transduction protein of importance as a target for antiproliferative drug development. Binding of

  7. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  8. Behavioral Effects of Upper Respiratory Tract Illnesses: A Consideration of Possible Underlying Cognitive Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrew P. Smith

    2012-03-01

    Full Text Available Previous research has shown that both experimentally induced upper respiratory tract illnesses (URTIs and naturally occurring URTIs influence mood and performance. The present study investigated possible cognitive mechanisms underlying the URTI-performance changes. Those who developed a cold (N = 47 had significantly faster, but less accurate, performance than those who remained healthy (N = 54. Illness had no effect on manipulations designed to influence encoding, response organisation (stimulus-response compatilibility or response preparation. Similarly, there was no evidence that different components of working memory were impaired. Overall, the present research confirms that URTIs can have an effect on performance efficiency. Further research is required to identify the physiological and behavioral mechanisms underlying these effects.

  9. Exact solution for stresses/displacements in a multilayered hollow cylinder under thermo-mechanical loading

    International Nuclear Information System (INIS)

    Yeo, W.H.; Purbolaksono, J.; Aliabadi, M.H.; Ramesh, S.; Liew, H.L.

    2017-01-01

    In this study, a new analytical solution by the recursive method for evaluating stresses/displacements in multilayered hollow cylinder under thermo-mechanical loading was developed. The results for temperature distribution, displacements and stresses obtained by using the proposed solution were shown to be in good agreement with the FEM results. The proposed analytical solution was also found to produce more accurate results than those by the analytical solution reported in literature. - Highlights: • A new analytical solution for evaluating stresses in multilayered hollow cylinder under thermo-mechanical loading. • A simple computational procedure using a recursive method. • A promising technique for evaluating the operating axial and hoop stresses in pressurized composite vessels.

  10. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  11. Proteomic analysis on roots of Oenothera glazioviana under copper-stress conditions.

    Science.gov (United States)

    Wang, Chong; Wang, Jie; Wang, Xiao; Xia, Yan; Chen, Chen; Shen, Zhenguo; Chen, Yahua

    2017-09-06

    Proteomic studies were performed to identify proteins involved in the response of Oenothera glazioviana seedlings under Cu stress. Exposure of 28-d-old seedlings to 50 μM CuSO4 for 3 d led to inhibition of shoot and root growth as well as a considerable increase in the level of lipid peroxidation in the roots. Cu absorbed by O. glazioviana accumulated more easily in the root than in the shoot. Label-free proteomic analysis indicated 58 differentially abundant proteins (DAPs) of the total 3,149 proteins in the roots of O. glazioviana seedlings, of which 36 were upregulated and 22 were downregulated under Cu stress conditions. Gene Ontology analysis showed that most of the identified proteins could be annotated to signal transduction, detoxification, stress defence, carbohydrate, energy, and protein metabolism, development, and oxidoreduction. We also retrieved 13 proteins from the enriched Kyoto Encyclopaedia of Genes and Genomes and the protein-protein interaction databases related to various pathways, including the citric acid (CA) cycle. Application of exogenous CA to O. glazioviana seedlings exposed to Cu alleviated the stress symptoms. Overall, this study provided new insights into the molecular mechanisms of plant response to Cu at the protein level in relation to soil properties.

  12. Membrane mechanisms and intracellular signalling in cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Dunham, Philip B.

    1995-01-01

    Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation.......Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation....

  13. The LHRH-astroglial network of signals as a model to study neuroimmune interactions: assessment of messenger systems and transduction mechanisms at cellular and molecular levels.

    Science.gov (United States)

    Marchetti, B

    1996-01-01

    Neurons and astrocytes have a close anatomic and functional relationship that plays a crucial role during development and in the adult brain. Astrocytes in the central nervous system (CNS) express receptors for a variety of growth factors (GFs), neurotransmitters and/or neuromodulators; in turn, neuronal cells can respond to astrocyte-derived GFs and control astrocyte function via a common set of signaling molecules and intracellular transducing pathways. There is also increasing evidence that soluble factors from lymphoid/mononuclear cells are able to modulate the growth and function of cells found in the CNS, specifically macroglial and microglial cells. Furthermore, glial cells can secrete immunoregulatory molecules that influence immune cells as well as the glial cells themselves. As neuronal and immune cells share common signaling systems, the potential exists for bidirectional communication not only between lymphoid and glial cells, but also between neuronal cells and immune and glial cells. In the present work, interactions of luteinizing-hormone-releasing hormone (LHRH) and the astroglial cell are proposed as a prototype for the study of neuroimmune communication within the CNS in the light of (1) the commonality of signal molecules (hormones, neurotransmitters and cytokines) and transduction mechanisms shared by glia LHRH neurons and lymphoid cells; (2) the central role of glia in the developmental organization and pattern of LHRH neuronal migration during embryogenesis, and (3) the strong modulatory role played by sex steroids in mechanisms involved in synaptic and interneuronal organization, as well as in the sexual dimorphisms of neuroendocrine-immune functions. During their maturation and differentiation in vitro, astroglial cells release factors able to accelerate markedly the LHRH neuronal phenotypic differentiation as well as the acquisition of mature LHRH secretory potential, with a potency depending on both the 'age' and the specific brain

  14. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side effects

    Directory of Open Access Journals (Sweden)

    Kai Gao

    2014-01-01

    Full Text Available Empty virions are inadvertent by-products of recombinant adeno-associated virus (rAAV packaging process, resulting in vector lots with mixtures of full and empty virions at variable ratios. Impact of empty virions on the efficiency and side effects of rAAV transduction has not been well characterized. Here, we generated partially and completely empty AAV8 virions, fully packaged rAAV8 lots, and mixtures of empty and fully packaged virions with variable ratios of empty virions. The aforementioned dosing formulations of rAAV8 expressing either cellular (EGFP (enhanced green fluorescent protein or nuclear-targeted (n LacZ or secreted (human α1-antitrypsin (hA1AT reporter genes were intravenously injected into two different mouse strains, followed by analyses of transgene expressions and serum alanine aminotransferase (ALT levels at different time points. We found that addition of empty particles to the fixed doses of rAAV8 preparations repressed liver transduction up to 64% (serum hA1AT and 44% (nLacZ in C57BL/6 mice, respectively. The similar trend in inhibiting EGFP expression together with concurrent elevations of serum ALT levels were observed in the BALB/c mice, indicating that empty particles may also exacerbate side effects of rAAV8 EGFP transduction. Our results suggest that removal of empty particles from rAAV preparations may improve efficacy and safety of AAV in clinical applications.

  15. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun

    2012-10-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  16. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2012-01-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  17. Kinetics in Signal Transduction Pathways Involving Promiscuous Oligomerizing Receptors Can Be Determined by Receptor Specificity : Apoptosis Induction by TRAIL

    NARCIS (Netherlands)

    Szegezdi, Eva; van der Sloot, Almer M.; Mahalingam, Devalingam; O'Leary, Lynda; Cool, Robbert H.; Munoz, Ines G.; Montoya, Guillermo; Quax, Wim J.; de Jong, Steven; Samali, Afshin; Serrano, Luis

    Here we show by computer modeling that kinetics and outcome of signal transduction in case of hetero-oligomerizing receptors of a promiscuous ligand largely depend on the relative amounts of its receptors. Promiscuous ligands can trigger the formation of nonproductive receptor complexes, which slows

  18. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction.

    Science.gov (United States)

    Weinstein, Aviv; Lejoyeux, Michel

    2015-03-01

    There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.

  19. The Antarctic krill Euphausia superba shows diurnal cycles of transcription under natural conditions.

    Directory of Open Access Journals (Sweden)

    Cristiano De Pittà

    Full Text Available BACKGROUND: Polar environments are characterized by extreme seasonal changes in day length, light intensity and spectrum, the extent of sea ice during the winter, and food availability. A key species of the Southern Ocean ecosystem, the Antarctic krill (Euphausia superba has evolved rhythmic physiological and behavioral mechanisms to adapt to daily and seasonal changes. The molecular organization of the clockwork underlying these biological rhythms is, nevertheless, still only partially understood. METHODOLOGY/PRINCIPAL FINDINGS: The genome sequence of the Antarctic krill is not yet available. A normalized cDNA library was produced and pyrosequenced in the attempt to identify large numbers of transcripts. All available E. superba sequences were then assembled to create the most complete existing oligonucleotide microarray platform with a total of 32,217 probes. Gene expression signatures of specimens collected in the Ross Sea at five different time points over a 24-hour cycle were defined, and 1,308 genes differentially expressed were identified. Of the corresponding transcripts, 609 showed a significant sinusoidal expression pattern; about 40% of these exibithed a 24-hour periodicity while the other 60% was characterized by a shorter (about 12-hour rhythm. We assigned the differentially expressed genes to functional categories and noticed that those concerning translation, proteolysis, energy and metabolic process, redox regulation, visual transduction and stress response, which are most likely related to daily environmental changes, were significantly enriched. Two transcripts of peroxiredoxin, thought to represent the ancestral timekeeping system that evolved about 2.5 billion years ago, were also identified as were two isoforms of the EsRh1 opsin and two novel arrestin1 sequences involved in the visual transduction cascade. CONCLUSIONS: Our work represents the first characterization of the krill diurnal transcriptome under natural conditions

  20. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  1. From Sound to Significance: Exploring the Mechanisms Underlying Emotional Reactions to Music.

    Science.gov (United States)

    Juslin, Patrik N; Barradas, Gonçalo; Eerola, Tuomas

    2015-01-01

    A common approach to studying emotional reactions to music is to attempt to obtain direct links between musical surface features such as tempo and a listener's responses. However, such an analysis ultimately fails to explain why emotions are aroused in the listener. In this article we explore an alternative approach, which aims to account for musical emotions in terms of a set of psychological mechanisms that are activated by different types of information in a musical event. This approach was tested in 4 experiments that manipulated 4 mechanisms (brain stem reflex, contagion, episodic memory, musical expectancy) by selecting existing musical pieces that featured information relevant for each mechanism. The excerpts were played to 60 listeners, who were asked to rate their felt emotions on 15 scales. Skin conductance levels and facial expressions were measured, and listeners reported subjective impressions of relevance to specific mechanisms. Results indicated that the target mechanism conditions evoked emotions largely as predicted by a multimechanism framework and that mostly similar effects occurred across the experiments that included different pieces of music. We conclude that a satisfactory account of musical emotions requires consideration of how musical features and responses are mediated by a range of underlying mechanisms.

  2. Molecular Mechanisms Underlying the Epileptogenesis and Seizure Progression in Tuberous Sclerosis Complex 1 Deficient Mouse Models

    Science.gov (United States)

    2016-10-01

    dysregulation in epileptogenesis in the developing brain? 2) What are the molecular mechanisms downstream of mTOR hyperactivation that trigger epileptogenesis...underlying epilepsy. Hopefully, a knowledge of these mechanisms will aid in a rational development of therapies. KEYWORDS Tuberous Sclerosis, Epilepsy

  3. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase.

    OpenAIRE

    Reith, A D; Ellis, C; Lyman, S D; Anderson, D M; Williams, D E; Bernstein, A; Pawson, T

    1991-01-01

    Germline mutations at the Dominant White Spotting (W) and Steel (Sl) loci have provided conclusive genetic evidence that c-kit mediated signal transduction pathways are essential for normal mouse development. We have analysed the interactions of normal and mutant W/c-kit gene products with cytoplasmic signalling proteins, using transient c-kit expression assays in COS cells. In addition to the previously identified c-kit gene product (Kit+), a second normal Kit isoform (KitA+) containing an i...

  4. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    in signal transduction in budding yeast. Expression of the S. cerevisiae STE11 gene in S. pombe ste8 mutants restores the ability to transcribe mat1-Pm in response to pheromone. Also, such cells become capable of conjugation and sporulation. When mat1-Pm is artifically expressed from a heterologous promoter...

  5. Interleukin-2 induces beta2-integrin-dependent signal transduction involving the focal adhesion kinase-related protein B (fakB)

    DEFF Research Database (Denmark)

    Brockdorff, J; Kanner, S B; Nielsen, M

    1998-01-01

    beta2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of beta2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4(+) T cell lines obtained from healthy donors...

  6. Mechanical stress analysis for a fuel rod under normal operating conditions

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Giovedi, Claudia; Serra, Andre da Silva; Abe, Alfredo Y.

    2013-01-01

    Nuclear reactor fuel elements consist mainly in a system of a nuclear fuel encapsulated by a cladding material subject to high fluxes of energetic neutrons, high operating temperatures, pressure systems, thermal gradients, heat fluxes and with chemical compatibility with the reactor coolant. The design of a nuclear reactor requires, among a set of activities, the evaluation of the structural integrity of the fuel rod submitted to different loads acting on the fuel rod and the specific properties (dimensions and mechanical and thermal properties) of the cladding material and coolant, including thermal and pressure gradients produced inside the rod due to the fuel burnup. In this work were evaluated the structural mechanical stresses of a fuel rod using stainless steel as cladding material and UO 2 with a low degree of enrichment as fuel pellet on a PWR (pressurized water reactor) under normal operating conditions. In this sense, tangential, radial and axial stress on internal and external cladding surfaces considering the orientations of 0 deg, 90 deg and 180 deg were considered. The obtained values were compared with the limit values for stress to the studied material. From the obtained results, it was possible to conclude that, under the expected normal reactor operation conditions, the integrity of the fuel rod can be maintained. (author)

  7. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    International Nuclear Information System (INIS)

    Xu Li; Chu Xiakun; Yan Zhiqiang; Zheng Xiliang; Zhang Kun; Zhang Feng; Yan Han; Wu Wei; Wang Jin

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. (topical review)

  8. Age differences in the underlying mechanisms of stereotype threat effects.

    Science.gov (United States)

    Popham, Lauren E; Hess, Thomas M

    2015-03-01

    The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Older adults' performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms.

    Science.gov (United States)

    Nohe, Christoph; Hertel, Guido

    2017-01-01

    Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction) and relational mediators (trust in leader, leader-member exchange; LMX) of the positive relationship between transformational leadership and organizational citizenship behavior (OCB). Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall). When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB.

  10. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    Directory of Open Access Journals (Sweden)

    Mattia Toni

    2006-01-01

    Full Text Available It has been reported that cellular prion protein (PrPc is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1 participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11, by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2 was triggered, suggesting that following translocations from rafts to caveolae or caveolae-like domains PrPc could interact with Cav-1 and induce signal transduction events.

  11. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  12. Imitation in Newborn Infants: Exploring the Range of Gestures Imitated and the Underlying Mechanisms.

    Science.gov (United States)

    Meltzoff, Andrew N.; Moore, M. Keith

    1989-01-01

    Evaluated psychological mechanisms underlying imitation of facial actions in 40 newborn infants. Results showed imitation of head movement and a tongue-protrusion gesture. Subjects imitated from memory after displays had stopped. (RJC)

  13. Deformation mechanisms in Ti/TiN multilayer under compressive loading

    International Nuclear Information System (INIS)

    Yang, Wei; Ayoub, Georges; Salehinia, Iman; Mansoor, Bilal; Zbib, Hussein

    2017-01-01

    The promising mechanical, physical and chemical properties of nano-scale metal/ceramic multilayers (MCMs) are of high interest for extreme environment applications. Understanding the plastic deformation mechanisms and the variables affecting those properties is therefore essential. The interface characteristics and the plastic deformation mechanisms under compressive loading in a Ti/TiN multilayer with a semi-coherent interface are numerically investigated. The interface structure of the Ti/TiN interface and the interface misfit dislocation were characterized using molecular dynamic simulations combined with atomically informed Frank-Bilby method. Three possible atomic stacking interface structures are identified according to the crystallographic analysis of the interface. Upon relaxation, large interface areas are occupied with the energetically stable configuration. Furthermore, the higher energy stacking are transformed into misfit dislocations or dislocation nodes. The molecular dynamic compressive stress strain response of the Ti/TiN multilayers exhibited three distinctive peaks. The first peak was generated by the dislocation dissociation of perfect dislocation into pairs of partials dislocation around extended nodes region at the interface. Upon further compression the second peak, identified as the first yielding, resulted from the activation of pyramidal slip planes in the Ti layer. Finally, a third peak identified as the second yielding, occurred when dislocation nucleated/transmitted in/into the TiN layer.

  14. Drawing a Transductive Ecosophy in Process: Technological Arts, Residual Matter, Associated Milieus

    Directory of Open Access Journals (Sweden)

    Gisèle Trudel

    2015-06-01

    Full Text Available Drawing a Transductive Ecosophy in Process: Technological Arts, Residual Matter, Associated Milieus by Gisèle Trudel. NANO: New American Notes Online, Issue 7: The Aesthetics of Trash - nanocrit.com. This text examines the tetralogy of media artworks about residual matter produced by Ælab between 2008 and 2014. Taking its own title as a diagram (Deleuze and Guattari Mille Plateaux, it charts and builds on the processes of these artworks, elucidating their relations to materiality, philosophy and technicity. Technological research-creation becomes in these instances a transdisciplinary aesthetic act, emerging from an ecology of practices that combine humans, non-humans and waste matter in an effort to increase attentiveness in actions.

  15. Load-induced modulation of signal transduction networks.

    Science.gov (United States)

    Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla

    2011-10-11

    Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.

  16. A composite approach boosts transduction coefficients of piezoceramics for energy harvesting

    Science.gov (United States)

    Yu, Xiaole; Hou, Yudong; Zheng, Mupeng; Zhao, Haiyan; Zhu, Mankang

    2018-03-01

    Piezoelectric energy harvesting is a hotspot in the field of new energy, the core goal of which is to prepare piezoceramics with a high transduction coefficient (d33×g33). The traditional solid-solution design strategy usually causes the same variation trend of d33 and ɛr, resulting in a low d33×g33 value. In this work, a composite design strategy was proposed that uses PZN-PZT/ZnAl2O4 as an example. By introducing ZnAl2O4, which is nonferroelectric with low ɛr, to the PZN-PZT piezoelectric matrix, ɛr decreased rapidly while d33 remained relatively stable. This behavior was ascribed to the increase of Q33 caused by an interfacial effect facilitating the formation of micro-domain structure.

  17. A composite approach boosts transduction coefficients of piezoceramics for energy harvesting

    Directory of Open Access Journals (Sweden)

    Xiaole Yu

    2018-03-01

    Full Text Available Piezoelectric energy harvesting is a hotspot in the field of new energy, the core goal of which is to prepare piezoceramics with a high transduction coefficient (d33×g33. The traditional solid–solution design strategy usually causes the same variation trend of d33 and εr, resulting in a low d33×g33 value. In this work, a composite design strategy was proposed that uses PZN–PZT/ZnAl2O4 as an example. By introducing ZnAl2O4, which is nonferroelectric with low εr, to the PZN–PZT piezoelectric matrix, εr decreased rapidly while d33 remained relatively stable. This behavior was ascribed to the increase of Q33 caused by an interfacial effect facilitating the formation of micro-domain structure.

  18. Biological mechanisms discriminating growth rate and adult body weight phenotypes in two Chinese indigenous chicken breeds.

    Science.gov (United States)

    Dou, Tengfei; Zhao, Sumei; Rong, Hua; Gu, Dahai; Li, Qihua; Huang, Ying; Xu, Zhiqiang; Chu, Xiaohui; Tao, Linli; Liu, Lixian; Ge, Changrong; Te Pas, Marinus F W; Jia, Junjing

    2017-06-20

    Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds. The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms. We conclude that faster growth rates and larger

  19. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    Science.gov (United States)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  20. An agent-based simulation of power generation company behavior in electricity markets under different market-clearing mechanisms

    International Nuclear Information System (INIS)

    Aliabadi, Danial Esmaeili; Kaya, Murat; Şahin, Güvenç

    2017-01-01

    Deregulated electricity markets are expected to provide affordable electricity for consumers through promoting competition. Yet, the results do not always fulfill the expectations. The regulator's market-clearing mechanism is a strategic choice that may affect the level of competition in the market. We conceive of the market-clearing mechanism as composed of two components: pricing rules and rationing policies. We investigate the strategic behavior of power generation companies under different market-clearing mechanisms using an agent-based simulation model which integrates a game-theoretical understanding of the auction mechanism in the electricity market and generation companies' learning mechanism. Results of our simulation experiments are presented using various case studies representing different market settings. The market in simulations is observed to converge to a Nash equilibrium of the stage game or to a similar state under most parameter combinations. Compared to pay-as-bid pricing, bid prices are closer to marginal costs on average under uniform pricing while GenCos' total profit is also higher. The random rationing policy of the ISO turns out to be more successful in achieving lower bid prices and lower GenCo profits. In minimizing GenCos' total profit, a combination of pay-as-bid pricing rule and random rationing policy is observed to be the most promising. - Highlights: • An agent-based simulation of generation company behavior in electricity markets is developed. • Learning dynamics of companies is modeled with an extended Q-learning algorithm. • Different market clearing mechanisms of the regulator are compared. • Convergence to Nash equilibria is analyzed under different cases. • The level of competition in the market is studied.

  1. Biophysical and biochemical constraints imposed by salt stress:Learning from halophyte

    Directory of Open Access Journals (Sweden)

    Bernardo eDuarte

    2014-12-01

    Full Text Available Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world’s 5.2 billion ha of agricultural dryland have already suffered erosion, degradation and salinization. Halophytes typically are considered as plants able to complete their life cycle in environments where the salt concentration is 200 mM NaCl or higher. Different strategies are known to overcome salt stress, as adaptation mechanisms from this type of plants. Salinity adjustment is a complex phenomenon characterized by both biochemical and biophysical adaptations. As photosynthesis is a prerequisite for biomass production, halophytes adapted their electronic transduction pathways and the entire energetic metabolism to overcome the salt excess. The maintenance of ionic homeostasis is in the basis of all cellular stress in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation to biochemical mechanisms, integrating data from photosystem light harvesting complexes, electronic transport chains to the quinone pools, carbon harvesting and energy dissipation metabolism.

  2. Failure mechanisms of aluminium foams under compressive loads

    Directory of Open Access Journals (Sweden)

    Sáenz, E.

    2000-08-01

    Full Text Available The purpose of this paper is the investigation of the major failure mechanisms of aluminium foams, which were obtained by powder metallurgy route, under compressive loads. The study was focused on two commonly aluminium alloys AlMg1Si or A 6061 and AlSi12. Due to the fact that the failure mechanisms strongly depend on the density and the macrostructural properties of the material, the mechanical properties always have to be correlated to the structural properties. Therefore, macrostructural investigations were used as a basis to establish the correlation between structural and mechanical properties. This was done with a commercially available image analysis system. The average cell size, the cell size distribution and the cell density (number of cells/area were obtained. In order to evaluate the influence of foaming direction on the cell morphology, some cross sections parallel to the foaming direction were prepared. For the characterization of the mechanical compression properties the compressive or upper yield strength (UYS, the densification strain (eD, the energy absorption (Ea and the efficiency (Eff were obtained. Furthermore, the failure behavior of the samples was in-situ observed with a digital video camera and continuously recorded during the test.

    El objetivo de este estudio es investigar los principales mecanismos de fallo de espumas de aluminio sometidas a cargas de compresión. Las espumas metálicas fueron obtenidas mediante el proceso pulvimetalúrgico, utilizándose como materia prima dos aleaciones comerciales AlMg1Si o A 6061 y AlSi12. Debido a que los mecanismos de fallo en este tipo de materiales depende fuertemente de la densidad y las características macroestructurales del material, en este estudio se busca correlacionar las propiedades mecánicas con estas características. La macroestructura se caracterizó mediante análisis de imagen. El tamaño de celda promedio, la distribución de tamaño y la densidad de

  3. Dissecting long-term adjustments of photoprotective and photo-oxidative stress acclimation occurring in dynamic light environments

    Directory of Open Access Journals (Sweden)

    Shizue Matsubara

    2016-11-01

    Full Text Available Changes in light intensity directly affect the performance of the photosynthetic apparatus. Light energy absorbed in excess of cells’ needs leads to production of reactive oxygen species and photo-oxidative damage. Excess light in both constant and dynamic environments induces photoprotective acclimation in plants. Distinct sets of signals and regulatory mechanisms are involved in acclimatory adjustment of photoprotection and photosynthesis under constant and dynamic (fluctuating light conditions. We are still far away from drawing a comprehensive picture of acclimatory signal transduction pathways, particularly in dynamic environments. In this perspective article, we propose the use of Arabidopsis plants that produce H2O2 in chloroplasts (GO plants under atmospheric CO2 levels as a tool to study the mechanisms of long-term acclimation to photo-oxidative stress. In our opinion there are new avenues to future investigations on acclimatory adjustments and signal transduction occurring in plants under dynamic light environments.

  4. The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Petra Zimmermann

    2018-03-01

    Full Text Available BackgroundThe mechanisms underlying the non-antimicrobial immunomodulatory properties of macrolides are not well understood.ObjectivesTo systematically review the evidence for the immunomodulatory properties of macrolides in humans and to describe the underlying mechanism and extent of their influence on the innate and adaptive immune system.MethodsA systematic literature search was done in MEDLINE using the OVID interface from 1946 to December 2016 according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA. Original articles investigating the influence of four macrolides (azithromycin, clarithromycin, erythromycin, and roxithromycin on immunological markers in humans were included.ResultsWe identified 22 randomized, controlled trials, 16 prospective cohort studies, and 8 case–control studies investigating 47 different immunological markers (186 measurements in 1,834 participants. The most frequently reported outcomes were a decrease in the number of neutrophils, and the concentrations of neutrophil elastase, interleukin (IL-8, IL-6, IL-1beta, tumor necrosis factor (TNF-alpha, eosinophilic cationic protein, and matrix metalloproteinase 9. Inhibition of neutrophil function was reported more frequently than eosinophil function. A decrease in T helper (Th 2 cells cytokines (IL-4, IL-5, IL-6 was reported more frequently than a decrease in Th1 cytokines (IL-2, INF-gamma.ConclusionMacrolides influence a broad range of immunological mechanisms resulting in immunomodulatory effects. To optimize the treatment of chronic inflammatory diseases by macrolides, further studies are necessary, particularly comparing different macrolides and dose effect relationships.

  5. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  6. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Han, W; Cheng, X R; Shen, Z J; Su, Q M

    2013-01-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  7. CISM course on mechanical behaviour of soils under environmentally induced cyclic loads

    CERN Document Server

    Wood, David; Mechanical Behaviour of Soils Under Environmentally Induced Cyclic Loads

    2012-01-01

    The book gives a comprehensive description of the mechanical response of soils (granular and cohesive materials) under cyclic loading. It provides the geotechnical engineer with the theoretical and analytical tools necessary for the evaluation of settlements developng with time under cyclic, einvironmentally idncued loads (such as wave motion, wind actions, water table level variation) and their consequences for the serviceability and durability of structures such as the shallow or deep foundations used in offshore engineering, caisson beakwaters, ballast and airport pavements and also to interpret monitoring data, obtained from both natural and artificial slopes and earth embankments, for the purposes of risk assessment and mitigation.

  8. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physiology, Nankai University School of Medicine, Tianjin 300071 (China); Carr, Aprell L. [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Ping; Lee, Jessica; McGregor, Mary [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Lei, E-mail: Li.78@nd.edu [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  9. Biological mechanisms underlying the role of physical fitness in health and resilience

    OpenAIRE

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appear...

  10. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation

    Science.gov (United States)

    Chervyakov, Alexander V.; Chernyavsky, Andrey Yu.; Sinitsyn, Dmitry O.; Piradov, Michael A.

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols. PMID:26136672

  11. Efferent control of the electrical and mechanical properties of hair cells in the bullfrog's sacculus.

    Directory of Open Access Journals (Sweden)

    Manuel Castellano-Muñoz

    2010-10-01

    Full Text Available Hair cells in the auditory, vestibular, and lateral-line systems respond to mechanical stimulation and transmit information to afferent nerve fibers. The sensitivity of mechanoelectrical transduction is modulated by the efferent pathway, whose activity usually reduces the responsiveness of hair cells. The basis of this effect remains unknown.We employed immunocytological, electrophysiological, and micromechanical approaches to characterize the anatomy of efferent innervation and the effect of efferent activity on the electrical and mechanical properties of hair cells in the bullfrog's sacculus. We found that efferent fibers form extensive synaptic terminals on all macular and extramacular hair cells. Macular hair cells expressing the Ca(2+-buffering protein calretinin contain half as many synaptic ribbons and are innervated by twice as many efferent terminals as calretinin-negative hair cells. Efferent activity elicits inhibitory postsynaptic potentials in hair cells and thus inhibits their electrical resonance. In hair cells that exhibit spiking activity, efferent stimulation suppresses the generation of action potentials. Finally, efferent activity triggers a displacement of the hair bundle's resting position.The hair cells of the bullfrog's sacculus receive a rich efferent innervation with the heaviest projection to calretinin-containing cells. Stimulation of efferent axons desensitizes the hair cells and suppresses their spiking activity. Although efferent activation influences mechanoelectrical transduction, the mechanical effects on hair bundles are inconsistent.

  12. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  13. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms.

    Science.gov (United States)

    Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya

    2017-11-01

    This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.

  14. Neuro-cognitive mechanisms underlying the emotional modulation of word reading

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel neural model for emotional modulation of word reading is proposed. This model has four principal hypotheses: the dominant activation region hypothesis, the emotional modulation hypothesis, the attentional level hypothesis, and the interaction hypothesis. Four lines of research were reviewed to provide evidence for these hypotheses: (1) neuro-cognitive studies on the mechanisms of word reading (i.e., neural networks for reading); (2) studies on the influence of words' emotional valence on word reading; (3) studies of the effect of attention on word reading; and (4) studies on emotional modulation of word reading under different attentional levels.

  15. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  16. Mechanical behavior of glass/epoxy composite laminate with varying amount of MWCNTs under different loadings

    Science.gov (United States)

    Singh, K. K.; Rawat, Prashant

    2018-05-01

    This paper investigates the mechanical response of three phased (glass/MWCNTs/epoxy) composite laminate under three different loadings. Flexural strength, short beam strength and low-velocity impact (LVI) testing are performed to find an optimum doping percentage value for maximum enhancement in mechanical properties. In this work, MWCNTs were used as secondary reinforcement for three-phased composite plate. MWCNT doping was done in a range of 0–4 wt% of the thermosetting matrix system. Symmetrical design eight layered glass/epoxy laminate with zero bending extension coupling laminate was fabricated using a hybrid method i.e. hand lay-up technique followed by vacuum bagging method. Ranging analysis of MWCNT mixing highlighted the enhancement in flexural, short beam strength and improvement in damage tolerance under LVI loading. While at higher doping wt%, agglomeration of MWCNTs are observed. Results of mechanical testing proposed an optimized doping value for maximum strength and damage resistance of the laminate.

  17. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    International Nuclear Information System (INIS)

    Dirras, G.; Bouvier, S.; Gubicza, J.; Hasni, B.; Szilagyi, T.

    2009-01-01

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about ε VM = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  18. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, G., E-mail: dirras@univ-paris13.fr [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Bouvier, S. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Gubicza, J. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary); Hasni, B. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Szilagyi, T. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary)

    2009-11-25

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about {epsilon}{sub VM} = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  19. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions.

    Science.gov (United States)

    Derwent, Richard

    2017-07-01

    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NO x . Photochemical ozone production rates responded differently to 30% NO x and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NO x and VOCs also produced changes in OH. The responses in OH to 30% reductions in NO x and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NO x reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NO x and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NO x and VOC reductions under consideration. The purpose of this paper is to compare predicted ozone responses to NO x and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their

  20. Experimental Investigation on Shock Mechanical Properties of Red Sandstone under Preloaded 3D Static Stresses

    Directory of Open Access Journals (Sweden)

    Niu Yong

    2015-11-01

    Full Text Available Triaxial impact mechanical performance experiment was performed to study the mechanical properties of red sandstone subjected to three-dimensional (3D coupled static and dynamic loads, i.e., three confining pressures (0, 5, and 10 MPa and three axial pressures (11, 27, and 43 MPa. A modified 3D split Hopkinson pressure bar testing system was used. The change trend in the deformation of red sandstone and the strength and failure modes under axial pressures and confining pressures were analyzed. Results show that, when the confining pressure is constant, the compressive strength, secant modulus, and energy absorbed per unit volume of red sandstone initially increases and subsequently decreases, whereas the average strain rate exhibits an opposite trend. When the axial pressure is constant, both the compressive strength and secant modulus of red sandstone are enhanced, but the average strain rate is decreased with increasing confining pressure. The energy absorbed per unit volume is initially increased and subsequently decreased as the confining pressure increases. Red sandstone exhibits a cone-shaped compression–shear failure mode under the 3D coupled static and dynamic loads. The conclusions serve as theoretical basis on the mechanical properties of deep medium-strength rock under a high ground stress and external load disturbance condition

  1. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.

    2011-01-01

    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign

  2. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  3. Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques

    Directory of Open Access Journals (Sweden)

    Jenny A Greig

    2016-01-01

    Full Text Available Systemically delivered adeno-associated viral (AAV vectors are now in early-phase clinical trials for a variety of diseases. While there is a general consensus on inclusion and exclusion criteria for each of these trials, the conditions under which vectors are infused vary significantly. In this study, we evaluated the impact of intravenous infusion rate of AAV8 vector in cynomolgus macaques on transgene expression, vector clearance from the circulation, and potential activation of the innate immune system. The dose of AAV8 vector in terms of genome copies per kilogram body weight and its concentration were fixed, while the rate of infusion varied to deliver the entire dose over different time periods, including 1, 10, or 90 minutes. Analyses during the in-life phase of the experiment included sequential evaluation of whole blood for vector genomes and appearance of proinflammatory cytokines. Liver tissues were analyzed at the time of necropsy for enhanced green fluorescent protein (eGFP expression and vector genomes. The data were remarkable with a relative absence of any statistically significant effect of infusion time on vector transduction, safety, and clearance. However, some interesting and unexpected trends did emerge.

  4. Molecular transduction mechanisms in ACTH-induced grooming

    NARCIS (Netherlands)

    Gispen, W.H.; Colbern, D.; Spruijt, B.M.

    1988-01-01

    Intraventricular administration of ACTH1-24 induces excessive grooming in the rat. Ethogram analysis shows that the peptide does not alter grooming behavior seen in a novel box, but that it prolongs the duration of the grooming bout. Extensive structure-activity studies have been performed which

  5. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.

    2012-01-01

    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  6. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    Science.gov (United States)

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  7. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  8. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.

    Science.gov (United States)

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, Joao P C; Sales, M Goreti F

    2011-08-15

    Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10(-6)mol/L for a linear response after 8.0 × 10(-7) mol/L with an anionic slope of -65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The underlying mechanism of action for various medicinal properties of Piper betle (betel).

    Science.gov (United States)

    Haslan, H; Suhaimi, F H; Thent, Zar Chi; Das, S

    2015-01-01

    Piper betle (betel) plant belongs to the Piperaceae family. Piper. betle is widely known for its potent medicinal properties. Various active compounds are present in Piper. betle such as allylpyrocatechol, hydroxychavicol, piperbetol, ethylpiperbetol, piperol A, piperol B, chavibetol, and alkaloids which account for these beneficial medicinal properties. In the present narrative review, we looked into the various active compounds present in the Piper betle and attempted to understand their underlying mechanism of action. Proper understanding of the molecular biology involving the mechanism of action may help in better drug formulation and provide better therapeutic actions in the field of alternative and complementary medicine.

  10. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the Februar