WorldWideScience

Sample records for transdermally applied nanoemulsion

  1. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy

    Science.gov (United States)

    Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho

    2014-10-01

    This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.

  2. Nanoemulsions as vehicles for transdermal delivery of glycyrrhizin

    Directory of Open Access Journals (Sweden)

    Ranjit Kumar Harwansh

    2011-12-01

    Full Text Available The present investigation aims to evaluate an isotropic and thermodynamically stable nanoemulsion formulation for transdermal delivery of glycyrrhizin (GZ, with minimum surfactant and cosurfactant (Smix concentrations that could improve its solubility, permeation enhancement, and stability. Pseudo-ternary phase diagrams were developed and various nanoemulsion formulations were prepared using soyabean oil as oil, Span 80, Brij 35 as a surfactant and isopropyl alcohol as a cosurfactant. Nanoemulsion formulations that passed the thermodynamic stability tests were characterized for pH, viscosity and droplet size using a transmission electron microscopy. The transdermal ability of glycyrrhizin through human cadaver skin was determined using Franz diffusion cells. The in vitro skin permeation profile of the optimized nanoemulsion formulation (NE2 was compared to that of conventional gel. A significant increase in permeability parameters such as steady-state flux (Jss and permeability coefficient (Kp was observed in the optimized nanoemulsion formulation (NE2, which consisted of 1% wt/wt of mono ammonium glycyrrhizinate (MAG, 32.4% Span 80, 3.7% Brij 35, 10% isopropyl alcohol, 46.5% soyabean oil and 6.4% distilled water. No obvious skin irritation was observed for the studied nanoemulsion formulation (NE2 or the gel. The results indicated that nanoemulsions are promising vehicles for transdermal delivery of glycyrrhizin through human cadaver skin, without the use of additional permeation enhancers, because excipients of nanoemulsions act as permeation enhancers themselves.O objetivo da investigação é avaliar uma nanoemulsão isotrópica termodinamicamente estável para a administração transdérmica da glicirrizina (GZ, com concentrações mínimas de tensoativo e co-tensoativo (Smix, que poderiam melhorar a sua solubilidade, a permeação e a estabilidade. Os diagramas pseudo-ternários de fase foram desenvolvidos e diversas nanoemulsões foram

  3. Preparation and the in vitro evaluation of nanoemulsion system for the transdermal delivery of granisetron hydrochloride.

    Science.gov (United States)

    Zheng, Wen-wu; Zhao, Ling; Wei, Yu-meng; Ye, Yun; Xiao, Shun-han

    2010-08-01

    The objective of this study was to develop and evaluate nanoemulsion system for transdermal delivery of granisetron hydrochloride. Pseudo-ternary phase diagram was constructed to ascertain the concentration range of components of nanoemulsion composed of isopropyl myristate (IPM) as an oil phase, tween 85 as surfactant, ethanol as cosurfactant, water as aqueous phase. The effects of the content of IPM as an oil phase and n-methyl pyrrolidone (NMP) as transdermal enhancer on rat skin permeation of granisetron hydrochloride nanoemulsion were studied in vitro. The results showed that the mean particle size of nanoemulsion ranged from 50.4+/-1.5 to 82.4+/-0.9 nm with homogeneous size distribution. The resulted optimum formulation composed of 2.5% granisetron hydrochloride, 4% IPM, 40% tween 85/ethanol (1 : 1) and 10% NMP showed that the skin permeation rate was the highest (85.39+/-2.90 microg/cm(2)/h) and enhancement of drug permeability was 4.1-fold for transdermal delivery of granisetron hydrochloridein comparison with the control group (20% of tween 85 and 20% of ethanol micelle solution containing 2.5% of granisetron hydrochloride without IPM), and cumulative permeation amount was the highest (891.8+/-2.86 microg/cm(2)) with the shortest lag time (0.11+/-0.02 h) and was stable for at least 12 months. Therefore, the nanoemulsion system developed in this study offers a promising vehicle for the transdermal delivery system of granisetron hydrochloride, which may be as effective as oral or intravenous dosage forms and avoid some difficulties associated with these dosage forms.

  4. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification.

    Science.gov (United States)

    Lu, Wen-Chien; Chiang, Been-Huang; Huang, Da-Wei; Li, Po-Hsien

    2014-03-01

    Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Development of Lecithin Nanoemulsion Based Organogels for Permeation Enhancement of Metoprolol through Rat Skin

    Directory of Open Access Journals (Sweden)

    J. Varshosaz

    2013-01-01

    Full Text Available Background. Drugs with low oral bioavailability due to the first pass metabolism are good candidates for transdermal delivery. Objectives. The aim of this work was preparation of transdermal nanoemulsion of metoprolol which has high first pass metabolism. Methods. Three commercially available types of lecithin (200, 100p, and 170, three short chain alcohol (n-butanol, isopropyl alcohol, and n-propanol, and isopropyl myristate (IPM were used as surfactant, cosurfactant, and oil phase, respectively. The aqueous phase was composed of metoprolol tartrate. Nanoemulsions with different surfactant/cosurfactant weight ratio, various amounts of drug, and different types of alcohol were prepared, and their phase diagrams were studied. Drug release, permeability, and diffusion coefficient of the drug were studied using hairless rat skin. Results. A significant increase in drug solution rate was observed with increasing the metoprolol content in the nanoemulsions, while it decreased when lecithin concentration increased from 40% to 60%. Increasing the water content resulted in a significant increase in metoprolol release. N-butanol enhanced the drug flux from nanoemulsions more than n-propanol and isopropyl alcohol. The o/w nanoemulsions of metoprolol showed high flux and permeability through the skin. Conclusion. Both w/o and o/w nanoemulsions of metoprolol could enhance permeation and diffusion of metoprolol through rat skin.

  6. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    Science.gov (United States)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  7. The preparation of 3,5-dihydroxy-4-isopropylstilbene nanoemulsion and in vitro release

    Science.gov (United States)

    Zhang, Yue; Gao, Jungang; Zheng, Hetang; Zhang, Ran; Han, Yucui

    2011-01-01

    We have reported a novel procedure to prepare 3,5-dihydroxy-4-isopropylstilbene (DHPS) nanoemulsion, using a low-energy emulsification method. Based on the phase diagram, the optimum prescription of nanoemulsion preparation was screened. With polyoxyethylenated castor oil (EL-40) as the surfactant, ethanol as the co-surfactant, and isopropyl myristate (IPM) as the oil phase, the DHPS nanoemulsion was obtained with a transparent appearance, little viscosity, and spherically uniform distribution verified by transmission electron microscopy and laser scattering analyzer. The nanoemulsion was also determined by FT-Raman spectroscopy. The DHPS nanoemulsion demonstrated good stability and stable physical and chemical properties. The nanoemulsion dramatically improved the transdermal release of DHPS (from 8.02 μg · cm−2 to 273.15 μg · cm−2) and could become a favorable new dosage form for DHPS. PMID:21674020

  8. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study

    Directory of Open Access Journals (Sweden)

    Zheng Y

    2016-11-01

    Full Text Available Yin Zheng,1 Wu-Qing Ouyang,1 Yun-Peng Wei,1 Shahid Faraz Syed,2,3 Chao-Shuang Hao,1 Bo-Zhen Wang,4 Yan-Hong Shang1,5 1Department of Basic Veterinary Sciences, College of Veterinary Medicine, 2Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi; 3Faculty of Veterinary and Animal Sciences, Lasbella University of Agriculture Water and Marine Sciences, Uthal Baluchistan, Pakistan; 4College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 5College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China Abstract: Nanoemulsions (NEs are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1 to determine the stability and skin irritability of NE gels (NGs containing 1%, 2%, and 3% (w/w Carbopol® 934 (CP934 (termed NG1, NG2, and NG3, respectively; 2 to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3 to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 µg/cm2 > NG1 (213 µg/cm2 > NG2 (123 µg/cm2 > NG3 (74.3 µg/cm2. The flux rates of citral decreased in the order NE (1,026 µg/cm2 > NG1 (1,021 µg/cm2 > NG2 (541 µg/cm2 > NG3 (353 µg/cm2. The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE (P<0.05 over a period of 12 h. Laser scanning confocal microscopy indicated that the NGs altered the main drug delivery routes from skin appendages to intercellular paths. Histological images suggested

  9. Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Seong Uk Son

    2017-12-01

    Full Text Available We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA–Do HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA and dodecylamine (Do by varying the substitution ratio of Do to HA. The synthetic yield of HA–Do was more than 80% (HA–Do (A: 82.7 ± 4.7%, HA–Do (B: 87.1 ± 3.9% and HA–Do (C: 81.4 ± 4.5%. Subsequently, nanohydrogels were fabricated using the nanoemulsion method. Indocyanine green (ICG simultaneously self-assembled with HA–Do, and the size depended on the substitution ratio of Do in HA–Do (nanohydrogel (A: 118.0 ± 2.2 nm, nanohydrogel (B: 121.9 ± 11.4 nm, and nanohydrogel (C: 142.2 ± 3.8 nm. The nanohydrogels were delivered into cells, and had excellent biocompatibility. Especially, nanohydrogel (A could deliver and permeate ICG into the deep skin layer, the dermis. This suggests that nanohydrogels can be potent transdermal delivery systems.

  10. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    Directory of Open Access Journals (Sweden)

    Cheng Loong Ngan

    2014-01-01

    Full Text Available Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w and beeswax (1–3%, w/w in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.

  11. The preparation of 3,5-dihydroxy-4-isopropylstilbene nanoemulsion and in vitro release

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2011-04-01

    Full Text Available Yue Zhang1,2, Jungang Gao1, Hetang Zheng2, Ran Zhang3, Yucui Han21College of Chemistry and Enviromental Science, Hebei University, Baoding, China; 2School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China; 3College of Chemical Engineering, East China University of Science and Technology, Shanghai, ChinaAbstract: We have reported a novel procedure to prepare 3,5-dihydroxy-4-isopropylstilbene (DHPS nanoemulsion, using a low-energy emulsification method. Based on the phase diagram, the optimum prescription of nanoemulsion preparation was screened. With polyoxyethylenated castor oil (EL-40 as the surfactant, ethanol as the co-surfactant, and isopropyl myristate (IPM as the oil phase, the DHPS nanoemulsion was obtained with a transparent appearance, little viscosity, and spherically uniform distribution verified by transmission electron microscopy and laser scattering analyzer. The nanoemulsion was also determined by FT-Raman spectroscopy. The DHPS nanoemulsion demonstrated good stability and stable physical and chemical properties. The nanoemulsion dramatically improved the transdermal release of DHPS (from 8.02 µg · cm-2 to 273.15 µg · cm-2 and could become a favorable new dosage form for DHPS.Keywords: nanoemulsion, 3,5-dihydroxy-4-isopropylstilbene, DHPS, pseudo-ternary phase diagram

  12. How can lipid nanocarriers improve transdermal delivery of olanzapine?

    Science.gov (United States)

    Iqbal, Nimra; Vitorino, Carla; Taylor, Kevin M G

    2017-06-01

    The development of a transdermal nanocarrier drug delivery system with potential for the treatment of psychiatric disorders, such as schizophrenia and bipolar disorder, is described. Lipid nanocarriers (LN), encompassing various solid:liquid lipid compositions were formulated and assessed as potential nanosystems for transdermal delivery of olanzapine. A previously optimized method of hot high pressure homogenization (HPH) was adopted for the production of the LN, which comprised solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsions (NE). Precirol  ® was selected as the solid lipid for progression of studies. SLN exhibited the best performance for transdermal delivery of olanzapine, based on in vitro release and permeation studies, coupled with results from physicochemical characterization of several solid:liquid lipid formulations. Stability tests, performed to give an indication of long-term storage behavior of the formulations, were in good agreement with previous studies for the best choice of solid:liquid lipid ratio. Overall, these findings highlight the SLN-based formulation as promising for the further inclusion in and production of transdermal patches, representing an innovative therapeutic approach.

  13. Granisetron Transdermal Patch

    Science.gov (United States)

    Granisetron transdermal patches are used to prevent nausea and vomiting caused by chemotherapy. Granisetron is in a class of medications called 5HT3 ... Granisetron transdermal comes as a patch to apply to the skin. It is usually applied 24 to ...

  14. Extreme emulsification: formation and structure of nanoemulsions

    Directory of Open Access Journals (Sweden)

    T.G.Mason

    2006-01-01

    Full Text Available Nanoemulsions are metastable dispersions of nanodroplets of one liquid that have been ruptured by shear in another immiscible liquid. The ruptured droplets are stabilized against subsequent coalescence by a surfactant. Because the nanodroplets do not form spontaneously, as they can in lyotropic ``microemulsion'' phases, the structure of nanoemulsions is primarily dependent on the history of the applied shear stresses relative to the interfacial restoring stresses. By applying extremely high shear rates and controlling the composition of the emulsion, we have been able to rupture microscale droplets down to diameters as small as 30 nm in a microfluidic process that yields bulk quantities suitable for commercial production. Following ultracentrifugal fractionation to make the droplets uniform, we study the structure of these emulsions using small angle neutron scattering (SANS at dilute and concentrated volume fractions. We contrast the structure of a concentrated nanoemulsion with the structure factor of hard spheres at a similar volume fraction.

  15. Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers.

    Science.gov (United States)

    Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M

    2017-07-01

    Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.

  16. Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence.

    Science.gov (United States)

    Mohyeldin, Salma M; Mehanna, Mohammed M; Elgindy, Nazik A

    2016-08-01

    The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin. Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells. Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10(-2) ± 0.7 µg/cm(2) h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers. The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.

  17. Nanoemulsions: formation, structure, and physical properties

    International Nuclear Information System (INIS)

    Mason, T G; Wilking, J N; Meleson, K; Chang, C B; Graves, S M

    2006-01-01

    We summarize procedures for producing 'nanoemulsions' comprised of nanoscale droplets, or 'nanoemulsions', methods for controlling the droplet size distribution and composition, and interesting physical properties of nanoemulsions. In contrast to more common microscale emulsions, nanoemulsions exhibit optical transparency at high droplet volume fractions, φ, surprisingly strong elasticity at low φ, and enhanced diffusive transport and shelf stability. For these reasons, nanoemulsions have great potential in a wide range of industries including pharmaceuticals, foods, and personal care products. (topical review)

  18. Transdermal granisetron.

    Science.gov (United States)

    Duggan, Sean T; Curran, Monique P

    2009-01-01

    Granisetron is a highly selective serotonin 5-HT(3) receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. The transdermal granisetron system delivers continuous granisetron (3.1 mg/day) into the systemic circulation (via passive diffusion) for up to 7 days. In a large phase III trial in cancer patients receiving multi-day (3-5 days) moderately or highly emetogenic chemotherapy, transdermal granisetron applied 24-48 hours prior to chemotherapy and remaining in place for 7 days was noninferior to oral granisetron 2 mg once daily administered for 3-5 days 1 hour prior to chemotherapy. Efficacy was assessed according to the proportion of patients achieving complete response (no vomiting and/or retching, no more than mild nausea, no rescue medication) from the first day, until 24 hours after the start of the last day, of administration of the chemotherapy regimen. In a phase II trial in patients with cancer receiving single-day, moderately-emetogenic chemotherapy, transdermal granisetron applied at least 24 hours prior to chemotherapy and removed after 5 days was as effective as a single oral dose of granisetron 2 mg in achieving total control (no nausea, no vomiting/retching, no use of rescue medication and no study withdrawal) during the delayed (24-120 hours; primary endpoint) period after chemotherapy. Transdermal granisetron was generally well tolerated in clinical trials, with few adverse events being treatment related.

  19. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study.

    Science.gov (United States)

    Zheng, Yin; Ouyang, Wu-Qing; Wei, Yun-Peng; Syed, Shahid Faraz; Hao, Chao-Shuang; Wang, Bo-Zhen; Shang, Yan-Hong

    Nanoemulsions (NEs) are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1) to determine the stability and skin irritability of NE gels (NGs) containing 1%, 2%, and 3% (w/w) Carbopol ® 934 (CP934) (termed NG1, NG2, and NG3, respectively); 2) to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3) to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 μg/cm 2 ) > NG1 (213 μg/cm 2 ) > NG2 (123 μg/cm 2 ) > NG3 (74.3 μg/cm 2 ). The flux rates of citral decreased in the order NE (1,026 μg/cm 2 ) > NG1 (1,021 μg/cm 2 ) > NG2 (541 μg/cm 2 ) > NG3 (353 μg/cm 2 ). The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE ( P drug delivery routes from skin appendages to intercellular paths. Histological images suggested that perturbations to the skin structure, specifically the size of the epidermal intercellular spaces and the separation distance of dermal collagen bundles, could be significantly minimized by increasing the proportion of CP934. These results suggest that adjustments of the CP934 proportions can be used to modulate the skin permeation profiles of NGs for specific therapeutic purposes.

  20. Phase Manifestation and Formation of Nanoemulsions Composed of Imidazolium-based Ionic Liquid, Tween 80/Span 80 and Labrafac Lipophile WL 1349

    Directory of Open Access Journals (Sweden)

    S. H. Ng

    2017-07-01

    Full Text Available onic liquids (ILs can enhance topical and transdermal delivery, as well as increase the solubility of sparingly soluble drugs. In the present work, pseudo-ternary phase diagrams of emulsions were composed of a mixture of non-ionic surfactants, polyoxyethylene sorbitan monooleate (Tween 80® and sorbitan monooleate (Span 80® in weight fraction: 1:1, 1:2, 2:1 and 2:3, LabrafacTM Lipophile WL 1349 as an oil phase and 1-hexyl-3-methylimidazolium chloride [(HMIM (Cl] as a continuous phase. Emulsion formulations were selected with 10% surfactants from the pseudo-ternary phase diagrams and further prepared at 298.2 ± 0.1 K. Acoustic emulsificationmethod was used to prepare nanoemulsions that were mixed with freshly prepared hydrocolloid gum. The area of the single-phase zone in pseudo-ternary phase diagrams that varied with Tween 80® /Span 80® ratio in the order of 2:1 > 1:1 > 2:3 > 1:2 where Span 80® was replaced by an equivalent weight of Tween 80®  to form IL-based nanoemulsions. [HMIM] [Cl] tended to create a two-phase system. Addition of carbopol® ultrez 20 copolymer into the continuous phase of the formulations gave single-phase nanoemulsions with good stability. The mixture of surfactants with weight ratio of 1:2 (Tween 80®/Span 80® showed a good stability with the smallest particle size and greater surface charges in the system. These ionic liquid-based nanoemulsions might have the potential in drug delivery systems.

  1. Factorial design applied to the optimization of lipid composition of topical antiherpetic nanoemulsions containing isoflavone genistein

    Directory of Open Access Journals (Sweden)

    Argenta DF

    2014-10-01

    Full Text Available Débora Fretes Argenta,1 Cristiane Bastos de Mattos,1 Fabíola Dallarosa Misturini,1 Leticia Scherer Koester,1 Valquiria Linck Bassani,1 Cláudia Maria Oliveira Simões,2 Helder Ferreira Teixeira1 1Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; 2Programa de Pós-graduação em Farmácia da Universidade Federal de Santa Catarina, Florianópolis, Brazil Abstract: The aim of this study was to optimize topical nanoemulsions containing genistein, by means of a 23 full factorial design based on physicochemical properties and skin retention. The experimental arrangement was constructed using oil type (isopropyl myristate or castor oil, phospholipid type (distearoylphosphatidylcholine [DSPC] or dioleylphosphaditylcholine [DOPC], and ionic cosurfactant type (oleic acid or oleylamine as independent variables. The analysis of variance showed effect of third order for particle size, polydispersity index, and skin retention of genistein. Nanoemulsions composed of isopropyl myristate/DOPC/oleylamine showed the smallest diameter and highest genistein amount in porcine ear skin whereas the formulation composed of isopropyl myristate/DSPC/oleylamine exhibited the lowest polydispersity index. Thus, these two formulations were selected for further studies. The formulations presented positive ζ potential values (>25 mV and genistein content close to 100% (at 1 mg/mL. The incorporation of genistein in nanoemulsions significantly increased the retention of this isoflavone in epidermis and dermis, especially when the formulation composed by isopropyl myristate/DOPC/oleylamine was used. These results were supported by confocal images. Such formulations exhibited antiherpetic activity in vitro against herpes simplex virus 1 (strain KOS and herpes simplex virus 22 (strain 333. Taken together, the results show that the genistein-loaded nanoemulsions developed in this study are promising

  2. Long-term stability of sodium caseinate-stabilized nanoemulsions.

    Science.gov (United States)

    Yerramilli, Manispuritha; Ghosh, Supratim

    2017-01-01

    Oil-in-water (5 wt%) nanoemulsions were prepared with different concentration (2.5-10 wt%) of sodium caseinate as a sole emulsifier and their long-term storage stability was investigated for 6 months. Previous studies associated with sodium caseinate looked only into nanoemulsion formation; hence the challenges with long-term stability were not addressed. All nanoemulsions displayed an average droplet size sodium caseinate-stabilized nanoemulsions.

  3. Optimization of Finasteride Nano-Emulsion Preparation Using ...

    African Journals Online (AJOL)

    1Mazandaran University of Medical Sciences, School of Pharmacy, Sari, 2Department of Chemistry, ... Chemometric approach was applied for optimizing the size of the nano-emulsion droplets. ... water dispersions, having droplets with 100 .... Colloid. Interf. Sci. 2004; 108-109: 207–226. 4. Anton N, Benoit JP, Saulnier P.

  4. Nanoemulsion: A new concept of delivery system

    Directory of Open Access Journals (Sweden)

    Nitin Sharma

    2010-01-01

    Full Text Available Nanoemulsion has been identified as a promising delivery system for various drugs including biopharmaceuticals. Nanoemulsion is a heterogeneous system composed of one immiscible liquid dispersed as droplets within another liquid. The droplets size of nano emulsion is between 20 to 500 nm. Diameter and surface properties of droplets of nanoemulsion plays an important role in the biological behavior of the formulation. Small droplet sizes lead to transparent emulsions so that product appearance is not altered by the addition of an oil phase. In this paper various aspects of nanoemulsion have been discussed including advantages, disadvantages and methods of preparation. Furthermore new approaches of stability of formulation, effect of types and concentration of surfactant, process variables and method are also discussed to improve the stability of nanoemulsion formulation

  5. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation.

    Science.gov (United States)

    Đorđević, Sanela M; Cekić, Nebojša D; Savić, Miroslav M; Isailović, Tanja M; Ranđelović, Danijela V; Marković, Bojan D; Savić, Saša R; Timić Stamenić, Tamara; Daniels, Rolf; Savić, Snežana D

    2015-09-30

    This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters--co-emulsifier type, aqueous phase type, homogenization temperature--on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution Solutol(®) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Evaluation of Biosourced Alkyd Nanoemulsions as Drug Carriers

    Directory of Open Access Journals (Sweden)

    Siew Yong Teo

    2015-01-01

    Full Text Available Novel oil-in-water (O/W nanoemulsions were formulated using short, medium, and long oil length alkyds synthesized from palm kernel oil by a two-stage alcoholysis-polyesterification reaction. Alkyd/surfactant/water ternary phase diagrams identified a composition of 1% alkyd, 9% Tween 80, and 90% water where spontaneous production of nanoemulsions occurred. The pH, droplet size, and zeta potential of all formulations were in the range of 6.4–6.6, 11–14 nm, and −6 mV to −8 mV, respectively. Rheological studies showed that the nanoemulsions displayed non-Newtonian shear thinning behavior at low shear rates up to 20 s−1 with conversion to Newtonian behavior above this shear rate. All nanoemulsions were found to be stable against phase separation on storage at 4°C and 25°C for three months. Short oil length alkyd nanoemulsions exhibited significantly higher stability compared with medium and long oil length alkyd nanoemulsions, as demonstrated by an absence of phase separation and only minor changes of droplet size on storage at an elevated temperature of 45°C for 3 months. The drug carrying capacity and storage stability of the nanoemulsions were assessed using phenytoin. The entrapment efficiency of alkyd nanoemulsions was in excess of 90% and loss of phenytoin content was restricted to less than 4% during storage of the nanoemulsions for three months at 4°C, 25°C, and 45°C. Taken together, these findings indicate that nanoemulsions prepared from palm kernel oil-based alkyds offer potential as nanocarriers for drug delivery applications.

  7. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  8. TRANSDERMAL DRUG DELIVERY AND METHODS TO ENHANCE IT

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available The paper presents the common methods employed in recent years for enhancing transdermal delivery of drug substances when applying transdermal therapeutic delivery systems. The chemical, physical and mechanical methods to enhance the transport of macromolecular compounds through the skin are considered in details. 

  9. Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties.

    Science.gov (United States)

    Janjic, Jelena M; Shao, Pin; Zhang, Shaojuan; Yang, Xun; Patel, Sravan K; Bai, Mingfeng

    2014-06-01

    Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, (19)F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A Transdermal Measurement Platform Based on Microfluidics

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2017-01-01

    Full Text Available The Franz diffusion cell is one of the most widely used devices to evaluate transdermal drug delivery. However, this static and nonflowing system has some limitations, such as a relatively large solution volume and skin area and the development of gas bubbles during sampling. To overcome these disadvantages, this study provides a proof of concept for miniaturizing models of transdermal delivery by using a microfluidic chip combined with a diffusion cell. The proposed diffusion microchip system requires only 80 μL of sample solution and provides flow circulation. Two model compounds, Coomassie Brilliant Blue G-250 and potassium ferricyanide, were successfully tested for transdermal delivery experiments. The diffusion rate is high for a high sample concentration or a large membrane pore size. The developed diffusion microchip system, which is feasible, can be applied for transdermal measurement in the future.

  11. Application of Cinnamon oil Nanoemulsion to Control Foodborne Bacteria such as Listeria Sp. and Salmonella Sp. On Melons

    Science.gov (United States)

    Paudel, Sumit Kumar

    Listeria and Salmonella related recalls and outbreaks are of major concern to the melon industry. Cinnamon oil has shown its usefulness in food treatment due to strong antifungal, antiviral, and antibacterial activities. However, its applications are limited due to poor solubility of cinnamon oil in water. Utilization of Cinnamon oil nanoemulsion may offer effective antimicrobial washing treatment to melon industry. The purpose of this study was to test the antimicrobial efficacy of cinnamon oil nanoemulsion on melons against major food borne pathogens such as Listeria monocytogenes and Salmonella enterica. Different formulations of cinnamon oil nanoemulsion were made by ultrasonication using Tween 80 as an emulsifier. Nanoemulsion exhibiting the smallest oil droplets was applied. Oil droplets were characterized for particle size by dynamic light scattering. Microbroth dilution assay was performed on three strains each of Listeria monocytogenes and Salmonella enterica to find out the antimicrobial efficacy of cinnamon oil nanoemulsion. Honeydew and cantaloupe were artificially inoculated with the strains mentioned above followed by treatment in nanoemulsion (control, 0.1%, 0.25%, and 0.5%) for one minute. Samples were dried and enumerated after one hour of treatment on selective media (PALCAM and XLD agar). The average diameter of nanoemulsion was 9.63+/-0.3nm. Minimum inhibitory concentration (MIC) of cinnamon oil nanoemulsion for both Listeria and Salmonella strains was 0.078% v/v and 0.039% v/v, respectively and the minimum bactericidal concentration was 0.078125% v/v for both. Compared to the water control, 0.5% nanoemulsion showed up to 7.7 and 5.5 log CFU/gm reductions in L. monocytogenes and S. enterica, respectively. The data suggests that cinnamon oil nanoemulsion can be used as an effective natural microbial control agent for melons. Keywords: Nanoemulsion, ultrasonication, antimicrobial.

  12. In vitro permeation studies of nanoemulsions containing ketoprofen as a model drug.

    Science.gov (United States)

    Kim, Beom Su; Won, Myoung; Lee, Kang Min; Kim, Cheo Sang

    2008-09-01

    We prepared a nanoemulsion system with benzyl alcohol/ ethanol/Solutol/smash(R) HS 15 /water. Ketoprofen was used as a model drug in this study. The nanoemulsions of this system evidenced a high degree of stability. The droplet diameter did not change over a period of at least 3 months. The nanoemulsion containing 4% benzyl alcohol evidenced a permeation rate higher than was observed with the 1% and 2% nanoemulsions. Also the nanoemulsion containing 1% Solutol(R) HS 15 provided a permeation rate higher than was seen with the 2% and 4% nanoemulsions. All ketoprofen-loaded nanoemulsions enhanced the in vitro permeation rate through mouse skins as compared to the control.

  13. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.

    Science.gov (United States)

    Ali, Ali; Mekhloufi, Ghozlene; Huang, Nicolas; Agnely, Florence

    2016-03-16

    To avoid the toxicological concerns associated to synthetic surfactants, proteins might be an alternative for the stabilization of pharmaceutical nanoemulsions. The present study investigates the use of β-lactoglobulin (β-lg) to stabilize oil in water biocompatible nanoemulsions intended for a pharmaceutical use and prepared by high pressure homogenization (HPH). The effects of composition (nature and weight fraction of oil, β-lg concentration) and of process parameters (pressure and number of cycles) on the droplet size and on the stability of nanoemulsions were thoroughly assessed. The nanoemulsions prepared with β-lg at 1 wt% and with 5 wt% Miglyol 812 (the oil with the lowest viscosity) displayed a relatively small particle size (about 200 nm) and a low polydispersity when a homogenization pressure of 100 MPa was applied for 4 cycles. These nanoemulsions were the most stable formulations over 30 days at least. Emulsification efficiency of β-lg was reduced at higher homogenization pressures (200 MPa and 300 MPa). The effect of HPH process on the interfacial properties of β-lg was evaluated by drop shape analysis. This treatment had an effect neither on the interfacial tension nor on the interfacial dilatational rheology of β-lg at the Miglyol 812/water interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In Vitro and In Vivo Evaluation of Nanoemulsion Containing Vegetable Extracts

    Directory of Open Access Journals (Sweden)

    Pedro Alves Rocha-Filho

    2017-09-01

    Full Text Available Oil/Water nanoemulsions were obtained, employing PEG castor oil derivatives/fatty esters surfactant, babassu oil, and purified water from a study based on phase diagrams. The nanoemulsions had been prepared by a low energy process inversion phase emulsion. Different parameters, such as order of addition of the components, temperature, stirring speed, and time, were studied to prepare O/W nanoemulsions. The influence of vegetable extract addition on size distribution of nanoemulsions was also analyzed. Evaluation of the nanoemulsions was studied in vitro by HET-CAM and RDB methods. Stable transparent bluish O/W babassu oil nanoemulsion were obtained with surfactant pair fatty ester/PEG-54 castor oil, in an HLBrequired value = 10.0 and with a particle droplet size of 46 ± 13 nm. Vegetable extract addition had not influenced nanoemulsion’s stability. The results obtained for in vitro and in vivo nanoemulsion evaluation, based on the hydration and oiliness, and pH of the skin, shows O/W nanoemulsions as potential vehicle for topical application.

  15. Exotic Vegetable Oils for Cosmetic O/W Nanoemulsions: In Vivo Evaluation.

    Science.gov (United States)

    Pereira, Tatiana A; Guerreiro, Carolina M; Maruno, Monica; Ferrari, Marcio; Rocha-Filho, Pedro Alves

    2016-02-24

    Oil-in-water nanoemulsions are stable systems with droplet sizes in the 20-200 nm range. The physicochemical properties of these systems may be influenced by the addition of additives. Thus, the influence of ethoxylated (EL) and acetylated lanolin (AL) addition on the droplet size, pH values, electrical conductivity and stability of nanoemulsions was investigated. Then, effect of nano-emulsions additives with EL (NE-EL) or AL (NE-AL) in hydration, oiliness and pH of the skin were evaluated. Nanoemulsion safety was evaluated through the observation of no undesirable effects after skin formulation application. Both additives caused changes in droplet size and electrical conductivity, but not in pH values. Nanoemulsions containing up to 6.0% ethoxylated lanolin and 2.0% acetylated lanolin remained stable after centrifugation tests. Higher concentrations of the additives made the nanoemulsions unstable. Stability tests showed that ethoxylated lanolin produced more stable nanoemulsions then acetylated lanolin and that the major instability phenomenon occurring in these systems is coalescence at elevated temperatures. Nanoemulsion-based lanolin derivatives increased skin hydration and oiliness and did not change cutaneous pH values. These formulations are non-toxic since they did not cause any irritation on the skin surface after nanoemulsion application, showing potential as carriers for pharmaceuticals and cosmetic applications.

  16. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry

    Science.gov (United States)

    Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.

  17. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil

    Directory of Open Access Journals (Sweden)

    Wen-Chien Lu

    2018-01-01

    Full Text Available Citral is a typical essential oil used in the food, cosmetic, and drug industries and has shown antimicrobial activity against microorganisms. Citral is unstable and hydrophobic under normal storage conditions, so it can easily lose its bactericide activity. Nanoemulsion technology is an excellent way to hydrophilize, microencapsulate, and protect this compound. In our studies, we used a mixed surfactant to form citral-in-water nanoemulsions, and attempted to optimize the formula for preparing nanoemulsions. Citral-in-water nanoemulsions formed at So 0.4 to 0.6 and ultrasonic power of 18 W for 120 seconds resulted in a droplet size of < 100 nm for nanoemulsions. The observed antimicrobial activities were significantly affected by the formulation of the nanoemulsions. The observed relationship between the formulation and activity can lead to the rational design of nanoemulsion-based delivery systems for essential oils, based on the desired function of antimicrobials in the food, cosmetics, and agrochemical industries.

  18. Stability studies of silymarin nanoemulsion containing Tween 80 as a surfactant

    Directory of Open Access Journals (Sweden)

    Rabea Parveen

    2015-01-01

    Full Text Available Background: Silymarin, a flavonolignan from "milk thistle" (Silybum marianum plant is used almost exclusively for hepatoprotection. Because of its low bioavailability, it was incorporated into a nanoemulsion formulation. The aim of the present study was to check the stability of silymarin nanoemulsion at different temperatures for 3 months. Materials and Methods: The oil-in-water based nanoemulsion formulation was prepared by titration method. Silymarin nanoemulsion was characterized by droplet size, viscosity, and refractive index. Droplet size, viscosity, and refractive index were determined every month. The shelf-life of silymarin nanoemulsion was determined by accelerated stability testing. Results: It was found that there was no significant change in the droplet size, viscosity, and refractive index at refrigerator and room temperature during the period of 3 months. The half-life of the optimized nanoemulsion formulation was found to be 4.74 years at room temperature. Conclusion: These results indicated that stability of silymarin can be enhanced in nanoemulsion formulation using Tween 80 as a surfactant.

  19. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments

    Directory of Open Access Journals (Sweden)

    Rocha-Filho Pedro A

    2011-09-01

    Full Text Available Abstract Background Nanoemulsions have practical application in a multitude of commercial areas, such as the chemical, pharmaceutical and cosmetic industries. Cosmetic industries use rice bran oil in sunscreen formulations, anti ageing products and in treatments for skin diseases. The aim of this study was to create rice bran oil nanoemulsions using low energy emulsification methods and to evaluate their physical stability, irritation potential and moisturising activity on volunteers with normal and diseased skin types. Results The nanoemulsion developed by this phase diagram method was composed of 10% rice bran oil, 10% surfactants sorbitan oleate/PEG-30 castor oil, 0.05% antioxidant and 0.50% preservatives formulated in distilled water. The nanoemulsion was stable over the time course of this study. In vitro assays showed that this formulation has a low irritation potential, and when applied to human skin during in vivo studies, the nanoemulsion improved the skin's moisture and maintained normal skin pH values. Conclusion The results of irritation potential studies and in vivo assessments indicate that this nanoemulsion has potential to be a useful tool to treat skin diseases, such as atopic dermatitis and psoriasis.

  20. Exotic Vegetable Oils for Cosmetic O/W Nanoemulsions: In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Tatiana A. Pereira

    2016-02-01

    Full Text Available Oil-in-water nanoemulsions are stable systems with droplet sizes in the 20–200 nm range. The physicochemical properties of these systems may be influenced by the addition of additives. Thus, the influence of ethoxylated (EL and acetylated lanolin (AL addition on the droplet size, pH values, electrical conductivity and stability of nanoemulsions was investigated. Then, effect of nano-emulsions additives with EL (NE-EL or AL (NE-AL in hydration, oiliness and pH of the skin were evaluated. Nanoemulsion safety was evaluated through the observation of no undesirable effects after skin formulation application. Both additives caused changes in droplet size and electrical conductivity, but not in pH values. Nanoemulsions containing up to 6.0% ethoxylated lanolin and 2.0% acetylated lanolin remained stable after centrifugation tests. Higher concentrations of the additives made the nanoemulsions unstable. Stability tests showed that ethoxylated lanolin produced more stable nanoemulsions then acetylated lanolin and that the major instability phenomenon occurring in these systems is coalescence at elevated temperatures. Nanoemulsion-based lanolin derivatives increased skin hydration and oiliness and did not change cutaneous pH values. These formulations are non-toxic since they did not cause any irritation on the skin surface after nanoemulsion application, showing potential as carriers for pharmaceuticals and cosmetic applications.

  1. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting

    Science.gov (United States)

    Abd, Eman; Benson, Heather A. E.; Roberts, Michael S.; Grice, Jeffrey E.

    2018-01-01

    In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL) containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC), hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE) promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO) gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids. PMID:29370122

  2. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting

    Directory of Open Access Journals (Sweden)

    Eman Abd

    2018-01-01

    Full Text Available In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL, containing minoxidil (2% and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC, hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids.

  3. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.

    Science.gov (United States)

    Xue, Jia; Zhong, Qixin

    2014-10-08

    Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.

  4. Edible Nanoemulsions as Carriers of Active Ingredients: A Review.

    Science.gov (United States)

    Salvia-Trujillo, Laura; Soliva-Fortuny, Robert; Rojas-Graü, M Alejandra; McClements, D Julian; Martín-Belloso, Olga

    2017-02-28

    There has been growing interest in the use of edible nanoemulsions as delivery systems for lipophilic active substances, such as oil-soluble vitamins, antimicrobials, flavors, and nutraceuticals, because of their unique physicochemical properties. Oil-in-water nanoemulsions consist of oil droplets with diameters typically between approximately 30 and 200 nm that are dispersed within an aqueous medium. The small droplet size usually leads to an improvement in stability, gravitational separation, and aggregation. Moreover, the high droplet surface area associated with the small droplet size often leads to a high reactivity with biological cells and macromolecules. As a result, lipid digestibility and bioactive bioavailability are usually higher in nanoemulsions than conventional emulsions, which is an advantage for the development of bioactive delivery systems. In this review, the most important factors affecting nanoemulsion formation and stability are highlighted, and a critical analysis of the potential benefits of using nanoemulsions in food systems is presented.

  5. Potential Application of Nanoemulsions for Skin Delivery of Pomegranate Peel Polyphenols.

    Science.gov (United States)

    Baccarin, Thaisa; Lemos-Senna, Elenara

    2017-11-01

    Pomegranate peel and seeds have demonstrated to possess antioxidant compounds with potential application to protect the skin against the ultraviolet radiation damage. However, the photoprotection activity is dependent on the amount of these compounds that reach the viable skin layers. In this paper, we describe the in vitro skin permeation and retention of the major pomegranate peel polyphenols using Franz diffusion cells, after entrapping a ethyl acetate fraction (EAF) from Punica granatum peel extract into nanoemulsions (NEs) prepared with pomegranate seed oil (PSO) or medium chain triglyceride oil (MCT). The in vitro skin permeation of gallic acid (GA), ellagic acid (EA), and punicalagin (PC) was evaluated using a HPLC-DAD validated method. After 8 h of skin permeation, all polyphenol compounds were mostly retained in the skin and did not reach the receptor compartment. However, a 2.2-fold enhancement of the retained amount of gallic acid in the stratum corneum was verified after EAF-loaded NEs are applied, when compared with the free EAF. GA and EA were delivered to the viable epidermis and dermis only when nanoemulsions were applied onto the skin. The mean retained amounts of GA and EA in the EP and DE after applying the EAF-loaded PSO-NE were 1.78 and 1.36 μg cm -2 and 1.10 and 0.97 μg cm -2 , respectively. Similar values were obtained after applying the EAF-loaded MCT-NE. The skin permeation results were supported by the confocal microscopy images. These results evidenced the promising application of nanoemulsions to deliver the pomegranate polyphenols into the deeper skin layers.

  6. In Vitro and In Vivo Evaluation of Nanoemulsion Containing Vegetable Extracts

    OpenAIRE

    Pedro Alves Rocha-Filho; Marcio Ferrari; Monica Maruno; Odila Souza; Viviane Gumiero

    2017-01-01

    Oil/Water nanoemulsions were obtained, employing PEG castor oil derivatives/fatty esters surfactant, babassu oil, and purified water from a study based on phase diagrams. The nanoemulsions had been prepared by a low energy process inversion phase emulsion. Different parameters, such as order of addition of the components, temperature, stirring speed, and time, were studied to prepare O/W nanoemulsions. The influence of vegetable extract addition on size distribution of nanoemulsions was also ...

  7. Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization.

    Science.gov (United States)

    Li, Yang; Wu, Chang-Ling; Liu, Jun; Zhu, Ying; Zhang, Xiao-Yuan; Jiang, Lian-Zhou; Qi, Bao-Kun; Zhang, Xiao-Nan; Wang, Zhong-Jiang; Teng, Fei

    2018-05-07

    The nanoemulsions of soy protein isolate-phosphatidylcholine (SPI-PC) with different emulsion conditions were studied. Homogenization pressure and homogenization cycle times were varied, along with SPI and PC concentration. Evaluations included turbidity, particle size, ζ-potential, particle distribution index, and turbiscan stability index (TSI). The nanoemulsions had the best stability when SPI was at 1.5%, PC was at 0.22%, the homogenization pressure was 100 MPa and homogenization was performed 4 times. The average particle size of the SPI-PC nanoemulsions was 217 nm, the TSI was 3.02 and the emulsification yield was 93.4% of nanoemulsions.

  8. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice.

    Science.gov (United States)

    Ragelle, Héloïse; Crauste-Manciet, Sylvie; Seguin, Johanne; Brossard, Denis; Scherman, Daniel; Arnaud, Philippe; Chabot, Guy G

    2012-05-10

    The natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has shown antitumour activity but its administration is complicated by its low water solubility. Our aim was to incorporate fisetin into a nanoemulsion to improve its pharmacokinetics and therapeutic efficacy. Solubility and emulsification tests allowed to develop an optimal nanoemulsion composed of Miglyol 812N/Labrasol/Tween 80/Lipoid E80/water (10%/10%/2.5%/1.2%/76.3%). The nanoemulsion had an oil droplet diameter of 153 ± 2 nm, a negative zeta potential (-28.4 ± 0.6 mV) and a polydispersity index of 0.129. The nanoemulsion was stable at 4 °C for 30 days, but phase separation occurred at 20 °C. Pharmacokinetic studies in mice revealed that the fisetin nanoemulsion injected intravenously (13 mg/kg) showed no significant difference in systemic exposure compared to free fisetin. However, when the fisetin nanoemulsion was administered intraperitoneally, a 24-fold increase in fisetin relative bioavailability was noted, compared to free fisetin. Additionally, the antitumour activity of the fisetin nanoemulsion in Lewis lung carcinoma bearing mice occurred at lower doses (36.6 mg/kg) compared to free fisetin (223 mg/kg). In conclusion, we have developed a stable nanoemulsion of fisetin and have shown that it could improve its relative bioavailability and antitumour activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Small-angle neutron scattering and rheological analyses of nanoemulsion for cosmetics

    International Nuclear Information System (INIS)

    Kume, Takuji

    2014-01-01

    A stable nanoemulsion consisting of nanometer-sized oil droplets in water having a self-standing capability was prepared by high-pressure emulsification. Rheological measurements show that the nanoemulsion has a high viscosity and a yield stress. Small-angle neutron scattering (SANS) revealed the presence of an ordered crystal-like lattice structure in addition to spherical domains with a diameter of ca. 30 nm. Nonfluidity of nanoemulsion is ascribed to crystal-like lattice structure of nanodroplets. A mixed solution of 2-hydroxyethyl cellulose and the nanoemulsion has shear-thickening behavior (shear-induced gelation). Real-time SANS measurements with a Couette geometry as a function of shear rate (Rheo-SANS) revealed that a possible mechanism of gelation was proposed from the viewpoint of shear-induced percolation transition. Furthermore, mixtures of the nanoemulsion and poly(acrylic acid) solutions were opaque and kept the same interdomain distance and high viscosity. We estimated that it had phase-separated structure between nanoemulsion phase and poly(acrylic acid) solution phase. (author)

  10. Effect of nanoemulsion on dental unit waterline biofilm

    Directory of Open Access Journals (Sweden)

    Karthikeyan Ramalingam

    2013-09-01

    Full Text Available Bacterial biofilm in dental unit waterlines (DUWLs is a widespread problem and poses a potentially significant risk of infection to dental staff and patients. The present study investigates the level and composition of bacterial contamination of dental chair syringe waterlines and investigates the efficacy of a cetylpyridinium chloride-containing nanoemulsion disinfectant in reducing bacterial loads. Waterline biofilms exposed to nanoemulsion for 1 hour, 6 hours, 12 hours, 24 hours, 48 hours, and 72 hours showed high reduction of colonies, and very low counts after 12 hours and 24 hours (67 colony-forming units/mL were observed. Exposures for 48 hours and 72 hours showed no or few visible colonies (2 colony-forming units/mL. The nanoemulsion employed improves efficacy against microorganisms more than unemulsified components. DNA sequencing showed that the organisms in the waterline biofilm are primarily of soil or water origin. The findings indicate that nanoemulsion effectively disinfects waterlines to consistently meet the American Dental Association (ADA recommendation.

  11. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    Science.gov (United States)

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  12. Analysis of anti-neoplastic drug in bacterial ghost matrix, w/o/w double nanoemulsion and w/o nanoemulsion by a validated 'green' liquid chromatographic method.

    Science.gov (United States)

    Youssof, Abdullah M E; Salem-Bekhit, Mounir M; Shakeel, Faiyaz; Alanazi, Fars K; Haq, Nazrul

    2016-07-01

    The objective of the present investigation was to develop and validate a 'green' reversed phase high-performance liquid chromatography (RP-HPLC) method for rapid analysis of a cytotoxic drug 5-fluorouracil (5-FU) in bulk drug, marketed injection, water-in-oil (w/o) nanoemulsion, double water-in-oil-in-water (w/o/w) nanoemulsion and bacterial ghost (BG) matrix. The chromatography study was carried out at room temperature (25±1°C) using an HPLC system with the help of ultraviolet (UV)-visible detector. The chromatographic performance was achieved with a Nucleodur 150mm×4.6mm RP C8 column filled with 5µm filler as a static phase. The mobile phase consisted of ethyl acetate: methanol (7:3% v/v) which was delivered at a flow rate of 1.0mLmin(-1) and the drug was detected in UV mode at 254nm. The developed method was validated in terms of linearity (r(2)=0.998), accuracy (98.19-102.09%), precision (% RSD=0.58-1.17), robustness (% RSD=0.12-0.53) and sensitivity with satisfactory results. The efficiency of the method was demonstrated by the assay of the drug in marketed injection, w/o nanoemulsion, w/o/w nanoemulsion and BG with satisfactory results. The successful resolution of the drug along with its degradation products clearly established the stability-indicating nature of the proposed method. Overall, these results suggested that the proposed analytical method could be effectively applied to the routine analysis of 5-FU in bulk drug, various pharmaceutical dosage forms and BG. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Efficient Transdermal Delivery of Benfotiamine in an Animal Model

    OpenAIRE

    Varadi, Gyula; Zhu, Zhen; G. Carter, Stephen

    2015-01-01

    We designed a transdermal system to serve as a delivery platform for benfotiamine utilizing the attributes of passive penetration enhancing molecules to penetrate through the outer layers of skin combined with the advance of incorporating various peripherally-acting vasodilators to enhance drug uptake.  Benfotiamine, incorporated into this transdermal formulation, was applied to skin in an animal model in order to determine the ability to deliver this thiamine pro-drug effectively to the sub-...

  14. Rationalizing lipid nanoemulsion formation for utilization in the food and beverage industry

    Science.gov (United States)

    Rao, Jiajia

    There is growing interest in the use of nanoemulsions as delivery systems for lipophilic functional agents in food and beverage products due to their high optical clarity, physical stability and bioavailability. The goal of this research is to establish quantitative structure-function relationships to allow rational formulation of food-grade nanoemulsions for food and beverage applications. Initially, formation of oil-in-water nanoemulsions using a low energy method was examined. Nanoemulsions were formed using the phase inversion temperature (PIT) method, which involves heating a surfactant, oil, water (SOW) systems near the PIT, and then cooling rapidly with stirring. Preliminary experiments were carried out using a model system consisting of a non-ionic surfactant (C12E4), hydrocarbon oil (tetradecane), and water. Nanoemulsions were formed by holding SOW mixtures near their PIT (38.5 °C) and then cooling them rapidly to 10 °C. The PIT was measured using electrical, conductivity and turbidity methods. The optimum storage temperature for PIT-nanoemulsions was about 27 °C lower than the PIT. The stability of PIT-nanoemulsions at ambient temperatures can be improved by adding either Tween 80 (0.2 wt%) or SDS (0.1 wt%) to displace the C12E4 (Brij 30) from the nano-droplet surfaces. Experiments were then carried out to establish if stable nanoemulsions could be formed using the PIT method from food-grade ingredients. Nanoemulsions were fabricated from a non-ionic surfactant (Tween 80) and flavor oil (lemon oil) by heat treatment. Different types of colloidal dispersion could be formed by simple heat treatment (90 °C, 30 minutes) depending on the surfactant-to-oil ratio (SOR): emulsions at SOR 2. The results suggested that there was a kinetic energy barrier in the SOW system at ambient temperature that prevented it from moving from a highly unstable system into a nanoemulsion system. The conditions where stable nanoemulsions could be fabricated were also

  15. Cyclooxgenase-2 inhibiting perfluoropoly (ethylene glycol ether theranostic nanoemulsions-in vitro study.

    Directory of Open Access Journals (Sweden)

    Sravan Kumar Patel

    Full Text Available Cylcooxgenase-2 (COX-2 expressing macrophages, constituting a major portion of tumor mass, are involved in several pro-tumorigenic mechanisms. In addition, macrophages are actively recruited by the tumor and represent a viable target for anticancer therapy. COX-2 specific inhibitor, celecoxib, apart from its anticancer properties was shown to switch macrophage phenotype from tumor promoting to tumor suppressing. Celecoxib has low aqueous solubility, which may limit its tumor inhibiting effect. As opposed to oral administration, we propose that maximum anticancer effect may be achieved by nanoemulsion mediated intravenous delivery. Here we report multifunctional celecoxib nanoemulsions that can be imaged by both near-infrared fluorescence (NIRF and (19F magnetic resonance. Celecoxib loaded nanoemulsions showed a dose dependent uptake in mouse macrophages as measured by (19F NMR and NIRF signal intensities of labeled cells. Dramatic inhibition of intracellular COX-2 enzyme was observed in activated macrophages upon nanoemulsion uptake. COX-2 enzyme inhibition was statistically equivalent between free drug and drug loaded nanoemulsion. However, nanoemulsion mediated drug delivery may be advantageous, helping to avoid systemic exposure to celecoxib and related side effects. Dual molecular imaging signatures of the presented nanoemulsions allow for future in vivo monitoring of the labeled macrophages and may help in examining the role of macrophage COX-2 inhibition in inflammation-cancer interactions. These features strongly support the future use of the presented nanoemulsions as anti-COX-2 theranostic nanomedicine with possible anticancer applications.

  16. Development and evaluation of nitrendipine nanoemulsion for intranasal delivery.

    Science.gov (United States)

    Jain, Ratnesh; Patravale, Vandana B

    2009-02-01

    The clinical efficacy of Nitrendipine (NDP), a potent antihypertensive molecule, is limited due to its low oral bioavailability (10% to 20%) resulting from its extensive first-pass metabolism. The purpose of the present investigation was to enhance the bioavailability of NDP through formulating a nanoemulsion for its intranasal delivery. A Caproyl 90 based nanoemulsion sytem with Tween 80 as the surfactant, Transcutol P and Solutol HS-15 as solubiliser and cosurfactant respectively, was developed. A single isotropic region, which is considered as a bicontinuous nanoemulsion, was identified in the pseudo-ternary phase diagrams developed at various Tween 80: Transcutol P: Solutol HS-15 ratios. NDP was solubilized in a system consisting of Tween 80: Transcutol P: Solutol HS-15 at 1:2:1 weight ratio. The developed nanoemulsion was safe for nasal administration as confirmed by nasal histopathlogy studies with the mean globule size of 98.50 nm. The drug content per actuation was found to be 99.58 +/- 0.05%, with no significant changes over a period of one month. In vivo absorption studies revealed that NDP absorption from the nanoemulsion had a rapid onset of action and a relative bioavailability of 60.44%, significantly greater than the marketed oral tablets.

  17. Nanoemulsions of cancer chemopreventive agent benzyl isothiocyanate display enhanced solubility, dissolution, and permeability.

    Science.gov (United States)

    Qhattal, Hussaini Syed Sha; Wang, Shu; Salihima, Tri; Srivastava, Sanjay K; Liu, Xinli

    2011-12-14

    Benzyl isothiocyanate (BITC), a compound found in cruciferous vegetables, is an effective chemopreventive agent. The objective of this study was to develop nanoemulsion formulations for the oral delivery of BITC. Optimized oil-in-water BITC nanoemulsions were prepared by a spontaneous self-nanoemulsification method and a homogenization-sonication method. Both nanoemulsions entrapped high amounts of BITC (15-17 mg/mL), with low polydispersity and good colloidal stability. The BITC nanoemulsions showed enhanced solubility and dissolution compared to pure BITC. These formulations markedly increased the apical to basolateral transport of BITC in Caco-2 cell monolayers. The apparent permeability values were 3.6 × 10(-6) cm/s for pure BITC and (1.1-1.3) × 10(-5) cm/s for BITC nanoemulsions. The nanoemulsions were easily taken up by human cancer cells A549 and SKOV-3 and inhibited tumor growth in vitro. This work shows for the first time that BITC can be formulated into nanoemulsions and may show promise in enhancing absorption and bioavailability.

  18. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  19. Hyperosmotic nanoemulsions: Development and application of a new antimicrobial treatment for wound care

    Science.gov (United States)

    Connell, Sean

    Wound healing is the intricate process that restores function to damaged skin. The process consists of the inflammatory, proliferative and remodeling phases that orchestrate dynamic cellular responses to regenerate the cutaneous barrier. However, microbial contamination of the wound site stimulates a deleterious inflammatory response with the production of endotoxins, exotoxins and proteases that result in secondary injury. The end result is delayed healing, protracted debilitation and increased health care costs. Controlling contamination is critical for proper wound management and reduced burden on the healthcare system. Based on this concern, we developed and applied a new antimicrobial therapeutic that relies on hyperosmotic nanoemulsions (HNE). The biomechanical process consists of a high-energy nanoemulsion component that permeates the protective microbial membrane and a (ii) nonionic hyperosmoticum that facilitates intracellular water extraction to critically dehydrate the pathogen. HNE was shown to be effective against a multitude of pathogens including bacteria, antibiotic-resistant variants, fungi and viruses. Reported non-clinical studies demonstrate that the membrane disrupting nanoemulsion and hyperosmotic component act synergistically to enhance microbicidal activity. Further, results illustrate that pathogen inactivation was rapid as determined by ion and macromolecule leakage assays. Application of HNE in a pre-clinical animal model of wound healing demonstrated the treatment actively promoted healing to reduce treatment times. HNE mitigated wound infection to reduce the inflammatory response and mechanically debrided the wound to facilitate wound closure. Recent work further enhanced the stability of the nanoemulsion component with the addition of surfactant stabilizers using a low-energy spontaneous emulsification process. The refined nanoemulsion composition was stable against physical stressors and long-term storage without disrupting the

  20. Effects of nano-emulsion preparations of tocopherols and tocotrienols on oxidative stress and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Song Liang-Song

    2017-01-01

    Full Text Available Tocopherols and tocotrienols are two groups of compounds in the vitamin E family, of which the tocopherols are widely used as antioxidant dietary supplements. Recent studies have shown mixed observations for tocopherol functions in bone homeostasis. We have evaluated the potency of suspension- and nano-emulsion formulation-based delivery of different vitamin E family members in lipopolysaccharide (LPS-induced oxidative stress and osteoblast differentiation. Our results showed the both tocopherols and tocotrienols could reduce oxidative stress as evaluated by the levels of reactive oxygen species (ROS. Their effects were enhanced when applied in the nano-emulsion mode of delivery due to increased bioavailability. In addition, our results showed that tocotrienols increased osteoblast differentiation, while tocopherols showed reduced osteoblast differentiation, which may be due to their differential effects on SMAD and p65 signaling. Together, these findings indicate that tocotrienols delivered through nano-emulsion exhibit superior antioxidant properties and osteoblast differentiation, and could serve as a better alternative to tocopherol-based vitamin E supplements.

  1. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies.

    Science.gov (United States)

    Hu, Qiaobin; Gerhard, Hannah; Upadhyaya, Indu; Venkitanarayanan, Kumar; Luo, Yangchao

    2016-06-01

    The purpose of present work was to develop eugenol oil nanoemulsions using gum arabic and lecithin as food grade natural emulsifiers, and study their antimicrobial activity. In addition, our study also evaluated different drying techniques (spray drying and freeze drying) on the morphology and redispersibility of nanoemulsion powders. The optimal fabrication method, physicochemical and structural characterization, stability, and antimicrobial activity were investigated. Results showed that nanoemusions with a particle size of 103.6±7.5nm were obtained by mixing aqueous phase (0.5% gum arabic, 0.5% lecithin, w/v) and eugenol oil (1.25%, w/v), which was premixed with ethanol (as a co-surfactant), followed by high speed homogenization process. The molecular interactions among emulsifiers and eugenol were evidenced by Fourier transform infrared spectroscopy. Buchi B-90 Nano Spray Dryer was evaluated as a powerful tool to obtain ultrafine spherical powders with a size of less than 500nm, compared to flake-like aggregation obtained by freeze-drying. The dried powders exhibited excellent re-dispersibility in water and maintained their physicochemical properties after re-hydration. The nanoemulsions did not adversely affect the antimicrobial activity of eugenol against Listeria monocytogenes and Salmonella Enteritidis. Therefore, the nanoemulsions have the potential to be applied in the food industry as a food preservative or sanitizer. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    Science.gov (United States)

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  3. Exotic Vegetable Oils for Cosmetic O/W Nanoemulsions: In Vivo Evaluation

    OpenAIRE

    Tatiana A. Pereira; Carolina M. Guerreiro; Monica Maruno; Marcio Ferrari; Pedro Alves Rocha-Filho

    2016-01-01

    Oil-in-water nanoemulsions are stable systems with droplet sizes in the 20–200 nm range. The physicochemical properties of these systems may be influenced by the addition of additives. Thus, the influence of ethoxylated (EL) and acetylated lanolin (AL) addition on the droplet size, pH values, electrical conductivity and stability of nanoemulsions was investigated. Then, effect of nano-emulsions additives with EL (NE-EL) or AL (NE-AL) in hydration, oiliness and pH of the skin were evaluated. N...

  4. Antimicrobial activity of suspensions and nanoemulsions of citral in combination with heat or pulsed electric fields.

    Science.gov (United States)

    Pagán, E; Berdejo, D; Espina, L; García-Gonzalo, D; Pagán, R

    2018-01-01

    The application of essential oils in form of nanoemulsions has been proposed as a method to improve their solubility in aqueous solutions, and hence their antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of citral, applied directly or in combined treatments with heat or pulsed electric fields (PEF), as a function of the inoculation procedure assayed: (i) a simple, vigorous shaking method by vortex agitation (suspension of citral; s-citral) or (ii) the previous preparation of nanoemulsions by the emulsion phase inversion (EPI) method (nanoemulsion of citral; n-citral). n-Citral was more effective in either inhibiting or inactivating Escherichia coli O157:H7 Sakai than s-citral. However, when combined with heat, a greater synergistic effect was observed with s-citral rather than with n-citral, either in lab media (pH 7·0 and 4·0) or apple juice. For instance, while almost 5 log 10 cell cycles were inactivated in apple juice after 15 min at 53°C in the presence of 0·1 μl ml -1 of s-citral, the use of n-citral required 30 min. The use of nanoemulsions did not modify the slight synergism observed when citral and mild PEF were combined (150 μs, 30 kV cm -1 ). The exploration of different delivery systems of antimicrobial compounds such as citral in aqueous food products aids in the establishment of successful combined treatments for food preservation. While at room temperature, citral in form of a nanoemulsion shows a higher antimicrobial activity; its combination with heat would imply a partial loss of the outstanding synergistic lethal effect achieved when added in suspension form. Therefore, the most suitable procedure to magnify the synergism between heat and citral when processing juices would merely require an intense homogenization step prior to the combined treatment. © 2017 The Society for Applied Microbiology.

  5. Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion

    Science.gov (United States)

    Aisyah, Y.; Irwanda, L. P.; Haryani, S.; Safriani, N.

    2018-05-01

    This study aimed to formulate corn starch-based edible films by varying concentrations of nutmeg oil nanoemulsion and glycerol. Furthermore, the resulted edible film was characterized by its mechanical properties and antibacterial activity. The edible films were made using corn starch, nutmeg oil nanoemulsion, and glycerol. Concentrations of nutmeg oil nanoemulsion were 1%, 2%, and 3%, and glycerol were 10%, 20%, and 30%. Results indicated that the increase of nutmeg oil nanoemulsion concentration could increase the film thickness. However, the nutmeg oil had no effect on the film tensile strength and elongation. Glycerol had no effect on the film tensile strength. The best treatment of the corn starch-based film was obtained by adding 1% of nutmeg oil and 30% of glycerol, yielding a tensile strength of 18.73 Kgf/mm2, elongation of 69.44% and thickness of 0.0840. The addition of 1% nutmeg oil nanoemulsion has been able to inhibit the growth of two types of the bacteria tested (Staphylococcus aureus and Escherichia coli).

  6. Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.

    Science.gov (United States)

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-09-01

    Lauric arginate (LAE) is a cationic surfactant with excellent antimicrobial activities. To incorporate essential oil components (EOCs) in aqueous systems, properties of EOC nanoemulsions prepared with a LAE and lecithin mixture were studied. The LAE-lecithin mixture resulted in stable translucent nanoemulsions of thymol and eugenol with spherical droplets smaller than 100nm, contrasting with the turbid emulsions prepared with individual emulsifiers. Zeta-potential data suggested the formation of LAE-lecithin complexes probably through hydrophobic interaction. Negligible difference was observed for antimicrobial activities of nanoemulsions and LAE in tryptic soy broth. In 2% reduced fat milk, nanoemulsions showed similar antilisterial activities compared to free LAE in inhibiting Listeria monocytogenes, but was less effective against Escherichia coli O157:H7 than free LAE, which was correlated with the availability of LAE as observed in release kinetics. Therefore, mixing LAE with lecithin improved the physical properties of EOC nanoemulsions but did not improve antimicrobial activities, especially against Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Report: Potential of nano-emulsions as phytochemical delivery system for food preservation.

    Science.gov (United States)

    Mahmood, Zaffar; Jahangir, Muhammad; Liaquat, Muhammad; Shah, Syed Wasim Ahmad; Khan, Muhammad Mumtaz; Stanley, Roger; D'Arcy, Bruce

    2017-11-01

    Nature is a rich source of bioactive phytochemicals. These plant based compounds have rich scope as antioxidants, antimicrobial compounds and food preservatives and so for long time to be used in meat, fruits, vegetables and processed food items, either as added preservative or as coating material in various food applications, but the major limitation is their limited solubility in a food grade medium. Nano-emulsion is a best choice as a medium having vast area of application. The major advantage of nano-emulsion would be the solubility of a vast group of compounds, due to the presence of water and lipid phases. In this way, nano-emulsions can be proved to be the most suitable candidate as phytochemical delivery system for food preservation. In present article, the use of phytochemicals as potent food preservatives has been reviewed, in context of solubility of phytochemicals in nano-emulsion and applications of food grade nano-emulsions to food systems.

  8. Transdermal deferoxamine prevents pressure-induced diabetic ulcers.

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W; Maan, Zeshaan N; Rennert, Robert C; Inayathullah, Mohammed; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V; Whitmore, Arnetha J; Walmsley, Graham G; Galvez, Michael G; Whittam, Alexander J; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C

    2015-01-06

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.

  9. Characteristics of Nano-emulsion for Cold Thermal Storage

    Science.gov (United States)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.

  10. Challenges and opportunities in dermal/transdermal delivery

    Science.gov (United States)

    Paudel, Kalpana S; Milewski, Mikolaj; Swadley, Courtney L; Brogden, Nicole K; Ghosh, Priyanka; Stinchcomb, Audra L

    2010-01-01

    Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin irritation would widen the transdermal market for hydrophilic compounds, macromolecules and conventional drugs for new therapeutic indications. As evident from the ongoing clinical trials of a wide variety of drugs for various clinical conditions, there is a great future for transdermal delivery of drugs. PMID:21132122

  11. A New Application of Lipid Nanoemulsions as Coating Agent, Providing Zero-Order Hydrophilic Drug Release from Tablets

    Directory of Open Access Journals (Sweden)

    Nicolas Anton

    2012-01-01

    Full Text Available The objective of the present investigation was to evaluate potential of nanoemulsions as a coating material for the tablets. The nanoemulsion of size less than 100 nm was prepared using a simple and low-energy spontaneous emulsification method. Conventional tablets containing theophylline as a model hydrophilic drug were prepared. The theophylline tablets were coated with the nanoemulsion using a fluid bed coater. The effect of different levels of the nanoemulsion coating on the theophylline release was evaluated. The theophylline tablets containing different levels of the nanoemulsion coating could be successfully prepared. Interestingly, the coating of tablet with the nanoemulsion resulted in zero-order release of theophylline from the tablets. The noncoated theophylline tablets release the entire drug in less than 2 minutes, whereas nanoemulsion coating delayed the release of theophylline from tablets. This investigation establishes the proof of concept for the potential of nanoemulsions as a coating material for tablets.

  12. Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion

    Science.gov (United States)

    Sondari, Dewi; Haryono, Agus; Harmami, Sri Budi; Randy, Ahmad

    2010-05-01

    The influence of the Palmitoyl Pentapeptide (PPp) and Ceramide IIIB (Cm III B) as active ingredients on the droplet size of nano-emulsion was studied using different kinds of oil (avocado oil, sweet almond oil, jojoba oil, mineral oil and squalene). The formation of nano-emulsions were prepared in water mixed non ionic surfactant/oils system using the spontaneous emulsification mechanism. The aqueous solution, which consist of water and Tween® 20 as a hydrophilic surfactant was mixed homogenously. The organic solution, which consist of oil and Span® 80 as a lipophilic surfactant was mixed homogenously in ethanol. Ethanol was used as a water miscible solvent, which can help the formation of nano-emulsion. The oil phase (containing the blend of surfactant Span® 80, ethanol, oil and active ingredient) and the aqueous phase (containing water and Tween® 20) were separately prepared at room temperatures. The oil phase was slowly added into aqueous phase under continuous mechanical agitation (18000 rpm). All samples were subsequently homogenized with Ultra-Turrax for 30 minutes. The characterizations of nano-emulsion were carried out using photo-microscope and particle size analyzer. Addition of active ingredients on the formation of nano-emulsion gave smallest droplet size compared without active ingredients addition on the formation of nano-emulsion. Squalene oil with Palmitoyl Pentapeptide (PPm) and Ceramide IIIB (Cm IIIB) gave smallest droplet size (184.0 nm) compared without Palmitoyl Pentapeptide and Ceramide IIIB (214.9 nm), however the droplets size of the emulsion prepared by the other oils still in the range of nano-emulsion (below 500 nm). The stability of nano-emulsion was observed using two methods. In one method, the stability of nano-emulsion was observed for three months at temperature of 5°C and 50°C, while in the other method, the stability nano-emulsion was observed by centrifuged at 12000 rpm for 30 minutes. Nanoemulsion with active ingredient

  13. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  14. Alghedon Fentanyl Transdermal System.

    Science.gov (United States)

    Romualdi, Patrizia; Santi, Patrizia; Candeletti, Sanzio

    2017-04-01

    The efficacy of transdermal fentanyl for cancer pain and chronic non-cancer pain (chronic lower back pain, rheumatoid arthritis, osteoarthritis, neuropathic pain) is well established. Several formulations of fentanyl transdermal systems have been developed to improve the drug delivery and prevent misuse of the active principle. The addition of a rate controlling membrane to the matrix system represented an important advance. The design and functional features of Alghedon patch are compared with other approved generic fentanyl transdermal systems, emphasizing the distinctiveness of Alghedon patch. Alghedon patch has no liquid component in the finished product, therefore no leakage of active ingredient from the system can occur. A rate-controlling membrane provides controlled release of the active substance from the matrix reservoir, ensuring that fentanyl delivery and entry into the microcirculation is not solely controlled by the skin's permeability to this active substance. Alghedon patch contains part of the drug (approximately 15%) in the skin-contact adhesive: this innovative solution allows to overcome a typical drawback of transdermal patches, i.e. the long lag-time before the drug appears in plasma after the first administration, and provides rapid analgesia during the first hours of administration. Alghedon Fentanyl Transdermal System employs materials commonly used in other transdermal applications and having established safety profiles. For each strength level, the fentanyl content - and, thus, the resulting residual fentanyl remaining in the patch after use - is at the lowest end of the range used in commercially available fentanyl patches, minimizing the potential for abuse and misuse.

  15. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.

    Science.gov (United States)

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation.

  16. Improved Physicochemical Properties of Yogurt Fortified with Fish Oil/γ-Oryzanol by Nanoemulsion Technology.

    Science.gov (United States)

    Zhong, Jinfeng; Yang, Rong; Cao, Xiaoyi; Liu, Xiong; Qin, Xiaoli

    2018-01-02

    Fish oil has several dietary benefits, but its application in food formulations is limited because of its poor water-solubility, easy oxidation and strong odor. The purposes of this study were to produce a fish oil/γ-oryzanol nanoemulsion and to evaluate the effect of adding this nanoemulsion on the physicochemical and sensory characteristics of yogurts. Adding fish oil/γ-oryzanol nanoemulsion resulted in a significant reduction in the acidity and syneresis of yogurt. Yogurt with the nanoemulsion had significantly lower peroxide value (0.28 mmol/L after 21 days) and higher retention of eicosapentaenoic acid and docosahexaenoic acid contents (decreased to 95% and 94% of its initial value, respectively) than yogurt with fish oil/γ-oryzanol (peroxide value = 0.65 mmol/L; eicosapentaenoic acid and docosahexaenoic acid contents decreased to 72% and 53% of its initial value, respectively). Fish oil/γ-oryzanol nanoemulsion incorporated into yogurt had closer sensory attributes scores to plain yogurt. This study may have important implications for the application of fish oil/γ-oryzanol nanoemulsion in yogurt.

  17. Development and characterization of evening primrose (Oenothera biennis oil nanoemulsions

    Directory of Open Access Journals (Sweden)

    Railane F. Rodrigues

    Full Text Available AbstractEvening primrose (Oenothera biennis L., Onagraceae seeds oil has great economic importance due to its wide industrial application, mainly for medicines and nutraceutics. However, to our knowledge, it remains almost unexplored regarding development of innovative formulations, such as nanoemulsions. On the present study, required Hydroprophile–Lipophile Balance of evening primrose seeds oil was determined (HLB 12 and a stable nanoemulsion (Day 1: mean droplet size: 214.3 ± 0.69 nm, polydispersity index: 0.253 ± 0.012. Day 7: mean droplet size: 202.8 ± 0.23 nm, polydispersity index: 0.231 ± 0.008 was achieved. Moreover, pseudo-ternary diagram allowed delimitation of nanoemulsion region, contributing to nanobiotechnology of natural products.

  18. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3

    OpenAIRE

    Kabri, Tin-hinan; Arab-Tehrany, Elmira; Belhaj, Nabila; Linder, Michel

    2011-01-01

    Abstract Background Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions...

  19. Transdermal deferoxamine prevents pressure-induced diabetic ulcers

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W.; Maan, Zeshaan N.; Rennert, Robert C.; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V.; Whitmore, Arnetha J.; Galvez, Michael G.; Whittam, Alexander J.; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C.

    2015-01-01

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation. PMID:25535360

  20. Minimization of CYP2D6 Polymorphic Differences and Improved Bioavailability via Transdermal Administration: Latrepirdine Example.

    Science.gov (United States)

    Chew, Marci L; Mordenti, Joyce; Yeoh, Thean; Ranade, Gautam; Qiu, Ruolun; Fang, Juanzhi; Liang, Yali; Corrigan, Brian

    2016-08-01

    Transdermal delivery has the potential to offer improved bioavailability by circumventing first-pass gut and hepatic metabolism. This study evaluated the pharmacokinetics of oral immediate release and transdermal latrepirdine in extensive and poor CYP2D6 metabolizers (EM/PM). Latrepirdine transdermal solution was prepared extemporaneously. The solution was applied with occlusive dressing to upper or middle back for 24 h. Each subject received a single dose of 8.14 mg oral, 5 mg transdermal, and 10 mg transdermal (EMs only) latrepirdine free base in a fixed sequence. Twelve EMs and 7 PMs (50-79 years) enrolled and completed the study. Latrepirdine was well tolerated following both routes of administration. Dose-normalized latrepirdine total exposures were approximately 11-fold and 1.5-fold higher in EMs and PMs, respectively following administration of transdermal relative to oral. Differences between EM and PM latrepirdine exposures were decreased, with PMs having 1.9- and 2.7-fold higher peak and total exposures, respectively, following transdermal administration compared to 11- and 20-fold higher exposures, respectively, following oral administration. Transdermal delivery can potentially mitigate the large intersubject differences observed with compounds metabolized primarily by CYP2D6. Transdermal delivery was readily accomplished in the clinic using an extemporaneously prepared solution [NCT00990613].

  1. Transdermal and Topical Drug Administration in the Treatment of Pain

    Directory of Open Access Journals (Sweden)

    Wojciech Leppert

    2018-03-01

    Full Text Available The comprehensive treatment of pain is multidimodal, with pharmacotherapy playing a key role. An effective therapy for pain depends on the intensity and type of pain, the patients’ age, comorbidities, and appropriate choice of analgesic, its dose and route of administration. This review is aimed at presenting current knowledge on analgesics administered by transdermal and topical routes for physicians, nurses, pharmacists, and other health care professionals dealing with patients suffering from pain. Analgesics administered transdermally or topically act through different mechanisms. Opioids administered transdermally are absorbed into vessels located in subcutaneous tissue and, subsequently, are conveyed in the blood to opioid receptors localized in the central and peripheral nervous system. Non–steroidal anti–inflammatory drugs (NSAIDs applied topically render analgesia mainly through a high concentration in the structures of the joint and a provision of local anti–inflammatory effects. Topically administered drugs such as lidocaine and capsaicin in patches, capsaicin in cream, EMLA cream, and creams containing antidepressants (i.e., doxepin, amitriptyline act mainly locally in tissues through receptors and/or ion channels. Transdermal and topical routes offer some advantages over systemic analgesic administration. Analgesics administered topically have a much better profile for adverse effects as they relieve local pain with minimal systemic effects. The transdermal route apart from the above-mentioned advantages and provision of long period of analgesia may be more convenient, especially for patients who are unable to take drugs orally. Topically and transdermally administered opioids are characterised by a lower risk of addiction compared to oral and parenteral routes.

  2. Bioactivity of Epigallocatechin Gallate Nanoemulsions Evaluated in Mice Model.

    Science.gov (United States)

    Koutelidakis, Antonios E; Argyri, Konstantina; Sevastou, Zoi; Lamprinaki, Dimitra; Panagopoulou, Elli; Paximada, Evi; Sali, Aggeliki; Papalazarou, Vassilis; Mallouchos, Athanasios; Evageliou, Vasiliki; Kostourou, Vasiliki; Mantala, Ioanna; Kapsokefalou, Maria

    2017-09-01

    The hypothesis that incorporation of epigallocatechin gallate (EGCG) into nanoemulsions may increase its bioactivity compared with EGCG aqueous solutions was examined in mice. After an in vitro study in a model system with stimulated gastrointestinal conditions, the following EGCG nanoemulsions were used in a mice experiment: Emulsion I: emulsion water in oil (W/O), which contained 0.23 mg/mL EGCG in aqueous phase; Emulsion II: emulsion oil in water (O/W), which contained 10% olive oil and 0.23 mg/mL esterified EGCG in fatty phase; and Emulsion III: emulsion O/W in water (W1/O/W2; 8:32:60), which contained 32% olive oil and 0.23 mg/mL EGCG in aqueous phase. After 2 h of mice administration by gavage with 0.1 mL of EGCG nanoemulsions, total antioxidant capacity (TAC) of plasma and some tissues (especially colon, jejunum, heart, spleen) was measured with Ferric-Reducing Antioxidant Power (FRAP) and Oxygen Radical Absorbance Capacity (ORAC) assays. No toxic effects were observed after administration of 0.23 mg/mL esterified EGCG in CD1 mouse strain. The study concluded that administration of mice with the three EGCG nanoemulsions did not increase their TAC in specific tissues, compared with an aqueous EGCG solution at the same concentration. Nevertheless, the esterified EGCG emulsion (Emulsion II) exerted an increase in mice plasma compared with aqueous EGCG and showed higher values of TAC in several tissues, compared with Emulsions I and III. EGCG nanoemulsions could be considered a useful method in plethora functional food applications, but further research is required for safer results.

  3. Transdermal patches: history, development and pharmacology

    Science.gov (United States)

    Pastore, Michael N; Kalia, Yogeshvar N; Horstmann, Michael; Roberts, Michael S

    2015-01-01

    Transdermal patches are now widely used as cosmetic, topical and transdermal delivery systems. These patches represent a key outcome from the growth in skin science, technology and expertise developed through trial and error, clinical observation and evidence-based studies that date back to the first existing human records. This review begins with the earliest topical therapies and traces topical delivery to the present-day transdermal patches, describing along the way the initial trials, devices and drug delivery systems that underpin current transdermal patches and their actives. This is followed by consideration of the evolution in the various patch designs and their limitations as well as requirements for actives to be used for transdermal delivery. The properties of and issues associated with the use of currently marketed products, such as variability, safety and regulatory aspects, are then described. The review concludes by examining future prospects for transdermal patches and drug delivery systems, such as the combination of active delivery systems with patches, minimally invasive microneedle patches and cutaneous solutions, including metered-dose systems. PMID:25560046

  4. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  5. Challenges and opportunities in dermal/transdermal delivery

    OpenAIRE

    Paudel, Kalpana S; Milewski, Mikolaj; Swadley, Courtney L; Brogden, Nicole K; Ghosh, Priyanka; Stinchcomb, Audra L

    2010-01-01

    Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin i...

  6. Pharmacokinetics of 2 Formulations of Transdermal Fentanyl in Cynomolgus Macaques (Macaca fascicularis)

    Science.gov (United States)

    Carlson, Amy M; Kelly, Richard; Fetterer, David P; Rico, Pedro J; Bailey, Emily J

    2016-01-01

    Fentanyl is a μ-opioid agonist that often is used as the analgesic component for balanced anesthesia in both human and veterinary patients. Minimal information has been published regarding appropriate dosing, and the pharmacokinetics of fentanyl are unknown in NHP. The pharmacokinetic properties of 2 transdermal fentanyl delivery methods, a solution (2.6 and 1.95 mg/kg) and a patch (25 µg/h), were determined when applied topically to the dorsal scapular area of cynomolgus macaques (Macaca fascicularis). Serum fentanyl concentrations were analyzed by using liquid chromatography–mass spectrometry. Compared with the patch, the transdermal fentanyl solution generated higher drug concentrations over longer time. Adverse reactions occurred in the macaques that received the transdermal fentanyl solution at 2.6 mg/kg. Both preparations showed significant interanimal variability in the maximal serum drug levels, time to achieve maximal fentanyl levels, elimination half-life, and AUC values. Both the maximal concentration and the time at which this concentration occurred were increased in macaques compared with most other species after application of the transdermal fentanyl patch and compared with dogs after application of the transdermal fentanyl solution. The pharmacokinetic properties of transdermal fentanyl in macaques are markedly different from those in other veterinary species and preclude its use as a long-acting analgesic drug in NHP. PMID:27423151

  7. Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design

    Directory of Open Access Journals (Sweden)

    Jonathan Williams

    2013-09-01

    Full Text Available This report describes novel perfluorocarbon (PFC nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI. 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5–2.0 g/mL. This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm and low polydispersity (<0.15, show a single peak in the 19F nuclear magnetic resonance spectrum at −71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C. Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented.

  8. Characterization of rice bran wax policosanol and its nanoemulsion formulation

    Directory of Open Access Journals (Sweden)

    Ishaka A

    2014-05-01

    Full Text Available Aminu Ishaka,1,2 Mustapha Umar Imam,1 Rozi Mahamud,3 Abu Bakar Zakaria Zuki,4 Ismail Maznah1 1Laboratory of Molecular Biomedicine, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia; 2Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria; 3Faculty of Medicine and Health Sciences, 4Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56–94.52 nm, with optimum charge distribution (-55.8 to -45.12 mV, pH (6.79–6.92 and refractive index (1.50; these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times. Keywords: rice bran wax, policosanol, nanoemulsion, characterization

  9. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro

    Directory of Open Access Journals (Sweden)

    Sugumar S

    2015-10-01

    Full Text Available Saranya Sugumar, Amitava Mukherjee, Natarajan Chandrasekaran Centre for Nanobiotechnology, VIT University, Vellore, India Abstract: Eucalyptus oil (Eucalyptus globulus nanoemulsion was formulated using low- and high-energy emulsification methods. Development of nanoemulsion was optimized for system parameters such as emulsifier type, emulsifier concentration, and emulsification methods to obtain a lower droplet size with greater stability. The minimized droplet diameter was achieved using the high-energy method of ultrasonication. Tween 80 was more effective in reducing droplet size and emulsion appearance when compared to Tween 20. Stable nanoemulsion was formulated with Tween 80 as a surfactant, and the particle size was found to be 9.4 nm (1:2 v/v. The eucalyptus oil nanoemulsion was impregnated into chitosan (1% as a biopolymer in varying concentrations. Further, the film was characterized by moisture content, microscopic study, X-ray diffraction, and Fourier transform infrared spectroscopy. Also, the film with and without nanoemulsion was evaluated against Staphylococcus aureus. The nanoemulsion-impregnated chitosan film showed higher antibacterial activity than chitosan film. These results support the inclusion of nanoemulsion-impregnated chitosan film in wound management studies. Keywords: essential oil, emulsion, biopolymer, impregnation, thin film, wound isolate

  10. Nanoemulsion-based delivery systems to improve functionality of lipophilic components

    Directory of Open Access Journals (Sweden)

    ISABEL eODRIOZOLA-SERRANO

    2014-12-01

    Full Text Available The use of active lipophilic substances such as antimicrobials and health-related compounds in the food industry still is a challenge due to their poor water-solubility and instability in food formulations. Nano-sized structures such as nanoemulsions of oil-in-water are regarded as useful tools with a great potential in the food sector to incorporate food ingredients. Reducing the size of the active compounds incorporated within a solution would increase the surface area per mass unit of nanoemulsions thus enhancing solubility and stability in foods. In addition, the ability of the active lipids to penetrate across biological membranes is also enhanced, thus boosting their biological functionality. An overview of the most significant studies reporting data about the potential benefits of active lipid nanoemulsions over conventional emulsions is presented.

  11. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  12. Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with sialic acid-cholesterol conjugate.

    Science.gov (United States)

    Shi, Jia; Zhou, Songlei; Kang, Le; Ling, Hu; Chen, Jiepeng; Duan, Lili; Song, Yanzhi; Deng, Yihui

    2018-02-01

    Numerous studies have recently shown that vitamin K 2 (VK 2 ) has antitumor effects in a variety of tumor cells, but there are few reports demonstrating antitumor effects of VK 2 in vivo. The antitumor effects of VK 2 in nanoemulsions are currently not known. Therefore, we sought to characterize the antitumor potential of VK 2 nanoemulsions in S180 tumor cells in the present study. Furthermore, a ligand conjugate sialic acid-cholesterol, with enhanced affinity towards the membrane receptors overexpressed in tumors, was anchored on the surface of the nanoemulsions to increase VK 2 distribution to the tumor tissue. VK 2 was encapsulated in oil-in-water nanoemulsions, and the physical and chemical stability of the nanoemulsions were characterized during storage at 25 °C. At 25 °C, all nanoemulsions remained physically and chemically stable with little change in particle size. An in vivo study using syngeneic mice with subcutaneously established S180 tumors demonstrated that intravenous or intragastric administration of VK 2 nanoemulsions significantly suppressed the tumor growth. The VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate showed higher tumor growth suppression than the VK 2 nanoemulsions, while neither of them exhibited signs of drug toxicity. In summary, VK 2 exerted effective antitumor effects in vivo, and VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate enhanced the antitumor activity, suggesting that these VK 2 may be promising agents for the prevention or treatment of tumor in patients.

  13. Transdermal nitroglycerine enhances postoperative analgesia of intrathecal neostigmine following abdominal hysterectomies

    Directory of Open Access Journals (Sweden)

    Fareed Ahmed

    2010-01-01

    Full Text Available This study was carried out to assess the effect of nitroglycerine (transdermal on intrathecal neostigmine with bupivacaine on postoperative analgesia and note the incidence of adverse effects, if any. After taking informed consent, 120 patients of ASA Grade I and II were systematically randomised into four groups of 30 each. Patients were premedicated with midazolam 0.05 mg/kg intravenously and hydration with Ringer′s lactate solution 10ml/kg preoperatively in the holding room. Group I patients received Intrathecal injection of 15 mg bupivacaine with 1ml of normal saline and transdermal placebo patch. Group II patients received Intrathecal injection of 15 mg bupivacaine with 5 mcg of neostigmine and transdermal placebo patch. Group III patients received Intrathecal injection of 15 mg bupivacaine with 1ml of normal saline with transdermal nitroglycerine patch (5 mg/24 hours. Group IV patients received Intrathecal injection of 15 mg bupivacaine with 5mcg of neostigmine and transdermal nitroglycerine patch (5 mg/24 hours, applied on a non anaesthetised area after 20 minutes. Groups were demographically similar and did not differ in intraoperative characteristics like sensory block, motor block, haemodynamic parameters and SpO 2 . The mean duration of analgesia was 202.17 minutes, 407.20 minutes, 207.53 minutes and 581.63 minutes in control group (I, neostigmine group (II, nitroglycerine group (III and nitroglycerine neostigmine group (IV respectively (P< 0.01. To conclude, our results show that transdermal nitroglycerine itself does not show any analgesic potential but it enhances the analgesic potential of intrathecal neostigmine.

  14. Data on atherosclerosis specific antibody conjugation to nanoemulsions

    Directory of Open Access Journals (Sweden)

    Geoffrey Prévot

    2017-12-01

    Full Text Available This article present data related to the publication entitled “Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging” (Prévot et al., 2017 [1]. Herein we describe the engineering in the baculovirus-insect cell system and purification processes of the human scFv-Fc TEG4-2C antibody, specific of platelets within the atheroma plaque. For molecular targeting purpose, atheroma specific antibody was conjugated to nanoemulsions (NEs using a heterobifunctional linker (DSPE-PEG-maleimide. Atheroma labelling was assayed by immunochemistry on arterial sections from rabbits.

  15. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system.

    Science.gov (United States)

    Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A

    2014-08-01

    Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Preparation and Characterizations of Chitosan/Citral Nanoemulsions and their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Gehan I. Kh. Marei

    2018-03-01

    Full Text Available Background and Objective: The antimicrobial activity of essential oils has been long recognized, however, they easily evaporate and/or decompose during preparation, owing to direct exposure to heat, pressure and light. The current study deals with the formulation and characterization of bio-based oil in water nanoemulsions and their antimicrobial activity against plant pathogens.Material and Methods: Citral oil and low molecular weight chitosan were used for preparation of nanoemulsions in the presence of sodium tripolyphosphate. Nanoemulsions were prepared by adding dropwise citral at different ratios into an aqueous solution containing chitosan, sodium tripolyphosphate and surfactant with continuous stirring and then ultrasonication. The success of formulation was confirmed by dynamic light scattering and scanning electron microscopy techniques. Physical stability and viscosity were investigated in details. The antimicrobial activity was evaluated against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer. Results and Conclusion: The nanoemulsions had a polydispersity index ranged from 0.508 to 0.614 and particle size from 27 to 1283 nm. The highest antimicrobial activity was observed with F1 formulation (EC50 = 23, 278 and 221 mg L-1, against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer, respectively. Based on the antimicrobial activity, the prepared chitosan/citral nanoemulsions can be a cost-effective way to protect crops from microbial pathogens. Because such formulations contain bioactive products, the development of resistant pathogens can be delayed.Conflict of Interest: The authors declare no conflict of interest. 

  17. Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil

    Science.gov (United States)

    The objectives of this study were to develop and evaluate a frozen yogurt (FY) fortified with a nano-emulsion containing purple rice bran oil (NPRBO). A nano-emulsion with a droplet size range of 150-300 nm was produced by sonication followed by ultra-shear homogenization. The nano-emulsion was mi...

  18. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer.

    Science.gov (United States)

    Tang, Siah Ying; Shridharan, Parthasarathy; Sivakumar, Manickam

    2013-01-01

    In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200-600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50-70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Optimization of β-casein stabilized nanoemulsions using experimental mixture design.

    Science.gov (United States)

    Maher, Patrick G; Fenelon, Mark A; Zhou, Yankun; Kamrul Haque, Md; Roos, Yrjö H

    2011-10-01

    The objective of this study was to determine the effect of changing viscosity and glass transition temperature in the continuous phase of nanoemulsion systems on subsequent stability. Formulations comprising of β-casein (2.5%, 5%, 7.5%, and 10% w/w), lactose (0% to 20% w/w), and trehalose (0% to 20% w/w) were generated from Design of Experiments (DOE) software and tested for glass transition temperature and onset of ice-melting temperature in maximally freeze-concentrated state (T(g) ' & T(m) '), and viscosity (μ). Increasing β-casein content resulted in significant (P mixture design was used to predict the optimum levels of lactose and trehalose required to attain the minimum and maximum T(g) ' and viscosity in solution at fixed protein contents. These mixtures were used to form the continuous phase of β-casein stabilized nanoemulsions (10% w/w sunflower oil) prepared by microfluidization at 70 MPa. Nanoemulsions were analyzed for T(g) ' & T(m) ', as well as viscosity, mean particle size, and stability. Increasing levels of β-casein (2.5% to 10% w/w) resulted in a significant (P mixture DOE was successfully used to predict glass transition and rheological properties for development of a continuous phase for use in nanoemulsions. © 2011 Institute of Food Technologists®

  20. Multiple spectroscopic studies of the structural conformational changes of human serum albumin—Essential oil based nanoemulsions conjugates

    International Nuclear Information System (INIS)

    Sekar, Gajalakshmi; Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Nanoemulsions have numerous biomedical applications. For the first time, we have investigated the effects of orange and eucalyptus essential oil based nanoemulsions towards the structural aspect of human serum albumin (HSA). Quenching effect of nanoemulsion against the intrinsic fluorescence potential of tryptophan and tyrosine residues were evidenced from the fluorescence spectroscopic analysis. Static quenching mechanism was found to lead the binding of HSA–nanoemulsion systems. Synchronous and three dimensional spectroscopic studies have revealed the possible changes to the aromatic environment of HSA by the nanoemulsion. UV–Visible spectroscopic studies have confirmed the existence of the ground state complex formation between HSA and the surface of nanoemulsions by exhibiting the hyper-chromic effect in a concentration dependant manner. FTIR spectroscopy revealed the slight alteration in the Amide I, II and III bands of HSA after interaction. FT-Raman spectroscopy showed the decrease in the Raman intensity of the aromatic amino acid residues and shift in the amide bands of HSA upon binding with the nanoemulsion. Dichoric band obtained from the far UV-CD spectra at 208 and 222 nm of HSA showed the corresponding decrease in the alpha-helical contents upon interaction with nanoemulsions. Near UV-CD spectra also showed the prominent changes in the aromatic positions of the amino acid residues of HSA on binding with nanoemulsions. The above study has extrapolated the side effect analysis of the nanoemulsions in pharmaceutical applications in vitro in reference to their interaction with serum proteins. - Highlights: • Orange and eucalyptus oil based nanoemulsions were formulated and characterized. • UV–Visible spectroscopy confirmed the ground state complex formation. • Fluorescence spectroscopy confirmed the molecular conformational changes. • FTIR spectroscopy deep-rooted the alteration in the amide bands of HSA. • FT-Raman spectroscopy established

  1. Multiple spectroscopic studies of the structural conformational changes of human serum albumin—Essential oil based nanoemulsions conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Sekar, Gajalakshmi; Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan, E-mail: nchandra40@hotmail.com

    2015-05-15

    Nanoemulsions have numerous biomedical applications. For the first time, we have investigated the effects of orange and eucalyptus essential oil based nanoemulsions towards the structural aspect of human serum albumin (HSA). Quenching effect of nanoemulsion against the intrinsic fluorescence potential of tryptophan and tyrosine residues were evidenced from the fluorescence spectroscopic analysis. Static quenching mechanism was found to lead the binding of HSA–nanoemulsion systems. Synchronous and three dimensional spectroscopic studies have revealed the possible changes to the aromatic environment of HSA by the nanoemulsion. UV–Visible spectroscopic studies have confirmed the existence of the ground state complex formation between HSA and the surface of nanoemulsions by exhibiting the hyper-chromic effect in a concentration dependant manner. FTIR spectroscopy revealed the slight alteration in the Amide I, II and III bands of HSA after interaction. FT-Raman spectroscopy showed the decrease in the Raman intensity of the aromatic amino acid residues and shift in the amide bands of HSA upon binding with the nanoemulsion. Dichoric band obtained from the far UV-CD spectra at 208 and 222 nm of HSA showed the corresponding decrease in the alpha-helical contents upon interaction with nanoemulsions. Near UV-CD spectra also showed the prominent changes in the aromatic positions of the amino acid residues of HSA on binding with nanoemulsions. The above study has extrapolated the side effect analysis of the nanoemulsions in pharmaceutical applications in vitro in reference to their interaction with serum proteins. - Highlights: • Orange and eucalyptus oil based nanoemulsions were formulated and characterized. • UV–Visible spectroscopy confirmed the ground state complex formation. • Fluorescence spectroscopy confirmed the molecular conformational changes. • FTIR spectroscopy deep-rooted the alteration in the amide bands of HSA. • FT-Raman spectroscopy established

  2. Perspectives on Transdermal Electroporation

    Science.gov (United States)

    Ita, Kevin

    2016-01-01

    Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases. PMID:26999191

  3. Improved Oral Bioavailability and Brain Transport of Saquinavir Upon Administration in Novel Nanoemulsion Formulations

    OpenAIRE

    Vyas, Tushar K.; Shahiwala, Aliasgar; Amiji, Mansoor M.

    2007-01-01

    The aim of this investigation was to develop novel oil-in-water (o/w) nanoemulsions containing saquinavir (SQV), an anti-HIV protease inhibitor, for enhanced oral bioavailability and brain disposition. SQV was dissolved in different types of edible oils rich in essential polyunsaturated fatty acids (PUFA) to constitute the internal oil phase of the nanoemulsions. The external phase consisted of surfactants Lipoid®-80 and deoxycholic acid dissolved in water. The nanoemulsions with an average o...

  4. Evaluation of Antioxidant Activity and Cytotoxicity of Cumin Seed Oil Nanoemulsion Stabilized by Sodium Caseinate- Guar Gum

    Directory of Open Access Journals (Sweden)

    Parastoo Farshi 1, Mahnaz Tabibiazar 2 * , Marjan Ghorbani 3, Hamed Hamishehkar 3

    2017-12-01

    Full Text Available Background: The objective of this study was to prepare the sodium caseinate- guar gum stabilized nanoemulsion of cumin seed oil (Cumminum cyminum using ultrasonication method. Meanwhile, the effect of nanoemulsification on the antioxidant and cytotoxicity of the cumin seed oil was evaluated. Method: The effect of concentration of sodium casienate and guar gum was investigated on droplet size, thermal and oxidative stability of cumin seed oil nanoemulsion using TBARS and z-average measurements, the antioxidant activity was evaluated by DPPH scavenging and iron reducing power measurements. The biocompatibility and the cytotoxicity of the cumin seed oil nanoemulsion were evaluated by MTT assay test and compared with cumin seed oil and cumin seed oil free-nanoemulsion. Results: GC–MS analysis indicated 15 compounds in the cumin seed oil. The nanoemulsions were stabilized by sodium caseinate-guar gum complex. The minimum and stable droplets (155 ± 8 nm of nanoemulsion were formulated when the concentration of essential oil in oil phase was 30 % (w/w. DPPH radical scavenging ability, iron reducing power and cytotoxicity of nanoemulsified cumin seed oil were significantly higher than cumin seed oil (p<0.05 Conclusion: In this study, cumin seed oil nanoemulsion was prepared and stabilized by sodium caseinate- guar gum. The aforementioned nanoemulsion had good stability even after 60 days storage at 4ºC. Antioxidant and cytotoxicity of cumin seed oil were increased by nanoemulsification. It can be concluded that cumin seed oil nanoemulsion has the potential to use as natural preservative and anticancer product in food industry.

  5. Transdermal rivastigmine: management of cutaneous adverse events and review of the literature.

    Science.gov (United States)

    Greenspoon, Jill; Herrmann, Nathan; Adam, David N

    2011-07-01

    Alzheimer's disease is a chronic neurodegenerative disorder resulting in part from the degeneration of cholinergic neurons in the brain. Rivastigmine, a cholinesterase inhibitor, is commonly used as a treatment for dementia due to its ability to moderate cholinergic neurotransmission; however, treatment with oral rivastigmine can lead to gastrointestinal adverse effects such as nausea and vomiting. Transdermal administration of rivastigmine can minimize these adverse effects by providing continuous delivery of the medication, while maintaining the effectiveness of the oral treatment. While the transdermal form of rivastigmine has been found to have fewer systemic adverse effects compared with the oral form, cutaneous reactions, such as contact dermatitis, can lead to discontinuation of the drug in its transdermal form. Lack of patient compliance with regard to applying the patch to the designated site, applying the patch for the correct length of time or rotating patch application sites increases the risk of cutaneous adverse reactions. This article outlines the diagnosis and management of irritant contact dermatitis and allergic contact dermatitis secondary to transdermal rivastigmine. The large majority of reactions to transdermal patches are of an irritant type, which can be diagnosed clinically by the presence of a pruritic, erythematous, eczematous plaque strictly confined to the borders of the patch. In contrast, an allergic reaction can be differentiated by the presence of vesicles and/or oedema, erythema beyond the boundaries of the transdermal patch and lack of improvement of the lesion 48 hours after removal of the offending treatment. By encouraging the patient to follow a regular rotation schedule for the patch, and using lipid-based emollients for irritant dermatitis and pre- and post-treatment topical corticosteroids for allergic dermatitis, cutaneous reactions can often be alleviated and patients can continue with their medication regimen. Other

  6. Encapsulated Curcumin for Transdermal Administration

    African Journals Online (AJOL)

    Purpose: To develop a proniosomal carrier system of curcumin for transdermal delivery. Methods: Proniosomes of curcumin were prepared by encapsulation of the drug in a mixture of Span 80, cholesterol and diethyl ether by ether injection method, and then investigated as a transdermal drug delivery system (TDDS).

  7. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives

    Directory of Open Access Journals (Sweden)

    Laura Salvia-Trujillo

    2016-01-01

    Full Text Available The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article.

  8. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery.

    Science.gov (United States)

    Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F

    2011-01-01

    Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously "entrap" the nano-oil droplets (around 150 nm) in their core. Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets.

  9. Transdermal hyoscine induced unilateral mydriasis.

    LENUS (Irish Health Repository)

    Hannon, Breffni

    2012-03-20

    The authors present a case of unilateral mydriasis in a teenager prescribed transdermal hyoscine hydrobromide (scopolamine) for chemotherapy induced nausea and vomiting. The authors discuss the ocular side-effects associated with this particular drug and delivery system and the potential use of transdermal hyoscine as an antiemetic agent in this group.

  10. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  11. Comparative evaluation of propofol in nanoemulsion with solutol and soy lecithin for general anesthesia

    Directory of Open Access Journals (Sweden)

    José Carlos Rittes

    2016-06-01

    Full Text Available ABSTRACT INTRODUCTION: The vehicle for propofol in 1 and 2% solutions is soybean oil emulsion 10%, which may cause pain on injection, instability of the solution and bacterial contamination. Formulations have been proposed aiming to change the vehicle and reduce these adverse reactions. OBJECTIVES: To compare the incidence of pain caused by the injection of propofol, with a hypothesis of reduction associated with nanoemulsion and the occurrence of local and systemic adverse effects with both formulations. METHOD: After approval by the CEP, patients undergoing gynecological procedures were included in this prospective study: control (n = 25 and nanoemulsion (n = 25 groups. Heart rate, noninvasive blood pressure and peripheral oxygen saturation were monitored. Demographics and physical condition were analyzed; surgical time and total volume used of propofol; local or systemic adverse effects; changes in variables monitored. A value of p < 0.05 was considered significant. RESULTS: There was no difference between groups regarding demographic data, surgical times, total volume of propofol used, arm withdrawal, pain during injection and variables monitored. There was a statistically significant difference in pain intensity at the time of induction of anesthesia, with less pain intensity in the nanoemulsion group. CONCLUSIONS: Both lipid and nanoemulsion formulations of propofol elicited pain on intravenous injection; however, the nanoemulsion solution elicited a less intense pain. Lipid and nanoemulsion propofol formulations showed neither hemodynamic changes nor adverse effects of clinical relevance.

  12. Comparative evaluation of propofol in nanoemulsion with solutol and soy lecithin for general anesthesia.

    Science.gov (United States)

    Rittes, José Carlos; Cagno, Guilherme; Perez, Marcelo Vaz; Mathias, Ligia Andrade da Silva Telles

    2016-01-01

    The vehicle for propofol in 1 and 2% solutions is soybean oil emulsion 10%, which may cause pain on injection, instability of the solution and bacterial contamination. Formulations have been proposed aiming to change the vehicle and reduce these adverse reactions. To compare the incidence of pain caused by the injection of propofol, with a hypothesis of reduction associated with nanoemulsion and the occurrence of local and systemic adverse effects with both formulations. After approval by the CEP, patients undergoing gynecological procedures were included in this prospective study: control (n=25) and nanoemulsion (n=25) groups. Heart rate, noninvasive blood pressure and peripheral oxygen saturation were monitored. Demographics and physical condition were analyzed; surgical time and total volume used of propofol; local or systemic adverse effects; changes in variables monitored. A value of p<0.05 was considered significant. There was no difference between groups regarding demographic data, surgical times, total volume of propofol used, arm withdrawal, pain during injection and variables monitored. There was a statistically significant difference in pain intensity at the time of induction of anesthesia, with less pain intensity in the nanoemulsion group. Both lipid and nanoemulsion formulations of propofol elicited pain on intravenous injection; however, the nanoemulsion solution elicited a less intense pain. Lipid and nanoemulsion propofol formulations showed neither hemodynamic changes nor adverse effects of clinical relevance. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. γ-Oryzanol nanoemulsions produced by a low-energy emulsification method: an evaluation of process parameters and physicochemical stability.

    Science.gov (United States)

    Zhong, Jinfeng; Liu, Xiong; Wang, Yonghua; Qin, Xiaoli; Li, Zeling

    2017-06-21

    γ-Oryzanol is a natural antioxidant and nutraceutical compound, which makes it a good candidate for nutraceuticals, food supplements and pharmaceutical preparations. However, the incorporation of γ-oryzanol into aqueous formulations is rather difficult and its bioavailability can be severely decreased because of its water-insoluble property. In this study, γ-oryzanol-enriched nanoemulsion based fish oil and medium-chain triglyceride as carrier oils were proposed. The main objective was to optimize process parameters to form stable nanoemulsions and evaluate their physicochemical stability. The formulations of stable γ-oryzanol nanoemulsions were composed of 10% mixed carrier oils (weight ratio of fish oil to medium-chain triglyceride = 3 : 7) and 10% mixed surfactants (weight ratio of Tween 80 to Span 20 = 3 : 1). The nanoemulsions were stable at a broad pH range of 2-7 and high salt concentrations (≤0.8 mol L -1 ) and sucrose levels (≤16%). The nanoemulsions were much more stable at heating temperatures below 50 °C than at elevated heating temperatures (60 and 70 °C). The nanoemulsions maintained their physical stability at various storage temperatures (5-37 °C) for 18 days. Nanoemulsions at 5 and 23 °C had lower peroxide values and anisidine values than those at an elevated storage temperature (37 °C). These results demonstrate that the low-energy emulsification method can produce γ-oryzanol-enriched nanoemulsions using fish oil and medium-chain triglyceride as carrier oils, and provide useful information for producing bioactive lipids-loaded nanoemulsions for food systems, personal care and pharmaceutical products.

  14. Enhanced antibacterial effects of clove essential oil by nanoemulsion.

    Science.gov (United States)

    Anwer, Md Khalid; Jamil, Shahid; Ibnouf, Elmutasim Osman; Shakeel, Faiyaz

    2014-01-01

    The aim of present study was to develop and evaluate nanoemulsion formulations of clove essential oil (CEO) for its antibacterial effects in comparison with pure CEO and standard amikacin antibiotic (positive control). Different nanoemulsions of CEO were developed by aqueous phase titration method via construction of pseudo-ternary phase diagrams and investigated for thermodynamic stability and self-nanoemulsification tests. Selected formulations (F1-F5) were characterized for droplet size distribution, viscosity, zeta potential, transmittance and surface morphology. Based on lowest droplet size (29.1 nm), lowest PI (0.026), lowest viscosity (34.6 cp), optimal zeta potential (-31.4 mV), highest transmittance (99.4 %) and lowest concentration of Triacetin (8 % w/w), CEO nanoemulsion F1 (containing 1 % w/w of CEO, 8 % w/w of Triacetin, 15 % w/w of Tween-80, 15 % w/w of Labrasol and 61 % w/w of water) was subjected to antibacterial studies in comparison with pure oil and standard amikacin. The antibacterial effects of F1 were found to be superior over pure oil against all bacterial strains investigated. However, the antibacterial effects of F1 were highly comparable with standard amikacin against all bacterial strains. The minimum inhibitory concentrations (MICs) of F1 were observed in the range of 0.075-0.300 % w/w as compared to pure oil (MICs 0.130-0.500 % w/w) and standard amikacin (MICs 2-16 μg/ml). These results indicated the potential of nanoemulsions for enhancing the therapeutic efficacy of natural bioactive ingredients such as CEO.

  15. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  16. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization.

    Science.gov (United States)

    Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C

    2018-02-01

    This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.

  17. MICRONEEDLES AS A WAY TO INCREASE THE TRANSDERMAL INSULIN DELIVERY

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available Aim: to prove the possibility of increasing the diffusion of insulin through the skin in vitro with pre-applying microneedles.Materials and methods. Microemulsion for transdermal therapeutic system of insulin has been used in vitro studies. Genetically engineered human insulin has been used in this research. Applicators with silicon microneedles (40 and 150 microns long have been used to enhance the diffusion fl ux of drug substance. The dynamics of insulin release from the transdermal therapeutic systems through the rabbit skin has been studied in glass Franz diffusion cells in analyzer diffusion of drugs HDT 1000 (Copley Scientifi c Ltd., UK. Insulin has been labeled with fl uorescein isothiocyanate to separate the insulin absorption spectrum from the spectra of native skin proteins at spectrophotometer measurements.Results. The amounts of insulin delivered through the skin in vitro after previous application of microneedles of 40 and 150 microns are 282.5 ± 61.1 and 372.3 ± 7.0 microgram, respectively. This is 1.4 and 1.9 times more than in the transdermal system without microneedles.Conclusion. The conditions for increasing the diffusion of insulin through the skin in a model transdermal therapeutic system with microneedles (length – 150 microns, duration of pre-application – 1 hour have been found.

  18. Protection against soman and sarin exposure by transdermal physostigmine and scopolamine

    Energy Technology Data Exchange (ETDEWEB)

    Meshulam, Y.; Davidovici, R.; Levy, A.

    1993-05-13

    The purpose of this study was to evaluate the prophylactic efficacy of physostigmine (physo), administered via sustained release (SR) methods, with and without scopolamine, against soman and sarin exposure in guinea-pigs. Transdermal physo pad (3 sq cm/kg; 60-80 ug/sq cm), containing a vehicle based on propionic acid, was applied onto the dorsal back of the animals, 24 hours before exposure to the cholinesterase (ChE) inhibitors. At the time of exposure, physo concentrations in brain and plasma were 3.6 ng/g and 4.1 ng/ml respectively. Brain and whole blood ChE activity were inhibited to 70% and 57% of their original activity. Transdermal physo by itself protected up to 70% of the animals exposed to 1.5 LD(50) of soman or sarin (100% mortality was recorded in the control group). Combining transdermal physo with Scopoderm (by Ciba Geigy Inc.) provided full protection against 1.5 LD(50).

  19. Development of Curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies.

    Science.gov (United States)

    Thomas, Lydia; Zakir, Foziyah; Mirza, Mohd Aamir; Anwer, Md Khalid; Ahmad, Farhan Jalees; Iqbal, Zeenat

    2017-08-01

    In the present study, various nanoemulsions were prepared using Labrafac PG+Triacetin as oil, Tween 80 as a surfactant and polyethylene glycol (PEG 400) as a co-surfactant. The developed nanoemulsions (NE1-NE5) were evaluated for physicochemical characterizations and ex-vivo for skin permeation and deposition studies. The highest skin deposition was observed for NE2 with 46.07% deposition amongst all developed nanoemulsions (NE1-NE5). Optimized nanoemulsion (NE2) had vesicle size of 84.032±0.023nm, viscosity 78.23±22.2 cps, refractive index 1.404. Nanoemulsion gel were developed by incorporation of optimized nanoemulsion (NE2) into 1-3% chitosan and characterized by physical evaluation and rheological studies. Chitosan gel (2%) was found to be suitable for gelation of nanoemulsion based on its consistency, feel and ease of spreadability. The flux of nanoemulsion gel was found 68.88μg/cm 2 /h as compared to NE2 (76.05μg/cm 2 /h) is significantly lower suggesting limited skin permeation of curcumin form gel. However, the retained amount of curcumin on skin by gel formulation (980.75±88μg) is significantly higher than NE2 (771.25±67μg). Enhanced skin permeation of NE2 (46.07%) was observed when compared to nanoemulsion gel (31.25%) and plain gel (11.47%). The outcome of this study evidently points out the potential of curcumin entrapped nanoemulsion gel in wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Plasma Concentrations of Fentanyl Achieved With Transdermal Application in Chickens

    NARCIS (Netherlands)

    Delaski, Kristina M; Gehring, Ronette; Heffron, Brendan T; Negrusz, Adam; Gamble, Kathryn C

    2017-01-01

    Providing appropriate analgesia is an important concern in any species. Fentanyl, a μ-receptor specific opioid, use is common in mammalian species but has been incompletely evaluated for this purpose in avian species. Transdermal fentanyl patches were applied to domestic chickens (n = 10) of varying

  1. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform.

    Science.gov (United States)

    Choudhury, Hira; Gorain, Bapi; Karmakar, Sanmoy; Biswas, Easha; Dey, Goutam; Barik, Rajib; Mandal, Mahitosh; Pal, Tapan Kumar

    2014-01-02

    Paclitaxel, a potential anticancer agent against solid tumors has been restricted from its oral use due to poor water solubility as well as Pgp efflux property. The present study was aimed to improve the oral bioavailability of paclitaxel through development of (o/w) nanoemulsion consisting of Capryol 90 as internal phase with Tween 20 as emulsifier with water as an external phase. Formulations were selected from the nanoemulsion region of pseudo-ternary phase diagrams, formulated by aqueous titration method. The developed nanoemulsion has been characterized by its thermodynamic stability, morphology, droplet size, zeta potential, viscosity where in vitro release was evaluated through dialysis. Paclitaxel nanoemulsion exhibited thermodynamical stability with low viscosity, nano-sized oil droplets in water with low poly-dispersity index. The shelf life of the paclitaxel nanoemulsion was found to be approximately 2.38 years. Increased permeability through the Caco-2 cell monolayer and decreased efflux is great advantageous for nanoemulsion formulation. The effects of paclitaxel nanoemulsion on breast cancer cell proliferation, morphology and DNA fragmentation were analyzed in vitro which showed significant anti-proliferation and decreased IC50 values in nanoemulsion group which may be due to enhanced uptake of paclitaxel through the oil core. Moreover, the absolute oral bioavailability and sustained release profile of the paclitaxel nanoemulsion evaluated in mouse model was found to improve up to 55.9%. The concentration of paclitaxel in mice plasma was determined by our validated LC-MS/MS method. By reviewing the significant outcome of the present investigation based on stability study, Caco-2 permeability, cell proliferative assay and pharmacokinetic profile it may be concluded that the oral nanoemulsion has got encouraging advantages over the presently available formulations of this injectable chemotherapeutic drug. Copyright © 2013 Elsevier B.V. All rights

  2. Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions.

    Science.gov (United States)

    Hashtjin, Adel Mirmajidi; Abbasi, Soleiman

    2015-05-01

    The aim of the present study was to investigate the influence of emulsifying conditions on some physical and rheological properties of orange peel essential oil (OPEO) in water nanoemulsions. In this regard, using the response surface methodology, the influence of ultrasonication conditions including sonication amplitude (70-100 %), sonication time (90-150 s) and process temperature (5-45 °C) on the mean droplets diameter (Z-average value), polydispersity index (PDI), and viscosity of the OPEO nanoemulsions was evaluated. In addition, the flow behavior and stability of selected nanoemulsions was evaluated during storage (up to 3 months) at different temperatures (5, 25 and 45 °C). Based on the results of the optimization, the optimum conditions for producing OPEO nanoemulsions (Z-average value 18.16 nm) were determined as 94 % (sonication amplitude), 138 s (sonication time) and 37 °C (process temperature). Moreover, analysis of variance (ANOVA) showed high coefficients of determination values (R (2) > 0.95) for the response surface models of the energy input and Z-average. In addition, the flow behavior of produced nanoemulsions was Newtonian, and the effect of time and storage temperature as well as their interactions on the Z-average value was highly significant (P < 0.0001).

  3. Maillard-Reaction-Functionalized Egg Ovalbumin Stabilizes Oil Nanoemulsions.

    Science.gov (United States)

    Liu, Gang; Yuan, Dan; Wang, Qi; Li, Wanrong; Cai, Jie; Li, Shuyi; Lamikanra, Olusola; Qin, Xinguang

    2018-04-25

    Egg white proteins are an excellent source of nutrition, with high biological and technological values. However, their limited functional properties prevent their widespread industrial applications. In this study, the ovalbumin functionality was improved via glycation by Maillard reaction with d-lactose. The free amino groups and sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile were determined, confirming that glycation occurred between ovalbumin and lactose. The emulsification of the conjugate was 2.69-fold higher than that of ovalbumin at pH 7.0 after glycation. The thermal stability also improved remarkably. The glycated protein products were used to form an oil-water nanoemulsion for polymethoxyflavone-rich aged orange peel oil. The resulting nanoemulsion showed good pH, thermal, and storage stabilities.

  4. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine.

    Science.gov (United States)

    Zahi, Mohamed Reda; El Hattab, Mohamed; Liang, Hao; Yuan, Qipeng

    2017-04-15

    The objective of this research was to investigate the synergism between ε-polylysine and d-limonene and develop a novel nanoemulsion system by merging the positive effect of these two antimicrobial agents. Results from the checkerboard method showed that ε-polylysine and d-limonene exhibit strong synergistic and useful additive effects against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Saccharomyces cerevisiae. In addition, d-limonene nanoemulsion with the inclusion of ε-polylysine was successfully prepared by high pressure homogenizer technology. Its antimicrobial efficiency was compared with pure d-limonene nanoemulsion by measuring the minimal inhibitory concentration, electronic microscope observation and the leakage of the intercellular constituents. The results demonstrated a wide improvement of the antimicrobial activity of d-limonene nanoemulsion following the inclusion of ε-polylysine. Overall, the current study may have a valuable contribution to make in developing a more efficient antimicrobial system in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The In Vitro-In Vivo Safety Confirmation of PEG-40 Hydrogenated Castor Oil as a Surfactant for Oral Nanoemulsion Formulation.

    Science.gov (United States)

    Rachmawati, Heni; Novel, Miranti Anggraeni; Ayu, Sri; Berlian, Guntur; Tandrasasmita, Olivia Mayasari; Tjandrawinata, Raymond Rubianto; Anggadiredja, Kusnandar

    2017-03-31

    Evaluation on the safety use of high concentration of polyoxyl 40 (PEG-40) hydrogenated castor oil as a surfactant for oral nanoemulsion was performed in Webster mice. As previously reported, nearly 20% of PEG-40 hydrogenated castor oil was used to emulsify the glyceryl monooleate (GMO) as an oil to the aqueous phase. Thermodynamically stable and spontaneous nanoemulsion was formed by the presence of co-surfactant polyethylene glycol 400 (PEG-400). Standard parameters were analyzed for nanoemulsion including particle size and particle size distribution, the surface charge of nanoemulsion, and morphology. To ensure the safety of this nanoemulsion, several cell lines were used for cytotoxicity study. In addition, 5000 mg/kg body weight (BW) of the blank nanoemulsion was given orally to Webster mice once a day for 14 days. Several parameters such as gross anatomy, body weight, and main organs histopathology were observed. In particular, by considering the in vivo data, it is suggested that nanoemulsion composed with a high amount of PEG-40 hydrogenated castor oil is acceptable for oral delivery of active compounds.

  6. Antioxidant Effect of Nanoemulsions Containing Extract of Achyrocline satureioides (Lam) D.C.-Asteraceae.

    Science.gov (United States)

    Zorzi, Giovanni Konat; Caregnato, Fernanda; Moreira, José Cláudio Fonseca; Teixeira, Helder Ferreira; Carvalho, Edison Luis Santana

    2016-08-01

    Ethanolic extracts of Achyrocline satureioides have pronounced antioxidant activity mainly due to the presence of the flavonoid quercetin. However, direct topical application of the extract is not possible due to the presence of high amounts of ethanol. In this sense, nanoemulsions arise as an alternative for topical formulation associating molecules with limited aqueous solubility. This article describes the development of topical nanoemulsions containing either A. satureioides extract or one of its most abundant flavonoid, quercetin. Nanoemulsions composed of octyldodecanol, egg lecithin, water and extract (NEE), or quercetin (NEQ) were prepared by spontaneous emulsification. This process led to monodisperse nanoemulsions presenting a mean droplet size of approximately 200-300 nm, negative zeta potential, and high association efficiency. A study of quercetin skin retention using porcine skin which was performed using a Franz diffusion cell revealed a higher accumulation of quercetin in skin for NEE when compared to NEQ. Finally, the antioxidant activity of formulations was measured by thiobarbituric acid-reactive species and the APPH model. A lower lipoperoxidation for the extract in respect to quercetin solution was observed. However, no difference between NEQ and NEE lipoperoxidation could be seen. The protection against lipoperoxidation by the formulations was also measured in the skin, where lower formation of reactive species was observed after treatment with NEE. In conclusion, this study shows the formulation effect on the physicochemical properties of nanoemulsions as well as on the skin retention and antioxidant activity of quercetin.

  7. The effect of lavender essential oil and nanoemulsion on Trichomonas vaginalis in vitro

    Directory of Open Access Journals (Sweden)

    Hajar Ziaei Hezarjaribi

    2017-08-01

    Full Text Available Background: Trichomonas vaginalis is the cause of trichomoniasis. Due to increased resistance and side effects of the drugs, the aim of this study was to assess an anti-trichomonias effect of lavender (Lavandula officinalis essential oil and nanoemulsion on T. vaginalis in vitro. Materials and Methods: Lavender essential oil components were characterized by gas chromatography. To determine the cytotoxicity effects, the macrophage cell line J774.A.1 was used. Trichomonas vaginalis was isolated from vaginal secretions of the infected women and then cultured in the TYM complete medium and passaged for 10 days. The effect of essential oil and 1% lavender nanoemulsion in concentrations 10, 25, 50 and 100 μg/mL in the 24-well plate were examined at 1, 2 and 3 hours as triplicate. Positive control was metronidazole (50 μg/mL. The number of live and dead parasites was counted by trypan blue stain with a Neubauer slide. Results: The viability of the macrophages for lavender essential oil was 93.70% and for nanoemulsion was 90.90%. Essential oil and nanoemulsion of lavender in concentration of 100 μg/mL and during 3 hours showed 81.7% and 81.9% growth inhibitory, respectively. This difference was not statistically significant. Conclusion: Lavender essential oil and nanoemulsion has a desirable inhibitory effect on growth of T.vaginalis and can be a good choice for conducting therapeutic investigations regarding trichomonial infections.

  8. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques.

    Science.gov (United States)

    Agrawal, Naveen; Maddikeri, Ganesh L; Pandit, Aniruddha B

    2017-05-01

    Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60nm) of the emulsion was obtained at HLB of 14, S/O 1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel Oil.

    Directory of Open Access Journals (Sweden)

    Anna E M F M Oliveira

    Full Text Available Pterodon emarginatus Vogel is a Brazilian species that belongs to the family Fabaceae, popularly known as sucupira. Its oil has several biological activities, including potent larvicidal property against Aedes aegypti. This insect is the vector of dengue, a tropical disease that has been considered a critical health problem in developing countries, such as Brazil. Most of dengue control methods involve larvicidal agents suspended or diluted in water and making active lipophilic natural products available is therefore considered a technological challenge. In this context, nanoemulsions appear as viable alternatives to solve this major problem. The present study describes the development of a novel nanoemulsion with larvicidal activity against A. aegypti along with the required Hydrophile Lipophile Balance determination of this oil. It was suggested that the mechanism of action might involve reversible inhibition of acetylcholinesterase and our results also suggest that the P. emarginatus nanoemulsion is not toxic for mammals. Thus, it contributes significantly to alternative integrative practices of dengue control, as well as to develop sucupira based nanoproducts for application in aqueous media.

  10. Antitumor activity of doxorubicine-loaded nanoemulsion against ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights ... Keywords: Doxorubicine, Anti-tumor activity, Mean survival time, Heart histology, Nanoemulsion, Lipid profile .... the standard kit methods using fully Automated ..... effects of this new formulation in human patients.

  11. Peptide-chaperone-directed transdermal protein delivery requires energy.

    Science.gov (United States)

    Ruan, Renquan; Jin, Peipei; Zhang, Li; Wang, Changli; Chen, Chuanjun; Ding, Weiping; Wen, Longping

    2014-11-03

    The biologically inspired transdermal enhanced peptide TD1 has been discovered to specifically facilitate transdermal delivery of biological macromolecules. However, the biological behavior of TD1 has not been fully defined. In this study, we find that energy is required for the TD1-mediated transdermal protein delivery through rat and human skins. Our results show that the permeation activity of TD1-hEGF, a fusion protein composed of human epidermal growth factor (hEGF) and the TD1 sequence connected with a glycine-serine linker (GGGGS), can be inhibited by the energy inhibitor, rotenone or oligomycin. In addition, adenosine triphosphate (ATP), the essential energetic molecule in organic systems, can effectively facilitate the TD1 directed permeation of the protein-based drug into the skin in a dose-dependent fashion. Our results here demonstrate a novel energy-dependent permeation process during the TD1-mediated transdermal protein delivery that could be valuable for the future development of promising new transdermal drugs.

  12. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  13. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3.

    Science.gov (United States)

    Kabri, Tin-Hinan; Arab-Tehrany, Elmira; Belhaj, Nabila; Linder, Michel

    2011-09-21

    Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design.

  14. Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design.

    Science.gov (United States)

    Isailović, Tanja; Ðorđević, Sanela; Marković, Bojan; Ranđelović, Danijela; Cekić, Nebojša; Lukić, Milica; Pantelić, Ivana; Daniels, Rolf; Savić, Snežana

    2016-01-01

    We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles - high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50°C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant - polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.

  15. Therapeutic serum phenobarbital concentrations obtained using chronic transdermal administration of phenobarbital in healthy cats.

    Science.gov (United States)

    Delamaide Gasper, Joy A; Barnes Heller, Heidi L; Robertson, Michelle; Trepanier, Lauren A

    2015-04-01

    Seizures are a common cause of neurologic disease, and phenobarbital (PB) is the most commonly used antiepileptic drug. Chronic oral dosing can be challenging for cat owners, leading to poor compliance. The purpose of this study was to determine if the transdermal administration of PB could achieve serum PB concentrations of between 15 and 45 μg/ml in healthy cats. Nineteen healthy cats were enrolled in three groups. Transdermal PB in pluronic lecithin organogel (PLO) was applied to the pinnae for 14 days at a dosage of 3 mg/kg q12h in group 1 (n = 6 cats) and 9 mg/kg q12h in group 2 (n = 7 cats). Transdermal PB in Lipoderm Activemax was similarly applied at 9 mg/kg q12h for 14 days in group 3 (n = 6 cats). Steady-state serum PB concentrations were measured at trough, and at 2, 4 and 6 h after the morning dose on day 15. In group 1, median concentrations ranged from 6.0-7.5 μg/ml throughout the day (observed range 0-11 μg/ml). Group 2 median concentrations were 26.0 μg/ml (observed range 18.0-37.0 μg/ml). For group 3, median concentrations ranged from 15.0-17.0 μg/ml throughout the day (range 5-29 μg/ml). Side effects were mild. One cat was withdrawn from group 2 owing to ataxia and sedation. These results show therapeutic serum PB concentrations can be achieved in cats following chronic transdermal administration of PB in PLO at a dosage of 9 mg/kg q12h. More individual variation was noted using Lipoderm Activemax. Transdermal administration may be an alternative for cats that are difficult to medicate orally. © ISFM and AAFP 2014.

  16. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    Science.gov (United States)

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  17. Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure?

    Science.gov (United States)

    Liuzzi, Roberta; Carciati, Antonio; Guido, Stefano; Caserta, Sergio

    2016-03-01

    Interaction of microstructured fluids with skin is ubiquitous in everyday life, from the use of cosmetics, lotions, and drugs, to personal care with detergents or soaps. The formulation of microstructured fluids is crucial for the control of the transdermal transport. In biomedical applications transdermal delivery is an efficient approach, alternative to traditional routes like oral and parenteral administration, for local release of drugs. Poor skin permeability, mainly due to its outer layer, which acts as the first barrier against the entry of external compounds, greatly limits the applicability of transdermal delivery. In this review, we focus on recent studies on the improvement of skin transport efficiency by using microemulsions (ME). Quantitative techniques, which are able to investigate both skin morphology and penetration processes, are also reviewed. ME are increasingly used as transdermal systems due to their low preparation cost, stability and high bioavailability. ME may act as penetration enhancers for many active principles, but ME microstructure should be chosen appropriately considering several factors such as ratio and type of ingredients and physic-chemical properties of the active components. ME microstructure is strongly affected by the flow conditions applied during processing, or during spreading and rubbing onto skin. Although the role played by ME microstructure has been generally recognized, the skin transport mechanisms associated with different ME microstructures are still to be elucidated and further investigations are required to fully exploit the potential of ME in transdermal delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Chemical Penetration Enhancers for Transdermal Drug Delivery ...

    African Journals Online (AJOL)

    for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.

  19. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis.

    Science.gov (United States)

    Sosa, Lilian; Clares, Beatriz; Alvarado, Helen L; Bozal, Nuria; Domenech, Oscar; Calpena, Ana C

    2017-10-01

    The present study was designed to develop a nanoemulsion formulation of Amphotericin B (AmB) for the treatment of skin candidiasis and aspergillosis. Several ingredients were selected on the basis of AmB solubility and compatibility with skin. The formulation that exhibited the best properties was selected from the pseudo-ternary phase diagram. After physicochemical characterization its stability was assessed. Drug release and skin permeation studies were also accomplished. The antifungal efficacy and skin tolerability of developed AmB nanoemulsion was demonstrated. Finally, our results showed that the developed AmB formulation could provide an effective local antifungal effect without theoretical systemic absorption, based on its skin retention capacity, which might avoid related side effect. These results suggested that the nanoemulsion may be an optimal therapeutic alternative for the treatment of skin fungal infections with AmB. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Inkjet printing of insulin microneedles for transdermal delivery.

    Science.gov (United States)

    Ross, Steven; Scoutaris, Nicolaos; Lamprou, Dimitrios; Mallinson, David; Douroumis, Dennis

    2015-08-01

    Inkjet printing technology was used to apply insulin polymeric layers on metal microneedles for transdermal delivery. A range of various polymers such as gelatin (GLN), polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol (SOL), poly(2-ethyl-2-oxazoline) (POX) and trehalose (THL) were assessed for their capacity to form thin uniform and homogeneous layers that preserve insulin intact. Atomic force microscopy (AFM) showed homogeneous insulin-polymer layers without any phase separation while SOL demonstrated the best performance. Circular discroism (CD) analysis of rehydrated films showed that insulin's alpha helices and β-sheet were well preserved for THL and SOL. In contrast, GLN and POX insulin layers revealed small band shifts indicating possible conformational changes. Insulin release in Franz diffusion cells from MNs inserted into porcine skin showed rapid release rates for POX and GLN within the first 20 min. Inkjet printing was proved an effective approach for transdermal delivery of insulin in solid state.

  1. Influence of Polysorbate 60 on Formulation Properties and Bioavailability of Morin-Loaded Nanoemulsions with and without Low-Saponification-Degree Polyvinyl Alcohol.

    Science.gov (United States)

    Ikeuchi-Takahashi, Yuri; Kobayashi, Ayaka; Ishihara, Chizuko; Matsubara, Takumi; Matsubara, Hiroaki; Onishi, Hiraku

    2018-01-01

    The aim of the present study was to investigate the influence of polysorbate 60 (Tween 60) on the development of morin-loaded nanoemulsions to improve the oral bioavailability of morin. Nanoemulsions were prepared using Tween 60 and polyvinyl alcohol (PVA) as emulsifiers, and medium chain triglycerides (MCT) as the lipid base. Low-saponification-degree PVA (LL-810) was also added to stabilize dispersed droplets. MCT-LL810 nanoemulsion containing LL-810 was prepared with a reduced amount of Tween 60. However, the area under the blood concentration-time curve (AUC) of MCT-LL810 (0.18) nanoemulsion containing a small amount of Tween 60 did not increase because the absorption of morin was limited by P-glycoprotein (P-gp)-mediated efflux. MCT-LL810 (0.24) nanoemulsion containing a large amount of Tween 60 showed the highest AUC, dispersed droplets containing Tween 60 may have been transported into epithelial cells in the small intestine, and P-gp transport activity appeared to be suppressed by permeated Tween 60. Based on the plasma concentration profile, dispersed droplets in MCT-LL810 (0.24) nanoemulsion permeated more rapidly through the mucus layer and the intestinal membrane than MCT (0.24) nanoemulsion without LL-810. In conclusion, a novel feature of Tween 60 incorporated into the dispersed droplets of a nanoemulsion interacting with P-gp was demonstrated herein. Dispersed droplets in MCT-LL810 (0.24) nanoemulsion containing LL-810 permeated rapidly through the mucus layer and intestinal membrane, and Tween 60 incorporated in dispersed droplets interacted with P-gp-mediated efflux, increasing the bioavailability of morin.

  2. CAVITATION PROPERTIES OF BLOCK COPOLYMER STABILIZED PHASE-SHIFT NANOEMULSIONS USED AS DRUG CARRIERS

    OpenAIRE

    RAPOPORT, NATALYA; CHRISTENSEN, DOUGLAS A.; KENNEDY, ANNE M.; NAM, KWEONHO

    2010-01-01

    Cavitation properties of block copolymer stabilized perfluoropentane nanoemulsions have been investigated. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers differing in the structure of the hydrophobic block, poly(ethylene oxide)-co-poly(L-lactide) (PEG-PLLA) and poly(ethylene oxide)-co-polycaprolactone (PEG-PCL). Cavitation parameters were measured in liquid emulsions and gels as a function of ultrasound pressure for unfocused or focused 1-MHz ultrasound. A...

  3. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms

    Directory of Open Access Journals (Sweden)

    Caroline L. Strasinger

    2009-01-01

    Full Text Available Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual's needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.

  4. Investigation of the effect of different parameters on the phase inversion temperature O/W nanoemulsions

    Directory of Open Access Journals (Sweden)

    D. Kaviani

    2016-01-01

    Full Text Available Objective(s: Nanoemulsions are a kind of emulsions that can be transparent, translucent (size range 50-200 nm or “milky” (up to 500 nm. Nanoemulsions are adequatly effective for transfer of active component through skin which facilitate the entrance of the active component . The transparent nature of the system and lack of the thickener and fluidity are among advantages of nanoemulsion. Materials and Methods: In this study, a nanoemulsion of lemon oil in water was prepared by the phase inversion temperature (PIT emulsification method in which the tween 40 was used as surfactant. The effect of concentration of NaCl in aqueous phase, pH and weight percent of surfactant and aqueous on the PIT and droplet size were investigated. Results: The results showed that with increasing of concentration of NaCl from 0.05 M to 1 M, PIT decrease from 72 to 50. The average droplet sizes, for 0.1, 0.5 and 1 M of NaCl in 25 ºC are 497.3, 308.1 and 189.9 nm, respectively and the polydispersity indexes are 0.348, 0.334 and 0.307, respectively. Conclusion: Considering the characteristics of nanoemulsions such as being transparent, endurance of solution and droplet size can provide suitable reaction environment for polymerization process used in making hygienic and medical materials.

  5. A commentary on transdermal drug delivery systems in clinical trials.

    Science.gov (United States)

    Watkinson, Adam C

    2013-09-01

    The number of drugs available as marketed transdermal products is limited to those that exhibit the correct physicochemical and pharmacokinetic properties that enable their effective delivery across the skin. In this respect, there are less than 20 drugs that are currently marketed in the US and EU as products that deliver systemic levels of their active ingredients. An analysis of clinical trials conducted in the transdermal sector shows a similar picture with only nine drugs accounting for approximately 80% of all transdermal clinical trials listed on ClinicalTrials.gov. Those drugs for which there are very few transdermal trials listed consist mostly of molecules that are inherently unsuitable for transdermal delivery and serve as a clear warning to drug developers that the science that governs transdermal drug delivery is well reflected by the successes and failures of drugs in development as well as those that make it to the market. Copyright © 2013 Wiley Periodicals, Inc.

  6. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3

    Directory of Open Access Journals (Sweden)

    Linder Michel

    2011-09-01

    Full Text Available Abstract Background Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Results Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. Conclusions This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design.

  7. Estradiol Transdermal Patch

    Science.gov (United States)

    ... menopause (change of life; the end of monthly menstrual periods). Transdermal estradiol is also used to prevent ... patch. Ask your pharmacist or doctor for a copy of the manufacturer's information for the patient.

  8. Importance of crystallinity of anchoring block of semi-solid amphiphilic triblock copolymers in stabilization of silicone nanoemulsions.

    Science.gov (United States)

    Le Kim, Trang Huyen; Jun, Hwiseok; Nam, Yoon Sung

    2017-10-01

    Polymer emulsifiers solidified at the interface between oil and water can provide exceptional dispersion stability to emulsions due to the formation of unique semi-solid interphase. Our recent works showed that the structural stability of paraffin-in-water emulsions highly depends on the oil wettability of hydrophobic block of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL). Here we investigate the effects of the crystallinity of hydrophobic block of triblock copolymer-based emulsifiers, PCLL-b-PEG-b-PCLL, on the colloidal properties of silicone oil-in-water nanoemulsions. The increased ratio of l-lactide to ε-caprolactone decreases the crystallinity of the hydrophobic block, which in turn reduces the droplet size of silicone oil nanoemulsions due to the increased chain mobility at the interface. All of the prepared nanoemulsions are very stable for a month at 37°C. However, the exposure to repeated freeze-thaw cycles quickly destabilizes the nanoemulsions prepared using the polymer with the reduced crystallinity. This work demonstrates that the anchoring chain crystallization in the semi-solid interphase is critically important for the structural robustness of nanoemulsions under harsh physical stresses. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus.

    Science.gov (United States)

    Lu, Pei Shan; Inbaraj, Baskaran Stephen; Chen, Bing Huei

    2018-01-01

    Curcuminoid from Curcuma longa Linnaeus has been demonstrated to be effective in anti-cancer and anti-inflammation. The objectives of the present study were to prepare curcuminoid dispersion and nanoemulsion from C. longa and determine their oral bioavailabilities in rats. After curcuminoid extraction using 99.5% ethanol, bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin were separated within 10 min by high-performance liquid chromatography using an Eclipse XDB-C18 column (Agilent, Palo Alto, CA, USA) and a gradient mobile phase of 0.1% aqueous formic acid and acetonitrile, with a flow rate of 1 mL min -1 , column temperature of 35 °C and detection wavelength of 425 nm. Curcuminoid nanoemulsion at a particle size of 12.1 nm and encapsulation efficiency 98.8% was prepared using lecithin, Tween 80 and water. A pharmacokinetic study in rats revealed that the parameters including T max , C max , t 1/2 and the area under the curve were higher for curcuminoid nanoemulsions than for curcuminoid dispersion at the same dose employed for gavage administration, whereas, for intravenous injection, an opposite trend was shown. The oral bioavailabilities of BDMC, DMC, curcumin and total curcuminoids in nanoemulsion and dispersion were 34.39 and 4.65%, 39.93 and 5.49%, 47.82 and 9.38%, and 46 and 8.7%, respectively. The results of the present study demonstrate a higher oral bioavailability after incorporation of curcuminoid into nanoemulsion, facilitating its application as a botanic drug. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress

    Science.gov (United States)

    Pangeni, Rudra; Sharma, Shrestha; Mustafa, Gulam; Ali, Javed; Baboota, Sanjula

    2014-12-01

    Resveratrol, a potent natural antioxidant, possesses a wide range of pharmacological activities, but its oral bioavailability is very low due to its extensive hepatic and presystemic metabolism. The aim of the present study was to formulate a kinetically stable nanoemulsion (o/w) using vitamin E:sefsol (1:1) as the oil phase, Tween 80 as the surfactant and Transcutol P as the co-surfactant for the better management of Parkinson’s disease. The nanoemulsion was prepared by a spontaneous emulsification method, followed by high-pressure homogenization. Ternary phase diagrams were constructed to locate the area of nanoemulsion. The prepared formulations were studied for globule size, zeta potential, refractive index, viscosity, surface morphology and in vitro and ex vivo release. The homogenized formulation, which contained 150 mg ml-1 of resveratrol, showed spherical globules with an average globule diameter of 102 ± 1.46 nm, a least poly dispersity index of 0.158 ± 0.02 and optimal zeta potential values of -35 ± 0.02. The cumulative percentage drug release for the pre-homogenized resveratrol suspension, pre-homogenized nanoemulsion and post-homogenized nanoemulsion were 24.18 ± 2.30%, 54.32 ± 0.95% and 88.57 ± 1.92%, respectively, after 24 h. The ex vivo release also showed the cumulative percentage drug release of 85.48 ± 1.34% at 24 h. The antioxidant activity determined by using a DPPH assay showed high scavenging efficiency for the optimized formulation. Pharmacokinetic studies showed the higher concentration of the drug in the brain (brain/blood ratio: 2.86 ± 0.70) following intranasal administration of the optimized nanoemulsion. Histopathological studies showed decreased degenerative changes in the resveratrol nanoemulsion administered groups. The levels of GSH and SOD were significantly higher, and the level of MDA was significantly lower in the resveratrol nanoemulsion treated group.

  11. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    Science.gov (United States)

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (Pdelivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  12. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    Science.gov (United States)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and

  13. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms

    Directory of Open Access Journals (Sweden)

    Audra L. Stinchcomb

    2009-01-01

    Full Text Available Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual’s needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.

  14. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.).

    Science.gov (United States)

    Balasubramani, Sundararajan; Rajendhiran, Thamaraiselvi; Moola, Anil Kumar; Diana, Ranjitha Kumari Bollipo

    2017-06-01

    It is believed that nanoemulsions were emerged as a promising candidate to improve the qualities of natural essential oil towards antimicrobial and insecticidal applications. In the present study, we have focused on the encapsulation of Vitex negundo L. leaf essential oil using Polysorbate80 for its different biological activities including antioxidant, bactericidal and larvicidal activity against dengue fever vector Aedes aegypti L. Initially, the nanoemulsion was prepared by low energy method and droplet size of the formulated nanoemulsion was characterized by using Dynamic Light Scattering analysis. The freshly prepared V. negundo essential nanoemulsion was observed with the mean droplet size of below 200 nm indicating its excellent stability. Further, the larvicidal activity of essential oil and nanoemulsion with various concentrations (25, 50, 100, 200 and 400 ppm). The larvicidal activities were tested 2nd and 3rd instar larval mortality rate that was observed against the 12 and 24 h exposure period. After a 12 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (73.33 ± 1.88), nanoemulsion (81.00 ± 0.88) and the larvicidal activities of 3rd instar larva were displayed essential oil (70.33 ± 2.60) and nanoemulsion (79.00 ± 3.70). Likewise, after a 24 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (90.30 ± 2.15), nanoemulsion (94.33 ± 1.20) and the larvicidal activities of 3rd instar larva were essential oil (80.66 ± 0.66) and nanoemulsion (93.00 ± 1.25) respectively. We finally concluded that the developed plant-based emulsion essential oil systems were thermodynamically stable. Owing to its improved bioavailability and biocompatibility, formulated nanoemulsion can be used in various biomedical applications including drug delivery as well as disease transmitting mosquito vector control. Graphical abstract ᅟ.

  15. Nanoemulsion as a carrier to improve the topical anti-inflammatory activity of stem bark extract of Rapanea ferruginea

    Directory of Open Access Journals (Sweden)

    Dal Mas J

    2016-09-01

    Full Text Available Juarana Dal Mas,1 Tailyn Zermiani,1 Liliani C Thiesen,1 Joana LM Silveira,2 Kathryn ABS da Silva,1 Márcia M de Souza,1 Angela Malheiros,1 Tania MB Bresolin,1 Ruth M Lucinda-Silva1 1NIQFAR, Graduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil; 2Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil Abstract: The aim of this study was to develop nanoemulsion containing soft extract of stem bark of Rapanea ferruginea to improve the topical delivery and anti-inflammatory activity. The extract of R. ferruginea stem bark was incorporated into the oily phase of the nanoemulsion by the method of phase inversion at low energy. The developed nanoemulsion had an average droplet size of 47.88±8.20 nm and a polydispersibility index of 0.228. Uniformity of size, spherical shape of droplet, and absence of clusters were confirmed by transmission electronic microscopy. The zeta potential was -34.7±1.15 mV. The nanoemulsion showed a moderate degree of skin irritation in the agarose overlay assay in vitro. The content of the extract markers, myrsinoic acids A and B, was 54.10±0.08 and 53.03 µg/g in the formulation, respectively. The formulation demonstrated pseudoplastic and thixotropic rheological behavior. In vitro release of chemical markers was controlled by diffusion mechanism. An extract-loaded nanoemulsion showed a topical anti-inflammatory activity in a croton oil-induced edema ear model, with a decrease in tumor necrosis factor release and myeloperoxidase activity. The nanoemulsion was 160% more efficient than the conventional cream containing 0.13% of the extract. The nanoemulsion showed suitable properties as a carrier for topical use of R. ferruginea extract and the approach for improving the topical anti-inflammatory activity. Keywords: nanotechnology, nanoemulsion, Rapanea ferruginea, anti-inflammatory, phytomedicine

  16. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    Science.gov (United States)

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  17. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    Directory of Open Access Journals (Sweden)

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  18. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine.

    Science.gov (United States)

    Chávez-Zamudio, Rubi; Ochoa-Flores, Angélica A; Soto-Rodríguez, Ida; Garcia-Varela, Rebeca; García, Hugo Sergio

    2017-09-20

    Curcumin is the main and most abundant bioactive component in Curcuma longa L. with documented properties in the prevention and treatment of chronic degenerative and infectious diseases. However, curcumin has low solubility in aqueous media, hence low bioavailability when administered orally. The use of nanoemulsions as carriers can provide a partial solution to bioavailability restrictions. In our study, O/W nanoemulsions of curcumin were prepared using lysophosphatidylcholine, a phospholipid with proven emulsification capacity; nevertheless, such qualities have not been previously reported in the preparation of nanoemulsions. Lysophosphatidylcholine was obtained by enzymatic removal of one fatty acid residue from phosphatidylcholine. The objective of our work was to formulate stable curcumin nanoemulsions and evaluate their bioavailability in BALB/c mice plasma after oral administration. Formulated nanoemulsions had a droplet size mean of 154.32 ± 3.10 nm, a polydispersity index of 0.34 ± 0.07 and zeta potential of -10.43 ± 1.10 mV; stability was monitored for 12 weeks. Lastly, in vivo pharmacokinetic parameters, using BALB/c mice, were obtained; namely, C max of 610 ± 65.0 μg mL -1 and T max of 2 h. Pharmacokinetic data revealed a higher bioavailability of emulsified as opposed to free curcumin. Research regarding other potential emulsifiers that may provide better health benefits and carry nano-encapsulated bioactive compounds more effectively, is necessary. This study provides important data on the preparation and design of nanoencapsulated Curcumin using lysophosphatidylcholine as an emulsifier.

  19. Application of nanoemulsions in the regeneration of adsorbent polymeric resins; Emprego de nanoemulsoes na regeneracao de resinas polimericas adsorvedoras

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Josane A.; Queiros, Yure G.C.; Vieira, Helida V.P.; Lucas, Elizabete F.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas. Lab. de Macromoleculas e Coloides na Industria de Petroleo], e-mails: josaneacosta@yahoo.com.br, yuregomes@ima.ufrj.br, elucas@ima.ufrj.br, celias@ima.ufrj.br

    2011-07-01

    In this work, the solbrax/water/polyoxyethylene nanoemulsions were produced under high pressure homogenizer (HPH). These systems presented droplets diameter ranging between 7 to 30 nm. The nanoemulsions were used in regeneration of a polymeric resin, which has been used in treatment of oily water. This resin was contaminated with different kinds of oils. The nanoemulsions presented high cleaning efficiency, above of 90% and its performance was higher than equivalent micellar systems. (author)

  20. Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery

    Science.gov (United States)

    Nguyen, Thao M.

    Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes

  1. Local transdermal therapy to the breast for breast cancer prevention and DCIS therapy: preclinical and clinical evaluation.

    Science.gov (United States)

    Lee, Oukseub; Ivancic, David; Allu, Subhashini; Shidfar, Ali; Kenney, Kara; Helenowski, Irene; Sullivan, Megan E; Muzzio, Miguel; Scholtens, Denise; Chatterton, Robert T; Bethke, Kevin P; Hansen, Nora M; Khan, Seema A

    2015-12-01

    Women at high risk of breast cancer and those with carcinoma in situ need non-toxic, well-tolerated preventive interventions. One promising approach is drug delivery through the breast skin (local transdermal therapy, LTT). Our goal was to test novel drugs for LTT, to establish that LTT is applicable to non-steroidal drugs. Athymic nude rats were treated with oral tamoxifen, transdermal 4-hydroxytamoxifen (4-OHT) or endoxifen gel applied daily to the axillary mammary gland for 6 weeks (Study 1). Study 2 was identical to Study 1, testing transdermal telapristone acetate (telapristone) gel versus subcutaneous implant. At euthanasia, mammary glands and blood were collected. In Study 3, consenting women requiring mastectomy were randomized to diclofenac patch applied to the abdomen or the breast for 3 days preoperatively. At surgery, eight tissue samples per breast were collected from predetermined locations, along with venous blood. Drug concentrations were measured using liquid chromatography-tandem mass spectroscopy. Mammary tissue concentrations of 4-OHT, endoxifen, and telapristone were significantly higher in the axillary glands of the gel-treated animals, compared to inguinal glands or to systemically treated animals. Plasma concentrations were similar in gel and systemically treated animals. The clinical trial showed significantly higher mammary concentrations when diclofenac was applied to the breast skin versus the abdominal skin, but concentrations were variable. These results demonstrate that lipophilic drugs can be developed for LTT; although the nude rat is suitable for testing drug permeability, delivery is systemic. In human, however, transdermal application to the breast skin provides local delivery.

  2. Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light

    Science.gov (United States)

    Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young

    2016-07-01

    Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation

  3. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    Science.gov (United States)

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Impact of stirring speed, glycerin and sodium chloride concentrations on photoprotective nanoemulsions

    Directory of Open Access Journals (Sweden)

    Débora Granemann e Silva

    2014-09-01

    Full Text Available New technologies that improve the physical as the sensory properties of sunscreens can help to increase its continued use and impact on health. The use of nanoemulsions in the development of photoprotective vehicles is an advantage, since nanostructured components may have superior properties regarding their performance when compared to conventional products. The advantages of using nanobiotechnology in manufacture of cosmetic and dermatological formulations arise from the protection of compounds from chemical or enzymatic degradation, from the control of their release, and also to the prolonged retention time of cosmetic ingredients in the stratum corneum. Thus, this study aimed to evaluate the impact of stirring speed and of glycerin and sodium chloride concentrations in the development and effectiveness of a nanoemulsion containing ethylhexyl methoxycinnamate and benzophenone-3. The results of statistical analyses regarding the impact of the variables in the process of nanoemulsion development showed that these parameters affect the phase inversion temperature (PIT. However, this did not affect the particle size and the photoprotective efficacy in vitro.

  5. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    International Nuclear Information System (INIS)

    Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya; Kennedy, Anne M.

    2009-01-01

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions and tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.

  6. Protection against oxidative damage in human erythrocytes and preliminary photosafety assessment of Punica granatum seed oil nanoemulsions entrapping polyphenol-rich ethyl acetate fraction.

    Science.gov (United States)

    Baccarin, Thaisa; Mitjans, Montserrat; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-25

    The main purpose of the present study is to evaluate the ability of nanoemulsion entrapping pomegranate peel polyphenol-rich ethyl acetate fraction (EAF) prepared from pomegranate seed oil and medium chain triglyceride to protect human erythrocyte membrane from oxidative damage and to assess preliminary in vitro photosafety. In order to evaluate the phototoxic effect of nanoemulsions, human red blood cells (RBCs) are used as a biological model and the rate of haemolysis and photohaemolysis (5 J cm(-2) UVA) is assessed in vitro. The level of protection against oxidative damage caused by the peroxyl radical generator AAPH in human RBCs as well as its effects on bilayer membrane characteristics such as fluidity, protein profile and RBCs morphology are determined. EAF-loaded nanoemulsions do not promote haemolysis or photohaemolysis. Anisotropy measurements show that nanoemulsions significantly retrain the increase in membrane fluidity caused by AAPH. SDS-PAGE analysis reveals that AAPH induced degradation of membrane proteins, but that nanoemulsions reduce the extension of degradation. Scanning electron microscopy examinations corroborate the interaction between AAPH, nanoemulsions and the RBC membrane bilayer. Our work demonstrates that Punica granatum nanoemulsions are photosafe and protect RBCs against oxidative damage and possible disturbance of the lipid bilayer of biomembranes. Moreover it suggests that these nanoemulsions could be promising new topical products to reduce the effects of sunlight on skin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Multiscale modeling of transdermal drug delivery

    Science.gov (United States)

    Rim, Jee Eun

    2006-04-01

    This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a

  8. Antiherpes Activity and Skin/Mucosa Distribution of Flavonoids from Achyrocline satureioides Extract Incorporated into Topical Nanoemulsions

    Directory of Open Access Journals (Sweden)

    Juliana Bidone

    2015-01-01

    Full Text Available This study investigated the inhibitory effects of Achyrocline satureioides extract (ASE incorporated into a topical nanoemulsion on Herpes Simplex Virus type 1 (HSV-1/KOS strain replication, as well as the distribution of the main ASE flavonoids (quercetin, luteolin, and 3-O-methylquercetin in porcine skin and mucosa. The ASE-loaded nanoemulsion showed more pronounced effects against HSV-1 replication when compared to the ASE or pure quercetin, as determined by the viral plaque number reduction assay. All flavonoids were detected in the skin epidermis (2.2 µg/cm2 and the mucosa upper layers (3.0 µg/cm2 from ASE-loaded nanoemulsion until 8 h after topical application. A higher amount of flavonoids was detected when these tissues were impaired, especially in deeper mucosa layers (up to 7-fold. Flavonoids were detected in the receptor fluid only when the mucosa was injured. Such results were supported by confocal microscopy images. Overall, these findings suggest that the tested ASE-loaded nanoemulsion has potential to be used topically for herpes infections.

  9. 3D printing applications for transdermal drug delivery.

    Science.gov (United States)

    Economidou, Sophia N; Lamprou, Dimitrios A; Douroumis, Dennis

    2018-06-15

    The role of two and three-dimensional printing as a fabrication technology for sophisticated transdermal drug delivery systems is explored in literature. 3D printing encompasses a family of distinct technologies that employ a virtual model to produce a physical object through numerically controlled apparatuses. The applicability of several printing technologies has been researched for the direct or indirect printing of microneedle arrays or for the modification of their surface through drug-containing coatings. The findings of the respective studies are presented. The range of printable materials that are currently used or potentially can be employed for 3D printing of transdermal drug delivery (TDD) systems is also reviewed. Moreover, the expected impact and challenges of the adoption of 3D printing as a manufacturing technique for transdermal drug delivery systems, are assessed. Finally, this paper outlines the current regulatory framework associated with 3D printed transdermal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress

    International Nuclear Information System (INIS)

    Pangeni, Rudra; Sharma, Shrestha; Mustafa, Gulam; Ali, Javed; Baboota, Sanjula

    2014-01-01

    Resveratrol, a potent natural antioxidant, possesses a wide range of pharmacological activities, but its oral bioavailability is very low due to its extensive hepatic and presystemic metabolism. The aim of the present study was to formulate a kinetically stable nanoemulsion (o/w) using vitamin E:sefsol (1:1) as the oil phase, Tween 80 as the surfactant and Transcutol P as the co-surfactant for the better management of Parkinson’s disease. The nanoemulsion was prepared by a spontaneous emulsification method, followed by high-pressure homogenization. Ternary phase diagrams were constructed to locate the area of nanoemulsion. The prepared formulations were studied for globule size, zeta potential, refractive index, viscosity, surface morphology and in vitro and ex vivo release. The homogenized formulation, which contained 150 mg ml −1 of resveratrol, showed spherical globules with an average globule diameter of 102 ± 1.46 nm, a least poly dispersity index of 0.158 ± 0.02 and optimal zeta potential values of −35 ± 0.02. The cumulative percentage drug release for the pre-homogenized resveratrol suspension, pre-homogenized nanoemulsion and post-homogenized nanoemulsion were 24.18 ± 2.30%, 54.32 ± 0.95% and 88.57 ± 1.92%, respectively, after 24 h. The ex vivo release also showed the cumulative percentage drug release of 85.48 ± 1.34% at 24 h. The antioxidant activity determined by using a DPPH assay showed high scavenging efficiency for the optimized formulation. Pharmacokinetic studies showed the higher concentration of the drug in the brain (brain/blood ratio: 2.86 ± 0.70) following intranasal administration of the optimized nanoemulsion. Histopathological studies showed decreased degenerative changes in the resveratrol nanoemulsion administered groups. The levels of GSH and SOD were significantly higher, and the level of MDA was significantly lower in the resveratrol nanoemulsion treated group. (paper)

  11. [Comparative study on transdermal osmosis in vitro of Aconitum brachypodium liniment, gel and patcher].

    Science.gov (United States)

    Lin, Ya-ping; Zhao, Ying; Zhang, Yong-ping; Liang, Guang-yi

    2007-02-01

    To study the transdermal osmosis process of Aconitum brachypodum's liniment, gel and patcher to provide basis for selecting dosage form and controlling the quality. Taking the cumulate rate of transdermal as index, a imitated Fick's diffusion device was used for the investigating the transdermal osmosis course of the three preparations. The best transdermal mathematics models are obtained and the relations between the transdermal course and the release course are analysed. The three preparations have different characteristics of transdermal osmosis course. The liniment meets dynamics 0 order process, the gel and the patcher meet dynamic 0 order process of non-corroded drug system. And the relation is good cubic equation between their transdermal course and release course. The transdermal osmosis experiment in vitro for three preparations can provide basis for selecting dosage form and the quality control in future studies.

  12. In vitro evaluation of transdermal nicotine delivery systems commercially available in Brazil

    Directory of Open Access Journals (Sweden)

    André Luís Morais Ruela

    2013-09-01

    Full Text Available The aim of this study was to develop and validate a method for evaluating the release and skin permeation from transdermal nicotine patches using the vertical diffusion cell (VDC. The VDC is an experimental apparatus employed in research, development, and the pharmaceutical field because it can simulate conditions closest to those established in clinical trials. Two transdermal nicotine delivery systems marketed in Brazil to release 14 mg over 24 hours were evaluated. Release studies were carried out using a regenerated cellulose dialysis membrane and permeation studies were carried out using excised porcine ear skin. The results indicated that nicotine release from both evaluated patches follows Higuchi's release kinetics, while skin permeation studies indicated zero-order release kinetics. Nicotine release rates were different between both evaluated patches, but drug permeation rates were not significantly different. According to validation studies, the method was appropriate for evaluating in vitro performance of nicotine patches. The proposed method can be applied to in vitro comparative studies between different commercial nicotine patches and may be used as an auxiliary tool in the design of new transdermal nicotine delivery systems.

  13. Optimization of headspace solid-phase microextraction for analysis of β-caryophyllene in a nanoemulsion dosage form prepared with copaiba (Copaifera multijuga Hayne) oil

    International Nuclear Information System (INIS)

    Dias, Daiane de O; Colombo, Mariana; Kelmann, Regina G.; De Souza, Tatiane P.; Bassani, Valquiria L.; Teixeira, Helder F.; Veiga, Valdir F.; Limberger, Renata P.

    2012-01-01

    Highlights: ► A SPME-CG method is proposed for β-caryophyllene assay in nanoemulsions containing copaiba oil. ► SPME parameters were optimized for efficient β-caryophyllene extraction. ► The stability-indicating capability and specificity of the method were satisfied. ► Nanoemulsions partially protected β-caryophyllene under stressing conditions. ► The proposed method presents linearity, lows LOD and LOQ, good precision, accuracy and robustness. - Abstract: Recent studies have shown the anti-inflammatory activity of Copaiba oils may be addressed to the high content of β-caryophyllene, the most common sesquiterpene detected, especially in the Copaifera multijuga Hayne species. In the present study, nanoemulsions were proposed as a delivery system for copaiba oil in view to treat locally inflamed skin. This article describes the optimization and validation of a stability-indicating SPME-GC method, for β-caryophyllene analysis in the nanoemulsions produced by high pressure homogenization. SPME methods are performed with PDMS (polydimethylsiloxane) fiber (100 μm). Three SPME parameters were evaluated by a three-level-three-factor Box–Behnken factorial design as potentially affecting the technique efficiency. According to the results obtained, the best conditions to extract β-caryophyllene were: (i) sampling temperature of 45 °C, (ii) sampling time of 20 min and (iii) no NaCl addition. Results coming from the forced degradation tests showed a reduction of β-caryophyllene peak area when both caryophyllene methanolic solution and nanoemulsions were exposed to acid hydrolysis, UV-A irradiation, oxidative (H 2 O 2 ) and thermolitic (60 °C) conditions. Such reduction occurred in lower extent in the nanoemulsions, suggesting a protective effect of the formulation to β-caryophyllene content. Since no degradation products were detected in the same retention time of β-caryophyllene, the specificity of the method was demonstrated. The method was linear in

  14. Optimization of headspace solid-phase microextraction for analysis of {beta}-caryophyllene in a nanoemulsion dosage form prepared with copaiba (Copaifera multijuga Hayne) oil

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Daiane de O; Colombo, Mariana; Kelmann, Regina G. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Av. Ipiranga, 2752, CEP 90610-000 (Brazil); De Souza, Tatiane P. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Amazonas, Manaus, Amazonas (Brazil); Bassani, Valquiria L.; Teixeira, Helder F. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Av. Ipiranga, 2752, CEP 90610-000 (Brazil); Veiga, Valdir F. [Departamento de Quimica, Instituto de Ciencias Exatas, UFAM, Av. Gal. Rodrigo Octavio, 6.200 - Japiim, 69.079-000, Manaus - AM (Brazil); Limberger, Renata P. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Av. Ipiranga, 2752, CEP 90610-000 (Brazil); and others

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer A SPME-CG method is proposed for {beta}-caryophyllene assay in nanoemulsions containing copaiba oil. Black-Right-Pointing-Pointer SPME parameters were optimized for efficient {beta}-caryophyllene extraction. Black-Right-Pointing-Pointer The stability-indicating capability and specificity of the method were satisfied. Black-Right-Pointing-Pointer Nanoemulsions partially protected {beta}-caryophyllene under stressing conditions. Black-Right-Pointing-Pointer The proposed method presents linearity, lows LOD and LOQ, good precision, accuracy and robustness. - Abstract: Recent studies have shown the anti-inflammatory activity of Copaiba oils may be addressed to the high content of {beta}-caryophyllene, the most common sesquiterpene detected, especially in the Copaifera multijuga Hayne species. In the present study, nanoemulsions were proposed as a delivery system for copaiba oil in view to treat locally inflamed skin. This article describes the optimization and validation of a stability-indicating SPME-GC method, for {beta}-caryophyllene analysis in the nanoemulsions produced by high pressure homogenization. SPME methods are performed with PDMS (polydimethylsiloxane) fiber (100 {mu}m). Three SPME parameters were evaluated by a three-level-three-factor Box-Behnken factorial design as potentially affecting the technique efficiency. According to the results obtained, the best conditions to extract {beta}-caryophyllene were: (i) sampling temperature of 45 Degree-Sign C, (ii) sampling time of 20 min and (iii) no NaCl addition. Results coming from the forced degradation tests showed a reduction of {beta}-caryophyllene peak area when both caryophyllene methanolic solution and nanoemulsions were exposed to acid hydrolysis, UV-A irradiation, oxidative (H{sub 2}O{sub 2}) and thermolitic (60 Degree-Sign C) conditions. Such reduction occurred in lower extent in the nanoemulsions, suggesting a protective effect of the formulation to {beta

  15. Rotigotine transdermal patch for the treatment of Parkinson's Disease.

    Science.gov (United States)

    Perez-Lloret, Santiago; Rey, María Verónica; Ratti, Pietro Lucca; Rascol, Olivier

    2013-02-01

    Rotigotine, a non-ergot dopamine agonist, has been developed as a novel transdermal formulation. The rotigotine transdermal patch has received EMEA marketing authorization for the treatment of adult patients with early or advanced Parkinson's disease (PD) or with moderate to severe restless legs syndrome (RLS). FDA originally granted a marketing authorization for early PD, which was later suspended, and is now studying the authorization for RLS. The aim of this review is to review the pharmacokinetics, pharmacodynamics as well as the clinical efficacy and tolerability of the rotigotine transdermal patch in PD. Source material was identified using a PubMed search for the term 'rotigotine' and PD. Articles published up to January 2011 or abstract submitted to most relevant international neurology congresses were reviewed. The rotigotine transdermal patch is efficacious for the treatment of PD. Tolerability profile appears to be well within the range of that observed with other non-ergot dopamine agonists in PD. Application-site reactions were the most frequent adverse event, and they were considered mild to moderate in the majority of cases. The rotigotine transdermal patch offers a safe and efficacious alternative for the treatment of PD. Further studies should focus on the possibility that continuous dopamine stimulation by means of the transdermal patch has any influence on levodopa-related motor complications. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  16. Efficacy of a single dose of a transdermal diclofenac patch as pre ...

    African Journals Online (AJOL)

    2012-01-25

    Jan 25, 2012 ... When the side-effects were compared between the groups using a test of proportions, it was not significant. Discussion. The results of our study suggest that when applied at the beginning of surgery, a transdermal patch of diclofenac is as effective as intramuscular diclofenac in prolonging the requirement ...

  17. Enhanced oral absorption and therapeutic effect of acetylpuerarin based on D-α-tocopheryl polyethylene glycol 1000 succinate nanoemulsions

    Directory of Open Access Journals (Sweden)

    Sun DQ

    2014-07-01

    Full Text Available Deqing Sun,1,2 Xinbing Wei,1 Xia Xue,2 Zengjun Fang,3 Manru Ren,1 Haiyan Lou,1 Xiumei Zhang11Department of Pharmacology, School of Medicine, Shandong University, Jinan, People’s Republic of China; 2Department of Pharmacy, 3Department of Clinical Pharmacology, Second Hospital of Shandong University, Jinan, People’s Republic of ChinaBackground: Acetylpuerarin (AP, because of its lower water solubility, shows poor absorption that hinders its therapeutic application. Thus, the aim of this study was to prepare nanoemulsions for AP, enhance its oral bioavailability, and thus improve the therapeutic effect.Methods: The nanoemulsions stabilized by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS were prepared by high-pressure homogenization and characterized in terms of particle size, drug loading, morphology, and in vitro drug release. A lipid digestion model was used to predict in vivo drug solubilization in the gastrointestinal environment. The pharmacokinetics of AP formulations were performed in rats; meanwhile, a chylomicron flow-blocking rat model was used to evaluate the lymphatic drug transport. Moreover, the therapeutic effects of AP nanoemulsions on the model of focal cerebral ischemia-reperfusion for brain injury were also assessed.Results: The nanoemulsions with a droplet size of 150 nm were well stabilized by TPGS and showed a high loading capacity for AP. In the digestion model, the distribution of AP in aqueous phase/pellet phase was about 90%/10% for nanoemulsions and 5%/95% for oil solution, indicating that the drug encapsulated in nanoemulsions would present in solubilized form after transportation into the gastrointestinal tract, whereas drug precipitation would occur as the oil solution was orally administered. The area under the curve value of AP nanoemulsions was 5.76±0.56 µg·hour·mL-1, or was about 2.6 and 1.7 times as great as that of suspension and oil solution, respectively, indicating enhanced drug

  18. Enhanced Bioavailability of Curcumin Nanoemulsions Stabilized with Phosphatidylcholine Modified with Medium Chain Fatty Acids.

    Science.gov (United States)

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Soto-Rodríguez, Ida; Sanchez-Otero, Maria Guadalupe; Vernon-Carter, Eduardo J; García, Hugo S

    2017-01-01

    Curcumin is a natural, oil-soluble polyphenolic compound with potent anticancer, anti-inflammatory, and antioxidant activities. In its free form, it is very poorly absorbed in the gut due to its very low solubility. The use of nanoemulsions as carrier is a feasible way for improving curcumin bioavailability. To this end, the choice of emulsifying agent for stabilizing the nanoemulsions is of the upmost importance for achieving a desired functionality. Phosphatidylcholine (PC) and phosphatidycholine enriched (PCE) with medium chain fatty acids (42.5 mol %) in combination with glycerol as co-surfactant, were used for preparing oil-in water nanoemulsions coded as NEPC and NEPCE, respectively. NEPCE displayed significantly smaller mean droplet size (30 nm), equal entrapment efficiency (100%), better droplet stability and suffered lower encapsulation efficiency loss (3%) during storage time (120 days, 4ºC) than NEPC. Bioavailability, measured in terms of area under the curve of curcumin concentration versus time, and maximum curcumin plasma concentration, was in general terms significantly higher for NEPCE than for NEPC, and for curcumin coarse aqueous suspension (CCS). Also, NEPCE produced significantly higher curcumin concentrations in liver and lung than NEPC and CCS. These data support the role of phosphatidylcholine enriched with medium chain fatty acids to increase the bioavailability of nanoemulsions for therapeutic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Preparation and Characterization of Controlled-Release Avermectin/Castor Oil-Based Polyurethane Nanoemulsions.

    Science.gov (United States)

    Zhang, Hong; Qin, He; Li, Lingxiao; Zhou, Xiaoteng; Wang, Wei; Kan, Chengyou

    2017-06-12

    Avermectin (AVM) is a low-toxic and high-active biopesticide, but it can be easily degraded by UV light. In this paper, biodegradable castor oil-based polyurethanes (CO-PU) are synthesized and used as carriers to fabricate a new kind of AVM/CO-PU nanoemulsion through an emulsion solvent evaporation method, and the chemical structure, colloidal property, AVM loading capacity, controlled-release behavior, foliar adhesion, and photostability of the AVM/CO-PU drug delivery systems are investigated. Results show that AVM is physically encapsulated in the CO-PU carrier nanospheres, the diameter of the AVM/CO-PU nanoparticles is 85%. The release profiles indicate that the release rate is relatively high at the early stage and then slows, which can be adjusted by loaded AVM content, temperature, and pH of the release medium. The foliar pesticide retention of the AVM/CO-PU nanoemulsions is improved, and the photolysis rate of AVM in the AVM/CO-PU nanoparticles is significantly slower than that of the free AVM. A release mechanism of the AVM/CO-PU nanoemulsions is proposed, which is controlled by both diffusion and matrix erosion.

  20. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    Science.gov (United States)

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Development and Evaluation of Solbrax-Water Nanoemulsions for Removal of Oil from Sand

    Directory of Open Access Journals (Sweden)

    Priscila F. Oliveira

    2014-01-01

    Full Text Available In recent years, surfactants have been used to clean up soils and aquifers contaminated by petroleum and petroleum derivatives. The purpose of this study was to develop and evaluate nanoemulsions for remediation of soil contaminated by petroleum, by using a commercial solvent Solbrax. The nanoemulsions were prepared by the phase inversion temperature (PIT method, using oil phase Solbrax (a solvent extracted from naphtha with low aromatics content and a nonionic ethoxylated lauryl ether surfactant. The surfactant concentrations were varied from 10 to 12 wt% and the oil phase was varied from 5 to 20 wt%. A 23 factorial experimental design with center point run was used to evaluate the soil washing process, varying time, temperature, and shear rate of the system. The results show that the most efficient system (with 90% efficiency was that using the nanoemulsion containing 5 wt% of Solbrax and 12 wt% of surfactant after four hours of washing, on 240 rotation·min−1 of shear rate and at a temperature of 318 K.

  2. Future of the transdermal drug delivery market--have we barely touched the surface?

    Science.gov (United States)

    Watkinson, Adam C; Kearney, Mary-Carmel; Quinn, Helen L; Courtenay, Aaron J; Donnelly, Ryan F

    2016-01-01

    Transdermal drug delivery is the movement of drugs across the skin for absorption into the systemic circulation. Transfer of the drug can occur via passive or active means; passive transdermal products do not disrupt the stratum corneum to facilitate delivery whereas active technologies do. Due to the very specific physicochemical properties necessary for successful passive transdermal drug delivery, this sector of the pharmaceutical industry is relatively small. There are many well-documented benefits of this delivery route however, and as a result there is great interest in increasing the number of therapeutic substances that can be delivered transdermally. This review discusses the various transdermal products that are currently/have been marketed, and the paths that led to their success, or lack of. Both passive and active transdermal technologies are considered with the advantages and limitations of each highlighted. In addition to marketed products, technologies that are in the investigative stages by various pharmaceutical companies are reviewed. Passive transdermal drug delivery has made limited progress in recent years, however with the ongoing intense research into active technologies, there is great potential for growth within the transdermal delivery market. A number of active technologies have already been translated into marketed products, with other platforms including microneedles, rapidly progressing towards commercialisation.

  3. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms

    OpenAIRE

    Teixeira, Paula C.; Leite, Gonçalo M.; Domingues, Ricardo J.; Silva, Joana; Gibbs, Paul A.; Ferreira, João Paulo

    2007-01-01

    Some microemulsions and nanoemulsions may have antimicrobial properties and be effective anti-biofilm agents. We examined the abilities of two fine emulsions, designated BCTP and TEOP, to inactivate suspensions of vegetative cells of Salmonella spp. Escherichia coli 0157:H7 (VT-), Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. BCTP is an O/W nanoemulsion of soybean oil and tri-n-butyl phosphate emulsified with Triton X-100, while TEOP is an O/W microemulsion of ethy...

  4. In vitro lipid peroxidation of intestinal bile salt-based nanoemulsions

    DEFF Research Database (Denmark)

    Courraud, J; Charnay, C; Cristol, J P

    2013-01-01

    . Several nanoemulsions were compared in terms of physical characteristics and reactivity to 2,2'-azobis-(2-amidinopropane) hydrochloride (AAPH)-induced oxidation. Formulations included different types of lipids, a detergent (a conjugated bile salt or sodium dodecyl sulfate) and, finally, lipophilic...

  5. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  6. A comparative study of non-lipid nanoemulsion of propofol with solutol and propofol emulsion with lecithin.

    Science.gov (United States)

    Rodrigues, Thiago Alves; Alexandrino, Ricardo Andrade; Kanczuk, Marcelo Epstein; Gozzani, Judymara Lauzi; Mathias, Ligia Andrade da Silva Telles

    2012-01-01

    Some formulations have been proposed to reduce the adverse reactions due to the lipid emulsion containing soybean oil used as propofol carrier. This study for endoscopy sedation was aimed at evaluating and comparing the safety, effectiveness and adverse effects of the use of propofol nanoemulsion compared to propofol currently commercialized. In this prospective study, 150 patients were submitted to upper digestive endoscopy. These patients were allocated into two groups: the control group (CONT Group; n=75) and the nanoemulsion group (NE Group; n=75). HR, SBP, DBP, SpO(2) and BIS (which is considered to be appropriate between 65 and 75 during procedure) were monitored. Gender, age, weight, height, BMI, ASA physical status, times and doses were analyzed, as well as adverse effects (phlogistic signs and pain on injection, apnea, nausea/vomiting) and alterations in monitoring variables. A p-value 0.05). The times, induction doses and the SBP and DBP values at the end of examination and at the moment of discharge from the PACU were lower in the NE Group (p<0.05). Lipid propofol and propofol nanoemulsion were equivalent concerning effectiveness, safety and adverse effects in the doses used. There was a lower incidence of pain on injection in the nanoemulsion formulation. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.

  7. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design.

    Science.gov (United States)

    Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.

  8. The Influence of Solid Microneedles on the Transdermal Delivery of Selected Antiepileptic Drugs

    Directory of Open Access Journals (Sweden)

    Julia Nguyen

    2016-11-01

    Full Text Available The aim of this project was to examine the effect of microneedle rollers on the percutaneous penetration of tiagabine hydrochloride and carbamazepine across porcine skin in vitro. Liquid chromatography-mass spectrometric analysis was carried out using an Agilent 1200 Series HPLC system coupled to an Agilent G1969A TOF-MS system. Transdermal flux values of the drugs were determined from the steady-state portion of the cumulative amount versus time curves. Following twelve hours of microneedle roller application, there was a 6.74-fold increase in the percutaneous penetration of tiagabine hydrochloride (86.42 ± 25.66 µg/cm2/h compared to passive delivery (12.83 ± 6.30 µg/cm2/h. For carbamazepine in 20% ethanol, passive transdermal flux of 7.85 ± 0.60 µg/cm2/h was observed compared to 10.85 ± 0.11 µg/cm2/h after microneedle treatment. Carbamazepine reconstituted in 30% ethanol resulted in only a 1.19-fold increase in drug permeation across porcine skin (36.73 ± 1.83 µg/cm2/h versus 30.74 ± 1.32 µg/cm2/h. Differences in flux values of untreated and microneedle-treated porcine skin using solid microneedles for the transdermal delivery of tiagabine were statistically significant. Although there were 1.38- and 1.19-fold increases in transdermal flux values of carbamazepine when applied as 20% and 30% ethanol solutions across microneedle-treated porcine skin, respectively, the increases were not statistically significant.

  9. Formulation and pharmacokinetics of diclofenac lipid nanoemulsions for parenteral application.

    Science.gov (United States)

    Ramreddy, Srividya; Kandadi, Prabhakar; Veerabrahma, Kishan

    2012-01-01

    The objective of the present study was to formulate and determine the pharmacokinetics of stable o/w parenteral lipid nanoemulsions (LNEs) of diclofenac acid used to treat arthritic conditions. The LNEs of diclofenac acid with a mean size ranging from 200 to 240 nm and a zeta potential of -29.4 ± 1.04 mV (negatively charged LNEs) and 62.1 ± 3.5 (positively charged LNEs) emulsions were prepared by hot homogenization and ultrasonication process. The influence of formulation variables, such as the change in proportion of cholesterol, was studied, and optimized formulations were developed. The optimized formulations were relatively stable during centrifugal stress, dilution stress, and storage. The drug content and entrapment efficiency were determined using high-performance liquid chromatography. The in vitro drug release was carried out in phosphate-buffered saline pH 7.4 and cumulative amount of drug released was estimated using a UV-visible spectro-photometer. During in vivo pharmacokinetic studies in male Wistar rats, diclofenac serum concentration from LNEs was higher than that of Voveran injection and was detectable up to 12 h. Diclofenac in LNEs showed improved pharmacokinetic profile with increase in area under the curve, elimination half-life and mean residence time in comparison to Voveran. Our aim was to prepare and determine the pharmacokinetics of injectable lipid nanoemulsions of diclofenac acid for treating arthritic conditions by reducing the frequency of dosing and pain at site of injection. The nanoemulsions of diclofenac acid were prepared by homogenization and ultrasonication process. The sizes and charges of oil globules were determined. The effect of cholesterol on stability of emulsion was studied, and an optimized preparation was developed. The optimized formulations were stable during centrifugation, dilution, and storage. The total amount of drug in emulsion and percentage amount of drug present in emulsion globules were determined using

  10. Recent trends in challenges and opportunities of Transdermal drug delivery system

    OpenAIRE

    P.M.Patil; P.D.Chaudhari; Jalpa K.Patel; K.A.Kedar; P.P.Katolkar

    2012-01-01

    Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered v...

  11. Current advances in the fabrication of microneedles for transdermal delivery

    NARCIS (Netherlands)

    Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, Pradeep; Toit, Du L.C.; Modi, G.; Pillay, V.

    2014-01-01

    The transdermal route is an excellent site for drug delivery due to the avoidance of gastric degradation and hepatic metabolism, in addition to easy accessibility. Although offering numerous attractive advantages, many available transdermal systems are not able to deliver drugs and other compounds

  12. Transdermal fentanyl matrix patches Matrifen and Durogesic DTrans are bioequivalent

    DEFF Research Database (Denmark)

    Kress, Hans G; Boss, Hildegard; Delvin, Thomas

    2010-01-01

    AIM: The pharmacokinetic profiles of the two commercially available transdermal fentanyl patches Matrifen (100 microg/h) and Durogesic DTrans (100 microg/h), used to manage severe chronic pain, were compared regarding their systemic exposure, rate of absorption, and safety. METHODS: Transdermal m...

  13. Enhanced transdermal permeability of Terbinafine through novel nanoemulgel formulation; Development, in vitro and in vivo characterization

    Directory of Open Access Journals (Sweden)

    Maha E. Elmataeeshy

    2018-06-01

    Full Text Available Terbinafine Hcl (TB is a poorly water soluble antifungal drug. Topical nanoemulsion based gel containing TB was prepared with a view to improve its solubility and antifungal activity. In preparation of the nanoemulsion (NE, excipients were selected based on the solubility study. Peceol was optimized as the oil phase. Tween 80 and propanol were optimized as the surfactant and co-solvent respectively, and were mixed (Smix in different weight ratios (1:1, 1:2, 1:3, 1:4, 4:1, 3:1 and 2:1, respectively. Pseudoternary phase diagrams were developed and Pecol and Smix were mixed in different weight ratios ranging from 1:9 to 9:1. Based on the NE region of each diagram, the formulae were selected. The formulated nanoemulsions were characterized and evaluated for in vitro drug release and thermodynamic stability. The optimum nanoemulsion formulae containing 10 or 15% w/w oil, 45% w/w Smix (1:2/1:3 and 45-40% w/w aqueous phase were incorporated into Carbopol 940 gel bases forming three different TB nanoemulsion based emulgel formulae (F1-F3 which were examined for ex vivo drug permeation and in vivo antifungal activity compared to the marketed product; Lamisil® emulgel. The results showed that TB skin permeation from all the prepared nanoemulsion based gel formulae was significantly (p < 0.05 improved in relation to the commercial emulgel. F3 exhibited a superior in vivo antifungal activity over the marketed emulgel for the treatment of Candida infection. Keywords: Terbinafine nanoemulsion, Pseudoternary phase diagrams, Permeation study

  14. Use of electroporation and reverse iontophoresis for extraction of transdermal multibiomarkers

    Directory of Open Access Journals (Sweden)

    Ching CTS

    2012-02-01

    Full Text Available Congo Tak-Shing Ching1,2, Lin-Shien Fu3-5, Tai-Ping Sun1, Tzu-Hsiang Hsu1, Kang-Ming Chang21Department of Electrical Engineering, National Chi Nan University, Puli, Nantou County, 2Department of Photonics and Communication Engineering, Asia University, Wufeng, Taichung, 3Department of Pediatrics, National Yang Ming University, Taipei, 4Institute of Technology, National Chi Nan University, Puli, 5Department of Pediatrics, Taichung Veterans General Hospital, Taichung City, TaiwanBackground: Monitoring of biomarkers, like urea, prostate-specific antigen (PSA, and osteopontin, is very important because they are related to kidney disease, prostate cancer, and ovarian cancer, respectively. It is well known that reverse iontophoresis can enhance transdermal extraction of small molecules, and even large molecules if reverse iontophoresis is used together with electroporation. Electroporation is the use of a high-voltage electrical pulse to create nanochannels within the stratum corneum, temporarily and reversibly. Reverse iontophoresis is the use of a small current to facilitate both charged and uncharged molecule transportation across the skin. The objectives of this in vitro study were to determine whether PSA and osteopontin are extractable transdermally and noninvasively and whether urea, PSA, and osteopontin can be extracted simultaneously by electroporation and reverse iontophoresis.Methods: All in vitro experiments were conducted using a diffusion cell assembled with the stratum corneum of porcine skin. Three different symmetrical biphasic direct currents (SBdc, five various electroporations, and a combination of the two techniques were applied to the diffusion cell via Ag/AgCl electrodes. The three different SBdc had the same current density of 0.3 mA/cm2, but different phase durations of 0 (ie, no current, control group, 30, and 180 seconds. The five different electroporations had the same pulse width of 1 msec and number of pulses per second

  15. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    Science.gov (United States)

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the

  16. [Matrix transdermal systems for caffeine delivery based on polymer and emulsion compounds].

    Science.gov (United States)

    Kuznetsova, E G; Kuryleva, O M; Salomatina, L A; Sevast'ianov, V I

    2008-01-01

    The goal of this work was to develop and test transdermal therapeutic systems for caffeine delivery. In vitro experiments showed that the rate of caffeine diffusion through untreated rabbit skin from a transdermal therapeutic systems based on polymer compound containing 50 mg medicine was 67.2 (9.1 microg/cm2h; for a system based on emulsion compound it was 173 (19 microg/cm2h. Methods for studying the caffeine release rate and quantitative measurement of caffeine content in the emulsion-based transdermal therapeutic system were developed. These methods are required to obtain data for standard drug documentation. The results of in vivo experiments in rabbits showed the absence of irritating effect of the emulsion-based transdermal therapeutic system. The obtained data on the specific efficiency of the transdermal therapeutic systems for caffeine delivery (50 mg) in healthy volunteers showed that this medicine could be used as a nonnarcotic psychoactivator for improving mental and physical activities and attention concentration.

  17. Antileishmanial Activity of Lavandula angustifolia and Rosmarinus Officinalis Essential Oils and Nano-emulsions on Leishmania major (MRHO/IR/75/ER

    Directory of Open Access Journals (Sweden)

    Azar SHOKRI

    2017-12-01

    Full Text Available AbstractBackground: The aim of present study was to evaluate antileishmanial effects of Lavandula angustifolia (L. angustifolia and Rosmarinus officinalis (R. officinalis medicinal plants essential oils and nano-emulsions on Leishmania major (L. major. Methods: The present study was performed in Leishmaniasis Reference Lab at Mazandaran University of Medical Sciences, Iran during 2016-2017. The IC50 values were calculated in both the promastigote and amastigote stages in J774 macrophage in comparison with meglumine antimoniate (MA as positive control. In addition, cytotoxicity effects of essential oils and nano-emulsions prepared from both plants against macrophages were evaluated.Results: Both essential oil and nano-emulsion of Lavander and Rosemary showed anti-leishmania activity on promastigote with IC50=0.11 μl/mL, IC50=0.26 μl/mL, and IC50=0.08 μl/mL respectively. Moreover, during amastigote assay, Lavander and Rosemary essential oils and nano-emulsion were effective at least in concentration of 0.12 μl/mL and 0.06 µl/mL (P=0.0001 respectively, on mean infected macrophages (MIR and amastigotes in macrophages (P=0.0001. Additionally, cytotoxicity assay against macrophage revealed no toxicity on the host cells at IC50 concentrations.Conclusion: The nano-emulsions of both plants were more effective than essential oil in both MIR and amastigote. However, in comparison with MA, the Lavander essential oil is more effective in reducing MIR. Rosemary nano-emulsion reduced MIR significantly more than MA in concentration of 0.25 μl/mL (P<0.001. Further investigations are recommended to evaluate the effect of these medicinal plants in murine models.

  18. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy

    Directory of Open Access Journals (Sweden)

    Sudipta Chatterjee

    2018-04-01

    Full Text Available Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.

  19. Transdermal delivery of scopolamine by natural submicron injectors: in-vivo study in pig.

    Directory of Open Access Journals (Sweden)

    Esther Shaoul

    Full Text Available Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts, comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with T(max of 30 minutes and C(max 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery.

  20. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application

    Directory of Open Access Journals (Sweden)

    Mahmood S

    2014-09-01

    Full Text Available Syed Mahmood, Muhammad Taher, Uttam Kumar Mandal Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM, Pahang Darul Makmur, Malaysia Abstract: Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon® 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a ­homogeneous distribution and low polydispersity index (0.08. They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 µg/cm2/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser

  1. Engineering approaches to transdermal drug delivery: a tribute to contributions of prof. Robert Langer.

    Science.gov (United States)

    Mitragotri, S

    2013-01-01

    Transdermal drug delivery continues to provide an advantageous route of drug administration over injections. While the number of drugs delivered by passive transdermal patches has increased over the years, no macromolecule is currently delivered by the transdermal route. Substantial research efforts have been dedicated by a large number of researchers representing varied disciplines including biology, chemistry, pharmaceutics and engineering to understand, model and overcome the skin's barrier properties. This article focuses on engineering contributions to the field of transdermal drug delivery. The article pays tribute to Prof. Robert Langer, who pioneered the engineering approach towards transdermal drug delivery. Over a period spanning nearly 25 years since his first publication in the field of transdermal drug delivery, Bob Langer has deeply impacted the field by quantitative analysis and innovative engineering. At the same time, he has inspired several generations of engineers by collaborations and mentorship. His scientific insights, innovative technologies, translational efforts and dedicated mentorship have transformed the field. © 2013 S. Karger AG, Basel.

  2. Local sustained delivery of bupivacaine HCl from a new castor oil-based nanoemulsion system.

    Science.gov (United States)

    Rachmawati, Heni; Arvin, Yang Aryani; Asyarie, Sukmadjaja; Anggadiredja, Kusnandar; Tjandrawinata, Raymond Rubianto; Storm, Gert

    2018-06-01

    Bupivacaine HCl (1-butyl-2',6'-pipecoloxylidide hydrochloride), an amide local anesthetic compound, is a local anesthetic drug utilized for intraoperative local anesthesia, post-operative analgesia and in the treatment of chronic pain. However, its utility is limited by the relative short duration of analgesia after local administration (approximately 9 h after direct injection) and risk for side effects. This work is aimed to develop a nanoemulsion of bupivacaine HCl with sustained local anesthetics release kinetics for improved pain management, by exhibiting extended analgesic action and providing reduced peak levels in the circulation to minimize side effects. Herein, biodegradable oils were evaluated for use in nanoemulsions to enable sustained release kinetics of bupivacaine HCl. Only with castor oil, a clear and stable nanoemulsion was obtained without the occurrence of phase separation over a period of 3 months. High loading of bupivacaine HCl into the castor oil-based nanoemulsion system was achieved with about 98% entrapment efficiency and the resulting formulation showed high stability under stress conditions (accelerated stability test) regarding changes in visual appearance, drug content, and droplet size. We show herein that the in vitro release and in vivo pharmacokinetic profiles as well as pharmacodynamic outcome (pain relief test) after subcutaneous administration in rats correlate well and clearly demonstrate the prolonged release and extended duration of activity of our novel nanoformulation. In addition, the lower C max value achieved in the blood compartment suggests the possibility that the risk for systemic side effects is reduced. We conclude that castor oil-based nanomulsion represents an attractive pain treatment possibility to achieve prolonged local action of bupivacaine HCl.

  3. Systemic delivery of β-blockers via transdermal route for hypertension

    Science.gov (United States)

    Ahad, Abdul; Al-Jenoobi, Fahad I.; Al-Mohizea, Abdullah M.; Akhtar, Naseem; Raish, Mohammad; Aqil, Mohd.

    2014-01-01

    Hypertension is the most common cardiovascular disease worldwide. Moreover, management of hypertension requires long-term treatment that may result in poor patient compliance with conventional dosage forms due to greater frequency of drug administration. Although there is availability of a plethora of therapeutically effective antihypertensive molecules, inadequate patient welfare is observed; this arguably presents an opportunity to deliver antihypertensive agents through a different route. Ever since the transdermal drug delivery came into existence, it has offered great advantages including non-invasiveness, prolonged therapeutic effect, reduced side effects, improved bioavailability, better patient compliance and easy termination of drug therapy. Attempts were made to develop the transdermal therapeutic system for various antihypertensive agents, including β-blockers, an important antihypertensive class. β-blockers are potent, highly effective in the management of hypertension and other heart ailments by blocking the effects of normal amounts of adrenaline in the heart and blood vessels. The shortcomings associated with β-blockers such as more frequent dose administration, extensive first pass metabolism and variable bioavailability, make them an ideal candidate for transdermal therapeutic systems. The present article gives a brief view of different β-blockers formulated as transdermal therapeutic system in detail to enhance the bioavailability as well as to improve patient compliance. Constant improvement in this field holds promise for the long-term success in technologically advanced transdermal dosage forms being commercialized sooner rather than later. PMID:26702253

  4. Transdermal microneedles for drug delivery applications

    International Nuclear Information System (INIS)

    Teo, Ai Ling; Shearwood, Christopher; Ng, Kian Chye; Lu Jia; Moochhala, Shabbir

    2006-01-01

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area

  5. Transdermal microneedles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Ai Ling [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Shearwood, Christopher [School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Kian Chye [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Lu Jia [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore)]. E-mail: mshabbir@dso.org.sg

    2006-07-25

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area.

  6. Transdermic absorption of Melagenina II

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, I.; Martinez Lopez, B.; Ruiz Pena, M.; Caso Pena, R.

    1997-01-01

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with 125I by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ( 125I ) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  7. Eugenol Nanoemulsion Stabilized with Zein and Sodium Caseinate by Self-Assembly.

    Science.gov (United States)

    Wang, Lei; Zhang, Yue

    2017-03-31

    Eugenol-loaded nanoemulsion by zein and sodium caseinate (NaCas) was prepared without using specific equipment or organic solvents. The deprotonated eugenol in hot alkaline was added to NaCas/zein mixtures with different mass ratios at pH 11.5 and then neutralized to pH 7.0. The nanoemulsions showed a well-defined diameter (around 109-139 nm) and a negative surface potential (from -28.5 to -35.8 mV) with spherical morphology. The entrapment efficiency (EE) of 1% (v/v) eugenol reached 84.24% by 2% (m/v) NaCas/zein at a mass ratio of 1:1. This formulation also showed the narrowest size distribution and extraordinary stability during ambient storage (22 °C) up to 30 days and retained good redispersibility after spray- or freeze-drying. The current study showed a promising clean and low-cost strategy to deliver lipophilic compounds containing the hydroxyl group.

  8. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?

    Science.gov (United States)

    Kadri, Hani El; Devanthi, Putu Virgina Partha; Overton, Tim W; Gkatzionis, Konstantinos

    2017-11-01

    Nano-emulsions (typically droplet diameternano-emulsions even in reference to similar microbial species and formulations. Following up, this study aimed to investigate the effect of nano-emulsions on four bacterial species (Staphylococcus epidermidis, Bacillus cereus, Lactobacillus acidophilus and five Escherichia coli strains) possessing different surface charge and hydrophobicity. Model oil-in-water (O/W) emulsions with different size of oil droplets were prepared with sunflower oil stabilised by polysorbate 80 (Tween80) emulsifier (hydrophilic), using high shear mixing followed by ultrasonication. The viability of bacteria was monitored by culture, membrane integrity was assessed with flow cytometric analysis with propidium iodide (PI) staining and fluorescence microscopy monitored the spatial distribution of cells within the O/W emulsions. The stability of the nano-O/W emulsions in the presence of bacteria was assessed by monitoring the droplet size [D (4, 3)] and creaming height. In contrast to other reports the survival and growth of bacteria was not affected by the size of the oil droplets, no damage to the bacterial membrane was evident with flow cytometry and emulsion stability was not affected by the presence of bacteria during 7days of storage. Furthermore, the antimicrobial activity of caprylic acid (CA) was compared between O/W coarse and nano-emulsions while varying the concentration of the hydrophilic surfactant Tween80. The activity of CA was similar in nano-emulsion and coarse emulsion; however, it was higher than in bulk oil and was reduced with increasing Tween80 concentration, suggesting that its efficacy is dictated by formulation rather than oil droplet size. The results demonstrated no enhanced antimicrobial activity due to nano-sized oil droplets and that conclusions on nano-emulsions should be taken with caution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery.

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum , the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section "Frontiers in Bioengineering and Biotechnology," the advances in this field and the handful of

  10. Population pharmacokinetic model of transdermal nicotine delivered from a matrix-type patch.

    Science.gov (United States)

    Linakis, Matthew W; Rower, Joseph E; Roberts, Jessica K; Miller, Eleanor I; Wilkins, Diana G; Sherwin, Catherine M T

    2017-12-01

    Nicotine addiction is an issue faced by millions of individuals worldwide. As a result, nicotine replacement therapies, such as transdermal nicotine patches, have become widely distributed and used. While the pharmacokinetics of transdermal nicotine have been extensively described using noncompartmental methods, there are few data available describing the between-subject variability in transdermal nicotine pharmacokinetics. The aim of this investigation was to use population pharmacokinetic techniques to describe this variability, particularly as it pertains to the absorption of nicotine from the transdermal patch. A population pharmacokinetic parent-metabolite model was developed using plasma concentrations from 25 participants treated with transdermal nicotine. Covariates tested in this model included: body weight, body mass index, body surface area (calculated using the Mosteller equation) and sex. Nicotine pharmacokinetics were best described with a one-compartment model with absorption based on a Weibull distribution and first-order elimination and a single compartment for the major metabolite, cotinine. Body weight was a significant covariate on apparent volume of distribution of nicotine (exponential scaling factor 1.42). After the inclusion of body weight in the model, no other covariates were significant. This is the first population pharmacokinetic model to describe the absorption and disposition of transdermal nicotine and its metabolism to cotinine and the pharmacokinetic variability between individuals who were administered the patch. © 2017 The British Pharmacological Society.

  11. Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naren Subbiah

    2017-01-01

    Full Text Available Phospholipid-based deformable nanovesicles (DNVs that have flexibility in shape offer an adaptable and facile method to encapsulate diverse classes of therapeutics and facilitate localized transdermal delivery while minimizing systemic exposure. Here we report the use of a microfluidic reactor for the synthesis of DNVs and show that alteration of input parameters such as flow speeds as well as molar and flow rate ratios increases entrapment efficiency of drugs and allows fine-tuning of DNV size, elasticity, and surface charge. To determine the ability of DNV-encapsulated drug to be delivered transdermally to a local site, we synthesized, characterized, and tested DNVs carrying the fluorescently labeled hydrophilic bisphosphonate drug AF-647 zoledronate (AF647-Zol. AF647-Zol DNVs were lyophilized, resuspended, and applied topically as a paste to the calvarial skin of mice. High-resolution fluorescent imaging and confocal microscopy revealed significant increase of encapsulated payload delivery to the target tissue—cranial bone—by DNVs as compared to nondeformable nanovesicles (NVs or aqueous drug solutions. Interestingly, NV delivery was not superior to aqueous drug solution. Our studies show that microfluidic reactor-synthesized DNVs can be produced in good yield, with high encapsulation efficiency, reproducibility, and stability after storage, and represent a useful vehicle for localized transdermal drug delivery.

  12. The efficacy and safety of a novel lipophilic formulation of methimazole for the once daily transdermal treatment of cats with hyperthyroidism.

    Science.gov (United States)

    Hill, K E; Gieseg, M A; Kingsbury, D; Lopez-Villalobos, N; Bridges, J; Chambers, P

    2011-01-01

    Previous studies on transdermal methimazole have used pluronic lecithin organogel as the vehicle. This might not be the most suitable vehicle for a lipophilic drug, such as methimazole. Once daily transdermal administration of a novel lipophilic formulation of methimazole is as safe and effective as oral carbimazole in treating hyperthyroidism in cats. Forty-five client-owned cats diagnosed with hyperthyroidism. Prospective study. Cats with newly diagnosed, untreated hyperthyroidism were treated with carbimazole (5 mg p.o., q12h) or methimazole (10 mg) applied to the inner pinnae q24h. Cats were examined after 0, 1, 4, 8, and 12 weeks of treatment. Clinical signs, body weight, systolic blood pressure, hematologic, serum biochemical and urine parameters, total serum thyroxine concentrations (TT4), and serum methimazole concentrations were recorded. No significant differences between groups were detected at day 0. Both formulations were effective in treating hyperthyroidism. No significant differences were detected in thyroxine concentrations, body weight, blood pressure, heart rate, alkaline phosphatase, alanine aminotransferase, creatinine, urea, and urine specific gravity (USG) between groups. The serum methimazole concentrations correlated poorly with TT4-concentrations in both groups. In this 12-week trial, once daily application of a novel formulation of transdermal methimazole applied to the pinnae was as effective and safe as twice daily oral carbimazole in the treatment of cats with hyperthyroidism. This novel formulation and transdermal application could have practical advantages to some pet owners. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  13. Development of Food-Grade Curcumin Nanoemulsion and its Potential Application to Food Beverage System: Antioxidant Property and In Vitro Digestion.

    Science.gov (United States)

    Joung, Hee Joung; Choi, Mi-Jung; Kim, Jun Tae; Park, Seok Hoon; Park, Hyun Jin; Shin, Gye Hwa

    2016-03-01

    Curcumin nanoemulsions (Cur-NEs) were developed with various surfactant concentrations by using high pressure homogenization and finally applied to the commercial milk system. Characterization of Cur-NEs was performed by measuring the droplet size and polydispersity index value at different Tween 20 concentrations. The morphology of the Cur-NEs was observed by confocal laser scanning microscopy and transmission electron microscopy. Antioxidant activity and in vitro digestion ability were tested using 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, pH-stat method, and thiobarbituric acid reactive substances assays. Cur-NEs were found to be physically stable for 1 mo at room temperature. The surfactant concentration affects particle formation and droplet size. The mean droplet size decreased from 122 to 90 nm when surfactant concentration increased 3 times. Cur-NEs had shown an effective oxygen scavenging activity. Cur-NEs-fortified milk showed significantly lower lipid oxidation than control (unfortified) milk and milk containing curcumin-free nanoemulsions. These properties make Cur-NEs suitable systems for the beverage industry. © 2016 Institute of Food Technologists®

  14. Treatment with subcutaneous and transdermal fentanyl: results from a population pharmacokinetic study in cancer patients.

    Science.gov (United States)

    Oosten, Astrid W; Abrantes, João A; Jönsson, Siv; de Bruijn, Peter; Kuip, Evelien J M; Falcão, Amílcar; van der Rijt, Carin C D; Mathijssen, Ron H J

    2016-04-01

    Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we studied the pharmacokinetics of subcutaneous and transdermal fentanyl. Furthermore, we evaluated rotations from the subcutaneous to the transdermal route. Fifty-two patients treated with subcutaneous and/or transdermal fentanyl for moderate to severe cancer-related pain participated. A population pharmacokinetic model was developed and evaluated using non-linear mixed-effects modelling. For rotations from subcutaneous to transdermal fentanyl, a 1:1 dose conversion ratio was used while the subcutaneous infusion was continued for 12 h (with a 50 % tapering after 6 h). A 6-h scheme with 50 % tapering after 3 h was simulated using the final model. A one-compartment model with first-order elimination and separate first-order absorption processes for each route adequately described the data. The estimated apparent clearance of fentanyl was 49.6 L/h; the absorption rate constant for subcutaneous and transdermal fentanyl was 0.0358 and 0.0135 h(-1), respectively. Moderate to large inter-individual and inter-occasion variability was found. Around rotation from subcutaneous to transdermal fentanyl, measured and simulated plasma fentanyl concentrations rose and increasing side effects were observed. We describe the pharmacokinetics of subcutaneous and transdermal fentanyl in one patient cohort and report several findings that are relevant for clinical practice. Further research is warranted to study the optimal scheme for rotations from the subcutaneous to the transdermal route.

  15. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt.

    Science.gov (United States)

    Arora, Priyanka; Mukherjee, Biswajit

    2002-09-01

    In this study, matrix-type transdermal patches containing diclofenac diethylamine were prepared using different ratios of polyvinylpyrrolidone (PVP) and ethylcellulose (EC) by solvent evaporation technique. The drug matrix film of PVP and EC was casted on a polyvinylalcohol backing membrane. All the prepared formulations were subjected to physical studies (moisture content, moisture uptake, and flatness), in vitro release studies and in vitro skin permeation studies. In vitro permeation studies were performed across cadaver skin using a modified diffusion cell. Variations in drug release profiles among the formulations studied were observed. Based on a physicochemical and in vitro skin permeation study, formulation PA4 (PVP/EC, 1:2) and PA5 (PVP/EC, 1:5) were chosen for further in vivo experiments. The antiinflammatory effect and a sustaining action of diclofenac diethylamine from the two transdermal patches selected were studied by inducing paw edema in rats with 1% w/v carrageenan solution. When the patches were applied half an hour before the subplantar injection of carrageenan in the hind paw of male Wistar rats, it was observed that formulation PA4 produced 100% inhibition of paw edema in rats 12 h after carrageenan insult, whereas in the case of formulation PA5, 4% mean paw edema was obtained half an hour after the carrageenan injection and the value became 19.23% 12 h after the carrageenan insult. The efficacy of transdermal patches was also compared with the marketed Voveran gel and it was found that PA4 transdermal patches produced a better result as compared with the Voveran gel. Hence, it can be reasonably concluded that diclofenac diethylamine can be formulated into the transdermal matrix type patches to sustain its release characteristics and the polymeric composition (PVP/EC, 1:2) was found to be the best choice for manufacturing transdermal patches of diclofenac diethylamine among the formulations studied. Copyright 2002 Wiley-Liss, Inc.

  16. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    Science.gov (United States)

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  17. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.

    Science.gov (United States)

    Seong, Keum-Yong; Seo, Min-Soo; Hwang, Dae Youn; O'Cearbhaill, Eoin D; Sreenan, Seamus; Karp, Jeffrey M; Yang, Seung Yun

    2017-11-10

    Proteins are important biologic therapeutics used for the treatment of various diseases. However, owing to low bioavailability and poor skin permeability, transdermal delivery of protein therapeutics poses a significant challenge. Here, we present a new approach for transdermal protein delivery using bullet-shaped double-layered microneedle (MN) arrays with water-swellable tips. This design enabled the MNs to mechanically interlock with soft tissues by selective distal swelling after skin insertion. Additionally, prolonged release of loaded proteins by passive diffusion through the swollen tips was obtained. The bullet-shaped MNs provided an optimal geometry for mechanical interlocking, thereby achieving significant adhesion strength (~1.6Ncm -2 ) with rat skin. By harnessing the MN's reversible swelling/deswelling property, insulin, a model protein drug, was loaded in the swellable tips using a mild drop/dry procedure. The insulin-loaded MN patch released 60% of insulin when immersed in saline over the course of 12h and approximately 70% of the released insulin appeared to have preserved structural integrity. An in vivo pilot study showed a prolonged release of insulin from swellable MN patches, leading to a gradual decrease in blood glucose levels. This self-adherent transdermal MN platform can be applied to a variety of protein drugs requiring sustained release kinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of components (polymer, plasticizer and solvent as a variable in fabrication of diclofenac transdermal patch

    Directory of Open Access Journals (Sweden)

    Chetna Modi

    2012-01-01

    Full Text Available Transdermal drug delivery influence consumer acceptance and marked increase in bioavailability of some drugs which undergoes hepatic first-pass metabolism. Fabrication of transdermal patch requires lots of attention regarding the amount of components used for it. Because of varied nature of polymer and plasticizer, transdermal patches have different properties and different drug release. This study is on the basis to evaluate the amount to be needed for fabrication of diclofenac transdermal patch. Study shows that Hydroxy Propyl Methyl Cellulose has great influence on transdermal patch, if it is used alone in combination with glycerin or PEG-4000 plasticizer.

  19. In Vitro Drug Transfer Due to Drug Retention in Human Epidermis Pretreated with Application of Marketed Estradiol Transdermal Systems.

    Science.gov (United States)

    Krishnaiah, Yellela S R; Pavurala, Naresh; Yang, Yang; Manda, Prashanth; Katragadda, Usha; Yang, Yongsheng; Shah, Rakhi; Fang, Guodong; Khan, Mansoor A

    2017-08-01

    Study objective was to assess skin-to-skin drug transfer potential that may occur due to drug retention in human epidermis (DRE) pretreated with application of estradiol transdermal drug delivery systems (TDDS) and other estradiol transdermal dosage forms (gels and sprays). TDDS (products-A, B, and C) with varying formulation design and composition, and other estradiol transdermal products (gel and spray) were applied to heat separated human epidermis (HSE) and subjected to in vitro drug permeation study. Amounts of DRE were quantified after 24 h. The DRE with product-B was significantly (P  0.05) amounts of DRE. A separate in vitro permeation study was carried out to determine amounts of drug transferred from drug-retaining epidermis to untreated HSE. The amounts of drug transferred, due to DRE after 8 h, with product-C were significantly (P drug transfer due to the DRE after labeled period of using estradiol TDDS, though the clinical relevance of these findings is yet to be determined.

  20. Assessment of simvastatin niosomes for pediatric transdermal drug delivery.

    Science.gov (United States)

    Zidan, Ahmed S; Hosny, Khaled M; Ahmed, Osama A A; Fahmy, Usama A

    2016-06-01

    The prevalence of childhood dyslipidemia increases and is considered as an important risk factor for the incidence of cardiovascular disease in the adulthood. To improve dosing accuracy and facilitate the determination of dosing regimens in function of the body weight, the proposed study aims at preparing transdermal niosomal gels of simvastatin as possible transdermal drug delivery system for pediatric applications. Twelve formulations were prepared to screen the influence of formulation and processing variables on critical niosomal characteristics. Nano-sized niosomes with 0.31 μm number-weighted size displayed highest simvastatin release rate with 8.5% entrapment capacity. The niosomal surface coverage by negative charges was calculated according to Langmuir isotherm with n = 0.42 to suggest that the surface association was site-independent, probably producing surface rearrangements. Hypolipidemic activities after transdermal administration of niosomal gels to rats showed significant reduction in cholesterol and triglyceride levels while increasing plasma high-density lipoproteins concentration. Bioavailability estimation in rats revealed an augmentation in simvastatin bioavailability by 3.35 and 2.9 folds from formulation F3 and F10, respectively, compared with oral drug suspension. Hence, this transdermal simvastatin niosomes not only exhibited remarkable potential to enhance its bioavailability and hypolipidemic activity but also considered a promising pediatric antihyperlipidemic formulation.

  1. Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion.

    Science.gov (United States)

    Kim, In-Hah; Lee, Hanna; Kim, Jung Eun; Song, Kyung Bin; Lee, Youn Suk; Chung, Dae Sung; Min, Sea C

    2013-10-01

    Nanoemulsions containing lemongrass oil (LO) were developed for coating plums and the effects of the nanoemulsion coatings on the microbial safety and physicochemical storage qualities of plums during storage at 4 and 25 °C were investigated. The emulsions used for coating were produced by mixing a carnauba wax-based solution (18%, w/w) with LO at various concentrations (0.5% to 4.0%, w/w) using dynamic high pressure processing at 172 MPa. The coatings were evaluated for their ability to inhibit the growth of Salmonella Typhimurium and Escherichia coli O157:H7 and their ability to preserve various physicochemical qualities of plums. Uniform and continuous coatings on plums, formed with stable emulsions, initially inhibited S. Typhimurium and E. coli O157:H7 by 0.2 to 2.8 and 0.8 to 2.7 log CFU/g, respectively, depending on the concentration of LO and the sequence of coating. The coatings did not significantly alter the flavor, fracturability, or glossiness of the plums. The antimicrobial effects of the coatings against S. Typhimurium and E. coli O157:H7 were demonstrated during storage at 4 and 25 °C. The coatings reduced weight loss and ethylene production by approximately 2 to 3 and 1.4 to 4.0 fold, respectively, and also retarded the changes in lightness and the concentration of phenolic compounds in plums during storage. The firmness of coated plums was generally higher than uncoated plums when stored at 4 °C and plum respiration rates were reduced during storage. Coatings containing nanoemulsions of LO have the potential to inhibit Salmonella and E. coli O157:H7 contamination of plums and may extend plum shelf life. Journal of Food Science © 2013 Institute of Food Technologists® No claim to original US government works.

  2. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging.

    Science.gov (United States)

    Moghimi, Roya; Aliahmadi, Atousa; Rafati, Hasan

    2017-11-01

    Edible films containing essential oils (EO) as natural antibacterial agents are promising systems for food preservation. In this work, nanoemulsions of Thymus daenensis EO (wild; F1 and cultivated; F2) were loaded in hydroxyl propyl methyl cellulose (HPMC) films and the effect of different parameters (polymer, plasticizer, and EO concentration) on the film properties were analyzed and optimized. Prepared HPMC films were characterized in terms of EO loading, morphology, mechanical properties, and the antibacterial activity. The results of SEM showed uniform incorporation of nanoemulsions into the edible film. Investigation of the mechanical properties of two edible films revealed a plasticizing effect of T. daenensis EO on the films. Also, edible films had noticeable antimicrobial activity against selected microorganisms, i.e. 47.0±2.5mm and 22.6±0.5mm zone of inhibition against S. aureus for films containing F1 and F2, respectively. Incorporation of nanoemulsions into the HPMC films can be used for active food preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies.

    Science.gov (United States)

    Monteiro, Lidiane M; Lione, Viviane F; do Carmo, Flavia A; do Amaral, Lilian H; da Silva, Julianna H; Nasciutti, Luiz E; Rodrigues, Carlos R; Castro, Helena C; de Sousa, Valeria P; Cabral, Lucio M

    2012-01-01

    Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using Gastroplus™ software. The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model. This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system.

  4. Development, characterization & invivo evaluation of proniosomal based transdermal delivery system of Atenolol

    Directory of Open Access Journals (Sweden)

    S. Ramkanth

    2018-06-01

    Full Text Available The potential of proniosomes as a transdermal drug delivery system for Atenolol was investigated by encapsulating the drug in various formulations of proniosomal gel composed of various ratios of sorbitan fatty acid esters, cholesterol, lecithin prepared by Coacervation-phase separation method. The objectives of the present study were to define effects on the antihypertension activity and pharmacokinetics of a novel transdermal Proniosomal gel incorporating Atenolol. The formulated systems were characterized in vitro for size, drug entrapment, In vitro and in vivo drug permeation profiles and vesicular stability at different storage conditions. The optimized Atenolol proniosomes (AT8 showed nanometric vesicle size, high entrapment efficiency and marked enhancement in transdermal permeation. The prepared Proniosomal gel showed the relative bioavailability of 365.38 fold increased for AT8 than oral. The maximal concentrations (Cmax, of drug were significantly reduced while the areas under the plasma concentration–time curve (AUC, and mean residence times (MRT, t1/2 were evidently increased and extended, respectively. The results suggest that proniosomes can act as promising carrier which offers an alternative approach for transdermal delivery of Atenolol. Keywords: Proniosomes, Atenolol, Niosomes, Pharmacokinetic study, Transdermal delivery

  5. Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.

    Science.gov (United States)

    Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin

    2017-01-01

    There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Efficient Transdermal Delivery of Benfotiamine in an Animal Model

    Directory of Open Access Journals (Sweden)

    Gyula Varadi

    2015-01-01

    Full Text Available We designed a transdermal system to serve as a delivery platform for benfotiamine utilizing the attributes of passive penetration enhancing molecules to penetrate through the outer layers of skin combined with the advance of incorporating various peripherally-acting vasodilators to enhance drug uptake.  Benfotiamine, incorporated into this transdermal formulation, was applied to skin in an animal model in order to determine the ability to deliver this thiamine pro-drug effectively to the sub-epithelial layers.  In this proof of concept study in guinea pigs, we found that a single topical application of either a solubilized form of benfotiamine (15 mg or a microcrystalline suspension form (25 mg resulted in considerable increases of the dephosphorylated benfotiamine (S-benzoylthiamine in the skin tissue as well as in significant increases in the thiamine and thiamine phosphate pools compared to control animals.  The presence of a ~8000x increase in thiamine and increases in its phosphorylated derivatives in the epidermis and dermis tissue of the test animals gives a strong indication that the topical treatment with benfotiamine works very well for the desired outcome of producing an intracellular increase of the activating cofactor pool for transketolase enzyme, which is implicated in the pathophysiology of diabetic neuropathy.

  7. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines.

    Science.gov (United States)

    Bhatnagar, Sunali; Kwan, James J; Shah, Apurva R; Coussios, Constantin-C; Carlisle, Robert C

    2016-09-28

    Inertial cavitation mediated by ultrasound has been previously shown to enable skin permeabilisation for transdermal drug and vaccine delivery, by sequentially applying the ultrasound then the therapeutic in liquid form on the skin surface. Using a novel hydrogel dosage form, we demonstrate that the use of sub-micron gas-stabilising polymeric nanoparticles (nanocups) to sustain and promote cavitation activity during simultaneous application of both drug and vaccine results in a significant enhancement of both the dose and penetration of a model vaccine, Ovalbumin (OVA), to depths of 500μm into porcine skin. The nanocups themselves exceeded the penetration depth of the vaccine (up to 700μm) due to their small size and capacity to 'self-propel'. In vivo murine studies indicated that nanocup-assisted ultrasound transdermal vaccination achieved significantly (pultrasound-assisted vaccine delivery in the presence of nanocups demonstrated substantially higher specific anti-OVA IgG antibody levels compared to other transdermal methods. Further optimisation can lead to a viable, safe and non-invasive delivery platform for vaccines with potential use in a primary care setting or personalized self-vaccination at home. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Formulation development and optimization of palm kernel oil esters-based nanoemulsions containing sodium diclofenac.

    Science.gov (United States)

    Rezaee, Malahat; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar; Chaibakhsh, Naz; Karjiban, Roghayeh Abedi

    2014-01-01

    Response surface methodology was employed to study the effect of formulation composition variables, water content (60%-80%, w/w) and oil and surfactant (O/S) ratio (0.17-1.33), as well as high-shear emulsification conditions, mixing rate (300-3,000 rpm) and mixing time (5-30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R(2) ) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (Pdiclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures.

  9. Transdermal carbamate poisoning – a case of misuse

    Directory of Open Access Journals (Sweden)

    Lalit Kumar Rajbanshi

    2017-01-01

    Full Text Available Acute pesticide poisoning is a common mode of intentional self harm. Oral ingestion is the usual mode of poisoning. However, inhalation, accidental or occupational transdermal exposure leading to acute or chronic poisoning can be the other route of poisoning. It has been seen that the purpose of poising is suicidal intensity in most of the cases. We report an unusual case where the victim had acute pesticide poisoning through transdermal route that was intended for non suicidal purpose. The patient was managed successfully with immediate decontamination and adequate antidote.

  10. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    Science.gov (United States)

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges

    Directory of Open Access Journals (Sweden)

    Kevin Ita

    2015-06-01

    Full Text Available Transdermal drug delivery offers a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, only few medications can be delivered through the transdermal route in therapeutic amounts. Microneedles can be used to enhance transdermal drug delivery. In this review, different types of microneedles are described and their methods of fabrication highlighted. Microneedles can be fabricated in different forms: hollow, solid, and dissolving. There are also hydrogel-forming microneedles. A special attention is paid to hydrogel-forming microneedles. These are innovative microneedles which do not contain drugs but imbibe interstitial fluid to form continuous conduits between dermal microcirculation and an attached patch-type reservoir. Several microneedles approved by regulatory authorities for clinical use are also examined. The last part of this review discusses concerns and challenges regarding microneedle use.

  12. Microneedle-based drug delivery systems for transdermal route.

    Science.gov (United States)

    Pierre, Maria Bernadete Riemma; Rossetti, Fabia Cristina

    2014-03-01

    Transdermal delivery offers an attractive, noninvasive administration route but it is limited by the skin's barrier to penetration. Minimally invasive techniques, such as the use of microneedles (MNs), bypass the stratum corneum (SC) barrier to permit the drug's direct access to the viable epidermis. These novel micro devices have been developed to puncture the skin for the transdermal delivery of hydrophilic drugs and macromolecules, including peptides, DNA and other molecules, that would otherwise have difficulty passing the outermost layer of the skin, the SC. Using the tools of the microelectronics industry, MNs have been fabricated with a range of sizes, shapes and materials. MNs have been shown to be robust enough to penetrate the skin and dramatically increase the skin permeability of several drugs. Moreover, MNs have reduced needle insertion pain and tissue trauma and provided controlled delivery across the skin. This review focuses on the current state of the art in the transdermal delivery of drugs using various types of MNs and developments in the field of microscale devices, as well as examples of their uses and clinical safety.

  13. Development and evaluation of transdermal organogels containing nicorandil.

    Science.gov (United States)

    Madan, J R; Sagar, Banode; Chellappan, Dinesh K; Dua, Kamal

    2013-01-01

    The objective of the study was to formulate a transdermal product containing Nicorandil as a model drug, because it has been first drug of choice to treat angina and hypertension. A further objective was to reduce its side effects. The transdermal product was prepared using various synthetic and natural gelling agents such as Carbopol 934p, Carbopol 974p, HPMC K15M and HPMC K100M. Various penetration enhancers were incorporated to enhance the diffusion across the rat skin. A further objective was to formulate organogels and minimize the concentration of penetration enhancer to 50% of the concentration used in gels and yet to achieve the maximum drug release. The prepared formulations were evaluated for their physical appearance, viscosity, spreadability, drug content and freeze thaw cycle. Based on in vitro studies across rat skin and human cadaver skin it was concluded that Nicrorandil transdermal organogel formulation using HPMC K100M with 2% w/w Transcutol-P shows increase in cumulative diffusion of Nicorandil amongst all other formulations.

  14. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... patches and gels have been very popular owing ... This product was developed for ... In a safety announcement, the US Food and.

  15. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sabine Szunerits

    2018-02-01

    Full Text Available Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs, which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field

  16. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field and the handful of

  17. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    Directory of Open Access Journals (Sweden)

    Chang HB

    2015-08-01

    Full Text Available Hong-Bin Chang,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen Catholic University, Taipei, TaiwanAbstract: The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell was selected for comparison. A high-performance liquid chromatography (HPLC method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 µg/mL, demethoxycurcumin (1,147.4 µg/mL, and bisdemethoxycurcumin (190.2 µg/mL. A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 µg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.Keywords: curcuminoid extract, curcuminoid nanoemulsion, Curcuma longa Linnaeus, lung cancer cell, cell cycle, apoptosis mechanism

  18. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.

    Science.gov (United States)

    Garland, Martin J; Caffarel-Salvador, Ester; Migalska, Katarzyna; Woolfson, A David; Donnelly, Ryan F

    2012-04-10

    It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery, as well as enabling the rate of delivery to be achieved with precise electronic control. However, no reports exist on the combination of ITP with in situ drug loaded polymeric MN delivery systems. Furthermore, although a number of studies have highlighted the importance of MN design for transdermal drug delivery enhancement, to date, there has been no systematic investigation of the influence of MN geometry on the performance of polymeric MN arrays which are designed to remain in contact with the skin during the period of drug delivery. As such, for the first time, this study reports on the effect of MN heigth and MN density upon the transdermal delivery of small hydrophilic compounds (theophylline, methylene blue, and fluorescein sodium) across neonatal porcine skin in vitro, with the optimised MN array design evaluated for its potential in the electrically faciliatated delivery of peptide (bovine insulin) and protein (fluorescein isothiocyanate-labelled bovine serum albumin (FTIC-BSA)) macromolecules. The results of the in vitro drug release investigations revealed that the extent of transdermal delivery was dependent upon the design of the MN array employed, whereby an increase in MN height and an increase in MN density led to an increase in the extent of transdermal drug delivery achieved 6h after MN application. Overall, the in vitro permeation studies revealed that the MN design containing 361 MNs/cm(2) of 600 μm height resulted in the greatest extent of transdermal drug delivery. As such, this design was evaluated for its potential in the MN mediated iontophoretic transdermal delivery. Whilst the combination of MN and ITP did not further enhance the extent of small molecular weight solute delivery, the extent of peptide/protein release was significantly

  19. Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line.

    Science.gov (United States)

    Baccarin, Thaisa; Mitjans, Montserrat; Ramos, David; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-01

    There has been an increase in the use of botanicals as skin photoprotective agents. Pomegranate (Punica granatum L.) is well known for its high concentration of polyphenolic compounds and for its antioxidant and anti-inflammatory properties. The aim of this study was to analyze the photoprotection provided by P. granatum seed oil nanoemulsion entrapping the polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in the keratinocyte HaCaT cell line. For this purpose, HaCaT cells were pretreated for 1h with nanoemulsions in a serum-free medium and then irradiated with UVB (90-200 mJ/cm(2)) rays. Fluorescence microscopy analysis provided information about the cellular internalization of the nanodroplets. We also determined the in vitro SPF of the nanoemulsions and evaluated their phototoxicity using the 3T3 Neutral Red Uptake Phototoxicity Test. The nanoemulsions were able to protect the cells' DNA against UVB-induced damage in a concentration dependent manner. Nanodroplets were internalized by the cells but a higher proportion was detected along the cell membrane. The SPF obtained (~25) depended on the concentration of the ethyl acetate fraction and pomegranate seed oil in the nanoemulsion. The photoprotective formulations were classified as non-phototoxic. In conclusion, nanoemulsions entrapping the polyphenol-rich ethyl acetate fraction show potential for use as a sunscreen product. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp.

    Science.gov (United States)

    Betzler de Oliveira de Siqueira, Luciana; da Silva Cardoso, Verônica; Almeida Rodrigues, Igor; Lúcia Vazquez-Villa, Ana; Pereira dos Santos, Elisabete; da Costa Leal Ribeiro Guimarães, Bruno; dos Santos Cerqueira Coutinho, Cristal; Vermelho, Alane Beatriz; Ricci Junior, Eduardo

    2017-02-01

    Photodynamic therapy (PDT) combines light with photosensitizers (PS) for production of reactive oxygen species (ROS) that can kill infectious microorganisms such as bacteria, fungi and protozoa. The application of nanotechnology has enabled the advancement of PDT because many PS are insoluble in water, necessitating a nanocarrier as a physiologically acceptable carrier. Nanoemulsions are efficient nanocarriers for solubilizing liposoluble drugs, like the PS, in water. Cutaneous (CL) and mucocutaneous leishmaniasis (ML) are caused by different species of the genus Leishmania, transmitted to humans by sandfly bites. Parasites are hosted in skin macrophages producing ulcerative lesions. Thus, a topical treatment, effective and inexpensive, for CL and ML is preferable to systemic interventions. There are topical treatments like paromomycin and amphotericin B, but they have many local side effects or a very high cost, limiting their use. This work aimed to develop a zinc phthalocyanine (photosensitizer) oil-in-water nanoemulsion, essential clove oil and polymeric surfactant (Pluronic® F127) for the formulation of a topical delivery system for use in PDT against Leishmania amazonensis and Leishmania infantum. The nanoemulsion was produced by a high-energy method and characterized by size, polydispersity, morphology, pH, content and stability studies. The toxicity in the dark and the photobiological activity of the formulations were evaluated in vitro for Leishmania and macrophages. The formulation presented was pH compatible with topical use, approximately 30 nm in size, with a polydispersity index ≤0.1 and remained stable at room and refrigerator temperature during the stability study (60 days). The zinc phthalocyanine nanoemulsion is effective in PDT against Leishmania spp.; use against skin infections can be a future application of this topical formulation, avoiding the use of oral or injectable medications, decreasing systemic adverse effects.

  1. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: a feasibility study.

    Science.gov (United States)

    Engen, Deborah J; McAllister, Samantha J; Whipple, Mary O; Cha, Stephen S; Dion, Liza J; Vincent, Ann; Bauer, Brent A; Wahner-Roedler, Dietlind L

    2015-09-01

    Fibromyalgia is a syndrome characterized by chronic pain, fatigue, depression, and sleep disturbances. Its primary cause is unclear. Several studies have reported decreased intracellular magnesium levels in patients with fibromyalgia and have found negative correlation between magnesium levels and fibromyalgia symptoms. To gather preliminary data on whether transdermal magnesium can improve quality of life for women who have fibromyalgia. This is a patient questionnaires and survey in a fibromyalgia clinic at a tertiary medical center. Forty female patients with the diagnosis of fibromyalgia were enrolled. Each participant was provided a spray bottle containing a transdermal magnesium chloride solution and asked to apply 4 sprays per limb twice daily for 4 weeks. Participants were asked to complete the Revised Fibromyalgia Impact Questionnaire, SF-36v2 Health Survey, and a quality-of-life analog scale at baseline, week 2, and week 4. Questionnaire and survey scores, evaluated through intent-to-treat and per-protocol analyses. Twenty-four patients completed the study (mean [SD] age, 57.2 [7.6] years; white, 95%; mean body mass index, 31.3 kg/m2). With intention-to-treat analysis, Revised Fibromyalgia Impact Questionnaire subscale and total scores were significantly improved at week 2 and week 4 (total score, P=0.001). Per-protocol analysis results were similar: all subscales of the Revised Fibromyalgia Impact Questionnaire were significantly improved at week 2 and week 4 (total score, P=0.001). This pilot study suggests that transdermal magnesium chloride applied on upper and lower limbs may be beneficial to patients with fibromyalgia. ClinicalTrials.gov.ldentifier NCT01968772.

  2. Efficacy of a single dose of a transdermal diclofenac patch as pre ...

    African Journals Online (AJOL)

    Background: We compared the analgesic efficacy of a transdermal diclofenac patch 100 mg (NuPatch® 100, Zydus Cadila, Ahmedabad, India) and intramuscular diclofenac sodium 75 mg (Voveran®, Novartis, India) for postoperative analgesia, and the associated side-effects of the transdermal diclofenac patch. Method: ...

  3. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies

    Directory of Open Access Journals (Sweden)

    Monteiro LM

    2012-09-01

    Full Text Available Lidiane M Monteiro,1 Viviane F Lione,1 Flavia A do Carmo,1 Lilian H do Amaral,1 Julianna H da Silva,2 Luiz E Nasciutti,2 Carlos R Rodrigues,1 Helena C Castro,3 Valeria P de Sousa,1 Lucio M Cabral11Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 2Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 3Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, BrasilBackground: Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using GastroplusTM software.Methods and results: The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model.Conclusion: This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system.Keywords: dapsone, nanoemulsions, antibacterial, permeability, Caco-2 cell, GastroplusTM

  4. Castor oil and mineral oil nanoemulsion: development and compatibility with a soft contact lens.

    Science.gov (United States)

    Katzer, Tatiele; Chaves, Paula; Bernardi, Andressa; Pohlmann, Adriana R; Guterres, Silvia S; Beck, Ruy C R

    2014-03-01

    The non-invasive ophthalmic therapy has a drawback: low residence time in the eye socket. Nanoparticles and contact lenses have been studied as promising ocular drug delivery systems. To develop a nanoemulsion and evaluate its compatibility with a soft contact lens as a potential strategy for ocular delivery. The formulations were developed by spontaneous emulsification and fully characterized. Two drops of nanoemulsion were instilled on the surface of a commercial contact lens and its transparency was measured using a UV-Vis spectrophotometer. Before and after the instillation of the drops, the morphology (scanning electron microscopy - SEM) and ion permeability of the lenses were analyzed. The formulations had a mean particle size of 234 nm, polydispersity below 0.16, zeta potential of -8.56 ± 3.49 mV, slightly acid pH, viscosity ≈1.2 mPa s(-1) and spherical-shaped particles. Nanoemulsion was non-irritant (hen's egg test-chorioallantoic membrane), which was confirmed by the cytotoxicity studies in the SIRC cell cultures. After instillation, SEM analysis showed nanodroplets inside and on the surface of the lenses, although their transparency remained near 100%. No significant differences were found between lens ion permeability coefficients before and after instillation. Formulations presented appropriate physicochemical characteristics and suitability for ocular application. The contact lens remained transparent and ion-permeable after association with the formulation.

  5. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  6. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    Science.gov (United States)

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  7. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design

    Directory of Open Access Journals (Sweden)

    Fard Masoumi HR

    2015-10-01

    Full Text Available Hamid Reza Fard Masoumi, Mahiran Basri, Wan Sarah Samiun, Zahra Izadiyan, Chaw Jiang Lim Nanodelivery Group, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti­psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homo­genizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%, lecithin (2–3 wt%, Tween 80 (0.5–1 wt%, glycerol (1.5–3 wt%, and water (87–93 wt% on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm with residual standard error <3.2%. Keywords: schizoaffective disorder, antipsychotic drug, bipolar I disorder, D-optimal mixture design, optimization formulation

  8. Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine

    Directory of Open Access Journals (Sweden)

    Sun HW

    2015-12-01

    Full Text Available HongWu Sun,1,* Chao Wei,1,* BaoShuai Liu,1 HaiMing Jing,1 Qiang Feng,2 YaNan Tong,1 Yun Yang,1 LiuYang Yang,1 QianFei Zuo,1 Yi Zhang,1 QuanMing Zou,1 Hao Zeng1 1National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, 2Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People’s Republic of China *These authors contributed equally to this work Abstract: The Gram-positive bacterial pathogen methicillin-resistant Staphylococcus aureus (MRSA can cause infections in the bloodstream, endocardial tissue, respiratory tract, culture-confirmed skin, or soft tissue. There are currently no effective vaccines, and none are expected to become available in the near future. An effective vaccine capable of eliciting both systemic and mucosal immune responses is also urgently needed. Here, we reported a novel oil-in-water nanoemulsion adjuvant vaccine containing an MRSA recombination protein antigen, Cremophor EL-35® as a surfactant, and propylene glycol as a co-surfactant. This nanoemulsion vaccine, whose average diameter was 31.34±0.49 nm, demonstrated good protein structure integrity, protein specificity, and good stability at room temperature for 1 year. The intramuscular systemic and nasal mucosal immune responses demonstrated that this nanoemulsion vaccine could improve the specific immune responses of immunoglobulin (IgG and related subclasses, such as IgG1, IgG2a, and IgG2b, as well as IgA, in the serum after Balb/c mice intramuscular immunization and C57 mice nasal immunization. Furthermore, this nanoemulsion vaccine also markedly enhanced the interferon-γ and interleukin-17A cytokine cell immune response, improved the survival ratio, and reduced bacterial colonization. Taken together, our results show that this novel nanoemulsion vaccine has great potential and is a

  9. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Zhao L

    2013-10-01

    Full Text Available Ling Zhao,1,2 Yumeng Wei,1,2 Yu Huang,1 Bing He,2 Yang Zhou,1 Junjiang Fu31Department of Pharmaceutical Sciences, School of Pharmacy, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China; 2Drug and Functional Food Research Center, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China; 3The Research Center for Preclinical Medicine, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of ChinaAbstract: Baicalin is one of the main bioactive flavone glucuronides derived as a medicinal herb from the dried roots of Scutellaria baicalensis Georgi, and it is widely used for the treatment of fever, inflammation, and other conditions. Due to baicalin's poor solubility in water, its absolute bioavailability after oral administration is only 2.2%. The objective of this study was to develop a novel baicalin-loaded nanoemulsion to improve the oral bioavailability of baicalin. Based on the result of pseudoternary phase diagram, the nanoemulsion formulation consisting of soy-lecithin, tween-80, polyethylene glycol 400, isopropyl myristate, and water (1:2:1.5:3.75:8.25, w/w was selected for further study. Baicalin-loaded nanoemulsions (BAN-1 and BAN-2 were prepared by internal or external drug addition and in vivo and in vitro evaluations were performed. The results showed that the mean droplet size, polydispersity index, and drug content of BAN-1 and BAN-2 were 91.2 ± 2.36 nm and 89.7 ± 3.05 nm, 0.313 ± 0.002 and 0.265 ± 0.001, and 98.56% ± 0.79% and 99.40% ± 0.51%, respectively. Transmission electron microscopy revealed spherical globules and confirmed droplet size analysis. After dilution 30-fold with water, the solubilization capacity of BAN-1 and BAN-2 did not change. In vitro release results showed sustained-release characteristics. BAN-1 formulation was stable for at least 6 months and was more stable than BAN-2. In rats, the area under the plasma drug concentration

  10. Lutein and zeaxanthin: Role as macular pigment and factors that control bioavailability from egg yolks and nanoemulsions

    Science.gov (United States)

    Vishwanathan, Rohini

    ) raising serum HDL-C without an adverse affect on serum LDL-C and TC:HDL-C ratio. Increased cholesterol, lutein and zeaxanthin intake from the 2 and 4 egg yolk interventions did not decrease the absorption of other carotenoids, such as alpha-cryptoxanthin, beta-cryptoxanthin, lycopene, alpha-carotene and beta-carotene, tocopherols and retinol from the diet. An unexpected increase was observed in serum alpha-cryptoxanthin and gamma-tocopherol concentrations during the 4 egg yolk phase, these carotenoids are normally present in low concentrations in serum. Lipoprotein distribution of carotenoids and tocopherols was also not affected by the increased egg consumption. In the pursuit of designing a highly bioavailable matrix for lutein/zeaxanthin, similar to the egg yolk micellar matrix, nanoemulsion formulations of lutein were developed using the MicrofluidizerRTM Processor technology. Lutein nanoemulsions are O/W emulsions of lutein which have particle sizes in the nanometer range (≤ 200 nm). Lutein consumed orally as a nanoemulsion was shown to have significantly greater bioavailability than lutein supplement-pills in pilot-scale clinical studies described here. However, lutein nanoemulsions did not raise plasma lutein concentrations to the same extent as egg yolks in a study performed on BALB/c mice. Formation of mixed micelles in the intestinal lumen during digestion and uptake of these micelles by enterocytes are crucial steps that dictate bioavailability i.e. the proportion of ingested lutein/carotenoid that enters the blood circulation and accumulates in the peripheral tissues such as the macula. In-vitro stomach and intestinal digestion experiments showed lutein nanoemulsions have significantly greater micellarization efficiency compared to egg yolks. Nanoemulsions with a phospholipid (PL) emulsifier containing 80% phosphatidyl choline (PC) or Polysorbate 80 as the emulsifier had better ability to form micelles during the intestinal digestion phase compared to a PL

  11. Flexible and Stretchable Microneedle Patches with Integrated Rigid Stainless Steel Microneedles for Transdermal Biointerfacing.

    Science.gov (United States)

    Rajabi, Mina; Roxhed, Niclas; Shafagh, Reza Zandi; Haraldson, Tommy; Fischer, Andreas Christin; Wijngaart, Wouter van der; Stemme, Göran; Niklaus, Frank

    2016-01-01

    This paper demonstrates flexible and stretchable microneedle patches that combine soft and flexible base substrates with hard and sharp stainless steel microneedles. An elastomeric polymer base enables conformal contact between the microneedle patch and the complex topography and texture of the underlying skin, while robust and sharp stainless steel microneedles reliably pierce the outer layers of the skin. The flexible microneedle patches have been realized by magnetically assembling short stainless steel microneedles into a flexible polymer supporting base. In our experimental investigation, the microneedle patches were applied to human skin and an excellent adaptation of the patch to the wrinkles and deformations of the skin was verified, while at the same time the microneedles reliably penetrate the surface of the skin. The unobtrusive flexible and stretchable microneedle patches have great potential for transdermal biointerfacing in a variety of emerging applications such as transdermal drug delivery, bioelectric treatments and wearable bio-electronics for health and fitness monitoring.

  12. Transdermal hormone therapy in postmenopausal women: A review of metabolic effects and drug delivery technologies

    Directory of Open Access Journals (Sweden)

    Nathan W Kopper

    2008-10-01

    Full Text Available Nathan W Kopper, Jennifer Gudeman, Daniel J ThompsonKV Pharmaceutical, St. Louis, MO, USAAbstract: Vasomotor symptoms (VMS associated with menopause can cause significant discomfort and decrease the quality of life for women in the peri-menopausal and post-menopausal stages of life. Hormone therapy (HT is the mainstay of treatment for menopausal symptoms and is currently the only therapy proven effective for VMS. Numerous HT options are available to treat VMS, including estrogen-only and estrogen-progestogen combination products to meet the needs of both hysterectomized and nonhysterectomized women. In addition to selecting an appropriate estrogen or estrogen-progestogen combination, consideration should be given to the route of administration to best suit the needs of the patient. Delivery systems for hormone therapy include oral tablets, transdermal patches, transdermal topical (nonpatch products, and intravaginal preparations. Oral is currently the most commonly utilized route of administration in the United States. However, evidence suggests that oral delivery may lead to some undesirable physiologic effects caused by significant gut and hepatic metabolism. Transdermal drug delivery may mitigate some of these effects by avoiding gut and hepatic first-pass metabolism. Advantages of transdermal delivery include the ability to administer unmetabolized estradiol directly to the blood stream, administration of lower doses compared to oral products, and minimal stimulation of hepatic protein production. Several estradiol transdermal delivery technologies are available, including various types of patches, topical gels, and a transdermal spray.Keywords: estradiol, hormone therapy, menopause, transdermal drug delivery, vasomotor symptoms

  13. Design Expert® supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease

    Science.gov (United States)

    Kumar, Shobhit; Ali, Javed; Baboota, Sanjula

    2016-10-01

    Selegiline is a monoamine oxidase B (MAO-B) inhibitor and is used in the treatment of Parkinson’s disease. The main problem associated with its oral administration is its low oral bioavailability (10%) due to its poor aqueous solubility and extensive first pass metabolism. The aim of the present research work was to develop a nanoemulsion loaded with selegiline for direct nose-to-brain delivery for the better management of Parkinson’s disease. A quality by design (QbD) approach was used in a statistical multivariate method for the preparation and optimization of nanoemulsion. In this study, four independent variables were chosen, in which two were compositions and two were process variables, while droplet size, transmittance, zeta potential and drug release were selected as response variables. The optimized formulation was assessed for efficacy in Parkinson’s disease using behavioural studies, namely forced swimming, locomotor, catalepsy, muscle coordination, akinesia and bradykinesia or pole test in Wistar rats. The observed droplet size, polydispersity index (PDI), refractive index, transmittance, zeta potential and viscosity of selegiline nanoemulsion were found to be 61.43 ± 4.10 nm, 0.203 ± 0.005, 1.30 ± 0.01, 99.80 ± 0.04%, -34 mV and 31.85 ± 0.24 mPas respectively. Surface characterization studies demonstrated a spherical shape of nanoemulsion which showed 3.7 times enhancement in drug permeation as compared to drug suspension. The results of behaviour studies showed that treatment of haloperidol induced Parkinson’s disease in rats with selegiline nanoemulsion (administered intranasally) showed significant improvement in behavioural activities in comparison to orally administered drug. These findings demonstrate that nanoemulsion could be a promising new drug delivery carrier for intranasal delivery of selegiline in the treatment of Parkinson’s disease.

  14. Study of content of oil phase in the nanoemulsion oil/water during the oil demulsification; Aplicacao de nanoemulsoes com diferentes teores de fase oleosa no processo de desemulsificacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Veronica B.; Almeida, Sarah M. de; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano. Lab. de Macromoleculas e Coloides na Industria de Petroleo], e-mails: veronicabs@ima.ufrj.br, celias@ima.ufrj.br

    2011-07-01

    Oil-in-water nano emulsions are being developed to break up crude oil emulsions. In this initial study, the nanoemulsions were prepared the nonionic ethoxylated polymeric surfactants lauryl ether (Ultrol L100) - and the solvent xylene as the oil phase. The nanoemulsions obtained with 5,7 and 10%wt of the oil phase were evaluated for their efficiency in demulsifying oil emulsions by means of gravitational separation tests (bottle tests). For purposes of comparison, the efficiency was evaluated of aqueous solution of the pure surfactant and solvent xylene in the same concentrations used to prepare the nanoemulsions. The results show that the nanoemulsions are an alternative to demulsify water-in-oil emulsions with efficiency values of 90-95%. Moreover, was observed the influence the concentration oil phase in the nanoemulsion: the higher the concentration of oil phase, the higher the rate of break up crude oil emulsion. (author)

  15. Preparation of a Nanoemulsion with Carapa guianensis Aublet (Meliaceae Oil by a Low-Energy/Solvent-Free Method and Evaluation of Its Preliminary Residual Larvicidal Activity

    Directory of Open Access Journals (Sweden)

    Flávia L. M. Jesus

    2017-01-01

    Full Text Available Andiroba (Carapa guianensis seeds are the source of an oil with a wide range of biological activities and ethnopharmacological uses. However, few studies have devoted attention to innovative formulations, including nanoemulsions. The present study aimed to obtain a colloidal system with the andiroba oil using a low-energy and organic-solvent-free method. Moreover, the preliminary residual larvicidal activity of the nanoemulsion against Aedes aegypti was evaluated. Oleic and palmitic acids were the major fatty acids, in addition to the phytosterol β-sitosterol and limonoids (tetranortriterpenoids. The required hydrophile-lipophile was around 11.0 and the optimal nanoemulsion was obtained using polysorbate 85. The particle size distribution suggested the presence of small droplets (mean diameter around 150 nm and low polydispersity index (around 0.150. The effect of temperature on particle size distribution revealed that no major droplet size increase occurred. The preliminary residual larvicidal assay suggested that the mortality increased as a function of time. The present study allowed achievement of a potential bioactive oil in water nanoemulsion that may be a promising controlled release system. Moreover, the ecofriendly approach involved in the preparation associated with the great bioactive potential of C. guianensis makes this nanoemulsion very promising for valorization of this Amazon raw material.

  16. Transdermal granisetron: a guide to its use in preventing nausea and vomiting induced by chemotherapy.

    Science.gov (United States)

    Keating, Gillian M; Duggan, Sean T; Curran, Monique P

    2012-09-01

    Transdermal granisetron (Sancuso®) is effective in the prevention of nausea and vomiting in patients with cancer who are receiving moderately or highly emetogenic chemotherapy for 3-5 days. Transdermal granisetron is noninferior to oral granisetron in this indication, and is generally well tolerated in this indication. Thus, transdermal granisetron provides a convenient option for the prevention of chemotherapy-induced nausea and vomiting, with the potential to improve patient compliance.

  17. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  18. Comparative enhancing effects of electret with chemical enhancers on transdermal delivery of meloxicam in vitro

    International Nuclear Information System (INIS)

    Cui, L L; Hou, X M; Li, G D; Jiang, J; Liang, Y Y; Xin, X

    2008-01-01

    Electret offers enhancing effect in transdermal drug delivery for altering of the arrangement of lipid molecules in the stratum corneum, forming many transient permeable apertures and enhancing the transdermal drug delivery. In this paper, meloxicam patch formulations were developed to make the comparative study of transdermal drug delivery between electret and chemical enhancers. Patches were made into control, electret, chemical enhancer and electret with chemical enhancer ones, according to the preparation procedure. The electret combined with chemical enhancer patch was designed to probe the incorporation between electret and chemical enhancer in transdermal drug delivery. The meloxicam release from the patch was found to increase in order of blank, chemical enhancer, electret and electret with chemical enhancer patch, in general.

  19. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats

    Science.gov (United States)

    Galho, A. R.; Cordeiro, M. F.; Ribeiro, S. A.; Marques, M. S.; Antunes, M. F. D.; Luz, D. C.; Hädrich, G.; Muccillo-Baisch, A. L.; Barros, D. M.; Lima, J. V.; Dora, C. L.; Horn, A. P.

    2016-04-01

    Intracerebral haemorrhage (ICH) is a worldwide public health problem. Experimental studies have shown that oxidative stress plays an important role in the pathogenesis of ICH and could represent a target for its treatment. However, the blood-brain barrier is an obstacle to be overcome, as it hampers the administration of compounds to the central nervous system. In this study, we compared the effects of a quercetin-loaded nanoemulsion (QU-N) with the free form of the drug (QU-SP) in a collagenase-induced ICH rat model. Quercetin (QU) is a polyphenol that has an antioxidant effect in vitro, but due to its high lipophilicity, it has low bioavailability in vivo. In this study, animals submitted or not to ICH were treated with a single intraperitoneal QU dose (free or nanoemulsion) of 30 mg kg-1. Motor assessment was evaluated by the open field, foot fault and beam walking behavioural tests. 72 h after surgery the haematoma size was evaluated and biochemical measurements were performed. Animals treated with QU-N had a significant improvement in the beam walking and open field tests. Also, QU-N was able to reduce the size of the haematoma, preserving the activity of glutathione S-transferase (GST), increasing GSH content, and the total antioxidant capacity. QU-SP recovered locomotor activity and increased the GSH content and the total antioxidant capacity. Thus, it can be observed that QU presented antioxidant activity in both formulations, but the incorporation into nanoemulsions increased its antioxidant effect, which was reflected in the improvement of the motor skills and in the haematoma size decrement. These results suggest that the nanoemulsion containing QU developed in this study could be promising for future studies on treatments for ICH.

  20. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats.

    Science.gov (United States)

    Galho, A R; Cordeiro, M F; Ribeiro, S A; Marques, M S; Antunes, M F D; Luz, D C; Hädrich, G; Muccillo-Baisch, A L; Barros, D M; Lima, J V; Dora, C L; Horn, A P

    2016-04-29

    Intracerebral haemorrhage (ICH) is a worldwide public health problem. Experimental studies have shown that oxidative stress plays an important role in the pathogenesis of ICH and could represent a target for its treatment. However, the blood-brain barrier is an obstacle to be overcome, as it hampers the administration of compounds to the central nervous system. In this study, we compared the effects of a quercetin-loaded nanoemulsion (QU-N) with the free form of the drug (QU-SP) in a collagenase-induced ICH rat model. Quercetin (QU) is a polyphenol that has an antioxidant effect in vitro, but due to its high lipophilicity, it has low bioavailability in vivo. In this study, animals submitted or not to ICH were treated with a single intraperitoneal QU dose (free or nanoemulsion) of 30 mg kg(-1). Motor assessment was evaluated by the open field, foot fault and beam walking behavioural tests. 72 h after surgery the haematoma size was evaluated and biochemical measurements were performed. Animals treated with QU-N had a significant improvement in the beam walking and open field tests. Also, QU-N was able to reduce the size of the haematoma, preserving the activity of glutathione S-transferase (GST), increasing GSH content, and the total antioxidant capacity. QU-SP recovered locomotor activity and increased the GSH content and the total antioxidant capacity. Thus, it can be observed that QU presented antioxidant activity in both formulations, but the incorporation into nanoemulsions increased its antioxidant effect, which was reflected in the improvement of the motor skills and in the haematoma size decrement. These results suggest that the nanoemulsion containing QU developed in this study could be promising for future studies on treatments for ICH.

  1. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats

    International Nuclear Information System (INIS)

    Galho, A R; Cordeiro, M F; Marques, M S; Antunes, M F D; Luz, D C; Barros, D M; Lima, J V; Horn, A P; Ribeiro, S A; Hädrich, G; Muccillo-Baisch, A L; Dora, C L

    2016-01-01

    Intracerebral haemorrhage (ICH) is a worldwide public health problem. Experimental studies have shown that oxidative stress plays an important role in the pathogenesis of ICH and could represent a target for its treatment. However, the blood–brain barrier is an obstacle to be overcome, as it hampers the administration of compounds to the central nervous system. In this study, we compared the effects of a quercetin-loaded nanoemulsion (QU-N) with the free form of the drug (QU-SP) in a collagenase-induced ICH rat model. Quercetin (QU) is a polyphenol that has an antioxidant effect in vitro, but due to its high lipophilicity, it has low bioavailability in vivo. In this study, animals submitted or not to ICH were treated with a single intraperitoneal QU dose (free or nanoemulsion) of 30 mg kg"−"1. Motor assessment was evaluated by the open field, foot fault and beam walking behavioural tests. 72 h after surgery the haematoma size was evaluated and biochemical measurements were performed. Animals treated with QU-N had a significant improvement in the beam walking and open field tests. Also, QU-N was able to reduce the size of the haematoma, preserving the activity of glutathione S-transferase (GST), increasing GSH content, and the total antioxidant capacity. QU-SP recovered locomotor activity and increased the GSH content and the total antioxidant capacity. Thus, it can be observed that QU presented antioxidant activity in both formulations, but the incorporation into nanoemulsions increased its antioxidant effect, which was reflected in the improvement of the motor skills and in the haematoma size decrement. These results suggest that the nanoemulsion containing QU developed in this study could be promising for future studies on treatments for ICH. (paper)

  2. A New Combination of Testosterone and Nestorone Transdermal Gels for Male Hormonal Contraception

    Science.gov (United States)

    Ilani, Niloufar; Roth, Mara Y.; Amory, John K.; Swerdloff, Ronald S.; Dart, Clint; Page, Stephanie T.; Bremner, William J.; Sitruk-Ware, Regine; Kumar, Narender; Blithe, Diana L.

    2012-01-01

    Context: Combinations of testosterone (T) and nestorone (NES; a nonandrogenic progestin) transdermal gels may suppress spermatogenesis and prove appealing to men for contraception. Objective: The objective of the study was to determine the effectiveness of T gel alone or combined with NES gel in suppressing spermatogenesis. Design and Setting: This was a randomized, double-blind, comparator clinical trial conducted at two academic medical centers. Participants: Ninety-nine healthy male volunteers participated in the study. Interventions: Volunteers were randomized to one of three treatment groups applying daily transdermal gels (group 1: T gel 10 g + NES 0 mg/placebo gel; group 2: T gel 10 g + NES gel 8 mg; group 3: T gel 10 g + NES gel 12 mg). Main Outcome Variable: The main outcome variable of the study was the percentage of men whose sperm concentration was suppressed to 1 million/ml or less by 20–24 wk of treatment. Results: Efficacy data analyses were performed on 56 subjects who adhered to the protocol and completed at least 20 wk of treatment. The percentage of men whose sperm concentration was 1 million/ml or less was significantly higher for T + NES 8 mg (89%, P male range throughout the treatment period. Adverse effects were minimal in all groups. Conclusion: A combination of daily NES + T gels suppressed sperm concentration to 1 million/ml or less in 88.5% of men, with minimal adverse effects, and may be further studied as a male transdermal hormonal contraceptive. PMID:22791756

  3. Non-enzymatic glucose detection using magnetic nanoemulsions

    International Nuclear Information System (INIS)

    Mahendran, V.; Philip, John

    2014-01-01

    We probe the optical properties and intermolecular interactions in magnetically responsive nanoemulsions in the presence of glucose. The equilibrium interdroplet distance between the emulsion droplets in an one-dimensional array increases by several nanometers in the presence of glucose because of intermolecular hydrogen bonding with sodium dodecyl sulphate molecules at the oil-water interface that gives rise to stretched lamellae-like structure. The observed large red shift in the diffracted Bragg peak (∼50–100 nm) and the linear response in the glucose concentration range of 0.25–25 mM offer a simple, fast, and cost effective non-enzymatic approach for glucose detection.

  4. Formulation, in vitro and in vivo evaluation of transdermal patches containing risperidone.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; Hari Kumar, S L

    2013-01-01

    The efficacy of oral risperidone treatment in prevention of schizophrenia is well known. However, oral side effects and patient compliance is always a problem for schizophrenics. In this study, risperidone was formulated into matrix transdermal patches to overcome these problems. The formulation factors for such patches, including eudragit RL 100 and eudragit RS 100 as matrix forming polymers, olive oil, groundnut oil and jojoba oil in different concentrations as enhancers and amount of drug loaded were investigated. The transdermal patches containing risperidone were prepared by solvent casting method and characterized for physicochemical and in vitro permeation studies through excised rat skin. Among the tested preparations, formulations with 20% risperidone, 3:2 ERL 100 and ERS 100 as polymers, mixture of olive oil and jojoba oil as enhancer, exhibited greatest cumulative amount of drug permeated (1.87 ± 0.09 mg/cm(2)) in 72 h, so batch ROJ was concluded as optimized formulation and assessed for pharmacokinetic, pharmacodynamic and skin irritation potential. The pharmacokinetic characteristics of the optimized risperidone patch were determined using rabbits, while orally administered risperidone in solution was used for comparison. The calculated relative bioavailability of risperidone transdermal patch was 115.20% with prolonged release of drug. Neuroleptic efficacy of transdermal formulation was assessed by rota-rod and grip test in comparison with control and marketed oral formulations with no skin irritation. This suggests the transdermal application of risperidone holds promise for improved bioavailability and better management of schizophrenia in long-term basis.

  5. Nanoemulsion-based gel formulation of diclofenac diethylamine: design, optimization, rheological behavior and in vitro diffusion studies.

    Science.gov (United States)

    Hamed, Rania; Basil, Marwa; AlBaraghthi, Tamadur; Sunoqrot, Suhair; Tarawneh, Ola

    2016-12-01

    Chronic oral administration of the non-steroidal anti-inflammatory drug, diclofenac diethylamine (DDEA), is often associated with gastrointestinal ulcers and bleeding. As an alternative to oral administration, a nanoemulsion-based gel (NE gel) formulation of DDEA was developed for topical administration. An optimized formulation for the o/w nanoemulsion of oil, surfactant and cosurfactant was selected based on nanoemulsion mean droplet size, clarity, stability, and flowability, and incorporated into the gelling agent Carbopol® 971P. Rheological studies of the DDEA NE gel were conducted and compared to those of conventional DDEA gel and emulgel. The three gels exhibited an elastic behavior, where G' dominated G″ at all frequencies, indicating the formation of strong gels. NE gel exhibited higher G' values than conventional gel and emulgel, which indicated the formation of a stronger gel network. Strat-M® membrane, a synthetic membrane with diffusion characteristics that are well correlated to human skin, was used for the in vitro diffusion studies. The release of DDEA from conventional gel, emulgel and NE gel showed a controlled release pattern over 12 h, which was consistent with the rheological properties of the gels. DDEA release kinetics from the three gels followed super case II transport as fitted by Korsmeyer-Peppas model.

  6. Status of surfactants as penetration enhancers in transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Iti Som

    2012-01-01

    Full Text Available Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs.

  7. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique.

    Science.gov (United States)

    Ishak, K A; Annuar, M Suffian M; Ahmad, N

    2017-12-01

    Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.

  8. Use of granisetron transdermal system in the prevention of chemotherapy-induced nausea and vomiting: a review

    International Nuclear Information System (INIS)

    Tuca, Albert

    2009-01-01

    Until now only intravenous and oral formulations of 5HT 3 receptor antagonists have been available. Recently a new formulation of a 5HT 3 receptor antagonist, transdermal granisetron, has been developed, and approved by the FDA. Three phase I studies to evaluate its pharmacokinetic profile have shown that granisetron administered by a transdermal delivery system is absorbed by passive diffusion and maximal concentration is reached 48 hours after patch application. The patch of 52 cm 2 , which contains 34.3 mg of granisetron, releases 3.3 mg of the drug every day and maintains a stable average plasma concentration of 2.2 ng/mL over 6 days, similar to levels obtained with 2 mg of oral granisetron, administered every day during the same period of time. Two randomized as yet unpublished clinical trials (phase II/III) have been conducted to evaluate the antiemetic efficacy of transdermal granisetron in chemotherapy-induced nausea and vomiting, in patients receiving moderately and highly emetogenic chemotherapy, compared with 2 mg of oral granisetron. More than 800 cancer patients were included in the trials. The rate of complete control of acute emesis was 49% for the phase II trial and 60% for the phase III trial. Neither trial showed a statistically significant difference between transdermal and oral granisetron. The control of delayed emesis was observed in 46% of patients, and there were no statistically significant differences between transdermal and oral granisetron. The most common adverse effects in both trials were constipation (<7%) and headache (<1%); there were no statistically significant differences between transdermal and oral granisetron. These data show that transdermal granisetron is effective and safe in controlling acute emesis induced by chemotherapy with both moderate and high emetogenic potential. Efficacy and safety of transdermal granisetron are fully comparable with that of oral granisetron. More clinical trials using regimens of 2 or 3 drugs

  9. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release.

    Science.gov (United States)

    Ahn, Min Young; Hwang, Jung Seok; Lee, Su Bi; Ham, Sun Ah; Hur, Jinwoo; Kim, Jun Tae; Seo, Han Geuk

    2017-01-01

    High mobility group box 1 (HMGB1) is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS) and/or a C. longa extract-loaded nanoemulsion (CLEN). The levels of released HMGB1, nitric oxide (NO) production, inducible NO synthase (iNOS) expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1. These observations suggest that identification of

  10. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release

    Directory of Open Access Journals (Sweden)

    Min Young Ahn

    2017-09-01

    Full Text Available Background High mobility group box 1 (HMGB1 is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. Methods The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS and/or a C. longa extract-loaded nanoemulsion (CLEN. The levels of released HMGB1, nitric oxide (NO production, inducible NO synthase (iNOS expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. Results We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. Discussion The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1

  11. Nanoemulsion Formulations of Fungicide Tebuconazole for Agricultural Applications

    Directory of Open Access Journals (Sweden)

    Vianney Díaz-Blancas

    2016-09-01

    Full Text Available Tebuconazole (TBZ nanoemulsions (NEs were formulated using a low energy method. TBZ composition directly affected the drop size and surface tension of the NE. Water fraction and the organic-to-surfactant-ratio (RO/S were evaluated in the range of 1–90 and 1–10 wt %, respectively. The study was carried out with an organic phase (OP consisting of an acetone/glycerol mixture containing TBZ at a concentration of 5.4 wt % and Tween 80 (TW80 as a nonionic and Agnique BL1754 (AG54 as a mixture of nonionic and anionic surfactants. The process involved a large dilution of a bicontinuous microemulsion (ME into an aqueous phase (AP. Pseudo-ternary phase diagrams of the OP//TW80//AP and OP//AG54//AP systems at T = 25 °C were determined to map ME regions; these were in the range of 0.49–0.90, 0.01–0.23, and 0.07–0.49 of OP, AP, and surfactant, respectively. Optical microscope images helped confirm ME formation and system viscosity was measured in the range of 25–147 cP. NEs with drop sizes about 9 nm and 250 nm were achieved with TW80 and AG54, respectively. An innovative low-energy method was used to develop nanopesticide TBZ formulations based on nanoemulsion (NE technology. The surface tension of the studied systems can be lowered 50% more than that of pure water. This study’s proposed low-energy NE formulations may prove useful in sustainable agriculture.

  12. Chemistry, manufacturing and controls in passive transdermal drug delivery systems.

    Science.gov (United States)

    Goswami, Tarun; Audett, Jay

    2015-01-01

    Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.

  13. Nanoemulsions produced with varied type of emulsifier and oil content: An influence of formulation and process parameters on the characteristics and physical stability

    Directory of Open Access Journals (Sweden)

    Đorđević Sanela M.

    2013-01-01

    Full Text Available The aim of the present study was to prepare oil-in-water nanoemulsions stabilized with a novel natural alkyl polyglucoside surfactant and to compare them with corresponding lecithin/polysorbate 80 - based nanoemulsions in terms of physicochemical properties and physical stability. Nanoemulsions were prepared by high pressure homogenization, using 20, 30 and 40% (w/w medium chain triglyceride as oil phase, and 4, 6 and 8% (w/w lecithin/polysorbate 80 mixture (1/1 or caprylyl/capryl glucoside as emulsifiers. The influence of emulsifier type, emulsifier concentration and oil content was investigated with respect to changes in particle size, particle size distribution, surface charge and physical stability. The influence of production parameters (number of homogenization cycles, type of homogenization process, homogenization pressure on particle size was also investigated. Analysis was performed by photon correlation spectroscopy, laser diffraction, zeta potential, pH and electrical conductivity measurements. All formulations produced revealed a small droplet size ranging from 147 to 228 nm and a very narrow size distribution (polydispersity index range 0,072-0,124. Zeta potentials were about -20 mV and -50 mV for nanoemulsions stabilized with lecithin/polysorbate 80 and caprylyl/capryl glucoside, respectively. The results obtained during the stability studies (6 months at 25°C and 1 month at 40°C indicated that nanoemulsion stability was influenced by their composition. Acquired results also suggested the most appropriate production parameters: 9 homogenization cycles, homogenization pressure of 500 bar and discontinuous process of homogenization.

  14. Topical and transdermal drug delivery: principles and practice

    National Research Council Canada - National Science Library

    Benson, Heather A. E; Watkinson, Adam C

    2012-01-01

    .... Providing an overview of the current science in drug and cosmetic application to and through the skin, Topical and Transdermal Drug Delivery includes treatment of skin conditions, skin permeation...

  15. Enhanced Transdermal Permeability via Constructing the Porous Structure of Poloxamer-Based Hydrogel

    Directory of Open Access Journals (Sweden)

    Wen-Yi Wang

    2016-11-01

    Full Text Available A major concern for transdermal drug delivery systems is the low bioavailability of targeted drugs primarily caused by the skin’s barrier function. The resistance to the carrier matrix for the diffusion and transport of drugs, however, is routinely ignored. This study reports a promising and attractive approach to reducing the resistance to drug transport in the carrier matrix, to enhance drug permeability and bioavailability via enhanced concentration-gradient of the driving force for transdermal purposes. This approach simply optimizes and reconstructs the porous channel structure of the carrier matrix, namely, poloxamer 407 (P407-based hydrogel matrix blended with carboxymethyl cellulose sodium (CMCs. Addition of CMCs was found to distinctly improve the porous structure of the P407 matrix. The pore size approximated to normal distribution as CMCs were added and the fraction of pore number was increased by over tenfold. Transdermal studies showed that P407/CMCs saw a significant increase in drug permeability across the skin. This suggests that P407/CMC with improved porous structure exhibits a feasible and promising way for the development of transdermal therapy with high permeability and bioavailability, thereby avoiding or reducing use of any chemical enhancers.

  16. Effect of Microneedle Type on Transdermal Permeation of Rizatriptan.

    Science.gov (United States)

    Uppuluri, Chandrateja; Shaik, Ashraf Sultana; Han, Tao; Nayak, Atul; Nair, Karthik J; Whiteside, Benjamin R; Nalluri, Buchi N; Das, Diganta B

    2017-07-01

    The present study was aimed to investigate the effect of salient microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation of rizatriptan (RIZ). Studies were carried out using two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 0.9, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PMs) of 0.6 mm length. In the case of the PMs, arrays were applied three times at different places within a 1.77-cm 2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Histological studies revealed that PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 4.9- and 4.2-fold increases in the RIZ steady-state flux values were observed with 1.5 mm ADM and PM-3 applications when compared to the passive studies. A good correlation between different dimensionless parameters like the amount of RIZ permeated (C t /C s ), thickness (h/L) and surface area (S a /L 2 ) of the skin was observed with scaling analyses. Numerical simulations provided further information regarding the distribution of RIZ in MN-treated skin after application of different MNs. Overall, the study suggests that MN application enhances the RIZ transdermal permeation and the geometrical parameters of MNs play an important role in the degree enhancement.

  17. Development of Nanoemulsion Based Gel Loaded with Phytoconstituents for the Treatment of Urinary Tract Infection and in Vivo Biodistribution Studies

    Directory of Open Access Journals (Sweden)

    Atinderpal Kaur

    2017-12-01

    Full Text Available Purpose: A nanoemulsion based gel containing Polyphenon 60 (P60 and cranberry (CRB has been developed to deliver via intravaginal route for the treatment of urinary tract infection. Methods: Polyphenon 60 and cranberry were loaded in a single nanoemulsion gel (NBG by ultra-sonication method and characterized for particle size, rheological properties, in vitro release and growth curve analysis. P60+CRB NBG were radiolabelled using technetium pertechnetate (99mTc to perform in vivo pharmacokinetic studies in animals. Results: The finalized NE had a droplet size of 58±1 nm. In vitro release of 90.92 ± 0.6% in 8 hr for P60 and 99.39 ± 0.5% in 6 hr for CRB was observed in simulated vaginal fluid. Growth curve of E. coli indicated the inhibitory action of nanoemulsion based gel at the fifth hour of inoculation. Gamma scintigraphy studies on female Sprague-Dawley rats showed transport of nanoemulsion based gel from the vaginal cavity into the systemic circulation. Further, biodistribution studies with radiolabelled P60+CRB NBG showed significant higher uptake of radiolabelled actives by kidney (3.20±0.16 and urinary bladder (3.64±0.29, when administered intravaginally. Conclusion: The findings suggested 99mTc-P60+CRB NBG can potentially be transported through vaginal cavity and reach the target organs and showed effective distribution in organs affected in urinary tract infection

  18. Optimization of Biopolymer Based Transdermal Films of Metoclopramide as an Alternative Delivery Approach

    Directory of Open Access Journals (Sweden)

    Betül Aktar

    2014-05-01

    Full Text Available The objectives of this study were to develop and to characterize sodium alginate based matrix-type transdermal films of metoclopramide hydrochloride (MTC in order to improve patient compliance to treatment. The suitability of sodium alginate was shown to be a natural film former in terms of the physicochemical, mechanical, and bioadhesive features of the MTC loaded transdermal films. Terpinolene provided the highest drug release among the different terpenes (nerolidol, eucalyptol, dl-limonene, or terpinolene assessed as enhancer. Attenuated Total Reflectance Infrared (ATR-FTIR spectroscopy analysis performed to evaluate the effect of the transdermal films on skin barrier confirmed enhancer induced lipid bilayer disruption in stratum corneum, indicating its permeation enhancement effect.

  19. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stoica-Guzun, Anicuta [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)], E-mail: astoica@mt.pub.ro; Stroescu, Marta; Tache, Florin [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)], E-mail: zaharescut@icpe-ca.ro; Grosu, Elena [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2007-12-15

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of {gamma}-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  20. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-01-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell

  1. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-12-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  2. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases.

    Science.gov (United States)

    Ita, Kevin

    2017-06-01

    With the increasing proportion of the global geriatric population, it becomes obvious that neurodegenerative diseases will become more widespread. From an epidemiological standpoint, it is necessary to develop new therapeutic agents for the management of Alzheimer's disease, Parkinson's disease, multiple sclerosis and other neurodegenerative disorders. An important approach in this regard involves the use of the transdermal route. With transdermal drug delivery systems (TDDS), it is possible to modulate the pharmacokinetic profiles of these medications and improve patient compliance. Transdermal drug delivery has also been shown to be useful for drugs with short half-life and low or unpredictable bioavailability. In this review, several transdermal drug delivery enhancement technologies are being discussed in relation to the delivery of medications used for the management of neurodegenerative disorders.

  3. Use of granisetron transdermal system in the prevention of chemotherapy-induced nausea and vomiting: a review

    Directory of Open Access Journals (Sweden)

    Albert Tuca

    2009-12-01

    Full Text Available Albert TucaPalliative Care Hospital Team, Palliative Care Department, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Barcelona, SpainAbstract: Until now only intravenous and oral formulations of 5HT3 receptor antagonists have been available. Recently a new formulation of a 5HT3 receptor antagonist, transdermal granisetron, has been developed, and approved by the FDA. Three phase I studies to evaluate its pharmacokinetic profile have shown that granisetron administered by a transdermal delivery system is absorbed by passive diffusion and maximal concentration is reached 48 hours after patch application. The patch of 52 cm2, which contains 34.3 mg of granisetron, releases 3.3 mg of the drug every day and maintains a stable average plasma concentration of 2.2 ng/mL over 6 days, similar to levels obtained with 2 mg of oral granisetron, administered every day during the same period of time. Two randomized as yet unpublished clinical trials (phase II/III have been conducted to evaluate the antiemetic efficacy of transdermal granisetron in chemotherapy-induced nausea and vomiting, in patients receiving moderately and highly emetogenic chemotherapy, compared with 2 mg of oral granisetron. More than 800 cancer patients were included in the trials. The rate of complete control of acute emesis was 49% for the phase II trial and 60% for the phase III trial. Neither trial showed a statistically significant difference between transdermal and oral granisetron. The control of delayed emesis was observed in 46% of patients, and there were no statistically significant differences between transdermal and oral granisetron. The most common adverse effects in both trials were constipation (<7% and headache (<1%; there were no statistically significant differences between transdermal and oral granisetron. These data show that transdermal granisetron is effective and safe in controlling acute emesis induced by chemotherapy with both moderate and high

  4. Turning theory into practice: the development of modern transdermal drug delivery systems and future trends.

    Science.gov (United States)

    Perumal, O; Murthy, S N; Kalia, Y N

    2013-01-01

    Despite its remarkable barrier function, the skin remains an attractive site for systemic drug delivery given its easy accessibility, large surface area and the possibility to bypass the gastrointestinal tract and the liver and so modify drug absorption kinetics. The pioneering work of Scheuplein, Higuchi and others in the 1960s helped to explain the processes involved in passive percutaneous absorption and led to the development of mathematical models to describe transdermal drug delivery. The intervening years have seen these theories turned to practice and a significant number of transdermal systems are now available including some that employ active drug delivery. This review briefly discusses the evolution of transdermal therapeutic systems over the years and the potential of newer transdermal technologies to deliver hydrophilic drugs and macromolecules through the skin. © 2013 S. Karger AG, Basel.

  5. FORMULATION OF NANOEMULSION MOUTHWASH COMBINATION OF LEMONGRASS OIL (Cymbopogon citratus AND KAFFIR LIME OIL (Citrus hystrix FOR ANTICANDIDIASIS AGAINST Candida albicans ATCC 10231

    Directory of Open Access Journals (Sweden)

    Meta Juniatik

    2017-04-01

    Full Text Available Candidiasis is a fungal infection disease that still become health problem in Indonesia, especially oral candidiasis that largerly caused by Candida albicans abnormal growth on oral cavity. Lemongrass oil and kaffir lime oil have been proven to have antifungal activity against Candida albicans. The composition of limonen, α-terpineol, sitronelil acetate, terpineol, β-pinene, on kaffir lime oil and citronelal on lemongrass oil make the combination of both oils have the potential as an alternative theraphy for oral candidiasis. It formulates in the form of nanoemulsion mouthwash. Nanoemulsion is chosen because it has some advantages like clear, stable, and increasing the antifungal activity of lemongrass oil and kaffir lime oil. The study begins with plants determination, essential oils charecterization tests (solubility, refractative index, and specific gravity, and essential oil content analysis by GC-MS. Nanoemulision formulates by water titration method. Optimization of oil mix and VCO do to get a clear and stable nanoemulsion. The best formula is characterized (transmittance, particle size, viscosity, zeta potential, and stability test, then analyze the essential oil chemical compounds in the optimum formula and test the inhibitory effect of the formula by microdilution method. Inhibiton data analysis use One Way ANOVA. Based on the results of the study, 0.4 % oil mix, 3.6 % VCO, 17.3 % tween 80, 8.7 % PEG 400 dan 70 % water is the best formula that can form a nanoemulsion system with an average particle size 21,4 nm, low viscosity, low zeta potential and stable during freez-thaw storage. Nanoemulsion significantly has inhibitory effect more effective than positive control.

  6. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret.

    Science.gov (United States)

    Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang

    We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N -trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.

  7. [11C]diclofenac sodium: synthesis and PET assessment of transdermal penetration

    International Nuclear Information System (INIS)

    Petroni, Debora; Menichetti, Luca; Sorace, Oreste; Poli, Michela; Vanasia, Massimo; Salvadori, Piero A.

    2011-01-01

    The aim of this work was to study the feasibility of using Positron Emission Tomography (PET) imaging as a new tool to detect transdermal penetration of topical drugs in human subjects. The compound used in the study is sodium 2-[(2,6-dichlorophenyl)amino]phenyl]acetate, better known as diclofenac sodium. This molecule belongs to the family of non-steroidal anti-inflammatory drugs and is considered one of the first choices among non-steroidal anti-inflammatory drugs for the treatment of inflammatory diseases; it is widely used and commercially present in a large number of pharmaceutical forms and formulations. 11 C-labeled diclofenac has been synthesized and coformulated, as an internal indicator, with a proprietary preparation based on the use of a sprayer. The radiolabeled preparation was topically administered to healthy volunteers, and PET imaging was used to evaluate transdermal penetration. Results obtained have demonstrated the efficacy of PET and radiolabeled tracers for the evaluation of transdermal penetration of active pharmaceutical ingredients as topical formulations.

  8. Treatment of Severe Cancer Pain by Transdermal Fentanyl

    Directory of Open Access Journals (Sweden)

    Dženita Ljuca

    2010-05-01

    Full Text Available The goal of research was to determine the frequency, intensity, time of occurrence, duration and causes of breakthrough pain (BTP in patients whose carcinoma pain was treated by transdermal fentanyl. (TDF. A prospective study was conducted in a hospice for recumbent patients of the Centre for Palliative Care (hospice University Clinical Centre Tuzla from October 2009 to December 2010. 33 patients in terminal stage of carcinoma, who had been treated by transdermal fentanyl due to their excruciating pain (7-10 mark on numerica! scale with initial dosage of 25 μg as a strong opiate analgesic, were monitored within the time period of 10 days. In the statistics we used the even T - test, the Wilcox test and Mann -Whitney test. The difference was seen to be significant at p < 0,05. Treatment by transdermal fentanyl significantly reduces the intensity of strong carcinoma pain (p < 0.0001, with a frequent requirement for dose increase with bone metastasis. The intensity of BTP is higher compared to the pain experienced upon reception. The frequency and intensity of BTP are significantly reduced already in the second day of treatment by transdermal fentanyl (p = 0,0024. The BTP is most intense in patients with neck and head tumours (9,26 ± 0,66, and most frequent with abdomen and pelvic tumour. The biggest number of BTP (68.3 % occurs within first three days of treatment. BTP most frequently occurs in the evening or at night (between 18:00 and 06:00 h in 62,2 % of the cases, with the duration of usually less than 15 minutes (65,2% of the cases. In 61,6 % cases the occurrence of BTP is related to physical activities or psychosocial incidents, while the cause is undetermined in 38,4 % of examinees.BTP is most frequent within first three days of treatment by TDF. Using the optimal dosage a good control of carcinoma pain is enabled, regardless of the occurrence of bone metastasis, while it also helps reduce the frequency and intensity of BTP.

  9. Electrospun polymeric nanofibers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Mahya Rahmani

    2017-04-01

    Full Text Available Conventional transdermal drug delivery systems (TDDS have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofibers fabrication with a great potential for drug delivery. More studies in the field of nanofibers containing drug are divided two categories: first, preparation and characterization of nanofibers containing drug and second, investigation of their therapeutic applications. Drugs used in electrospun nanofibers can be categorized into three main groups, including antibiotics and antimicrobial agents, anti-inflammatory agents and vitamins with therapeutic applications. In this paper, we review the application of electrospun polymeric scaffolds in TDDS and also introduce several pharmaceutical and therapeutic agents which have been used in polymer nanofibrous patches.

  10. Transdermal delivery of isoniazid and rifampin in guinea pigs by electro-phonophoresis.

    Science.gov (United States)

    Chen, Suting; Han, Yi; Yu, Daping; Huo, Fengmin; Wang, Fen; Li, Yunxu; Dong, Lingling; Liu, Zhidong; Huang, Hairong

    2017-11-01

    Electro-phonophoresis (EP) has been used as a drug delivery approach in clinical fields. The objective of the present study is to evaluate the skin permeability of isoniazid and rifampin in guinea pigs by EP to provide reference basis for clinical applications of such transdermal delivery system in the treatment of patients with superficial tuberculosis. Isoniazid and rifampin solutions were delivered transdermally with or without EP in health guinea pigs for 0.5 h. Local skin and blood samples were collected serially at 0, 1/2, 1, 2, 4, 6 and 24 h after dosing. Drug concentrations in local skin and blood were evaluated by high-performance liquid chromatography. Isoniazid concentrations in local skin of guinea pigs receiving isoniazid through EP transdermal delivery were significantly higher than in animals receiving only isoniazid with transdermal patch. However, for rifampin, patches alone group presented almost uniform concentration versus time curve with that of EP group, and both groups had concentrations much higher than the therapeutic concentration of the drug over sustainable time. After EP transdermal delivery, the mean peak concentrations of isoniazid and rifampin in skin were 771.0 ± 163.4 μg/mL and 81.2 ± 17.3 μg/mL respectively. Neither isoniazid nor rifampin concentration in blood could be detected (below the lower detection limit of 1 μg/mL) at any time point. The present study showed that application of EP significantly enhanced INH penetration through skin in guinea pigs, while RIF patch alone obtained therapeutic concentration in local skin. Our work suggests several possible medication approaches for efficient treatment of superficial tuberculosis.

  11. Functionalization of Cotton Fabrics with Polycaprolactone Nanoparticles for Transdermal Release of Melatonin

    Directory of Open Access Journals (Sweden)

    Daniele Massella

    2017-12-01

    Full Text Available Drug delivery by means of transdermal patches raised great interest as a non-invasive and sustained therapy. The present research aimed to design a patch for transdermal delivery of melatonin, which was encapsulated in polycaprolactone (PCL nanoparticles (NPs by employing flash nanoprecipitation (FNP technique. Melatonin-loaded PCL nanoparticles were successfully prepared with precise control of the particle size by effectively tuning process parameters. The effect of process parameters on the particle size was assessed by dynamic light scattering for producing particles with suitable size for transdermal applications. Quantification of encapsulated melatonin was performed by mean of UV spectrophotometry, obtaining the estimation of encapsulation efficiency (EE% and loading capacity (LC%. An EE% higher than 80% was obtained. Differential scanning calorimetry (DSC analysis of NPs was performed to confirm effective encapsulation in the solid phase. Cotton fabrics, functionalized by imbibition with the nano-suspension, were analyzed by scanning electron microscopy to check morphology, adhesion and distribution of the NPs on the surface; melatonin transdermal release from the functionalized fabric was performed via Franz’s cells by using a synthetic membrane. NPs were uniformly distributed on cotton fibres, as confirmed by SEM observations; the release test showed a continuous and controlled release whose kinetics were satisfactorily described by Baker–Lonsdale model.

  12. In vitro and ex vivo evaluations on transdermal delivery of the HIV inhibitor IQP-0410.

    Directory of Open Access Journals (Sweden)

    Anthony S Ham

    Full Text Available The aim of this study was to investigate the physicochemical and in vitro/ex vivo characteristics of the pyrmidinedione IQP-0410 formulated into transdermal films. IQP-0410 is a potent therapeutic anti-HIV nonnucleoside reverse transcriptase inhibitor that would be subjected to extensive first pass metabolism, through conventional oral administration. Therefore, IQP-0410 was formulated into ethyl cellulose/HPMC-based transdermal films via solvent casting. In mano evaluations were performed to evaluate gross physical characteristics. In vitro release studies were performed in both Franz cells and USP-4 dissolution vessels. Ex vivo release and permeability assays were performed on human epidermal tissue models, and the permeated IQP-0410 was collected for in vitro HIV-1 efficacy assays in CEM-SS cells and PBMCs. Film formulation D3 resulted in pliable, strong transdermal films that were loaded with 2% (w/w IQP-0410. Composed of 60% (w/w ethyl cellulose and 20% (w/w HPMC, the films contained < 1.2% (w/w of water and were hygroscopic resulting in significant swelling under humid conditions. The water permeable nature of the film resulted in complete in vitro dissolution and drug release in 26 hours. When applied to ex vivo epidermal tissues, the films were non-toxic to the tissue and also were non-toxic to HIV target cells used in the in vitro efficacy assays. Over a 3 day application, the films delivered IQP-0410 through the skin tissue at a zero-order rate of 0.94 ± 0.06 µg/cm(2/hr with 134 ± 14.7 µM collected in the basal media. The delivered IQP-0410 resulted in in vitro EC50 values against HIV-1 of 2.56 ± 0.40 nM (CEM-SS and 0.58 ± 0.03 nM (PBMC. The film formulation demonstrated no significant deviation from target values when packaged in foil pouches under standard and accelerated environmental conditions. It was concluded that the transdermal film formulation was a potentially viable method of administering IQP-0410 that warrants

  13. Development of Organogel-Derived Capsaicin Nanoemulsion with Improved Bioaccessibility and Reduced Gastric Mucosa Irritation.

    Science.gov (United States)

    Lu, Muwen; Cao, Yong; Ho, Chi-Tang; Huang, Qingrong

    2016-06-15

    Capsaicin (CAP) is the major active component in chili peppers with health-promoting benefits. However, the low bioavailability and irritating quality of CAP greatly limit its applications in functional foods. The objective of this study was to develop a food-grade nanoemulsion to increase the dissolution and bioaccessibility of CAP and to alleviate its irritating effects. To achieve this goal, CAP was first dissolved in medium-chain triacylglycerol (MCT), followed by the addition of sucrose stearate S-370 as organogelator to develop CAP-loaded organogel. The oil-in-water (O/W) emulsion was formed using organogel as the oil phase and Tween 80 as the emulsifier. After ultrasonication treatment, droplet sizes of emulsion were decreased to 168 nm with enhanced dissolution rate and bioaccessibility. In vivo study further confirmed the reduced rat gastric mucosa irritation caused by CAP. The organogel-derived nanoemulsion was proved to be an effective delivery system for CAP-based functional food products.

  14. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Cantwell, Cara T; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P

    2014-01-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management. (technical note)

  15. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    Science.gov (United States)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  16. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems.

    Science.gov (United States)

    Chen, Yang; Wang, Manli; Fang, Liang

    2013-01-01

    The highly organized structure of the stratum corneum provides an effective barrier to the drug delivery into or across the skin. To overcome this barrier function, penetration enhancers are always used in the transdermal and dermal drug delivery systems. However, the conventional chemical enhancers are often limited by their inability to delivery large and hydrophilic molecules, and few to date have been routinely incorporated into the transdermal formulations due to their incompatibility and local irritation issues. Therefore, there has been a search for the compounds that exhibit broad enhancing activity for more drugs without producing much irritation. More recently, the use of biomaterials has emerged as a novel method to increase the skin permeability. In this paper, we present an overview of the investigations on the feasibility and application of biomaterials as penetration enhancers for transdermal or dermal drug delivery systems.

  17. Colloidal properties of sodium caseinate-stabilized nanoemulsions prepared by a combination of a high-energy homogenization and evaporative ripening methods.

    Science.gov (United States)

    Montes de Oca-Ávalos, J M; Candal, R J; Herrera, M L

    2017-10-01

    Nanoemulsions stabilized by sodium caseinate (NaCas) were prepared using a combination of a high-energy homogenization and evaporative ripening methods. The effects of protein concentration and sucrose addition on physical properties were analyzed by dynamic light scattering (DLS), Turbiscan analysis, confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). Droplets sizes were smaller (~100nm in diameter) than the ones obtained by other methods (200 to 2000nm in diameter). The stability behavior was also different. These emulsions were not destabilized by creaming. As droplets were so small, gravitational forces were negligible. On the contrary, when they showed destabilization the main mechanism was flocculation. Stability of nanoemulsions increased with increasing protein concentrations. Nanoemulsions with 3 or 4wt% NaCas were slightly turbid systems that remained stable for at least two months. According to SAXS and Turbiscan results, aggregates remained in the nano range showing small tendency to aggregation. In those systems, interactive forces were weak due to the small diameter of flocs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil.

    Science.gov (United States)

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca

    2017-04-01

    Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion. Copyright © 2017. Published by Elsevier B.V.

  19. Transdermal administration of radiolabelled [14C]rotigotine by a patch formulation: A mass balance trial

    NARCIS (Netherlands)

    Cawello, W.; Wolff, H.M.; Meuling, W.J.A.; Horstmann, R.; Braun, M.

    2007-01-01

    Background and objective: The dopamine agonist rotigotine has been formulated in a silicone-based transdermal system for once-daily administration. The objective of the present study was to characterise the mass balance of rotigotine in humans after administration of a single transdermal patch

  20. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  1. Penetration Enhancement Effect of Turpentine Oil on Transdermal ...

    African Journals Online (AJOL)

    inflammation drastically affect the quality of life after SCI. ... inhibitors may reduce spinal cord ischemic injury. [11]. Various .... Healthy male Wistar rats (200-250 g) were used ..... Guy RH. Transdermal science and technology an update.

  2. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    Science.gov (United States)

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation

    Science.gov (United States)

    Pandey, Yogendra Raj; Kumar, Shobhit; Gupta, Bijay Kumar; Ali, Javed; Baboota, Sanjula

    2016-01-01

    Paroxetine is a selective serotonin reuptake inhibitor (SSRI) and is used for the treatment of depression and anxiety problems, but suffers from the drawback of poor oral bioavailability (less than 50%) due to its extensive first pass metabolism. The objective of the present study was to develop a paroxetine loaded nanoemulsion (o/w type) for direct nose-to-brain delivery. Nanoemulsions were prepared by the spontaneous emulsification technique using Capmul MCM, Solutol HS 15 and propylene glycol as oil phase, surfactant and co-surfactant, respectively, for delivery of drug directly to the brain through the nasal route for better management of depression. Formulations were studied for droplet size, polydispersity index (PDI), percentage transmittance, refractive index, viscosity, zeta potential, surface morphology and in vitro permeation study. TEM images of optimized formulation showed spherical droplets with a mean diameter of 58.47 ± 3.02 nm, PDI of 0.339 ± 0.007 and zeta potential values of -33 mV. The formulation showed good results for transmittance (100.60 ± 0.577%), refractive index (1.412 ± 0.003) and viscosity (40.85 ± 6.40 cP). Permeation studies revealed a 2.57-fold enhancement in permeation as compared to the paroxetine suspension. Behavioural studies such as the forced swimming test and locomotor activity test were done on Wistar rats to study the antidepressant effect of the optimized formulation. Treatment of depressed rats with paroxetine nanoemulsion (administered intranasally) significantly improved the behavioural activities in comparison to paroxetine suspension (orally administered). Biochemical estimation results revealed that the prepared nanoemulsion was effective in enhancing the depressed levels of glutathione and decreasing the elevated levels of TBARS.

  4. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation.

    Science.gov (United States)

    Pandey, Yogendra Raj; Kumar, Shobhit; Gupta, Bijay Kumar; Ali, Javed; Baboota, Sanjula

    2016-01-15

    Paroxetine is a selective serotonin reuptake inhibitor (SSRI) and is used for the treatment of depression and anxiety problems, but suffers from the drawback of poor oral bioavailability (less than 50%) due to its extensive first pass metabolism. The objective of the present study was to develop a paroxetine loaded nanoemulsion (o/w type) for direct nose-to-brain delivery. Nanoemulsions were prepared by the spontaneous emulsification technique using Capmul MCM, Solutol HS 15 and propylene glycol as oil phase, surfactant and co-surfactant, respectively, for delivery of drug directly to the brain through the nasal route for better management of depression. Formulations were studied for droplet size, polydispersity index (PDI), percentage transmittance, refractive index, viscosity, zeta potential, surface morphology and in vitro permeation study. TEM images of optimized formulation showed spherical droplets with a mean diameter of 58.47 ± 3.02 nm, PDI of 0.339 ± 0.007 and zeta potential values of -33 mV. The formulation showed good results for transmittance (100.60 ± 0.577%), refractive index (1.412 ± 0.003) and viscosity (40.85 ± 6.40 cP). Permeation studies revealed a 2.57-fold enhancement in permeation as compared to the paroxetine suspension. Behavioural studies such as the forced swimming test and locomotor activity test were done on Wistar rats to study the antidepressant effect of the optimized formulation. Treatment of depressed rats with paroxetine nanoemulsion (administered intranasally) significantly improved the behavioural activities in comparison to paroxetine suspension (orally administered). Biochemical estimation results revealed that the prepared nanoemulsion was effective in enhancing the depressed levels of glutathione and decreasing the elevated levels of TBARS.

  5. A Novel Transdermal Power Transfer Device for the Application of Implantable Microsystems

    Directory of Open Access Journals (Sweden)

    Jing-Quan Liu

    2015-03-01

    Full Text Available This paper presents a transdermal power transfer device for the application of implantable devices or systems. The device mainly consists of plug and socket. The power transfer process can be started after inserting the plug into the socket with an applied potential on the plug. In order to improve the maneuverability and reliability of device during power transfer process, the metal net with mesh structure were added as a part of the socket to serve as intermediate electrical connection layer. The socket was encapsulated by polydimethylsiloxane (PDMS with good biocompatibility and flexibility. Two stainless steel hollow needles placed in the same plane acted as the insertion part of the needle plug, and Parylene C thin films were deposited on needles to serve as insulation layers. At last, the properties of the transdermal power transfer device were tested. The average contact resistance between needle and metal mesh was 0.454 Ω after 50 random insertions, which showed good electrical connection. After NiMH (nickel-metal hydride batteries were recharged for 10 min with current up to 200 mA, the caused resistive heat was less than 0.6 °C, which also demonstrated the low charging temperature and was suitable for charging implantable devices.

  6. Microneedles array with biodegradable tips for transdermal drug delivery

    Science.gov (United States)

    Iliescu, Ciprian; Chen, Bangtao; Wei, Jiashen; Tay, Francis E. H.

    2008-12-01

    The paper presented an enhancement solution for transdermal drug delivery using microneedles array with biodegradable tips. The microneedles array was fabricated by using deep reactive ion etching (DRIE) and the biodegradable tips were made to be porous by electrochemical etching process. The porous silicon microneedle tips can greatly enhance the transdermal drug delivery in a minimum invasion, painless, and convenient manner, at the same time; they are breakable and biodegradable. Basically, the main problem of the silicon microneedles consists of broken microneedles tips during the insertion. The solution proposed is to fabricate the microneedle tip from a biodegradable material - porous silicon. The silicon microneedles are fabricated using DRIE notching effect of reflected charges on mask. The process overcomes the difficulty in the undercut control of the tips during the classical isotropic silicon etching process. When the silicon tips were formed, the porous tips were then generated using a classical electrochemical anodization process in MeCN/HF/H2O solution. The paper presents the experimental results of in vitro release of calcein and BSA with animal skins using a microneedle array with biodegradable tips. Compared to the transdermal drug delivery without any enhancer, the microneedle array had presented significant enhancement of drug release.

  7. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; HariKumar, S L

    2012-03-01

    The feasibility of development of transdermal delivery system of olanzapine utilizing natural oils as permeation enhancers was investigated. Penetration enhancing potential of corn (maize) oil, groundnut oil and jojoba oil on in vitro permeation of olanzapine across rat skin was studied. The magnitude of flux enhancement factor with corn oil, groundnut oil and jojoba oil was 7.06, 5.31 and 1.9 respectively at 5mg/ml concentration in solvent system. On the basis of in vitro permeation studies, eudragit based matrix type transdermal patches of olanzapine were fabricated using optimized concentrations of natural oils as permeation enhancers. All transdermal patches were found to be uniform with respect to physical characteristics. The interaction studies carried out by comparing the results of ultraviolet, HPLC and FTIR analyses for the pure drug, polymers and mixture of drug and polymers indicated no chemical interaction between the drug and excipients. Corn oil containing unsaturated fatty acids was found to be promising natural permeation enhancer for transdermal delivery of olanzapine with greatest cumulative amount of drug permeated (1010.68 μg/cm²/h) up to 24 h and caused no skin irritation. The fabricated transdermal patches were found to be stable. The pharmacokinetic characteristics of the final optimized matrix patch (T2) were determined after transdermal application to rabbits. The calculated relative bioavailability of TDDS was 113.6 % as compared to oral administration of olanzapine. The therapeutic effectiveness of optimized transdermal system was confirmed by tranquillizing activity in rotarod and grip mice model.

  8. Preparation and characterization of metoprolol tartrate containing matrix type transdermal drug delivery system.

    Science.gov (United States)

    Malipeddi, Venkata Ramana; Awasthi, Rajendra; Ghisleni, Daniela Dal Molim; de Souza Braga, Marina; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Dua, Kamal

    2017-02-01

    The present study aimed to develop matrix-type transdermal drug delivery system (TDDS) of metoprolol tartrate using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA). The transdermal films were evaluated for physical parameters, Fourier transform infrared spectroscopy analysis (FTIR), differential scanning calorimetry (DSC), in vitro drug release, in vitro skin permeability, skin irritation test and stability studies. The films were found to be tough, non-sticky, easily moldable and possess good tensile strength. As the concentration of PVA was increased, the tensile strength of the films was also increased. Results of FTIR spectroscopy and DSC revealed the absence of any drug-polymer interactions. In vitro release of metoprolol followed zero-order kinetics and the mechanism of release was found to be diffusion rate controlled. In vitro release studies of metoprolol using Keshary-Chein (vertical diffusion cell) indicated 65.5 % drug was released in 24 h. In vitro skin permeation of metoprolol transdermal films showed 58.13 % of the drug was released after 24 h. In vitro skin permeation of metoprolol followed zero-order kinetics in selected formulations. The mechanism of release was found to be diffusion rate controlled. In a 22-day skin irritation test, tested formulation of transdermal films did not exhibit any allergic reactions, inflammation, or contact dermatitis. The transdermal films showed good stability in the 180-day stability study. It can be concluded that the TDDS of MPT can help in bypassing the first-pass effect and will provide patient improved compliance, without sacrificing the therapeutic advantages of the drugs.

  9. The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications

    Directory of Open Access Journals (Sweden)

    Lisiane Bajerski

    Full Text Available ABSTRACT Vegetable oils present important pharmacological properties, which gained ground in the pharmaceutical field. Its encapsulation in nanoemulsions is considered a promising strategy to facilitate the applicability of these natural compounds and to potentiate the actions. These formulations offer several advantages for topical and systemic delivery of cosmetic and pharmaceutical agents including controlled droplet size, protection of the vegetable oil to photo, thermal and volatilization instability and ability to dissolve and stabilize lipophilic drugs. For these reasons, the aim of this review is to report on some characteristics, preparation methods, applications and especially analyze recent research available in the literature concerning the use of vegetable oils with therapeutic characteristics as lipid core in nanoemulsions, specially from Brazilian flora, such as babassu (Orbignya oleifera, aroeira (Schinus molle L., andiroba (Carapa guaianiensis, casca-de-anta (Drimys brasiliensis Miers, sucupira (Pterodon emarginatus Vogel and carqueja doce (Stenachaenium megapotamicum oils.

  10. Transdermal and transbuccal drug delivery systems: enhancement using iontophoretic and chemical approaches.

    Science.gov (United States)

    Hu, Longsheng; Silva, Sérgio M C; Damaj, Bassam B; Martin, Richard; Michniak-Kohn, Bozena B

    2011-12-12

    We investigated the enhancement effect of chemical enhancers and iontophoresis on the in vitro transdermal and transbuccal delivery of lidocaine HCl (LHCl), nicotine hydrogen tartrate (NHT), and diltiazem HCl (DHCl) using porcine skin and buccal tissues. Dodecyl 2-(N,N-dimethylamino) propionate (DDAIP), dodecyl-2-(N,N-dimethylamino) propionate hydrochloride (DDAIP HCl), N-(4-bromobenzoyl)-S,S-dimethyliminosulfurane (Br-iminosulfurane), and azone (laurocapram) were used as chemical enhancers. The study results showed that the application of iontophoresis at either 0.1 mA or 0.3 mA significantly enhanced transdermal and transmucosal delivery of LHCl, NHT and DHCl. It was also demonstrated that iontophoresis had a more pronounced enhancement effect on transdermal delivery than on transbuccal delivery of LHCl, NHT and DHCl. In addition, DDAIP HCl was found to be the most effective enhancer for transbuccal delivery of LHCl and NHT. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Modified Transdermal Technologies: Breaking the Barriers of Drug ...

    African Journals Online (AJOL)

    In-depth analysis, formulation approaches, applications, advantages and disadvantages of these newer technologies are discussed. Keywords: Transdermal drug delivery, microneedles, macroflux, iontophoresis, ultrasound, powderject, skin abrasion. > Tropical Journal of Pharmaceutical Research Vol. 6 (1) 2007: pp. 633- ...

  12. Formulation and cytotoxicity evaluation of new self-emulsifying multiple W/O/W nanoemulsions

    Directory of Open Access Journals (Sweden)

    Sigward E

    2013-02-01

    Full Text Available Estelle Sigward,1 Nathalie Mignet,1 Patrice Rat,2 Mélody Dutot,2 Saleh Muhamed,1 Jean-Michel Guigner,3 Daniel Scherman,1 Denis Brossard,1 Sylvie Crauste-Manciet11Chemical, Genetic and Imaging Pharmacology Laboratory; INSERM U1022, CNRS UMR8151, Chimie ParisTech, Faculty of Pharmacy, Paris Descartes University, Sorbone Paris Cité, Paris, France; 2Chemistry-Cellular and Analytical Toxicology Laboratory (C-TAC, Faculty of Pharmacy, Paris Descartes University, Sorbone Paris Cité, Paris, France; 3Institut de Minéralogie et de Physique des Milieux Condensés IMPMC -IRD-CNRS UMR 7590, Université Paris Pierre et Marie Curie, Paris, FranceAbstract: Three multiple water-in-oil-in-water (W/O/W nanoemulsions have been designed for potential inclusion of either lipophilic or hydrophilic drugs using a two-step emulsification process exclusively based on low-energy self-emulsification. The W/O primary emulsion was constituted by a blend of oil (medium chain triglyceride, a mixture (7:3 of two surfactants, and a 10% water phase. The surfactants were a mixture of Polysorbate-85/Labrasol®, Polysorbate-85/ Cremophor® EL or glycerol/Polysorbate-85. The final W/O/W nanoemulsions were obtained by the addition of water, with a weight ratio nanoemulsion/water of 1:2. The multiple emulsion stability was found to increase from 24 hours to 2 and 6 months with Labrasol, glycerol, and Cremophor, respectively. Cytotoxicity was found for formulations including Labrasol and Cremophor EL. The concentration of emulsion inhibiting 50% cell viability (IC50 was determined using the alamarBlue® test, giving after 24 hours of incubation, IC50 = 10.2 mg/mL for the Labrasol formulation and IC50 = 11.8 mg/mL for the Cremophor EL formulation. Corresponding calculated IC50 values for surfactants were 0.51 mg/mL for Labrasol and 0.59 mg/mL for Cremophor EL. In both cases, cytotoxicity was due to an apoptotic mechanism, evidenced by chromatin condensation and P2X7 cell death

  13. [Studies on transdermal delivery of ferulic acid through rat skin treated by microneedle arrays].

    Science.gov (United States)

    Yang, Bing; Du, Shou-ying; Bai, Jie; Shang, Ke-xin; Lu, Yang; Li, Peng-yue

    2014-12-01

    In order to investigate the characteristics of transdermal delivery of ferulic acid under the treated of microneedle arrays and the influence on permeability of rat skin capillaries, improved Franz-cells were used in the transdermal delivery experiment with the rat skin of abdominal wall and the length of microneedle arrays, different insertion forces, retention time were studied in the influence of characteristics of transdermal delivery of FA. The amount of FA was determined by HPLC system. Intravenous injection Evans blue and FA was added after microneedle arrays treated. Established inflammation model was built by daubing dimethylbenzene. The amount of Evans blue in the rat skin was read at 590 nm wavelength with a Multiskan Go microplate reader. Compared with passive diffusion group the skin pretreated with microneedle arrays had a remarkable enhancement of FA transport (P Microneedle arrays with different length had a remarkable enhancement of FA transport, but was not related to the increase of the length. The research of FA on the reduce of permeability of rat skin capillaries indicated that the skin pretreated with microneedle arrays could reduce the content of Evans blue in the skins of rat significantly compared with the untreated group. The permeation rate of ferulic acid transdermal delivery had remarkable increase under the treated of microneedle arrays and the length of microneedle arrays ,the retention time so as to the insertion force were important to the transdermal delivery of ferulic acid.

  14. Orange oil/water nanoemulsions prepared by high pressure homogenizer

    International Nuclear Information System (INIS)

    Kourniatis, Loretta R.; Spinelli, Luciana S.; Mansur, Claudia R.E.

    2010-01-01

    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  15. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability

    Directory of Open Access Journals (Sweden)

    Yin J

    2017-04-01

    Full Text Available Juntao Yin,1,* Cuiyu Xiang,1,* Peiqing Wang,1 Yuyun Yin,2 Yantao Hou3 1Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng, 2Department of Physiochemical Analysis, Henan Provincial Institute for Food and Drug Control, Zhengzhou, 3Department of Pharmaceutical Engineering, Henan Vocational College of Applied Technology, Kaifeng, People’s Republic of China *These authors contributed equally to this work Abstract: Baicalein (BCL possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE, in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues. Keywords: baicalein, nanoemulsions, biocompatibility, high-pressure homogenization, hemp oil, bioavailability

  16. Avanafil Liposomes as Transdermal Drug Delivery for Erectile ...

    African Journals Online (AJOL)

    Avanafil is slightly soluble in ethanol, practically insoluble in water ... transdermal permeability and bioavailability for the treatment of .... Table 1 shows that the EE had higher values for the MLVs .... reason is the lower solubility of avanafil at pH.

  17. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation

    International Nuclear Information System (INIS)

    Pandey, Yogendra Raj; Kumar, Shobhit; Gupta, Bijay Kumar; Ali, Javed; Baboota, Sanjula

    2016-01-01

    Paroxetine is a selective serotonin reuptake inhibitor (SSRI) and is used for the treatment of depression and anxiety problems, but suffers from the drawback of poor oral bioavailability (less than 50%) due to its extensive first pass metabolism. The objective of the present study was to develop a paroxetine loaded nanoemulsion (o/w type) for direct nose-to-brain delivery. Nanoemulsions were prepared by the spontaneous emulsification technique using Capmul MCM, Solutol HS 15 and propylene glycol as oil phase, surfactant and co-surfactant, respectively, for delivery of drug directly to the brain through the nasal route for better management of depression. Formulations were studied for droplet size, polydispersity index (PDI), percentage transmittance, refractive index, viscosity, zeta potential, surface morphology and in vitro permeation study. TEM images of optimized formulation showed spherical droplets with a mean diameter of 58.47 ± 3.02 nm, PDI of 0.339 ± 0.007 and zeta potential values of −33 mV. The formulation showed good results for transmittance (100.60 ± 0.577%), refractive index (1.412 ± 0.003) and viscosity (40.85 ± 6.40 cP). Permeation studies revealed a 2.57-fold enhancement in permeation as compared to the paroxetine suspension. Behavioural studies such as the forced swimming test and locomotor activity test were done on Wistar rats to study the antidepressant effect of the optimized formulation. Treatment of depressed rats with paroxetine nanoemulsion (administered intranasally) significantly improved the behavioural activities in comparison to paroxetine suspension (orally administered). Biochemical estimation results revealed that the prepared nanoemulsion was effective in enhancing the depressed levels of glutathione and decreasing the elevated levels of TBARS. (paper)

  18. [{sup 11}C]diclofenac sodium: synthesis and PET assessment of transdermal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Debora, E-mail: debora.petroni@ifc.cnr.i [CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa (Italy); Menichetti, Luca; Sorace, Oreste; Poli, Michela [CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa (Italy); Vanasia, Massimo [Gienne Pharma, Via Lorenteggio 270/A, 20152 Milan (Italy); Salvadori, Piero A. [CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa (Italy)

    2011-02-15

    The aim of this work was to study the feasibility of using Positron Emission Tomography (PET) imaging as a new tool to detect transdermal penetration of topical drugs in human subjects. The compound used in the study is sodium 2-[(2,6-dichlorophenyl)amino]phenyl]acetate, better known as diclofenac sodium. This molecule belongs to the family of non-steroidal anti-inflammatory drugs and is considered one of the first choices among non-steroidal anti-inflammatory drugs for the treatment of inflammatory diseases; it is widely used and commercially present in a large number of pharmaceutical forms and formulations. {sup 11}C-labeled diclofenac has been synthesized and coformulated, as an internal indicator, with a proprietary preparation based on the use of a sprayer. The radiolabeled preparation was topically administered to healthy volunteers, and PET imaging was used to evaluate transdermal penetration. Results obtained have demonstrated the efficacy of PET and radiolabeled tracers for the evaluation of transdermal penetration of active pharmaceutical ingredients as topical formulations.

  19. Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties

    OpenAIRE

    Acevedo Fani, Alejandra; Salvia Trujillo, Laura; Rojas Grau, María Alejandra; Martín Belloso, Olga

    2015-01-01

    Edible films including active ingredients can be used as an alternative to preserve food products. Essential oils (EOs) exhibit antimicrobial activity against pathogenic microorganisms but their low water solubility limits the application in foods. To improve water dispersion and protect EOs from degradation, nano-sized emulsions emerge as a viable alternative. Nanoemulsions containing EOs and polysaccharides could be used to form edible films with functional properties. This study was focuse...

  20. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting

    Science.gov (United States)

    Palmer, Brian C.; DeLouise, Lisa A.

    2017-01-01

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701

  1. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting.

    Science.gov (United States)

    Palmer, Brian C; DeLouise, Lisa A

    2016-12-15

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  2. Evaluation of mesotherapy as a transdermal drug delivery tool.

    Science.gov (United States)

    Kim, S; Kye, J; Lee, M; Park, B

    2016-05-01

    There has been no research about the exact mechanism of transdermal drug delivery during mesotherapy. We aimed to evaluate whether the commercial mesogun can be an appropriate technique for a transdermal drug delivery. We injected blue ink into the polyurethane foam or pig skin with three types of mesotherapy using a commercial mesogun, or local made intradermal injector, or a manual injection of syringe. To assess the internal pressure of the cylinder and drug delivery time, we designed the evaluation setup using a needle tip pressure transducer. All types of injectors induced adequate penetration of blue ink into the polyurethane foam without backflow. In the pig skin, blue ink leaked out rapidly with the backward movement of the needle in the commercial mesogun in contrast to the local made injector or the manual injection of syringe. When the time for backward movement of the syringe approaches 1000 ms, the cylinder pressure of the syringe is saturated at around 25 mmHg which can be translated into the dermal pressure of the pig skin. There should be sufficient time between the insertion and withdrawal of the needle of injector for the adequate transdermal drug delivery and it must be considered for mesotherapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Microneedles for Transdermal Biosensing: Current Picture and Future Direction.

    Science.gov (United States)

    Ventrelli, Letizia; Marsilio Strambini, Lucanos; Barillaro, Giuseppe

    2015-12-09

    A novel trend is rapidly emerging in the use of microneedles, which are a miniaturized replica of hypodermic needles with length-scales of hundreds of micrometers, aimed at the transdermal biosensing of analytes of clinical interest, e.g., glucose, biomarkers, and others. Transdermal biosensing via microneedles offers remarkable opportunities for moving biosensing technologies and biochips from research laboratories to real-field applications, and envisages easy-to-use point-of-care microdevices with pain-free, minimally invasive, and minimal-training features that are very attractive for both developed and emerging countries. In addition to this, microneedles for transdermal biosensing offer a unique possibility for the development of biochips provided with end-effectors for their interaction with the biological system under investigation. Direct and efficient collection of the biological sample to be analyzed will then become feasible in situ at the same length-scale of the other biochip components by minimally trained personnel and in a minimally invasive fashion. This would eliminate the need for blood extraction using hypodermic needles and reduce, in turn, related problems, such as patient infections, sample contaminations, analysis artifacts, etc. The aim here is to provide a thorough and critical analysis of state-of-the-art developments in this novel research trend, and to bridge the gap between microneedles and biosensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transdermal drug delivery: approaches and significance

    OpenAIRE

    Murthy, SATHYANARAYANA

    2012-01-01

    S Narasimha MurthyDepartment of Pharmaceutics, The University of Mississippi, USATransdermal drug delivery systems deliver drugs through the skin as an alternative to oral, intravascular, subcutaneous, and transmucosal routes. Potential advantages of transdermal delivery include, but are not limited to, elimination of first-pass metabolism, steady delivery/blood levels, better patient compliance, reduced systemic drug interactions, possible dose intervention, avoidance of medically assisted d...

  5. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    Science.gov (United States)

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (Pdendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  6. Transdermal delivery and cutaneous targeting of antivirals using a penetration enhancer and lysolipid prodrugs.

    Science.gov (United States)

    Diblíková, Denisa; Kopečná, Monika; Školová, Barbora; Krečmerová, Marcela; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-04-01

    In this work, we investigate prodrug and enhancer approaches for transdermal and topical delivery of antiviral drugs belonging to the 2,6-diaminopurine acyclic nucleoside phosphonate (ANP) group. Our question was whether we can differentiate between transdermal and topical delivery, i.e., to control the delivery of a given drug towards either systemic absorption or retention in the skin. The in vitro transdermal delivery and skin concentrations of seven antivirals, including (R)- and (S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine ((S)-HPMPDAP), its 8-aza analog, and their cyclic and hexadecyloxypropyl (HDP) prodrugs, was investigated with and without the penetration enhancer dodecyl-6-(dimethylamino)hexanoate (DDAK) using human skin. The ability of ANPs to cross the human skin barrier was very low (0.5-1.4 nmol/cm(2)/h), and the majority of the compounds were found in the stratum corneum, the uppermost skin layer. The combination of antivirals and the penetration enhancer DDAK proved to be a viable approach for transdermal delivery, especially in case of (R)-PMPDAP, an anti-HIV effective drug (30.2 ± 2.3 nmol/cm(2)/h). On the other hand, lysophospholipid-like HDP prodrugs, e.g., HDP-(S)-HPMPDAP, reached high concentrations in viable epidermis without significant systemic absorption. By using penetration enhancers or lysolipid prodrugs, it is possible to effectively target systemic diseases by the transdermal route or to target cutaneous pathologies by topical delivery.

  7. Contingency management for alcohol use reduction: a pilot study using a transdermal alcohol sensor.

    Science.gov (United States)

    Barnett, Nancy P; Tidey, Jennifer; Murphy, James G; Swift, Robert; Colby, Suzanne M

    2011-11-01

    Contingency management (CM) has not been thoroughly evaluated as a treatment for alcohol abuse or dependence, in part because verification of alcohol use reduction requires frequent in-person breath tests. Transdermal alcohol sensors detect alcohol regularly throughout the day, providing remote monitoring and allowing for rapid reinforcement of reductions in use. The purpose of this study was to evaluate the efficacy of CM for reduction in alcohol use, using a transdermal alcohol sensor to provide a continuous measure of alcohol use. Participants were 13 heavy drinking adults who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet for three weeks and provided reports of alcohol and drug use using daily web-based surveys. In Week 1, participants were asked to drink as usual; in Weeks 2 and 3, they were reinforced on an escalating schedule with values ranging from $5 to $17 per day on days when alcohol use was not reported or detected by the SCRAM. Self-reports of percent days abstinent and drinks per week, and transdermal measures of average and peak transdermal alcohol concentration and area under the curve declined significantly in Weeks 2-3. A nonsignificant but large effect size for reduction in days of tobacco use also was found. An adjustment to the SCRAM criteria for detecting alcohol use provided an accurate but less conservative method for use with non-mandated clients. Results support the efficacy of CM for alcohol use reductions and the feasibility of using transdermal monitoring of alcohol use for clinical purposes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Contingency Management for Alcohol Use Reduction: A Pilot Study using a Transdermal Alcohol Sensor*

    Science.gov (United States)

    Barnett, Nancy P.; Tidey, Jennifer; Murphy, James G.; Swift, Robert; Colby, Suzanne M.

    2011-01-01

    Background Contingency management (CM) has not been thoroughly evaluated as a treatment for alcohol abuse or dependence, in part because verification of alcohol use reduction requires frequent in-person breath tests. Transdermal alcohol sensors detect alcohol regularly throughout the day, providing remote monitoring and allowing for rapid reinforcement of reductions in use. Methods The purpose of this study was to evaluate the efficacy of CM for reduction in alcohol use, using a transdermal alcohol sensor to provide a continuous measure of alcohol use. Participants were 13 heavy drinking adults who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet for three weeks and provided reports of alcohol and drug use using daily web-based surveys. In Week 1, participants were asked to drink as usual; in Weeks 2 and 3, they were reinforced on an escalating schedule with values ranging from $5-$17 per day on days when alcohol use was not reported or detected by the SCRAM. Results Self-reports of percent days abstinent and drinks per week, and transdermal measures of average and peak transdermal alcohol concentration and area under the curve declined significantly in Weeks 2-3. A nonsignificant but large effect size for reduction in days of tobacco use also was found. An adjustment to the SCRAM criteria for detecting alcohol use provided an accurate but less conservative method for use with non-mandated clients. Conclusion Results support the efficacy of CM for alcohol use reductions and the feasibility of using transdermal monitoring of alcohol use for clinical purposes. PMID:21665385

  9. Development and evaluation of tocopherol-rich argan oil-based nanoemulsions as vehicles possessing anticancer activity.

    Science.gov (United States)

    Jordan, Melanie; Nayel, Amy; Brownlow, Bill; Elbayoumi, Tamer

    2012-12-01

    In recent years, diverse nanoemulsion vehicles (NEs) have been developed with vast potential for improving therapeutic index of clinically approved and experimental drugs. Using oils rich in omega-3 and omega-6 polyunsaturated fatty acids (PUFA), several promising nanoemulsion formulations have been developed recently for oral and systemic administration. The aim of our present work is to successfully develop and characterize optimized nanoemulsion platform, using the PUFA-rich argan oil that contain several important anti-inflammatory and antimitotic natural components. Using various emulsifying mixtures of polyethoxylated solutol HS-15 and polyethyleneglucol Vitamin E succinyl ester (TPGS), to form different NEs showing extended shelf-life stability. The physicochemical properties of prototype argan NEs were analyzed and utilizing a 32 full factorial design, followed by biocompatibility screen, using normal vascular myocytes and areolar fibroblasts. While 90-180 day stability of NEs correlated with TPGS:solutol surfactant blend ratios, adverse effects on integrity of test cultures were only noted at high TPGS content in the emulsifier system, exceeding 80%. Finally, the anti-proliferative efficacy of selected stable and acceptably biocompatible nanoscale TPGS-emulsified argan oil formulations was investigated using murine breast and colon carcinoma cells. The IC50 values of the combination of argan oil and TPGS (40-80% wt of emulsifiers) were 5-9 folds lower compared to TPGS-free and argan-oil free control NEs. Argan oil NE, stabilized with Vitamin E TPGS and solutol HS mixtures, demonstrated significant pro-apoptotic effect on both test cancer cell lines, indicating built-in anticancer properties for such NE platform, potentially enhancing overall antineoplastic effects of incorporated candidate chemotherapeutic agents.

  10. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.

    Science.gov (United States)

    Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna

    2014-09-01

    A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Current and emerging lipid-based systems for transdermal drug delivery.

    Science.gov (United States)

    Singla, Sumeet K; Sachdeva, Vishal

    2015-01-01

    Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.

  12. Synergistic effect of iontophoresis and chemical enhancers on transdermal permeation of tolterodine tartrate for the treatment of overactive bladder

    Directory of Open Access Journals (Sweden)

    D. Prasanthi

    2013-01-01

    Full Text Available Purpose The objective of the study was to evaluate the synergistic transdermal permeation effect of chemical enhancers and iontophoresis technique on tolterodine tartrate (TT transdermal gel and to evaluate its pharmacokinetic properties. Materials and Methods Taguchi robust design was used for optimization of formulations. Skin permeation rates were evaluated using the Keshary-chein type diffusion cells in order to optimize the gel formulation. In-vivo studies of the optimized formulation were performed in a rabbit model and histopathology studies of optimized formulation were performed on rats. Results Transdermal gels were formulated successfully using Taguchi robust design method. The type of penetration enhancer, concentration of penetration enhancer, current density and pulse on/off ratio were chosen as independent variables. Type of penetration enhancer was found to be the significant factor for all the responses. Permeation parameters were evaluated when maximum cumulative amount permeated in 24 hours (Q24 was 145.71 ± 2.00µg/cm2 by CIT4 formulation over control (91.89 ± 2.30µg/cm2. Permeation was enhanced by 1.75 fold by CIT4 formulation. Formulation CIT4 containing nerolidol (5% and iontophoretic variables applied (0.5mA/cm2 and pulse on/off ratio 3:1 was optimized. In vivo studies with optimized formulation CIT4 showed increase in AUC and T1/2 when compared to oral suspension in rabbits. The histological studies showed changes in dermis indicating the effect of penetration enhancers and as iontophoresis was continued only for two cycles in periodic fashion so it did not cause any skin damage observed in the slides. Conclusion Results indicated that iontophoresis in combination with chemical enhancers is an effective method for transdermal administration of TT in the treatment of overactive bladder.

  13. Ultrasound in Biomedical Engineering: Ultrasound Microbubble Contrast Agents Promote Transdermal Permeation of Drugs

    OpenAIRE

    Ai-Ho Liao

    2016-01-01

    This report discusses a new development in the use of ultrasound microbubble contrast agents on transdermal drug delivery. The medium surrounding the microbubbles at the optimum concentration from liquid to gel can be modified and it can still achieve the same enhancement for transdermal drug permeation as liquid medium. It was also found that under the same ultrasound power density, microbubbles of larger particle sizes can extend the penetration depths of dye at the phantom surface.

  14. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview

    OpenAIRE

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Gra?a

    2017-01-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and ...

  15. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Science.gov (United States)

    Kotiyan, P. N.; Vavia, P. R.; Bharadwaj, Y. K.; Sabarwal, S.; Majali, A. B.

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak ®1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  16. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyan, P.N. E-mail: pramila-kotiyan@uiowa.edu; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  17. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting

    Directory of Open Access Journals (Sweden)

    Brian C. Palmer

    2016-12-01

    Full Text Available Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  18. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    International Nuclear Information System (INIS)

    Kotiyan, P.N.; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B.

    2002-01-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed

  19. Pharmacokinetics of a Transdermal Fentanyl Solution in Suffolk Sheep (Ovis aries).

    Science.gov (United States)

    Jen, Kimberly Y; Dyson, Melissa C; Lester, Patrick A; Nemzek, Jean A

    2017-09-01

    Sheep used as surgical models require appropriate pain management, and the commonly used transdermal fentanyl patches require a long predosing period to achieve adequate plasma concentrations. The aim of this study was to assess the pharmacokinetic parameters of an FDA-approved transdermal fentanyl solution (TFS) that has yet to be tested in sheep. In this study, we compared TFS at 2.7 mg/kg (n = 2), 1.7 mg/kg (n = 3), and 0.5 mg/kg (n = 3) with the control fentanyl patch at 2 μg/kg/h (n = 1); both products were applied topically to the intrascapular region. Plasma concentrations showed significant interanimal variability. Severe adverse effects occurred at both 2.7 and 1.7 mg/kg TFS and mild to moderate adverse effects were noted at 0.5 mg/kg. At all 3 doses, TFS had greater maximal concentration, clearance rate, and volume of distribution; shorter time to maximal concentration; and similar half-lives to those of the patch. In addition, we validated the use of a commercial human fentanyl ELISA kit, which positively correlated with the liquid chromatography-mass spectroscopy data, but absolute values did not match. Overall, at all 3 dosages tested (0.5, 1.7, and 2.7 mg/kg), TFS delivered fentanyl plasma concentrations that exceeded the minimal effective concentration; however, adverse effects were noted at all 3 dosages. Caution and further study are required before the use of TFS in sheep can be recommended fully.

  20. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry.

    Science.gov (United States)

    Walker, Rebecca; Decker, Eric A; McClements, David Julian

    2015-01-01

    Consumption of biologically active amounts of omega-3 fatty acids is linked to improved human health, which has partly been attributed to their important role in brain development and cardiovascular health. Western diets are relatively low in omega-3 fatty acids and many consumers turn to supplements or functional foods to increase their intake of these healthy lipids. Fish oil is one of the most widely used sources of omega-3 fatty acid for supplementation and has greater health benefits than plant sources because of its higher concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The incorporation of omega-3 fatty acids into foods and beverages is often challenging due to their low water-solubility, poor oxidative stability, and variable bioavailability. Nanoemulsions offer a promising way to incorporate omega-3 fatty acids into liquid food systems like beverages, dressing, sauces, and dips. Nanoemulsions are colloidal dispersions that contain small oil droplets (rfoods and beverages with omega-3 fatty acids. The composition and fabrication of nanoemulsions can be optimized to increase the chemical and physical stability of oil droplets, as well as to increase the bioavailability of omega-3 fatty acids.

  1. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles

    Science.gov (United States)

    Elnaggar, Yosra SR; El-Massik, Magda A; Abdallah, Ossama Y

    2011-01-01

    Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product. PMID:22238508

  2. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Science.gov (United States)

    Hong, Xiaoyun; Wei, Liangming; Wu, Fei; Wu, Zaozhan; Chen, Lizhu; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. PMID:24039404

  3. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle.

    Science.gov (United States)

    Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue

    2014-10-01

    The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm(2)/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen.

  4. Nonaqueous gel for the transdermal delivery of a DTPA penta-ethyl ester prodrug.

    Science.gov (United States)

    Zhang, Yong; Sadgrove, Matthew P; Sueda, Katsuhiko; Yang, Yu-Tsai; Pacyniak, Erik K; Kagel, John R; Braun, Brenda A; Zamboni, William C; Mumper, Russell J; Jay, Michael

    2013-04-01

    Diethylenetriamine pentaacetic acid penta-ethyl ester, designated as C2E5, was successfully incorporated into a nonaqueous gel for transdermal delivery. The thermal and rheological properties of a formulation containing 40% C2E5, 20% ethyl cellulose, and 40% Miglyol 840® prepared using the solvent evaporation method demonstrated that the gel had acceptable content uniformity and flow properties. In vitro studies showed that C2E5 was steadily released from the gel at a rate suitable for transdermal delivery. Topical application of the gel at a 200 mg C2E5/kg dose level in rats achieved significantly higher plasma exposures of several active metabolites compared with neat C2E5 oil at the same dose level. The results suggest that transdermal delivery of a chelator prodrug is an effective radionuclide decorporation strategy by delivering chelators to the circulation with a pharmacokinetic profile that is more consistent with the biokinetic profile of transuranic elements in contaminated individuals.

  5. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies

    National Research Council Canada - National Science Library

    Banga, Ajay K

    2011-01-01

    .... Commercialization of transdermal drug delivery requires technology from many disciplines beyond pharmaceutical sciences, such as polymer chemistry, adhesion sciences, mass transport, web film coating...

  6. Microdose transdermal estrogen therapy for relief of vulvovaginal symptoms in postmenopausal women.

    Science.gov (United States)

    Bachmann, Gloria A; Schaefers, Matthias; Uddin, Alkaz; Utian, Wulf H

    2009-01-01

    The aim of this study was to investigate the effectiveness of microdose transdermal 17beta-estradiol (E2) therapy in postmenopausal women with moderate to severe vulvovaginal symptoms. This report is based on a subset of 121 women who reported most bothersome moderate or severe vulvovaginal symptoms at baseline, from a previous randomized, double-blind, placebo-controlled, multicenter study of 425 healthy, symptomatic, postmenopausal women. Recruits had experienced at least 7 moderate or severe hot flushes daily for at least 1 week or at least 50 moderate or severe hot flushes per week for at least 1 week. Effects on coprimary efficacy variables have been reported previously. Participants received low-dose transdermal E2 plus levonorgestrel (n = 43; nominal delivery 0.023 mg/d E2/0.0075 mg/d levonorgestrel), microdose E2 (n = 42; nominal delivery 0.014 mg/d), or placebo (n = 36) for 12 weeks. Secondary efficacy variables reported herein include mean change from baseline in vaginal pH and vaginal maturation index, the proportion of women with symptoms of vulvar and vaginal atrophy at baseline and week 12, and the proportion of women with moderate-to-severe symptoms of vulvar and vaginal atrophy. Microdose transdermal E2 treatment was associated with a consistent benefit versus placebo in women with vulvovaginal atrophy. There was a statistically significant difference between both E2 versus placebo for changes in vaginal pH and vaginal maturation index. Microdose transdermal E2 offers a useful addition to the therapeutic armamentarium for postmenopausal women in whom vulvovaginal symptoms are particularly troublesome.

  7. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  8. Efficacy and transdermal absorption of permethrin in scabies patients

    NARCIS (Netherlands)

    van der Rhee, H.J.; Farquhar, J A; Vermeulen, N P

    1989-01-01

    The clinical efficacy and transdermal absorption of permethrin, a new synthetic insecticide was investigated in ten scabies patients. All patients were successfully treated with one application of a cream, containing 5% permethrin. Apart from mild postscabies dermatitis no side-effects were

  9. Design and Development of a Proniosomal Transdermal Drug ...

    African Journals Online (AJOL)

    Purpose: The aim of the study was to develop a proniosomal carrier system for captopril for the treatment of hypertension that is capable of efficiently delivering entrapped drug over an extended period of time. Method: The potential of proniosomes as a transdermal drug delivery system for captopril was investigated by ...

  10. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  11. Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches.

    Science.gov (United States)

    Satheeshababu, B K; Shivakumar, K L

    2013-03-01

    The aim of this study was to synthesis the conjugated chitosan by covalent attachment of thiol moieties to the cationic polymer, mediated by a carbodiimide to improve permeation properties of chitosan. Thioglycolic acid was covalently attached to chitosan by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid groups of thioglycolic acid. Hence, these polymers are called as thiomers or thiolated polymers. Conjugation of chitosan was confirmed by Fourier transform-infrared and differential scanning calorimetric analysis. Matrix type transdermal patches of carvedilol were prepared using the different proportions of chitosan and chitosan-thioglycolic acid conjugates (2:0, 1.7:0.3, 1.4:0.6, 1:1, 0.6:1.4 and 0.3:1.7) by solvent casting technique. Prepared matrix type patches were evaluated for their physicochemical characterization followed by in vitro evaluation. Selected formulations were subjected for their ex vivo studies on Wistar albino rat skin and human cadaver skin using the modified Franz diffusion cell. As the proportion of conjugated chitosan increased, the transdermal patches showed increased drug permeation. The mechanism of drug release was found to be nonFickian profiles. The present study concludes that the transdermal patches of carvedilol using conjugated chitosan with different proportions of chitosan were successfully developed to provide improved drug permeation. The transdermal patches can be a good approach to improve drug bioavailability by bypassing the extensive hepatic first-pass metabolism of the drug.

  12. A potential tocopherol acetate loaded palm oil esters-in-water nanoemulsions for nanocosmeceuticals

    Directory of Open Access Journals (Sweden)

    Rahman Raja

    2010-02-01

    Full Text Available Abstract Background Cosmeceuticals are cosmetic-pharmaceutical hybrids intended to enhance health and beauty of the skin. Nanocosmeceuticals use nano-sized system for the delivery of active ingredients to the targeted cells for better penetration. In this work, nanoemulsion from palm oil esters was developed as a delivery system to produce nanocosmeceuticals. The stability of the resulting formulation was tested using various methods. In addition, the effect of components i.e. Vitamin E and Pluronic F-68 on the formulation was also studied. Results Both vitamin E and Pluronic F-68 were found to co-emulsify and co-stabilized the formulations. The best formulation was found to be the one having the composition of 10% Palm Oil Esters (POEs, 10% vitamin E, 24% Tween 80, 2.4% Pluronic F-68 and 53.6% deionised water. Those compositions are considered to be the best as a nanocosmeceutical product due to the small particle size (94.21 nm, low occurrence of Ostwald ripening and stable at different storing temperatures (5, 25 and 45°C for four weeks. Conclusions Palm oil esters-in-water nanoemulsions loaded with vitamin E was successfully formulated and has the potential for the use as nanocosmeceuticals.

  13. Efficacy of transdermal nitroglycerine in idiopathic pre-term labour.

    Science.gov (United States)

    Shaikh, Shahida; Shaikh, Abdul Hameed; Akhter, Saleem; Isran, Basma

    2012-01-01

    To determine the efficacy of transdermal Nitroglycerine patch in idiopathic pre-term labour and foetomaternal outcome. This quasi-experimental study was conducted at the Obstetrics Unit-II of Shaikh Zayed Hospital for Women, Chandka Medical College, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, from Jan 1 to June 30, 2010. Sixtyfive pregnant women at 28-34 weeks of gestation were recruited after they met the selection criteria based on non-probability consecutive sampling. Initially, 73 patients were selected, but 65 of them completed the treatment, while 8 patients refused to continue. Patients diagnosed with pre-term labour were given glyceryl trinitrate (GTN) 5 mg/12 hours transdermal patch which was applied on the anterior abdominal wall. The second patch of same dose was given after 12 hours. Arrest of labour, prolongation of pregnancy in days or weeks along with side effects of the agent were monitored. Patients were followed till delivery to know the foeto-maternal outcome. Dramatic effects were seen in around 60 (92.3%), of the total patients who had felt relief from premature labour pains within the first hour and only 5 (7.6%) patients could not go beyond 24 hours, as among them 3 (4.61%) had previous uterine scar and 2 (3.07%) developed ruptured membranes after 12 hours of admission and their babies also could not survive. Mean pregnancy prolongation was 15.35 +/- 9.45 days (min: 4 max: 35), so delivery was deferred up to 48 hours, 3 to 7 days and more than 7 days in 4 (6.15%), 6 (9.23%) and 50 (76.92%) respectively. Glyceryl trinitrate, trans dermal patch is effective and safe tocolytic in idiopathic preterm labour. By prolonging pregnancy it improves neonatal outcome.

  14. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    Science.gov (United States)

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  15. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  16. Current advances in transdermal delivery of drugs for Alzheimer's disease

    Science.gov (United States)

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients. PMID:28706327

  17. Current advances in transdermal delivery of drugs for Alzheimer's disease.

    Science.gov (United States)

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients.

  18. Exposure to Fentanyl After Transdermal Patch Administration for Cancer Pain Management.

    Science.gov (United States)

    Bista, Sudeep R; Haywood, Alison; Hardy, Janet; Norris, Ross; Hennig, Stefanie

    2016-06-01

    This study aimed to describe exposure after fentanyl transdermal patch administration in patients with advanced cancer to quantify variability around the exposure. Patients (n  =  56) with advanced cancer who received transdermal fentanyl (Durogesic®; median dose, 50 μg/h; range, 12-200 μg/h) provided venous blood samples (n  =  163) at various times (0.5-72 hours) during several patch application intervals. Plasma fentanyl concentration was determined (median, 0.9 μg/L; range, 0.04-9.7 μg/L) by high-performance liquid chromatography coupled to tandem mass spectrometry. Pharmacokinetic analysis was performed using nonlinear mixed-effects modeling with NONMEM. A 1-compartment distribution model with first-order absorption and elimination described fentanyl exposure after transdermal patch administration. Fentanyl apparent clearance (between-subject variability [BSV], %) was estimated at 122 L/h/70 kg and 38.5%, respectively. The absorption rate constant was 0.013 h(-1) . Between-occasion variability on apparent clearance was 22.0%, which was lower than BSV, suggesting predictable exposure within the same patient and justifying therapeutic drug monitoring. Except for weight-based dosing, no other patient characteristic could be identified to guide initial fentanyl dose selection in patients with advanced cancer. © 2015, The American College of Clinical Pharmacology.

  19. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries.

    Science.gov (United States)

    Lam, P L; Gambari, R

    2014-03-28

    This review provides an overall discussion of microencapsulation systems for both oral and transdermal drug deliveries. Clinically, many drugs, especially proteins and peptides, are susceptible to the gastrointestinal tract and the first-pass metabolism after oral administration while some drugs exhibit low skin permeability through transdermal delivery route. Medicated microcapsules as oral and transdermal drug delivery vehicles are believed to offer an extended drug effect at a relatively low dose and provide a better patient compliance. The polymeric microcapsules can be produced by different microencapsulation methods and the drug microencapsulation technology provides the quality preservation for drug stabilization. The release of the entrapped drug is controlled and prolonged for specific usages. Some recent studies have focused on the evaluation of drug containing microcapsules on potential biological and therapeutic applications. For the oral delivery, in vivo animal models were used for evaluating possible treatment effects of drug containing microcapsules. For the transdermal drug delivery, skin delivery models were introduced to investigate the potential skin delivery of medicated microcapsules. Finally, the challenges and limitations of drug microencapsulation in real life are discussed and the commercially available drug formulations using microencapsulation technology for oral and transdermal applications are shown. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Galactosyl Pentadecene Reversibly Enhances Transdermal and Topical Drug Delivery

    Czech Academy of Sciences Publication Activity Database

    Kopečná, M.; Macháček, M.; Prchalová, Eva; Štěpánek, P.; Drašar, P.; Kotora, Martin; Vávrová, K.

    2017-01-01

    Roč. 34, č. 10 (2017), s. 2097-2108 ISSN 0724-8741 Institutional support: RVO:61388963 Keywords : galactoside * penetration enhancers * sugar * topical drug delivery * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.002, year: 2016

  1. Optimization of Microemulsion Based Transdermal Gel of Triamcinolone.

    Science.gov (United States)

    Jagdale, Swati; Chaudhari, Bhagyashree

    2017-01-01

    Triamcinolone is a long acting corticosteroid used in the treatment of arthritis, eczema, psoriasis and similar conditions which cause inflammation. Triamcinolone has half-life of 88min. Prolonged oral use is associated with gastrointestinal adverse effects as peptic ulcer, abdominal distention and ulcerative esophagitis as described in various patents. Microemulgel offers advantage of better stability, better loading capacity and controlled release especially for drug with short half life. Objective of the present study was to optimize microemulgel based transdermal delivery of triamcinolone. Saturated solubility of triamcinolone in various oils, surfactants and co-surfactants is estimated. Pseudo-ternary phase diagrams were constructed to determine the region of transparent microemulsion. Microemulsion was evaluated for globule size (FE-SEM, zetasizer), % transmittance, pH, viscosity, conductivity etc. Design of experiment was used to optimize microemulsion based gel. Carbopol 971P and HPMC K100M were used as independent variables. Microemulsion based gel was evaluated for in-vitro as well as ex-vivo parameters. Microemulsion was formulated with oleic acid, lauroglycol FCC and propylene glycol. PDI 0.197 indicated microemulsion is mono-disperse. 32 factorial design gave batch F8 as optimized. Design expert suggested drug release; gel viscosity and bio-adhesive strength were three significant dependant factors affecting the transdermal delivery. F8 showed drug release 92.62.16±1.22% through egg membrane, 95.23±1.44% through goat skin after 8hr and Korsmeyer-Peppas release model was followed. It can be concluded that a stable, effective controlled release transdermal microemulgel was optimised for triamcinolone. This would be a promising tool to deliver triamcinolone with enhanced bioavailability and reduced dosing frequency. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Microneedle-mediated transdermal delivery of nanostructured lipid carriers for alkaloids from Aconitum sinomontanum.

    Science.gov (United States)

    Guo, Teng; Zhang, Yongtai; Li, Zhe; Zhao, Jihui; Feng, Nianping

    2017-09-12

    A combination method using microneedle (MN) pretreatment and nanostructured lipid carriers (NLCs) was developed to improve the transdermal delivery of therapeutics. The MN treatment of the skin and co-administration of NLCs loaded with total alkaloids isolated from Aconitum sinomontanum (AAS-NLCs) significantly increased the skin permeation of the drugs. Fluorescence imaging confirmed that MNs could provide microchannels penetrating the stratum corneum, and delivery of NLCs through the channels led to their deeper permeation. In vivo studies showed that combination of AAS-NLCs with MNs (AAS-NLCs-MN) in transdermal delivery could improve the bioavailability and maintain stable drug concentrations in the blood. Moreover, AAS-NLCs-MN showed benefits in eliminating paw swelling, decreasing inflammation and pain, and regulating immune function in adjuvant arthritis rats. After administration of AAS-NLCs-MN, no skin irritation was observed in rabbits, and electrocardiograms of rats showed improved arrhythmia. These results indicated that the dual approach combining MN insertion and NLCs has the potential to provide safe transdermal delivery and to improve the therapeutic efficacy through sustained release of AAS.

  3. Corticosteroid transdermal delivery to target swelling, edema and inflammation following facial rejuvenation procedures

    Directory of Open Access Journals (Sweden)

    Iannitti T

    2013-09-01

    Full Text Available T Iannitti,1,2 V Rottigni,2,3 B Palmieri2,31School of Biomedical Sciences, University of Leeds, Leeds, UK; 2Poliambulatorio del Secondo Parere, Modena, Italy; 3Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, ItalyBackground and aim: The use of transdermal therapeutic systems has spread worldwide since they allow effective local drug delivery. In the present study, we investigated the efficacy and safety of a new betamethasone valerate medicated plaster (Betesil® to manage facial swelling, edema, inflammation, ecchymosis, and hematoma, when applied immediately after a facial rejuvenation procedure.Materials and methods: We applied the plaster to the skin of 20 healthy patients for 12 hours immediately after hyaluronic acid-based procedure performed with the aim of erasing facial wrinkles of perioral and nasolabial folds and improving chin and eye contour. A further 20 patients underwent the same cosmetic procedure, but they were treated with an aescin 10% cream (applied immediately after the procedure, in the evening, and the morning after and served as control group.Results: Betesil® application resulted in a significant improvement in swelling/edema/inflammation score, if compared with aescin 10% cream (P < 0.01. As for facial ecchymosis and hematoma around the needle injection track, only two patients in the active treatment group displayed minimal ecchymosis and hematoma. In the control group, two patients presented minimal ecchymosis and three slight hematoma. However, using the ecchymosis/hematoma score, no significant difference between Betesil® and aescin 10% cream groups was observed. Patients’ satisfaction was significantly higher among subjects receiving Betesil®, if compared to patients receiving aescin 10% cream (P < 0.01.Conclusion: The present study supports the use of Betesil® plaster immediately after facial cosmetic procedures in order

  4. Acute Intoxication by Transdermal Opium Application in Infants: Two Case Reports

    Directory of Open Access Journals (Sweden)

    Iraj Sedighi

    2012-05-01

    Full Text Available Background: Acute opium intoxication is one of the most common causes of poisoning in children in Iran. Although most cases are accidental, traditional misuse of opium for symptomatic therapy of various childhood diseases also contributes to high rate of opium intoxication in Iran. Cases: Here, we report two cases of opium intoxication in infants resulted from transdermal application of opium on burned skin. To our knowledge this is the first case report of intoxication from transdermal misuse of opium. Conclusion: Health care providers should be aware about signs and symptoms of opium intoxication in children. Opium intoxication should be suspected in each child with history of a recent burn injury that presented with decreased level of consciousness.

  5. Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice

    Science.gov (United States)

    Nose, Keisuke; Pissuwan, Dakrong; Goto, Masahiro; Katayama, Yoshiki; Niidome, Takuro

    2012-05-01

    Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients.Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients. Electronic supplementary information (ESI) available. See DOI: 10

  6. Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain

    Directory of Open Access Journals (Sweden)

    Kandadi Prabhakar

    2013-09-01

    Full Text Available Indinavir is a protease inhibitor used in the treatment of HIV infection. However, it has limited efficacy in eradicating the virus in the brain due to efflux by P-glycoprotein (P-gp expressed at the blood–brain barrier (BBB. The objective of this work was to develop an o/w lipid nanoemulsion (LNE of indinavir using Tween 80 as co-emulsifier to improve its brain specific delivery. LNEs were prepared with different compositions and were characterized for globule size, polydispersity index, zeta potential and in vitro drug release. Five formulations were then evaluated for drug content, entrapment efficiency and stability after which brain uptake studies were carried out using fluorescent labeled LNEs and pharmacokinetic (PK and tissue distribution studies were conducted after intravenous administration in mice. Brain uptake of indinavir was shown to be improved for a 1% Tween 80 containing formulation (F5 compared to a formulation containing 0.3% cholesterol (F2. In PK studies, the brain level of indinavir subsequent to administration of F5 was significantly (P<0.05 higher than produced by administration of a drug solution (2.44-fold or a control nanoemulsion (F1 (1.48-fold or formulation F2 (1.6-fold. The increased brain specific accumulation of indinavir from F5 is probably due to enhanced low density lipoprotein-mediated endocytosis and P-gp inhibition by Tween 80 at the BBB. These results suggest Tween 80 containing LNEs could provide a simple but effective means of delivering indinavir to brain.

  7. Characterization, Cytotoxicity, and Genotoxicity of TiO2 and Folate-Coupled Chitosan Nanoparticles Loading Polyprenol-Based Nanoemulsion.

    Science.gov (United States)

    Tao, Ran; Wang, Chengzhang; Zhang, Changwei; Li, WenJun; Zhou, Hao; Chen, Hongxia; Ye, Jianzhong

    2018-07-01

    The structure and bioactivity of Ginkgo biloba leaves polyprenol (GBP) are similar to that of dolichol which widely exists in human and mammalian organs. GBP possesses potential pharmacological activities against cancer. This study involved oil-in-water type nanoemulsion (NE) loading GBP was prepared by dissolving polyprenol in nanoemulsion of sodium tripolyphosphate (TPP)/TiO 2 solution, Triton X-100, and 1-octanol by inversed-phase emulsification (EIP) and ultrasonic emulsification (UE) method. Folic acid (FA)-coupled chitosan (CS) nanoparticles (NPs), GBP-FA-CS-NPs and GBP-TiO 2 -FA-CS-NPs, were fabricated by ionic cross-linking of positively charged FA-CS conjugates and negatively charged nanoemulsion with TPP/TiO 2 . And characterizations of them were investigated by TEM, SEM, FTIR, particle size, and zeta potential. The cytotoxic and genotoxic effects of GBP-TiO 2 -FA-CS-NP treatment were higher than GBP-NE, GBP-FA-CS-NPs, TiO 2 -NE, GBP-TiO 2 -NE, TiO 2 -FA-CS-NPs, and GBP-TiO 2 -FA-CS-NP treatment at the same tested concentrations in HepG2 cells. GBP-TiO 2 -FA-CS-NPs at low TiO 2 concentration (from 1 to 2.5 μg/ml) showed good inhibition capacity on HepG2 cells and low cytotoxic and genotoxic effects on HL-7702 cells. The possible mechanism of cytotoxicity on GBP-TiO 2 -FA-CS-NPs against HepG2 cells is by preventing excessive intracellular Ca 2+ into extracellular spaces via inhibiting Ca 2+ -ATPase and Ca 2+ /Mg 2+ -ATPase.

  8. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    Science.gov (United States)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  9. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent.

    Science.gov (United States)

    Ribeiro, Renato Cesar de Azevedo; Barreto, Stella Maria de Andrade Gomes; Ostrosky, Elissa Aarantes; da Rocha-Filho, Pedro Alves; Veríssimo, Lourena Mafra; Ferrari, Márcio

    2015-02-02

    This study aimed to produce and characterize an oil in water (O/W) nanoemulsion containing Opuntia ficus-indica (L.) Mill hydroglycolic extract, as well as evaluate its preliminary and accelerated thermal stability and moisturizing efficacy. The formulations containing 0.5% of xanthan gum (FX) and 0.5% of xanthan gum and 1% of Opuntia ficus-indica MILL extract (FXE) were white, homogeneus and fluid in aspect. Both formulations were stable during preliminary and accelerated stability tests. FX and FXE presented a pH compatible to skin pH (4.5-6.0); droplet size varying from 92.2 to 233.6 nm; a polydispersion index (PDI) around 0.200 and a zeta potential from -26.71 to -47.01 mV. FXE was able to increase the water content of the stratum corneum for 5 h after application on the forearm. The O/W nanoemulsions containing 1% of Opuntia ficus-indica (L.) Mill extract presented suitable stability for at least for 60 days. Besides, this formulation was able to increase the water content of stratum corneum, showing its moisturizing efficacy.

  10. Radionuclide decorporation: matching the biokinetics of actinides by transdermal delivery of pro-chelators.

    Science.gov (United States)

    Zhang, Yong; Sadgrove, Matthew P; Mumper, Russell J; Jay, Michael

    2013-10-01

    The threat of nuclear terrorism by the deliberate detonation of a nuclear weapon or radiological dispersion device ("dirty bomb") has made emergency response planning a priority. The only FDA-approved treatments for contamination with isotopes of the transuranic elements Am, Pu, and Cm are the Ca and Zn salts of diethylenetriaminepentaacetic acid (DTPA). These injectable products are not well suited for use in a mass contamination scenario as they require skilled professionals for their administration and are rapidly cleared from the circulation. To overcome the mismatch in the pharmacokinetics of the DTPA and the biokinetics of these transuranic elements, which are slowly released from contamination sites, the penta-ethyl ester of DTPA (C2E5) was prepared and formulated in a nonaqueous gel for transdermal administration. When gels comprised of 40% C2E5, 40-45% Miglyol® 840, and 15-20% ethyl cellulose were spiked with [(14)C]-C2E5 and applied to rat skin; over 60% of the applied dose was absorbed within a 24-h period. Radioactivity was observed in urinary and fecal excretions for over 3 days after removal of the gel. Using an (241)Am wound contamination model, transdermal C2E5 gels were able to enhance total body elimination and reduce the liver and skeletal burden of (241)Am in a dose-dependent manner. The efficacy achieved by a single 1,000 mg/kg dose to contaminated rats was statistically comparable to intravenous Ca-DTPA at 14 mg/kg. The effectiveness of this treatment, favorable sustained release profile of pro-chelators, and ease of administration support its use following radiological emergencies and for its inclusion in the Strategic National Stockpile.

  11. NMR characterisation and transdermal drug delivery potential of microemulsion systems

    DEFF Research Database (Denmark)

    Kreilgaard, Mads; Pedersen, E J; Jaroszewski, J W

    2000-01-01

    The purpose of this study was to investigate the influence of structure and composition of microemulsions (Labrasol/Plurol Isostearique/isostearylic isostearate/water) on their transdermal delivery potential of a lipophilic (lidocaine) and a hydrophilic model drug (prilocaine hydrochloride), and ...

  12. On-chip microreactor system for the production of nano-emulsion loaded liposomes: towards targeted delivery of lipophilic drugs

    NARCIS (Netherlands)

    Langelaan, M.L.P.; Emmelkamp, J.; Segers, M.J.A.; Lenting, H.B.M.

    2011-01-01

    An on-chip microreactor system for the production of novel nano-biodevices is presented. This nano-biodevice consists of a nano-emulsion loaded with lipophilic drugs, entrapped in liposomes. These nano-biodevices can be equipped with targeting molecules for higher drug efficiency. The microreactor

  13. Enhancing effect of negative polypropylene electret on in vitro transdermal delivery of cyclosporine A solution and its synergistic effect with ethyl oleate

    International Nuclear Information System (INIS)

    Cui, L L; Liu, H Y; Ma, L; Liang, Y Y; Guo, X; Jiang, J

    2013-01-01

    In this study, the corona charged electrets at voltages of −500 V, −1000 V and −2000 V were made from polypropylene (PP) film. The cyclosporine A (CsA) and 10% ethyl oleate were chosen as the model drug and chemical enhancer, respectively. The charge storage stability of the electrets and the in vitro transdermal behaviour of the model drug in solution under different conditions were studied. The results indicate that the external electrostatic field of the negative PP electrets could penetrate through the rat skin and enhance the transdermal delivery of cyclosporine A. A synergistic effect on enhancing the transdermal delivery of cyclosporine A was observed by combining different surface potential negative PP electrets with 10% ethyl oleate, and the amount of transdermal delivery of CsA was greatly increased comparing with only application of electrets. Therefore, the combination application of electret and chemical enhancer could be a feasible strategy in enhancing transdermal delivery of small peptide drugs or some large molecular drugs.

  14. Study on the Potential Toxicity of a Thymoquinone-Rich Fraction Nanoemulsion in Sprague Dawley Tats

    Directory of Open Access Journals (Sweden)

    Maznah Ismail

    2013-06-01

    Full Text Available Toxicological studies constitute an essential part of the effort in developing an herbal medicine into a drug product. A newly developed thymoquinone-rich fraction nanoemulsion (TQRFNE has been prepared using a high pressure homogenizer. The purpose of this study was to investigate the potential acute toxicity of this nanoemulsion in Sprague Dawley rats. The acute toxicity studies were conducted as per the OECD guidelines 425, allowing for the use of test dose limit of 20 mL TQRFNE (containing 44.5 mg TQ/kg. TQRFNE and distilled water (DW as a control were administered orally to both sexes of rats on Day 0 and observed for 14 days. All the animals appeared normal, and healthy throughout the study. There was no observed mortality or any signs of toxicity during the experimental period. The effects of the TQRFNE and DW groups on general behavior, body weight, food and water consumption, relative organ weight, hematology, histopathology, and clinical biochemistry were measured. All the parameters measured were unaffected as compared to the control (DW group. The administration of 20 mL TQRFNE /kg was not toxic after an acute exposure.

  15. Patient-controlled analgesia: therapeutic interventions using transdermal electro-activated and electro-modulated drug delivery.

    Science.gov (United States)

    Indermun, Sunaina; Choonara, Yahya E; Kumar, Pradeep; Du Toit, Lisa C; Modi, Girish; Luttge, Regina; Pillay, Viness

    2014-02-01

    Chronic pain poses a major concern to modern medicine and is frequently undertreated, causing suffering and disability. Patient-controlled analgesia, although successful, does have limitations. Transdermal delivery is the pivot to which analgesic research in drug delivery has centralized, especially with the confines of needle phobias and associated pain related to traditional injections, and the existing limitations associated with oral drug delivery. Highlighted within is the possibility of further developing transdermal drug delivery for chronic pain treatment using iontophoresis-based microneedle array patches. A concerted effort was made to review critically all available therapies designed for the treatment of chronic pain. The drug delivery systems developed for this purpose and nondrug routes are elaborated on, in a systematic manner. Recent developments and future goals in transdermal delivery as a means to overcome the individual limitations of the aforementioned delivery routes are represented as well. The approval of patch-like devices that contain both the microelectronic-processing mechanism and the active medicament in a small portable device is still awaited by the pharmaceutical industry. This anticipated platform may provide transdermal electro-activated and electro-modulated drug delivery systems a feasible attempt in chronic pain treatment. Iontophoresis has been proven an effective mode used to administer ionized drugs in physiotherapeutic, diagnostic, and dermatological applications and may be an encouraging probability for the development of devices and aids in the treatment of chronic pain. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Opioids Switching with Transdermal Systems in Chronic Cancer Pain

    Directory of Open Access Journals (Sweden)

    Barbarisi M

    2009-05-01

    Full Text Available Abstract Background Due to tolerance development and adverse side effects, chronic pain patients frequently need to be switched to alternative opioid therapy Objective To assess the efficacy and tolerability of an alternative transdermally applied (TDS opioid in patients with chronic cancer pain receiving insufficient analgesia using their present treatment. Methods A total of 32 patients received alternative opioid therapy, 16 were switched from buprenorphine to fentanyl and 16 were switched from fentanyl to buprenorphine. The dosage used was 50% of that indicated in equipotency conversion tables. Pain relief was assessed at weekly intervals for the next 3 weeks Results Pain relief as assessed by VAS, PPI, and PRI significantly improved (p Conclusion Opioid switching at 50% of the calculated equianalgesic dose produced a significant reduction in pain levels and rescue medication. The incidence of side effects decreased and no new side effects were noted. Further studies are required to provide individualized treatment for patients according to their different types of cancer.

  17. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies

    National Research Council Canada - National Science Library

    Banga, Ajay K

    2011-01-01

    .... Advancements in science combined with the need for diverse drug delivery modalities have introduced a variety of transdermal and intradermal products for existing drugs at a fraction of the cost of new drug development...

  18. Encapsulation of natural ingredient for skin protection via nanoemulsion process

    Science.gov (United States)

    Asmatulu, Eylem; Usta, Aybala; Alzahrani, Naif; Patil, Vinay; Vanderwall, Adeesha

    2017-04-01

    Many of the sunscreens are used during the hot summer time to protect the skin surface. However, some of ingredients in the sunscreens, such as oxybenzone, retinyl palmitate and synthetic fragrances including parabens, phthalates and synthetic musk may disrupt the cells on the skin and create harmful effects to human body. Natural oils may be considered for substitution of harmful ingredients in sunscreens. Many natural oils (e.g., macadamia oil, sesame oil, almond oil and olive oil) have UV protective property and on top of that they have natural essences. Among the natural oils, olive oil has a long history of being used as a home remedy for skincare. Olive oil is used or substituted for cleanser, moisturizer, antibacterial agent and massage reliever for muscle fatigue. It is known that sun protection factor (SPF) of olive oil is around eight. There has been relatively little scientific work performed on the effect of olive oil on the skin as sunscreen. With nanoencapsulation technique, UV light protection of the olive oil can be extended which will provide better coverage for the skin throughout the day. In the present study, natural olive oil was incorporated with DI water and surfactant (sodium dodecyl sulfate - SDS) and sonicated using probe sonicators. Sonication time, and concentrations of olive oil, DI water and surfactant were investigated in detail. The produced nanoemulsions were characterized using dynamic light scattering, and UV-Vis spectroscopy. It is believed that the nanoencupsulation of olive oil could provide better skin protection by slow releasing and deeper penetration of the nanoemulsion on skin surface. Undergraduate engineering students were involved in the project and observed all the process during the laboratory studies, as well as data collection, analysis and presentation. This experience based learning will likely enhance the students' skills and interest in the scientific and engineering studies.

  19. Alfuzosin hydrochloride transdermal films: evaluation of physicochemical, in vitro human cadaver skin permeation and thermodynamic parameters

    Directory of Open Access Journals (Sweden)

    Satyanarayan Pattnaik

    2009-12-01

    Full Text Available Purpose: The main objective of the investigation was to develop a transdermal therapeutic system for alfuzosin hydrochloride and to study the effects of polymeric system and loading dose on the in vitro skin permeation pattern. Materials and methods: Principles of experimental design have been exploited to develop the dosage form. Ratio of ethyl cellulose (EC and polyvinyl pyrrolidone (PVP and loading dose were selected as independent variables and their influence on the cumulative amount of alfuzosin hydrochloride permeated per cm2 of human cadaver skin at 24 h (Q24, permeation flux (J and steady state permeability coefficient (P SS were studied using experimental design. Various physicochemical parameters of the transdermal films were also evaluated. Activation energy for in vitro transdermal permeation has been estimated. Results: Ratio of EC and PVP was found to be the main influential factor for all the dependent variables studied. Drug loading dose was also found to influence the dependent variables but to a lesser extent. Physicochemical parameters of the prepared films were evaluated and found satisfactory. Activation energy for alfuzosin permeation has also been estimated and reported. Conclusion: The therapeutic system was found to be dermatologically non-irritant and hence, a therapeutically effective amount of alfuzosin hydrochloride can be delivered via a transdermal route.

  20. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery.

    Science.gov (United States)

    Chen, Rencai; Li, Rongli; Liu, Qian; Bai, Chao; Qin, Benlin; Ma, Yue; Han, Jing

    2017-07-01

    The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.

  1. Acoustic Cavitation Enhances Focused Ultrasound Ablation with Phase-Shift Inorganic Perfluorohexane Nanoemulsions: An In Vitro Study Using a Clinical Device

    Directory of Open Access Journals (Sweden)

    Lu-Yan Zhao

    2016-01-01

    Full Text Available Purpose. To investigate whether acoustic cavitation could increase the evaporation of a phase-shift inorganic perfluorohexane (PFH nanoemulsion and enhance high intensity focused ultrasound (HIFU ablation. Materials and Methods. PFH was encapsulated by mesoporous silica nanocapsule (MSNC to form a nanometer-sized droplet (MSNC-PFH. It was added to a tissue-mimicking phantom, whereas phosphate buffered saline (PBS was added as a control (PBS-control. HIFU (Pac=150 W, t=5/10 s exposures were performed in both phantoms with various duty cycles (DC. US images, temperature, and cavitation emissions were recorded during HIFU exposure. HIFU-induced lesions were measured and calculated. Results. Compared to PBS-control, MSNC-PFH nanoemulsion could significantly increase the volume of HIFU-induced lesion (P<0.01. Peak temperatures were 78.16 ± 5.64°C at a DC of 100%, 70.17 ± 6.43°C at 10%, 53.17 ± 4.54°C at 5%, and 42.00 ± 5.55°C at 2%, respectively. Inertial cavitation was much stronger in the pulsed-HIFU than that in the continuous-wave HIFU exposure. Compared to 100%-DC exposure, the mean volume of lesion induced by 5 s exposure at 10%-DC was significantly larger, but smaller at 2%-DC. Conclusions. MSNC-PFH nanoemulsion can significantly enhance HIFU ablation. Appropriate pulsed-HIFU exposure could significantly increase the volume of lesion and reduce total US energy required for HIFU ablation.

  2. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation.

    Science.gov (United States)

    Ahmed, Tarek A; El-Say, Khalid M; Aljaeid, Bader M; Fahmy, Usama A; Abd-Allah, Fathy I

    2016-03-16

    This work aimed to develop an optimized ethosomal formulation of glimepiride then loading into transdermal films to offer lower drug side effect, extended release behavior and avoid first pass effect. Four formulation factors were optimized for their effects on vesicle size (Y1), entrapment efficiency (Y2) and vesicle flexibility (Y3). Optimum desirability was identified and, an optimized formulation was prepared, characterized and loaded into transdermal films. Ex-vivo permeation study for the prepared films was conducted and, the permeation parameters and drug permeation mechanism were identified. Penetration through rat skin was studied using confocal laser microscope. In-vivo study was performed following transdermal application on human volunteers. The percent of alcohol was significantly affecting all the studied responses while the other factors and their interaction effects were varied on their effects on each response. The optimized ethosomal formulation showed observed values for Y1, Y2 and Y3 of 61 nm, 97.12% and 54.03, respectively. Ex-vivo permeation of films loaded with optimized ethosomal formulation was superior to that of the corresponding pure drug transdermal films and this finding was also confirmed after confocal laser microscope study. Permeation of glimepiride from the prepared films was in favor of Higushi-diffusion model and exhibited non-Fickian or anomalous release mechanism. In-vivo study revealed extended drug release behavior and lower maximum drug plasma level from transdermal films loaded with drug ethosomal formulation. So, the ethosomal formulation could be considered a suitable drug delivery system especially when loaded into transdermal vehicle with possible reduction in side effects and controlling the drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Evaluation of diclofenac prodrugs for enhancing transdermal delivery.

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2014-03-01

    Abstract Objective: The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD) and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in the Franz diffusion cell were determined on DA-, MD-, ED-, GD- and PD-saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery.

  4. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2016-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in Franz diffusion cell were determined on DA, MD, ED, GD, and PD saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Overall, diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery. PMID:24517636

  5. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    OpenAIRE

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2013-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. ...

  6. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.

    Science.gov (United States)

    Chen, Z X; Li, B; Liu, T; Wang, X; Zhu, Y; Wang, L; Wang, X H; Niu, X; Xiao, Y; Sun, Q

    2017-03-01

    Paeonol shows effective anti-allergic, anti-inflammatory and analgesic activities. However, because of its poor solubility in water and high volatility at room temperature, the application of this drug is restricted in the clinic. The objective of this research was to develop a biocompatible paeonol formulation with improved stability, skin delivery and pharmacokinetic efficiency. In this paper, paeonol-loaded vesicles were prepared using an ethanol injection method. Nano-vesicles were characterized for their physical properties and encapsulation efficiency (EE). Drug permeation behavior in vitro and deposition quantity in porcine ear skin were measured with a Valia-Chien (V-C) diffusion device. Additionally, a validated and sensitive high performance liquid chromatography (HPLC) method was developed to analyze paeonol concentrations in rat plasma after transdermal administration. The results showed that the particle-size order of the nano-vesicles was the following: transethosomes (122.5±7.5nm)transethosomes had a higher EE (85.5±5.2%), and they showed a spherical morphology with a smooth surface when viewed under a transmission electron microscope (TEM). In an in vitro permeation study, the paeonol transethosomes showed an enhanced transdermal flux of 95.7±8.8μg/cm 2 /h and a higher deposition quantity in porcine ear skin compared to the transfersomes. A one-compartment first-order absorption model could be used to describe the pharmacokinetics of paeonol in rats after transdermal administration. The AUC of the paeonol transethosomes was approximately 1.57- and 3.52-fold higher than those of the transfersomes and a saturated solution of paeonol in 35% ethanol, respectively. The results demonstrated that the paeonol transethosomes had a narrow size distribution, high encapsulation efficiency, and long residence in the plasma. This formulation remarkably enhanced the bioavailability of paeonol. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    Science.gov (United States)

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2017-01-01

    Microneedle technology allows micron-sized conduits to be formed within the outermost skin layers for both localized and systemic delivery of therapeutics including nanoparticles. Histological methods are often employed for characterization, and unfortunately do not allow for the in vivo visualization of the delivery process. This study presents the utilization of optical resolution-photoacoustic microscopy to characterize the transdermal delivery of nanoparticles using microneedles. Specifically, we observe the in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and study the penetration, diffusion, and spatial distribution of the nanoparticles in the tissue. The promising results reveal that photoacoustic microscopy can be used as a potential imaging modality for the in vivo characterization of microneedles based drug delivery. PMID:29296482

  9. Blind Deconvolution for Distributed Parameter Systems with Unbounded Input and Output and Determining Blood Alcohol Concentration from Transdermal Biosensor Data.

    Science.gov (United States)

    Rosen, I G; Luczak, Susan E; Weiss, Jordan

    2014-03-15

    We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.

  10. A retrospective study on the influence of nutritional status on pain management in cancer patients using the transdermal fentanyl patch.

    Science.gov (United States)

    Takahashi, Hiroaki; Chiba, Takeshi; Tairabune, Tomohiko; Kimura, Yusuke; Wakabayashi, Go; Takahashi, Katsuo; Kudo, Kenzo

    2014-01-01

    It is unknown whether nutritional status influences pain intensity in cancer patients receiving a transdermal fentanyl patch (FP). This study aimed to determine whether nutritional status is associated with pain intensity and to evaluate the influence of changes in nutritional status on pain intensity in cancer patients receiving transdermal FP treatment. We included 92 patients receiving transdermal FP treatment for the first time with switching from oxycodone. The patients were classified into low- and normal-nutrition groups based on their nutritional status, which was assessed according to the Nutrition Risk Screening 2002 (NRS 2002) parameters. The pain intensity of each patient was evaluated by a numeric rating scale (11-point scale from 0 to 10). NRS 2002 score and pain intensity were obtained on day 3 after the FP was applied to the skin. Pain intensities were significantly higher among patients in the low-nutrition group than among patients in the normal-nutrition group. NRS 2002 scores showed a significant positive correlation with the pain intensities. In 52 of 92 patients, who were evaluated using the NRS 2002 score and pain intensity on day 30 after FP application, the changes in NRS 2002 scores were significantly related to changes in pain intensities (odds ratio, 30.0; 95% confidence interval, 4.48-200.97; p=0.0005). These results suggest that an increase in the NRS 2002 score is a risk factor for an increase in pain intensity in cancer patients receiving FP treatment. Malnutrition may lead to poor pain management in cancer patients receiving FP treatment.

  11. Production and Characterization of Cosmetic Nanoemulsions Containing Opuntia ficus-indica (L. Mill Extract as Moisturizing Agent

    Directory of Open Access Journals (Sweden)

    Renato Cesar de Azevedo Ribeiro

    2015-02-01

    Full Text Available This study aimed to produce and characterize an oil in water (O/W nanoemulsion containing Opuntia ficus-indica (L. Mill hydroglycolic extract, as well as evaluate its preliminary and accelerated thermal stability and moisturizing efficacy. The formulations containing 0.5% of xanthan gum (FX and 0.5% of xanthan gum and 1% of Opuntia ficus-indica Mill extract (FXE were white, homogeneous and fluid in aspect. Both formulations were stable during preliminary and accelerated stability tests. FX and FXE presented a pH compatible to skin pH (4.5–6.0; droplet size varying from 92.2 to 233.6 nm; a polydispersion index (PDI around 0.200 and a zeta potential from −26.71 to −47.01 mV. FXE was able to increase the water content of the stratum corneum for 5 h after application on the forearm. The O/W nanoemulsions containing 1% of Opuntia ficus-indica (L. Mill extract presented suitable stability for at least for 60 days. Besides, this formulation was able to increase the water content of stratum corneum, showing its moisturizing efficacy.

  12. Drug profile: transdermal rivastigmine patch in the treatment of Alzheimer disease.

    Science.gov (United States)

    Emre, Murat; Bernabei, Roberto; Blesa, Rafael; Bullock, Roger; Cunha, Luis; Daniëls, Hugo; Dziadulewicz, Edward; Förstl, Hans; Frölich, Lutz; Gabryelewicz, Tomasz; Levin, Oleg; Lindesay, James; Martínez-Lage, Pablo; Monsch, Andreas; Tsolaki, Magda; van Laar, Teus

    2010-08-01

    Cholinesterase inhibitors constitute one of the mainstays of treatment of Alzheimer disease (AD). Gastrointestinal side effects, difficulty accessing therapeutic doses and poor patient compliance have been identified as barriers to effective treatment with these substances. The rivastigmine transdermal patch provides continuous delivery of drug through the skin into the bloodstream, avoiding the fluctuations in plasma concentration associated with oral administration. This pharmacokinetic profile is associated with reduced side effects, resulting in easier access to expected target doses. These benefits, along with other practical advantages of the transdermal patch, may contribute to enhanced patient compliance. Here, we present a review of the current literature on rivastigmine patch, and offer advice based on our own collective clinical experience. Rivastigmine patch provides an efficient option for managing patients with AD, to be considered among the first line therapies for the disease.

  13. Transdermal Physostigmine—Absence of Effect on Topographic Brain Mapping

    Directory of Open Access Journals (Sweden)

    M. Y. Neufeld

    1993-01-01

    Full Text Available Nine patients with primary degenerative dementia (PDD participated in an open trial of transdermal physostigmine (TPh. In order to evaluate the neurophysiologic effects of TPh, EEG data were recorded and compared at baseline and following 2 months of continuous treatment. There was no significant effect of TPh on EEG spectra in patients with PDD.

  14. Preparation and Characterization of a Lecithin Nanoemulsion as a Topical Delivery System

    Science.gov (United States)

    Zhou, Huafeng; Yue, Yang; Liu, Guanlan; Li, Yan; Zhang, Jing; Gong, Qiu; Yan, Zemin; Duan, Mingxing

    2010-01-01

    Purpose of this study was to establish a lecithin nanoemulsion (LNE) without any synthetic surfactant as a topical delivery vehicle and to evaluate its topical delivery potential by the following factors: particle size, morphology, viscosity, stability, skin hydration and skin penetration. Experimental results demonstrated that an increasing concentration of soybean lecithin and glycerol resulted in a smaller size LNE droplet and increasing viscosity, respectively. The droplet size of optimized LNE, with the glycerol concentration above 75% (w/w), changed from 92 (F10) to 58 nm (F14). Additionally, LNE, incorporated into o/w cream, improved the skin hydration capacity of the cream significantly with about 2.5-fold increase when the concentration of LNE reached 10%. LNE was also demonstrated to improve the penetrability of Nile red (NR) dye into the dermis layer, when an o/w cream, incorporated with NR-loaded LNE, applied on the abdominal skin of rat in vivo. Specifically, the arbitrary unit (ABU) of fluorescence in the dermis layer that had received the cream with a NR-loaded LNE was about 9.9-fold higher than the cream with a NR-loaded general emulsion (GE). These observations suggest that LNE could be used as a promising topical delivery vehicle for lipophilic compounds.

  15. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  16. The Effect of Transdermal Scopolamine for the Prevention of Postoperative Nausea and Vomiting

    Directory of Open Access Journals (Sweden)

    Maria A. Antor

    2014-04-01

    Full Text Available Postoperative nausea and vomiting is one of the most common and undesirable complaints recorded in as many as 70%-80% of high-risk surgical patients. The current prophylactic therapy recommendations for PONV management stated in the Society of Ambulatory Anesthesia guidelines should start with monotherapy and patients at moderate to high risk, a combination of antiemetic medication should be considered. Consequently, if rescue medication is required, the antiemetic drug chosen should be from a different therapeutic class and administration mode than the drug used for prophylaxis. The guidelines restrict the use of dexamethasone, transdermal scopolamine, aprepitant, and palonosetron as rescue medication 6 hours after surgery. In an effort to find a safer and reliable therapy for postoperative nausea and vomiting, new drugs with antiemetic properties and minimal side effects are needed, and scopolamine may be considered an effective alternative. Scopolamine is a belladonna alkaloid, α-(hydroxymethyl benzene acetic acid 9-methyl-3-oxa-9-azatricyclo non-7-yl ester, acting as a nonselective muscarinic antagonist and producing both peripheral antimuscarinic and central sedative, antiemetic, and amnestic effects. The empirical formula is C17H21NO4 and its structural formula is a tertiary amine L-(2-scopolamine (tropic acid ester with scopine; MW = 303.4. Scopolamine became the first drug commercially available as a transdermal therapeutic system used for extended continuous drug delivery during 72 hours. Clinical trials with transdermal scopolamine have consistently demonstrated its safety and efficacy in postoperative nausea and vomiting. Thus, scopolamine is a promising candidate for the management of postoperative nausea and vomiting in adults as a first line monotherapy or in combination with other drugs. In addition, transdermal scopolamine might be helpful in preventing postoperative discharge nausea and vomiting owing to its long

  17. Nanoethosomes for transdermal delivery of tropisetron HCl: multi-factorial predictive modeling, characterization, and ex vivo skin permeation.

    Science.gov (United States)

    Abdel Messih, Hanaa A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2017-06-01

    The aim of the present work is to exclusively optimize and model the effect of phospholipid type either egg phosphatidylcholine (EPC) or soybean phosphatidylcholine (SPC), together with other formulation variables, on the development of nano-ethosomal systems for transdermal delivery of a water-soluble antiemetic drug. Tropisetron HCl (TRO) is available as hard gelatin capsules and IV injections. The transdermal delivery of TRO is considered as a novel alternative route supposing to improve BAV as well as patient convenience. TRO-loaded ethanolic vesicular systems were prepared by hot technique. The effect of formulation variables were optimized through a response surface methodology using 3 × 2 2 -level full factorial design. The concentrations of both PC (A) and ethanol (B) and PC type (C) were the factors, while entrapment efficiency (Y 1 ), vesicle size (Y 2 ), polydispersity index (Y 3 ), and zeta potential (Y 4 ) were the responses. The drug permeation across rat skin from selected formulae was studied. Particle morphology, drug-excipient interactions, and vesicle stability were also investigated. The results proved the critical role of all formulation variables on ethosomal characteristics. The suggested models for all responses showed good predictability. Only the concentration of phospholipid, irrespective to PC type, had a significant effect on the transdermal flux (p transdermal TRO delivery.

  18. Mesophase and size manipulation of itraconazole liquid crystalline nanoparticles produced via quasi nanoemulsion precipitation.

    Science.gov (United States)

    Mugheirbi, Naila A; Tajber, Lidia

    2015-10-01

    The fabrication of drug nanoparticles (NPs) with process-mediated tunable properties and performances continues to grow rapidly during the last decades. This study investigates the synthesis and phase tuning of nanoparticulate itraconazole (ITR) mesophases using quasi nanoemulsion precipitation from acetone/water systems to seek out an alternative pathway to the nucleation-based NP formation. ITR liquid crystalline (LC) phases were formed and nematic-smectic mesomorphism was achieved via controlling solvent:antisolvent temperature difference (ΔTS:AS). The use of ΔTS:AS=49.5°C was associated with a nematic assembly, while intercalated smectic A layering was observed at ΔTS:AS=0°C, with both phases confined in the nanospheres at room temperature. The quasi emulsion system has not been investigated at the nanoscale to date and in contrary to the microscale, quasi nanoemulsion was observed over the solvent:antisolvent viscosity ratios of 1:7-1:1.4. Poly(acrylic acid) in the solvent phase exhibited a concentration dependent interaction when ITR formed NPs. This nanodroplet-based approach enabled the preparation of a stable ITR nanodispersion using Poloxamer 407 at 80°C, which was unachievable before using precipitation via nucleation. Findings of this work lay groundwork in terms of rationalised molecular assembly as a tool in designing pharmaceutical LC NPs with tailored properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Microneedle-assisted transdermal delivery of Zolmitriptan: effect of microneedle geometry, in vitro permeation experiments, scaling analyses and numerical simulations.

    Science.gov (United States)

    Uppuluri, Chandra Teja; Devineni, Jyothirmayee; Han, Tao; Nayak, Atul; Nair, Kartik J; Whiteside, Benjamin R; Das, Diganta B; Nalluri, Buchi N

    2017-08-01

    The present study was aimed to investigate the effect of salient microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation enhancement of Zolmitriptan (ZMT). Two types of MN devices viz. AdminPatch ® arrays (ADM) (0.6, 0.9, 1.2 and 1.5 mm lengths) and laboratory fabricated polymeric MNs (PM) of 0.6 mm length were employed. In the case of PMs, arrays were applied thrice at different places within a 1.77 cm 2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Scaling analyses was done using dimensionless parameters like concentration of ZMT (C t /C s ), thickness (h/L) and surface area of the skin (Sa/L 2 ). Micro-injection molding technique was employed to fabricate PM. Histological studies revealed that the PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 3.17- and 3.65-fold increase in ZMT flux values were observed with 1.5 mm ADM and PM-3 applications when compared to the passive studies. Good correlations were observed between different dimensionless parameters with scaling analyses. Numerical simulations, using MATLAB and COMSOL software, based on experimental data and histological images provided information regarding the ZMT skin distribution after MN application. Both from experimental studies and simulations, it was inferred that PM were more effective in enhancing the transdermal delivery of ZMT when compared to ADM. The study suggests that MN application enhances the ZMT transdermal permeation and the geometrical parameters of MNs play an important role in the degree of such enhancement.

  20. Life-threatening coma and full-thickness sunburn in a patient treated with transdermal fentanyl patches: a case report

    Directory of Open Access Journals (Sweden)

    Sindali Katia

    2012-07-01

    Full Text Available Abstract Introduction Fentanyl transdermal patches have been widely used in the treatment of chronic pain and in palliative care settings since 1991 in cases where prolonged opioid use is often necessary. Transdermal drug delivery is deemed safe and effective with the advantages of delivering a steady dose of the drug and improving patient compliance due to its ease of use. However, intentional and unintentional misuse and overdose using transdermal opioid patches has been widely reported in the literature. Case presentation We describe the case of a 77-year-old Caucasian woman who developed severe opioid toxicity while sun tanning, likely due to altered fentanyl transdermal patch function in a heated environment. As a result of prolonged sun exposure due to an opioid-induced coma she then sustained hyperthermia and severe burns to her abdomen and lower limbs. This inadvertent fentanyl overdose necessitated initial treatment in intensive care and follow on care in a specialist burn unit. Conclusion Patients who are using fentanyl patches and their relatives should be educated about how to use the patch safely. Healthcare practitioners should warn patients about the possibility of overdosing on transdermally delivered drugs if used incorrectly. They should avoid strenuous activities and external heat sources such as warming blankets, hot water bottles, saunas, hot tubs or sunbathing and should seek medical attention if they develop a fever. Additionally, any burns sustained in the context of altered consciousness levels such as in this case with opioid overdose should raise suspicion about a potential deeper burn injury than is usually observed.

  1. Transdermal testosterone replacement therapy in men

    Directory of Open Access Journals (Sweden)

    Ullah MI

    2014-01-01

    Full Text Available M Iftekhar Ullah,1 Daniel M Riche,1,2 Christian A Koch1,31Department of Medicine, University of Mississippi Medical Center, 2Department of Pharmacy Practice, The University of Mississippi, 3GV (Sonny Montgomery VA Medical Center, Jackson, MS, USAAbstract: Androgen deficiency syndrome in men is a frequently diagnosed condition associated with clinical symptoms including fatigue, decreased libido, erectile dysfunction, and metabolic syndrome. Serum testosterone concentrations decline steadily with age. The prevalence of androgen deficiency syndrome in men varies depending on the age group, known and unknown comorbidities, and the respective study group. Reported prevalence rates may be underestimated, as not every man with symptoms of androgen deficiency seeks treatment. Additionally, men reporting symptoms of androgen deficiency may not be correctly diagnosed due to the vagueness of the symptom quality. The treatment of androgen deficiency syndrome or male hypogonadism may sometimes be difficult due to various reasons. There is no consensus as to when to start treating a respective man or with regards to the best treatment option for an individual patient. There is also lack of familiarity with treatment options among general practitioners. The formulations currently available on the market are generally expensive and dose adjustment protocols for each differ. All these factors add to the complexity of testosterone replacement therapy. In this article we will discuss the general indications of transdermal testosterone replacement therapy, available formulations, dosage, application sites, and recommended titration schedule.Keywords: hypogonadism, transdermal, testosterone, sexual function, testosterone replacement therapy, estradiol

  2. Comparison of estrus synchronization by controlled internal drug release device (CIDR) and adhesive transdermal progestin patch in postpartum beef cows.

    Science.gov (United States)

    Kajaysri, Jatuporn; Chumchoung, Chaiwat; Wutthiwitthayaphong, Supphathat; Suthikrai, Wanvipa; Sangkamanee, Praphai

    2017-09-15

    Estrous synchronization with progesterone based protocols has been essentially used in cattle industry. Although intravaginal devices have been commonly used, this technique may induce vaginitis. This study aimed at examining the efficiency of novel transdermal progestin patch on follicle development and comparing the progestin patch versus CIDR device on estrous synchronization, complication at treated site and pregnancy in beef cattle. In experiment 1, seven beef cows were treated with an adhesive transdermal progestin patch on the ventral surface of the proximal part of the tail for 7 days. The cows were daily examined the follicular development using ultrasonography starting on Day 0 till 3 days after hormone removal. Experiment 2, forty beef cows were divided into two equal groups (20 cows per group). The cows randomly allocated to received either vaginal insertion of CIDR (n = 20) or treated with an adhesive transdermal progestin patch (n = 20). The levels of plasma progesterone during the experiment and the numbers of standing estrous cows were recorded. Timed artificial inseminated (TAI) was performed at 60 h after CIDR or patch termination. Pregnancy rates were determined at 60 days after TAI. Experiment 1 revealed that the novel transdermal progestin patch could efficiently control follicular growth. All the seven treated cows had dominant follicle upon dermal patch removal indicating the effectiveness of the progestin patch. In experiment 2, the percentages of cows exhibited standing estrus were similar between transdermal patch (72.22%) and CIDR (70.00%). The levels of plasma progesterone during CIDR treatment were significantly higher (4.06 ± 1.65 ng/mL on Day 1 and 3.62 ± 1.60 ng/mL on Day 7) compared with transdermal patch (2.60 ± 1.43 ng/mL on Day 1 and 1.81 ± 1.57 ng/mL on Day 7). Three cows treated with CIDR (15%) developed vaginitis while none of cows had physically dermal reaction at adhesive site. Cows synchronized with

  3. Preparation and the Biopharmaceutical Evaluation for the Metered Dose Transdermal Spray of Dexketoprofen

    Science.gov (United States)

    Luo, Huafei; Zhu, Zhuangzhi; Wu, Yubo; Luo, Jing; Wang, Hao

    2014-01-01

    The objective of the present work was to develop a metered dose transdermal spray (MDTS) formulation for transdermal delivery of dexketoprofen (DE). DE release from a series of formulations was assessed in vitro. Various qualitative and quantitative parameters like spray pattern, pump seal efficiency test, average weight per metered dose, and dose uniformity were evaluated. The optimized formulation with good skin permeation and an appropriate drug concentration and permeation enhancer (PE) content was developed incorporating 7% (w/w, %) DE, 7% (v/v, %) isopropyl myristate (IPM), and 93% (v/v, %) ethanol. In vivo pharmacokinetic study indicated that the optimized formulation showed a more sustainable plasma-concentration profile compared with the Fenli group. The antiinflammatory effect of DE MDTS was evaluated by experiments involving egg-albumin-induced paw edema in rats and xylene-induced ear swelling in mice. Acetic acid-induced abdominal constriction was used to evaluate the anti-nociceptive actions of DE MDTS. Pharmacodynamic studies indicated that the DE MDTS has good anti-inflammatory and anti-nociceptive activities. Besides, skin irritation studies were performed using rat as an animal model. The results obtained show that the MDTS can be a promising and innovative therapeutic system used in transdermal drug delivery for DE. PMID:24660066

  4. Preparation and the Biopharmaceutical Evaluation for the Metered Dose Transdermal Spray of Dexketoprofen

    Directory of Open Access Journals (Sweden)

    Wangding Lu

    2014-01-01

    Full Text Available The objective of the present work was to develop a metered dose transdermal spray (MDTS formulation for transdermal delivery of dexketoprofen (DE. DE release from a series of formulations was assessed in vitro. Various qualitative and quantitative parameters like spray pattern, pump seal efficiency test, average weight per metered dose, and dose uniformity were evaluated. The optimized formulation with good skin permeation and an appropriate drug concentration and permeation enhancer (PE content was developed incorporating 7% (w/w, % DE, 7% (v/v, % isopropyl myristate (IPM, and 93% (v/v, % ethanol. In vivo pharmacokinetic study indicated that the optimized formulation showed a more sustainable plasma-concentration profile compared with the Fenli group. The antiinflammatory effect of DE MDTS was evaluated by experiments involving egg-albumin-induced paw edema in rats and xylene-induced ear swelling in mice. Acetic acid-induced abdominal constriction was used to evaluate the anti-nociceptive actions of DE MDTS. Pharmacodynamic studies indicated that the DE MDTS has good anti-inflammatory and anti-nociceptive activities. Besides, skin irritation studies were performed using rat as an animal model. The results obtained show that the MDTS can be a promising and innovative therapeutic system used in transdermal drug delivery for DE.

  5. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension.

    Science.gov (United States)

    Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd

    2016-01-01

    Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo extensive first-pass metabolism, which significantly reduces bioavailability. Majority of ARBs and ACEIs are inherently short acting due to a rapid elimination half-life. In addition, oral dosage forms of ARBs and ACEIs have many high incidences of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Many attempts have been made globally at the laboratory level to investigate the skin permeation and to develop transdermal therapeutic systems of various ARBs, ACEIs and other anti-hypertensives, to circumvent the drawbacks associated with their conventional dosage form. This manuscript presents an outline of the transdermal research specifically in the area of ARBs, ACEIs and other anti-hypertensives reported in various pharmaceutical journals. The transdermal delivery has gained a significant importance for systemic treatment as it is able to avoid first-pass metabolism and major fluctuations of plasma levels typical of repeated oral administration. As we can experience from this review article that transdermal delivery of different ARBs and ACEIs improves bioavailability as well as patient compliance by many folds. In fact, the rationale development of some newer ARBs, ACEIs and other anti-hypertensives transdermal systems will provide new ways of treatment, circumventing current limitations for conventional dosage forms.

  6. Pharmacodynamics of transdermal granisetron in women with nausea and vomiting of pregnancy.

    Science.gov (United States)

    Caritis, Steve; Zhao, Yang; Chen, Hui-Jun; Venkataramanan, Raman

    2016-07-01

    Limited options exist for women with nausea and vomiting of pregnancy (NVP) who cannot tolerate oral intake. Transdermal delivery of granisetron, a 5-hydroxytryptamine-3 receptor antagonist, provides an effective alternative for such patients. The objective of this study was to evaluate the pharmacodynamics of granisetron administered intravenously (IV) and as a sustained release transdermal patch in women with NVP. We recruited 16 women with singleton gestation between 12 0/7-18 6/7 weeks who were receiving treatment for NVP and had a Pregnancy Unique Quantification of Emesis and Nausea (PUQE) score of ≥6. All consenting subjects received 1 mg of granisetron as an IV infusion over 5 minutes and blood was obtained prior to the infusion and at 10, 20, 30, and 60 minutes and at 2, 4, 6, 8, 12, and 24 hours after the start of the infusion. After a minimum washout of 48 hours after initiation of IV granisetron, a 52-cm(2) granisetron patch (34.3 mg) was placed on the upper arm of all subjects for 7 days. Blood was drawn prior to patch placement and daily thereafter for 9 days. The subjects were evaluated daily. The PUQE score was obtained from these subjects prior to the IV infusion and daily for 2 days after and again prior to and daily for 9 days after patch placement. Complete data were available in 15 women after IV administration and 13 women after patch placement. One woman stopped participation during the IV infusion while data were not available in 2 additional women after patch placement due to noncompliance. Peak plasma granisetron concentrations after IV and transdermal administration were similar (∼10 ng/mL). Prior to IV administration of granisetron, the PUQE score was 8.6 ± 1.8 (mean ± SD). The PUQE scores were significantly reduced for the ensuing 2 days (P Granisetron significantly improved symptoms of nausea and vomiting as gauged by the PUQE score. After IV infusion the reduction in PUQE score was observed within 1 day. When granisetron was

  7. Role of the Na(+)/K(+)-ATPase beta-subunit in peptide-mediated transdermal drug delivery.

    Science.gov (United States)

    Wang, Changli; Ruan, Renquan; Zhang, Li; Zhang, Yunjiao; Zhou, Wei; Lin, Jun; Ding, Weiping; Wen, Longping

    2015-04-06

    In this work, we discovered that the Na(+)/K(+)-ATPase beta-subunit (ATP1B1) on epidermal cells plays a key role in the peptide-mediated transdermal delivery of macromolecular drugs. First, using a yeast two-hybrid assay, we screened candidate proteins that have specific affinity for the short peptide TD1 (ACSSSPSKHCG) identified in our previous work. Then, we verified the specific binding of TD1 to ATP1B1 in yeast and mammalian cells by a pull-down ELISA and an immunoprecipitation assay. Finally, we confirmed that TD1 mainly interacted with the C-terminus of ATP1B1. Our results showed that the interaction between TD1 and ATP1B1 affected not only the expression and localization of ATP1B1, but also the epidermal structure. In addition, this interaction could be antagonized by the exogenous competitor ATP1B1 or be inhibited by ouabain, which results in the decreased delivery of macromolecular drugs across the skin. The discovery of a critical role of ATP1B1 in the peptide-mediated transdermal drug delivery is of great significance for the future development of new transdermal peptide enhancers.

  8. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs.

    Science.gov (United States)

    Banks, Stan L; Pinninti, Raghotham R; Gill, Harvinder S; Paudel, Kalpana S; Crooks, Peter A; Brogden, Nicole K; Prausnitz, Mark R; Stinchcomb, Audra L

    2010-07-01

    Controlled-release delivery of 6-beta-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. MN pore lifetime was estimated by pharmacokinetic evaluation, transepidermal water loss (TEWL) and visualization of MN-treated skin pore diameters using light microscopy. A 3.6-fold enhancement in steady-state plasma concentration was observed in vivo with MN treated skin with NTXOL.HCl, as compared to NTXOL base. TEWL measurements and microscopic evaluation of stained MN-treated guinea pig skin indicated the presence of pores, suggesting a feasible nonlipid bilayer pathway for enhanced transdermal delivery. Overall, MN-assisted transdermal delivery appears viable for at least 48 h after MN-application. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  9. The role of transdermal estrogen sprays and estradiol topical emulsion in the management of menopause-associated vasomotor symptoms

    Directory of Open Access Journals (Sweden)

    Amy M Egras

    2010-05-01

    Full Text Available Amy M Egras, Elena M UmlandJefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA, USAAbstract: Vasomotor symptoms (VMS are among the most bothersome complaints of postmenopausal women. To date, the most widely studied and effective treatment for VMS is hormone replacement therapy, consisting of estrogen (in women without a uterus or estrogen plus progestin (in women with a uterus. Traditionally, oral estrogens have been used for treatment. However, over the years, additional estrogen formulations have been developed including transdermal patches; vaginal rings, creams, and tablets; and injectable preparations. Two newer formulations are transdermal estrogen spray and estradiol topical emulsion. This review evaluates the current literature assessing the use of these two newer formulations for the treatment of VMS associated with menopause.Keywords: menopause, vasomotor symptoms, transdermal estrogen spray, estradiol topical emulsion

  10. Preparation of coffee oil-algae oil-based nanoemulsions and the study of their inhibition effect on UVA-induced skin damage in mice and melanoma cell growth.

    Science.gov (United States)

    Yang, Chu-Ching; Hung, Chi-Feng; Chen, Bing-Huei

    2017-01-01

    Coffee grounds, a waste by-product generated after making coffee, contains approximately 15% coffee oil which can be used as a raw material in cosmetics. Algae oil rich in docosahexaenoic acid (DHA) has been demonstrated to possess anticancer and anti-inflammation functions. The objectives of this study were to develop a gas chromatography-mass spectrometry (GC-MS) method for the determination of fatty acids in coffee oil and algae oil and prepare a nanoemulsion for studying its inhibition effect on ultraviolet A-induced skin damage in mice and growth of melanoma cells B16-F10. A total of 8 and 5 fatty acids were separated and quantified in coffee oil and algae oil by GC-MS, respectively, with linoleic acid (39.8%) dominating in the former and DHA (33.9%) in the latter. A nanoemulsion with a particle size of 30 nm, zeta potential -72.72 mV, and DHA encapsulation efficiency 100% was prepared by using coffee oil, algae oil, surfactant (20% Span 80 and 80% Tween 80), and deionized water. Differential scanning calorimetry (DSC) analysis revealed a high stability of nanoemulsion when heated up to 110°C at a pH 6, whereas no significant changes in particle size distribution and pH occurred over a 90-day storage period at 4°C. Animal experiments showed that a dose of 0.1% coffee oil-algae oil nanoemulsion was effective in mitigating trans-epidermal water loss, skin erythema, melanin formation, and subcutaneous blood flow. Cytotoxicity test implied effective inhibition of melanoma cell growth by nanoemulsion with an IC 50 value of 26.5 µg/mL and the cell cycle arrested at G2/M phase. A dose-dependent upregulation of p53, p21, cyclin B, and cyclin A expressions and downregulation of CDK1 and CDK2 occurred. Also, both Bax and cytochrome c expressions were upregulated and bcl-2 expression downregulated, accompanied by a rise in caspase-3, caspase-8, and caspase-9 activities for apoptosis execution. Collectively, the apoptosis pathway of melanoma cells B16-F10 may involve

  11. Comparative study of the Ar and He atmospheric pressure plasmas on E-cadherin protein regulation for plasma-mediated transdermal drug delivery

    Science.gov (United States)

    Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June

    2018-05-01

    The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.

  12. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  13. Diclofenac Potassium Transdermal Patches Using Natural Rubber Latex Biomembranes as Carrier

    Directory of Open Access Journals (Sweden)

    Natan Roberto de Barros

    2015-01-01

    Full Text Available The aim of this study was to design a compound transdermal patch containing diclofenac potassium (Dic-K using natural rubber latex (NRL biomembrane. The NRL from Hevea brasiliensis is easily manipulated and low cost and presents high mechanical resistance. It is a biocompatible material which can stimulate natural angiogenesis and is capable of adhering cells on its surface. Recent researches have used the NRL for Transdermal Drug Delivery Systems (TDDSs. Dic-K is used for the treatment of rheumatoid arthritis and osteoarthritis and pain relief for postoperative and posttraumatic cases, as well as inflammation and edema. Results showed that the biomembrane can release Dic-K for up to 216 hours. The kinetics of the Dic-K release could be fitted with double exponential function. X-ray diffraction and Fourier Transform Infrared (FTIR spectroscopy show some interaction by hydrogen bound. The results indicated the potential of the compound patch.

  14. Physical, chemical and biological studies of gelatin/chitosan based transdermal fims with embedded silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Sneha Paul

    2015-12-01

    Full Text Available Objective: To study the physical, chemical and biological properties of composite chitosangelatin transdermal film along with silver nanoparticles as binding agent and determine the compatibility of the prepared amalgamation towards wound management. Methods: Transdermal film preparations were done by solvent casting method containing different concentrations of biological synthesized silver nanoparticles. The films were characterized by using scanning electron microscope for their morphology and the determination of silver metal was done by using inductively coupled plasma atomic emission spectroscopy. Then a quantity of silver nanoparticles was further proceeded by physiochemical parameters (weight, thickness, temperature, solubility, absorption, tensile strength, in vitro drug release and skin permeation and biological parameters studies (anti-microbial, cytotoxicity and reactive oxygen species. Results: The film prepared by utilizing 2 g of gelatin and 0.5 g of chitosan exhibited better results. The physiochemical parameters studies revealed higher concentration of silver nanoparticles would give better results. In vitro drug release studies through dialysis and skin permeation showed the release of drug versus time (h. These films had shown excellent inhibition against Streptococcus and Escherichia coli species. Cytotoxicity study by MTT indicated the mild toxicity existed as the concentration of silver nanoparticles increased. Reactive oxygen species generation studies of transdermal film by using 2'7'-dichlorofluorescein diacetate assay demonstrated that the fluorescent cells were found in the higher concentration, which indicated cell damage (reactive oxygen species generated. Conclusions: Based on these observations, in vitro performances against various characteristics of transdermal film, would be utilized as a distinct dressing material and patches accessible in market.

  15. On the Road to Development of an in Vitro Permeation Test (IVPT) Model to Compare Heat Effects on Transdermal Delivery Systems: Exploratory Studies with Nicotine and Fentanyl.

    Science.gov (United States)

    Shin, Soo Hyeon; Ghosh, Priyanka; Newman, Bryan; Hammell, Dana C; Raney, Sam G; Hassan, Hazem E; Stinchcomb, Audra L

    2017-09-01

    At elevated temperatures, the rate of drug release and skin permeation from transdermal delivery systems (TDS) may be higher than at a normal skin temperature. The aim of this study was to compare the effect of heat on the transdermal delivery of two model drugs, nicotine and fentanyl, from matrix-type TDSs with different formulations, using in vitro permeation tests (IVPT). IVPT experiments using pig skin were performed on two nicotine and three fentanyl TDSs. Both continuous and transient heat exposures were investigated by applying heat either for the maximum recommended TDS wear duration or for short duration. Continuous heat exposure for the two nicotine TDSs resulted in different effects, showing a prolonged heat effect for one product but not the other. The J max enhancement ratio due to the continuous heat effect was comparable between the two nicotine TDS, but significantly different (p drug from the skin depot after TDS removal differently for two drugs, with fentanyl exhibiting a longer heat effect. This exploratory work suggests that an IVPT study may be able to discriminate differences in transdermal drug delivery when different TDS are exposed to elevated temperatures. However, the clinical significance of IVPT heat effects studies should be further explored by conducting in vivo clinical studies with similar study designs.

  16. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jumi [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Dae Hoon [Environment Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Im, Ji Sun [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: Black-Right-Pointing-Pointer High performance of transdermal drug delivery system with an easy control of voltage. Black-Right-Pointing-Pointer Improved thermal response of hydrogel by graphite oxide incorporation. Black-Right-Pointing-Pointer Efficient micro heater fabricated by a joule heating method.

  17. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate.

    Science.gov (United States)

    Lopez, Renata F V; Seto, Jennifer E; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ∼0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500-1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study.

    Science.gov (United States)

    Morsi, Nadia M; Aboelwafa, Ahmed A; Dawoud, Marwa H S

    2018-06-01

    Timolol Maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from poor oral bioavailability (50%) due to its first pass effect and a short elimination half-life of 4 h; resulting in its frequent administration. Transdermal formulation may circumvent these problems in the form of protransfersomes. The aim of this study is to develop and optimize transdermal protransfersomal system of Timolol Maleate by film deposition on carrier method where protransfersomes were converted to transfersomes upon skin hydration following transdermal application under occlusive conditions. Two 2 3 full factorial designs were employed to investigate the influence of three formulation variables which were; phosphatidyl choline: surfactant molar ratio, carrier: mixture and the type of SAA each on particle size, drug entrapment efficiency and release rate. The optimized formulation was evaluated regarding permeation through hairless rat skin and compared with oral administration of aqueous solution on male Wistar rats. Optimized protransfersomal system had excellent permeation rate through shaved rat skin (780.69 μg/cm 2 /h) and showed six times increase in relative bioavailability with prolonged plasma profile up to 72 h. A potential protransfresomal transdermal system was successfully developed and factorial design was found to be a smart tool in its optimization.

  19. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as Phyto-Nanoemulsions.

    Science.gov (United States)

    Gumus, Z Pinar; Guler, Emine; Demir, Bilal; Barlas, F Baris; Yavuz, Murat; Colpankan, Dilara; Senisik, A Murat; Teksoz, Serap; Unak, Perihan; Coskunol, Hakan; Timur, Suna

    2015-09-01

    The reported studies related to black seed oil (BSO) and wheat germ oil (WGO) have illustrated that they have a wide range of biological activities. Therefore, enhancing the amount of bio-active compounds that caused higher cell based anti-oxidative effect as well as cell proliferation, etc. in seed oils, infusion of crude plant material has been gained importance as a traditional technique. Herein, we accomplished the infusion of Calendula flowers that also contains many phyto-constituents into BSO and WGO. After the infusion of oils, the change of phytochemical amount was investigated and evaluated according to the oils by chromatography, radical scavenging activity. Subsequently, for investigating the biological impact upon live cells, cytotoxicity, cell-based antioxidant capacity, wound healing and radioprotective activity were tested with monkey kidney fibroblast like cells (Vero) and HaCaT keratinocytes. In vitro cell based experiments (wound healing and radioprotective activity) confirmed that Calendula infused BSO and WGO have greater bio-activity when compared to those plain forms. The herbal oils prepared with an effective extraction technique were incorporated into nanoemulsion systems which will be then called as 'Phyto-Nanoemulsion'. After herbal oil biomolecules were encapsulated into nanoemulsion based delivery systems, the designed formulations were investigated in terms of biological activities. In conclusion, these preparations could be a good candidate as a part of dermal cosmetic products or food supplements which have the therapeutic efficiency, especially after radio- or chemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Contrast agent based on nano-emulsion for targeted biomedical imaging

    International Nuclear Information System (INIS)

    Attia, Mohamed

    2016-01-01

    X-ray imaging agents are essential in combination with X-ray computed tomography to improve contrast enhancement aiming at providing complete visualization of blood vessels and giving structural and functional information on lesions allowing the detection of a tumor. As well as it is fundamental tool to discriminate between healthy cells and pathogens. We successfully limit the problems presented in commercial X-ray contrast agents like poor contrasting in Fenestra VC associated with short blood circulation time and to avoid rapid renal elimination from the body as found in Xenetix (Iobitriol). We developed nontoxic and blood pool iodine-containing nano-emulsion contrast agents serving in preclinical X-ray μ-CT imaging such as, a- Tocopherol (vitamin E), Cholecalciferol (vitamin D3), Castor oil, Capmul MCMC8 oil and oleic acid. Those formulated nano emulsions were prepared by low energy spontaneous emulsification technic with slight modification for each platform. They showed new specific features rendering them promising agents in in vivo experiments as improving the balance between the efficacy and the toxicity of targeted therapeutic interventions. We investigate the effect of size and the chemical composition of the nanoparticles on their biodistribution, pharmacokinetics and toxicity. They demonstrated that the chemical structures of the droplet's cores have significant role in targeting for example vitamin E was mainly accumulated in liver and castor oil formulation was passively accumulated in spleen explaining the proof-of-concept of EPR effect. On the other hand, two different platform sizes of Cholecalciferol molecule revealing that no real impact on the pharmacokinetics and biodistribution but presented remarkable effect on the toxicity. Of particular interest is studying the effect of the surface charge of nanoparticles on their biodistribution, this is why oleic acid nano-emulsion was selected to proceed this study by presence of amphiphilic polymer

  1. The formulation of a nasal nanoemulsion zaleplon in situ gel for the treatment of insomnia.

    Science.gov (United States)

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed

    2013-08-01

    Zaleplon is a drug used for the treatment of insomnia and is available in tablet form; however, it has two major problems. First, the drug undergoes extensive first pass metabolism, resulting in only 30% bioavailability, and second, the drug has a poor aqueous solubility, which delays the onset of action. The objective of this study is to utilise nanotechnology to formulate zaleplon into a nasal in situ nanoemulsion gel (NEG) to provide a solution for the previously mentioned problems. The solubility of zaleplon in various oils, surfactants and co-surfactants was estimated. Pseudo-ternary phase diagrams were developed and various nanoemulsion (NE) formulations were prepared; these formulations were subjected to visual characterisation, thermodynamic stability study and droplet size and conductivity measurements. Carbopol 934 was used as an in situ gelling agent. The gel strength, pH, gelation time, in vitro release and ex vivo nasal permeation were determined. The pharmacokinetic study of the NEG was carried out in rabbits. Stable NEs were successfully developed with a droplet size range of 35 to 73 nm. A NEG composed of 15% Miglyol, 30% Labrasol and 10% PEG 200 successfully provided the maximum in vitro and ex vivo permeation and enhanced the bioavailability in the rabbits by eightfold, when compared with the marketed tablets. The nasal NEG is a promising novel formula for zaleplon that has higher nasal tissue permeability and enhanced systemic bioavailability.

  2. Protein Adsorption Patterns and Analysis on IV Nanoemulsions-The Key Factor Determining the Organ Distribution.

    Science.gov (United States)

    Keck, Cornelia M; Jansch, Mirko; Müller, Rainer H

    2012-12-21

    Intravenous nanoemulsions have been on the market for parenteral nutrition since the 1950s; meanwhile, they have also been used successfully for IV drug delivery. To be well tolerable, the emulsions should avoid uptake by the MPS cells of the body; for drug delivery, they should be target-specific. The organ distribution is determined by the proteins adsorbing them after injection from the blood (protein adsorption pattern), typically analyzed by two-dimensional polyacrylamide gel electrophoresis, 2-D PAGE. The article reviews the 2-D PAGE method, the analytical problems to be faced and the knowledge available on how the composition of emulsions affects the protein adsorption patterns, e.g., the composition of the oil phase, stabilizer layer and drug incorporation into the interface or oil core. Data were re-evaluated and compared, and the implications for the in vivo distribution are discussed. Major results are that the interfacial composition of the stabilizer layer is the main determining factor and that this composition can be modulated by simple processes. Drug incorporation affects the pattern depending on the localization of the drug (oil core versus interface). The data situation regarding in vivo effects is very limited; mainly, it has to be referred to in the in vivo data of polymeric nanoparticles. As a conclusion, determination of the protein adsorption patterns can accelerate IV nanoemulsion formulation development regarding optimized organ distribution and related pharmacokinetics.

  3. Formulation, characterization and clinical evaluation of propranolol hydrochloride gel for transdermal treatment of superficial infantile hemangioma.

    Science.gov (United States)

    Zhou, Wenhu; He, Shiying; Yang, Yijun; Jian, Dan; Chen, Xiang; Ding, Jinsong

    2015-01-01

    The objective of the present study is to formulate and characterize propranolol hydrochloride (PPL · HCl) gel, and to evaluate the efficacy of this formulation in transdermal treatment for superficial infantile hemangioma (IH). The transdermal PPL · HCl gel was prepared by a direct swelling method, which chose hydroxypropyl methylcellulose (HPMC) as the matrix and used terpenes plus alcohols as permeation enhancer. Permeation studies of PPL · HCl were carried out with modified Franz diffusion cells through piglet skin. Our results pointed to that among all studied permeation enhancers, farnesol plus isopropanol was the most effective combination (Q24, 6027.4 ± 563.1 μg/cm(2), ER, 6.8), which was significantly higher than that of control gel (p homemade PPL · HCl oral solution as a control. Clinical studies also confirmed the excellent therapeutic response and few side effects of the PPL · HCl gel. These results suggest that transdermal application of the PPL · HCl gel is an effective and safe formulation in treating superficial IH.

  4. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    Science.gov (United States)

    Hoffmeister, Cristiane RD; Durli, Taís L.; Schaffazick, Scheila R.; Raffin, Renata P.; Bender, Eduardo A.; Beck, Ruy CR; Pohlmann, Adriana R.; Guterres, Sílvia S.

    2012-05-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% ( w/ v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation.

  5. Impact of various progestins with or without transdermal testosterone on gonadotropin levels for non-invasive hormonal male contraception: a randomized clinical trial.

    Science.gov (United States)

    Zitzmann, M; Rohayem, J; Raidt, J; Kliesch, S; Kumar, N; Sitruk-Ware, R; Nieschlag, E

    2017-05-01

    Although several progestins have been tested for hormonal male contraception, the effects of dosage and nature of various progestins on gonadotropin suppression combined with and without additional testosterone has not been performed in a comparative trial. The aim of this study was to evaluate the differential impact of four oral or transdermal progestins on the suppression of gonadotropins in healthy men: oral: cyproterone acetate (CPA), levonorgestrel (LNG), norethisterone acetate (NETA), and transdermal: Nestorone ® (NES), all in combination with transdermal testosterone (T). Randomized clinical trial testing was performed with four progestins at two doses each. After a 2-week progestin-only treatment, transdermal T was added for further 4 weeks and was followed by a 3-week recovery period. Progestin-dose per day: CPA 10 mg/20 mg, NES 2 mg/3 mg/dose e.g. 200/300 μg/day absorbed, NETA 5 mg/10 mg, LNG 120 μg/240 μg. From an andrology outpatient clinic, 56 healthy men aged 18-50 years, with body mass index ≤33 kg × m -2 were included in the study. Serum concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were studied. Secondary outcome measure included were serum testosterone concentrations, sperm concentrations, and safety parameters. Intergroup comparisons demonstrated that CPA and LNG had the strongest effect on LH/FSH suppression. Nevertheless, every substance showed significant inhibitory effects on gonadotropin secretion, especially in combination with transdermal T. A decrease in hematocrit and insulin sensitivity as well as cholesterol subfractions and triglycerides was uniformly seen for every group. The combination of oral or transdermal progestins with a transdermal testosterone preparation is able to suppress gonadotropins. Further dose titration studies with sperm suppression as an end-point should be conducted to determine the lowest effective dose for hormonal male contraception. © 2017 American

  6. Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Jinfeng Xing

    2009-10-01

    Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine

  7. Efficacy and safety of a transdermal contraceptive system.

    Science.gov (United States)

    Smallwood, G H; Meador, M L; Lenihan, J P; Shangold, G A; Fisher, A C; Creasy, G W

    2001-11-01

    To evaluate the efficacy, cycle control, compliance, and safety of a transdermal contraceptive system that delivers norelgestromin 150 microg and ethinyl estradiol 20 microg daily. In this open-label, 73-center study, 1672 healthy, ovulatory, sexually active women received ORTHO EVRA/EVRA for six (n = 1171) or 13 cycles (n = 501). The treatment regimen for each cycle was three consecutive 7-day patches (21 days) followed by 1 patch-free week. The overall and method-failure probabilities of pregnancy through 13 cycles were 0.7% and 0.4%, respectively. The incidence of breakthrough bleeding was low throughout the study. Perfect compliance (21 consecutive days of dosing, followed by a 7-day drug-free interval; no patch could be worn for more than 7 days) was achieved in 90% of subject cycles; only 1.9% of patches detached completely. Adverse events were typical of hormonal contraception, and most were mild-to-moderate in severity and not treatment limiting. The most common adverse events resulting in discontinuation were application site reactions (1.9%), nausea (1.8%), emotional lability (1.5%), headache (1.1%), and breast discomfort (1.0%). The transdermal contraceptive patch provides effective contraception and cycle control, and is well tolerated. The weekly change schedule for the contraceptive patch is associated with excellent compliance and wearability characteristics.

  8. Numerical simulations of crystal growth in a transdermal drug delivery system

    Science.gov (United States)

    Zeng, Jianming; Jacob, Karl I.; Tikare, Veena

    2004-02-01

    Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a dissolved crystallizable component was simulated using a kinetic Monte Carlo model. This model was used previously to study Ostwald ripening in the high crystallizable component regime and was shown to correctly simulate solution, diffusion and precipitation. In this study, the same model with modifications was applied to the low crystallizable regime of interest to the transdermal drug delivery system (TDS) community. We demonstrate the model's utility by simulating precipitation and grain growth during isothermal storage at different supersaturation conditions. The simulation results provide a first approximation for the crystallization occurring in TDS. It has been reported that for relatively higher temperature growth of drug crystals in TDS occurs only in the middle third of the polymer layer. The results from the simulations support these findings that crystal growth is limited to the middle third of the region, where the availability of crystallizable components is the highest, for cluster growth at relatively high temperature.

  9. New Edible Bionanocomposite Prepared by Pectin and Clove Essential Oil Nanoemulsions.

    Science.gov (United States)

    Sasaki, Ronaldo S; Mattoso, Luiz H C; de Moura, Márcia Regina

    2016-06-01

    Nanocomposites are being extremely investigated to provide packaging with interesting characteristics for packages. Because of essential oils' natural occurrence and antibacterial activity, they are considered as an alternative for synthetic additives in the food industry. In this paper, we studied an edible bionanocomposite film made up of pectin and clove essential oil nanoemulsion for application as edible package. Mechanical properties, water vapor permeability (WVP), and antibacterial activity were analyzed. From mechanical and WVP analyses, we noticed an interesting improvement in film properties. In the antibacterial activity test, disk diffusion was used to assess the inhibition zones of Escherichia coli and Staphylococcus aureus. With these results, we concluded that the most interesting results were promoted by smaller nanodroplets (diameter of approximately 142 nm).

  10. Tolterodine Tartrate Proniosomal Gel Transdermal Delivery for Overactive Bladder

    Directory of Open Access Journals (Sweden)

    Rajan Rajabalaya

    2016-08-01

    Full Text Available The goal of this study was to formulate and evaluate side effects of transdermal delivery of proniosomal gel compared to oral tolterodine tartrate (TT for the treatment of overactive bladder (OAB. Proniosomal gels are surfactants, lipids and soy lecithin, prepared by coacervation phase separation. Formulations were analyzed for drug entrapment efficiency (EE, vesicle size, surface morphology, attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy, in vitro skin permeation, and in vivo effects. The EE was 44.87%–91.68% and vesicle size was 253–845 nm for Span formulations and morphology showed a loose structure. The stability and skin irritancy test were also carried out for the optimized formulations. Span formulations with cholesterol-containing formulation S1 and glyceryl distearate as well as lecithin containing S3 formulation showed higher cumulative percent of permeation such as 42% and 35%, respectively. In the in vivo salivary secretion model, S1 proniosomal gel had faster recovery, less cholinergic side effect on the salivary gland compared with that of oral TT. Histologically, bladder of rats treated with the proniosomal gel formulation S1 showed morphological improvements greater than those treated with S3. This study demonstrates the potential of proniosomal vesicles for transdermal delivery of TT to treat OAB.

  11. Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines.

    Science.gov (United States)

    An, Myunggi; Liu, Haipeng

    2017-07-01

    Amphiphilic vaccine based on lipid-polymer conjugates is a new type of vaccine capable of self-delivering to the immune system. When injected subcutaneously, amphiphilic vaccines efficiently target antigen presenting cells in the lymph nodes (LNs) via a unique albumin-mediated transport and uptake mechanism and induce potent humoral and cellular immune responses. However, whether this new type of vaccine can be administrated via a safe, convenient microneedle-based transdermal approach remains unstudied. For such skin barrier-disruption systems, a simple application of microneedle arrays (MNs) is desired to disrupt the stratum corneum, and for rapid and pain-free self-administration of vaccines into the skin, the anatomic place permeates with an intricate mesh of lymphatic vessels draining to LNs. Here the microneedle transdermal approach is combined with amphiphilic vaccines to create a simple delivery approach which efficiently traffic molecular vaccines into lymphatics and draining LNs. The rapid release of amphiphilic vaccines into epidermis upon application of dissolving MNs to the skin of mice generates potent cellular and humoral responses, comparable or superior to those elicited by traditional needle-based immunizations. The results suggest that the amphiphilic vaccines delivered by dissolving MNs can provide a simple and safer vaccination method with enhanced vaccine efficacy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of domperidone bilayered matrix type transdermal patches: physicochemical, in vitro and ex vivo characterization

    Directory of Open Access Journals (Sweden)

    S.K Madishetti

    2010-09-01

    Full Text Available "nBackground and the purpose of the study: Domperidone (DOM is a dopamine- receptor (D2 antagonist, which is widely used in the treatment of motion-sickness. The pharmacokinetic parameters make DOM a suitable candidate for transdermal delivery. The purpose of the present investigation was to develop transdermal delivery systems for DOM and to evaluate their physicochemical characteristics, in vitro release an ex vivo permeation through rat abdominal skin and their mechanical properties. "nMethods: Bilayered matrix type transdermal drug delivery systems (TDDS of DOM were prepared by film casting technique using hydroxypropyl methyl cellulose as primary and Eudragit RL 100 as secondary layers. Brij-35 was incorporated as a solubilizer, d-limonene and propylene glycol were employed as permeation enhancer and plasticizer respectively. The prepared TDDS were extensively evaluated for in vitro release, moisture absorption, moisture content, water vapor transmission, ex vivo permeation through rat abdominal skin, mechanical properties and stability studies. The physicochemical interaction between DOM and polymers were investigated by Differential Scanning Calorimetry (DSC and Fourier Transform Infrared Spectroscopy (FTIR. "nResults: All the formulations exhibited satisfactory physicochemical and mechanical characteristics. The optimized formulation F6 showed maximum cumulative percentage of drug release (90.7%, permeation (6806.64 μg in 24 hrs, flux (86.02 μg /hr/cm2 and permeation coefficient of 0.86x10-2 cm/hr. Values of tensile strength (4.34 kg/mm2 and elastic modulus (5.89 kg/cm2 revealed that formulation F6 was strong but not brittle. DSC and FTIR studies showed no evidence of interaction between the drug and polymers. A shelf life of 2 years is predicted for the TDDS. Conclusions: Domperidone bilayered matrix type transdermal therapeutic systems could be prepared with the required flux and suitable mechanical properties.

  13. Recent developments in skin mimic systems to predict transdermal permeation.

    Science.gov (United States)

    Waters, Laura J

    2015-01-01

    In recent years there has been a drive to create experimental techniques that can facilitate the accurate and precise prediction of transdermal permeation without the use of in vivo studies. This review considers why permeation data is essential, provides a brief summary as to how skin acts as a natural barrier to permeation and discusses why in vivo studies are undesirable. This is followed by an in-depth discussion on the extensive range of alternative methods that have been developed in recent years. All of the major 'skin mimic systems' are considered including: in vitro models using synthetic membranes, mathematical models including quantitative structure-permeability relationships (QSPRs), human skin equivalents and chromatographic based methods. All of these model based systems are ideally trying to achieve the same end-point, namely a reliable in vitro-in vivo correlation, i.e. matching non-in vivo obtained data with that from human clinical trials. It is only by achieving this aim, that any new method of obtaining permeation data can be acknowledged as a potential replacement for animal studies, for the determination of transdermal permeation. In this review, the relevance and potential applicability of the various models systems will also be discussed.

  14. Pharmacokinetics of the transdermal delivery of benfotiamine.

    Science.gov (United States)

    Zhu, Zhen; Varadi, Gyula; Carter, Stephen G

    2016-04-01

    Accumulation of advanced glycation endpoints is a trigger to the development of diabetic peripheral neuropathy, which is a common complication of diabetes. Oral administration of benfotiamine (BFT) has shown some preclinical and clinical promise as a treatment for diabetic peripheral neuropathy. The purpose of this study was to evaluate the method of transdermal delivery of BFT as a possible, viable route of administration for the treatment of diabetic peripheral neuropathy. A single application of 10 mg of BFT was given to guinea pigs topically. The levels of thiamine (T), thiamine monophosphate, thiamine diphosphate, S-benzoylthiamine and BFT were measured in the blood, skin and muscle at different time points within 24 h. At the 24-h time point, following the single BFT dose, the T level was increased 10× in the blood, more than 7× in the skin and almost 4× in the muscle compared to the untreated animals. The total T content (total) was increased 7× in the blood, 17× in the skin and 3× in the muscle compared to the untreated animals. This strong increase in the tissue levels of T and the associated metabolic derivatives levels found in the blood and local tissues following a single dose indicate that topically applied BFT may be a viable and advantageous delivery method for the treatment of diabetic peripheral neuropathy.

  15. The effect of aspirin nanoemulsion on TNFα and iNOS in gastric tissue in comparison with conventional aspirin

    Directory of Open Access Journals (Sweden)

    Mahmoud FA

    2015-08-01

    Full Text Available Fatma Abd Elhalim Mahmoud,1,2 Khalid S Hashem,3 Asmaa Mohammed M Hussein Elkelawy21Medical Pharmacology Department, Faculty of Medicine, Cairo University, Giza, 2Clinical Pharmacology Department, Faculty of Medicine, 3Biochemistry Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, EgyptBackground: No dose of aspirin is free of bleeding risk. Even at a dose as low as 75 mg/day, the risk of upper gastrointestinal bleeding is twice as high as among nonusers. Nanoemulsions (NEs are emulsion systems with droplet size in nanometer scale in which oil or water droplets are finely dispersed in the opposite phase with the help of a suitable surfactant to stabilize the system.Objectives: The objective of this study was to determine the effect of aspirin NE in comparison to conventional aspirin.Materials and methods: A total of 24 male rats were used in the study and arbitrarily assigned to four groups. Group 1 was the control group, and was given saline. Group 2 was given blank NE 1.5 mL/kg orally. Group 3 was given aspirin 30 mg/kg body weight orally. Group 4 was given aspirin NE 30 mg/kg body weight orally. Rats were killed, and gastric tissue was quickly excised after dissection of the animals. The tissues were divided into three pieces. The first one was kept in formalin 10% for pathological investigation. The second piece was kept in liquid nitrogen for molecular investigation. The third piece was homogenized in ten volumes of ice-cold phosphate-buffered saline (pH 7 using a Teflon homogenizer until a uniform suspension was obtained. The homogenate was centrifuged at 4,000 rpm for 30 minutes at 4°C to separate the supernatant from cellular debris. The supernatant was then used for the estimation of biochemical assays.Results: The present study shows that aspirin has a toxic effect on the stomach as a result of inducing marked oxidative damage and the release of reactive oxygen species. This was shown by the significant

  16. Lipid Nanocapsule-Based Gels for Enhancement of Transdermal Delivery of Ketorolac Tromethamine

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2011-01-01

    Full Text Available Previous reports show ineffective transdermal delivery of ketorolac by nanostructured lipid carriers (NLCs. The aim of the present work was enhancement of transdermal delivery of ketorolac by another colloidal carriers, lipid nanocapsules (LNCs. LNCs were prepared by emulsification with phase transition method and mixed in a Carbomer 934P gel base with oleic acid or propylene glycol as penetration enhancers. Permeation studies were performed by Franz diffusion cell using excised rat abdominal skin. Aerosil-induced rat paw edema model was used to investigate the in vivo performance. LNCs containing polyethylene glycol hydroxyl stearate, lecithin in Labrafac as the oily phase, and dilution of the primary emulsion with 3.5-fold volume of cold water produced the optimized nanoparticles. The 1% Carbomer gel base containing 10% oleic acid loaded with nanoparticles enhanced and prolonged the anti-inflammatory effects of this drug to more than 12 h in Aerosil-induced rat paw edema model.

  17. Response to intravenous fentanyl infusion predicts subsequent response to transdermal fentanyl.

    Science.gov (United States)

    Hayashi, Norihito; Kanai, Akifumi; Suzuki, Asaha; Nagahara, Yuki; Okamoto, Hirotsugu

    2016-04-01

    Prediction of the response to transdermal fentanyl (FENtd) before its use for chronic pain is desirable. We tested the hypothesis that the response to intravenous fentanyl infusion (FENiv) can predict the response to FENtd, including the analgesic and adverse effects. The study subjects were 70 consecutive patients with chronic pain. The response to fentanyl at 0.1 mg diluted in 50 ml of physiological saline and infused over 30 min was tested. This was followed by treatment with FENtd (Durotep MT patch 2.1 mg) at a dose of 12.5 µg/h for 2 weeks. Pain intensity before and after FENiv and 2 weeks after FENtd, and the response to treatment, were assessed by the numerical rating scale (NRS), clinical global impression-improvement scale (CGI-I), satisfaction scale (SS), and adverse effects. The NRS score decreased significantly from 7 (4-9) [median (range)] at baseline to 3 (0-8) after FENiv (p 0.04, each). The analgesic and side effects after intravenous fentanyl infusion can be used to predict the response to short-term transdermal treatment with fentanyl.

  18. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment.

    Science.gov (United States)

    Zhang, Suohui; Qiu, Yuqin; Gao, Yunhua

    2014-02-01

    The aims of this study were to investigate the utility of solid microneedle arrays (150 µm in length) in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates and D2O flux. Four model peptides were used (Gly-Gln-Pro-Arg [tetrapeptide-3, 456.6 Da], Val-Gly-Val-Ala-Pro-Gly [hexapeptide, 498.6 Da], AC-Glu-Glu-Met-Gln-Arg-Arg-NH2 [acetyl hexapeptide-3, 889 Da] and Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2 [oxytocin, 1007.2 Da]). The influence of microneedle pretreatment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid microneedle arrays are effective devices to enhance skin delivery of peptides.

  19. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment

    Directory of Open Access Journals (Sweden)

    Suohui Zhang

    2014-02-01

    Full Text Available The aims of this study were to investigate the utility of solid microneedle arrays (150 µm in length in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates and D2O flux. Four model peptides were used (Gly–Gln–Pro–Arg [tetrapeptide-3, 456.6 Da], Val–Gly–Val–Ala–Pro–Gly [hexapeptide, 498.6 Da], AC–Glu–Glu–Met–Gln–Arg–Arg–NH2 [acetyl hexapeptide-3, 889 Da] and Cys–Tyr–Ile–Gln–Asn–Cys–Pro–Leu–Gly–NH2 [oxytocin, 1007.2 Da]. The influence of microneedle pretreatment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid microneedle arrays are effective devices to enhance skin delivery of peptides.

  20. Microemulsion for simultaneous transdermal delivery of benzocaine and indomethacin: in vitro and in vivo evaluation.

    Science.gov (United States)

    El Maghraby, Gamal M; Arafa, Mona F; Osman, Mohamed A

    2014-12-01

    This study investigated simultaneous transdermal delivery of indomethacin and benzocaine from microemulsion. Eucalyptus oil based microemulsion was used with Tween 80 and ethanol being employed as surfactant and cosurfactant, respectively. A microemulsion formulation comprising eucalyptus oil, polyoxyethylene sorbitan momooleate (Tween 80), ethanol and water (20:30:30:20) was selected. Indomethacin (1% w/w) and benzocaine (20% w/w) were incorporated separately or combined into this formulation before in vitro and in vivo evaluation. Application of indomethacin microemulsion enhanced the transdermal flux and reduced the lag time compared to saturated aqueous control. The same trend was evident for benzocaine microemulsion. Simultaneous application of the two drugs in microemulsion provided similar enhancement pattern. The in vivo evaluation employed the pinprick method and revealed rapid anesthesia after application of benzocaine microemulsion with the onset being 10 min and the action lasting for 50 min. For indomethacin microemulsion, the analgesic effect was recorded after 34.5 min and lasted for 70.5 min. Simultaneous application of benzocaine and indomethacin provided synergistic effect. The onset of action was achieved after 10 min and lasted for 95 min. The study highlighted the potential of microemulsion formulation in simultaneous transdermal delivery of two drugs.

  1. Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic

    Science.gov (United States)

    Feng, Shun; Zhu, Lijun; Huang, Zhisheng; Wang, Haojia; Li, Hong; Zhou, Hua; Lu, Linlin; Wang, Ying; Liu, Zhongqiu; Liu, Liang

    2017-01-01

    Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration. PMID:28670109

  2. Simultaneous, noninvasive, and transdermal extraction of urea and homocysteine by reverse iontophoresis

    Directory of Open Access Journals (Sweden)

    et al

    2011-02-01

    Full Text Available Congo Tak-Shing Ching1,2,3, Tzong-Ru Chou1, Tai-Ping Sun1,2, Shiow-Yuan Huang3, Hsiu-Li Shieh21Graduate Institute of Biomedicine and Biomedical Technology; 2Department of Electrical Engineering, National Chi Nan University, Nantou, Taiwan; 3Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan, Republic of ChinaBackground: Cardiovascular and kidney diseases are a global public health problem and impose a huge economic burden on health care services. Homocysteine, an amino acid, is associated with coronary heart disease, while urea is a harmful metabolic substance which can be used to reflect kidney function. Monitoring of these two substances is therefore very important. This in vitro study aimed to determine whether homocysteine is extractable transdermally and noninvasively, and whether homocysteine and urea can be extracted simultaneously by reverse iontophoresis.Methods: A diffusion cell incorporated with porcine skin was used for all experiments with the application of a direct current (dc and four different symmetrical biphasic direct currents (SBdc for 12 minutes via Ag/AgCl electrodes. The dc and the SBdc had a current density of 0.3 mA/cm2.Results: The SBdc has four different phase durations of 15 sec, 30 sec, 60 sec, and 180 sec. It was found that homocysteine can be transdermally extracted by reverse iontophoresis. Simultaneous extraction of homocysteine and urea by reverse iontophoresis is also possible.Conclusion: These results suggest that extraction of homocysteine and urea by SBdc are phase duration-dependent, and the optimum mode for simultaneous homocysteine and urea extraction is the SBdc with the phase duration of 60 sec.Keywords: reverse iontophoresis, homocysteine, urea, monitoring, noninvasive, transdermal

  3. Optimization of transdermal delivery using magainin pore-forming peptide

    OpenAIRE

    Kim, Yeu-Chun; Ludovice, Peter J.; Prausnitz, Mark R.

    2008-01-01

    The skin's outer layer of stratum corneum, which is a thin tissue containing multilamellar lipid bilayers, is the main barrier to drug delivery to the skin. To increase skin permeability, our previous work has shown large enhancement of transdermal permeation using a pore-forming peptide, magainin, which was formulated with N-lauroyl sarcosine (NLS) in 50% ethanol-in-PBS. Mechanistic analysis suggested that magainin and NLS can increase skin permeability by disrupting stratum corneum lipid st...

  4. Effect of stratum corneum heterogeneity, anisotropy, asymmetry and follicular pathway on transdermal penetration.

    Science.gov (United States)

    Barbero, Ana M; Frasch, H Frederick

    2017-08-28

    The impact of the complex structure of the stratum corneum on transdermal penetration is not yet fully described by existing models. A quantitative and thorough study of skin permeation is essential for chemical exposure assessment and transdermal delivery of drugs. The objective of this study is to analyze the effects of heterogeneity, anisotropy, asymmetry, follicular diffusion, and location of the main barrier of diffusion on percutaneous permeation. In the current study, the solution of the transient diffusion through a two-dimensional-anisotropic brick-and-mortar geometry of the stratum corneum is obtained using the commercial finite element program COMSOL Multiphysics. First, analytical solutions of an equivalent multilayer geometry are used to determine whether the lipids or corneocytes constitute the main permeation barrier. Also these analytical solutions are applied for validations of the finite element solutions. Three illustrative compounds are analyzed in these sections: diethyl phthalate, caffeine and nicotine. Then, asymmetry with depth and follicular diffusion are studied using caffeine as an illustrative compound. The following findings are drawn from this study: the main permeation barrier is located in the lipid layers; the flux and lag time of diffusion through a brick-and-mortar geometry are almost identical to the values corresponding to a multilayer geometry; the flux and lag time are affected when the lipid transbilayer diffusivity or the partition coefficients vary with depth, but are not affected by depth-dependent corneocyte diffusivity; and the follicular contribution has significance for low transbilayer lipid diffusivity, especially when flux between the follicle and the surrounding stratum corneum is involved. This study demonstrates that the diffusion is primarily transcellular and the main barrier is located in the lipid layers. Published by Elsevier B.V.

  5. Methylphenidate Transdermal System in Adult ADHD and Impact on Emotional and Oppositional Symptoms

    Science.gov (United States)

    Marchant, Barrie K.; Reimherr, Frederick W.; Robison, Reid J.; Olsen, John L.; Kondo, Douglas G.

    2011-01-01

    Objective: This trial evaluated the effect of methylphenidate transdermal system (MTS) on the full spectrum of adult symptoms (attention-disorganization, hyperactivity-impulsivity, emotional dysregulation [ED], and oppositional-defiant disorder [ODD]) found in this disorder. Method: This placebo-controlled, double-blind, flexible-dose, crossover…

  6. Current advances in transdermal delivery of drugs for alzheimer's disease

    OpenAIRE

    Thuy Trang Nguyen; Vo Van Giau; Tuong Kha Vo

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the...

  7. Nanoethosomal transdermal delivery of vardenafil for treatment of erectile dysfunction: optimization, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Fahmy UA

    2015-11-01

    Full Text Available Usama A Fahmy Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Vesicular drug delivery systems have recently gained attention as a way of improving dosing accuracy for drugs with poor transdermal permeation. The current study focuses on utilization of the natural biocompatible vesicles to formulate vardenafil nanoethosomes (VRD-NE, for the enhancement of their transdermal permeation and bioavailability. Fifteen formulations were prepared by thin-layer evaporation technique according to Box–Behnken design to optimize formulation variables. The effects of lipid composition, sonication time, and ethanol concentration on particle size and encapsulation efficiency were studied. The diffusion of vardenafil (VRD from the prepared nanoethosomes specified by the design was carried out using automated Franz diffusion cell apparatus. The optimized formula was investigated for in vivo pharmacokinetic parameters compared with oral VRD suspension. Confocal laser scanning microscopy images were used to confirm enhanced diffusion release of VRD in rat skin. The results showed that the optimized formula produced nanoethosomes with an average size of 128 nm and an entrapment efficiency of 76.23%. VRD-NE provided a significant improvement in permeation with an enhancement ratio of 3.05-fold for a film made with optimally formulated VRD-NE compared with a film made with VRD powder. The transdermal bioavailability of VRD from the nanoethosome film was approximately twofold higher than the oral bioavailability from an aqueous suspension. VRD-NE thus provide a promising transdermal drug delivery system. As a result, management of impotence for a longer duration could be achieved with a reduced dosage rate that improves patient tolerability and compliance for the treatment of erectile dysfunction.Keywords: Box–Behnken design, impotence, vesicles, nanoparticles

  8. In vitro transdermal delivery of caffeine, theobromine, theophylline and catechin from extract of Guarana, Paullinia Cupana.

    Science.gov (United States)

    Heard, Charles M; Johnson, Sarah; Moss, Gary; Thomas, Chris P

    2006-07-06

    Extracts of guarana (Paullinia cupana) feature as putatively stimulating ingredients in a number of foods, drinks and dietary/herbal supplements. The objective of this work was to investigate in vitro the transdermal delivery of the major pharmacologically active compounds contained in guarana extract. Saturated solutions of guarana were prepared in polyethylene glycol 400 (PEG400), propylene glycol (PG) and H(2)O at 32 degrees C. Guarana extract was also formulated in Duro-tak 2287 transdermal adhesive in a range of concentrations and the diffusional release was determined in addition to adhesive properties. Transdermal delivery across full thickness pig ear skin was investigated in vitro using Franz-type diffusion cells, with reverse-phase HPLC being used for the quantification of the permeation of theobromine (TB), theophylline (TP), (+)-catechin (C) and caffeine (CF). Based upon a combination of release and adhesive property data a patch containing 5.55 mg guarana extract cm(-2) was deemed optimal. The general trend for the delivery of the 4 analytes was: water >5.55 mg cm(-2) patch approximately PG>PEG400. For CF the greatest steady state flux was obtained from the water vehicle: 19 microg cm(-2)h(-1), with approximately 420 microg cm(-2) permeating after 24h. This was some 6x times more than from the drug-in-adhesive patch and 10x greater than PG, a well-known penetration enhancer, and 50x that of the 'regular' excipient PEG400. A water vehicle also provided the greatest delivery of TB (0.45 microg cm(-2) h(-1)), TP (0.022 microg cm(-2) h(-1)), and C (0.10 microg cm(-2) h(-1)). An inverse relationship was noted between lipophilicity and k(p) in each vehicle. The simultaneous transdermal delivery of the major actives of guarana was established, with permeation rates being highly concentration and vehicle dependent.

  9. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, A.

    2006-01-01

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137 C s) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  10. Transdermic absorption of Melagenina II; Evaluacion de la absorcion transdermica de la Melagenina II

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, I; Martinez Lopez, B; Ruiz Pena, M; Caso Pena, R [Centro de Isotopos, La Habana (Cuba)

    1998-12-31

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with {sup 125I} by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ({sup 125I}) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  11. Novel diffusion cell for in vitro transdermal permeation, compatible with automated dynamic sampling

    NARCIS (Netherlands)

    Bosman, I.J; Lawant, A.L; Avegaart, S.R.; Ensing, K; de Zeeuw, R.A

    The development of a new diffusion cell for in vitro transdermal permeation is described. The so-called Kelder cells were used in combination with the ASPEC system (Automatic Sample Preparation with Extraction Columns), which is designed for the automation of solid-phase extractions (SPE). Instead

  12. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Directory of Open Access Journals (Sweden)

    Marco Antonio Botelho

    2014-02-01

    Full Text Available OBJECTIVE: To determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10% combined with estriol (0.1% + estradiol (0.25% for relieving postmenopausal symptoms. METHODS: A total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. RESULTS: An improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05 after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04±4.9 to 57.12±4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. CONCLUSION: The nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women.

  13. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    International Nuclear Information System (INIS)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan; Almeida, Jackson Guedes; Quintans Junior, Lucindo

    2014-01-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  14. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan, E-mail: marcobotelho@pq.cnpq.br [Universidade Potiguar, Natal, RN (Brazil). Lab. de Nanotecnologia; Fechine, Pierre [Universidade Federal do Ceara (GQMAT/UFCE), Fortaleza, CE (Brazil). Dept. de Quimica Analitica. Grupo Avancado de Biomateriais em Quimica; Queiroz, Danilo Caldas de [Instituto Federal de Ciencia e Tecnologia (IFCT), Fortaleza, CE (Brazil). Lab. de Biotecnologia; Ruela, Ronaldo [Instituto de Biotecnologia Aplicada (INBIOS), Fortaleza, CE (Brazil); Almeida, Jackson Guedes [Universidade Federal do Vale de Sao Francisco (UNIVALE), Petrolina, PE (Brazil). Fac. de Ciencias Farmaceuticas; Quintans Junior, Lucindo [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil). Dept. de Fisiologia

    2014-06-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  15. Formulation Design and Development of a Unani Transdermal Patch for Antiemetic Therapy and Its Pharmaceutical Evaluation

    Directory of Open Access Journals (Sweden)

    Mohd Nauman Saleem

    2016-01-01

    Full Text Available The Transdermal Drug Delivery System (TDDS is one of the novel routes for systemic delivery of drugs through intact skin. A transdermal patch (TP is a medicated patch that is placed on skin for delivery of medication through skin into the blood stream. The aim of present study was to formulate and evaluate a Unani transdermal patch that could be used for antiemetic therapy. The incorporation of Unani ingredients, namely, Khardal (Brassica nigra, Zanjabeel (Zingiber officinale, Podina (Mentha arvensis, and Sirka (Vinegar were envisaged. The TP was prepared by solvent evaporation technique and was evaluated for organoleptic characteristics and other physicochemical properties, such as thickness, weight uniformity, folding endurance, moisture content, drug content, and tolerability and acceptability of patch. The in vitro permeation study of the patch was carried out through Franz diffusion cell using egg shell membrane as barrier membrane. Phosphate buffer pH 7.4 was used as dissolution medium and the temperature was maintained at 37 ± 1°C. The in vitro permeation study of the prepared TP indicated a time dependent increase in drug release throughout the study. The percentage of cumulative drug release was found to be 77.38% in 24 hours. The study shows a new approach to work in Unani pharmaceutics.

  16. Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability.

    Science.gov (United States)

    Kassem, Mohammed Ali; Aboul-Einien, Mona Hassan; El Taweel, Mai Magdy

    2018-04-30

    Felodipine has a very low bioavailability due to first-pass metabolism. The aim of this study was to enhance its bioavailability by transdermal application. Felodipine-loaded transferosomes were prepared by thin-film hydration using different formulation variables. An optimized formula was designed using statistical experimental design. The independent variables were the used edge activator, its molar ratio to phosphatidylcholine, and presence or absence of cholesterol. The responses were entrapment efficiency of transferosomes, their size, polydispersity index, zeta potential, and percent drug released after 8 h. The optimized formula was subjected to differential scanning calorimetry studies and its stability on storage at 4°C for 6 months was estimated. This formula was improved by incorporation of different permeation enhancers where ex vivo drug flux through mice skin was estimated and the best improved formula was formulated in a gel and lyophilized. The prepared gel was subjected to in vivo study using Plendil® tablets as a reference. According to the calculated desirability, the optimized transferosome formula was that containing sodium deoxycholate as edge activator at 5:1 M ratio to phosphatidylcholine and no cholesterol. The thermograms of this formula indicated the incorporation of felodipine inside the prepared vesicles. None of the tested parameters differed significantly on storage. The lyophilized gel of labrasol-containing formula was chosen for in vivo study. The relative bioavailability of felodipine from the designed gel was 1.7. In conclusion, topically applied lyophilized gel containing felodipine-loaded transferosomes is a promising transdermal delivery system to enhance its bioavailability.

  17. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Directory of Open Access Journals (Sweden)

    Hong X

    2013-09-01

    Full Text Available Xiaoyun Hong,1,2,* Liangming Wei,3,* Fei Wu,2,* Zaozhan Wu,2 Lizhu Chen,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, Shanghai, People's Republic of China; 2School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China; 3Research Institute of Micro/Nano Science and Technology, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. Keywords: microneedle, dissolving, biodegradable, sustained release

  18. Use of rivastigmine transdermal patch in the treatment of Alzheimer's disease.

    Science.gov (United States)

    Winblad, Bengt; Machado, João Carlos

    2008-12-01

    Cholinesterase inhibitors such as rivastigmine and donepezil exhibit a dose-response relationship, with higher doses of the drugs demonstrating greater efficacy. Transdermal patches provide smooth continuous drug delivery, with the potential to offer efficacious levels of drug exposure while avoiding the peaks and troughs associated with side effects. As a small, lipophilic and hydrophilic molecule, rivastigmine (C14H22N2O2) is chemically well-suited to transdermal delivery. The technology underlying the rivastigmine patch allows it to be discreetly small and thin. The target dose 9.5 mg/24 h rivastigmine patch has a diameter of just 3.5 cm and a surface area of 10 cm2. A large randomized controlled trial has demonstrated that the target dose 9.5 mg/24 h rivastigmine patch provided similar efficacy to the highest rivastigmine capsule doses, yet with three times fewer reports of nausea and vomiting. Thus, the rivastigmine patch enables quick and easy access to high dose efficacy. The skin tolerability profile is good, and the patch has demonstrated excellent adhesion. The apparent success of rivastigmine patch, in terms of clinical utility and patient acceptability, suggests that it may mark the next generation of dementia treatment.

  19. Electroporation-delivered transdermal neostigmine in rats: equivalent action to intravenous administration.

    Science.gov (United States)

    Berkó, Szilvia; Szűcs, Kálmán F; Balázs, Boglárka; Csányi, Erzsébet; Varju, Gábor; Sztojkov-Ivanov, Anita; Budai-Szűcs, Mária; Bóta, Judit; Gáspár, Róbert

    2016-01-01

    Transdermal electroporation has become one of the most promising noninvasive methods for drug administration, with greatly increased transport of macromolecules through the skin. The cecal-contracting effects of repeated transdermal electroporation delivery and intravenous administration of neostigmine were compared in anesthetized rats. The cecal contractions were detected with implantable strain gauge sensors, and the plasma levels of neostigmine were followed by high-performance liquid chromatography. Both intravenously and EP-administered neostigmine (0.2-66.7 μg/kg) increased the cecal contractions in a dose-dependent manner. For both the low doses and the highest dose, the neostigmine plasma concentrations were the same after the two modes of administration, while an insignificantly higher level was observed at a dose of 20 μg/kg after intravenous administration as compared with the electroporation route. The contractile responses did not differ significantly after the two administration routes. The results suggest that electroporation-delivered neostigmine elicits action equivalent to that observed after intravenous administration as concerning both time and intensity. Electroporation permits the delivery of even lower doses of water-soluble compounds through the skin, which is very promising for clinical practice.

  20. Patient-controlled analgesia : therapeutic interventions using transdermal electro-activated and electro-modulated drug delivery

    NARCIS (Netherlands)

    Indermun, S.; Choonara, Y.E.; Kumar, P.; Du Toit, L.C.; Modi, G.; Luttge, R.; Pillay, V.

    2014-01-01

    Chronic pain poses a major concern to modern medicine and is frequently undertreated, causing suffering and disability. Patient-controlled analgesia, although successful, does have limitations. Transdermal delivery is the pivot to which analgesic research in drug delivery has centralized, especially

  1. The liquid-glass-jamming transition in disordered ionic nanoemulsions.

    Science.gov (United States)

    Braibanti, Marco; Kim, Ha Seong; Şenbil, Nesrin; Pagenkopp, Matthew J; Mason, Thomas G; Scheffold, Frank

    2017-11-08

    In quenched disordered out-of-equilibrium many-body colloidal systems, there are important distinctions between the glass transition, which is related to the onset of nonergodicity and loss of low-frequency relaxations caused by crowding, and the jamming transition, which is related to the dramatic increase in elasticity of the system caused by the deformation of constituent objects. For softer repulsive interaction potentials, these two transitions become increasingly smeared together, so measuring a clear distinction between where the glass ends and where jamming begins becomes very difficult or even impossible. Here, we investigate droplet dynamics in concentrated silicone oil-in-water nanoemulsions using light scattering. For zero or low NaCl electrolyte concentrations, interfacial repulsions are soft and longer in range, this transition sets in at lower concentrations, and the glass and the jamming regimes are smeared. However, at higher electrolyte concentrations the interactions are stiffer, and the characteristics of the glass-jamming transition resemble more closely the situation of disordered elastic spheres having sharp interfaces, so the glass and jamming regimes can be distinguished more clearly.

  2. Vitamin E nanoemulsion activity on stored red blood cells.

    Science.gov (United States)

    Silva, C A L; Azevedo Filho, C A; Pereira, G; Silva, D C N; Castro, M C A B; Almeida, A F; Lucena, S C A; Santos, B S; Barjas-Castro, M L; Fontes, A

    2017-06-01

    Stored red blood cells (RBCs) undergo numerous changes that have been termed RBC storage lesion, which can be related to oxidative damage. Vitamin E is an important antioxidant, acting on cell lipids. Thus, this study aimed to investigate vitamin E activity on stored RBCs. We prepared a vitamin E nanoemulsion that was added to RBC units and stored at 4 °C. Controls, without vitamin E, were kept under the same conditions. Reactive oxygen species (ROS) production was monitored for up to 35 days of storage. RBC elasticity was also evaluated using an optical tweezer system. Vitamin E-treated samples presented a significant decrease in ROS production. Additionally, the elastic constant for vitamin E-treated RBCs did not differ from the control. Vitamin E decreased the amount of ROS in stored RBCs. Because vitamin E acts on lipid oxidation, results suggest that protein oxidation should also be considered a key factor for erythrocyte elastic properties. Thus, further studies combining vitamin E with protein antioxidants deserve attention, aiming to better preserve overall stored RBC properties. © 2017 British Blood Transfusion Society.

  3. Safety and efficacy of transdermal buprenorphine versus oral tramadol for the treatment of post-operative pain following surgery for fracture neck of femur: A prospective, randomised clinical study.

    Science.gov (United States)

    Desai, Sameer N; Badiger, Santhoshi V; Tokur, Shreesha B; Naik, Prashanth A

    2017-03-01

    Transdermal buprenorphine, which is used in chronic pain management, has rarely been studied for use in acute pain management. The aim of this study was to compare the safety and efficacy of transdermal buprenorphine patch to oral tramadol for post-operative analgesia, following proximal femur surgeries. Fifty adult patients undergoing surgery for hip fracture under spinal anaesthesia were included in this study. One group (Group TDB) received transdermal buprenorphine 10 mcg/h patch applied a day before the surgery and other group received oral tramadol 50 mg three times a day for analgesia (Group OT). They were allowed to take diclofenac and paracetamol tablets for rescue analgesia. Pain scores at rest, on movement, rescue analgesic requirement and side effects were compared between the groups over 7 days. Chi-square and independent sample t -test were used for categorical and continuous variables, respectively. Resting pain scores and pain on movement were significantly lower in TDB Group on all 7 days starting from 24 h post-operatively. Rescue analgesic requirement was significantly lower in TDB Group compared to OT Group. All the patients needed rescue analgesic in OT Group whereas 68% of the patients needed the same in TDB Group. Incidence of vomiting was less and satisfaction scores were much higher in TDB Group as compared to OT Group (79% vs. 66%, P pain after 24 hours, with fewer side effects when compared to oral tramadol.

  4. Computational and experimental model of transdermal iontophorethic drug delivery system.

    Science.gov (United States)

    Filipovic, Nenad; Saveljic, Igor; Rac, Vladislav; Graells, Beatriz Olalde; Bijelic, Goran

    2017-11-30

    The concept of iontophoresis is often applied to increase the transdermal transport of drugs and other bioactive agents into the skin or other tissues. It is a non-invasive drug delivery method which involves electromigration and electroosmosis in addition to diffusion and is shown to be a viable alternative to conventional administration routs such as oral, hypodermic and intravenous injection. In this study we investigated, experimentally and numerically, in vitro drug delivery of dexamethasone sodium phosphate to porcine skin. Different current densities, delivery durations and drug loads were investigated experimentally and introduced as boundary conditions for numerical simulations. Nernst-Planck equation was used for calculation of active substance flux through equivalent model of homogeneous hydrogel and skin layers. The obtained numerical results were in good agreement with experimental observations. A comprehensive in-silico platform, which includes appropriate numerical tools for fitting, could contribute to iontophoretic drug-delivery devices design and correct dosage and drug clearance profiles as well as to perform much faster in-silico experiments to better determine parameters and performance criteria of iontophoretic drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Efficacy of biorhythmic transdermal combined hormone treatment in relieving climacteric symptoms: a pilot study

    Directory of Open Access Journals (Sweden)

    B Formby

    2011-02-01

    Full Text Available B Formby, F SchmidtThe Rasmus Institute for Medical Research, Program in Reproductive Endocrinology, Santa Barbara, CA, USAObjective: To evaluate the efficacy of a combination of bioidentical combined 17β-estradiol and progesterone transdermal delivery system (lipophilic emulsion-type base to relieve climacteric symptoms. The hormonal replacement was given during a period of 6 months at four different cyclic doses to mimic the normal ovary secretory pattern.Design: An open, randomized, comparative, between-patient trial conducted over 6 months in 29 menopausal women with climacteric symptoms assessed with the Kupperman index at baseline and during treatments. Saliva and serum values of 17β-estradiol and progesterone were quantitated before treatment and after 3 and 6 months. Pharmacokinetic data following transdermal administration of 17β-estradiol (0.3 mg, daily and progesterone (100 mg, daily were calculated from saliva levels using high-performance liquid chromatography analysis.Results: Improvement in climacteric symptoms was reported in 93% of women evaluated before and after 3 and 6 months of treatment. Values of saliva 17β-estradiol increased after 6 months from 0.6 ± 0.3 pg/mL to 14.1 ± 3.3 pg/mL, and the values of serum 17β-estradiol increased from 3.3 ± 2.8 pg/mL to 80.6 ± 21.9 pg/mL. Of responders, 88% characterized symptom relief as complete. No adverse health-related events were attributed to the bioidentical hormone therapy. Time to maximum saliva concentrations (Tmax, in all experimental cases, was observed after 6 hours. Baseline values were reached within 24 hours, indicating a diurnal rhythm of 17β-estradiol seen in normally cyclic women over the 24-hour period, ie, its daily biological rhythm.Conclusion: Percutaneous absorption of 17β-estradiol, as well as the absorption of progesterone, was associated with relief of climacteric symptoms. The cyclical transdermal delivery of combined bioidentical hormones may be

  6. Electroporation-delivered transdermal neostigmine in rats: equivalent action to intravenous administration

    Directory of Open Access Journals (Sweden)

    Berkó S

    2016-05-01

    Full Text Available Szilvia Berkó,1,* Kálmán F Szűcs,2,* Boglárka Balázs,1,3 Erzsébet Csányi,1 Gábor Varju,4 Anita Sztojkov-Ivanov,2 Mária Budai-Szűcs,1 Judit Bóta,2 Róbert Gáspár2 1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Szeged, Szeged, Hungary; 2Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary; 3Gedeon Richter Plc., Budapest, 4Dr Derm Clinic of Anti-Aging Dermatology, Aesthetic Laser and Plastic Surgery, Budapest, Hungary *These authors contributed equally to this work Purpose: Transdermal electroporation has become one of the most promising noninvasive methods for drug administration, with greatly increased transport of macromolecules through the skin. The cecal-contracting effects of repeated transdermal electroporation delivery and intravenous administration of neostigmine were compared in anesthetized rats. Methods: The cecal contractions were detected with implantable strain gauge sensors, and the plasma levels of neostigmine were followed by high-performance liquid chromatography. Results: Both intravenously and EP-administered neostigmine (0.2–66.7 µg/kg increased the cecal contractions in a dose-dependent manner. For both the low doses and the highest dose, the neostigmine plasma concentrations were the same after the two modes of administration, while an insignificantly higher level was observed at a dose of 20 µg/kg after intravenous administration as compared with the electroporation route. The contractile responses did not differ significantly after the two administration routes. Conclusion: The results suggest that electroporation-delivered neostigmine elicits action equivalent to that observed after intravenous administration as concerning both time and intensity. Electroporation permits the delivery of even lower doses of water-soluble compounds through the skin, which is very promising for clinical practice. Keywords: transdermal

  7. A prospective randomized comparative study of the effects of intranasal and transdermal 17 β-estradiol on postmenopausal symptoms and vaginal cytology

    Directory of Open Access Journals (Sweden)

    Odabasi A

    2007-01-01

    Full Text Available Context: Investigating the adverse effects of oral hormone replacement therapy (HRT, the clinical effectiveness of alternative combinations and route of administrations. Aim: To compare the effects of intranasal and transdermal 17β-estradiol combined with vaginal progesterone on vasomotor symptoms and vaginal cytology. Settings and Design: A 12-week, prospective, randomized comparative study was conducted between July 2005 and September 2006. Materials and Methods: Eighty postmenopausal women aged between 42-57 years, who had scores of ≥1.7 on the menopause rating scale-I (MRS-I items "1-6", were randomly assigned to receive intranasal (300 µg/day, n =40 or transdermal (50 µg/day, n =40 17β-estradiol continuously. All patients also received a vaginal progesterone gel twice weekly. Vasomotor symptoms were evaluated at weeks 0, 4, 8 and 12. Vaginal maturation index (VMI was evaluated at weeks 0 and 12 of the study. Statistical Analyses: The Mann-Whitney U and the Wilcoxon tests were used. P < 0.05 was regarded as significant. Results: Thirty-two women in the intranasal and 29 women in the transdermal group completed the study. The total score of the MRS, the sum-scores of Factor 1 "HOT FLUSHES" and Factor 2 "PSYCHE" significantly decreased in both groups at week 4. Factor 3 "ATROPHY" scores significantly decreased only in the transdermal group at week 12. The VMI showed no changes within and between the two groups at the end of the study. Conclusion: Intranasal and transdermal 17β-estradiol combined with vaginal progesterone gel as a continuous HRT caused a similar decrease in vasomotor symptoms but did not have any significant effect on VMI after 12 weeks of treatment in this study population.

  8. Expanding the domain of drug delivery for HIV prevention: exploration of the transdermal route.

    Science.gov (United States)

    Puri, Ashana; Sivaraman, Arunprasad; Zhang, Wei; Clark, Meredith R; Banga, Ajay K

    2017-01-01

    Constant efforts for HIV prevention using antiretroviral drugs, pre- and postexposure prophylactic agents, and microbicides are being made by researchers. Drug-delivery systems such as oral tablets and coitally dependent vaginal gels are short acting, require daily application, and are associated with user adherence issues, whereas the coitally independent systems such as injectables and biodegradable implants are long acting, lasting several months, during which time the termination of prophylaxis is impractical in case of adverse effects. An effective drug-delivery system to be used for an intermediate duration, if available, would be an attractive alternative option for users in terms of adherence. Transdermal delivery systems, overcoming most of the limitations of the other routes of administration and aiming to provide sustained delivery of drugs through skin, may be explored for HIV prevention. Passive and physical enhancement techniques may be designed strategically to improve the transdermal delivery of HIV preventive agents.

  9. Film forming systems for topical and transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Kashmira Kathe

    2017-11-01

    Full Text Available Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system's ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier. Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance. For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance. In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions along with their evaluation parameters have also been reviewed.

  10. Development of antimigraine transdermal delivery systems of pizotifen malate.

    Science.gov (United States)

    Serna-Jiménez, C E; del Rio-Sancho, S; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; López-Castellano, A; Merino, V

    2015-08-15

    The aim of this study was to develop and evaluate a transdermal delivery system of pizotifen malate. Pizotifen is frequently used in the preventive treatment of migraine, but is also indicated in eating disorders. In the course of the project, the effects of chemical enhancers such as ethanol, 1,8-cineole, limonene, azone and different fatty acids (decanoic, decenoic, dodecanoic, linoleic and oleic acids) were determined, first using a pizotifen solution. Steady state flux, diffusion and partition parameters were estimated by fitting the Scheuplein equation to the data obtained. Among the chemical enhancers studied, decenoic acid showed the highest enhancement activity, which seemed to be due to the length of its alkyl chain and unsaturation at the 9th carbon. The influence of iontophoresis and the involvement of electrotransport in said process was determined. The absorption profile obtained with iontophoresis was similar to that obtained with fatty acids and terpenes, though skin deposition of the drug was lower with the former. Transdermal delivery systems (TDS) of pizotifen were manufactured by including chemical enhancers, decenoic acid or oleic acid, and were subsequently characterized. When the results obtained with solutions were compared with those obtained with the TDS, a positive enhancement effect was observed with the latter with respect to the partitioning and diffusion of the drug across the skin. Our findings endorse the suitability of our TDS for delivering therapeutic amounts of pizotifen malate. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Methylphenidate Transdermal System in Adults with Past Stimulant Misuse: An Open-Label Trial

    Science.gov (United States)

    McRae-Clark, Aimee L.; Brady, Kathleen T.; Hartwell, Karen J.; White, Kathleen; Carter, Rickey E.

    2011-01-01

    Objective: This 8-week, open-label trial assessed the efficacy of methylphenidate transdermal system (MTS) in 14 adult individuals diagnosed with ADHD and with a history of stimulant misuse, abuse, or dependence. Method: The primary efficacy endpoint was the Wender-Reimherr Adult ADHD Scale (WRAADS), and secondary efficacy endpoints included the…

  12. Inhibited biofilm formation and improved antibacterial activity of a novel nanoemulsion against cariogenic Streptococcus mutans in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Li YF

    2015-01-01

    Full Text Available Yun Fei Li,1,2,* Hong Wu Sun,1,2,* Rong Gao,1–3,* Kai Yun Liu,1,2 Hua Qi Zhang,4 Qi Huan Fu,1,2 Sheng Li Qing,1,2 Gang Guo,1,2 Quan Ming Zou1,2,* 1National Engineering Research Center of Immunological Products, 2Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, 3Department of Biomedical Engineering, Third Military Medical University of Chinese PLA, Chongqing, People’s Republic of China; 4Wanzhou Institute for Food and Drug Control of Chongqing, Wanzhou, Chongqing, People’s Republic of China *These authors contributed equally to this work Abstract: The aim of this study was to prepare a novel nanoemulsion loaded with poorly water-soluble chlorhexidine acetate (CNE to improve its solubility, and specifically enhance the antimicrobial activity against Streptococcus mutans in vitro and in vivo. In this study, a novel CNE nanoemulsion with an average size of 63.13 nm and zeta potential of −67.13 mV comprising 0.5% CNE, 19.2% Tween 80, 4.8% propylene glycol, and 6% isopropyl myristate was prepared by the phase inversion method. Important characteristics such as the content, size, zeta potential, and pH value of CNE did not change markedly, stored at room temperature for 1 year. Also, compared with chlorhexidine acetate water solution (CHX, the release profile results show that the CNE has visibly delayed releasing effect in both phosphate-buffered saline and artificial saliva solutions (P<0.005. The minimum inhibitory concentration and minimum bactericidal concentration of CHX for S. mutans (both 0.8 µg/mL are both two times those of CNE (0.4 µg/mL. Besides, CNE of 0.8 µg/mL exhibited fast-acting bactericidal efficacy against S. mutans, causing 95.07% death within 5 minutes, compared to CHX (73.33% (P<0.01. We observed that 5 mg/mL and 2 mg/mL CNE were both superior to CHX, significantly reducing oral S. mutans numbers and reducing the severity of carious lesions in Sprague Dawley rats (P<0.05, in an in vivo test

  13. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum

    Directory of Open Access Journals (Sweden)

    Ahlam Zaid Alkilani

    2015-10-01

    Full Text Available The skin offers an accessible and convenient site for the administration of medications. To this end, the field of transdermal drug delivery, aimed at developing safe and efficacious means of delivering medications across the skin, has in the past and continues to garner much time and investment with the continuous advancement of new and innovative approaches. This review details the progress and current status of the transdermal drug delivery field and describes numerous pharmaceutical developments which have been employed to overcome limitations associated with skin delivery systems. Advantages and disadvantages of the various approaches are detailed, commercially marketed products are highlighted and particular attention is paid to the emerging field of microneedle technologies.

  14. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum

    Science.gov (United States)

    Zaid Alkilani, Ahlam; McCrudden, Maelíosa T.C.; Donnelly, Ryan F.

    2015-01-01

    The skin offers an accessible and convenient site for the administration of medications. To this end, the field of transdermal drug delivery, aimed at developing safe and efficacious means of delivering medications across the skin, has in the past and continues to garner much time and investment with the continuous advancement of new and innovative approaches. This review details the progress and current status of the transdermal drug delivery field and describes numerous pharmaceutical developments which have been employed to overcome limitations associated with skin delivery systems. Advantages and disadvantages of the various approaches are detailed, commercially marketed products are highlighted and particular attention is paid to the emerging field of microneedle technologies. PMID:26506371

  15. The impact of vaporized nanoemulsions on ultrasound-mediated ablation.

    Science.gov (United States)

    Zhang, Peng; Kopechek, Jonathan A; Porter, Tyrone M

    2013-01-01

    The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm(2)) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating

  16. Nano-emulsion based on acrylic acid ester co-polymer derivatives as an efficient pre-tanning agent for buffalo hide

    OpenAIRE

    El-Monem, Farouk Abd; Hussain, Ahmed I.; Nashy, EL-Shahat H.A.; El-Wahhab, Hamada Abd; Naser, Abd El-Rahman M.

    2014-01-01

    Acrylic copolymer nanoemulsions were prepared based on methyl methacrylate (MMA) and butyl acrylate (BA). The prepared acrylic copolymer emulsions were characterized using solid content, rheological properties, molecular weight, MFFT and TEM. The prepared polymers were used as pre-tanning of the depickled hide to enhance the physico-mechanical properties of tanned leather. The key parameters which affect exhaustion and fixation of chrome tan as well as shrinkage temperature of the tanned leat...

  17. A comparative study on the transdermal penetration effect of gaseous and aqueous plasma reactive species

    Science.gov (United States)

    Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei

    2018-02-01

    To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.

  18. Three-factor response surface optimization of nano-emulsion formation using a microfluidizer.

    Science.gov (United States)

    Sadeghpour Galooyak, Saeed; Dabir, Bahram

    2015-05-01

    Emulsification of sunflower oil in water by microfluidization was studied. Response surface methodology (RSM) and the central composite design (CCD) were applied to determine the effects of certain process parameters on performance of the apparatus for optimization of nano-emulsion fabrication. Influence of pressure, oil content and number of passes on the disruption of emulsions was studied. Quadratic multiple regression models were chosen for two available responses, namely Sauter mean diameter (SMD) and Polydispersity index (PdI). Analysis of variance (ANOVA) showed a high coefficient of determination (R(2)) value for both responses, confirming adjustment of the models with experimental data. The SMD and the PdI decreased as the pressure of emulsification increased from 408 to 762.3 bar for the oil content of 5 vol% and from 408 to 854.4 bar for the oil content of 13 vol%, and thereafter, increasing the pressure up to 952 bar led to increasing the both responses. The results implied that laminar elongational flow is the alternative disruption mechanism in addition to inertia in turbulence flow, especially at low treatment pressures. Both of responses improved with increase in number of passes from 2 to 4 cycles. The oil content depicted low effect on responses; however, interaction of this parameter with other regressors pointed remarkable impact. Also, the effect of pressure on Kolmogorov micro-scale was studied. The results implied that Kolmogorov equation did not take into account the over-processing and was applicable only for disruption of droplets in the inertial turbulent flow.

  19. The effect of transdermal nicotine patches on sleep and dreams.

    Science.gov (United States)

    Page, F; Coleman, G; Conduit, R

    2006-07-30

    This study was undertaken to determine the effect of 24-h transdermal nicotine patches on sleep and dream mentation in 15 smokers aged 20 to 33. Utilising a repeated measures design, it was found that more time awake and more ASDA micro-arousals occurred while wearing the nicotine patch compared to placebo. Also, the percentage of REM sleep decreased, but REM latency and the proportion of time spent in NREM sleep stages did not change significantly. Dream reports containing visual imagery, visual imagery ratings and the number of visualizable nouns were significantly greater from REM compared to Stage 2 awakenings, regardless of patch condition. However, a general interaction effect was observed. Stage 2 dream variables remained equivalent across nicotine and placebo conditions. Within REM sleep, more dream reports containing visual imagery occurred while wearing the nicotine patch, and these were rated as more vivid. The greater frequency of visual imagery reports and higher imagery ratings specifically from REM sleep suggests that previously reported dreaming side effects from 24-h nicotine patches may be specific to REM sleep. Combined with previous animal studies showing that transdermally delivered nicotine blocks PGO activity in REM sleep, the current results do no appear consistent with PGO-based hypotheses of dreaming, such as the Activation-Synthesis (AS) or Activation, Input and Modulation (AIM) models.

  20. Carbon nanotubes buckypapers for potential transdermal drug delivery

    International Nuclear Information System (INIS)

    Schwengber, Alex; Prado, Héctor J.; Zilli, Darío A.; Bonelli, Pablo R.

    2015-01-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen

  1. Carbon nanotubes buckypapers for potential transdermal drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Schwengber, Alex [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Prado, Héctor J. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Zilli, Darío A. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Bonelli, Pablo R. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); and others

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen.

  2. Evaluation of the Percutaneous Absorption of Ketamine HCl, Gabapentin, Clonidine HCl, and Baclofen, in Compounded Transdermal Pain Formulations, Using the Franz Finite Dose Model.

    Science.gov (United States)

    Bassani, August S; Banov, Daniel

    2016-02-01

    This study evaluates the ability of four commonly used analgesics (ketamine HCl, gabapentin, clonidine HCl, and baclofen), when incorporated into two transdermal compounding bases, Lipoderm and Lipoderm ActiveMax, to penetrate human cadaver trunk skin in vitro, using the Franz finite dose model. In vitro experimental study. Methods. Ketamine HCl 5% w/w, gabapentin 10% w/w, clonidine HCl 0.2% w/w, and baclofen 2% w/w were compounded into two transdermal bases, Lipoderm and Lipoderm ActiveMax. Each compounded drug formulation was tested on skin from three different donors and three replicate skin sections per donor. The Franz finite dose model was used in this study to evaluate the percutaneous absorption and distribution of drugs within each formulation. Rapid penetration to peak flux was detected for gabapentin and baclofen at approximately 1 hour after application. Clonidine HCl also had a rapid penetration to peak flux occurring approximately 1 hour after application and had a secondary peak at approximately 40 hours. Ketamine HCl exhibited higher overall absorption rates than the other drugs, and peaked at 6–10 hours. Similar patterns of drug distribution within the skin were also observed using both transdermal bases. This study suggests that the combination of these 4 analgesic drugs can be successfully delivered transdermally, using either Lipoderm or Lipoderm ActiveMax. Compounded transdermal drug preparations may then provide physicians with an alternative to traditional oral pain management regimens that can be personalized to the specific patient with the potential for enhanced pain control.

  3. Influence of electrical and chemical factors on transdermal iontophoretic delivery of three diclofenac salts.

    Science.gov (United States)

    Fang, J Y; Wang, R J; Huang, Y B; Wu, P C; Tsai, Y H

    2001-04-01

    The aim of this present study was to investigate the in vitro transdermal iontophoretic delivery of three diclofenac salts--diclofenac sodium (DFS), diclofenac potassium (DFP), and diclofenac diethylammonium (DFD). A series of physicochemical and electrical variables which might affect iontophoretic permeation of diclofenac salts was studied. Application of 0.3 mA/cm2 current density significantly increased the transdermal flux of diclofenac salts as compared to passive transport. The iontophoretic enhancement increased in the order of DFS>DFP>DFD. The permeability coefficient of diclofenac salts all decreased with increasing donor concentration during iontophoresis. The addition of buffer ions and salt ions such as NaCl, KCl, and C4H12ClN reduced the permeation of diclofenac salts due to competition. However, this effect was lesser for DFD than for DFS and DFP. Comparing the various application modes of iontophoresis, the discontinuous on/off mode showed lower but more constant flux than the continuous mode.

  4. Compared with Powdered Lutein, a Lutein Nanoemulsion Increases Plasma and Liver Lutein, Protects against Hepatic Steatosis, and Affects Lipoprotein Metabolism in Guinea Pigs.

    Science.gov (United States)

    Murillo, Ana Gabriela; Aguilar, David; Norris, Gregory H; DiMarco, Diana M; Missimer, Amanda; Hu, Siqi; Smyth, Joan A; Gannon, Sarah; Blesso, Christopher N; Luo, Yangchao; Fernandez, Maria Luz

    2016-10-01

    It is not clear how oil-in-water nanoemulsions of lutein may affect bioavailability and consequently alter lipoprotein metabolism, oxidative stress, and inflammation. The bioavailability as well as effects of a powdered lutein (PL) and an oil-in-water lutein nanoemulsion (NANO; particle size: 254.2 nm; polydispersity index: 0.29; and ζ-potential: -65 mV) on metabolic variables in liver, plasma, and adipose tissue in a guinea pig model of hepatic steatosis were evaluated. Twenty-four 2-mo-old male Hartley guinea pigs, weighing 200-300 g (n = 8/group), were fed diets containing 0.25 g cholesterol/100 g to induce liver injury for the duration of the study. They were allocated to control (0 mg lutein), PL (3.5 mg/d), or NANO (3.5 mg/d) groups. After 6 wk, plasma, liver, and adipose tissue were collected for determination of lutein, plasma lipids, tissue cholesterol, and inflammatory cytokines. The NANO group had 2-fold higher concentrations of lutein in plasma (P guinea pigs. © 2016 American Society for Nutrition.

  5. Transdermal fentanyl for pain caused by radiotherapy in head and neck cancer patients treated in an outpatient setting. A multicenter trial in Taiwan

    International Nuclear Information System (INIS)

    Chang, J.T.C.; Lin Chienyu; Wang Hungming; Lin Jinching; Lee Moonsing; Chen Yujen

    2010-01-01

    This study evaluated the efficacy and safety of transdermal fentanyl in the outpatient treatment of head and neck cancer patients with pain caused by radiotherapy. Patients with a visual analogue scale score ≥4 were invited to participate in the study. The following variables were collected: visual analogue scale, the Brief Pain Inventory, concomitant pain medications and adverse effects. A total of 163 head and neck cancer patients were enrolled (148 males and 15 females; median age, 53 years; age range, 21-72 years). Seventy-two (44%) patients had a visual analogue scale score >6 at enrollment, despite the use of non-steroidal anti-inflammatory drugs or weak opioids. Ninety-four (57.7%) patients received concurrent chemotherapy. A total of 88 patients completed the study, whereas 55 underwent a drop-out by side effects. The most frequently reported adverse events were vomiting (23.9%) and nausea (16.6%). Treatment with transdermal fentanyl resulted in a significant decrease in visual analogue scale and Brief Pain Inventory scores that persisted during treatment. In the overall efficacy evaluation, the pain-alleviating effect, the easiness of application and the overall impression of transdermal fentanyl were rated as good by 54.5%, 65.9% and 59.1% of the completers, respectively. Effects of transdermal fentanyl were rated as good by 64.8% of the investigators. Our data provide evidence that transdermal fentanyl is effective and relatively easy to use for outpatient treatment of pain control in head and neck cancer patients following radiotherapy in selected patients. Reduction of side effects and effective pain management need to be paramount in the management of head and neck cancer patients undergoing radiotherapy. (author)

  6. Iontophoretic transdermal drug delivery: a multi-layered approach.

    Science.gov (United States)

    Pontrelli, Giuseppe; Lauricella, Marco; Ferreira, José A; Pena, Gonçalo

    2017-12-11

    We present a multi-layer mathematical model to describe the transdermal drug release from an iontophoretic system. The Nernst-Planck equation describes the basic convection-diffusion process, with the electric potential obtained by solving the Laplace's equation. These equations are complemented with suitable interface and boundary conditions in a multi-domain. The stability of the mathematical problem is discussed in different scenarios and a finite-difference method is used to solve the coupled system. Numerical experiments are included to illustrate the drug dynamics under different conditions. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  7. Systematic investigation of the role of surfactant composition and choice of oil: Design of a nanoemulsion-based adjuvant inducing concomitant humoral and CD4+ T-cell responses

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Neustrup, Malene Aaby; Harloff-Helleberg, Stine

    2017-01-01

    humoral immune responses. Therefore, there is an unmet medical need for new adjuvants, which potentiate humoral and CMI responses. The purpose was to design an oil-in-water nanoemulsion adjuvant containing a synthetic CMI-inducing mycobacterial monomycoloyl glycerol (MMG) analogue to concomitantly induce...... humoral and CMI responses. METHODS: The influence of emulsion composition was analyzed using a systematic approach. Three factors were varied: i) saturation of the oil phase, ii) type and saturation of the applied surfactant mixture, and iii) surfactant mixture net charge. RESULTS: The emulsions were...... colloidally stable with a droplet diameter of 150-250 nm, and the zeta-potential correlated closely with the net charge of the surfactant mixture. Only cationic emulsions containing the unsaturated surfactant mixture induced concomitant humoral and CMI responses upon immunization of mice with a Ct antigen...

  8. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring

    Directory of Open Access Journals (Sweden)

    Sanjiv Sharma

    2017-04-01

    Full Text Available The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective.We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases. Keywords: Microneedles, Minimally invasive sensors, Continuous glucose monitoring (CGM, Continuous lactate monitoring (CLM, Interstitial therapeutic drug monitoring (iTDM

  9. Use and cardiovascular safety of transdermal and other granisetron preparations in cancer management

    International Nuclear Information System (INIS)

    Mason, Jay W; Moon, Thomas E

    2013-01-01

    5-HT 3 antagonists have been available as oral and intravenous preparations for decades. The availability more recently of transdermal granisetron and the anticipated availability of a subcutaneous granisetron preparation have provided helpful alternatives to patients, and these preparations have been shown to have less potential to prolong QT than other drugs in the class

  10. Ultrasound-mediated transdermal drug delivery of fluorescent nanoparticles and hyaluronic acid into porcine skin in vitro

    International Nuclear Information System (INIS)

    Wang Huan-Lei; Fan Peng-Fei; Guo Xia-Sheng; Tu Juan; Zhang Dong; Ma Yong

    2016-01-01

    Transdermal drug delivery (TDD) can effectively bypass the first-pass effect. In this paper, ultrasound-facilitated TDD on fresh porcine skin was studied under various acoustic parameters, including frequency, amplitude, and exposure time. The delivery of yellow–green fluorescent nanoparticles and high molecular weight hyaluronic acid (HA) in the skin samples was observed by laser confocal microscopy and ultraviolet spectrometry, respectively. The results showed that, with the application of ultrasound exposures, the permeability of the skin to these markers (e.g., their penetration depth and concentration) could be raised above its passive diffusion permeability. Moreover, ultrasound-facilitated TDD was also tested with/without the presence of ultrasound contrast agents (UCAs). When the ultrasound was applied without UCAs, low ultrasound frequency will give a better drug delivery effect than high frequency, but the penetration depth was less likely to exceed 200 μm. However, with the help of the ultrasound-induced microbubble cavitation effect, both the penetration depth and concentration in the skin were significantly enhanced even more. The best ultrasound-facilitated TDD could be achieved with a drug penetration depth of over 600 μm, and the penetration concentrations of fluorescent nanoparticles and HA increased up to about 4–5 folds. In order to get better understanding of ultrasound-facilitated TDD, scanning electron microscopy was used to examine the surface morphology of skin samples, which showed that the skin structure changed greatly under the treatment of ultrasound and UCA. The present work suggests that, for TDD applications (e.g., nanoparticle drug carriers, transdermal patches and cosmetics), protocols and methods presented in this paper are potentially useful. (special topic)

  11. Influence of cellulose derivative and ethylene glycol on optimization of lornoxicam transdermal formulation.

    Science.gov (United States)

    Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-10-01

    Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    Science.gov (United States)

    Bartle, S. J.; Thomson, D. U.; Gehring, R.; van der Merwe, D.

    2017-11-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas, and three from the white areas. Samples were randomized and assigned to four coating treatments: (1) white hide with no coating (White), (2) black hide with no coating (Black), (3) black hide with 50% coating (Mid), and (4) black hide with 100% coating (High). Coatings were applied to the black hide samples using a hand sprayer. Lux measurements were taken using a modified lux meter at three light intensities generated with a broad spectrum, cold halogen light source. Reflectance over a wavelength range of 380 to 900 nm was measured using a spectroradiometer. The transdermal transfer of heat derived from absorbed light was measured by applying a broad spectrum, cold halogen light source to the stratum corneum (coated) side of the sample and recording the temperature of the dermis-side using a thermal camera for 10 min at 30-s intervals. At the high light level, the White, Black, Mid, and High coating treatments had different ( P 400 to 750 nm), Black hides reflected 10 to 15% of the light energy, hides with the Mid coating treatment reflected 35 to 40%, and hides with the High coating treatment reflected 70 to 80% of the light energy. The natural White hide samples reflected 60 to 80% of the light energy. The average maximum temperatures at the dermis-side of the hides due to transferred heat were 34.5, 70.1, 55.0, and 31.7, for the White, Black, Mid, and High treatments, respectively. Reflective coatings containing titanium dioxide on cattle hides were effective in reducing light energy absorption and reduced light-derived heat transfer from the skin surface to deeper skin layers.

  13. Treatment with subcutaneous and transdermal fentanyl: Results from a population pharmacokinetic study in cancer patients

    NARCIS (Netherlands)

    A.W. Oosten (Astrid); J.A. Abrantes (João A.); S. Jönsson (Siv); P. de Bruijn (Peter); E.J.M. Kuip (Evelien); A. Falcão (Amílcar); C.C.D. van der Rijt (Carin); A.H.J. Mathijssen (Ron)

    2016-01-01

    textabstractPurpose: Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we

  14. A Transdermal Drug Delivery System Based on LIGA Technology and Soft Lithography

    Science.gov (United States)

    Matteucci, Marco; Perennes, Frederic; Marmiroli, Benedetta; Di Fabrizio, Enzo

    2007-01-01

    This report presents a transdermal drug delivery system based on LIGA fabricated microparts. It is a portable device combining a magnetically actuated micro gear pump with a microneedle array. The fluidic behaviour of the system is analyzed in order to predict its performance according to the dimension of the microparts and then compared to experimental data. The manufacturing process of both micropump and microneedle array are described.

  15. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry.

    Science.gov (United States)

    Fotticchia, Iolanda; Fotticchia, Teresa; Mattia, Carlo Andrea; Netti, Paolo Antonio; Vecchione, Raffaele; Giancola, Concetta

    2014-12-09

    The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.

  16. Treatment with subcutaneous and transdermal fentanyl: results from a population pharmacokinetic study in cancer patients

    NARCIS (Netherlands)

    Oosten, A.W.; Abrantes, J.A.; Jonsson, S.; Bruijn, P. de; Kuip, E.J.M.; Falcao, A.; Rijt, C.C. van der; Mathijssen, R.H.

    2016-01-01

    PURPOSE: Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we studied the

  17. Transdermal rivastigmine for HIV-associated cognitive impairment: A randomized pilot study.

    Directory of Open Access Journals (Sweden)

    Jose A Muñoz-Moreno

    Full Text Available To assess the efficacy and safety of transdermal rivastigmine for the treatment of HIV-associated cognitive impairment.We recruited HIV-infected patients with cognitive impairment on stable antiretroviral therapy in a randomized controlled pilot trial with a 48-week follow-up. An additional assessment was held at 12 weeks. Participants received transdermal rivastigmine (9.5 mg daily, lithium (400 mg twice daily, titrated progressively, or remained in a control group (no new medication. The primary efficacy endpoint was change in a global cognitive score (NPZ-7. Secondary endpoints included change in specific cognitive measures, domains, and functional parameters. Safety covered the frequency of adverse events and changes in laboratory results.Seventy-six subjects were screened, and 29 were finally enrolled. Better cognitive outcomes were observed in all groups, although there were no significant differences between the arms (mean NPZ-7 change [SD]: rivastigmine, 0.35 (0.14; lithium, 0.25 (0.40; control, 0.20 (0.44 (p = 0.78. The rivastigmine group showed the highest positive trend (mean NPZ-7 [SD], baseline vs week 48: rivastigmine, -0.47 (0.22 vs -0.11 (0.29, p = 0.06; lithium, -0.50 (0.40 vs -0.26 (0.21, p = 0.22; control, -0.52 (0.34 vs -0.32 (0.52, p = 0.44. The cognitive domains with the highest positive trends were information processing speed at week 12 and executive function at week 48 (rivastigmine vs control: information processing speed, 0.35 (0.64 vs -0.13 (0.25, p = 0.17, d = 0.96; and executive functioning, 0.73 (0.33 vs 0.03 (0.74, p = 0.09, d = 1.18. No relevant changes were observed regarding functional outcomes. A total of 12 (41% individuals dropped out of the study: 2 (20% were due to medication-related effects in the rivastigmine group and 4 (36% in the lithium group. No severe adverse events were reported.The results from this small randomized trial indicate that transdermal rivastigmine did not provide significant

  18. Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology

    Directory of Open Access Journals (Sweden)

    Huang CT

    2013-06-01

    Full Text Available Chi-Te Huang,1 Ming-Jun Tsai,2,3 Yu-Hsuan Lin,1 Yaw-Sya Fu,4 Yaw-Bin Huang,5 Yi-Hung Tsai,5 Pao-Chu Wu11School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, 2Department of Neurology, China Medical University Hospital, Taichung, 3School of Medicine, Medical College, China Medical University, Taichung, 4Faculty of Biomedical Science and Environmental Biology, 5Graduate Institute of Clinical Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of ChinaAbstract: The aim of this study was to evaluate the potential of microemulsions as a drug vehicle for transdermal delivery of citalopram. A computerized statistical technique of response surface methodology with mixture design was used to investigate and optimize the influence of the formulation compositions including a mixture of Brij 30/Brij 35 surfactants (at a ratio of 4:1, 20%–30%, isopropyl alcohol (20%–30%, and distilled water (40%–50% on the properties of the drug-loaded microemulsions, including permeation rate (flux and lag time. When microemulsions were used as a vehicle, the drug permeation rate increased significantly and the lag time shortened significantly when compared with the aqueous control of 40% isopropyl alcohol solution containing 3% citalopram, demonstrating that microemulsions are a promising vehicle for transdermal application. With regard to the pharmacokinetic parameters of citalopram, the flux required for the transdermal delivery system was about 1280 µg per hour. The microemulsions loaded with citalopram 3% and 10% showed respective flux rates of 179.6 µg/cm2 and 513.8 µg/cm2 per hour, indicating that the study formulation could provide effective therapeutic concentrations over a practical application area. The animal study showed that the optimized formulation (F15 containing 3% citalopram with an application area of 3.46 cm2 is able to reach a minimum effective therapeutic concentration with no erythematous reaction

  19. Nanostructured lipid carriers for transdermal delivery of acid labile lansoprazole.

    Science.gov (United States)

    Lin, Wen Jen; Duh, Yi Shein

    2016-11-01

    The aim of this study was to develop nanostructured lipid carriers (NLCs) for transdermal delivery of acid-labile lansoprazole (LPZ). The drug loading, particle size, zeta potential, thermal behavior and stability of NLCs were evaluated. The particle size of NLCs was in the range of 90-210nm and the zeta potential was -61.9 to +3.2mV dependent of the compositions. Stearylamine (SA) prevented lansoprazole degradation and maintained drug stable in NLCs. The anionic sodium dodecyl sulfate (SDS) adsorbed on the lipid surface and formed complex with cationic SA to prevent NLCs aggregation. The effects of type (e.g., isopropyl myristate (IPM), menthol) and concentration (e.g., 1.25, 2.50, 3.75%w/w) of enhancers on penetration of lansoprazole NLC hydrogels were investigated in vitro using Wistar rat skin. The steady-state flux of lansoprazole NLC hydrogel containing 3.75% IPM was the highest which was enhanced by 2.7 folds as compared to enhancer-free NLC hydrogel. In vivo pharmacokinetics of lansoprazole following transdermal delivery of NLC hydrogel showed that the elimination of drug was significantly reduced and the mean residence time of drug was prominently prolonged as compared to intravenous drug solution (p<0.005). The accumulation of drug in the skin and continuous penetration of drug through the skin accounted for the maintenance of drug concentration for at least 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A new once-a-day fentanyl citrate patch (Fentos Tape) could be a new treatment option in patients with end-of-dose failure using a 72-h transdermal fentanyl matrix patch.

    Science.gov (United States)

    Koike, Kazuhiko; Terui, Takeshi; Nagasako, Tomokazu; Horiuchi, Iori; Machino, Takayuki; Kusakabe, Toshiro; Hirayama, Yasuo; Mihara, Hiroyoshi; Yamakage, Michiaki; Kato, Junji; Nishisato, Takuji; Ishitani, Kunihiko

    2016-03-01

    The recommended dosing interval for transdermal fentanyl is every 72 h. However, some patients will have "end-of-dose failure," which may be seen as an increase of episodes of severe pain flares at the third day after application of the patch. A new once-a-day fentanyl patch was developed in Japan since 2010. This study aimed to assess the efficacy of the once-a-day fentanyl citrate patch for patients with cancer-related pain receiving the 72-h transdermal fentanyl not lasting 72 h. We performed a cross-sectional retrospective analysis of 445 inpatients with the 72-h transdermal fentanyl at Higashi Sapporo Hospital. We could switch to the once-a-day fentanyl citrate patch if patients reported inadequate pain relief beyond 48 h after application of the 72-h transdermal fentanyl. Patients recorded baseline scores for background pain intensity (PI) and the frequency of use of daily rescue medication for breakthrough cancer pain (BTcP). Of all patients, 10.1% showed the increase in PI of 30% or more baseline PI on the third day after application of the 72-h transdermal fentanyl. Of patients, 84.4% were converted from equivalent dose of the 72-h transdermal fentanyl to the once-a-day fentanyl citrate patch. On the third day after switching, 60.5% of patients showed a reduction of more than 30% from baseline PI. Switching to the once-a-day fentanyl citrate patch significantly reduced the mean frequency of daily rescue dose for BTcP. A once-a-day fentanyl citrate patch provided stable pain control. Its use may be considered as the dominant strategy for patients receiving a 72-h transdermal fentanyl not lasting 72 h.