WorldWideScience

Sample records for transdermal therapeutic system

  1. Transdermal therapeutic systems for memantine delivery. Comparison of passive and iontophoretic transport.

    Science.gov (United States)

    Del Río-Sancho, S; Serna-Jiménez, C E; Sebastián-Morelló, M; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; Kalia, Y N; Merino, V; López-Castellano, A

    2017-01-30

    Memantine is a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist used in the treatment of moderate to severe dementia including the symptoms of Alzheimer's disease (AD). It is administered orally but compliance, swallowing problems and the routine use of multiple medications in elderly AD patients means that an alternative route of administration would be of interest. The aim of the present study was to develop memantine hydrochloride occlusive transdermal therapeutic systems (TTS) for passive and iontophoretic delivery across the skin. Polyvinyl pyrrolidone (PVP) and a mixture with polyvinyl alcohol (PVA) were employed as polymeric matrices. The study involved the TTS characterization in addition to quantification of the memantine transport across porcine skin in vitro. The evaluation of the TTS physical properties suggested that systems were made more mechanically resistant by including PVA (6%) or high concentrations of PVP (24%). Moreover, a linear correlation was observed between the concentration of PVP and the bioadhesion of the systems. Drug delivery experiments showed that the highest transdermal flux provided by a passive TTS (PVP 24% w/w limonene) was 8.89±0.81μgcm -2 h -1 whereas the highest iontophoretic transport was 46.4±3.6μgcm -2 h -1 . These innovative TTS would enable two dosage regimens that could lead to therapeutic plasma concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evaluation of Mechanical Properties of Nonsteroidal Anti-Inflammatory Matrix Type Transdermal Therapeutic Systems

    Directory of Open Access Journals (Sweden)

    Antonoaea Paula

    2017-06-01

    Full Text Available Objective: Transdermal therapeutic systems (TTSs represent an intensely studied alternative to oral delivery of non-steroid anti-inflammatory drugs (NSAIDs in the treatment of rheumatic diseases due to its ability of avoiding the side effects of the oral route. This study aims to present the evaluation of the mechanical properties of three NSAIDs (meloxicam, tenoxicam and indomethacin individually included in four type of polymeric matrixes, as part of new formulations development process. Methods: 12 products in form of TTS matrixes were prepared by solvent casting evaporation technique, using hydroxypropyl methylcellulose (HPMC 15000, HPMC E5 and/or ethylcellulose as matrix-forming polymers. Each of the resulted products was evaluated by determining the water vapor absorption, desorption or transmission in controlled atmosphere humidity (evaluation of porosity; the elongation capacity, tensile strength and bioadhesiveness (evaluation of mechanical properties. Results: The analysis of three groups of the experimental data expressed as averages on each group was necessary, in order to identify the parameters which statistically are critically influenced by the ingredients associated in the TTSs matrix compositions. Analysis by normality tests, variance and correlation tests (Anova, Pearson enabled evaluation of the effect of NSAID type vs. the effect of polymer matrix type on the parameters of the NSAID TTS matrix. Conclusions: Meloxicam incorporated in the structure of HPMC 15000 polymeric matrix favors its viscoelastic structure. Ethylcellulose functions as plasticizer and supports the matrix bioadhesiveness. HPMC E5 does not meet the requirements for TTS preparation in the used experimental conditions.

  3. Alghedon Fentanyl Transdermal System.

    Science.gov (United States)

    Romualdi, Patrizia; Santi, Patrizia; Candeletti, Sanzio

    2017-04-01

    The efficacy of transdermal fentanyl for cancer pain and chronic non-cancer pain (chronic lower back pain, rheumatoid arthritis, osteoarthritis, neuropathic pain) is well established. Several formulations of fentanyl transdermal systems have been developed to improve the drug delivery and prevent misuse of the active principle. The addition of a rate controlling membrane to the matrix system represented an important advance. The design and functional features of Alghedon patch are compared with other approved generic fentanyl transdermal systems, emphasizing the distinctiveness of Alghedon patch. Alghedon patch has no liquid component in the finished product, therefore no leakage of active ingredient from the system can occur. A rate-controlling membrane provides controlled release of the active substance from the matrix reservoir, ensuring that fentanyl delivery and entry into the microcirculation is not solely controlled by the skin's permeability to this active substance. Alghedon patch contains part of the drug (approximately 15%) in the skin-contact adhesive: this innovative solution allows to overcome a typical drawback of transdermal patches, i.e. the long lag-time before the drug appears in plasma after the first administration, and provides rapid analgesia during the first hours of administration. Alghedon Fentanyl Transdermal System employs materials commonly used in other transdermal applications and having established safety profiles. For each strength level, the fentanyl content - and, thus, the resulting residual fentanyl remaining in the patch after use - is at the lowest end of the range used in commercially available fentanyl patches, minimizing the potential for abuse and misuse.

  4. DETERMINATION OF THE STABILITY OF A LOCAL ANESTHETIC BROMOKAIN TRANSDERMAL THERAPEUTIC SYSTEM

    Directory of Open Access Journals (Sweden)

    V. A. Ryzhikova

    2014-01-01

    Full Text Available Aim. To study the stability of biocompatible microemulsion composition-based bromokain transdermal therapeutic systems (TTS in order to confi rm the original shelf life and to identify the most appropriate TTS composition for storage.Materials and methods. The stability test using accelerated aging method was performed on the samples of TTS containing 50 and 100 mg of bromokain. Physicochemical properties of TTS were analyzed at the end of the 1st, 2nd, 3rd, and 6th month of storage. The physical confi guration of the dosage form, the content of bromokain in TTS, and drug release were evaluated at each stage of the study. The content of bromokain in the samples was recorded using high performance liquid chromatography (HPLC. As a control for each method, the newly manufactured TTS forms were used.Results. Unlike the samples containing 50 mg of bromokain, TTS with 100 mg of the anesthetic demonstrated changes in the physical confi guration and deterioration of the functional properties after the 6th month of storage. The quantitative content of the substance in TTS containing 50 and 100 mg of bromokain met the requirements of regulatory documentation (RD at allphases of the experiment and was within 50,0 ± 5,0 mg and 100,0 ± 10,0 mg, respectively. The release profi le of TTS with 50 mg of bromokain has remained unchanged during storage and complies with the RD. TTS with 100 mg of bromokain after the 3rd month of storage had a deviation from the release profi le indicated in the RD.Conclusion. The shelf life of 2 years at t = 25 °C preset by us for samples of TTS containing 50 mg of bromokain has been confi rmed. According to the test results, samples of TTS with the content of bromokain of 100 mg were declared unstable and unfi t for storage under the selected storage conditions.

  5. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  6. Human Growth Hormone Delivery with a Microneedle Transdermal System: Preclinical Formulation, Stability, Delivery and PK of Therapeutically Relevant Doses

    Directory of Open Access Journals (Sweden)

    Mahmoud Ameri

    2014-05-01

    Full Text Available This study evaluated the feasibility of coating formulated recombinant human growth hormone (rhGH on a titanium microneedle transdermal delivery system, Zosano Pharma (ZP-hGH, and assessed preclinical patch delivery performance. Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. rhGH liquid formulation was coated onto titanium microneedles by dip-coating and drying. The stability of coated rhGH was determined by size exclusion chromatography-high performance liquid chromatography (SEC-HPLC. Preclinical delivery and pharmacokinetic studies were conducted in female hairless guinea pigs (HGP using rhGH coated microneedle patches at 0.5 and 1 mg doses and compared to Norditropin® a commercially approved rhGH subcutaneous injection. Studies demonstrated successful rhGH formulation development and coating on microneedle arrays. The ZP-hGH patches remained stable at 40 °C for six months with no significant change in % aggregates. Pharmacokinetic studies showed that the rhGH-coated microneedle patches, delivered with high efficiency and the doses delivered indicated linearity with average Tmax of 30 min. The absolute bioavailability of the microneedle rhGH patches was similar to subcutaneous Norditropin® injections. These results suggest that ZP-transdermal microneedle patch delivery of rhGH is feasible and may offer an effective and patient-friendly alternative to currently marketed rhGH injectables.

  7. Human Growth Hormone Delivery with a Microneedle Transdermal System: Preclinical Formulation, Stability, Delivery and PK of Therapeutically Relevant Doses.

    Science.gov (United States)

    Ameri, Mahmoud; Kadkhodayan, Miryam; Nguyen, Joe; Bravo, Joseph A; Su, Rebeca; Chan, Kenneth; Samiee, Ahmad; Daddona, Peter E

    2014-05-15

    This study evaluated the feasibility of coating formulated recombinant human growth hormone (rhGH) on a titanium microneedle transdermal delivery system, Zosano Pharma (ZP)-hGH, and assessed preclinical patch delivery performance. Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. rhGH liquid formulation was coated onto titanium microneedles by dip-coating and drying. The stability of coated rhGH was determined by size exclusion chromatography-high performance liquid chromatography (SEC-HPLC). Preclinical delivery and pharmacokinetic studies were conducted in female hairless guinea pigs (HGP) using rhGH coated microneedle patches at 0.5 and 1 mg doses and compared to Norditropin® a commercially approved rhGH subcutaneous injection. Studies demonstrated successful rhGH formulation development and coating on microneedle arrays. The ZP-hGH patches remained stable at 40 °C for six months with no significant change in % aggregates. Pharmacokinetic studies showed that the rhGH-coated microneedle patches, delivered with high efficiency and the doses delivered indicated linearity with average Tmax of 30 min. The absolute bioavailability of the microneedle rhGH patches was similar to subcutaneous Norditropin® injections. These results suggest that ZP-transdermal microneedle patch delivery of rhGH is feasible and may offer an effective and patient-friendly alternative to currently marketed rhGH injectables.

  8. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases.

    Science.gov (United States)

    Ita, Kevin

    2017-06-01

    With the increasing proportion of the global geriatric population, it becomes obvious that neurodegenerative diseases will become more widespread. From an epidemiological standpoint, it is necessary to develop new therapeutic agents for the management of Alzheimer's disease, Parkinson's disease, multiple sclerosis and other neurodegenerative disorders. An important approach in this regard involves the use of the transdermal route. With transdermal drug delivery systems (TDDS), it is possible to modulate the pharmacokinetic profiles of these medications and improve patient compliance. Transdermal drug delivery has also been shown to be useful for drugs with short half-life and low or unpredictable bioavailability. In this review, several transdermal drug delivery enhancement technologies are being discussed in relation to the delivery of medications used for the management of neurodegenerative disorders.

  9. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  10. Transdermal therapeutic system of narcotic analgesics using nonporous membrane (I) : Effect of the ethanol permeability on vinylacetate content of EVA membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H.; Song, H.Y. [Chungnam National University, Taejon (Korea); Khang, G.S. [Chonbuk National University, Chonju (Korea); Lee, H.B. [Korea Research Institute of Chemical Technology, Taejon (Korea)

    1999-05-01

    The fundamental properties of transdermal therapeutic patch as narcotic analgesics agent has been investigated. From the study of drug and ethanol release patterns from the fentanyl base (FB) patches through diffusion cell and hairless mouse skin, it was observed that the FB release patterns were largely affected by the content of vinyl acetate (VA) of ethylene-co-vinyl acetate (EVA) membrane, and volume fraction of ethanolic solution. Additionally, a variety of control membrane as a function of VA content were examined for swelling following equilibration with ethanolic solutions. Generally, ethanol was incorporated into a transdermal therapeutic device to enable the controlled delivery of enhancer and drug to the skin surface. In vitro skin permeation analysis of the control membrane showed that ethanol flux was linearly related to the ethanol volume fraction. This result was shown that drug permeability increased with increasing as the content of VA. But, the FB flux from saturated aqueous ethanol solutions increases until 80% ethanol volume fraction. Over 80% ethanol volume fraction, the FB flux through skin samples is independent of ethanol volume. These results showed that the decrease in skin permeation due to dehydration nis the dominant effect. 26 refs., 8 figs.

  11. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  12. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  13. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview

    OpenAIRE

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Gra?a

    2017-01-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and ...

  14. [Matrix transdermal systems for caffeine delivery based on polymer and emulsion compounds].

    Science.gov (United States)

    Kuznetsova, E G; Kuryleva, O M; Salomatina, L A; Sevast'ianov, V I

    2008-01-01

    The goal of this work was to develop and test transdermal therapeutic systems for caffeine delivery. In vitro experiments showed that the rate of caffeine diffusion through untreated rabbit skin from a transdermal therapeutic systems based on polymer compound containing 50 mg medicine was 67.2 (9.1 microg/cm2h; for a system based on emulsion compound it was 173 (19 microg/cm2h. Methods for studying the caffeine release rate and quantitative measurement of caffeine content in the emulsion-based transdermal therapeutic system were developed. These methods are required to obtain data for standard drug documentation. The results of in vivo experiments in rabbits showed the absence of irritating effect of the emulsion-based transdermal therapeutic system. The obtained data on the specific efficiency of the transdermal therapeutic systems for caffeine delivery (50 mg) in healthy volunteers showed that this medicine could be used as a nonnarcotic psychoactivator for improving mental and physical activities and attention concentration.

  15. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  16. Turning theory into practice: the development of modern transdermal drug delivery systems and future trends.

    Science.gov (United States)

    Perumal, O; Murthy, S N; Kalia, Y N

    2013-01-01

    Despite its remarkable barrier function, the skin remains an attractive site for systemic drug delivery given its easy accessibility, large surface area and the possibility to bypass the gastrointestinal tract and the liver and so modify drug absorption kinetics. The pioneering work of Scheuplein, Higuchi and others in the 1960s helped to explain the processes involved in passive percutaneous absorption and led to the development of mathematical models to describe transdermal drug delivery. The intervening years have seen these theories turned to practice and a significant number of transdermal systems are now available including some that employ active drug delivery. This review briefly discusses the evolution of transdermal therapeutic systems over the years and the potential of newer transdermal technologies to deliver hydrophilic drugs and macromolecules through the skin. © 2013 S. Karger AG, Basel.

  17. Systemic delivery of β-blockers via transdermal route for hypertension

    Science.gov (United States)

    Ahad, Abdul; Al-Jenoobi, Fahad I.; Al-Mohizea, Abdullah M.; Akhtar, Naseem; Raish, Mohammad; Aqil, Mohd.

    2014-01-01

    Hypertension is the most common cardiovascular disease worldwide. Moreover, management of hypertension requires long-term treatment that may result in poor patient compliance with conventional dosage forms due to greater frequency of drug administration. Although there is availability of a plethora of therapeutically effective antihypertensive molecules, inadequate patient welfare is observed; this arguably presents an opportunity to deliver antihypertensive agents through a different route. Ever since the transdermal drug delivery came into existence, it has offered great advantages including non-invasiveness, prolonged therapeutic effect, reduced side effects, improved bioavailability, better patient compliance and easy termination of drug therapy. Attempts were made to develop the transdermal therapeutic system for various antihypertensive agents, including β-blockers, an important antihypertensive class. β-blockers are potent, highly effective in the management of hypertension and other heart ailments by blocking the effects of normal amounts of adrenaline in the heart and blood vessels. The shortcomings associated with β-blockers such as more frequent dose administration, extensive first pass metabolism and variable bioavailability, make them an ideal candidate for transdermal therapeutic systems. The present article gives a brief view of different β-blockers formulated as transdermal therapeutic system in detail to enhance the bioavailability as well as to improve patient compliance. Constant improvement in this field holds promise for the long-term success in technologically advanced transdermal dosage forms being commercialized sooner rather than later. PMID:26702253

  18. A commentary on transdermal drug delivery systems in clinical trials.

    Science.gov (United States)

    Watkinson, Adam C

    2013-09-01

    The number of drugs available as marketed transdermal products is limited to those that exhibit the correct physicochemical and pharmacokinetic properties that enable their effective delivery across the skin. In this respect, there are less than 20 drugs that are currently marketed in the US and EU as products that deliver systemic levels of their active ingredients. An analysis of clinical trials conducted in the transdermal sector shows a similar picture with only nine drugs accounting for approximately 80% of all transdermal clinical trials listed on ClinicalTrials.gov. Those drugs for which there are very few transdermal trials listed consist mostly of molecules that are inherently unsuitable for transdermal delivery and serve as a clear warning to drug developers that the science that governs transdermal drug delivery is well reflected by the successes and failures of drugs in development as well as those that make it to the market. Copyright © 2013 Wiley Periodicals, Inc.

  19. Development of antimigraine transdermal delivery systems of pizotifen malate.

    Science.gov (United States)

    Serna-Jiménez, C E; del Rio-Sancho, S; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; López-Castellano, A; Merino, V

    2015-08-15

    The aim of this study was to develop and evaluate a transdermal delivery system of pizotifen malate. Pizotifen is frequently used in the preventive treatment of migraine, but is also indicated in eating disorders. In the course of the project, the effects of chemical enhancers such as ethanol, 1,8-cineole, limonene, azone and different fatty acids (decanoic, decenoic, dodecanoic, linoleic and oleic acids) were determined, first using a pizotifen solution. Steady state flux, diffusion and partition parameters were estimated by fitting the Scheuplein equation to the data obtained. Among the chemical enhancers studied, decenoic acid showed the highest enhancement activity, which seemed to be due to the length of its alkyl chain and unsaturation at the 9th carbon. The influence of iontophoresis and the involvement of electrotransport in said process was determined. The absorption profile obtained with iontophoresis was similar to that obtained with fatty acids and terpenes, though skin deposition of the drug was lower with the former. Transdermal delivery systems (TDS) of pizotifen were manufactured by including chemical enhancers, decenoic acid or oleic acid, and were subsequently characterized. When the results obtained with solutions were compared with those obtained with the TDS, a positive enhancement effect was observed with the latter with respect to the partitioning and diffusion of the drug across the skin. Our findings endorse the suitability of our TDS for delivering therapeutic amounts of pizotifen malate. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    Science.gov (United States)

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  1. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting

    Science.gov (United States)

    Palmer, Brian C.; DeLouise, Lisa A.

    2017-01-01

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701

  2. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting.

    Science.gov (United States)

    Palmer, Brian C; DeLouise, Lisa A

    2016-12-15

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  3. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting

    Directory of Open Access Journals (Sweden)

    Brian C. Palmer

    2016-12-01

    Full Text Available Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  4. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  5. Therapeutic serum phenobarbital concentrations obtained using chronic transdermal administration of phenobarbital in healthy cats.

    Science.gov (United States)

    Delamaide Gasper, Joy A; Barnes Heller, Heidi L; Robertson, Michelle; Trepanier, Lauren A

    2015-04-01

    Seizures are a common cause of neurologic disease, and phenobarbital (PB) is the most commonly used antiepileptic drug. Chronic oral dosing can be challenging for cat owners, leading to poor compliance. The purpose of this study was to determine if the transdermal administration of PB could achieve serum PB concentrations of between 15 and 45 μg/ml in healthy cats. Nineteen healthy cats were enrolled in three groups. Transdermal PB in pluronic lecithin organogel (PLO) was applied to the pinnae for 14 days at a dosage of 3 mg/kg q12h in group 1 (n = 6 cats) and 9 mg/kg q12h in group 2 (n = 7 cats). Transdermal PB in Lipoderm Activemax was similarly applied at 9 mg/kg q12h for 14 days in group 3 (n = 6 cats). Steady-state serum PB concentrations were measured at trough, and at 2, 4 and 6 h after the morning dose on day 15. In group 1, median concentrations ranged from 6.0-7.5 μg/ml throughout the day (observed range 0-11 μg/ml). Group 2 median concentrations were 26.0 μg/ml (observed range 18.0-37.0 μg/ml). For group 3, median concentrations ranged from 15.0-17.0 μg/ml throughout the day (range 5-29 μg/ml). Side effects were mild. One cat was withdrawn from group 2 owing to ataxia and sedation. These results show therapeutic serum PB concentrations can be achieved in cats following chronic transdermal administration of PB in PLO at a dosage of 9 mg/kg q12h. More individual variation was noted using Lipoderm Activemax. Transdermal administration may be an alternative for cats that are difficult to medicate orally. © ISFM and AAFP 2014.

  6. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    Science.gov (United States)

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  7. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  8. Current and emerging lipid-based systems for transdermal drug delivery.

    Science.gov (United States)

    Singla, Sumeet K; Sachdeva, Vishal

    2015-01-01

    Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.

  9. Preparation and characterization of metoprolol tartrate containing matrix type transdermal drug delivery system.

    Science.gov (United States)

    Malipeddi, Venkata Ramana; Awasthi, Rajendra; Ghisleni, Daniela Dal Molim; de Souza Braga, Marina; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Dua, Kamal

    2017-02-01

    The present study aimed to develop matrix-type transdermal drug delivery system (TDDS) of metoprolol tartrate using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA). The transdermal films were evaluated for physical parameters, Fourier transform infrared spectroscopy analysis (FTIR), differential scanning calorimetry (DSC), in vitro drug release, in vitro skin permeability, skin irritation test and stability studies. The films were found to be tough, non-sticky, easily moldable and possess good tensile strength. As the concentration of PVA was increased, the tensile strength of the films was also increased. Results of FTIR spectroscopy and DSC revealed the absence of any drug-polymer interactions. In vitro release of metoprolol followed zero-order kinetics and the mechanism of release was found to be diffusion rate controlled. In vitro release studies of metoprolol using Keshary-Chein (vertical diffusion cell) indicated 65.5 % drug was released in 24 h. In vitro skin permeation of metoprolol transdermal films showed 58.13 % of the drug was released after 24 h. In vitro skin permeation of metoprolol followed zero-order kinetics in selected formulations. The mechanism of release was found to be diffusion rate controlled. In a 22-day skin irritation test, tested formulation of transdermal films did not exhibit any allergic reactions, inflammation, or contact dermatitis. The transdermal films showed good stability in the 180-day stability study. It can be concluded that the TDDS of MPT can help in bypassing the first-pass effect and will provide patient improved compliance, without sacrificing the therapeutic advantages of the drugs.

  10. Recent trends in challenges and opportunities of Transdermal drug delivery system

    OpenAIRE

    P.M.Patil; P.D.Chaudhari; Jalpa K.Patel; K.A.Kedar; P.P.Katolkar

    2012-01-01

    Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered v...

  11. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies

    National Research Council Canada - National Science Library

    Banga, Ajay K

    2011-01-01

    .... Commercialization of transdermal drug delivery requires technology from many disciplines beyond pharmaceutical sciences, such as polymer chemistry, adhesion sciences, mass transport, web film coating...

  12. Development and Evaluation of Naproxen Sodium Gel Using Piper cubeba for Enhanced Transdermal Drug Delivery and Therapeutic Facilitation.

    Science.gov (United States)

    Patwardhan, Sunetra; Patil, Manohar; Sockalingam, Anbazhagan

    2017-01-01

    The absorption of drug through skin avoids many side effects of oral route like gastric irritation, nausea, systemic toxicity etc and thus improves patient compliance. Naproxen sodium (NPRS) is one of the potent NSAID agents. The present study was aimed to develop and evaluate the gel formulation containing NPRS for transdermal drug delivery reducing the side effects and improving patient compliance. The patents on topical delivery of NSAIDS (US 9012402 B1, US 9072659 B2, US 20150258196 A1) and patents indicating use of herbal penetration enhancers (US 20100273746A1, WO 2005009510 A2, US 6004969 A) helped in selecting the drug, excipients. Current protocol employs various extracts of Piper cubeba fruit to evaluate its role in absorption of NPRS. Various batches containing 1% NPRS and varying concentrations of synthetic permeation enhancers or the extracts were formulated in carbopol gel. Gel was evaluated for parameters like organoleptic parameters, pH, viscosity and spreadability. An ex-vivo percutaneous absorption of NPRS from gel was investigated and compared with best performing synthetic enhancer, transcutol P (TP). The batch containing 2% n-hexane extract (NHE) of Piper cubeba showed higher permeation than TP and Chloroform (CE), Methanolic (ME) and aqueous (AE) extracts as well. It showed improved % cumulative release (85.09%) and flux (278.61μg/cm2.h), as compared to TP and other extracts. Histopathology indicated the formulation safer as compared to that with synthetic enhancer. It suggests P. cubeba as effective and safer tool for transdermal delivery and acts as therapeutic facilitator for naproxen. GC-MS analysis indicates lignans & terpenes in NHE to which this permeation enhancement activity may be attributed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Chemistry, manufacturing and controls in passive transdermal drug delivery systems.

    Science.gov (United States)

    Goswami, Tarun; Audett, Jay

    2015-01-01

    Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.

  14. Film forming systems for topical and transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Kashmira Kathe

    2017-11-01

    Full Text Available Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system's ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier. Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance. For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance. In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions along with their evaluation parameters have also been reviewed.

  15. Recent developments in skin mimic systems to predict transdermal permeation.

    Science.gov (United States)

    Waters, Laura J

    2015-01-01

    In recent years there has been a drive to create experimental techniques that can facilitate the accurate and precise prediction of transdermal permeation without the use of in vivo studies. This review considers why permeation data is essential, provides a brief summary as to how skin acts as a natural barrier to permeation and discusses why in vivo studies are undesirable. This is followed by an in-depth discussion on the extensive range of alternative methods that have been developed in recent years. All of the major 'skin mimic systems' are considered including: in vitro models using synthetic membranes, mathematical models including quantitative structure-permeability relationships (QSPRs), human skin equivalents and chromatographic based methods. All of these model based systems are ideally trying to achieve the same end-point, namely a reliable in vitro-in vivo correlation, i.e. matching non-in vivo obtained data with that from human clinical trials. It is only by achieving this aim, that any new method of obtaining permeation data can be acknowledged as a potential replacement for animal studies, for the determination of transdermal permeation. In this review, the relevance and potential applicability of the various models systems will also be discussed.

  16. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    Science.gov (United States)

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  17. Efficacy and safety of a transdermal contraceptive system.

    Science.gov (United States)

    Smallwood, G H; Meador, M L; Lenihan, J P; Shangold, G A; Fisher, A C; Creasy, G W

    2001-11-01

    To evaluate the efficacy, cycle control, compliance, and safety of a transdermal contraceptive system that delivers norelgestromin 150 microg and ethinyl estradiol 20 microg daily. In this open-label, 73-center study, 1672 healthy, ovulatory, sexually active women received ORTHO EVRA/EVRA for six (n = 1171) or 13 cycles (n = 501). The treatment regimen for each cycle was three consecutive 7-day patches (21 days) followed by 1 patch-free week. The overall and method-failure probabilities of pregnancy through 13 cycles were 0.7% and 0.4%, respectively. The incidence of breakthrough bleeding was low throughout the study. Perfect compliance (21 consecutive days of dosing, followed by a 7-day drug-free interval; no patch could be worn for more than 7 days) was achieved in 90% of subject cycles; only 1.9% of patches detached completely. Adverse events were typical of hormonal contraception, and most were mild-to-moderate in severity and not treatment limiting. The most common adverse events resulting in discontinuation were application site reactions (1.9%), nausea (1.8%), emotional lability (1.5%), headache (1.1%), and breast discomfort (1.0%). The transdermal contraceptive patch provides effective contraception and cycle control, and is well tolerated. The weekly change schedule for the contraceptive patch is associated with excellent compliance and wearability characteristics.

  18. TRANSDERMAL DRUG DELIVERY AND METHODS TO ENHANCE IT

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available The paper presents the common methods employed in recent years for enhancing transdermal delivery of drug substances when applying transdermal therapeutic delivery systems. The chemical, physical and mechanical methods to enhance the transport of macromolecular compounds through the skin are considered in details. 

  19. Patient-controlled analgesia: therapeutic interventions using transdermal electro-activated and electro-modulated drug delivery.

    Science.gov (United States)

    Indermun, Sunaina; Choonara, Yahya E; Kumar, Pradeep; Du Toit, Lisa C; Modi, Girish; Luttge, Regina; Pillay, Viness

    2014-02-01

    Chronic pain poses a major concern to modern medicine and is frequently undertreated, causing suffering and disability. Patient-controlled analgesia, although successful, does have limitations. Transdermal delivery is the pivot to which analgesic research in drug delivery has centralized, especially with the confines of needle phobias and associated pain related to traditional injections, and the existing limitations associated with oral drug delivery. Highlighted within is the possibility of further developing transdermal drug delivery for chronic pain treatment using iontophoresis-based microneedle array patches. A concerted effort was made to review critically all available therapies designed for the treatment of chronic pain. The drug delivery systems developed for this purpose and nondrug routes are elaborated on, in a systematic manner. Recent developments and future goals in transdermal delivery as a means to overcome the individual limitations of the aforementioned delivery routes are represented as well. The approval of patch-like devices that contain both the microelectronic-processing mechanism and the active medicament in a small portable device is still awaited by the pharmaceutical industry. This anticipated platform may provide transdermal electro-activated and electro-modulated drug delivery systems a feasible attempt in chronic pain treatment. Iontophoresis has been proven an effective mode used to administer ionized drugs in physiotherapeutic, diagnostic, and dermatological applications and may be an encouraging probability for the development of devices and aids in the treatment of chronic pain. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies

    National Research Council Canada - National Science Library

    Banga, Ajay K

    2011-01-01

    .... Advancements in science combined with the need for diverse drug delivery modalities have introduced a variety of transdermal and intradermal products for existing drugs at a fraction of the cost of new drug development...

  1. Implantable and transdermal polymeric drug delivery technologies for the treatment of central nervous system disorders.

    Science.gov (United States)

    Govender, Thiresen; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness

    2017-06-01

    The complexity of the brain and the membranous blood-brain barrier (BBB) has proved to be a significant limitation to the systemic delivery of pharmaceuticals to the brain rendering them sub-therapeutic and ineffective in the treatment of neurological diseases. Apart from this, lack of innovation in product development to counteract the problem is also a major contributing factor to a poor therapeutic outcome. Various innovative strategies show potential in treating some of the neurological disorders; however, drug delivery remains the most popular. To attain therapeutic drug levels in the central nervous system, large, intolerable systemic doses are generally administered. The major factors responsible for the success maintenance therapy of neurological diseases included controlled and sustained release of neurotherapeutics, reduced frequency of administration, higher bioavailability, and patient compliances. Conventional oral or injectable formulations cannot satisfy all the requirements in many circumstances. This article reviews the therapeutic implantable polymeric and transdermal devices employed in an attempt to effectively achieve therapeutic quantities of drug across the BBB over a prolonged period, to improve patient disease prognosis.

  2. Challenges and opportunities in dermal/transdermal delivery

    Science.gov (United States)

    Paudel, Kalpana S; Milewski, Mikolaj; Swadley, Courtney L; Brogden, Nicole K; Ghosh, Priyanka; Stinchcomb, Audra L

    2010-01-01

    Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin irritation would widen the transdermal market for hydrophilic compounds, macromolecules and conventional drugs for new therapeutic indications. As evident from the ongoing clinical trials of a wide variety of drugs for various clinical conditions, there is a great future for transdermal delivery of drugs. PMID:21132122

  3. Solid‐in‐oil nanodispersions for transdermal drug delivery systems

    Science.gov (United States)

    Kitaoka, Momoko; Wakabayashi, Rie; Kamiya, Noriho

    2016-01-01

    Abstract Transdermal administration of drugs has advantages over conventional oral administration or administration using injection equipment. The route of administration reduces the opportunity for drug evacuation before systemic circulation, and enables long‐lasting drug administration at a modest body concentration. In addition, the skin is an attractive route for vaccination, because there are many immune cells in the skin. Recently, solid‐in‐oil nanodisperison (S/O) technique has demonstrated to deliver cosmetic and pharmaceutical bioactives efficiently through the skin. S/O nanodispersions are nanosized drug carriers designed to overcome the skin barrier. This review discusses the rationale for preparation of efficient and stable S/O nanodispersions, as well as application examples in cosmetic and pharmaceutical materials including vaccines. Drug administration using a patch is user‐friendly, and may improve patient compliance. The technique is a potent transcutaneous immunization method without needles. PMID:27529824

  4. Perspectives on Transdermal Electroporation

    Science.gov (United States)

    Ita, Kevin

    2016-01-01

    Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases. PMID:26999191

  5. Granisetron transdermal system improves refractory nausea and vomiting in gastroparesis.

    Science.gov (United States)

    Simmons, Kellie; Parkman, Henry P

    2014-06-01

    Symptoms of gastroparesis include nausea and vomiting, which can markedly diminish quality of life. Nausea and vomiting can also make treatment with oral antiemetics problematic. Our aim was to determine whether treatment-resistant nausea and vomiting in patients with gastroparesis improve after granisetron transdermal patch (GTP) therapy. In an open-label pilot study, patients with gastroparesis and symptoms of nausea and vomiting refractory to conventional treatment were treated with GTP. After 2 weeks, patients were asked to assess their therapeutic response using the Clinical Patient Grading Assessment Scale (CPGAS; +7 = completely better; 0 = no change; -7 = very considerably worse). Responders were defined as CPGAS score >0, non-responders as ≤0. Patients (n = 36) were treated with GTP. Of these 36 patients, one patient discontinued treatment due to the GTP not adhering to the skin. Of the remaining 35 patients, 18 improved, 15 remained the same, and two worsened. The average CPGAS score was +1.8 ± 0.4 (SEM) (P < 0.05 vs 0). Of the 18 patients with improvement, the average CPGAS score was +3.7 ± 0.3 (SEM), corresponding to "somewhat" to "moderately better" improvement in nausea/vomiting. Side effects occurred in nine patients: four developed constipation, three patients had skin rash, and two reported headaches. GTP was moderately effective in reducing refractory symptoms of nausea and/or vomiting from gastroparesis in 50% of patients. Mild side effects were reported by 25% of patients. GTP may be an effective treatment for nausea and vomiting in gastroparesis, and further study is warranted.

  6. Solid-in-oil nanodispersions for transdermal drug delivery systems.

    Science.gov (United States)

    Kitaoka, Momoko; Wakabayashi, Rie; Kamiya, Noriho; Goto, Masahiro

    2016-11-01

    Transdermal administration of drugs has advantages over conventional oral administration or administration using injection equipment. The route of administration reduces the opportunity for drug evacuation before systemic circulation, and enables long-lasting drug administration at a modest body concentration. In addition, the skin is an attractive route for vaccination, because there are many immune cells in the skin. Recently, solid-in-oil nanodisperison (S/O) technique has demonstrated to deliver cosmetic and pharmaceutical bioactives efficiently through the skin. S/O nanodispersions are nanosized drug carriers designed to overcome the skin barrier. This review discusses the rationale for preparation of efficient and stable S/O nanodispersions, as well as application examples in cosmetic and pharmaceutical materials including vaccines. Drug administration using a patch is user-friendly, and may improve patient compliance. The technique is a potent transcutaneous immunization method without needles. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Science.gov (United States)

    Kotiyan, P. N.; Vavia, P. R.; Bharadwaj, Y. K.; Sabarwal, S.; Majali, A. B.

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak ®1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  8. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system.

    Science.gov (United States)

    Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A

    2014-08-01

    Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyan, P.N. E-mail: pramila-kotiyan@uiowa.edu; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  10. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    International Nuclear Information System (INIS)

    Kotiyan, P.N.; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B.

    2002-01-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed

  11. Transdermal granisetron.

    Science.gov (United States)

    Duggan, Sean T; Curran, Monique P

    2009-01-01

    Granisetron is a highly selective serotonin 5-HT(3) receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. The transdermal granisetron system delivers continuous granisetron (3.1 mg/day) into the systemic circulation (via passive diffusion) for up to 7 days. In a large phase III trial in cancer patients receiving multi-day (3-5 days) moderately or highly emetogenic chemotherapy, transdermal granisetron applied 24-48 hours prior to chemotherapy and remaining in place for 7 days was noninferior to oral granisetron 2 mg once daily administered for 3-5 days 1 hour prior to chemotherapy. Efficacy was assessed according to the proportion of patients achieving complete response (no vomiting and/or retching, no more than mild nausea, no rescue medication) from the first day, until 24 hours after the start of the last day, of administration of the chemotherapy regimen. In a phase II trial in patients with cancer receiving single-day, moderately-emetogenic chemotherapy, transdermal granisetron applied at least 24 hours prior to chemotherapy and removed after 5 days was as effective as a single oral dose of granisetron 2 mg in achieving total control (no nausea, no vomiting/retching, no use of rescue medication and no study withdrawal) during the delayed (24-120 hours; primary endpoint) period after chemotherapy. Transdermal granisetron was generally well tolerated in clinical trials, with few adverse events being treatment related.

  12. Enhancing topical analgesic administration: review and prospect for transdermal and transbuccal drug delivery systems.

    Science.gov (United States)

    Sanz, Roser; Calpena, Ana C; Mallandrich, Mireia; Clares, Beatriz

    2015-01-01

    Topical administration is an appealing method for drug delivery due to its non-invasiveness, self-controlled application, avoidance of first-pass metabolism in the liver and reduction of systemic side effects compared to other conventional routes such as oral and parenteral. However, topical administration must overcome the permeable barriers that skin and mucosa represent for the drug to achieve its desired therapeutic effect. Penetration of drugs through human skin is mainly impaired by the stratum corneum- the uppermost keratinized skin layer. In contrast, the stratified squamous epithelium (a nonkeratinized tissue) represents the major physical barrier for transbuccal drug administration in humans. Different technologies have been studied to enhance the bioavailability or local effects of drugs administered through skin and buccal mucosa. Those technologies involve the use of physical or chemical enhancers and new dosage forms such as vesicles, cyclodextrins, nanoparticles and other complex systems. Combinations of these technologies may further increase drug delivery in some cases. As analgesia is one of the main therapeutic effects sought through topical administration, this paper focuses on the review of drug delivery systems to improve the topical and transdermal/transbuccal drug delivery of substances with known analgesic action. A discussion of their possibilities and limitations is also included.

  13. Development, characterization & invivo evaluation of proniosomal based transdermal delivery system of Atenolol

    Directory of Open Access Journals (Sweden)

    S. Ramkanth

    2018-06-01

    Full Text Available The potential of proniosomes as a transdermal drug delivery system for Atenolol was investigated by encapsulating the drug in various formulations of proniosomal gel composed of various ratios of sorbitan fatty acid esters, cholesterol, lecithin prepared by Coacervation-phase separation method. The objectives of the present study were to define effects on the antihypertension activity and pharmacokinetics of a novel transdermal Proniosomal gel incorporating Atenolol. The formulated systems were characterized in vitro for size, drug entrapment, In vitro and in vivo drug permeation profiles and vesicular stability at different storage conditions. The optimized Atenolol proniosomes (AT8 showed nanometric vesicle size, high entrapment efficiency and marked enhancement in transdermal permeation. The prepared Proniosomal gel showed the relative bioavailability of 365.38 fold increased for AT8 than oral. The maximal concentrations (Cmax, of drug were significantly reduced while the areas under the plasma concentration–time curve (AUC, and mean residence times (MRT, t1/2 were evidently increased and extended, respectively. The results suggest that proniosomes can act as promising carrier which offers an alternative approach for transdermal delivery of Atenolol. Keywords: Proniosomes, Atenolol, Niosomes, Pharmacokinetic study, Transdermal delivery

  14. NMR characterisation and transdermal drug delivery potential of microemulsion systems

    DEFF Research Database (Denmark)

    Kreilgaard, Mads; Pedersen, E J; Jaroszewski, J W

    2000-01-01

    The purpose of this study was to investigate the influence of structure and composition of microemulsions (Labrasol/Plurol Isostearique/isostearylic isostearate/water) on their transdermal delivery potential of a lipophilic (lidocaine) and a hydrophilic model drug (prilocaine hydrochloride), and ...

  15. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems.

    Science.gov (United States)

    Chen, Yang; Wang, Manli; Fang, Liang

    2013-01-01

    The highly organized structure of the stratum corneum provides an effective barrier to the drug delivery into or across the skin. To overcome this barrier function, penetration enhancers are always used in the transdermal and dermal drug delivery systems. However, the conventional chemical enhancers are often limited by their inability to delivery large and hydrophilic molecules, and few to date have been routinely incorporated into the transdermal formulations due to their incompatibility and local irritation issues. Therefore, there has been a search for the compounds that exhibit broad enhancing activity for more drugs without producing much irritation. More recently, the use of biomaterials has emerged as a novel method to increase the skin permeability. In this paper, we present an overview of the investigations on the feasibility and application of biomaterials as penetration enhancers for transdermal or dermal drug delivery systems.

  16. Therapeutic dosage assessment based on population pharmacokinetics of a novel single-dose transdermal donepezil patch in healthy volunteers.

    Science.gov (United States)

    Choi, Hee Youn; Kim, Yo Han; Hong, Donghyun; Kim, Seong Su; Bae, Kyun-Seop; Lim, Hyeong-Seok

    2015-08-01

    We performed population pharmacokinetic (PK) analysis of a novel transdermal donepezil patch in healthy subjects who participated in a phase I trial. We also studied the optimal dosage regimen with repeated patch application for achieving a therapeutic range using a PK simulation model. This study used data from a randomized, single-dose escalation phase I clinical trial conducted in Korea. The population PK analysis was performed using NONMEM software, version 7.3. From the final PK model, we simulated repeat patch application results assuming various transdermal absorption rates. Based on the clinical trial data, novel donepezil patches with doses of 43.75 mg/12.5 cm(2), 87.5 mg/25 cm(2), and 175 mg/50 cm(2) were placed on each subject. A linear one-compartment, first-order elimination with sequential zero- and first-order absorption model best described the donepezil plasma concentrations after patch application. Simulated results on the basis of the PK model showed that repeat application of the patches of 87.5 mg/25 cm(2) and 175 mg/50 cm(2) every 72 h would cover the therapeutic range of donepezil and reach steady-state faster with fewer fluctuations in concentration compared to typical oral administrations. A linear one-compartment with sequential zero- and first-order absorption model was effective for describing the PKs of donepezil after application of patch. Based on this analysis, 87.5 mg/25 cm(2) or 175 mg/50 cm(2) patch application every 72 h is expected to achieve the desired plasma concentration of donepezil.

  17. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    Science.gov (United States)

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Cantwell, Cara T; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P

    2014-01-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management. (technical note)

  19. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    Science.gov (United States)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  20. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  1. Microneedle-based drug delivery systems for transdermal route.

    Science.gov (United States)

    Pierre, Maria Bernadete Riemma; Rossetti, Fabia Cristina

    2014-03-01

    Transdermal delivery offers an attractive, noninvasive administration route but it is limited by the skin's barrier to penetration. Minimally invasive techniques, such as the use of microneedles (MNs), bypass the stratum corneum (SC) barrier to permit the drug's direct access to the viable epidermis. These novel micro devices have been developed to puncture the skin for the transdermal delivery of hydrophilic drugs and macromolecules, including peptides, DNA and other molecules, that would otherwise have difficulty passing the outermost layer of the skin, the SC. Using the tools of the microelectronics industry, MNs have been fabricated with a range of sizes, shapes and materials. MNs have been shown to be robust enough to penetrate the skin and dramatically increase the skin permeability of several drugs. Moreover, MNs have reduced needle insertion pain and tissue trauma and provided controlled delivery across the skin. This review focuses on the current state of the art in the transdermal delivery of drugs using various types of MNs and developments in the field of microscale devices, as well as examples of their uses and clinical safety.

  2. Methylphenidate Transdermal System in Adults with Past Stimulant Misuse: An Open-Label Trial

    Science.gov (United States)

    McRae-Clark, Aimee L.; Brady, Kathleen T.; Hartwell, Karen J.; White, Kathleen; Carter, Rickey E.

    2011-01-01

    Objective: This 8-week, open-label trial assessed the efficacy of methylphenidate transdermal system (MTS) in 14 adult individuals diagnosed with ADHD and with a history of stimulant misuse, abuse, or dependence. Method: The primary efficacy endpoint was the Wender-Reimherr Adult ADHD Scale (WRAADS), and secondary efficacy endpoints included the…

  3. Methylphenidate Transdermal System in Adult ADHD and Impact on Emotional and Oppositional Symptoms

    Science.gov (United States)

    Marchant, Barrie K.; Reimherr, Frederick W.; Robison, Reid J.; Olsen, John L.; Kondo, Douglas G.

    2011-01-01

    Objective: This trial evaluated the effect of methylphenidate transdermal system (MTS) on the full spectrum of adult symptoms (attention-disorganization, hyperactivity-impulsivity, emotional dysregulation [ED], and oppositional-defiant disorder [ODD]) found in this disorder. Method: This placebo-controlled, double-blind, flexible-dose, crossover…

  4. Fatal Overdose due to Confusion of an Transdermal Fentanyl Delivery System

    Directory of Open Access Journals (Sweden)

    Ingo Voigt

    2013-01-01

    Full Text Available Background. The use of transdermal fentanyl systems has increased over recent years, especially in patients with chronic pain. Large misuse potential and fatal outcomes have been described. Case Presentation. A 58-year-old patient presenting with clinical signs of opioid poisoning (hypoventilation, bradycardia, hypotension, and miosis was admitted to our ICU. The first body check revealed a 75 mcg per hour fentanyl patch at the patient's right scapula. Some months ago, patient's aunt died after suffering from an oncological disease. During breaking up of her household, the patches were saved by the patient. Not knowing the risk of this drug, he mistook it as a heat plaster. Investigations. Laboratory test showed an impaired renal function and metabolic acidosis. Urine drug test was negative at admittance and 12 h later. CCT scan presented a global hypoxic brain disease. Treatment and Outcome. The patient was discharged 30 days after admittance in a hemodynamic stable condition but a vegetative state and transferred to a rehabilitation center. Learning Points. With the ongoing increase in fentanyl patch prescriptions for therapeutic reasons, it is likely that misuse cases will become more relevant. Conventional urine drug screening tests are not able to exclude the diagnosis fentanyl intoxication. History taking should include family member's drug prescriptions.

  5. A Transdermal Drug Delivery System Based on LIGA Technology and Soft Lithography

    Science.gov (United States)

    Matteucci, Marco; Perennes, Frederic; Marmiroli, Benedetta; Di Fabrizio, Enzo

    2007-01-01

    This report presents a transdermal drug delivery system based on LIGA fabricated microparts. It is a portable device combining a magnetically actuated micro gear pump with a microneedle array. The fluidic behaviour of the system is analyzed in order to predict its performance according to the dimension of the microparts and then compared to experimental data. The manufacturing process of both micropump and microneedle array are described.

  6. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stoica-Guzun, Anicuta [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)], E-mail: astoica@mt.pub.ro; Stroescu, Marta; Tache, Florin [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)], E-mail: zaharescut@icpe-ca.ro; Grosu, Elena [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2007-12-15

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of {gamma}-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  7. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-01-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell

  8. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-12-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  9. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    Science.gov (United States)

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (Pdelivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  10. Preparation and the in vitro evaluation of nanoemulsion system for the transdermal delivery of granisetron hydrochloride.

    Science.gov (United States)

    Zheng, Wen-wu; Zhao, Ling; Wei, Yu-meng; Ye, Yun; Xiao, Shun-han

    2010-08-01

    The objective of this study was to develop and evaluate nanoemulsion system for transdermal delivery of granisetron hydrochloride. Pseudo-ternary phase diagram was constructed to ascertain the concentration range of components of nanoemulsion composed of isopropyl myristate (IPM) as an oil phase, tween 85 as surfactant, ethanol as cosurfactant, water as aqueous phase. The effects of the content of IPM as an oil phase and n-methyl pyrrolidone (NMP) as transdermal enhancer on rat skin permeation of granisetron hydrochloride nanoemulsion were studied in vitro. The results showed that the mean particle size of nanoemulsion ranged from 50.4+/-1.5 to 82.4+/-0.9 nm with homogeneous size distribution. The resulted optimum formulation composed of 2.5% granisetron hydrochloride, 4% IPM, 40% tween 85/ethanol (1 : 1) and 10% NMP showed that the skin permeation rate was the highest (85.39+/-2.90 microg/cm(2)/h) and enhancement of drug permeability was 4.1-fold for transdermal delivery of granisetron hydrochloridein comparison with the control group (20% of tween 85 and 20% of ethanol micelle solution containing 2.5% of granisetron hydrochloride without IPM), and cumulative permeation amount was the highest (891.8+/-2.86 microg/cm(2)) with the shortest lag time (0.11+/-0.02 h) and was stable for at least 12 months. Therefore, the nanoemulsion system developed in this study offers a promising vehicle for the transdermal delivery system of granisetron hydrochloride, which may be as effective as oral or intravenous dosage forms and avoid some difficulties associated with these dosage forms.

  11. Computational and experimental model of transdermal iontophorethic drug delivery system.

    Science.gov (United States)

    Filipovic, Nenad; Saveljic, Igor; Rac, Vladislav; Graells, Beatriz Olalde; Bijelic, Goran

    2017-11-30

    The concept of iontophoresis is often applied to increase the transdermal transport of drugs and other bioactive agents into the skin or other tissues. It is a non-invasive drug delivery method which involves electromigration and electroosmosis in addition to diffusion and is shown to be a viable alternative to conventional administration routs such as oral, hypodermic and intravenous injection. In this study we investigated, experimentally and numerically, in vitro drug delivery of dexamethasone sodium phosphate to porcine skin. Different current densities, delivery durations and drug loads were investigated experimentally and introduced as boundary conditions for numerical simulations. Nernst-Planck equation was used for calculation of active substance flux through equivalent model of homogeneous hydrogel and skin layers. The obtained numerical results were in good agreement with experimental observations. A comprehensive in-silico platform, which includes appropriate numerical tools for fitting, could contribute to iontophoretic drug-delivery devices design and correct dosage and drug clearance profiles as well as to perform much faster in-silico experiments to better determine parameters and performance criteria of iontophoretic drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Opioids Switching with Transdermal Systems in Chronic Cancer Pain

    Directory of Open Access Journals (Sweden)

    Barbarisi M

    2009-05-01

    Full Text Available Abstract Background Due to tolerance development and adverse side effects, chronic pain patients frequently need to be switched to alternative opioid therapy Objective To assess the efficacy and tolerability of an alternative transdermally applied (TDS opioid in patients with chronic cancer pain receiving insufficient analgesia using their present treatment. Methods A total of 32 patients received alternative opioid therapy, 16 were switched from buprenorphine to fentanyl and 16 were switched from fentanyl to buprenorphine. The dosage used was 50% of that indicated in equipotency conversion tables. Pain relief was assessed at weekly intervals for the next 3 weeks Results Pain relief as assessed by VAS, PPI, and PRI significantly improved (p Conclusion Opioid switching at 50% of the calculated equianalgesic dose produced a significant reduction in pain levels and rescue medication. The incidence of side effects decreased and no new side effects were noted. Further studies are required to provide individualized treatment for patients according to their different types of cancer.

  13. In vitro evaluation of transdermal nicotine delivery systems commercially available in Brazil

    Directory of Open Access Journals (Sweden)

    André Luís Morais Ruela

    2013-09-01

    Full Text Available The aim of this study was to develop and validate a method for evaluating the release and skin permeation from transdermal nicotine patches using the vertical diffusion cell (VDC. The VDC is an experimental apparatus employed in research, development, and the pharmaceutical field because it can simulate conditions closest to those established in clinical trials. Two transdermal nicotine delivery systems marketed in Brazil to release 14 mg over 24 hours were evaluated. Release studies were carried out using a regenerated cellulose dialysis membrane and permeation studies were carried out using excised porcine ear skin. The results indicated that nicotine release from both evaluated patches follows Higuchi's release kinetics, while skin permeation studies indicated zero-order release kinetics. Nicotine release rates were different between both evaluated patches, but drug permeation rates were not significantly different. According to validation studies, the method was appropriate for evaluating in vitro performance of nicotine patches. The proposed method can be applied to in vitro comparative studies between different commercial nicotine patches and may be used as an auxiliary tool in the design of new transdermal nicotine delivery systems.

  14. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  15. Impulse Oscillometry; Therapeutic Impacts of Transdermal Long-Acting Beta-2 Agonist Patch in Elderly Asthma with Inhaled Corticosteroid Alone

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2012-01-01

    Full Text Available Growing interest had been focused on the involvement of the small airways in asthma, and impulse oscillometry (IOS has been utilized as pulmonary functions for detecting large and small airways diseases separately. IOS can measure respiratory resistance and reactance at multiple frequencies, not available by spirometry or body plethysmography, is non-invasive techniques and convenient for elderly patients with a low dependency on cooperation during tidal breathing. IOS indices were well correlated with not only predicted FEV1 but also FEF25-75, residual volume/total lung capacity, delta N2 of a single nitrogen washout test which representing air trapping and inhomogeneous ventilation in the distal lung. These parameters and QOL scores were improved by additional transdermal long-acting beta-2 agonist patch even in well-controlled elderly asthma treating with inhaled corticosteoids alone. IOS may have a complementary role of spirometry in detecting subtle airways changes in general practice. However, systemic studies are required to investigate the clinical implication of each IOS index.

  16. Patient-controlled analgesia : therapeutic interventions using transdermal electro-activated and electro-modulated drug delivery

    NARCIS (Netherlands)

    Indermun, S.; Choonara, Y.E.; Kumar, P.; Du Toit, L.C.; Modi, G.; Luttge, R.; Pillay, V.

    2014-01-01

    Chronic pain poses a major concern to modern medicine and is frequently undertreated, causing suffering and disability. Patient-controlled analgesia, although successful, does have limitations. Transdermal delivery is the pivot to which analgesic research in drug delivery has centralized, especially

  17. Future of the transdermal drug delivery market--have we barely touched the surface?

    Science.gov (United States)

    Watkinson, Adam C; Kearney, Mary-Carmel; Quinn, Helen L; Courtenay, Aaron J; Donnelly, Ryan F

    2016-01-01

    Transdermal drug delivery is the movement of drugs across the skin for absorption into the systemic circulation. Transfer of the drug can occur via passive or active means; passive transdermal products do not disrupt the stratum corneum to facilitate delivery whereas active technologies do. Due to the very specific physicochemical properties necessary for successful passive transdermal drug delivery, this sector of the pharmaceutical industry is relatively small. There are many well-documented benefits of this delivery route however, and as a result there is great interest in increasing the number of therapeutic substances that can be delivered transdermally. This review discusses the various transdermal products that are currently/have been marketed, and the paths that led to their success, or lack of. Both passive and active transdermal technologies are considered with the advantages and limitations of each highlighted. In addition to marketed products, technologies that are in the investigative stages by various pharmaceutical companies are reviewed. Passive transdermal drug delivery has made limited progress in recent years, however with the ongoing intense research into active technologies, there is great potential for growth within the transdermal delivery market. A number of active technologies have already been translated into marketed products, with other platforms including microneedles, rapidly progressing towards commercialisation.

  18. Use of granisetron transdermal system in the prevention of chemotherapy-induced nausea and vomiting: a review

    Directory of Open Access Journals (Sweden)

    Albert Tuca

    2009-12-01

    Full Text Available Albert TucaPalliative Care Hospital Team, Palliative Care Department, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Barcelona, SpainAbstract: Until now only intravenous and oral formulations of 5HT3 receptor antagonists have been available. Recently a new formulation of a 5HT3 receptor antagonist, transdermal granisetron, has been developed, and approved by the FDA. Three phase I studies to evaluate its pharmacokinetic profile have shown that granisetron administered by a transdermal delivery system is absorbed by passive diffusion and maximal concentration is reached 48 hours after patch application. The patch of 52 cm2, which contains 34.3 mg of granisetron, releases 3.3 mg of the drug every day and maintains a stable average plasma concentration of 2.2 ng/mL over 6 days, similar to levels obtained with 2 mg of oral granisetron, administered every day during the same period of time. Two randomized as yet unpublished clinical trials (phase II/III have been conducted to evaluate the antiemetic efficacy of transdermal granisetron in chemotherapy-induced nausea and vomiting, in patients receiving moderately and highly emetogenic chemotherapy, compared with 2 mg of oral granisetron. More than 800 cancer patients were included in the trials. The rate of complete control of acute emesis was 49% for the phase II trial and 60% for the phase III trial. Neither trial showed a statistically significant difference between transdermal and oral granisetron. The control of delayed emesis was observed in 46% of patients, and there were no statistically significant differences between transdermal and oral granisetron. The most common adverse effects in both trials were constipation (<7% and headache (<1%; there were no statistically significant differences between transdermal and oral granisetron. These data show that transdermal granisetron is effective and safe in controlling acute emesis induced by chemotherapy with both moderate and high

  19. Encapsulated Curcumin for Transdermal Administration

    African Journals Online (AJOL)

    Purpose: To develop a proniosomal carrier system of curcumin for transdermal delivery. Methods: Proniosomes of curcumin were prepared by encapsulation of the drug in a mixture of Span 80, cholesterol and diethyl ether by ether injection method, and then investigated as a transdermal drug delivery system (TDDS).

  20. Use of granisetron transdermal system in the prevention of chemotherapy-induced nausea and vomiting: a review

    International Nuclear Information System (INIS)

    Tuca, Albert

    2009-01-01

    Until now only intravenous and oral formulations of 5HT 3 receptor antagonists have been available. Recently a new formulation of a 5HT 3 receptor antagonist, transdermal granisetron, has been developed, and approved by the FDA. Three phase I studies to evaluate its pharmacokinetic profile have shown that granisetron administered by a transdermal delivery system is absorbed by passive diffusion and maximal concentration is reached 48 hours after patch application. The patch of 52 cm 2 , which contains 34.3 mg of granisetron, releases 3.3 mg of the drug every day and maintains a stable average plasma concentration of 2.2 ng/mL over 6 days, similar to levels obtained with 2 mg of oral granisetron, administered every day during the same period of time. Two randomized as yet unpublished clinical trials (phase II/III) have been conducted to evaluate the antiemetic efficacy of transdermal granisetron in chemotherapy-induced nausea and vomiting, in patients receiving moderately and highly emetogenic chemotherapy, compared with 2 mg of oral granisetron. More than 800 cancer patients were included in the trials. The rate of complete control of acute emesis was 49% for the phase II trial and 60% for the phase III trial. Neither trial showed a statistically significant difference between transdermal and oral granisetron. The control of delayed emesis was observed in 46% of patients, and there were no statistically significant differences between transdermal and oral granisetron. The most common adverse effects in both trials were constipation (<7%) and headache (<1%); there were no statistically significant differences between transdermal and oral granisetron. These data show that transdermal granisetron is effective and safe in controlling acute emesis induced by chemotherapy with both moderate and high emetogenic potential. Efficacy and safety of transdermal granisetron are fully comparable with that of oral granisetron. More clinical trials using regimens of 2 or 3 drugs

  1. Dental therapeutic systems.

    Science.gov (United States)

    Iqbal, Zeenat; Jain, Nilu; Jain, Gaurav K; Talegaonkar, Sushama; Ahuja, Alka; Khar, Roop K; Ahmad, Farhan J

    2008-01-01

    The recognition of periodontal diseases as amenable to local antibiotherapy has resulted in a paradigmatic shift in treatment modalities of dental afflictions. Moreover the presence of antimicrobial resistance, surfacing of untoward reactions owing to systemic consumption of antibiotics has further advocated the use of local delivery of physiologically active substances into the periodontal pocket. While antimicrobials polymerized into acrylic strips, incorporated into biodegradable collagen and hollow permeable cellulose acetate fibers, multiparticulate systems, bio-absorbable dental materials, biodegradable gels/ointments, injectables, mucoadhesive microcapsules and nanospheres will be more amenable for direct placement into the periodontal pockets the lozenges, buccoadhesive tablets, discs or gels could be effectively used to mitigate the overall gingival inflammation. Whilst effecting controlled local delivery of a few milligram of an antibacterial agent within the gingival crevicular fluid for a longer period of time, maintaining therapeutic concentrations such delivery devices will circumvent all adverse effects to non- oral sites. Since the pioneering efforts of Goodson and Lindhe in 1989, delivery at gingival and subgingival sites has witnessed a considerable progress. The interest in locally active systems is evident from the patents being filed and granted. The present article shall dwell in reviewing the recent approaches being proffered in the field. Patents as by Shefer, et al. US patent, 6589562 dealing with multicomponent biodegradable bioadhesive controlled release system for oral care products, Lee, et al. 2001, US patent 6193994, encompassing a locally administrable, biodegradable and sustained-release pharmaceutical composition for periodontitis and process for preparation thereof and method of treating periodontal disease as suggested by Basara in 2004via US patent 6830757, shall be the types of intellectual property reviewed and presented in

  2. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    Science.gov (United States)

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Analysis of nifedipine content in transdermal drug delivery system using non-destructive visible spectrophotometry technique

    International Nuclear Information System (INIS)

    Normaizira Hamidi; Normaizira Hamidi; Normaizira Hamidi; Mohd Nasir Taib; Mohd Nasir Taib; Wui, Wong Tin; Wui, Wong Tin

    2008-01-01

    The applicability of visible spectrophotometry technique as a tool to determine the drug content of polymeric film for use as a transdermal drug delivery system was investigated. Hydroxypropylmethycellulose (HPMC) was selected as the matrix polymer and nifedipine as the model drug. Blank and nifedipine-loaded HPMC films were prepared using the solvent evaporation method. The absorbance spectra of these films under the visible wavelengths between 400 and 800 nm were assessed and compared against the drug content values obtained by means of the conventional destructive UV- spectrophotometry technique. The latter required the use of a solvent system which contained methanol, a harmful organic component in pharmaceutical applications. The results indicated that the absorbance values, attributed to nifedipine, at the wavelengths of 545, 585, 638 and 755nm were significantly correlated to the drug content values obtained using the chemical assay method (Pearson correlation value: r = 0.990 and p < 0.01). The visible spectrophotometry technique is potentially suitable for use to determine the nifedipine content of films owing to its nature of characterization of transdermal drug delivery system which does not require sample destruction during the process of measurement. The samples are recoverable from test and analysis of the entire batch of samples is possible without the need of solvents and chemical reagents. (author)

  4. Transdermal hyoscine induced unilateral mydriasis.

    LENUS (Irish Health Repository)

    Hannon, Breffni

    2012-03-20

    The authors present a case of unilateral mydriasis in a teenager prescribed transdermal hyoscine hydrobromide (scopolamine) for chemotherapy induced nausea and vomiting. The authors discuss the ocular side-effects associated with this particular drug and delivery system and the potential use of transdermal hyoscine as an antiemetic agent in this group.

  5. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation.

    Science.gov (United States)

    Ahmed, Tarek A; El-Say, Khalid M; Aljaeid, Bader M; Fahmy, Usama A; Abd-Allah, Fathy I

    2016-03-16

    This work aimed to develop an optimized ethosomal formulation of glimepiride then loading into transdermal films to offer lower drug side effect, extended release behavior and avoid first pass effect. Four formulation factors were optimized for their effects on vesicle size (Y1), entrapment efficiency (Y2) and vesicle flexibility (Y3). Optimum desirability was identified and, an optimized formulation was prepared, characterized and loaded into transdermal films. Ex-vivo permeation study for the prepared films was conducted and, the permeation parameters and drug permeation mechanism were identified. Penetration through rat skin was studied using confocal laser microscope. In-vivo study was performed following transdermal application on human volunteers. The percent of alcohol was significantly affecting all the studied responses while the other factors and their interaction effects were varied on their effects on each response. The optimized ethosomal formulation showed observed values for Y1, Y2 and Y3 of 61 nm, 97.12% and 54.03, respectively. Ex-vivo permeation of films loaded with optimized ethosomal formulation was superior to that of the corresponding pure drug transdermal films and this finding was also confirmed after confocal laser microscope study. Permeation of glimepiride from the prepared films was in favor of Higushi-diffusion model and exhibited non-Fickian or anomalous release mechanism. In-vivo study revealed extended drug release behavior and lower maximum drug plasma level from transdermal films loaded with drug ethosomal formulation. So, the ethosomal formulation could be considered a suitable drug delivery system especially when loaded into transdermal vehicle with possible reduction in side effects and controlling the drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A thermal microjet system with tapered micronozzles fabricated by inclined UV lithography for transdermal drug delivery

    Science.gov (United States)

    Yoon, Yong-Kyu; Park, Jung-Hwan; Lee, Jeong-Woo; Prausnitz, Mark R.; Allen, Mark G.

    2011-02-01

    Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 µm, respectively, and an extruded height of 250 µm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.

  7. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    Science.gov (United States)

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  8. A thermal microjet system with tapered micronozzles fabricated by inclined UV lithography for transdermal drug delivery

    International Nuclear Information System (INIS)

    Yoon, Yong-Kyu; Park, Jung-Hwan; Lee, Jeong-Woo; Prausnitz, Mark R; Allen, Mark G

    2011-01-01

    Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 µm, respectively, and an extruded height of 250 µm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.

  9. A New Drug Release Method in Early Development of Transdermal Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Bing Cai

    2012-01-01

    Full Text Available In vitro drug release tests are a widely used tool to measure the variance between transdermal product performances and required by many authorities. However, the result cannot provide a good estimation of the in vivo drug release. In the present work, a new method for measuring drug release from patches has been explored and compared with the conventional USP apparatus 2 and 5 methods. Durogesic patches, here used as a model patch, were placed on synthetic skin simulator and three moisture levels (29, 57, 198 μL cm−2 were evaluated. The synthetic skin simulators were collected after 1, 2, 3, 4, 6, and 24 hours and extracted with pH 1.0 hydrochloric acid solution. The drug concentrations in the extractions were measured by isocratic reverse phase high-pressure liquid chromatography. The results showed that, with the increasing moisture level on the synthetic skin simulator, the drug release rate increased. In comparison with the conventional USP method, the drug release results performed by the new method were in more correlation to the release rate claimed in the product label. This new method could help to differentiate the drug release rates among assorted formulations of transdermal drug delivery systems in the early stage of development.

  10. Liquid crystalline systems containing Vitamin E TPGS for the controlled transdermal nicotine delivery

    Directory of Open Access Journals (Sweden)

    Lívia Neves Borgheti-Cardoso

    Full Text Available ABSTRACT Transdermal nicotine patches have been used in smoking cessation therapy, suggested for the treatment of skin disorders with eosinophilic infiltration and have been found to improve attention performance in patients with Alzheimer's disease and age-associated memory impairment. However, skin irritation with extended patch use is still a problem. The aim of this work was to develop a simple to prepare liquid crystalline system containing vitamin E TPGS that would be able to control nicotine delivery and reduce irritation and sensitization problems. The liquid crystalline phases were macroscopically characterized by visual analysis and examined microscopically under a polarized light microscope. Topical and transdermal delivery of nicotine were investigated in vitro using porcine ear skin mounted on a Franz diffusion cell. Nicotine skin permeation from the developed cubic phase followed zero-order kinetics (r = 0.993 and was significantly enhanced after 12 h when compared to the control formulation (nicotine solution (p < 0.05 (138.86 ± 20.44 and 64.91 ± 4.06 μg/cm2, respectively. Cubic phase was also able to target viable skin layers in comparison to control solution (8.18 ± 1.89 and 2.63 ± 2.51 μg/cm2, respectively. Further studies to evaluate skin sensitization and irritation are now necessary.

  11. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  12. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sabine Szunerits

    2018-02-01

    Full Text Available Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs, which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field

  13. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery.

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum , the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section "Frontiers in Bioengineering and Biotechnology," the advances in this field and the handful of

  14. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field and the handful of

  15. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study.

    Science.gov (United States)

    Morsi, Nadia M; Aboelwafa, Ahmed A; Dawoud, Marwa H S

    2018-06-01

    Timolol Maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from poor oral bioavailability (50%) due to its first pass effect and a short elimination half-life of 4 h; resulting in its frequent administration. Transdermal formulation may circumvent these problems in the form of protransfersomes. The aim of this study is to develop and optimize transdermal protransfersomal system of Timolol Maleate by film deposition on carrier method where protransfersomes were converted to transfersomes upon skin hydration following transdermal application under occlusive conditions. Two 2 3 full factorial designs were employed to investigate the influence of three formulation variables which were; phosphatidyl choline: surfactant molar ratio, carrier: mixture and the type of SAA each on particle size, drug entrapment efficiency and release rate. The optimized formulation was evaluated regarding permeation through hairless rat skin and compared with oral administration of aqueous solution on male Wistar rats. Optimized protransfersomal system had excellent permeation rate through shaved rat skin (780.69 μg/cm 2 /h) and showed six times increase in relative bioavailability with prolonged plasma profile up to 72 h. A potential protransfresomal transdermal system was successfully developed and factorial design was found to be a smart tool in its optimization.

  16. Exubera. Inhale therapeutic systems.

    Science.gov (United States)

    Bindra, Sanjit; Cefalu, William T

    2002-05-01

    Inhale, in colaboration with Pfizer and Aventis Pharma (formerly Hoechst Marion Roussel; HMR), is developing an insulin formulation utilizing its pulmonary delivery technology for macromolecules for the potential treatment of type I and II diabetes. By July 2001, the phase III program had been completed and the companies had begun to assemble data for MAA and NDA filings; however, it was already clear at this time that additional data might be required for filing. By December 2001, it had been decided that the NDA should include an increased level of controlled, long-term pulmonary safety data in diabetic patients and a major study was planned to be completed in 2002, with the NDA filed thereafter (during 2002). US-05997848 was issued to Inhale Therapeutic Systems in December 1999, and corresponds to WO-09524183, filed in February 1995. Equivalent applications have appeared to date in Australia, Brazil, Canada, China, Czech Republic, Europe, Finland, Hungary, Japan, Norway, New Zealand, Poland and South Africa. This family of applications is specific to pulmonary delivery of insulin. In February 1999, Lehman Brothers gave this inhaled insulin a 60% probability of reaching market, with a possible launch date of 2001. The analysts estimated peak sales at $3 billion in 2011. In May 2000, Aventis predicted that estimated peak sales would be in excess of $1 billion. In February 2000, Merrill Lynch expected product launch in 2002 and predicted that it would be a multibillion-dollar product. Analysts Merril Lynch predicted, in September and November 2000, that the product would be launched by 2002, with sales in that year of e75 million, rising to euro 500 million in 2004. In April 2001, Merrill Lynch predicted that filing for this drug would occur in 2001. Following the report of the potential delay in regulatory filing, issued in July 2001, Deutsche Banc Alex Brown predicted a filing would take place in the fourth quarter of 2002 and launch would take place in the first

  17. MICRONEEDLES AS A WAY TO INCREASE THE TRANSDERMAL INSULIN DELIVERY

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available Aim: to prove the possibility of increasing the diffusion of insulin through the skin in vitro with pre-applying microneedles.Materials and methods. Microemulsion for transdermal therapeutic system of insulin has been used in vitro studies. Genetically engineered human insulin has been used in this research. Applicators with silicon microneedles (40 and 150 microns long have been used to enhance the diffusion fl ux of drug substance. The dynamics of insulin release from the transdermal therapeutic systems through the rabbit skin has been studied in glass Franz diffusion cells in analyzer diffusion of drugs HDT 1000 (Copley Scientifi c Ltd., UK. Insulin has been labeled with fl uorescein isothiocyanate to separate the insulin absorption spectrum from the spectra of native skin proteins at spectrophotometer measurements.Results. The amounts of insulin delivered through the skin in vitro after previous application of microneedles of 40 and 150 microns are 282.5 ± 61.1 and 372.3 ± 7.0 microgram, respectively. This is 1.4 and 1.9 times more than in the transdermal system without microneedles.Conclusion. The conditions for increasing the diffusion of insulin through the skin in a model transdermal therapeutic system with microneedles (length – 150 microns, duration of pre-application – 1 hour have been found.

  18. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    Science.gov (United States)

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the

  19. Evaluation of Microemulsion and Lamellar Liquid Crystalline Systems for Transdermal Zidovudine Delivery.

    Science.gov (United States)

    Carvalho, André Luis Menezes; Silva, José Alexsandro da; Lira, Ana Amélia Moreira; Conceição, Tamara Matos Freire; Nunes, Rogéria de Souza; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Sarmento, Victor Hugo Vitorino; Leal, Leila Bastos; de Santana, Davi Pereira

    2016-07-01

    This study proposed to investigate and to compare colloidal carrier systems containing Zidovudine (3'-azido-3'-deoxythymidine) (AZT) for transdermal administration and optimization of antiretroviral therapy. Microemulsion (ME) and lamellar phase (LP) liquid crystal were obtained and selected from pseudoternary diagrams previously developed. Small-angle X-ray scattering and rheology analysis confirmed the presence of typical ME and liquid crystalline structures with lamellar arrangement, respectively. Both colloidal carrier systems, ME, and LP remained stable, homogeneous, and isotropic after AZT addition. In vitro permeation study (using pig ear skin) showed that the amount of permeated drug was higher for ME compared to the control and LP, obtaining a permeation enhancing effect on the order of approximately 2-fold (p drug permeation without causing apparent skin irritation. On the order hand, LP functioned as a drug reservoir reducing AZT partitioning into the skin. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Role of pressure-sensitive adhesives in transdermal drug delivery systems.

    Science.gov (United States)

    Lobo, Shabbir; Sachdeva, Sameer; Goswami, Tarun

    2016-01-01

    Transdermal drug delivery systems (TDDS) are employed for the delivery of drugs across skin into the systemic circulation. Pressure-sensitive adhesive (PSA) is one of the most critical components used in a TDDS. The primary function of PSA is to help in adhesion of patch to skin, but more importantly it acts as a matrix for the drug and other excipients. Hence, apart from adhesion of the patch, PSA also affects other critical quality attributes of the TDDS such as drug delivery, flux through skin and physical and chemical stability of the finished product. This review article provides a summary of the adhesives used in various types of TDDS. In particular, this review will cover the design types of TDDS, categories of PSAs and their evaluation and regulatory aspects.

  1. Drug Delivery Through the Skin: Molecular Simulations of Barrier Lipids to Design more Effective Noninvasive Dermal and Transdermal Delivery Systems for Small Molecules Biologics and Cosmetics

    Energy Technology Data Exchange (ETDEWEB)

    J Torin Huzil; S Sivaloganathan; M Kohandel; M Foldvari

    2011-12-31

    The delivery of drugs through the skin provides a convenient route of administration that is often preferable to injection because it is noninvasive and can typically be self-administered. These two factors alone result in a significant reduction of medical complications and improvement in patient compliance. Unfortunately, a significant obstacle to dermal and transdermal drug delivery alike is the resilient barrier that the epidermal layers of the skin, primarily the stratum corneum, presents for the diffusion of exogenous chemical agents. Further advancement of transdermal drug delivery requires the development of novel delivery systems that are suitable for modern, macromolecular protein and nucleotide therapeutic agents. Significant effort has already been devoted to obtain a functional understanding of the physical barrier properties imparted by the epidermis, specifically the membrane structures of the stratum corneum. However, structural observations of membrane systems are often hindered by low resolutions, making it difficult to resolve the molecular mechanisms related to interactions between lipids found within the stratum corneum. Several models describing the molecular diffusion of drug molecules through the stratum corneum have now been postulated, where chemical permeation enhancers are thought to disrupt the underlying lipid structure, resulting in enhanced permeability. Recent investigations using biphasic vesicles also suggested a possibility for novel mechanisms involving the formation of complex polymorphic lipid phases. In this review, we discuss the advantages and limitations of permeation-enhancing strategies and how computational simulations, at the atomic scale, coupled with physical observations can provide insight into the mechanisms of diffusion through the stratum corneum.

  2. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges

    Directory of Open Access Journals (Sweden)

    Kevin Ita

    2015-06-01

    Full Text Available Transdermal drug delivery offers a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, only few medications can be delivered through the transdermal route in therapeutic amounts. Microneedles can be used to enhance transdermal drug delivery. In this review, different types of microneedles are described and their methods of fabrication highlighted. Microneedles can be fabricated in different forms: hollow, solid, and dissolving. There are also hydrogel-forming microneedles. A special attention is paid to hydrogel-forming microneedles. These are innovative microneedles which do not contain drugs but imbibe interstitial fluid to form continuous conduits between dermal microcirculation and an attached patch-type reservoir. Several microneedles approved by regulatory authorities for clinical use are also examined. The last part of this review discusses concerns and challenges regarding microneedle use.

  3. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, A.

    2006-01-01

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137 C s) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  4. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    Directory of Open Access Journals (Sweden)

    Rajabalaya R

    2017-02-01

    Full Text Available Rajan Rajabalaya, Muhammad Nuh Musa, Nurolaini Kifli, Sheba R David PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam Abstract: Liquid crystal (LC dosage forms, particularly those using lipid-based lyotropic LCs (LLCs, have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. Keywords: liquid crystal, drug delivery, controlled release, lyotropic, surfactants, drug localization

  5. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  6. Stereomicroscopic imaging technique for the quantification of cold flow in drug-in-adhesive type of transdermal drug delivery systems.

    Science.gov (United States)

    Krishnaiah, Yellela S R; Katragadda, Usha; Khan, Mansoor A

    2014-05-01

    Cold flow is a phenomenon occurring in drug-in-adhesive type of transdermal drug delivery systems (DIA-TDDS) because of the migration of DIA coat beyond the edge. Excessive cold flow can affect their therapeutic effectiveness, make removal of DIA-TDDS difficult from the pouch, and potentially decrease available dose if any drug remains adhered to pouch. There are no compendial or noncompendial methods available for quantification of this critical quality attribute. The objective was to develop a method for quantification of cold flow using stereomicroscopic imaging technique. Cold flow was induced by applying 1 kg force on punched-out samples of marketed estradiol DIA-TDDS (model product) stored at 25°C, 32°C, and 40°C/60% relative humidity (RH) for 1, 2, or 3 days. At the end of testing period, dimensional change in the area of DIA-TDDS samples was measured using image analysis software, and expressed as percent of cold flow. The percent of cold flow significantly decreased (p < 0.001) with increase in size of punched-out DIA-TDDS samples and increased (p < 0.001) with increase in cold flow induction temperature and time. This first ever report suggests that dimensional change in the area of punched-out samples stored at 32°C/60%RH for 2 days applied with 1 kg force could be used for quantification of cold flow in DIA-TDDS. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. In Vitro Drug Transfer Due to Drug Retention in Human Epidermis Pretreated with Application of Marketed Estradiol Transdermal Systems.

    Science.gov (United States)

    Krishnaiah, Yellela S R; Pavurala, Naresh; Yang, Yang; Manda, Prashanth; Katragadda, Usha; Yang, Yongsheng; Shah, Rakhi; Fang, Guodong; Khan, Mansoor A

    2017-08-01

    Study objective was to assess skin-to-skin drug transfer potential that may occur due to drug retention in human epidermis (DRE) pretreated with application of estradiol transdermal drug delivery systems (TDDS) and other estradiol transdermal dosage forms (gels and sprays). TDDS (products-A, B, and C) with varying formulation design and composition, and other estradiol transdermal products (gel and spray) were applied to heat separated human epidermis (HSE) and subjected to in vitro drug permeation study. Amounts of DRE were quantified after 24 h. The DRE with product-B was significantly (P  0.05) amounts of DRE. A separate in vitro permeation study was carried out to determine amounts of drug transferred from drug-retaining epidermis to untreated HSE. The amounts of drug transferred, due to DRE after 8 h, with product-C were significantly (P drug transfer due to the DRE after labeled period of using estradiol TDDS, though the clinical relevance of these findings is yet to be determined.

  8. Liposomal Encapsulation for Systemic Delivery of Propranolol via Transdermal Iontophoresis Improves Bone Microarchitecture in Ovariectomized Rats.

    Science.gov (United States)

    Teong, Benjamin; Kuo, Shyh Ming; Tsai, Wei-Hsin; Ho, Mei-Ling; Chen, Chung-Hwan; Huang, Han Hsiang

    2017-04-13

    The stimulatory effects of liposomal propranolol (PRP) on proliferation and differentiation of human osteoblastic cells suggested that the prepared liposomes-encapsulated PRP exerts anabolic effects on bone in vivo. Iontophoresis provides merits such as sustained release of drugs and circumvention of first pass metabolism. This study further investigated and evaluated the anti-osteoporotic effects of liposomal PRP in ovariectomized (OVX) rats via iontophoresis. Rats subjected to OVX were administered with pure or liposomal PRP via iontophoresis or subcutaneous injection twice a week for 12 weeks. Changes in the microarchitecture at the proximal tibia and the fourth lumbar spine were assessed between pure or liposomal PRP treated and non-treated groups using micro-computed tomography. Administration of liposomal PRP at low dose (0.05 mg/kg) via iontophoresis over 2-fold elevated ratio between bone volume and total tissue volume (BV/TV) in proximal tibia to 9.0% whereas treatment with liposomal PRP at low and high (0.5 mg/kg) doses via subcutaneous injection resulted in smaller increases in BV/TV. Significant improvement of BV/TV and bone mineral density (BMD) was also found in the fourth lumbar spine when low-dose liposomal PRP was iontophoretically administered. Iontophoretic low-dose liposomal PRP also elevated trabecular numbers in tibia and trabecular thickness in spine. Enhancement of bone microarchitecture volumes has highlighted that liposomal formulation with transdermal iontophoresis is promising for PRP treatment at the lower dose and with longer duration than its clinical therapeutic range and duration to exhibit optimal effects against bone loss in vivo.

  9. Formulation and in vitro/in vivo evaluation of levodopa transdermal delivery systems.

    Science.gov (United States)

    Lee, Kyung Eun; Choi, Yun Jung; Oh, Byu Ree; Chun, In Koo; Gwak, Hye Sun

    2013-11-18

    This study aims to investigate the feasibility of Levodopa transdermal delivery systems (TDSs). Levodopa TDSs were formulated using various vehicles and permeation enhancers, and in vitro permeation and in vivo pharmacokinetic studies were carried out. In the in vitro study, ester-type vehicles showed relatively high enhancing effects; propylene glycol monocaprylate and propylene glycol monolaurate showed the highest permeation fluxes from both solution and pressure sensitive adhesive (PSA) TDS formulations. Lag time was dramatically shortened with PSA TDS formulations as compared with solution formulations. In the in vivo study, the addition of fatty acids increased blood drug concentrations regardless of the kind or concentration of fatty acid; the AUCinf increased up to 8.7 times as compared with propylene glycol (PG) alone. PSA TDS containing 10% linoleic acid exhibited prolonged Tmax as compared with oral form. Total clearance of L-dopa from PSA TDSs was significantly lower than from oral form (up to 86.8 times). Especially, PSA TDS containing 10% linoleic acid (LOA) revealed 76.2 fold higher AUCinf than oral administration. Based on our results, the L-dopa PSA TDS containing PG with 10% LOA could be used as a good adjuvant therapy for Parkinson's disease patients who experience symptom fluctuation by L-dopa oral administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Numerical simulations of crystal growth in a transdermal drug delivery system

    Science.gov (United States)

    Zeng, Jianming; Jacob, Karl I.; Tikare, Veena

    2004-02-01

    Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a dissolved crystallizable component was simulated using a kinetic Monte Carlo model. This model was used previously to study Ostwald ripening in the high crystallizable component regime and was shown to correctly simulate solution, diffusion and precipitation. In this study, the same model with modifications was applied to the low crystallizable regime of interest to the transdermal drug delivery system (TDS) community. We demonstrate the model's utility by simulating precipitation and grain growth during isothermal storage at different supersaturation conditions. The simulation results provide a first approximation for the crystallization occurring in TDS. It has been reported that for relatively higher temperature growth of drug crystals in TDS occurs only in the middle third of the polymer layer. The results from the simulations support these findings that crystal growth is limited to the middle third of the region, where the availability of crystallizable components is the highest, for cluster growth at relatively high temperature.

  11. Electrospun polymeric nanofibers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Mahya Rahmani

    2017-04-01

    Full Text Available Conventional transdermal drug delivery systems (TDDS have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofibers fabrication with a great potential for drug delivery. More studies in the field of nanofibers containing drug are divided two categories: first, preparation and characterization of nanofibers containing drug and second, investigation of their therapeutic applications. Drugs used in electrospun nanofibers can be categorized into three main groups, including antibiotics and antimicrobial agents, anti-inflammatory agents and vitamins with therapeutic applications. In this paper, we review the application of electrospun polymeric scaffolds in TDDS and also introduce several pharmaceutical and therapeutic agents which have been used in polymer nanofibrous patches.

  12. Transdermal and transbuccal drug delivery systems: enhancement using iontophoretic and chemical approaches.

    Science.gov (United States)

    Hu, Longsheng; Silva, Sérgio M C; Damaj, Bassam B; Martin, Richard; Michniak-Kohn, Bozena B

    2011-12-12

    We investigated the enhancement effect of chemical enhancers and iontophoresis on the in vitro transdermal and transbuccal delivery of lidocaine HCl (LHCl), nicotine hydrogen tartrate (NHT), and diltiazem HCl (DHCl) using porcine skin and buccal tissues. Dodecyl 2-(N,N-dimethylamino) propionate (DDAIP), dodecyl-2-(N,N-dimethylamino) propionate hydrochloride (DDAIP HCl), N-(4-bromobenzoyl)-S,S-dimethyliminosulfurane (Br-iminosulfurane), and azone (laurocapram) were used as chemical enhancers. The study results showed that the application of iontophoresis at either 0.1 mA or 0.3 mA significantly enhanced transdermal and transmucosal delivery of LHCl, NHT and DHCl. It was also demonstrated that iontophoresis had a more pronounced enhancement effect on transdermal delivery than on transbuccal delivery of LHCl, NHT and DHCl. In addition, DDAIP HCl was found to be the most effective enhancer for transbuccal delivery of LHCl and NHT. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Challenges and opportunities in dermal/transdermal delivery

    OpenAIRE

    Paudel, Kalpana S; Milewski, Mikolaj; Swadley, Courtney L; Brogden, Nicole K; Ghosh, Priyanka; Stinchcomb, Audra L

    2010-01-01

    Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin i...

  14. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions.

    Science.gov (United States)

    Kwon, Soon Sik; Kong, Bong Ju; Park, Soo Nam

    2015-05-01

    We investigated the physicochemical properties of pH-sensitive hydroxyethyl cellulose (HEC)/hyaluronic acid (HA) complex hydrogels containing isoliquiritigenin (ILTG), and discussed potential applications as transdermal delivery systems for the treatment of skin lesions caused by pH imbalance. HA has skin compatibility and pH functional groups and HEC serves as scaffold to build hydrogels with varied HCE:HA mass ratio. Hydrogels were synthesized via chemical cross-linking, and three-dimensional network structures were characterized via scanning electron microscopy (SEM). The swelling properties and polymer ratios of the hydrogels were investigated at pH values in the range 1-13. HECHA13 (i.e., an HEC:HA mass ratio of 1:3) was found to have optimal rheological and adhesive properties, and was used to investigate the drug release efficiency as a function of pH; the efficiency was greater than 70% at pH 7. Antimicrobial activity assays against Propionibacterium acnes were conducted to take advantage of the pH-sensitive properties of HECHA13. At pH 7, we found that HECHA13, which contained ILTG, inhibited the growth of P. acnes. Furthermore, HECHA13 was found to exhibit excellent permeability into the skin, which penetrated mostly via the hair follicle. These results indicate that this pH-sensitive hydrogel is effective as a transdermal delivery system for antimicrobial therapeutics, with potential applications in the treatment of acne. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. How can lipid nanocarriers improve transdermal delivery of olanzapine?

    Science.gov (United States)

    Iqbal, Nimra; Vitorino, Carla; Taylor, Kevin M G

    2017-06-01

    The development of a transdermal nanocarrier drug delivery system with potential for the treatment of psychiatric disorders, such as schizophrenia and bipolar disorder, is described. Lipid nanocarriers (LN), encompassing various solid:liquid lipid compositions were formulated and assessed as potential nanosystems for transdermal delivery of olanzapine. A previously optimized method of hot high pressure homogenization (HPH) was adopted for the production of the LN, which comprised solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsions (NE). Precirol  ® was selected as the solid lipid for progression of studies. SLN exhibited the best performance for transdermal delivery of olanzapine, based on in vitro release and permeation studies, coupled with results from physicochemical characterization of several solid:liquid lipid formulations. Stability tests, performed to give an indication of long-term storage behavior of the formulations, were in good agreement with previous studies for the best choice of solid:liquid lipid ratio. Overall, these findings highlight the SLN-based formulation as promising for the further inclusion in and production of transdermal patches, representing an innovative therapeutic approach.

  16. Rationalising polymer selection for supersaturated film forming systems produced by an aerosol spray for the transdermal delivery of methylphenidate.

    Science.gov (United States)

    Edwards, A; Qi, S; Liu, F; Brown, M B; McAuley, W J

    2017-05-01

    Film forming systems offer a number of advantages for topical and transdermal drug delivery, in particular enabling production of a supersaturated state which can greatly improve drug absorption and bioavailability. However the suitability of individual film forming polymers to stabilise the supersaturated state and optimise delivery of drugs is not well understood. This study reports the use of differential scanning calorimetry (DSC) to measure the solubility of methylphenidate both as the free base and as the hydrochloride salt in two polymethacrylate copolymers, Eudragit RS (EuRS) and Eudragit E (EuE) and relates this to the ability of films formed using these polymers to deliver methylphenidate across a model membrane. EuRS provided greater methylphenidate delivery when the drug was formulated as the free base in comparison EuE because the lower solubility of the drug in EuRS provided a higher degree of drug saturation in the polymeric film. In contrast EuE provided greater delivery of methylphenidate hydrochloride as EuRS could not prevent its crystallisation from a supersaturated state. Methylphenidate flux across the membrane could be directly related to degree of saturation of the drug in the film formulation as estimated by the drug solubility in the individual polymers demonstrating the importance of drug solubility in the polymer included in film forming systems for topical/transdermal drug delivery. In addition DSC has been demonstrated to be a useful tool for determining the solubility of drugs in polymers used in film forming systems and the approaches outlined here are likely to be useful for predicting the suitability of polymers for particular drugs in film forming transdermal drug delivery systems. Copyright © 2017. Published by Elsevier B.V.

  17. Blind Deconvolution for Distributed Parameter Systems with Unbounded Input and Output and Determining Blood Alcohol Concentration from Transdermal Biosensor Data.

    Science.gov (United States)

    Rosen, I G; Luczak, Susan E; Weiss, Jordan

    2014-03-15

    We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.

  18. Alfuzosin hydrochloride transdermal films: evaluation of physicochemical, in vitro human cadaver skin permeation and thermodynamic parameters

    Directory of Open Access Journals (Sweden)

    Satyanarayan Pattnaik

    2009-12-01

    Full Text Available Purpose: The main objective of the investigation was to develop a transdermal therapeutic system for alfuzosin hydrochloride and to study the effects of polymeric system and loading dose on the in vitro skin permeation pattern. Materials and methods: Principles of experimental design have been exploited to develop the dosage form. Ratio of ethyl cellulose (EC and polyvinyl pyrrolidone (PVP and loading dose were selected as independent variables and their influence on the cumulative amount of alfuzosin hydrochloride permeated per cm2 of human cadaver skin at 24 h (Q24, permeation flux (J and steady state permeability coefficient (P SS were studied using experimental design. Various physicochemical parameters of the transdermal films were also evaluated. Activation energy for in vitro transdermal permeation has been estimated. Results: Ratio of EC and PVP was found to be the main influential factor for all the dependent variables studied. Drug loading dose was also found to influence the dependent variables but to a lesser extent. Physicochemical parameters of the prepared films were evaluated and found satisfactory. Activation energy for alfuzosin permeation has also been estimated and reported. Conclusion: The therapeutic system was found to be dermatologically non-irritant and hence, a therapeutically effective amount of alfuzosin hydrochloride can be delivered via a transdermal route.

  19. Design and functionality of a smart fentanyl iontophoretic transdermal system for the treatment of moderate-to-severe postoperative pain.

    Science.gov (United States)

    Joshi, Nitin; Lemke, John; Danesi, Hassan

    2016-04-01

    Fentanyl iontophoretic transdermal system (ITS) is a patient-controlled analgesia system used for the management of acute postoperative pain. The first-generation fentanyl ITS was an integrated one-piece system; however, corrosion that could limit reliability was detected in a small number of systems. A second-generation fentanyl ITS was designed to separate the hydrogels in the Drug Unit from the electronic circuit of the Controller during manufacture and storage, removing the primary cause of corrosion and thereby improving reliability. No evidence of corrosion has been observed in over 10,000 systems tested in real-time aging studies for the second generation fentanyl ITS. The second generation fentanyl ITS design features combine to ensure safe operation of the system with high reliability.

  20. Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.

    Science.gov (United States)

    Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin

    2017-01-01

    There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... patches and gels have been very popular owing ... This product was developed for ... In a safety announcement, the US Food and.

  2. A Transdermal Measurement Platform Based on Microfluidics

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2017-01-01

    Full Text Available The Franz diffusion cell is one of the most widely used devices to evaluate transdermal drug delivery. However, this static and nonflowing system has some limitations, such as a relatively large solution volume and skin area and the development of gas bubbles during sampling. To overcome these disadvantages, this study provides a proof of concept for miniaturizing models of transdermal delivery by using a microfluidic chip combined with a diffusion cell. The proposed diffusion microchip system requires only 80 μL of sample solution and provides flow circulation. Two model compounds, Coomassie Brilliant Blue G-250 and potassium ferricyanide, were successfully tested for transdermal delivery experiments. The diffusion rate is high for a high sample concentration or a large membrane pore size. The developed diffusion microchip system, which is feasible, can be applied for transdermal measurement in the future.

  3. Transdermal patches: history, development and pharmacology

    Science.gov (United States)

    Pastore, Michael N; Kalia, Yogeshvar N; Horstmann, Michael; Roberts, Michael S

    2015-01-01

    Transdermal patches are now widely used as cosmetic, topical and transdermal delivery systems. These patches represent a key outcome from the growth in skin science, technology and expertise developed through trial and error, clinical observation and evidence-based studies that date back to the first existing human records. This review begins with the earliest topical therapies and traces topical delivery to the present-day transdermal patches, describing along the way the initial trials, devices and drug delivery systems that underpin current transdermal patches and their actives. This is followed by consideration of the evolution in the various patch designs and their limitations as well as requirements for actives to be used for transdermal delivery. The properties of and issues associated with the use of currently marketed products, such as variability, safety and regulatory aspects, are then described. The review concludes by examining future prospects for transdermal patches and drug delivery systems, such as the combination of active delivery systems with patches, minimally invasive microneedle patches and cutaneous solutions, including metered-dose systems. PMID:25560046

  4. Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability.

    Science.gov (United States)

    Kassem, Mohammed Ali; Aboul-Einien, Mona Hassan; El Taweel, Mai Magdy

    2018-04-30

    Felodipine has a very low bioavailability due to first-pass metabolism. The aim of this study was to enhance its bioavailability by transdermal application. Felodipine-loaded transferosomes were prepared by thin-film hydration using different formulation variables. An optimized formula was designed using statistical experimental design. The independent variables were the used edge activator, its molar ratio to phosphatidylcholine, and presence or absence of cholesterol. The responses were entrapment efficiency of transferosomes, their size, polydispersity index, zeta potential, and percent drug released after 8 h. The optimized formula was subjected to differential scanning calorimetry studies and its stability on storage at 4°C for 6 months was estimated. This formula was improved by incorporation of different permeation enhancers where ex vivo drug flux through mice skin was estimated and the best improved formula was formulated in a gel and lyophilized. The prepared gel was subjected to in vivo study using Plendil® tablets as a reference. According to the calculated desirability, the optimized transferosome formula was that containing sodium deoxycholate as edge activator at 5:1 M ratio to phosphatidylcholine and no cholesterol. The thermograms of this formula indicated the incorporation of felodipine inside the prepared vesicles. None of the tested parameters differed significantly on storage. The lyophilized gel of labrasol-containing formula was chosen for in vivo study. The relative bioavailability of felodipine from the designed gel was 1.7. In conclusion, topically applied lyophilized gel containing felodipine-loaded transferosomes is a promising transdermal delivery system to enhance its bioavailability.

  5. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; HariKumar, S L

    2012-03-01

    The feasibility of development of transdermal delivery system of olanzapine utilizing natural oils as permeation enhancers was investigated. Penetration enhancing potential of corn (maize) oil, groundnut oil and jojoba oil on in vitro permeation of olanzapine across rat skin was studied. The magnitude of flux enhancement factor with corn oil, groundnut oil and jojoba oil was 7.06, 5.31 and 1.9 respectively at 5mg/ml concentration in solvent system. On the basis of in vitro permeation studies, eudragit based matrix type transdermal patches of olanzapine were fabricated using optimized concentrations of natural oils as permeation enhancers. All transdermal patches were found to be uniform with respect to physical characteristics. The interaction studies carried out by comparing the results of ultraviolet, HPLC and FTIR analyses for the pure drug, polymers and mixture of drug and polymers indicated no chemical interaction between the drug and excipients. Corn oil containing unsaturated fatty acids was found to be promising natural permeation enhancer for transdermal delivery of olanzapine with greatest cumulative amount of drug permeated (1010.68 μg/cm²/h) up to 24 h and caused no skin irritation. The fabricated transdermal patches were found to be stable. The pharmacokinetic characteristics of the final optimized matrix patch (T2) were determined after transdermal application to rabbits. The calculated relative bioavailability of TDDS was 113.6 % as compared to oral administration of olanzapine. The therapeutic effectiveness of optimized transdermal system was confirmed by tranquillizing activity in rotarod and grip mice model.

  6. Pharmacokinetics of a granisetron transdermal system for the treatment of chemotherapy-induced nausea and vomiting.

    Science.gov (United States)

    Howell, Julian; Smeets, Jean; Drenth, Henk-Jan; Gill, David

    2009-12-01

    To determine the pharmacokinetic (PK) profile of granisetron transdermal formulation and examine its possible relationship with age, gender, and renal function. This article describes a Phase I PK study and a post hoc pooled population PK analysis. The Phase I study was a randomized, cross-over study that assessed PK parameters of three granisetron patch sizes and oral granisetron. The pooled population PK analysis included data from three trials in healthy subjects (n = 48) and from Phase II and III studies in patients with cancer (n = 793). The population PK model was used to investigate granisetron exposure and its possible relationship with age, gender, and renal function. Following oral dosing, plasma granisetron concentration was quantifiable at 1 h, and maximal mean concentration (4.7 ng/mL) was reached 2 h after administration. With transdermal application, maximal concentration was reached 48 h post-application; t(1/2) was 36 h. With oral dosing, overall exposure after 5 days was 306 ng/mL.h, and C(avg) 2.6 ng/mL. This corresponded to an AUC(0-infinity) for the 52 cm(2) patch of 420 ng/mL.h and C(avg) 2.2 ng/mL over 6 days. Clearance was not affected by age, gender, weight, or renal function. The 52 cm( 2) granisetron patch achieves a similar exposure to that of a 2 mg oral dose and provides continuous delivery of granisetron over 6 days. The patch may have utility in treating chemotherapy-induced nausea and vomiting where prolonged drug delivery is advantageous. No dose adjustments would be needed based on age or renal function.

  7. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension.

    Science.gov (United States)

    Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd

    2016-01-01

    Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo extensive first-pass metabolism, which significantly reduces bioavailability. Majority of ARBs and ACEIs are inherently short acting due to a rapid elimination half-life. In addition, oral dosage forms of ARBs and ACEIs have many high incidences of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Many attempts have been made globally at the laboratory level to investigate the skin permeation and to develop transdermal therapeutic systems of various ARBs, ACEIs and other anti-hypertensives, to circumvent the drawbacks associated with their conventional dosage form. This manuscript presents an outline of the transdermal research specifically in the area of ARBs, ACEIs and other anti-hypertensives reported in various pharmaceutical journals. The transdermal delivery has gained a significant importance for systemic treatment as it is able to avoid first-pass metabolism and major fluctuations of plasma levels typical of repeated oral administration. As we can experience from this review article that transdermal delivery of different ARBs and ACEIs improves bioavailability as well as patient compliance by many folds. In fact, the rationale development of some newer ARBs, ACEIs and other anti-hypertensives transdermal systems will provide new ways of treatment, circumventing current limitations for conventional dosage forms.

  8. Fabrication, Physicochemical Characterization, and Performance Evaluation of Biodegradable Polymeric Microneedle Patch System for Enhanced Transcutaneous Flux of High Molecular Weight Therapeutics.

    Science.gov (United States)

    Shah, Viral; Choudhury, Bijaya Krushna

    2017-11-01

    A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.

  9. Granisetron Transdermal Patch

    Science.gov (United States)

    Granisetron transdermal patches are used to prevent nausea and vomiting caused by chemotherapy. Granisetron is in a class of medications called 5HT3 ... Granisetron transdermal comes as a patch to apply to the skin. It is usually applied 24 to ...

  10. Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation: in vitro evaluations.

    Science.gov (United States)

    Pichayakorn, Wiwat; Suksaeree, Jirapornchai; Boonme, Prapaporn; Taweepreda, Wirach; Amnuaikit, Thanaporn; Ritthidej, Garnpimol C

    2014-08-27

    Abstract Novel film forming polymeric dispersions for transdermal nicotine delivery were prepared from deproteinized natural rubber latex (DNRL) blended with hydroxypropylmethylcellulose (HPMC) and dibutyl phthalate (DBP) or glycerin (GLY) as plasticizer. The preliminary molecular compatibility of ingredients was observed by Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry characterizations. All film forming polymeric dispersions were elegant in appearance and smooth in texture without agglomeration. Their pH was 7-8. In addition, their viscosity and spreadability showed good characteristics depended on HPMC and plasticizers blended. The transparent in situ dry films with good strength and elasticity were also confirmed by peeling-off. The nicotine release from them revealed an initial fast release that was similar to the release from a concentrated nicotine solution, and followed by slow release pattern from the in situ films. GLY blended formulation produced a higher amount of nicotine permeation through the in vitro pig skin than DBP blends. Ethanol mixing also enhanced nicotine permeation, but it affected the integrity of in situ films. The nicotine release and skin permeation kinetics were by a diffusion mechanism that was confirmed by the Higuchi's model. These formulations were safe without producing any severe skin irritation. However, for the stability they needed to be stored at 4 °C in tightly sealed containers.

  11. ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems

    Science.gov (United States)

    Pauly, Anja C.; Schöller, Katrin; Baumann, Lukas; Rossi, René M.; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F.; Scherer, Lukas J.

    2015-06-01

    The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET-ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing.

  12. Research of Ultrasound-Mediated Transdermal Drug Delivery System Using Cymbal-Type Piezoelectric Composite Transducer

    Science.gov (United States)

    Huan, Huiting; Gao, Chunming; Liu, Lixian; Sun, Qiming; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Transdermal drug delivery (TDD) implemented by especially low-frequency ultrasound is generally known as sonophoresis or phonophoresis which has drawn considerable wide attention. However, TDD has not yet achieved its full potential as an alternative to conventional drug delivery methods due to its bulky instruments. In this paper, a cymbal-type piezoelectric composite transducer (CPCT) which has advantages over a traditional ultrasound generator in weight, flexibility, and power consumption, is used as a substitute ultrasonicator to realize TDD. First, theoretical research on a CPCT based on the finite element analysis was carried out according to which a series of applicable CPCTs with bandwidths of 20 kHz to 100 kHz were elaborated. Second, a TDD experimental setup was built with previously fabricated CPCTs aimed at the administration of glucose. Finally, the TDD performance of glucose molecule transport in porcine skin was measured in vitro by quantifying the concentration of glucose, and the time variation curves were subsequently obtained. During the experiment, the driving wave form, frequency, and power consumption of the transducers were selected as the main elements which determined the efficacy of glucose delivery. The results indicate that the effectiveness of the CPCT-based delivery is constrained more by the frequency and intensity of ultrasound rather than the driving waveform. The light-weight, flexibility, and low-power consumption of a CPCT can potentially achieve effective TDD.

  13. ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems

    International Nuclear Information System (INIS)

    Pauly, Anja C; Schöller, Katrin; Baumann, Lukas; Rossi, René M; Dustmann, Kathrin; Boesel, Luciano F; Scherer, Lukas J; Ziener, Ulrich; De Courten, Damien; Wolf, Martin

    2015-01-01

    The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET–ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing. (focus issue paper)

  14. Preparation, characterization and permeation studies of a nanovesicular system containing diclofenac for transdermal delivery.

    Science.gov (United States)

    Gaur, Praveen Kumar; Purohit, Suresh; Kumar, Yatendra; Mishra, Shikha; Bhandari, Anil

    2014-02-01

    Transdermal formulations contain permeation enhancer which causes skin damage. Ceramide 2 is natural lipid found in stratum corneum (SC). Drug-loaded nanovesicles of ceramide-2, cholesterol, palmitic acid, cholesteryl sulfate were formulated and analyzed for physical and biological properties. Diclofenac was used as a model drug. The vesicles were prepared using the film hydration method and characterized for physical parameters, in vitro drug release, accelerated stability studies and formulated into gel. Respective gels were compared with a commercial formulation (CEG) and plain carbopol gel (CG) containing drug for ex vivo, in vivo drug permeation and anti-inflammatory activity. The vesicles were stable with optimum physical parameters. DCG-1 showed 92.89% in vitro drug release. Ceramide vesicles showed drug release between 18 and 25 μg/cm(2) whereas CG and CEG released 0.33 and 1.35 μg/cm(2) drug, respectively. DCG-1 and CEG showed corresponding Cmax at 6 and 4 h, respectively. DCG-1 showed six times AUC than CEG. DCG-1 inhibited edema by 86.37% by 4th hour of application. The presence of ceramide 2 specifically promotes the drug permeation through SC and dermis and also contribute towards stability and non-irritancy. The composition of the nanovesicle played an important role in physical properties and drug permeation.

  15. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries.

    Science.gov (United States)

    Lam, P L; Gambari, R

    2014-03-28

    This review provides an overall discussion of microencapsulation systems for both oral and transdermal drug deliveries. Clinically, many drugs, especially proteins and peptides, are susceptible to the gastrointestinal tract and the first-pass metabolism after oral administration while some drugs exhibit low skin permeability through transdermal delivery route. Medicated microcapsules as oral and transdermal drug delivery vehicles are believed to offer an extended drug effect at a relatively low dose and provide a better patient compliance. The polymeric microcapsules can be produced by different microencapsulation methods and the drug microencapsulation technology provides the quality preservation for drug stabilization. The release of the entrapped drug is controlled and prolonged for specific usages. Some recent studies have focused on the evaluation of drug containing microcapsules on potential biological and therapeutic applications. For the oral delivery, in vivo animal models were used for evaluating possible treatment effects of drug containing microcapsules. For the transdermal drug delivery, skin delivery models were introduced to investigate the potential skin delivery of medicated microcapsules. Finally, the challenges and limitations of drug microencapsulation in real life are discussed and the commercially available drug formulations using microencapsulation technology for oral and transdermal applications are shown. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Comparative study on transdermal osmosis in vitro of Aconitum brachypodium liniment, gel and patcher].

    Science.gov (United States)

    Lin, Ya-ping; Zhao, Ying; Zhang, Yong-ping; Liang, Guang-yi

    2007-02-01

    To study the transdermal osmosis process of Aconitum brachypodum's liniment, gel and patcher to provide basis for selecting dosage form and controlling the quality. Taking the cumulate rate of transdermal as index, a imitated Fick's diffusion device was used for the investigating the transdermal osmosis course of the three preparations. The best transdermal mathematics models are obtained and the relations between the transdermal course and the release course are analysed. The three preparations have different characteristics of transdermal osmosis course. The liniment meets dynamics 0 order process, the gel and the patcher meet dynamic 0 order process of non-corroded drug system. And the relation is good cubic equation between their transdermal course and release course. The transdermal osmosis experiment in vitro for three preparations can provide basis for selecting dosage form and the quality control in future studies.

  17. Application of new nuclear track microporous membrane in transdermal therapeutic system (TTS)

    International Nuclear Information System (INIS)

    Risheng Wu; Jian Zhou; Wei Ke

    1993-01-01

    Newly-developed Nuclear Track Microporous Membrane, which is formed by alpha particle irradiation with greatly reduced cost, is first used as the drug release rate controlling membrane for TTS patch. It shows good zero order release kinetics and its released quantity of drugs can be regulated conveniently by changing its porosity instead of changing the area of other control membrane used abroad. Its high benefit-cost ratio and improved TTS performances manifest the superiority and great potential of the newly developed Nuclear Track Microporous membrane. (Author)

  18. On the Road to Development of an in Vitro Permeation Test (IVPT) Model to Compare Heat Effects on Transdermal Delivery Systems: Exploratory Studies with Nicotine and Fentanyl.

    Science.gov (United States)

    Shin, Soo Hyeon; Ghosh, Priyanka; Newman, Bryan; Hammell, Dana C; Raney, Sam G; Hassan, Hazem E; Stinchcomb, Audra L

    2017-09-01

    At elevated temperatures, the rate of drug release and skin permeation from transdermal delivery systems (TDS) may be higher than at a normal skin temperature. The aim of this study was to compare the effect of heat on the transdermal delivery of two model drugs, nicotine and fentanyl, from matrix-type TDSs with different formulations, using in vitro permeation tests (IVPT). IVPT experiments using pig skin were performed on two nicotine and three fentanyl TDSs. Both continuous and transient heat exposures were investigated by applying heat either for the maximum recommended TDS wear duration or for short duration. Continuous heat exposure for the two nicotine TDSs resulted in different effects, showing a prolonged heat effect for one product but not the other. The J max enhancement ratio due to the continuous heat effect was comparable between the two nicotine TDS, but significantly different (p drug from the skin depot after TDS removal differently for two drugs, with fentanyl exhibiting a longer heat effect. This exploratory work suggests that an IVPT study may be able to discriminate differences in transdermal drug delivery when different TDS are exposed to elevated temperatures. However, the clinical significance of IVPT heat effects studies should be further explored by conducting in vivo clinical studies with similar study designs.

  19. Transdermal delivery of isoniazid and rifampin in guinea pigs by electro-phonophoresis.

    Science.gov (United States)

    Chen, Suting; Han, Yi; Yu, Daping; Huo, Fengmin; Wang, Fen; Li, Yunxu; Dong, Lingling; Liu, Zhidong; Huang, Hairong

    2017-11-01

    Electro-phonophoresis (EP) has been used as a drug delivery approach in clinical fields. The objective of the present study is to evaluate the skin permeability of isoniazid and rifampin in guinea pigs by EP to provide reference basis for clinical applications of such transdermal delivery system in the treatment of patients with superficial tuberculosis. Isoniazid and rifampin solutions were delivered transdermally with or without EP in health guinea pigs for 0.5 h. Local skin and blood samples were collected serially at 0, 1/2, 1, 2, 4, 6 and 24 h after dosing. Drug concentrations in local skin and blood were evaluated by high-performance liquid chromatography. Isoniazid concentrations in local skin of guinea pigs receiving isoniazid through EP transdermal delivery were significantly higher than in animals receiving only isoniazid with transdermal patch. However, for rifampin, patches alone group presented almost uniform concentration versus time curve with that of EP group, and both groups had concentrations much higher than the therapeutic concentration of the drug over sustainable time. After EP transdermal delivery, the mean peak concentrations of isoniazid and rifampin in skin were 771.0 ± 163.4 μg/mL and 81.2 ± 17.3 μg/mL respectively. Neither isoniazid nor rifampin concentration in blood could be detected (below the lower detection limit of 1 μg/mL) at any time point. The present study showed that application of EP significantly enhanced INH penetration through skin in guinea pigs, while RIF patch alone obtained therapeutic concentration in local skin. Our work suggests several possible medication approaches for efficient treatment of superficial tuberculosis.

  20. Current advances in the fabrication of microneedles for transdermal delivery

    NARCIS (Netherlands)

    Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, Pradeep; Toit, Du L.C.; Modi, G.; Pillay, V.

    2014-01-01

    The transdermal route is an excellent site for drug delivery due to the avoidance of gastric degradation and hepatic metabolism, in addition to easy accessibility. Although offering numerous attractive advantages, many available transdermal systems are not able to deliver drugs and other compounds

  1. Transdermal fentanyl matrix patches Matrifen and Durogesic DTrans are bioequivalent

    DEFF Research Database (Denmark)

    Kress, Hans G; Boss, Hildegard; Delvin, Thomas

    2010-01-01

    AIM: The pharmacokinetic profiles of the two commercially available transdermal fentanyl patches Matrifen (100 microg/h) and Durogesic DTrans (100 microg/h), used to manage severe chronic pain, were compared regarding their systemic exposure, rate of absorption, and safety. METHODS: Transdermal m...

  2. In vitro efficacy and release study with anti-inflammatory drugs incorporated in adhesive transdermal drug delivery systems.

    Science.gov (United States)

    Meyer, Stefanie; Peters, Nils; Mann, Tobias; Wolber, Rainer; Pörtner, Ralf; Nierle, Jens

    2014-04-01

    The topical application of two different anti-inflammatory extracts incorporated in adhesive transdermal drug delivery systems (TDDSs) was investigated. Therefore, anti-inflammatory properties and percutaneous absorption behavior of adhesive TDDSs were characterized in vitro conducting experiments with a dermatologically relevant human skin model. Anti-inflammatory efficacy against UV irradiation of both TDDSs was determined in vitro with EpiDerm™. The reduction of the release of proinflammatory cytokines by topically applied TDDSs was compared with the reduction during the presence of the specific cyclooxygenase inhibitor diclofenac in the culture medium. A similar anti-inflammatory efficacy of the topically applied TDDSs in comparison with the use of diclofenac in the culture medium should be achieved. Furthermore, percutaneous absorption in efficacy tests was compared with percutaneous absorption in diffusion studies with porcine cadaver skin. Both the topically applied TDDSs showed a significant anti-inflammatory activity. Permeation coefficients through the stratum corneum and the epidermis gained from the release studies on porcine cadaver skin (Magnolia: 2.23·10(-5) cm/h, licorice: 4.68·10(-6) cm/h) were approximately five times lower than the permeation coefficients obtained with the EpiDerm™ skin model (Magnolia: 9.48·10(-5) cm/h, licorice: 24.0·10(-6) cm/h). Therefore, an adjustment of drug doses during experiments with the EpiDerm™ skin model because of weaker skin barrier properties should be considered.

  3. Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers.

    Science.gov (United States)

    Schwengber, Alex; Prado, Héctor J; Bonelli, Pablo R; Cukierman, Ana L

    2017-07-01

    Buckypapers based on different types of carbon nanotubes with and without the addition of four model drugs, two of basic nature (clonidine hydrochloride, selegiline hydrochloride) and the others of acidic character (flurbiprofen, ketorolac tromethamine) were prepared and characterized. The influence of the conditions employed in the preparation of the buckypapers (dispersion time and solvents used in the preparation, as well as the type of carbon nanotubes used and the characteristics of the drug involved) on their conductivity was especially examined. The in vitro performance of the drug loaded buckypapers as passive and active transdermal drug release systems, the latter being modulated by means of the application of electric voltages, was studied. Passive drug loaded buckypapers presented characteristic release profiles, also depending on the drug used, which indicate differences in the drug-carbon nanotubes non-covalent interactions. Application of electrical biases of appropriate polarities enabled the modulation of the drug release profiles in any desired direction. Different mathematical models were fitted to passive and electromodulated experimental release data for the four model drugs. Among these models, the most appropriate for data description was a two-compartment pseudo-second-order one. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Application of methyl methacrylate copolymers to the development of transdermal or loco-regional drug delivery systems.

    Science.gov (United States)

    Cilurzo, Francesco; Selmin, Francesca; Gennari, Chiara G M; Montanari, Luisa; Minghetti, Paola

    2014-07-01

    Methyl methacrylate copolymers (Eudragit®) have been exploited to develop transdermal patches, medicated plasters (hereinafter patches) and, more recently, film-forming sprays, microsponges and nanoparticles intended to be applied on the skin. The article reviews the information regarding the application of Eudragits in the design and development of these dosage forms focusing on the impact of formulative variables on the skin drug penetration and the patch adhesive properties. Eudragits combined with a large amount of plasticizers are used to design the pressure-sensitive adhesives, specialized materials used in the patch development. They have to assure the drug skin penetration and the contact with the skin. Most of the studies mainly deal with the former aspect. The authors used a Eudragit type opportunely plasticized to merely investigate the in vitro or in vivo skin permeability of a loaded drug. However, the summa of these data evidenced that a strict connection between the matrix hydrophilicity and drug penetration probably exists. The criticisms of adhesion are addressed in a limited number of papers reporting data on technological properties, namely tack, shear adhesion and peel adhesion, while the structural data of the Eudragit adhesives, rheology and surface free energy are not described, excepting the case of Eudragit E. Among other applications, micro- and nanosystems exploiting the ionizable nature of some Eudragits can offer novel opportunities to develop pH-sensitive drug delivery systems suitable for triggering its release onto the skin.

  5. Observational Case Series Evaluation of the Granisetron Transdermal Patch System (Sancuso) for the Management of Nausea/Vomiting of Pregnancy.

    Science.gov (United States)

    Le, Tran N; Adler, Michael T; Ouillette, Holly; Berens, Pamela; Smith, Judith A

    2017-07-01

    Objective  The objective of this study was to observe the efficacy of antiemetic therapy (no emesis/retching episodes and no rescue medication use) when granisetron is administered via a transdermal patch system (TDS) in women who are 6 to 14 weeks pregnant when compared with oral ondansetron by evaluating the frequency of the use of rescue medications for control of nausea/vomiting of pregnancy (NVP). Methods  This was an observational case series study to observe the potential benefits of granisetron TDS compared with oral ondansetron for management of NVP in pregnant patients during the first trimester. Dates of data collection were September 1, 2014, through December 31, 2015. There was no direct contact with patient. The oral ondansetron and granisetron TDS patients were matched by age, 4:1. The proportion of patients who received rescue antiemetics was calculated from those patients who continued to experience NVP. Risk factors for NVP were identified and compared between groups. Descriptive statistics were used to describe study results. Results  Patients were prescribed rescue antiemetics in 0/3 patients in the granisetron TDS group compared with 2/12 patients in the oral ondansetron group. Conclusion  Prospective efficacy studies on the use of granisetron TDS for management of NVP are needed to confirm this clinical observation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Estradiol Transdermal Patch

    Science.gov (United States)

    ... menopause (change of life; the end of monthly menstrual periods). Transdermal estradiol is also used to prevent ... patch. Ask your pharmacist or doctor for a copy of the manufacturer's information for the patient.

  7. Use of Fentanyl Iontophoretic Transdermal System (ITS) (IONSYS®) in the Management of Patients with Acute Postoperative Pain: A Case Series.

    Science.gov (United States)

    Poplawski, Steven; Johnson, Matthew; Philips, Philip; Eberhart, Leopold H J; Koch, Tilo; Itri, Loretta M

    2016-12-01

    Fentanyl iontophoretic transdermal system (ITS) [IONSYS ® , The Medicines Company, Parsippany, NJ, USA] is a needle-free, patient-controlled, postoperative opioid pain management treatment. It is indicated for the short-term management of acute postoperative pain in adults requiring opioid analgesia in the hospital. The safety and effectiveness of fentanyl ITS for acute postoperative pain management has been demonstrated in a range of surgery and patient types studied in seven phase 3 trials (three placebo-controlled trials and four active-comparator trials). The majority of the patients in the phase 3 trials had undergone either abdominal/pelvic, orthopedic, or thoracic surgery. Consistent with the prescribing information, physicians in clinical practice may treat patients with this system following any type of surgery including those that may not have been included in the phase 3 trials. The purpose of this case series is to illustrate how fentanyl ITS is being utilized for postoperative pain management in real-world clinical practice following a variety of surgeries and in current pain management protocols that may have evolved since the completion of the phase 3 program. There are seven cases from three clinical centers described within this case series, each using fentanyl ITS according to the prescribing information. The surgery types included are bariatric (N = 3), prostate (N = 2), colorectal (N = 1), and perirectal abscess drainage (N = 1). A systematic review of each patient chart was conducted via a standardized retrospective assessment by the clinicians who managed each patient. Additionally, each healthcare professional was interviewed regarding their overall experience and key learnings using fentanyl ITS. Overall, fentanyl ITS was effective and well tolerated in these case reports in current-day clinical practice settings. These case studies are informative about fentanyl ITS use shortly after product approval and set the stage for

  8. Skin Permeation Enhancers and their Effects on Narcotic Transdermal Drug Delivery Systems through Response Surface Experimental Design

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2014-02-01

    Full Text Available Drug delivery through skin is often obstructed by low permeability of skin towards most drugs; however, such problem would be solved by application of skin penetration enhancers in the formulations. In the present study, a drug in adhesive patch with buprenorphine as active ingredient was prepared. Drug-in-adhesive transdermal drug delivery systems with different chemical penetration enhancers were designed. For this purpose a response-surface experimental design was used. Response surface methodology based on a three-level, three-variable Box–Behnken design was used to evaluate the interactive effects of dependent variables such as: the rate of skin permeation and adhesion properties including peel strength and tack value. The parameters such as drug release and adhesion were used as independent variables. Levulinic acid, lauryl alcohol and Tween 80 were used as penetration enhancers. In order to prepare samples, buprenorphine with constant concentration was incorporated into acrylic pressure sensitive adhesive with carboxylic functionality and this mixture was added to chemical penetration enhancer with different concentrations. The results show that the cumulative amount of drug release in presence of Tween 80 is 462.9 ± 0.006 μg so it is higher than cumulative amount of drug release in presence of levulinic acid (357.9 ± 0.005 μg and lauryl alcohol (269.5 ± 0.001 μg. Results of adhesion properties such as peel strength and tack reveal that using levulinic acid and lauryl alcohol will increase peel strength while Tween 80 will decrease it. Besides, the results show that all these permeation enhancers have increased tack values.

  9. In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2017-01-01

    Microneedle technology allows micron-sized conduits to be formed within the outermost skin layers for both localized and systemic delivery of therapeutics including nanoparticles. Histological methods are often employed for characterization, and unfortunately do not allow for the in vivo visualization of the delivery process. This study presents the utilization of optical resolution-photoacoustic microscopy to characterize the transdermal delivery of nanoparticles using microneedles. Specifically, we observe the in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and study the penetration, diffusion, and spatial distribution of the nanoparticles in the tissue. The promising results reveal that photoacoustic microscopy can be used as a potential imaging modality for the in vivo characterization of microneedles based drug delivery. PMID:29296482

  10. Use of granisetron transdermal system in the prevention of chemotherapy-induced nausea and vomiting: a review

    OpenAIRE

    Tuca, Albert

    2009-01-01

    Albert TucaPalliative Care Hospital Team, Palliative Care Department, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Barcelona, SpainAbstract: Until now only intravenous and oral formulations of 5HT3 receptor antagonists have been available. Recently a new formulation of a 5HT3 receptor antagonist, transdermal granisetron, has been developed, and approved by the FDA. Three phase I studies to evaluate its pharmacokinetic profile have shown that granisetr...

  11. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    Science.gov (United States)

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  12. The Effect of Transdermal Scopolamine for the Prevention of Postoperative Nausea and Vomiting

    Directory of Open Access Journals (Sweden)

    Maria A. Antor

    2014-04-01

    Full Text Available Postoperative nausea and vomiting is one of the most common and undesirable complaints recorded in as many as 70%-80% of high-risk surgical patients. The current prophylactic therapy recommendations for PONV management stated in the Society of Ambulatory Anesthesia guidelines should start with monotherapy and patients at moderate to high risk, a combination of antiemetic medication should be considered. Consequently, if rescue medication is required, the antiemetic drug chosen should be from a different therapeutic class and administration mode than the drug used for prophylaxis. The guidelines restrict the use of dexamethasone, transdermal scopolamine, aprepitant, and palonosetron as rescue medication 6 hours after surgery. In an effort to find a safer and reliable therapy for postoperative nausea and vomiting, new drugs with antiemetic properties and minimal side effects are needed, and scopolamine may be considered an effective alternative. Scopolamine is a belladonna alkaloid, α-(hydroxymethyl benzene acetic acid 9-methyl-3-oxa-9-azatricyclo non-7-yl ester, acting as a nonselective muscarinic antagonist and producing both peripheral antimuscarinic and central sedative, antiemetic, and amnestic effects. The empirical formula is C17H21NO4 and its structural formula is a tertiary amine L-(2-scopolamine (tropic acid ester with scopine; MW = 303.4. Scopolamine became the first drug commercially available as a transdermal therapeutic system used for extended continuous drug delivery during 72 hours. Clinical trials with transdermal scopolamine have consistently demonstrated its safety and efficacy in postoperative nausea and vomiting. Thus, scopolamine is a promising candidate for the management of postoperative nausea and vomiting in adults as a first line monotherapy or in combination with other drugs. In addition, transdermal scopolamine might be helpful in preventing postoperative discharge nausea and vomiting owing to its long

  13. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation.

    Science.gov (United States)

    Simon, Alice; Amaro, Maria Inês; Healy, Anne Marie; Cabral, Lucio Mendes; de Sousa, Valeria Pereira

    2016-10-15

    In the present study, in vitro permeation experiments in a Franz diffusion cell were performed using different synthetic polymeric membranes and pig ear skin to evaluate a rivastigmine (RV) transdermal drug delivery system. In vitro-in vivo correlations (IVIVC) were examined to determine the best model membrane. In vitro permeation studies across different synthetic membranes and skin were performed for the Exelon(®) Patch (which contains RV), and the results were compared. Deconvolution of bioavailability data using the Wagner-Nelson method enabled the fraction of RV absorbed to be determined and a point-to-point IVIVC to be established. The synthetic membrane, Strat-M™, showed a RV permeation profile similar to that obtained with pig ear skin (R(2)=0.920). Studies with Strat-M™ resulted in a good and linear IVIVC (R(2)=0.991) when compared with other synthetic membranes that showed R(2) values less than 0.90. The R(2) for pig ear skin was 0.982. Strat-M™ membrane was the only synthetic membrane that adequately simulated skin barrier performance and therefore it can be considered to be a suitable alternative to human or animal skin in evaluating transdermal drug transport, potentially reducing the number of studies requiring human or animal samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Assay of 6-gingerol in CO2 supercritical fluid extracts of ginger and evaluation of its sustained release from a transdermal delivery system across rat skin.

    Science.gov (United States)

    Chen, Yan; Zhang, Cuiping; Zhang, Mei; Fu, Xiaobing

    2014-07-01

    Ginger has been widely used as healthy food condiment as well as traditional Chinese medicine since antiquity. Multiple potentials of ginger for treatment of various ailments have been revealed. However, the biological half-life of 6-gingerol (a principal pungent ingredient of ginger) is only 7.23 minutes while taken orally. Delivery of ginger compositions by routes other than oral have scarcely been reported. Therefore, we studied a noninvasive transdermal drug delivery system (TDDS) of ginger to bypass hepatic first pass metabolism, avoid gastrointestinal degradation and achieve long persistent release of effective compositions. After establishment of a HPLC analysis method of 6-gingerol, assays of 6-gingerol were performed to compare two kinds of ginger extracts. Then, the characteristics of transdermal delivery of 6-gingerol in TDDS were exhibited. The results showed that the contents of 6-gingerol in two kinds of ginger extracts were significantly different. The maximal delivery percentage of 6-gingerol across rat skin at 20 h was more than 40% in different TDDS formulations. TDDS may provide long-lasting delivery of ginger compounds.

  15. 3D printing applications for transdermal drug delivery.

    Science.gov (United States)

    Economidou, Sophia N; Lamprou, Dimitrios A; Douroumis, Dennis

    2018-06-15

    The role of two and three-dimensional printing as a fabrication technology for sophisticated transdermal drug delivery systems is explored in literature. 3D printing encompasses a family of distinct technologies that employ a virtual model to produce a physical object through numerically controlled apparatuses. The applicability of several printing technologies has been researched for the direct or indirect printing of microneedle arrays or for the modification of their surface through drug-containing coatings. The findings of the respective studies are presented. The range of printable materials that are currently used or potentially can be employed for 3D printing of transdermal drug delivery (TDD) systems is also reviewed. Moreover, the expected impact and challenges of the adoption of 3D printing as a manufacturing technique for transdermal drug delivery systems, are assessed. Finally, this paper outlines the current regulatory framework associated with 3D printed transdermal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Development and validation of in vitro-in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems.

    Science.gov (United States)

    Yang, Yang; Manda, Prashanth; Pavurala, Naresh; Khan, Mansoor A; Krishnaiah, Yellela S R

    2015-07-28

    The objective of this study was to develop a level A in vitro-in vivo correlation (IVIVC) for drug-in-adhesive (DIA) type estradiol transdermal drug delivery systems (TDDS). In vitro drug permeation studies across human skin were carried out to obtain the percent of estradiol permeation from marketed products. The in vivo time versus plasma concentration data of three estradiol TDDS at drug loadings of 2.0, 3.8 and 7.6mg (delivery rates of 25, 50 and 100μg/day, respectively) was deconvoluted using Wagner-Nelson method to obtain percent of in vivo drug absorption in postmenopausal women. The IVIVC between the in vitro percent of drug permeation (X) and in vivo percent of drug absorption (Y) for these three estradiol TDDS was constructed using GastroPlus® software. There was a high correlation (R(2)=1.0) with a polynomial regression of Y=-0.227X(2)+0.331X-0.001. These three estradiol TDDS were used for internal validation whereas another two products of the same formulation design (with delivery rates of 60 and 100μg/day) were used for external validation. The predicted estradiol serum concentrations (convoluted from in vitro skin permeation data) were compared with the observed serum concentrations for the respective products. The developed IVIVC model passed both the internal and external validations as the prediction errors (%PE) for Cmax and AUC were less than 15%. When another marketed estradiol TDDS with a delivery rate of 100μg/day but with a slight variation in formulation design was chosen, it did not pass external validation indicating the product-specific nature of IVIVC model. Results suggest that the IVIVC model developed in this study can be used to successfully predict the in vivo performance of the same estradiol TDDS with in vivo delivery rates ranging from 25 to 100μg/day. Published by Elsevier B.V.

  17. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  18. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  19. Development of domperidone bilayered matrix type transdermal patches: physicochemical, in vitro and ex vivo characterization

    Directory of Open Access Journals (Sweden)

    S.K Madishetti

    2010-09-01

    Full Text Available "nBackground and the purpose of the study: Domperidone (DOM is a dopamine- receptor (D2 antagonist, which is widely used in the treatment of motion-sickness. The pharmacokinetic parameters make DOM a suitable candidate for transdermal delivery. The purpose of the present investigation was to develop transdermal delivery systems for DOM and to evaluate their physicochemical characteristics, in vitro release an ex vivo permeation through rat abdominal skin and their mechanical properties. "nMethods: Bilayered matrix type transdermal drug delivery systems (TDDS of DOM were prepared by film casting technique using hydroxypropyl methyl cellulose as primary and Eudragit RL 100 as secondary layers. Brij-35 was incorporated as a solubilizer, d-limonene and propylene glycol were employed as permeation enhancer and plasticizer respectively. The prepared TDDS were extensively evaluated for in vitro release, moisture absorption, moisture content, water vapor transmission, ex vivo permeation through rat abdominal skin, mechanical properties and stability studies. The physicochemical interaction between DOM and polymers were investigated by Differential Scanning Calorimetry (DSC and Fourier Transform Infrared Spectroscopy (FTIR. "nResults: All the formulations exhibited satisfactory physicochemical and mechanical characteristics. The optimized formulation F6 showed maximum cumulative percentage of drug release (90.7%, permeation (6806.64 μg in 24 hrs, flux (86.02 μg /hr/cm2 and permeation coefficient of 0.86x10-2 cm/hr. Values of tensile strength (4.34 kg/mm2 and elastic modulus (5.89 kg/cm2 revealed that formulation F6 was strong but not brittle. DSC and FTIR studies showed no evidence of interaction between the drug and polymers. A shelf life of 2 years is predicted for the TDDS. Conclusions: Domperidone bilayered matrix type transdermal therapeutic systems could be prepared with the required flux and suitable mechanical properties.

  20. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    Directory of Open Access Journals (Sweden)

    Cheng Loong Ngan

    2014-01-01

    Full Text Available Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w and beeswax (1–3%, w/w in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.

  1. Efficient Transdermal Delivery of Benfotiamine in an Animal Model

    OpenAIRE

    Varadi, Gyula; Zhu, Zhen; G. Carter, Stephen

    2015-01-01

    We designed a transdermal system to serve as a delivery platform for benfotiamine utilizing the attributes of passive penetration enhancing molecules to penetrate through the outer layers of skin combined with the advance of incorporating various peripherally-acting vasodilators to enhance drug uptake.  Benfotiamine, incorporated into this transdermal formulation, was applied to skin in an animal model in order to determine the ability to deliver this thiamine pro-drug effectively to the sub-...

  2. Preparation and the Biopharmaceutical Evaluation for the Metered Dose Transdermal Spray of Dexketoprofen

    Science.gov (United States)

    Luo, Huafei; Zhu, Zhuangzhi; Wu, Yubo; Luo, Jing; Wang, Hao

    2014-01-01

    The objective of the present work was to develop a metered dose transdermal spray (MDTS) formulation for transdermal delivery of dexketoprofen (DE). DE release from a series of formulations was assessed in vitro. Various qualitative and quantitative parameters like spray pattern, pump seal efficiency test, average weight per metered dose, and dose uniformity were evaluated. The optimized formulation with good skin permeation and an appropriate drug concentration and permeation enhancer (PE) content was developed incorporating 7% (w/w, %) DE, 7% (v/v, %) isopropyl myristate (IPM), and 93% (v/v, %) ethanol. In vivo pharmacokinetic study indicated that the optimized formulation showed a more sustainable plasma-concentration profile compared with the Fenli group. The antiinflammatory effect of DE MDTS was evaluated by experiments involving egg-albumin-induced paw edema in rats and xylene-induced ear swelling in mice. Acetic acid-induced abdominal constriction was used to evaluate the anti-nociceptive actions of DE MDTS. Pharmacodynamic studies indicated that the DE MDTS has good anti-inflammatory and anti-nociceptive activities. Besides, skin irritation studies were performed using rat as an animal model. The results obtained show that the MDTS can be a promising and innovative therapeutic system used in transdermal drug delivery for DE. PMID:24660066

  3. Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naren Subbiah

    2017-01-01

    Full Text Available Phospholipid-based deformable nanovesicles (DNVs that have flexibility in shape offer an adaptable and facile method to encapsulate diverse classes of therapeutics and facilitate localized transdermal delivery while minimizing systemic exposure. Here we report the use of a microfluidic reactor for the synthesis of DNVs and show that alteration of input parameters such as flow speeds as well as molar and flow rate ratios increases entrapment efficiency of drugs and allows fine-tuning of DNV size, elasticity, and surface charge. To determine the ability of DNV-encapsulated drug to be delivered transdermally to a local site, we synthesized, characterized, and tested DNVs carrying the fluorescently labeled hydrophilic bisphosphonate drug AF-647 zoledronate (AF647-Zol. AF647-Zol DNVs were lyophilized, resuspended, and applied topically as a paste to the calvarial skin of mice. High-resolution fluorescent imaging and confocal microscopy revealed significant increase of encapsulated payload delivery to the target tissue—cranial bone—by DNVs as compared to nondeformable nanovesicles (NVs or aqueous drug solutions. Interestingly, NV delivery was not superior to aqueous drug solution. Our studies show that microfluidic reactor-synthesized DNVs can be produced in good yield, with high encapsulation efficiency, reproducibility, and stability after storage, and represent a useful vehicle for localized transdermal drug delivery.

  4. Preparation and the Biopharmaceutical Evaluation for the Metered Dose Transdermal Spray of Dexketoprofen

    Directory of Open Access Journals (Sweden)

    Wangding Lu

    2014-01-01

    Full Text Available The objective of the present work was to develop a metered dose transdermal spray (MDTS formulation for transdermal delivery of dexketoprofen (DE. DE release from a series of formulations was assessed in vitro. Various qualitative and quantitative parameters like spray pattern, pump seal efficiency test, average weight per metered dose, and dose uniformity were evaluated. The optimized formulation with good skin permeation and an appropriate drug concentration and permeation enhancer (PE content was developed incorporating 7% (w/w, % DE, 7% (v/v, % isopropyl myristate (IPM, and 93% (v/v, % ethanol. In vivo pharmacokinetic study indicated that the optimized formulation showed a more sustainable plasma-concentration profile compared with the Fenli group. The antiinflammatory effect of DE MDTS was evaluated by experiments involving egg-albumin-induced paw edema in rats and xylene-induced ear swelling in mice. Acetic acid-induced abdominal constriction was used to evaluate the anti-nociceptive actions of DE MDTS. Pharmacodynamic studies indicated that the DE MDTS has good anti-inflammatory and anti-nociceptive activities. Besides, skin irritation studies were performed using rat as an animal model. The results obtained show that the MDTS can be a promising and innovative therapeutic system used in transdermal drug delivery for DE.

  5. Transdermal drug delivery: approaches and significance

    OpenAIRE

    Murthy, SATHYANARAYANA

    2012-01-01

    S Narasimha MurthyDepartment of Pharmaceutics, The University of Mississippi, USATransdermal drug delivery systems deliver drugs through the skin as an alternative to oral, intravascular, subcutaneous, and transmucosal routes. Potential advantages of transdermal delivery include, but are not limited to, elimination of first-pass metabolism, steady delivery/blood levels, better patient compliance, reduced systemic drug interactions, possible dose intervention, avoidance of medically assisted d...

  6. Pharmacokinetics of continuous once-a-week combination 17β-Estradiol/Low- or high-dose levonorgestrel transdermal delivery systems in postmenopausal women.

    Science.gov (United States)

    Karara, Adel H; Harrison, Lester I; Melikian, Armen P; Poola, Nagaraju; Morrison, Dennis; Bourg, Dale; Bourg, Linda; Zurth, Christian

    2014-05-01

    Two open-label, randomized, two-period, crossover studies were performed to determine the safety, delivery rates, and pharmacokinetic properties of a combination estradiol (E2)/levonorgestrel (LNG) transdermal delivery system (TDS). Study 1 enrolled 24 postmenopausal women who received a single TDS containing 4.4 mg E2 and 1.39 mg of LNG (E2/LNG Low) or E2 0.050 mg/24 hours TDS and 0.090 mg LNG oral tablet. Study 2 enrolled 44 postmenopausal women who received either E2/LNG Low or TDS containing 4.4 mg E2 and 2.75 mg LNG (E2/LNG High) weekly for a period of 4 weeks. E2, estrone (E1), LNG, and sex hormone-binding globulin (SHBG) serum concentrations were determined. Overall, both E2/LNG TDS were well tolerated and had excellent adhesion properties. The average daily delivery for E2/LNG Low was 0.045 mg for E2 and 0.0132 mg for LNG. Following weekly delivery of E2/LNG Low or High for 4 weeks, the combination of E2 with two different strengths of LNG did not alter the pharmacokinetic profile of E2. SHBG, total cholesterol, and triglycerides concentrations significantly decreased compared to baseline. Both E2/LNG Low and High TDSs were well tolerated and provided continuous drug delivery over 7 days supporting the benefits of the transdermal route of administration in optimally delivering hormonal therapy. © 2014, The American College of Clinical Pharmacology.

  7. Status of surfactants as penetration enhancers in transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Iti Som

    2012-01-01

    Full Text Available Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs.

  8. Enhancement of Permeation in Transdermal Drug Delivery System by 6μm Wavelength Area Using an MIR-FEL

    Science.gov (United States)

    Uchizono, T.; Ishii, K.; Iwao, Y.; Itou, Y.; Maruo, H.; Hori, M.; Awazu, K.

    2005-03-01

    Ablation of the stratum corneum (SC) by pulsed-laser irradiation is one method of enhancing transdermal drug delivery (TD). For non-invasive laser TD treatment, we have tried to enhance TD without ablation of the SC using an MIR-FEL (6-μm wavelength) (FEL : free electron laser). Lidocaine was used as the drug in this study. The enhancement of TD was measured by HPLC. It was found that the lidocaine TD of the sample irradiated by MIR-FEL was enhanced 10 fold faster than the non-irradiated sample with a flux at 0.5 μg/cm2/h, measured by HPLC. We have demonstrated the effectiveness of TD enhancement by an MIR-FEL (6-μm wavelength) irradiation.

  9. Multiscale modeling of transdermal drug delivery

    Science.gov (United States)

    Rim, Jee Eun

    2006-04-01

    This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a

  10. Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery

    Science.gov (United States)

    Nguyen, Thao M.

    Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes

  11. Transdermal administration of radiolabelled [14C]rotigotine by a patch formulation: A mass balance trial

    NARCIS (Netherlands)

    Cawello, W.; Wolff, H.M.; Meuling, W.J.A.; Horstmann, R.; Braun, M.

    2007-01-01

    Background and objective: The dopamine agonist rotigotine has been formulated in a silicone-based transdermal system for once-daily administration. The objective of the present study was to characterise the mass balance of rotigotine in humans after administration of a single transdermal patch

  12. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.

    Science.gov (United States)

    Hu, Caibiao; Gu, Chengyu; Fang, Qiao; Wang, Qiang; Xia, Qiang

    2016-02-01

    The present study investigated a self-double-emulsifying drug delivery system loaded with epigallocatechin-3-gallate to improve epigallocatechin-3-gallate skin retention. The long chain solid lipids (cetostearyl alcohol) and macadamia oil were utilized as a carrier to deliver the bioactive ingredient. Response surface methodology was used to optimize the formulation, and the solid lipid to total lipid weight ratio, concentration of epigallocatechin-3-gallate and hydrophilic surfactant on skin retention were found to be the principal factors. The optimum formulation with high encapsulation efficiency (95.75%), self-double-emulsification performance (99.58%) and skin retention (87.24%) were derived from the fitted models and experimentally examined, demonstrating a reasonable agreement between experimental and predicted values. Epigallocatechin-3-gallate-self-double-emulsifying drug delivery system was found to be stable for 3 months. Transdermal studies could explain a higher skin diffusion of epigallocatechin-3-gallate from the self-double-emulsifying drug delivery system compared with EGCG aqueous solution. In vitro cytotoxicity showed that epigallocatechin-3-gallate-self-double-emulsifying drug delivery system did not exert hazardous effect on L929 cells up to 1:10. © The Author(s) 2015.

  13. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment

    Science.gov (United States)

    Wang, Wenyi; Wat, Elaine; Hui, Patrick C. L.; Chan, Ben; Ng, Frency S. F.; Kan, Chi-Wai; Wang, Xiaowen; Hu, Huawen; Wong, Eric C. W.; Lau, Clara B. S.; Leung, Ping-Chung

    2016-04-01

    The treatment of atopic dermatitis (AD) has long been viewed as a problematic issue by the medical profession. Although a wide variety of complementary therapies have been introduced, they fail to combine the skin moisturizing and drug supply for AD patients. This study reports the development of a thermo-sensitive Poloxamer 407/Carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel formulation with twin functions of moisture and drug supply for AD treatment. It was found that the presence of CMCs can appreciably improve the physical properties of P407 hydrogel, which makes it more suitable for tailored drug loading. The fabricated P407/CMCs composite hydrogel was also characterized in terms of surface morphology by field emission scanning electron microscopy (FE-SEM), rheological properties by a rheometer, release profile in vitro by dialysis method and cytotoxicity test. More importantly, the findings from transdermal drug delivery behavior revealed that P407/CMCs showed desirable percutaneous performance. Additionally, analysis of cytotoxicity test suggested that P407/CMCs composite hydrogel is a high-security therapy for clinical trials and thus exhibits a promising way to treat AD with skin moisturizing and medication.

  14. Therapeutic hypertension system based on a microbreathing pressure sensor system

    OpenAIRE

    Diao, Ziji; Liu, Hongying; Zhu, Lan; Gao, Xiaoqiang; Zhao, Suwen; Pi, Xitian; Zheng, Xiaolin

    2011-01-01

    Ziji Diao1, Hongying Liu1, Lan Zhu1, Xiaoqiang Gao1, Suwen Zhao1, Xitian Pi1,2, Xiaolin Zheng1,21Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing; 2Key Laboratories for National Defense Science and Technology of Innovative Micronano Devices and System Technology, Chongqing, People’s Republic of ChinaBackground and methods: A novel therapeutic system for the treatment of hypertension was developed on the basis of a slow-b...

  15. Preparation and Optimization of Labeled Chitosan Nanoparticles and Evaluation of their Release from Transdermal Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Mohsen Sadeghi

    2015-09-01

    Full Text Available Biocompatible nanoparticles are widely used in biomedical engineering. In this study, chitosan nanoparticles were prepared using ionic gelation method in view of two determining factors namely method of adding chitosan into the tripolyphosphate (TPP solution and thermal shock application. With regard to the concentration of chitosan and TPP solutions as two variables, the mean particle size of chitosan nanoparticles and their preparation yield were optimized using response surface method. According to previous studies and some preliminary experiments, the chitosan and TPP solution concentration ranges were determined to be 0.5-2.5 mg/mL and 0.25-1.25 mg/mL, respectively. The optimum values of 1.25 mg/mL and 0.6 mg/mL were obtained for chitosan and TPP solution concentrations in the order given. The optimized response value for the chitosan nanoparticles size was found to be 54 nm and preparation yield was 62%. The Zeta potential of resulting spherical nanoparticles was around 31 mV. Chitosan-fluorescein isothiocyanate (FITC polymer was prepared based on the reaction between isothiocyanate functional group of FITC and primary amine functional group of chitosan. FTIR analysis was performed to demonstrate the presence of new bond formation. Labeled chitosan nanoparticles were prepared in the optimized condition using chitosan-FITC polymer. The release behavior of the labeled chitosan nanoparticles from transdermal patches was evaluated. The mean size of chitosan-FITC nanoparticles was determined to be 70 nm. Finally, it was shown that the chitosan nanoparticles were not able to release from acrylic adhesive film without using a method to speed up their diffusion.

  16. Peptide-chaperone-directed transdermal protein delivery requires energy.

    Science.gov (United States)

    Ruan, Renquan; Jin, Peipei; Zhang, Li; Wang, Changli; Chen, Chuanjun; Ding, Weiping; Wen, Longping

    2014-11-03

    The biologically inspired transdermal enhanced peptide TD1 has been discovered to specifically facilitate transdermal delivery of biological macromolecules. However, the biological behavior of TD1 has not been fully defined. In this study, we find that energy is required for the TD1-mediated transdermal protein delivery through rat and human skins. Our results show that the permeation activity of TD1-hEGF, a fusion protein composed of human epidermal growth factor (hEGF) and the TD1 sequence connected with a glycine-serine linker (GGGGS), can be inhibited by the energy inhibitor, rotenone or oligomycin. In addition, adenosine triphosphate (ATP), the essential energetic molecule in organic systems, can effectively facilitate the TD1 directed permeation of the protein-based drug into the skin in a dose-dependent fashion. Our results here demonstrate a novel energy-dependent permeation process during the TD1-mediated transdermal protein delivery that could be valuable for the future development of promising new transdermal drugs.

  17. ATR-FTIR and Raman spectroscopic investigation of the electroporation-mediated transdermal delivery of a nanocarrier system containing an antitumour drug.

    Science.gov (United States)

    Balázs, Boglárka; Sipos, Péter; Danciu, Corina; Avram, Stefana; Soica, Codruta; Dehelean, Cristina; Varju, Gábor; Erős, Gábor; Budai-Szűcs, Mária; Berkó, Szilvia; Csányi, Erzsébet

    2016-01-01

    The aim of the present work was the optimization of the transdermal delivery of a lyotropic liquid crystal genistein-based formulation (LLC-GEN). LLC was chosen as medium in view of the poor solubility of GEN in water. Membrane diffusion and penetration studies were carried out with a Franz diffusion cell, through a synthetic membrane in vitro, a chick chorioallantoic membrane ex ovo, and ex vivo excised human epidermis. Thereafter, LLC-GEN was combined with electroporation (EP) to enhance the transdermal drug delivery. The synergistic effect of EP was verified by in vivo ATR-FTIR and ex vivo Raman spectroscopy on hairless mouse skin.

  18. Transdermal and Topical Drug Administration in the Treatment of Pain

    Directory of Open Access Journals (Sweden)

    Wojciech Leppert

    2018-03-01

    Full Text Available The comprehensive treatment of pain is multidimodal, with pharmacotherapy playing a key role. An effective therapy for pain depends on the intensity and type of pain, the patients’ age, comorbidities, and appropriate choice of analgesic, its dose and route of administration. This review is aimed at presenting current knowledge on analgesics administered by transdermal and topical routes for physicians, nurses, pharmacists, and other health care professionals dealing with patients suffering from pain. Analgesics administered transdermally or topically act through different mechanisms. Opioids administered transdermally are absorbed into vessels located in subcutaneous tissue and, subsequently, are conveyed in the blood to opioid receptors localized in the central and peripheral nervous system. Non–steroidal anti–inflammatory drugs (NSAIDs applied topically render analgesia mainly through a high concentration in the structures of the joint and a provision of local anti–inflammatory effects. Topically administered drugs such as lidocaine and capsaicin in patches, capsaicin in cream, EMLA cream, and creams containing antidepressants (i.e., doxepin, amitriptyline act mainly locally in tissues through receptors and/or ion channels. Transdermal and topical routes offer some advantages over systemic analgesic administration. Analgesics administered topically have a much better profile for adverse effects as they relieve local pain with minimal systemic effects. The transdermal route apart from the above-mentioned advantages and provision of long period of analgesia may be more convenient, especially for patients who are unable to take drugs orally. Topically and transdermally administered opioids are characterised by a lower risk of addiction compared to oral and parenteral routes.

  19. Design and Development of a Proniosomal Transdermal Drug ...

    African Journals Online (AJOL)

    Purpose: The aim of the study was to develop a proniosomal carrier system for captopril for the treatment of hypertension that is capable of efficiently delivering entrapped drug over an extended period of time. Method: The potential of proniosomes as a transdermal drug delivery system for captopril was investigated by ...

  20. Targeting the endocannabinoid system : future therapeutic strategies

    NARCIS (Netherlands)

    Aizpurua-Olaizola, Oier; Elezgarai, Izaskun; Rico-Barrio, Irantzu; Zarandona, Iratxe; Etxebarria, Nestor; Usobiaga, Aresatz

    2017-01-01

    The endocannabinoid system (ECS) is involved in many physiological regulation pathways in the human body, which makes this system the target of many drugs and therapies. In this review, we highlight the latest studies regarding the role of the ECS and the drugs that target it, with a particular

  1. Therapeutic hypertension system based on a microbreathing pressure sensor system

    Directory of Open Access Journals (Sweden)

    Diao Z

    2011-05-01

    Full Text Available Ziji Diao1, Hongying Liu1, Lan Zhu1, Xiaoqiang Gao1, Suwen Zhao1, Xitian Pi1,2, Xiaolin Zheng1,21Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing; 2Key Laboratories for National Defense Science and Technology of Innovative Micronano Devices and System Technology, Chongqing, People’s Republic of ChinaBackground and methods: A novel therapeutic system for the treatment of hypertension was developed on the basis of a slow-breath training mechanism, using a microbreathing pressure sensor device for the detection of human respiratory signals attached to the abdomen. The system utilizes a single-chip AT89C51 microcomputer as a core processor, programmed by Microsoft Visual C++6.0 to communicate with a PC via a full-speed PDIUSBD12 interface chip. The programming is based on a slow-breath guided algorithm in which the respiratory signal serves as a physiological feedback parameter. Inhalation and exhalation by the subject is guided by music signals.Results and conclusion: Our study indicates that this microbreathing sensor system may assist in slow-breath training and may help to decrease blood pressure.Keywords: hypertension, microbreathing sensor, single-chip microcomputer, slow-pace breathing

  2. Fentanyl Iontophoretic Transdermal System (IONSYS(®)) can be Safely used in the Hospital Environment with X-Rays, Computerized Tomography and Radiofrequency Identification Devices.

    Science.gov (United States)

    Lemke, John; Sardariani, Edmond; Phipps, Joseph Bradley; Patel, Niki; Itri, Loretta M; Caravelli, James; Viscusi, Eugene R

    2016-09-01

    Fentanyl iontophoretic transdermal system (fentanyl ITS, IONSYS(®)) is a patient-controlled analgesia system used for the management of acute postoperative pain, designed to be utilized in a hospital setting. The objective of the two studies was to determine if fentanyl ITS could be safely used with X-rays, computerized tomography (CT) scans and radiofrequency identification (RFID) devices. The ITS system has two components: controller and drug unit; the studies utilized ITS systems without fentanyl, referred to as the ITS Placebo system. The first study evaluated the effect of X-radiation on the operation of an ITS Placebo system. Five ITS Placebo systems were exposed to X-rays (20 and 200 mSv total radiation dose-the 200 mSv radiation dose represents a tenfold higher exposure than in clinical practice) while operating in the Ready Mode and five were exposed while operating in the Dose Mode. The second study evaluated the effect of RFID (worst-case scenario of direct contact with an RFID transmitter) on the operation of an ITS Placebo system. During these tests, observations of the user interface and measurements of output voltage confirmed proper function throughout all operational modes (Ready Mode, Dose Mode, End-of-Use Mode, and End-of-Life Mode). The ITS Placebo system met all specifications and no functional anomalies were observed during and following X-ray exposure at two radiation dose levels or exposure at six different combinations of RFID frequencies and field strengths. The performance of the ITS system was unaffected by X-ray exposure levels well beyond those associated with diagnostic X-rays and CT scans, and by exposure to radiofrequency field strengths typically generated by RFID devices. These results provide added confidence to clinicians that the fentanyl ITS system does not need to be removed during diagnostic X-rays and CT scans and can also be utilized in close proximity to RFID devices. The studies and writing of this manuscript were

  3. Diagnostic and therapeutic approach of systemic amyloidosis

    NARCIS (Netherlands)

    Hazenberg, BPC; van Gameren, [No Value; Bijzet, J; Jager, PL; van Rijswijk, MH

    Amyloidosis is a group of diseases, all characterised by deposition of protein fibrils with a beta-sheet structure. This structure generates affinity of amyloid for Congo red dye and is resistant to proteolysis. Three types of systemic amyloidosis are important for the clinician: AA (related to

  4. Manufacturing of recombinant therapeutic proteins in microbial systems.

    Science.gov (United States)

    Graumann, Klaus; Premstaller, Andreas

    2006-02-01

    Recombinant therapeutic proteins have gained enormous importance for clinical applications. The first recombinant products have been produced in E. coli more than 20 years ago. Although with the advent of antibody-based therapeutics mammalian expression systems have experienced a major boost, microbial expression systems continue to be widely used in industry. Their intrinsic advantages, such as rapid growth, high yields and ease of manipulation, make them the premier choice for expression of non-glycosylated peptides and proteins. Innovative product classes such as antibody fragments or alternative binding molecules will further expand the use of microbial systems. Even more, novel, engineered production hosts and integrated technology platforms hold enormous potential for future applications. This review summarizes current applications and trends for development, production and analytical characterization of recombinant therapeutic proteins in microbial systems.

  5. Transdermal hormone therapy in postmenopausal women: A review of metabolic effects and drug delivery technologies

    Directory of Open Access Journals (Sweden)

    Nathan W Kopper

    2008-10-01

    Full Text Available Nathan W Kopper, Jennifer Gudeman, Daniel J ThompsonKV Pharmaceutical, St. Louis, MO, USAAbstract: Vasomotor symptoms (VMS associated with menopause can cause significant discomfort and decrease the quality of life for women in the peri-menopausal and post-menopausal stages of life. Hormone therapy (HT is the mainstay of treatment for menopausal symptoms and is currently the only therapy proven effective for VMS. Numerous HT options are available to treat VMS, including estrogen-only and estrogen-progestogen combination products to meet the needs of both hysterectomized and nonhysterectomized women. In addition to selecting an appropriate estrogen or estrogen-progestogen combination, consideration should be given to the route of administration to best suit the needs of the patient. Delivery systems for hormone therapy include oral tablets, transdermal patches, transdermal topical (nonpatch products, and intravaginal preparations. Oral is currently the most commonly utilized route of administration in the United States. However, evidence suggests that oral delivery may lead to some undesirable physiologic effects caused by significant gut and hepatic metabolism. Transdermal drug delivery may mitigate some of these effects by avoiding gut and hepatic first-pass metabolism. Advantages of transdermal delivery include the ability to administer unmetabolized estradiol directly to the blood stream, administration of lower doses compared to oral products, and minimal stimulation of hepatic protein production. Several estradiol transdermal delivery technologies are available, including various types of patches, topical gels, and a transdermal spray.Keywords: estradiol, hormone therapy, menopause, transdermal drug delivery, vasomotor symptoms

  6. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    Science.gov (United States)

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  7. Dendrimer advances for the central nervous system delivery of therapeutics.

    Science.gov (United States)

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  8. Transdermal deferoxamine prevents pressure-induced diabetic ulcers.

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W; Maan, Zeshaan N; Rennert, Robert C; Inayathullah, Mohammed; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V; Whitmore, Arnetha J; Walmsley, Graham G; Galvez, Michael G; Whittam, Alexander J; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C

    2015-01-06

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.

  9. Transdermal deferoxamine prevents pressure-induced diabetic ulcers

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W.; Maan, Zeshaan N.; Rennert, Robert C.; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V.; Whitmore, Arnetha J.; Galvez, Michael G.; Whittam, Alexander J.; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C.

    2015-01-01

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation. PMID:25535360

  10. Assessment of simvastatin niosomes for pediatric transdermal drug delivery.

    Science.gov (United States)

    Zidan, Ahmed S; Hosny, Khaled M; Ahmed, Osama A A; Fahmy, Usama A

    2016-06-01

    The prevalence of childhood dyslipidemia increases and is considered as an important risk factor for the incidence of cardiovascular disease in the adulthood. To improve dosing accuracy and facilitate the determination of dosing regimens in function of the body weight, the proposed study aims at preparing transdermal niosomal gels of simvastatin as possible transdermal drug delivery system for pediatric applications. Twelve formulations were prepared to screen the influence of formulation and processing variables on critical niosomal characteristics. Nano-sized niosomes with 0.31 μm number-weighted size displayed highest simvastatin release rate with 8.5% entrapment capacity. The niosomal surface coverage by negative charges was calculated according to Langmuir isotherm with n = 0.42 to suggest that the surface association was site-independent, probably producing surface rearrangements. Hypolipidemic activities after transdermal administration of niosomal gels to rats showed significant reduction in cholesterol and triglyceride levels while increasing plasma high-density lipoproteins concentration. Bioavailability estimation in rats revealed an augmentation in simvastatin bioavailability by 3.35 and 2.9 folds from formulation F3 and F10, respectively, compared with oral drug suspension. Hence, this transdermal simvastatin niosomes not only exhibited remarkable potential to enhance its bioavailability and hypolipidemic activity but also considered a promising pediatric antihyperlipidemic formulation.

  11. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    Science.gov (United States)

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  12. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Science.gov (United States)

    Hong, Xiaoyun; Wei, Liangming; Wu, Fei; Wu, Zaozhan; Chen, Lizhu; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. PMID:24039404

  13. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret.

    Science.gov (United States)

    Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang

    We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N -trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.

  14. Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology

    Directory of Open Access Journals (Sweden)

    Huang CT

    2013-06-01

    Full Text Available Chi-Te Huang,1 Ming-Jun Tsai,2,3 Yu-Hsuan Lin,1 Yaw-Sya Fu,4 Yaw-Bin Huang,5 Yi-Hung Tsai,5 Pao-Chu Wu11School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, 2Department of Neurology, China Medical University Hospital, Taichung, 3School of Medicine, Medical College, China Medical University, Taichung, 4Faculty of Biomedical Science and Environmental Biology, 5Graduate Institute of Clinical Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of ChinaAbstract: The aim of this study was to evaluate the potential of microemulsions as a drug vehicle for transdermal delivery of citalopram. A computerized statistical technique of response surface methodology with mixture design was used to investigate and optimize the influence of the formulation compositions including a mixture of Brij 30/Brij 35 surfactants (at a ratio of 4:1, 20%–30%, isopropyl alcohol (20%–30%, and distilled water (40%–50% on the properties of the drug-loaded microemulsions, including permeation rate (flux and lag time. When microemulsions were used as a vehicle, the drug permeation rate increased significantly and the lag time shortened significantly when compared with the aqueous control of 40% isopropyl alcohol solution containing 3% citalopram, demonstrating that microemulsions are a promising vehicle for transdermal application. With regard to the pharmacokinetic parameters of citalopram, the flux required for the transdermal delivery system was about 1280 µg per hour. The microemulsions loaded with citalopram 3% and 10% showed respective flux rates of 179.6 µg/cm2 and 513.8 µg/cm2 per hour, indicating that the study formulation could provide effective therapeutic concentrations over a practical application area. The animal study showed that the optimized formulation (F15 containing 3% citalopram with an application area of 3.46 cm2 is able to reach a minimum effective therapeutic concentration with no erythematous reaction

  15. Glyceryl monooleyl ether-based liquid crystalline nanoparticles as a transdermal delivery system of flurbiprofen: characterization and in vitro transport.

    Science.gov (United States)

    Uchino, Tomonobu; Murata, Akiko; Miyazaki, Yasunori; Oka, Toshihiko; Kagawa, Yoshiyuki

    2015-01-01

    Liquid crystalline nanoparticles (LCNs) were prepared using glyceryl monooleyl ether (GME) by the modified film rehydration method. Hydrogenated lecithin (HL), 1,3-butylene glycol (1,3-BG), and Poloxamer 407 were used as additives. The prepared LCN formulations were evaluated based on particle size, small-angle X-ray diffraction (SAXS) analysis, (1)H- and (19)F-NMR spectra, and in vitro skin permeation across Yucatan micropig skin. The composition (weight percent) of the LCN formulations were GME-HL-1,3-BG (4 : 1 : 15), 4% GME-based LCN and GME-HL-1,3-BG (8 : 1 : 15), 8% GME-based LCN and their mean particle sizes were 130-175 nm. Flurbiprofen 5 and 10 mg was loaded into 4% GME-based LCN and 8% GME-based LCN systems, respectively. The results of SAXS and NMR suggested that both flurbiprofen-loaded formulations consist of particles with reverse type hexagonal phase (formation of hexosome) and flurbiprofen molecules were localized in the lipid domain through interaction of flurbiprofen with the lipid components. Flurbiprofen transport from the LCN systems across the Yucatan micropig skin was increased compared to flurbiprofen in citric buffer (pH=3.0). The 8% GME-based LCN systems was superior to the 4% GME-based LCN for flurbiprofen transport. Since the internal hexagonal phase in the 8% GME-based LCN systems had a higher degree of order compared to the 4% GME-based LCN in SAXS patterns, the 8% GME-based LCN system had a larger surface area, which might influence flurbiprofen permeation. These results indicated that the GME-based LCN system is effective in improving the skin permeation of flurbiprofen across the skin.

  16. Chemical Penetration Enhancers for Transdermal Drug Delivery ...

    African Journals Online (AJOL)

    for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.

  17. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.

    Science.gov (United States)

    Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S

    2017-11-01

    The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. The endocrine system and sarcopenia: potential therapeutic benefits.

    Science.gov (United States)

    McIntire, Kevin L; Hoffman, Andrew R

    2011-12-01

    Age related muscle loss, known as sarcopenia, is a major factor in disability, loss of mobility and quality of life in the elderly. There are many proposed mechanisms of age-related muscle loss that include the endocrine system. A variety of hormones regulate growth, development and metabolism throughout the lifespan. Hormone activity may change with age as a result of reduced hormone secretion or decreased tissue responsiveness. This review will focus on the complex interplay between the endocrine system, aging and skeletal muscle and will present possible benefits of therapeutic interventions for sarcopenia.

  19. Meta-Analysis of the Ease of Care From the Nurses' Perspective Comparing Fentanyl Iontophoretic Transdermal System (ITS) Vs Morphine Intravenous Patient-Controlled Analgesia (IV PCA) in Postoperative Pain Management.

    Science.gov (United States)

    Pestano, Cecile R; Lindley, Pam; Ding, Li; Danesi, Hassan; Jones, James B

    2017-08-01

    The aim of this meta-analysis was to compare the ease of care (EOC) of fentanyl iontophoretic transdermal system (ITS) vs the morphine intravenous patient-controlled analgesia (IV PCA) as assessed by the nurse. Meta-analysis of three phase 3B randomized active-comparator trials. This meta-analysis according to Cochrane's approach assessed EOC using a validated nurse questionnaire (22 items grouped into three subscales, which include time efficiency, convenience, and satisfaction) in adult patients treated with fentanyl ITS or morphine IV PCA for postoperative pain management. The weighted mean difference (WMD) between treatments was calculated. EOC analyses were based on responses to questionnaires from 848 (fentanyl ITS) and 761 (morphine IV PCA) nurses. Fentanyl ITS was reported to provide significant advantages compared with morphine IV PCA in terms of nurses' overall EOC (WMD = -0.57, P PCA. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  20. Tolerability of buprenorphine transdermal system in nursing home patients with advanced dementia: a randomized, placebo-controlled trial (DEP.PAIN.DEM

    Directory of Open Access Journals (Sweden)

    Erdal A

    2018-05-01

    Full Text Available Ane Erdal,1 Elisabeth Flo,2 Dag Aarsland,3,4 Geir Selbaek,5–7 Clive Ballard,8 Dagrun D Slettebo,1 Bettina S Husebo1,9 1Department of Global Public Health and Primary Care, Centre for Elderly and Nursing Home Medicine, University of Bergen, Bergen, Norway; 2Department of Clinical Psychology, University of Bergen, Bergen, Norway; 3Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK; 4Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; 5Centre for Old Age Psychiatric Research, Innlandet Hospital Trust, Ottestad, Norway; 6National Advisory Unit on Aging and Health, Tønsberg, Norway; 7Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; 8Exeter Medical School, University of Exeter, Exeter, UK; 9Municipality of Bergen, Bergen, Norway Purpose: Buprenorphine transdermal system is increasingly prescribed in people with advanced dementia, but no clinical trial has investigated the safety and factors associated with discontinuation due to adverse events in this population. Patients and methods: One hundred sixty-two people with advanced dementia and significant depression from 47 nursing homes were included and randomized to active analgesic treatment (acetaminophen/buprenorphine or identical placebo for 13 weeks. In this secondary analysis, the main outcomes were time to and reasons for discontinuation of buprenorphine due to adverse events. Change in daytime activity as measured by actigraphy was a secondary outcome. Results: Of the 44 patients who received active buprenorphine 5 μg/hour, 52.3% (n=23 discontinued treatment due to adverse events compared to 13.3% (6 of 45 in the placebo group (p<0.001. Psychiatric and neurological adverse events were the most frequently reported causes of discontinuation (69.6%, n=16. Concomitant use of antidepressants significantly increased the risk of discontinuation (HR 23.2, 95

  1. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    Science.gov (United States)

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    Cannabis sativa is also popularly known as marijuana. It has been cultivated and used by man for recreational and medicinal purposes since many centuries. Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries. The research of drugs acting on endocannabinoid system has seen many ups and downs in the recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve "protective role" in many medical conditions. Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson's disease, Huntington's disease, Alzheimer's disease and Tourette's syndrome could possibly be treated by drugs modulating endocannabinoid system. Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008. Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish

  2. Current advances in transdermal delivery of drugs for Alzheimer's disease

    Science.gov (United States)

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients. PMID:28706327

  3. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  4. Current advances in transdermal delivery of drugs for Alzheimer's disease.

    Science.gov (United States)

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients.

  5. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms

    Directory of Open Access Journals (Sweden)

    Audra L. Stinchcomb

    2009-01-01

    Full Text Available Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual’s needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.

  6. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms

    Directory of Open Access Journals (Sweden)

    Caroline L. Strasinger

    2009-01-01

    Full Text Available Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual's needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.

  7. Oxybutynin Transdermal Patch

    Science.gov (United States)

    ... a disorder of the nervous system that causes muscle weakness); ulcerative colitis (a condition which causes swelling and sores in the lining of the colon [large intestine] and rectum); benign prostatic hypertrophy (BPH, enlargement of the prostate, a male reproductive ...

  8. Pharmacokinetics and repolarization effects of intravenous and transdermal granisetron.

    Science.gov (United States)

    Mason, Jay W; Selness, Daniel S; Moon, Thomas E; O'Mahony, Bridget; Donachie, Peter; Howell, Julian

    2012-05-15

    The need for greater clarity about the effects of 5-HT(3) receptor antagonists on cardiac repolarization is apparent in the changing product labeling across this therapeutic class. This study assessed the repolarization effects of granisetron, a 5-HT(3) receptor antagonist antiemetic, administered intravenously and by a granisetron transdermal system (GTDS). In a parallel four-arm study, healthy subjects were randomized to receive intravenous granisetron, GTDS, placebo, or oral moxifloxacin (active control). The primary endpoint was difference in change from baseline in mean Fridericia-corrected QT interval (QTcF) between GTDS and placebo (ddQTcF) on days 3 and 5. A total of 240 subjects were enrolled, 60 in each group. Adequate sensitivity for detection of QTc change was shown by a 5.75 ms lower bound of the 90% confidence interval (CI) for moxifloxacin versus placebo at 2 hours postdose on day 3. Day 3 ddQTcF values varied between 0.2 and 1.9 ms for GTDS (maximum upper bound of 90% CI, 6.88 ms), between -1.2 and 1.6 ms for i.v. granisetron (maximum upper bound of 90% CI, 5.86 ms), and between -3.4 and 4.7 ms for moxifloxacin (maximum upper bound of 90% CI, 13.45 ms). Day 5 findings were similar. Pharmacokinetic-ddQTcF modeling showed a minimally positive slope of 0.157 ms/(ng/mL), but a very low correlation (r = 0.090). GTDS was not associated with statistically or clinically significant effects on QTcF or other electrocardiographic variables. This study provides useful clarification on the effect of granisetron delivered by GTDS on cardiac repolarization. ©2012 AACR.

  9. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.

    Science.gov (United States)

    Garland, Martin J; Caffarel-Salvador, Ester; Migalska, Katarzyna; Woolfson, A David; Donnelly, Ryan F

    2012-04-10

    It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery, as well as enabling the rate of delivery to be achieved with precise electronic control. However, no reports exist on the combination of ITP with in situ drug loaded polymeric MN delivery systems. Furthermore, although a number of studies have highlighted the importance of MN design for transdermal drug delivery enhancement, to date, there has been no systematic investigation of the influence of MN geometry on the performance of polymeric MN arrays which are designed to remain in contact with the skin during the period of drug delivery. As such, for the first time, this study reports on the effect of MN heigth and MN density upon the transdermal delivery of small hydrophilic compounds (theophylline, methylene blue, and fluorescein sodium) across neonatal porcine skin in vitro, with the optimised MN array design evaluated for its potential in the electrically faciliatated delivery of peptide (bovine insulin) and protein (fluorescein isothiocyanate-labelled bovine serum albumin (FTIC-BSA)) macromolecules. The results of the in vitro drug release investigations revealed that the extent of transdermal delivery was dependent upon the design of the MN array employed, whereby an increase in MN height and an increase in MN density led to an increase in the extent of transdermal drug delivery achieved 6h after MN application. Overall, the in vitro permeation studies revealed that the MN design containing 361 MNs/cm(2) of 600 μm height resulted in the greatest extent of transdermal drug delivery. As such, this design was evaluated for its potential in the MN mediated iontophoretic transdermal delivery. Whilst the combination of MN and ITP did not further enhance the extent of small molecular weight solute delivery, the extent of peptide/protein release was significantly

  10. Microneedles for Transdermal Biosensing: Current Picture and Future Direction.

    Science.gov (United States)

    Ventrelli, Letizia; Marsilio Strambini, Lucanos; Barillaro, Giuseppe

    2015-12-09

    A novel trend is rapidly emerging in the use of microneedles, which are a miniaturized replica of hypodermic needles with length-scales of hundreds of micrometers, aimed at the transdermal biosensing of analytes of clinical interest, e.g., glucose, biomarkers, and others. Transdermal biosensing via microneedles offers remarkable opportunities for moving biosensing technologies and biochips from research laboratories to real-field applications, and envisages easy-to-use point-of-care microdevices with pain-free, minimally invasive, and minimal-training features that are very attractive for both developed and emerging countries. In addition to this, microneedles for transdermal biosensing offer a unique possibility for the development of biochips provided with end-effectors for their interaction with the biological system under investigation. Direct and efficient collection of the biological sample to be analyzed will then become feasible in situ at the same length-scale of the other biochip components by minimally trained personnel and in a minimally invasive fashion. This would eliminate the need for blood extraction using hypodermic needles and reduce, in turn, related problems, such as patient infections, sample contaminations, analysis artifacts, etc. The aim here is to provide a thorough and critical analysis of state-of-the-art developments in this novel research trend, and to bridge the gap between microneedles and biosensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transdermic absorption of Melagenina II

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, I.; Martinez Lopez, B.; Ruiz Pena, M.; Caso Pena, R.

    1997-01-01

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with 125I by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ( 125I ) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  12. Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure?

    Science.gov (United States)

    Liuzzi, Roberta; Carciati, Antonio; Guido, Stefano; Caserta, Sergio

    2016-03-01

    Interaction of microstructured fluids with skin is ubiquitous in everyday life, from the use of cosmetics, lotions, and drugs, to personal care with detergents or soaps. The formulation of microstructured fluids is crucial for the control of the transdermal transport. In biomedical applications transdermal delivery is an efficient approach, alternative to traditional routes like oral and parenteral administration, for local release of drugs. Poor skin permeability, mainly due to its outer layer, which acts as the first barrier against the entry of external compounds, greatly limits the applicability of transdermal delivery. In this review, we focus on recent studies on the improvement of skin transport efficiency by using microemulsions (ME). Quantitative techniques, which are able to investigate both skin morphology and penetration processes, are also reviewed. ME are increasingly used as transdermal systems due to their low preparation cost, stability and high bioavailability. ME may act as penetration enhancers for many active principles, but ME microstructure should be chosen appropriately considering several factors such as ratio and type of ingredients and physic-chemical properties of the active components. ME microstructure is strongly affected by the flow conditions applied during processing, or during spreading and rubbing onto skin. Although the role played by ME microstructure has been generally recognized, the skin transport mechanisms associated with different ME microstructures are still to be elucidated and further investigations are required to fully exploit the potential of ME in transdermal delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Studies on transdermal delivery of ferulic acid through rat skin treated by microneedle arrays].

    Science.gov (United States)

    Yang, Bing; Du, Shou-ying; Bai, Jie; Shang, Ke-xin; Lu, Yang; Li, Peng-yue

    2014-12-01

    In order to investigate the characteristics of transdermal delivery of ferulic acid under the treated of microneedle arrays and the influence on permeability of rat skin capillaries, improved Franz-cells were used in the transdermal delivery experiment with the rat skin of abdominal wall and the length of microneedle arrays, different insertion forces, retention time were studied in the influence of characteristics of transdermal delivery of FA. The amount of FA was determined by HPLC system. Intravenous injection Evans blue and FA was added after microneedle arrays treated. Established inflammation model was built by daubing dimethylbenzene. The amount of Evans blue in the rat skin was read at 590 nm wavelength with a Multiskan Go microplate reader. Compared with passive diffusion group the skin pretreated with microneedle arrays had a remarkable enhancement of FA transport (P Microneedle arrays with different length had a remarkable enhancement of FA transport, but was not related to the increase of the length. The research of FA on the reduce of permeability of rat skin capillaries indicated that the skin pretreated with microneedle arrays could reduce the content of Evans blue in the skins of rat significantly compared with the untreated group. The permeation rate of ferulic acid transdermal delivery had remarkable increase under the treated of microneedle arrays and the length of microneedle arrays ,the retention time so as to the insertion force were important to the transdermal delivery of ferulic acid.

  14. Cooperative nanomaterials systems for cancer diagnosis and therapeutics

    Science.gov (United States)

    Park, Ji Ho

    The unique electromagnetic and biologic properties of nanomaterials are being harnessed to build powerful new medical technologies. Particularly, there have been recently increasing interests in cancer nanotechnology, wherein nanomaterials play an important role in ultrasensitive imaging, targeting, and therapy of cancer. However, these nanomaterials typically function as individual units and are designed to independently perform their tasks. In this dissertation, new cooperative nanosystems consisting of two distinct nanomaterials that work together to target, identify, or treat tumors in vivo were studied. In the first two chapters, the synthesis of worm-shaped dextran-coated iron oxide nanoparticles (nanoworms, NW) exhibiting substantial in vivo circulation times and significant tumor targeting when coated with tumor-homing peptides were studied. NWs are also found to display a greater magnetic resonance (MR) response than the spherical nanoparticles. Next, two types of multifunctional nanoparticles were fabricated for simultaneous detection and treatment of cancer. Micellar hybrid nanoparticles (MHN) that contain magnetic nanoparticles, quantum dots, and an anti-cancer drug doxorubicin (DOX) within a single PEG-modified phospholipid micelle were first prepared. Simultaneous multimodal imaging (MR and fluorescence) and targeted drug delivery in vitro and in vivo was performed using DOX-incorporated targeted MHN. Secondly, luminescent porous silicon nanoparticles (LPSINP) that were drug-loadable, biodegradable and relatively non-toxic were prepared. In contrast to most inorganic nanomaterials, LPSINP were degraded in vivo in a relatively short time with no noticeable toxicity. The clearance and degradation of intravenously injected LPSINP in the bladder, liver, and spleen were established by whole-body fluorescence imaging. Finally, two types of cooperative nanomaterials systems to amplify targeting and deliver drugs efficiently to regions of tumor invasion were

  15. Enhanced transdermal delivery of ondansetron using nanovesicular systems: Fabrication, characterization, optimization and ex-vivo permeation study-Box-Cox transformation practical example.

    Science.gov (United States)

    Habib, Basant A; Sayed, Sinar; Elsayed, Ghada M

    2018-03-30

    This study aimed to formulate suitable nanovesicles (NVs) for transdermal delivery of Ondansetron. It also illustrated a practical example for the importance of Box-Cox transformation. A 2 3 full factorial design was used to enable testing transfersomes, ethosomes, and transethosomes of Ondansetron simultaneously. The independent variables (IVs) studied were sodium taurocholate amount, ethanol volume in hydration medium and sonication time. The studied dependent variables (DVs) were: particle size (PS), zeta potential (ZP) and entrapment efficiency (EE). Polynomial equations were used to study the influence of IVs on each DV. Numerical multiple response optimization was applied to select an optimized formula (OF) with the goals of minimizing PS and maximizing ZP absolute value and EE. Box-Cox transformation was adopted to enable modeling PS raised to the power of 1.2 with an excellent prediction R 2 of 1.000. ZP and EE were adequately represented directly with prediction R 2 of 0.9549 and 0.9892 respectively. Response surface plots helped in explaining the influence of IVs on each DV. Two-sided 95% prediction interval test and percent deviation of actual values from predicted ones proved the validity of the elucidated models. The OF was a transfersomal formula with desirability of 0.866 and showed promising results in ex-vivo permeation study. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Induction of a robust immune response against avian influenza virus following transdermal inoculation with H5-DNA vaccine formulated in modified dendrimer-based delivery system in mouse model.

    Science.gov (United States)

    Bahadoran, Azadeh; Ebrahimi, Mehdi; Yeap, Swee Keong; Safi, Nikoo; Moeini, Hassan; Hair-Bejo, Mohd; Hussein, Mohd Zobir; Omar, Abdul Rahman

    2017-01-01

    This study was aimed to evaluate the immunogenicity of recombinant plasmid deoxyribonucleic acid (DNA), pBud-H5-green fluorescent protein (GFP)-interferon-regulatory factor (IRF)3 following delivery using polyamidoamine (PAMAM) dendrimer and transactivator of transcription (TAT)-conjugated PAMAM dendrimer as well as the effect of IRF3 as the genetic adjuvant. BALB/c mice were vaccinated transdermally with pBud-H5-GFP, PAMAM/pBud-H5-GFP, TAT-PAMAM/pBud-H5-GFP, and TAT-PAMAM/pBud-H5-GFP-IRF3. The expression analysis of H5 gene from the blood by using quantitative real-time reverse transcriptase polymerase chain reaction confirmed the ability of PAMAM dendrimer as a carrier for gene delivery, as well as the ability of TAT peptide to enhance the delivery efficiency of PAMAM dendrimer. Mice immunized with modified PAMAM by TAT peptide showed higher hemagglutination inhibition titer, and larger CD3 + /CD4 + T cells and CD3 + /CD8 + T cells population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2, IL-15, IL-12, IL-6, and tumor necrosis factor-α compared with those immunized with native PAMAM. These results suggest that the function of TAT peptide as a cell-penetrating peptide is able to enhance the gene delivery, which results in rapid distribution of H5 in the tissues of the immunized mice. Furthermore, pBud-H5-GFP co-expressing IRF3 as a genetic adjuvant demonstrated the highest hemagglutination inhibition titer besides larger CD3 + /CD4 + and CD3 + /CD8 + T cells population, and strong Th1-like cytokine responses among all the systems tested. In conclusion, TAT-PAMAM dendrimer-based delivery system with IRF3 as a genetic adjuvant is an attractive transdermal DNA vaccine delivery system utilized to evaluate the efficacy of the developed DNA vaccine in inducing protection during challenge with virulent H5N1 virus.

  17. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs

    OpenAIRE

    Banks, Stan L.; Pinninti, Raghotham R.; Gill, Harvinder S.; Paudel, Kalpana S.; Crooks, Peter A.; Brogden, Nicole K.; Prausnitz, Mark R.; Stinchcomb, Audra L.

    2010-01-01

    Controlled-release delivery of 6-β-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. Micro...

  18. Iontophoretic transdermal drug delivery: a multi-layered approach.

    Science.gov (United States)

    Pontrelli, Giuseppe; Lauricella, Marco; Ferreira, José A; Pena, Gonçalo

    2017-12-11

    We present a multi-layer mathematical model to describe the transdermal drug release from an iontophoretic system. The Nernst-Planck equation describes the basic convection-diffusion process, with the electric potential obtained by solving the Laplace's equation. These equations are complemented with suitable interface and boundary conditions in a multi-domain. The stability of the mathematical problem is discussed in different scenarios and a finite-difference method is used to solve the coupled system. Numerical experiments are included to illustrate the drug dynamics under different conditions. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  19. Promotores de permeação para a liberação transdérmica de fármacos: uma nova aplicação para as ciclodextrinas Permeation enhancers in transdermal drug delivery systems: a new application of cyclodextrins

    Directory of Open Access Journals (Sweden)

    Maria Rita Fernandes Morais Martins

    2002-03-01

    Full Text Available No presente trabalho é feita uma breve revisão sobre promotores de permeação cutânea, descrevendo-se os seus mecanismos de ação e alguns exemplos. Abordam-se as vias de permeação de fármacos através da pele e liberação transdérmica. São também focadas as ciclodextrinas e seus derivados, a sua estrutura e propriedades físico-químicas, formação de complexos de inclusão e o seu papel como excipientes em sistemas transdérmicos. As ciclodextrinas constituem um grupo de excipientes que têm um papel de grande importância em formulação farmacêutica. Uma das mais extraordinárias propriedades destas moléculas é a sua capacidade de incrementar a liberação de fármacos através da pele sem, no entanto, afetar a sua função barreira.The present work is a short revision about transdermal permeation enhancers, their mechanism of action including some examples. Routes of permeation across the skin and transdermal delivery are also described. We focus cyclodextrins and their derivatives, structure, chemical properties, formation of inclusion complexes and their action as excipients in transdermal drug delivery systems. Cyclodextrins are a very important group of excipients used in pharmaceutical technology. One of the most extraordinary properties of cyclodextrins is their ability to increase transdermal drug delivery without affecting the barrier function of the skin.

  20. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  1. Therapeutic Options for Controlling Fluids in the Visual System

    Science.gov (United States)

    Curry, Kristina M.; Wotring, Virginia E.

    2014-01-01

    Visual Impairment/Intracranial Pressure (VIIP) is a newly recognized risk at NASA. The VIIP project examines the effect of long-term exposure to microgravity on vision of crewmembers before and after they return to Earth. Diamox (acetazolamide) is a medication which is used to decrease intraocular pressure; however, it carries a 3% risk of kidney stones. Astronauts are at a higher risk of kidney stones during spaceflight and the use Diamox would only increase the risk; therefore alternative therapies were investigated. Histamine 2 (H2) antagonist acid blockers such as cimetidine, ranitidine, famotidine and nizatidine are typically used to relieve the symptoms of gastroesophageal reflux disease (GERD). H2 receptors have been found in the human visual system, which has led to research on the use of H2 antagonist blockers to control fluid production in the human eye. Another potential therapeutic strategy is targeted at aquaporins, which are water channels that help maintain fluid homeostasis. Aquaporin antagonists are also known to affect intracranial pressure which can in turn alter intraocular pressure. Studies on aquaporin antagonists suggest high potential for effective treatment. The primary objective of this investigation is to review existing research on alternate medications or therapy to significantly reduce intracranial and intraocular pressure. A literature review was conducted. Even though we do not have all the answers quite yet, a considerable amount of information was discovered, and findings were narrowed, which should allow for more conclusive answers to be found in the near future.

  2. Therapeutic advances in multiple system atrophy and progressive supranuclear palsy.

    Science.gov (United States)

    Poewe, Werner; Mahlknecht, Philipp; Krismer, Florian

    2015-09-15

    Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are relentlessly progressive neurodegenerative diseases leading to severe disability and ultimately death within less than 10 y. Despite increasing efforts in basic and clinical research, effective therapies for these atypical parkinsonian disorders are lacking. Although earlier small clinical studies in MSA and PSP mainly focused on symptomatic treatment, advances in the understanding of the molecular underpinnings of these diseases and in the search for biomarkers have paved the way for the first large and well-designed clinical trials aiming at disease modification. Targets of intervention in these trials have included α-synuclein inclusion pathology in the case of MSA and tau-related mechanisms in PSP. Since 2013, four large randomized, placebo-controlled, double-blind disease-modification trials have been completed and published, using rasagiline (MSA), rifampicin (MSA), tideglusib (PSP), or davunetide (PSP). All of these failed to demonstrate signal efficacy with regard to the primary outcome measures. In addition, two randomized, placebo-controlled, double-blind trials have studied the efficacy of droxidopa in the symptomatic treatment of neurogenic orthostatic hypotension, including patients with MSA, with positive results in one trial. This review summarizes the design and the outcomes of these and other smaller trials published since 2013 and attempts to highlight priority areas of future therapeutic research in MSA and PSP. © 2015 International Parkinson and Movement Disorder Society. © 2015 International Parkinson and Movement Disorder Society.

  3. 188W/188Re Generator System and Its Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    A. Boschi

    2014-01-01

    Full Text Available The 188Re radioisotope represents a useful radioisotope for the preparation of radiopharmaceuticals for therapeutic applications, particularly because of its favorable nuclear properties. The nuclide decay pattern is through the emission of a principle beta particle having 2.12 MeV maximum energy, which is enough to penetrate and destroy abnormal tissues, and principle gamma rays (Eγ=155 keV, which can efficiently be used for imaging and calculations of radiation dose. 188Re may be conveniently produced by 188W/188Re generator systems. The challenges related to the double neutron capture reaction route to provide only modest yield of the parent 188W radionuclide indeed have been one of the major issues about the use of 188Re in nuclear medicine. Since the specific activity of 188W used in the generator is relatively low (<185 GBq/g, the eluted Re188O4- can have a low radioactive concentration, often ineffective for radiopharmaceutical preparation. However, several efficient postelution concentration techniques have been developed, which yield clinically useful Re188O4- solutions. This review summarizes the technologies developed for the preparation of 188W/188Re generators, postelution concentration of the 188Re perrhenate eluate, and a brief discussion of new chemical strategies available for the very high yield preparation of 188Re radiopharmaceuticals.

  4. Transdermal delivery of diclofenac using microemulsions.

    Science.gov (United States)

    Kweon, Jang-Hoon; Chi, Sang-Cheol; Park, Eun-Seok

    2004-03-01

    A transdermal preparation containing diclofenac diethylammonium (DDA) was developed using an O/W microemulsion system. Of the oils tested, lauryl alcohol was chosen as the oil phase of the microemulsion, as it showed a good solubilizing capacity and excellent skin permeation rate of the drug. Pseudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant and cosurfactant for microemulsion formation, and the effect of these additives on skin permeation of DDA was evaluated with excised rat skins. The optimum formulation of the microemulsion consisted of 1.16% of DDA, 5% of lauryl alcohol, 60% of water in combination with the 34.54% of Labrasol (surfactant)/ethanol (cosurfactant) (1:2). The efficiency of formulation in the percutaneous absorption of DDA was dependent upon the contents of water and lauryl alcohol as well as Labrasol:ethanol mixing ratio. It was concluded that the percutaneous absorption of DDA from microemulsions was enhanced with increasing the lauryl alcohol and water contents, and with decreasing the Labrasol:ethanol mixing ratio in the formulation.

  5. Pathogenic inflammation and its therapeutic targeting in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Gottschalk

    2015-10-01

    Full Text Available Systemic Lupus Erythematosus (SLE, lupus is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues including skin, kidneys and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B and T lymphocyte activation, and, with the single exception of an agent known as Belimumab which targets the B cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immuno-suppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and

  6. Pathogenic Inflammation and Its Therapeutic Targeting in Systemic Lupus Erythematosus

    Science.gov (United States)

    Gottschalk, Timothy A.; Tsantikos, Evelyn; Hibbs, Margaret L.

    2015-01-01

    Systemic lupus erythematosus (SLE, lupus) is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues, including skin, kidneys, and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B- and T-lymphocyte activation, and, with the single exception of an agent known as belimumab which targets the B-cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immunosuppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B-cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here, we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and review the known

  7. Chitosan-based delivery systems for protein therapeutics and antigens

    NARCIS (Netherlands)

    Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E.

    Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based

  8. Transdermal rivastigmine: management of cutaneous adverse events and review of the literature.

    Science.gov (United States)

    Greenspoon, Jill; Herrmann, Nathan; Adam, David N

    2011-07-01

    Alzheimer's disease is a chronic neurodegenerative disorder resulting in part from the degeneration of cholinergic neurons in the brain. Rivastigmine, a cholinesterase inhibitor, is commonly used as a treatment for dementia due to its ability to moderate cholinergic neurotransmission; however, treatment with oral rivastigmine can lead to gastrointestinal adverse effects such as nausea and vomiting. Transdermal administration of rivastigmine can minimize these adverse effects by providing continuous delivery of the medication, while maintaining the effectiveness of the oral treatment. While the transdermal form of rivastigmine has been found to have fewer systemic adverse effects compared with the oral form, cutaneous reactions, such as contact dermatitis, can lead to discontinuation of the drug in its transdermal form. Lack of patient compliance with regard to applying the patch to the designated site, applying the patch for the correct length of time or rotating patch application sites increases the risk of cutaneous adverse reactions. This article outlines the diagnosis and management of irritant contact dermatitis and allergic contact dermatitis secondary to transdermal rivastigmine. The large majority of reactions to transdermal patches are of an irritant type, which can be diagnosed clinically by the presence of a pruritic, erythematous, eczematous plaque strictly confined to the borders of the patch. In contrast, an allergic reaction can be differentiated by the presence of vesicles and/or oedema, erythema beyond the boundaries of the transdermal patch and lack of improvement of the lesion 48 hours after removal of the offending treatment. By encouraging the patient to follow a regular rotation schedule for the patch, and using lipid-based emollients for irritant dermatitis and pre- and post-treatment topical corticosteroids for allergic dermatitis, cutaneous reactions can often be alleviated and patients can continue with their medication regimen. Other

  9. Corticosteroid transdermal delivery to target swelling, edema and inflammation following facial rejuvenation procedures

    Directory of Open Access Journals (Sweden)

    Iannitti T

    2013-09-01

    Full Text Available T Iannitti,1,2 V Rottigni,2,3 B Palmieri2,31School of Biomedical Sciences, University of Leeds, Leeds, UK; 2Poliambulatorio del Secondo Parere, Modena, Italy; 3Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, ItalyBackground and aim: The use of transdermal therapeutic systems has spread worldwide since they allow effective local drug delivery. In the present study, we investigated the efficacy and safety of a new betamethasone valerate medicated plaster (Betesil® to manage facial swelling, edema, inflammation, ecchymosis, and hematoma, when applied immediately after a facial rejuvenation procedure.Materials and methods: We applied the plaster to the skin of 20 healthy patients for 12 hours immediately after hyaluronic acid-based procedure performed with the aim of erasing facial wrinkles of perioral and nasolabial folds and improving chin and eye contour. A further 20 patients underwent the same cosmetic procedure, but they were treated with an aescin 10% cream (applied immediately after the procedure, in the evening, and the morning after and served as control group.Results: Betesil® application resulted in a significant improvement in swelling/edema/inflammation score, if compared with aescin 10% cream (P < 0.01. As for facial ecchymosis and hematoma around the needle injection track, only two patients in the active treatment group displayed minimal ecchymosis and hematoma. In the control group, two patients presented minimal ecchymosis and three slight hematoma. However, using the ecchymosis/hematoma score, no significant difference between Betesil® and aescin 10% cream groups was observed. Patients’ satisfaction was significantly higher among subjects receiving Betesil®, if compared to patients receiving aescin 10% cream (P < 0.01.Conclusion: The present study supports the use of Betesil® plaster immediately after facial cosmetic procedures in order

  10. Time course and predictors of health-related quality of life improvement and medication satisfaction in children diagnosed with attention-deficit/hyperactivity disorder treated with the methylphenidate transdermal system.

    Science.gov (United States)

    Frazier, Thomas W; Weiss, Margaret; Hodgkins, Paul; Manos, Michael J; Landgraf, Jeanne M; Gibbins, Christopher

    2010-10-01

    The aim of this study was to evaluate the time course and predictors of improvement in health-related quality of life (HRQL) and medication satisfaction in children diagnosed with attention-deficit/hyperactivity disorder (ADHD) and treated with the methylphenidate transdermal system (MTS). Temporal relationships between ADHD symptoms, medication satisfaction, and HRQL measures were examined via latent growth curve, structural path, and growth mixture models. Higher levels of medication satisfaction at the end of titration predicted greater increases in family HRQL (p=0.004) and, to a lesser extent, child HRQL (p=0.068) throughout the study. At 4 of 6 (pchild HRQL. At 2 of 6 (pchild or family HRQL improvements at subsequent time points. A uniform pattern of change for child HRQL was noted, with most HRQL change following the pattern of symptom change during titration. Three distinct patterns of change were noted for family HRQL. In most cases, medication satisfaction, ADHD symptoms, and HRQL improved simultaneously, suggesting that HRQL was not a delayed response to improvement in symptoms. Children showed a uniform pattern of improvement in HRQL that followed symptom change; three distinct patterns of change were found for improvement in family HRQL.

  11. Modeling of transdermal drug delivery with a microneedle array

    Science.gov (United States)

    Lv, Y.-G.; Liu, J.; Gao, Y.-H.; Xu, B.

    2006-11-01

    Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 µm layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause pain, thereby reducing patient compliance. In order to administer a frequent injection of insulin and other therapeutic agents more efficiently, integrated arrays with very short microneedles were recently proposed as very good candidates for painless injection or extraction. A variety of microneedle designs have thus been made available by employing the fabrication tools of the microelectronics industry and using materials such as silicon, metals, polymers and glass with feature sizes ranging from sub-micron to nanometers. At the same time, experiments were also made to test the capability of the microneedles to inject drugs into tissues. However, due to the difficulty encountered in measurement, a detailed understanding of the spatial and transient drug delivery process still remains unclear up to now. To better grasp the mechanisms involved, quantitative theoretical models were developed in this paper to simultaneously characterize the flow and drug transport, and numerical solutions were performed to predict the kinetics of dispersed drugs injected into the skin from a microneedle array. Calculations indicated that increasing the initial injection velocity and accelerating the blood circulation in skin tissue with high porosity are helpful to enhance the transdermal drug delivery. This study provides the first quantitative simulation of fluid injection through a microneedle array and drug species transport inside the skin. The modeling strategy can also possibly be extended to deal with a wider range of clinical issues such as targeted nanoparticle delivery for therapeutics or molecular imaging.

  12. Novel diffusion cell for in vitro transdermal permeation, compatible with automated dynamic sampling

    NARCIS (Netherlands)

    Bosman, I.J; Lawant, A.L; Avegaart, S.R.; Ensing, K; de Zeeuw, R.A

    The development of a new diffusion cell for in vitro transdermal permeation is described. The so-called Kelder cells were used in combination with the ASPEC system (Automatic Sample Preparation with Extraction Columns), which is designed for the automation of solid-phase extractions (SPE). Instead

  13. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.

    Science.gov (United States)

    Seong, Keum-Yong; Seo, Min-Soo; Hwang, Dae Youn; O'Cearbhaill, Eoin D; Sreenan, Seamus; Karp, Jeffrey M; Yang, Seung Yun

    2017-11-10

    Proteins are important biologic therapeutics used for the treatment of various diseases. However, owing to low bioavailability and poor skin permeability, transdermal delivery of protein therapeutics poses a significant challenge. Here, we present a new approach for transdermal protein delivery using bullet-shaped double-layered microneedle (MN) arrays with water-swellable tips. This design enabled the MNs to mechanically interlock with soft tissues by selective distal swelling after skin insertion. Additionally, prolonged release of loaded proteins by passive diffusion through the swollen tips was obtained. The bullet-shaped MNs provided an optimal geometry for mechanical interlocking, thereby achieving significant adhesion strength (~1.6Ncm -2 ) with rat skin. By harnessing the MN's reversible swelling/deswelling property, insulin, a model protein drug, was loaded in the swellable tips using a mild drop/dry procedure. The insulin-loaded MN patch released 60% of insulin when immersed in saline over the course of 12h and approximately 70% of the released insulin appeared to have preserved structural integrity. An in vivo pilot study showed a prolonged release of insulin from swellable MN patches, leading to a gradual decrease in blood glucose levels. This self-adherent transdermal MN platform can be applied to a variety of protein drugs requiring sustained release kinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microneedle-mediated transdermal delivery of nanostructured lipid carriers for alkaloids from Aconitum sinomontanum.

    Science.gov (United States)

    Guo, Teng; Zhang, Yongtai; Li, Zhe; Zhao, Jihui; Feng, Nianping

    2017-09-12

    A combination method using microneedle (MN) pretreatment and nanostructured lipid carriers (NLCs) was developed to improve the transdermal delivery of therapeutics. The MN treatment of the skin and co-administration of NLCs loaded with total alkaloids isolated from Aconitum sinomontanum (AAS-NLCs) significantly increased the skin permeation of the drugs. Fluorescence imaging confirmed that MNs could provide microchannels penetrating the stratum corneum, and delivery of NLCs through the channels led to their deeper permeation. In vivo studies showed that combination of AAS-NLCs with MNs (AAS-NLCs-MN) in transdermal delivery could improve the bioavailability and maintain stable drug concentrations in the blood. Moreover, AAS-NLCs-MN showed benefits in eliminating paw swelling, decreasing inflammation and pain, and regulating immune function in adjuvant arthritis rats. After administration of AAS-NLCs-MN, no skin irritation was observed in rabbits, and electrocardiograms of rats showed improved arrhythmia. These results indicated that the dual approach combining MN insertion and NLCs has the potential to provide safe transdermal delivery and to improve the therapeutic efficacy through sustained release of AAS.

  15. Optimising oral systems for the delivery of therapeutic proteins and ...

    African Journals Online (AJOL)

    Therapeutic proteins/peptides are mostly administered as parenteral (injectable) preparations as a result of their poor oral bioavailability which is due to degradation by proteolytic enzymes, poor membrane permeability and large molecular size. However, the oral route would be preferred to the parenteral administration ...

  16. Therapeutic targets of renin-angiotensin system in ocular disorders

    Directory of Open Access Journals (Sweden)

    Rajesh Choudhary

    2017-03-01

    Conclusions: The RAS components are present in the extrarenal tissues including ocular tissue and have an imperative role in the ocular pathophysiology. The clinical studies are needed to show the role of therapeutic modalities targeting RAS in the treatment of different ocular disorders.

  17. Drug profile: transdermal rivastigmine patch in the treatment of Alzheimer disease.

    Science.gov (United States)

    Emre, Murat; Bernabei, Roberto; Blesa, Rafael; Bullock, Roger; Cunha, Luis; Daniëls, Hugo; Dziadulewicz, Edward; Förstl, Hans; Frölich, Lutz; Gabryelewicz, Tomasz; Levin, Oleg; Lindesay, James; Martínez-Lage, Pablo; Monsch, Andreas; Tsolaki, Magda; van Laar, Teus

    2010-08-01

    Cholinesterase inhibitors constitute one of the mainstays of treatment of Alzheimer disease (AD). Gastrointestinal side effects, difficulty accessing therapeutic doses and poor patient compliance have been identified as barriers to effective treatment with these substances. The rivastigmine transdermal patch provides continuous delivery of drug through the skin into the bloodstream, avoiding the fluctuations in plasma concentration associated with oral administration. This pharmacokinetic profile is associated with reduced side effects, resulting in easier access to expected target doses. These benefits, along with other practical advantages of the transdermal patch, may contribute to enhanced patient compliance. Here, we present a review of the current literature on rivastigmine patch, and offer advice based on our own collective clinical experience. Rivastigmine patch provides an efficient option for managing patients with AD, to be considered among the first line therapies for the disease.

  18. Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines.

    Science.gov (United States)

    An, Myunggi; Liu, Haipeng

    2017-07-01

    Amphiphilic vaccine based on lipid-polymer conjugates is a new type of vaccine capable of self-delivering to the immune system. When injected subcutaneously, amphiphilic vaccines efficiently target antigen presenting cells in the lymph nodes (LNs) via a unique albumin-mediated transport and uptake mechanism and induce potent humoral and cellular immune responses. However, whether this new type of vaccine can be administrated via a safe, convenient microneedle-based transdermal approach remains unstudied. For such skin barrier-disruption systems, a simple application of microneedle arrays (MNs) is desired to disrupt the stratum corneum, and for rapid and pain-free self-administration of vaccines into the skin, the anatomic place permeates with an intricate mesh of lymphatic vessels draining to LNs. Here the microneedle transdermal approach is combined with amphiphilic vaccines to create a simple delivery approach which efficiently traffic molecular vaccines into lymphatics and draining LNs. The rapid release of amphiphilic vaccines into epidermis upon application of dissolving MNs to the skin of mice generates potent cellular and humoral responses, comparable or superior to those elicited by traditional needle-based immunizations. The results suggest that the amphiphilic vaccines delivered by dissolving MNs can provide a simple and safer vaccination method with enhanced vaccine efficacy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Therapeutic inhibition of the complement system. Y2K update.

    Science.gov (United States)

    Asghar, S S; Pasch, M C

    2000-09-01

    -transplantation in clinical practice a reality. Several recombinant variants of complement receptor 1 (CR1) have been produced. The most effective of these appears to be sCR1-SLe x, sCR1 part of which inhibits complement and carbohydrate Sle x moiety inhibits selectin mediated interactions of neutrophils and lymphocytes with endothelium. Although clinical trials of sCR1 in humans is eagerly awaited, several of the recombinant versions of sCR1 have been shown to suppress ischemia/reperfusion injury, thermal trauma, and immune complex mediated inflammation. They have also been shown to be effective in experimental models of systemic sclerosis, arthritis, myasthenia gravis, Guillain Barré syndrome and glomerulonephritis. Intravenous immunoglobulin, three of the most prominent properties of which are neutralization of autoantibody activity, suppression of autoantibody production and inhibition of complement activity, is being used in several diseases. These include autoimmune thrombocyopenic purpura, Kawasaki disease and several neurological diseases such as myasthenia gravis and Guillain Barre syndrome. In many uncontrolled small scale studies intravenous immunoglobulin has been shown to be effective in many immunological including dermatological diseases; controlled clinical trials in a large number of patients with these diseases is needed to establish the efficacy. It is hoped that in future therapeutic inhibition of complement will be one of the major approaches to combat many human diseases.

  20. Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential.

    Science.gov (United States)

    Kuche, Kaushik; Maheshwari, Rahul; Tambe, Vishakha; Mak, Kit-Kay; Jogi, Hardi; Raval, Nidhi; Pichika, Mallikarjuna Rao; Kumar Tekade, Rakesh

    2018-05-17

    The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs. CNTs have a unique physical architecture and a large surface area with unique surface chemistry that can be tailored for vivid biomedical applications. CNTs have been thus largely engaged in the development of transdermal systems such as tuneable hydrogels, programmable nonporous membranes, electroresponsive skin modalities, protein channel mimetic platforms, reverse iontophoresis, microneedles, and dermal buckypapers. In addition, CNTs were also employed in the development of RNA interference (RNAi) based therapeutics for correcting defective dermal genes. This review expounds the state-of-art synthesis methodologies, skin penetration mechanism, drug liberation profile, loading potential, characterization techniques, and transdermal applications along with a summary on patent/regulatory status and future scope of CNT based skin therapeutics.

  1. Transdermal delivery and cutaneous targeting of antivirals using a penetration enhancer and lysolipid prodrugs.

    Science.gov (United States)

    Diblíková, Denisa; Kopečná, Monika; Školová, Barbora; Krečmerová, Marcela; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-04-01

    In this work, we investigate prodrug and enhancer approaches for transdermal and topical delivery of antiviral drugs belonging to the 2,6-diaminopurine acyclic nucleoside phosphonate (ANP) group. Our question was whether we can differentiate between transdermal and topical delivery, i.e., to control the delivery of a given drug towards either systemic absorption or retention in the skin. The in vitro transdermal delivery and skin concentrations of seven antivirals, including (R)- and (S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine ((S)-HPMPDAP), its 8-aza analog, and their cyclic and hexadecyloxypropyl (HDP) prodrugs, was investigated with and without the penetration enhancer dodecyl-6-(dimethylamino)hexanoate (DDAK) using human skin. The ability of ANPs to cross the human skin barrier was very low (0.5-1.4 nmol/cm(2)/h), and the majority of the compounds were found in the stratum corneum, the uppermost skin layer. The combination of antivirals and the penetration enhancer DDAK proved to be a viable approach for transdermal delivery, especially in case of (R)-PMPDAP, an anti-HIV effective drug (30.2 ± 2.3 nmol/cm(2)/h). On the other hand, lysophospholipid-like HDP prodrugs, e.g., HDP-(S)-HPMPDAP, reached high concentrations in viable epidermis without significant systemic absorption. By using penetration enhancers or lysolipid prodrugs, it is possible to effectively target systemic diseases by the transdermal route or to target cutaneous pathologies by topical delivery.

  2. Enhanced Transdermal Permeability via Constructing the Porous Structure of Poloxamer-Based Hydrogel

    Directory of Open Access Journals (Sweden)

    Wen-Yi Wang

    2016-11-01

    Full Text Available A major concern for transdermal drug delivery systems is the low bioavailability of targeted drugs primarily caused by the skin’s barrier function. The resistance to the carrier matrix for the diffusion and transport of drugs, however, is routinely ignored. This study reports a promising and attractive approach to reducing the resistance to drug transport in the carrier matrix, to enhance drug permeability and bioavailability via enhanced concentration-gradient of the driving force for transdermal purposes. This approach simply optimizes and reconstructs the porous channel structure of the carrier matrix, namely, poloxamer 407 (P407-based hydrogel matrix blended with carboxymethyl cellulose sodium (CMCs. Addition of CMCs was found to distinctly improve the porous structure of the P407 matrix. The pore size approximated to normal distribution as CMCs were added and the fraction of pore number was increased by over tenfold. Transdermal studies showed that P407/CMCs saw a significant increase in drug permeability across the skin. This suggests that P407/CMC with improved porous structure exhibits a feasible and promising way for the development of transdermal therapy with high permeability and bioavailability, thereby avoiding or reducing use of any chemical enhancers.

  3. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    Science.gov (United States)

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    Science.gov (United States)

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Efficient Transdermal Delivery of Benfotiamine in an Animal Model

    Directory of Open Access Journals (Sweden)

    Gyula Varadi

    2015-01-01

    Full Text Available We designed a transdermal system to serve as a delivery platform for benfotiamine utilizing the attributes of passive penetration enhancing molecules to penetrate through the outer layers of skin combined with the advance of incorporating various peripherally-acting vasodilators to enhance drug uptake.  Benfotiamine, incorporated into this transdermal formulation, was applied to skin in an animal model in order to determine the ability to deliver this thiamine pro-drug effectively to the sub-epithelial layers.  In this proof of concept study in guinea pigs, we found that a single topical application of either a solubilized form of benfotiamine (15 mg or a microcrystalline suspension form (25 mg resulted in considerable increases of the dephosphorylated benfotiamine (S-benzoylthiamine in the skin tissue as well as in significant increases in the thiamine and thiamine phosphate pools compared to control animals.  The presence of a ~8000x increase in thiamine and increases in its phosphorylated derivatives in the epidermis and dermis tissue of the test animals gives a strong indication that the topical treatment with benfotiamine works very well for the desired outcome of producing an intracellular increase of the activating cofactor pool for transketolase enzyme, which is implicated in the pathophysiology of diabetic neuropathy.

  6. Development of matrix type transdermal patches of lercanidipine hydrochloride: physicochemical and in-vitro characterization

    Directory of Open Access Journals (Sweden)

    T Mamatha

    2010-03-01

    Full Text Available Background and the purpose of the study: Lercanidipine hydrochloride (LRDP is used in the treatment of hypertension because of its selectivity and specificity on the smooth vascular cells. The pharmacokinetic parameters make LRDP a suitable candidate for transdermal delivery. The purpose of the study was to select a suitable formulation for the development of transdermal drug-delivery system (TDDS of LRDP and to determine the effect of penetration enhancer, limonene on drug permeation. Methods: The matrix type TDDS of LRDP were prepared by solvent evaporation technique. Formulations A1, A2, A3, A4, A5 and A6 were composed of Eudragit RL100 (ERL and hydroxypropyl methyl cellulose (HPMC in 1.5:8.5, 3:7, 4:6, 6:4, 7:3 and 8.5:1.5 ratios respectively. All the six formulations carried 10 mg of LRDP/patch area, 8 % v/w of d-limonene as a penetration enhancer, 20 % v/w of propylene glycol as plasticizer in methanol and dichloromethane as solvent system. The prepared TDDS were evaluated for physicochemical characteristics, in-vitro release, ex-vivo permeation and skin irritation. The ex-vivo permeation studies were carried out across excised rat skin using Franz diffusion cell. Results: All the formulations exhibited satisfactory physicochemical characteristics. Cumulative percentage of the drug released in 24 hrs from the six formulations were 82.0 %, 74.9 %, 63.2 %, 63.5 %, 59.8 % and 53.5 % respectively. Corresponding values for the cumulative amounts of the drug permeated across the rat skin for the above matrix films were 2644.5, 2347.2, 2249.5, 1933.4, 2021.5 and 1663.4 µg/cm2 respectively. By fitting the data into zero order, first order and Higuchi model, it was concluded that drug release from matrix films followed Higuchi model and the mechanism of the drug release was diffusion mediated. The patches were seemingly free of potentially hazardous skin irritation.  Conclusions: The patches composed of ERL, HPMC (1.5:8.5 with 8 % v/w limonene as

  7. Adapting to Biology: Maintaining Container-Closure System Compatibility with the Therapeutic Biologic Revolution.

    Science.gov (United States)

    Degrazio, Dominick

    Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to the dimension of evolving therapeutic biologics. Important concerns associated with this changeover are becoming forefront, as challenges develop of varying complexity uncommon with the synthesis and production of traditional drugs. Therefore, alternative measures must be established that aim to preserve the efficacy and functionality of a biologic that might not be implemented for small molecules. Conserving protein stability is relative to perpetuating a net equilibrium of both intrinsic and extrinsic factors. Key to sustaining this balance is the ability of container-closure systems to maintain their compatibility with the ever-changing dynamics of therapeutic biologics. Failure to recognize and adjust the material properties of packaging components to support compatibility with therapeutic biologics can compromise patient safety, drug productivity, and biological stability. This review will examine the differences between small-molecule drugs and therapeutic biologics, lay a basic foundation for understanding the stability of therapeutic biologics, and demonstrate potential sources of container-closure systems' incompatibilities with therapeutic biologics at a mechanistic level. Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to recombinantly derived therapeutic biologics. Concerns associated with this transformation are becoming prominent, as therapeutic biologics are uncharacteristic to small-molecule drugs. Maintaining the stability of a therapeutic biologic is a combination of balancing intrinsic factors and external elements within the biologic's microenvironment. An important aspect of this balance is relegated to the overall compatibility of primary, parenteral container-closure systems with therapeutic biologics

  8. Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Seong Uk Son

    2017-12-01

    Full Text Available We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA–Do HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA and dodecylamine (Do by varying the substitution ratio of Do to HA. The synthetic yield of HA–Do was more than 80% (HA–Do (A: 82.7 ± 4.7%, HA–Do (B: 87.1 ± 3.9% and HA–Do (C: 81.4 ± 4.5%. Subsequently, nanohydrogels were fabricated using the nanoemulsion method. Indocyanine green (ICG simultaneously self-assembled with HA–Do, and the size depended on the substitution ratio of Do in HA–Do (nanohydrogel (A: 118.0 ± 2.2 nm, nanohydrogel (B: 121.9 ± 11.4 nm, and nanohydrogel (C: 142.2 ± 3.8 nm. The nanohydrogels were delivered into cells, and had excellent biocompatibility. Especially, nanohydrogel (A could deliver and permeate ICG into the deep skin layer, the dermis. This suggests that nanohydrogels can be potent transdermal delivery systems.

  9. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles

    Science.gov (United States)

    Elnaggar, Yosra SR; El-Massik, Magda A; Abdallah, Ossama Y

    2011-01-01

    Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product. PMID:22238508

  10. Exposure to Fentanyl After Transdermal Patch Administration for Cancer Pain Management.

    Science.gov (United States)

    Bista, Sudeep R; Haywood, Alison; Hardy, Janet; Norris, Ross; Hennig, Stefanie

    2016-06-01

    This study aimed to describe exposure after fentanyl transdermal patch administration in patients with advanced cancer to quantify variability around the exposure. Patients (n  =  56) with advanced cancer who received transdermal fentanyl (Durogesic®; median dose, 50 μg/h; range, 12-200 μg/h) provided venous blood samples (n  =  163) at various times (0.5-72 hours) during several patch application intervals. Plasma fentanyl concentration was determined (median, 0.9 μg/L; range, 0.04-9.7 μg/L) by high-performance liquid chromatography coupled to tandem mass spectrometry. Pharmacokinetic analysis was performed using nonlinear mixed-effects modeling with NONMEM. A 1-compartment distribution model with first-order absorption and elimination described fentanyl exposure after transdermal patch administration. Fentanyl apparent clearance (between-subject variability [BSV], %) was estimated at 122 L/h/70 kg and 38.5%, respectively. The absorption rate constant was 0.013 h(-1) . Between-occasion variability on apparent clearance was 22.0%, which was lower than BSV, suggesting predictable exposure within the same patient and justifying therapeutic drug monitoring. Except for weight-based dosing, no other patient characteristic could be identified to guide initial fentanyl dose selection in patients with advanced cancer. © 2015, The American College of Clinical Pharmacology.

  11. Formulation, characterization and clinical evaluation of propranolol hydrochloride gel for transdermal treatment of superficial infantile hemangioma.

    Science.gov (United States)

    Zhou, Wenhu; He, Shiying; Yang, Yijun; Jian, Dan; Chen, Xiang; Ding, Jinsong

    2015-01-01

    The objective of the present study is to formulate and characterize propranolol hydrochloride (PPL · HCl) gel, and to evaluate the efficacy of this formulation in transdermal treatment for superficial infantile hemangioma (IH). The transdermal PPL · HCl gel was prepared by a direct swelling method, which chose hydroxypropyl methylcellulose (HPMC) as the matrix and used terpenes plus alcohols as permeation enhancer. Permeation studies of PPL · HCl were carried out with modified Franz diffusion cells through piglet skin. Our results pointed to that among all studied permeation enhancers, farnesol plus isopropanol was the most effective combination (Q24, 6027.4 ± 563.1 μg/cm(2), ER, 6.8), which was significantly higher than that of control gel (p homemade PPL · HCl oral solution as a control. Clinical studies also confirmed the excellent therapeutic response and few side effects of the PPL · HCl gel. These results suggest that transdermal application of the PPL · HCl gel is an effective and safe formulation in treating superficial IH.

  12. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs.

    Science.gov (United States)

    Banks, Stan L; Pinninti, Raghotham R; Gill, Harvinder S; Paudel, Kalpana S; Crooks, Peter A; Brogden, Nicole K; Prausnitz, Mark R; Stinchcomb, Audra L

    2010-07-01

    Controlled-release delivery of 6-beta-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. MN pore lifetime was estimated by pharmacokinetic evaluation, transepidermal water loss (TEWL) and visualization of MN-treated skin pore diameters using light microscopy. A 3.6-fold enhancement in steady-state plasma concentration was observed in vivo with MN treated skin with NTXOL.HCl, as compared to NTXOL base. TEWL measurements and microscopic evaluation of stained MN-treated guinea pig skin indicated the presence of pores, suggesting a feasible nonlipid bilayer pathway for enhanced transdermal delivery. Overall, MN-assisted transdermal delivery appears viable for at least 48 h after MN-application. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Transdermal microneedles for drug delivery applications

    International Nuclear Information System (INIS)

    Teo, Ai Ling; Shearwood, Christopher; Ng, Kian Chye; Lu Jia; Moochhala, Shabbir

    2006-01-01

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area

  14. Transdermal microneedles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Ai Ling [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Shearwood, Christopher [School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Kian Chye [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Lu Jia [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore)]. E-mail: mshabbir@dso.org.sg

    2006-07-25

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area.

  15. Effects of vehicles and enhancers on transdermal delivery of clebopride.

    Science.gov (United States)

    Rhee, Yun-Seok; Huh, Jai-Yong; Park, Chun-Woong; Nam, Tae-Young; Yoon, Koog-Ryul; Chi, Sang-Cheol; Park, Eun-Seok

    2007-09-01

    The effects of vehicles and penetration enhancers on the skin permeation of clebopride were evaluated using Franz type diffusion cells fitted with excised rat dorsal skins. The binary vehicle system, diethylene glycol monoethyl ether/isopropyl myristate (40/60, w/w), significantly enhanced the skin permeation rate of clebopride. The skin permeation enhancers, oleic acid and ethanol when used in the binary vehicle system, resulted in relatively high clebopride skin permeation rates. A gel formulation consisting of 1.5% (w/w) clebopride, 5% (w/w) oleic acid, and 7% (w/w) gelling agent with the binary vehicle system resulted in a permeation rate of 28.90 microg/cm2/h. Overall, these results highlight the potential of clebopride formulation for the transdermal route.

  16. Transdermal delivery of curcumin via microemulsion.

    Science.gov (United States)

    Sintov, Amnon C

    2015-03-15

    The objective of this study was to evaluate the transdermal delivery potential of a new curcumin-containing microemulsion system. Three series of experiments were carried out to comprehend the system characteristics: (a) examining the influence of water content on curcumin permeation, (b) studying the effect of curcumin loading on its permeability, and (c) assessing the contribution of the vesicular nature of the microemulsion on permeability. The skin permeability of curcumin from microemulsions, which contained 5%, 10%, and 20% of water content (1% curcumin), was measured in vitro using excised rat skin. It has been shown that the permeability coefficient of CUR in a formulation containing 10% aqueous phase (ME-10) was twofold higher than the values obtained for formulations with 5% and 20% water (Papp=0.116 × 10(-3)± 0.052 × 10(-3)vs. 0.043 × 10(-3)± 0.022 × 10(-3) and 0.047 × 10(-3)± 0.025 × 10(-3)cm/h, respectively. A reasonable explanation for this phenomenon may be the reduction of both droplet size and droplets' concentration in the microemulsion as the aqueous phase decreased from 20% to 5%. It has also been shown that a linear correlation exists between the decrease in droplet size and the increase of curcumin loading in the microemulsion. In addition, it has been demonstrated that a micellar system, S/O-mix, and a plain solution of curcumin resulted in a significantly lower curcumin permeation relative to that presented by the microemulsion, Papp=0.018 × 10(-3)± 0.011 × 10(-3), 0.005 × 10(-3)± 0.002 × 10(-3), and 0.002 × 10(-3)± 0.000 × 10(-3)cm/h, respectively, vs. 0.110 × 10(-3)± 0.021 × 10(-3)cm/h for the microemulsion. The enhancement ratio (ER=Jss-ME/Jss-solution) of CUR permeated via 1% loaded microemulsion was 55. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Microdose transdermal estrogen therapy for relief of vulvovaginal symptoms in postmenopausal women.

    Science.gov (United States)

    Bachmann, Gloria A; Schaefers, Matthias; Uddin, Alkaz; Utian, Wulf H

    2009-01-01

    The aim of this study was to investigate the effectiveness of microdose transdermal 17beta-estradiol (E2) therapy in postmenopausal women with moderate to severe vulvovaginal symptoms. This report is based on a subset of 121 women who reported most bothersome moderate or severe vulvovaginal symptoms at baseline, from a previous randomized, double-blind, placebo-controlled, multicenter study of 425 healthy, symptomatic, postmenopausal women. Recruits had experienced at least 7 moderate or severe hot flushes daily for at least 1 week or at least 50 moderate or severe hot flushes per week for at least 1 week. Effects on coprimary efficacy variables have been reported previously. Participants received low-dose transdermal E2 plus levonorgestrel (n = 43; nominal delivery 0.023 mg/d E2/0.0075 mg/d levonorgestrel), microdose E2 (n = 42; nominal delivery 0.014 mg/d), or placebo (n = 36) for 12 weeks. Secondary efficacy variables reported herein include mean change from baseline in vaginal pH and vaginal maturation index, the proportion of women with symptoms of vulvar and vaginal atrophy at baseline and week 12, and the proportion of women with moderate-to-severe symptoms of vulvar and vaginal atrophy. Microdose transdermal E2 treatment was associated with a consistent benefit versus placebo in women with vulvovaginal atrophy. There was a statistically significant difference between both E2 versus placebo for changes in vaginal pH and vaginal maturation index. Microdose transdermal E2 offers a useful addition to the therapeutic armamentarium for postmenopausal women in whom vulvovaginal symptoms are particularly troublesome.

  18. Expanding the domain of drug delivery for HIV prevention: exploration of the transdermal route.

    Science.gov (United States)

    Puri, Ashana; Sivaraman, Arunprasad; Zhang, Wei; Clark, Meredith R; Banga, Ajay K

    2017-01-01

    Constant efforts for HIV prevention using antiretroviral drugs, pre- and postexposure prophylactic agents, and microbicides are being made by researchers. Drug-delivery systems such as oral tablets and coitally dependent vaginal gels are short acting, require daily application, and are associated with user adherence issues, whereas the coitally independent systems such as injectables and biodegradable implants are long acting, lasting several months, during which time the termination of prophylaxis is impractical in case of adverse effects. An effective drug-delivery system to be used for an intermediate duration, if available, would be an attractive alternative option for users in terms of adherence. Transdermal delivery systems, overcoming most of the limitations of the other routes of administration and aiming to provide sustained delivery of drugs through skin, may be explored for HIV prevention. Passive and physical enhancement techniques may be designed strategically to improve the transdermal delivery of HIV preventive agents.

  19. Current and future technological advances in transdermal gene delivery.

    Science.gov (United States)

    Chen, Xianfeng

    2017-12-19

    Transdermal gene delivery holds significant advantages as it is able to minimize the problems of systemic administration such as enzymatic degradation, systemic toxicity, and poor delivery to target tissues. This technology has the potential to transform the treatment and prevention of a range of diseases. However, the skin poses a great barrier for gene delivery because of the "bricks-and-mortar" structure of the stratum corneum and the tight junctions between keratinocytes in the epidermis. This review systematically summarizes the typical physical and chemical approaches to overcome these barriers and facilitate gene delivery via skin for applications in vaccination, wound healing, skin cancers and skin diseases. Next, the advantages and disadvantages of different approaches are discussed and the insights for future development are provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Therapeutic intervention scoring system-28 (TISS-28: diretrizes para aplicação Therapeutic intervention scoring system-28 (tiss-28: directrices para su aplicación Therapeutic intervention scoring system-28 (tiss-28: directions for application

    Directory of Open Access Journals (Sweden)

    Katia Grillo Padilha

    2005-06-01

    Full Text Available O Therapeutic Intervention Scoring System-28 (TISS-28 é um instrumento que permite dimensionar carga de trabalho de enfermagem em Unidade de Terapia Intensiva e estimar gravidade da doença. Apresenta-se nesta publicação as definições operacionais para sua aplicação, proposta por um grupo de especialistas na área, com vistas a uniformizar o significado de cada um dos itens e evitar vieses de interpretação.El Therapeutic Intervention Scoring System-28 (TISS-28 es un instrumento que permite dimensionar carga de trabajo de enfermería en una Unidad de Terapia Intensiva y estimar la gravedad de la enfermedad. Se presenta en esta publicación las definiciones operacionales para su aplicación, propuesta por un grupo de especialistas en el área, con vistas a uniformizar el significado de cada uno de los items y evitar sesgos de interpretación.Therapeutic Intervention Scoring System-28 (TISS-28 is a tool that enables the measurement of the nursing work load in Intensive Care Units and the estimate of how grave the disease is. In this study are presented the operational definitions for its application, proposed by a group of specialists in the area, with the aim of rendering uniform the meaning of each of the items and preventing interpretation biases.

  1. Transdermal delivery of scopolamine by natural submicron injectors: in-vivo study in pig.

    Directory of Open Access Journals (Sweden)

    Esther Shaoul

    Full Text Available Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts, comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with T(max of 30 minutes and C(max 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery.

  2. Does switching from oral extended-release methylphenidate to the methylphenidate transdermal system affect health-related quality-of-life and medication satisfaction for children with attention-deficit/hyperactivity disorder?

    Directory of Open Access Journals (Sweden)

    Landgraf Jeanne M

    2009-12-01

    Full Text Available Abstract Background To evaluate health-related quality of life (HRQL and medication satisfaction after switching from a stable dose of oral extended-release methylphenidate (ER-MPH to methylphenidate transdermal system (MTS via a dose-transition schedule in children with attention-deficit/hyperactivity disorder (ADHD. Methods In a 4-week, multisite, open-label study, 171 children (164 in the intent-to-treat [ITT] population aged 6-12 years diagnosed with ADHD abruptly switched from a stable dose of oral ER-MPH to MTS nominal dosages of 10, 15, 20, and 30 mg using a predefined dose-transition schedule. Subjects remained on the scheduled dose for the first week, after which the dose was then titrated to an optimal effect. The ADHD Impact Module-Children (AIM-C, a disease-specific validated HRQL survey instrument measuring child and family impact, was used to assess the impact of ADHD symptoms on the lives of children and their families at baseline and study endpoint. Satisfaction with MTS use was assessed via a Medication Satisfaction Survey (MSS at study endpoint. Both the AIM-C and MSS were completed by a caregiver (parent/legally authorized representative. Tolerability was monitored by spontaneous adverse event (AE reporting. Results AIM-C child and family HRQL mean scores were above the median possible score at baseline and were further improved at endpoint across all MTS doses. Similar improvements were noted for behavior, missed doses, worry, and economic impact AIM-C item scores. Overall, 93.8% of caregivers indicated a high level of satisfaction with their child's use of the study medication. The majority of treatment-emergent AEs (> 98% were mild to moderate in intensity, and the most commonly reported AEs included headache, decreased appetite, insomnia, and abdominal pain. Seven subjects discontinued the study due to intolerable AEs (n = 3 and application site reactions (n = 4. Conclusion This study demonstrates that MTS, when carefully

  3. Gastroretentive drug delivery systems for therapeutic management of peptic ulcer.

    Science.gov (United States)

    Garg, Tarun; Kumar, Animesh; Rath, Goutam; Goyal, Amit K

    2014-01-01

    A peptic ulcer, stomach ulcer, or gastric ulcer, also known as peptic ulcer disease (PUD), is a very common chronic disorder of the stomach which is mainly caused by damage or impairment of the stomach lining. Various factors such as pepsin, gastric acid, H. pylori, NSAIDs, prostaglandins, mucus, bicarbonate, and blood flow to mucosa play an important role in causing peptic ulcers. In this review article, our main focus is on some important gastroretentive drug delivery systems (GRDDS) (floating, bioadhesive, high density, swellable, raft forming, superporous hydrogel, and magnetic systems) which will be helpful in gastroretention of different dosage forms for treatment of peptic ulcer. GRDDS provides a mean for controlled release of compounds that are absorbed by active transport in the upper intestine. It also enables controlled delivery for paracellularly absorbed drugs without a decrease in bioavailability. The above approaches are specific for targeting and leading to a marked improvement in the quality of life for a large number of patients. In the future, it is expected that they will become of growing significance, finally leading to improved efficiencies of various types of pharmacotherapies.

  4. Avaliação do efeito antinociceptivo do fentanil transdérmico no controle da dor lombar pós-operatória Evaluación del efecto antinociceptivo del fentanil transdérmico en el control del dolor lumbar postoperatorio Efficacy of fentanyl transdermal delivery system for acute postoperative pain after posterior laminectomy

    Directory of Open Access Journals (Sweden)

    Gabriela Rocha Lauretti

    2009-12-01

    ía posterior sobre anestesia general estandarizada. Los adhesivos transdérmicos fueron colocados en los pacientes diez horas antes del inicio de la cirugía y removidos 24 horas después de haber terminado la misma. Cetoprofeno por vía venosa fue administrado por vía venosa en el inicio de la cirugía. Dipirona estaba disponible para analgesia de rescate, si era necesario, a intervalos mínimos de seis horas. RESULTADOS: los pacientes que recibieron F transdérmico presentaron reducción de 60% en el consumo de dipirona en el periodo postoperatorio (pObjectives: patients who are submitted to posterior laminectomy often complain of severe pain that is difficult to treat. The transdermal application of the potent opioid fentanyl results in its continuous liberation and consequently could be useful in controlling the pain. This study evaluated the efficacy of transdermal fentanyl (F delivery system for acute postoperative pain after posterior laminectomy. METHODS: the study was approved by the local Ethic Committee and conducted in the Teaching Hospital. After the patient's consent, 24 patients were randomized to either transdermic F 25 mg/h (n=12 or transdermic placebo (n=12. All patients were submitted to posterior laminectomy under a standard general anesthesia. Transdermic systems were placed during 10 hours preoperatively and removed 24 hours later; 20 minute IV ketoprofen, 2.5 mg/kg was administered following traqueal intubation with propofol, alfentanil and atracurium. IV 20 mg/kg dipyrone act as rescue at a minimum six hours interval. Data was recorded for 36 hours. RESULTS: the transdermic F Group showed 60% of reduction in the rescue dipyrone consumption (p<0.05; and displayed lesser VAS scores after the 12th hour, which was maintained until the 36th hour (p<0.02. All physiological parameters fluctuated within normal range and no differences were observed between the treatments. The incidence of adverse events was similar between the groups, there was local erythema

  5. Penile involvement in Systemic Sclerosis: New Diagnostic and Therapeutic Aspects

    Directory of Open Access Journals (Sweden)

    Antonio Aversa

    2010-01-01

    Full Text Available Systemic Sclerosis (SSc is a connective tissue disorder featuring vascular alterations and an immunological activation leading to a progressive and widespread fibrosis of several organs such as the skin, lung, gastrointestinal tract, heart, and kidney. Men with SSc are at increased risk of developing erectile dysfunction (ED because of the evolution of early microvascular tissutal damage into corporeal fibrosis. The entity of penile vascular damage in SSc patients has been demonstrated by using Duplex ultrasonography and functional infra-red imaging and it is now clear that this is a true clinical entity invariably occurring irrespective of age and disease duration and constituting the ‘‘sclerodermic penis’’. Once-daily phosphodiesterase type-5 (PDE5 inhibitors improve both sexual function and vascular measures of cavernous arteries by improving surrogate markers of endothelial dysfunction, that is, plasma endothelin-1 and adrenomedullin levels, which may play a potential role in preventing progression of penile fibrosis and ED. Also, the beneficial effect of long-term PDE5i add-on therapy to SSc therapy in the treatment of Raynaud's phenomenon is described.

  6. Carbon nanotubes buckypapers for potential transdermal drug delivery

    International Nuclear Information System (INIS)

    Schwengber, Alex; Prado, Héctor J.; Zilli, Darío A.; Bonelli, Pablo R.

    2015-01-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen

  7. Carbon nanotubes buckypapers for potential transdermal drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Schwengber, Alex [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Prado, Héctor J. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Zilli, Darío A. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Bonelli, Pablo R. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); and others

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen.

  8. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study

    Directory of Open Access Journals (Sweden)

    Zheng Y

    2016-11-01

    Full Text Available Yin Zheng,1 Wu-Qing Ouyang,1 Yun-Peng Wei,1 Shahid Faraz Syed,2,3 Chao-Shuang Hao,1 Bo-Zhen Wang,4 Yan-Hong Shang1,5 1Department of Basic Veterinary Sciences, College of Veterinary Medicine, 2Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi; 3Faculty of Veterinary and Animal Sciences, Lasbella University of Agriculture Water and Marine Sciences, Uthal Baluchistan, Pakistan; 4College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 5College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China Abstract: Nanoemulsions (NEs are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1 to determine the stability and skin irritability of NE gels (NGs containing 1%, 2%, and 3% (w/w Carbopol® 934 (CP934 (termed NG1, NG2, and NG3, respectively; 2 to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3 to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 µg/cm2 > NG1 (213 µg/cm2 > NG2 (123 µg/cm2 > NG3 (74.3 µg/cm2. The flux rates of citral decreased in the order NE (1,026 µg/cm2 > NG1 (1,021 µg/cm2 > NG2 (541 µg/cm2 > NG3 (353 µg/cm2. The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE (P<0.05 over a period of 12 h. Laser scanning confocal microscopy indicated that the NGs altered the main drug delivery routes from skin appendages to intercellular paths. Histological images suggested

  9. Diclofenac Potassium Transdermal Patches Using Natural Rubber Latex Biomembranes as Carrier

    Directory of Open Access Journals (Sweden)

    Natan Roberto de Barros

    2015-01-01

    Full Text Available The aim of this study was to design a compound transdermal patch containing diclofenac potassium (Dic-K using natural rubber latex (NRL biomembrane. The NRL from Hevea brasiliensis is easily manipulated and low cost and presents high mechanical resistance. It is a biocompatible material which can stimulate natural angiogenesis and is capable of adhering cells on its surface. Recent researches have used the NRL for Transdermal Drug Delivery Systems (TDDSs. Dic-K is used for the treatment of rheumatoid arthritis and osteoarthritis and pain relief for postoperative and posttraumatic cases, as well as inflammation and edema. Results showed that the biomembrane can release Dic-K for up to 216 hours. The kinetics of the Dic-K release could be fitted with double exponential function. X-ray diffraction and Fourier Transform Infrared (FTIR spectroscopy show some interaction by hydrogen bound. The results indicated the potential of the compound patch.

  10. Rapidly Dissolving Microneedle Patches for Transdermal Iron Replenishment Therapy.

    Science.gov (United States)

    Maurya, Abhijeet; Nanjappa, Shivakumar H; Honnavar, Swati; Salwa, M; Murthy, S Narasimha

    2018-02-17

    The prevalence of iron deficiency anemia (IDA) is predominant in women and children especially in developing countries. The disorder affects cognitive functions and physical activity. Although oral iron supplementation and parenteral therapy remains the preferred choice of treatment, gastric side effects and risk of iron overload decreases adherence to therapy. Transdermal route is an established approach, which circumvents the side effects associated with conventional therapy. In this project, an attempt was made to investigate the use of rapidly dissolving microneedles loaded with ferric pyrophosphate (FPP) as a potential therapeutic approach for management of IDA. Microneedle array patches were made using the micromolding technique and tested in vitro using rat skin to check the duration required for dissolution/disappearance of needles. The ability of FPP-loaded microneedles to replenish iron was investigated in anemic rats. Rats were fed iron-deficient diet for 5 weeks to induce IDA following which microneedle treatment was initiated. Recovery of rats from anemic state was monitored by measuring hematological and biochemical parameters. Results from in vivo study displayed significant improvements in hemoglobin and serum iron levels after 2-week treatment with FPP-loaded microneedles. The study effectively demonstrated the potential of microneedle-mediated iron replenishment for treatment of IDA. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  12. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jumi [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Dae Hoon [Environment Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Im, Ji Sun [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: Black-Right-Pointing-Pointer High performance of transdermal drug delivery system with an easy control of voltage. Black-Right-Pointing-Pointer Improved thermal response of hydrogel by graphite oxide incorporation. Black-Right-Pointing-Pointer Efficient micro heater fabricated by a joule heating method.

  13. Nanoethosomal transdermal delivery of vardenafil for treatment of erectile dysfunction: optimization, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Fahmy UA

    2015-11-01

    Full Text Available Usama A Fahmy Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Vesicular drug delivery systems have recently gained attention as a way of improving dosing accuracy for drugs with poor transdermal permeation. The current study focuses on utilization of the natural biocompatible vesicles to formulate vardenafil nanoethosomes (VRD-NE, for the enhancement of their transdermal permeation and bioavailability. Fifteen formulations were prepared by thin-layer evaporation technique according to Box–Behnken design to optimize formulation variables. The effects of lipid composition, sonication time, and ethanol concentration on particle size and encapsulation efficiency were studied. The diffusion of vardenafil (VRD from the prepared nanoethosomes specified by the design was carried out using automated Franz diffusion cell apparatus. The optimized formula was investigated for in vivo pharmacokinetic parameters compared with oral VRD suspension. Confocal laser scanning microscopy images were used to confirm enhanced diffusion release of VRD in rat skin. The results showed that the optimized formula produced nanoethosomes with an average size of 128 nm and an entrapment efficiency of 76.23%. VRD-NE provided a significant improvement in permeation with an enhancement ratio of 3.05-fold for a film made with optimally formulated VRD-NE compared with a film made with VRD powder. The transdermal bioavailability of VRD from the nanoethosome film was approximately twofold higher than the oral bioavailability from an aqueous suspension. VRD-NE thus provide a promising transdermal drug delivery system. As a result, management of impotence for a longer duration could be achieved with a reduced dosage rate that improves patient tolerability and compliance for the treatment of erectile dysfunction.Keywords: Box–Behnken design, impotence, vesicles, nanoparticles

  14. The Influence of Solid Microneedles on the Transdermal Delivery of Selected Antiepileptic Drugs

    Directory of Open Access Journals (Sweden)

    Julia Nguyen

    2016-11-01

    Full Text Available The aim of this project was to examine the effect of microneedle rollers on the percutaneous penetration of tiagabine hydrochloride and carbamazepine across porcine skin in vitro. Liquid chromatography-mass spectrometric analysis was carried out using an Agilent 1200 Series HPLC system coupled to an Agilent G1969A TOF-MS system. Transdermal flux values of the drugs were determined from the steady-state portion of the cumulative amount versus time curves. Following twelve hours of microneedle roller application, there was a 6.74-fold increase in the percutaneous penetration of tiagabine hydrochloride (86.42 ± 25.66 µg/cm2/h compared to passive delivery (12.83 ± 6.30 µg/cm2/h. For carbamazepine in 20% ethanol, passive transdermal flux of 7.85 ± 0.60 µg/cm2/h was observed compared to 10.85 ± 0.11 µg/cm2/h after microneedle treatment. Carbamazepine reconstituted in 30% ethanol resulted in only a 1.19-fold increase in drug permeation across porcine skin (36.73 ± 1.83 µg/cm2/h versus 30.74 ± 1.32 µg/cm2/h. Differences in flux values of untreated and microneedle-treated porcine skin using solid microneedles for the transdermal delivery of tiagabine were statistically significant. Although there were 1.38- and 1.19-fold increases in transdermal flux values of carbamazepine when applied as 20% and 30% ethanol solutions across microneedle-treated porcine skin, respectively, the increases were not statistically significant.

  15. Formulation Design and Development of a Unani Transdermal Patch for Antiemetic Therapy and Its Pharmaceutical Evaluation

    Directory of Open Access Journals (Sweden)

    Mohd Nauman Saleem

    2016-01-01

    Full Text Available The Transdermal Drug Delivery System (TDDS is one of the novel routes for systemic delivery of drugs through intact skin. A transdermal patch (TP is a medicated patch that is placed on skin for delivery of medication through skin into the blood stream. The aim of present study was to formulate and evaluate a Unani transdermal patch that could be used for antiemetic therapy. The incorporation of Unani ingredients, namely, Khardal (Brassica nigra, Zanjabeel (Zingiber officinale, Podina (Mentha arvensis, and Sirka (Vinegar were envisaged. The TP was prepared by solvent evaporation technique and was evaluated for organoleptic characteristics and other physicochemical properties, such as thickness, weight uniformity, folding endurance, moisture content, drug content, and tolerability and acceptability of patch. The in vitro permeation study of the patch was carried out through Franz diffusion cell using egg shell membrane as barrier membrane. Phosphate buffer pH 7.4 was used as dissolution medium and the temperature was maintained at 37 ± 1°C. The in vitro permeation study of the prepared TP indicated a time dependent increase in drug release throughout the study. The percentage of cumulative drug release was found to be 77.38% in 24 hours. The study shows a new approach to work in Unani pharmaceutics.

  16. Transdermal testosterone replacement therapy in men

    Directory of Open Access Journals (Sweden)

    Ullah MI

    2014-01-01

    Full Text Available M Iftekhar Ullah,1 Daniel M Riche,1,2 Christian A Koch1,31Department of Medicine, University of Mississippi Medical Center, 2Department of Pharmacy Practice, The University of Mississippi, 3GV (Sonny Montgomery VA Medical Center, Jackson, MS, USAAbstract: Androgen deficiency syndrome in men is a frequently diagnosed condition associated with clinical symptoms including fatigue, decreased libido, erectile dysfunction, and metabolic syndrome. Serum testosterone concentrations decline steadily with age. The prevalence of androgen deficiency syndrome in men varies depending on the age group, known and unknown comorbidities, and the respective study group. Reported prevalence rates may be underestimated, as not every man with symptoms of androgen deficiency seeks treatment. Additionally, men reporting symptoms of androgen deficiency may not be correctly diagnosed due to the vagueness of the symptom quality. The treatment of androgen deficiency syndrome or male hypogonadism may sometimes be difficult due to various reasons. There is no consensus as to when to start treating a respective man or with regards to the best treatment option for an individual patient. There is also lack of familiarity with treatment options among general practitioners. The formulations currently available on the market are generally expensive and dose adjustment protocols for each differ. All these factors add to the complexity of testosterone replacement therapy. In this article we will discuss the general indications of transdermal testosterone replacement therapy, available formulations, dosage, application sites, and recommended titration schedule.Keywords: hypogonadism, transdermal, testosterone, sexual function, testosterone replacement therapy, estradiol

  17. Nanoethosomes for transdermal delivery of tropisetron HCl: multi-factorial predictive modeling, characterization, and ex vivo skin permeation.

    Science.gov (United States)

    Abdel Messih, Hanaa A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2017-06-01

    The aim of the present work is to exclusively optimize and model the effect of phospholipid type either egg phosphatidylcholine (EPC) or soybean phosphatidylcholine (SPC), together with other formulation variables, on the development of nano-ethosomal systems for transdermal delivery of a water-soluble antiemetic drug. Tropisetron HCl (TRO) is available as hard gelatin capsules and IV injections. The transdermal delivery of TRO is considered as a novel alternative route supposing to improve BAV as well as patient convenience. TRO-loaded ethanolic vesicular systems were prepared by hot technique. The effect of formulation variables were optimized through a response surface methodology using 3 × 2 2 -level full factorial design. The concentrations of both PC (A) and ethanol (B) and PC type (C) were the factors, while entrapment efficiency (Y 1 ), vesicle size (Y 2 ), polydispersity index (Y 3 ), and zeta potential (Y 4 ) were the responses. The drug permeation across rat skin from selected formulae was studied. Particle morphology, drug-excipient interactions, and vesicle stability were also investigated. The results proved the critical role of all formulation variables on ethosomal characteristics. The suggested models for all responses showed good predictability. Only the concentration of phospholipid, irrespective to PC type, had a significant effect on the transdermal flux (p transdermal TRO delivery.

  18. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring

    Directory of Open Access Journals (Sweden)

    Sanjiv Sharma

    2017-04-01

    Full Text Available The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective.We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases. Keywords: Microneedles, Minimally invasive sensors, Continuous glucose monitoring (CGM, Continuous lactate monitoring (CLM, Interstitial therapeutic drug monitoring (iTDM

  19. Renal Sympathetic Denervation System via Intraluminal Ultrasonic Ablation: Therapeutic Intravascular Ultrasound Design and Preclinical Evaluation.

    Science.gov (United States)

    Chernin, Gil; Szwarcfiter, Iris; Bausback, Yvonne; Jonas, Michael

    2017-05-01

    To assess the safety and performance of a nonfocused and nonballooned ultrasonic (US) catheter-based renal sympathetic denervation (RDN) system in normotensive swine. RDN with the therapeutic intravascular US catheter was evaluated in 3 experiments: (i) therapeutic intravascular US RDN vs a control group of untreated animals with follow-up of 30, 45, and 90 days (n = 6; n = 12 renal arteries for each group); (ii) therapeutic intravascular US RDN vs radiofrequency (RF) RDN in the contralateral artery in the same animal (n = 2; n = 4 renal arteries); and (iii) therapeutic intravascular US RDN in a recently stent-implanted renal artery (n = 2; n = 4 renal arteries). In the first experiment, therapeutic intravascular US RDN was safe, without angiographic evidence of dissection or renal artery stenosis. Neuronal tissue vacuolization, nuclei pyknosis, and perineuronal inflammation were evident after RDN, without renal artery wall damage. Norepinephrine levels were significantly lower after therapeutic intravascular US RDN after 30, 45, and 90 days compared with the control group (200.17 pg/mg ± 63.35, 184.75 pg/mg ± 44.51, and 203.43 pg/mg ± 58.54, respectively, vs 342.42 pg/mg ± 79.97). In the second experiment, deeper neuronal ablation penetrance was found with therapeutic intravascular US RDN vs RF RDN (maximal penetrance from endothelium of 7.0 mm vs 3.5 mm, respectively). There was less damage to the artery wall after therapeutic intravascular US RDN than with RF RDN, after which edema and injured endothelium were seen. In the third experiment, denervation inside the stent-implanted segments was feasible without damage to the renal artery wall or stent. The therapeutic intravascular US system performed safely and reduced norepinephrine levels. Deeper penetrance and better preservation of vessel wall were observed with therapeutic intravascular US RDN vs RF RDN. Neuronal ablations were observed in stent-implanted renal arteries. Copyright © 2017 SIR. Published

  20. Transdermal granisetron versus palonosetron for prevention of chemotherapy-induced nausea and vomiting following moderately emetogenic chemotherapy: a multicenter, randomized, open-label, cross-over, active-controlled, and phase IV study.

    Science.gov (United States)

    Seol, Young Mi; Kim, Hyo Jeong; Choi, Young Jin; Lee, Eun Mi; Kim, Yang Soo; Oh, Sung Yong; Koh, Su Jin; Baek, Jin Ho; Lee, Won Sik; Joo, Young Don; Lee, Hyun Gi; Yun, Eun Young; Chung, Joo Seop

    2016-02-01

    Palonosetron is the second-generation 5-hydroxytryptamine 3 receptor antagonist (5-HT3RA) that has shown better efficacy than the first-generation 5-HT3RA for prevention of chemotherapy-induced nausea and vomiting (CINV) in patients receiving moderately emetogenic chemotherapy (MEC). Granisetron transdermal delivery system (GTDS), a novel transdermal formulation, was developed to deliver granisetron continuously over 7 days. This study compared the efficacy and tolerability of the GTDS to palonosetron for the control of CINV following MEC. A total of 196 patients were randomized to GP or PG group. In this multicenter, randomized, open-label, cross-over, active-controlled, Phase IV study, GP group was assigned to receive transdermal granisetron (one GTDS patch, 7 days) in the first chemotherapy cycle, palonosetron (iv 0.25 mg/day, 1 days) in the second chemotherapy cycle before receiving MEC, and PG group was assigned to receive palonosetron in the first cycle and GTDS in the second cycle. Primary endpoint was the percentage of chemotherapy cycles achieving complete response (CR; defined as no emetic episodes and no rescue medication use) during the acute phase (0-24 h in post-chemotherapy; non-inferiority comparison with palonosetron). Total 333 cycles (165 in GTDS and 168 in palonosetron) were included in the per protocol analysis. The GTDS cycles showed non-inferiority to palonosetron cycles during the acute phase: CR was achieved by 124 (75.2 %) patients in the GTDS cycles and 134 (79.8 %) patients in the palonosetron cycles (treatment difference, -4.6 %; 95 % confidence interval, -13.6-4.4). There was no significant difference in CR rate during acute phase after the end of the first and second chemotherapy cycle between GP and PG group (p = 0.405, p = 0.074). Patients' satisfaction, assessed using Functional Living Index-Emesis (FLI-E), GTDS cycle were higher than those of palonosetron cycle in GP group (FLI-E score; median 1549.5 in GTDS cycle, median 1670

  1. The Effectiveness of Transdermal Opioid in the Management Multiple Rib Fractures: Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Okan Solak

    2013-09-01

    Full Text Available Background: The most commonly observed pathology in chest traumas is rib fracture, and the most important clinical symptom is severe pain. Aims: To investigate the effectiveness of intramuscular opioid (IMO, intravenous patient-controlled analgesia (IVPCA and the Fentanyl transdermal therapeutic system (TTS in the management of rib fracture pain. Study Design: Prospective randomized clinical trial. Methods: In our prospective and randomised study, we included 45 patients with a diagnosis of multiple rib fractures. There were three groups and intercostal nerve blockage (ICB in the first day and oral paracetamol for five days was administered to each group as standard. In Group IMO (n=15, 4x40 mg pethidine HCl was administered to the patients, while in Group IVPCA (n=15 this was 5 µg/mL continuous intravenous fentanyl and was 50 µg fentanyl TTS in Group TTS (n=15. The demographics, injury data and vital signs of the patients were recorded. Pain was scored using Visual Analogue Scale (VAS. The pain during lying down (VASl and mobilisation (VASm was detected. Results: There were no differences between the three groups regarding age, sex, the trauma pattern, the number and distribution of costal fracture localisations, the presence of additional pathology, complications, thoracal catheter and the duration of thoracal catheter. No significant difference between the groups regarding systolic and diastolic arterial tension, number of breaths and beats in a minute was observed (p>0.05. We observed an improvement in the mean VAS score after treatment in all three groups. The mean VASl score significantly decreased after treatment in each group (p0.05. Conclusion: In the analgesia of patients with multiple rib fractures, TTS administration with ICB showed similar effectiveness with IVPCA administration with ICB. In the management of pain due to multiple rib fractures, TTS administration is a safe, non-invasive and effective procedure.

  2. The effectiveness of transdermal opioid in the management multiple rib fractures: randomized clinical trial.

    Science.gov (United States)

    Solak, Okan; Oz, Gürhan; Kokulu, Serdar; Solak, Ozlem; Doğan, Gökçen; Esme, Hıdır; Ocalan, Kubilay; Baki, Elif Doğan

    2013-09-01

    The most commonly observed pathology in chest traumas is rib fracture, and the most important clinical symptom is severe pain. To investigate the effectiveness of intramuscular opioid (IMO), intravenous patient-controlled analgesia (IVPCA) and the Fentanyl transdermal therapeutic system (TTS) in the management of rib fracture pain. Prospective randomized clinical trial. In our prospective and randomised study, we included 45 patients with a diagnosis of multiple rib fractures. There were three groups and intercostal nerve blockage (ICB) in the first day and oral paracetamol for five days was administered to each group as standard. In Group IMO (n=15), 4×40 mg pethidine HCl was administered to the patients, while in Group IVPCA (n=15) this was 5 μg/mL continuous intravenous fentanyl and was 50 μg fentanyl TTS in Group TTS (n=15). The demographics, injury data and vital signs of the patients were recorded. Pain was scored using Visual Analogue Scale (VAS). The pain during lying down (VASl) and mobilisation (VASm) was detected. There were no differences between the three groups regarding age, sex, the trauma pattern, the number and distribution of costal fracture localisations, the presence of additional pathology, complications, thoracal catheter and the duration of thoracal catheter. No significant difference between the groups regarding systolic and diastolic arterial tension, number of breaths and beats in a minute was observed (p>0.05). We observed an improvement in the mean VAS score after treatment in all three groups. The mean VASl score significantly decreased after treatment in each group (p0.05). In the analgesia of patients with multiple rib fractures, TTS administration with ICB showed similar effectiveness with IVPCA administration with ICB. In the management of pain due to multiple rib fractures, TTS administration is a safe, non-invasive and effective procedure.

  3. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy

    Directory of Open Access Journals (Sweden)

    Sudipta Chatterjee

    2018-04-01

    Full Text Available Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.

  4. Topical and transdermal drug delivery: principles and practice

    National Research Council Canada - National Science Library

    Benson, Heather A. E; Watkinson, Adam C

    2012-01-01

    .... Providing an overview of the current science in drug and cosmetic application to and through the skin, Topical and Transdermal Drug Delivery includes treatment of skin conditions, skin permeation...

  5. Modified Transdermal Technologies: Breaking the Barriers of Drug ...

    African Journals Online (AJOL)

    In-depth analysis, formulation approaches, applications, advantages and disadvantages of these newer technologies are discussed. Keywords: Transdermal drug delivery, microneedles, macroflux, iontophoresis, ultrasound, powderject, skin abrasion. > Tropical Journal of Pharmaceutical Research Vol. 6 (1) 2007: pp. 633- ...

  6. Penetration Enhancement Effect of Turpentine Oil on Transdermal ...

    African Journals Online (AJOL)

    inflammation drastically affect the quality of life after SCI. ... inhibitors may reduce spinal cord ischemic injury. [11]. Various .... Healthy male Wistar rats (200-250 g) were used ..... Guy RH. Transdermal science and technology an update.

  7. Simplified Therapeutic Intervention Scoring System : The TISS-28 items - Results from a multicenter study

    NARCIS (Netherlands)

    Miranda, DR; deRijk, A; Schaufeli, W

    Objectives: To validate a simplified version of the Therapeutic Intervention Scoring System, the TISS-28, and to determine the association of TISS-28 with the time spent on scored and nonscored nursing activities. Design: Prospective, multicenter study. Setting: Twenty-two adult medical, surgical,

  8. Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light

    Science.gov (United States)

    Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young

    2016-07-01

    Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation

  9. Rotigotine transdermal patch for the treatment of Parkinson's Disease.

    Science.gov (United States)

    Perez-Lloret, Santiago; Rey, María Verónica; Ratti, Pietro Lucca; Rascol, Olivier

    2013-02-01

    Rotigotine, a non-ergot dopamine agonist, has been developed as a novel transdermal formulation. The rotigotine transdermal patch has received EMEA marketing authorization for the treatment of adult patients with early or advanced Parkinson's disease (PD) or with moderate to severe restless legs syndrome (RLS). FDA originally granted a marketing authorization for early PD, which was later suspended, and is now studying the authorization for RLS. The aim of this review is to review the pharmacokinetics, pharmacodynamics as well as the clinical efficacy and tolerability of the rotigotine transdermal patch in PD. Source material was identified using a PubMed search for the term 'rotigotine' and PD. Articles published up to January 2011 or abstract submitted to most relevant international neurology congresses were reviewed. The rotigotine transdermal patch is efficacious for the treatment of PD. Tolerability profile appears to be well within the range of that observed with other non-ergot dopamine agonists in PD. Application-site reactions were the most frequent adverse event, and they were considered mild to moderate in the majority of cases. The rotigotine transdermal patch offers a safe and efficacious alternative for the treatment of PD. Further studies should focus on the possibility that continuous dopamine stimulation by means of the transdermal patch has any influence on levodopa-related motor complications. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  10. Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic

    Science.gov (United States)

    Feng, Shun; Zhu, Lijun; Huang, Zhisheng; Wang, Haojia; Li, Hong; Zhou, Hua; Lu, Linlin; Wang, Ying; Liu, Zhongqiu; Liu, Liang

    2017-01-01

    Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration. PMID:28670109

  11. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis.

    Science.gov (United States)

    Amodwala, Sejal; Kumar, Praveen; Thakkar, Hetal P

    2017-06-15

    The long term administration of Meloxicam for the management of arthritis, a chronic disorder, results in gastrointestinal disturbances leading to poor patient compliance. Considering the favorable molecular weight, therapeutic dose, biological half-life and log P value of meloxicam for transdermal delivery, its fast dissolving microneedle patch, with an ability to breach the stratum corneum and efficiently deliver the cargo to deeper skin layers, were developed. Microneedle patch of low molecular weight polyvinyl alcohol and polyvinylpyrrolidone was prepared using Polydimethylsiloxane micromolds. The ratio of polyvinyl alcohol to polyvinyl pyrrolidone and solid content of matrix solution was optimized to achieve maximum needle strength. The optimized batch was extensively evaluated for in vitro dissolution, drug release, stability, ex vivo skin permeation/deposition, histopathology and in vivo pharmacodynamic study. The patch containing 9:1 polyvinyl alcohol to polyvinylpyrrolidone ratio with 50% solid content had shown maximum axial needle fracture force (0.9N) suitable for penetrating the skin. The optimized batch was found to be fast dissolving and released almost 100% drug in 60min following dissolution controlled kinetics. The formulation showed a significant drug deposition within skin (63.37%) and an improved transdermal flux (1.60μg/cm 2 /h) with a 2.58 fold enhancement in permeation as compared to plain drug solution. The formulation showed a comparable anti-inflammatory activity in rats when compared to its existing approved marketed oral tablet. Histopathology and stability evaluations demonstrated acceptable safety and shelf-life of the developed formulation. The successful verification of safety, efficacy and stability of microneedle patch advocated the suitability of the formulation for transdermal use. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Microneedle Coating Techniques for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rita Haj-Ahmad

    2015-11-01

    Full Text Available Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  13. Microneedles for intradermal and transdermal delivery

    Science.gov (United States)

    Tuan-Mahmood, Tuan-Mazlelaa; McCrudden, Maeliosa T.C.; Torrisi, Barbara M.; McAlister, Emma; Garland, Martin J; Singh, Thakur Raghu Raj; Donnelly, Ryan F

    2014-01-01

    The formidable barrier properties of the uppermost layer of the skin, the stratum corneum impose significant limitations for successful systemic delivery of a broad range of therapeutic molecules, particularly macromolecules and genetic material. Microneedle delivery has been proposed as a strategy to breach the SC barrier function in order to facilitate effective transport of molecules across the skin. This strategy involves the use of micron sized needles fabricated from different materials and using different geometries to create transient aqueous conduits across the skin. Microneedles in isolation, or in combination with other enhancing strategies, have been shown to dramatically enhance the skin permeability of numerous therapeutic molecules including biopharmaceuticals either in vitro, ex vivo or in vivo. Progress in the areas of microneedle design, development and manufacture have proven promising in terms of the potential use of this emerging delivery method in clinical applications such as insulin delivery, transcutaneous immunisations and cutaneous gene delivery. This review article focuses on recent and potential future developments in microneedle technologies. This will include the detailing of progress made in microneedle design, an exploration of the challenges faced in this field and potential forward strategies to embrace the exploitation of microneedle methodologies, while considering the inherent safety aspects of such therapeutic tools. PMID:23680534

  14. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines.

    Science.gov (United States)

    Bhatnagar, Sunali; Kwan, James J; Shah, Apurva R; Coussios, Constantin-C; Carlisle, Robert C

    2016-09-28

    Inertial cavitation mediated by ultrasound has been previously shown to enable skin permeabilisation for transdermal drug and vaccine delivery, by sequentially applying the ultrasound then the therapeutic in liquid form on the skin surface. Using a novel hydrogel dosage form, we demonstrate that the use of sub-micron gas-stabilising polymeric nanoparticles (nanocups) to sustain and promote cavitation activity during simultaneous application of both drug and vaccine results in a significant enhancement of both the dose and penetration of a model vaccine, Ovalbumin (OVA), to depths of 500μm into porcine skin. The nanocups themselves exceeded the penetration depth of the vaccine (up to 700μm) due to their small size and capacity to 'self-propel'. In vivo murine studies indicated that nanocup-assisted ultrasound transdermal vaccination achieved significantly (pultrasound-assisted vaccine delivery in the presence of nanocups demonstrated substantially higher specific anti-OVA IgG antibody levels compared to other transdermal methods. Further optimisation can lead to a viable, safe and non-invasive delivery platform for vaccines with potential use in a primary care setting or personalized self-vaccination at home. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. In vitro and ex vivo evaluations on transdermal delivery of the HIV inhibitor IQP-0410.

    Directory of Open Access Journals (Sweden)

    Anthony S Ham

    Full Text Available The aim of this study was to investigate the physicochemical and in vitro/ex vivo characteristics of the pyrmidinedione IQP-0410 formulated into transdermal films. IQP-0410 is a potent therapeutic anti-HIV nonnucleoside reverse transcriptase inhibitor that would be subjected to extensive first pass metabolism, through conventional oral administration. Therefore, IQP-0410 was formulated into ethyl cellulose/HPMC-based transdermal films via solvent casting. In mano evaluations were performed to evaluate gross physical characteristics. In vitro release studies were performed in both Franz cells and USP-4 dissolution vessels. Ex vivo release and permeability assays were performed on human epidermal tissue models, and the permeated IQP-0410 was collected for in vitro HIV-1 efficacy assays in CEM-SS cells and PBMCs. Film formulation D3 resulted in pliable, strong transdermal films that were loaded with 2% (w/w IQP-0410. Composed of 60% (w/w ethyl cellulose and 20% (w/w HPMC, the films contained < 1.2% (w/w of water and were hygroscopic resulting in significant swelling under humid conditions. The water permeable nature of the film resulted in complete in vitro dissolution and drug release in 26 hours. When applied to ex vivo epidermal tissues, the films were non-toxic to the tissue and also were non-toxic to HIV target cells used in the in vitro efficacy assays. Over a 3 day application, the films delivered IQP-0410 through the skin tissue at a zero-order rate of 0.94 ± 0.06 µg/cm(2/hr with 134 ± 14.7 µM collected in the basal media. The delivered IQP-0410 resulted in in vitro EC50 values against HIV-1 of 2.56 ± 0.40 nM (CEM-SS and 0.58 ± 0.03 nM (PBMC. The film formulation demonstrated no significant deviation from target values when packaged in foil pouches under standard and accelerated environmental conditions. It was concluded that the transdermal film formulation was a potentially viable method of administering IQP-0410 that warrants

  16. Human iPSC for Therapeutic Approaches to the Nervous System: Present and Future Applications

    Directory of Open Access Journals (Sweden)

    Maria Giuseppina Cefalo

    2016-01-01

    Full Text Available Many central nervous system (CNS diseases including stroke, spinal cord injury (SCI, and brain tumors are a significant cause of worldwide morbidity/mortality and yet do not have satisfying treatments. Cell-based therapy to restore lost function or to carry new therapeutic genes is a promising new therapeutic approach, particularly after human iPSCs became available. However, efficient generation of footprint-free and xeno-free human iPSC is a prerequisite for their clinical use. In this paper, we will first summarize the current methodology to obtain footprint- and xeno-free human iPSC. We will then review the current iPSC applications in therapeutic approaches for CNS regeneration and their use as vectors to carry proapoptotic genes for brain tumors and review their applications for modelling of neurological diseases and formulating new therapeutic approaches. Available results will be summarized and compared. Finally, we will discuss current limitations precluding iPSC from being used on large scale for clinical applications and provide an overview of future areas of improvement. In conclusion, significant progress has occurred in deriving iPSC suitable for clinical use in the field of neurological diseases. Current efforts to overcome technical challenges, including reducing labour and cost, will hopefully expedite the integration of this technology in the clinical setting.

  17. Determination of two capsaicinoids in analgesic transdermal patches using RP-HPLC and UV spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Kobarfard

    2017-11-01

    Full Text Available Background and objectives: At the present time, a considerable frontier in the administration of therapeutic medications is transdermal drug delivery. Methods: In this study, a rapid, precise, sensitive and selective reversed-phasehigh performance liquid chromatography (RP-HPLC method has been evaluated, developed and validated to separate and quantitate capsaicin and dihydrocapsaicin (main active agents in analgesic dermal patches produced in Iran. Results: After isolation from laminated adhesive patches, capsaicinoids were analyzed on Lichrospher C18 analytical columns with reversed phase, using a mobile phase composition of methanol and distilled water (70:30 v/v and without any buffer (pH=6.5. The flow rate was 1 mL/min and the UV detector was operating at 281 nm. The assay was found to be linear over the range of 0.1-1.0 mg/mL. All validation parameters were within the acceptable range. Conclusion: It seems that the developed method was fairly sensitive and reliable in measuring capsaicinoids in commercially available analgesic transdermal patches in Iran.

  18. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.

    Science.gov (United States)

    Liu, Chang; Zhang, Li; Liu, Hao; Cheng, Kun

    2017-11-28

    The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Regulating Critical Period Plasticity: Insight from the Visual System to Fear Circuitry for Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Elisa M. Nabel

    2013-11-01

    Full Text Available Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development –the preeminent model of experience-dependent critical period plasticity- actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins– endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions.

  20. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study.

    Science.gov (United States)

    Zheng, Yin; Ouyang, Wu-Qing; Wei, Yun-Peng; Syed, Shahid Faraz; Hao, Chao-Shuang; Wang, Bo-Zhen; Shang, Yan-Hong

    Nanoemulsions (NEs) are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1) to determine the stability and skin irritability of NE gels (NGs) containing 1%, 2%, and 3% (w/w) Carbopol ® 934 (CP934) (termed NG1, NG2, and NG3, respectively); 2) to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3) to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 μg/cm 2 ) > NG1 (213 μg/cm 2 ) > NG2 (123 μg/cm 2 ) > NG3 (74.3 μg/cm 2 ). The flux rates of citral decreased in the order NE (1,026 μg/cm 2 ) > NG1 (1,021 μg/cm 2 ) > NG2 (541 μg/cm 2 ) > NG3 (353 μg/cm 2 ). The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE ( P drug delivery routes from skin appendages to intercellular paths. Histological images suggested that perturbations to the skin structure, specifically the size of the epidermal intercellular spaces and the separation distance of dermal collagen bundles, could be significantly minimized by increasing the proportion of CP934. These results suggest that adjustments of the CP934 proportions can be used to modulate the skin permeation profiles of NGs for specific therapeutic purposes.

  1. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  2. Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects

    Directory of Open Access Journals (Sweden)

    Eva M Marco

    2011-10-01

    Full Text Available Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e. anxiety disorders, depression and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD, the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation.

  3. Virtual reality system for diagnosis and therapeutic planning of cerebral aneurysms.

    Science.gov (United States)

    Mo, Da-peng; Bao, Sheng-de; Li, Liang; Yi, Zhi-qiang; Zhang, Jia-yong; Zhang, Yang

    2010-08-01

    The virtual reality (VR) system can provide the neurosurgeon to intuitively interact with and manipulate the three dimensional (3-D) image similarly to manipulate a real object. It was seldom reported that the system was used in diagnosis and treatment of cerebral aneurysms. This study aimed to investigate the application of VR system in diagnosis and therapeutic planning of cerebral aneurysms. A total of 24 cases of cerebral aneurysms were enrolled in this study from 2006 to 2008, which diagnosed by 3-D digital subtraction angiography (3D-DSA) or VR-based computed tomography angiographies (CTA). The VR system and 3D-DSA system were used to observe and measure aneurysms and the adjacent vessels. The data of observation and measurements were compared between VR image and 3D-DSA image. All the patients underwent surgical plan and simulated neurosurgical procedures in the VR system. There were 28 aneurysms detected in VR system and 3D-DSA system. The VR system generated clear and vivid 3-D virtual images which clearly displayed the location and size of the aneurysms and their precise anatomical spatial relations to the parent arteries and skull. The location, size and shape of the aneurysms and their anatomical relationship with the adjacent vessels were similar between 3-D virtual image and 3D-DSA, but the spatial relationship between aneurysms and skull only been displayed by VR system. This VR system also could simulate simple surgical procedures and surgical environments. The VR system can provide a highly effective way to provide precise imaging details as same as 3D-DSA system and assist the diagnosis of cerebral aneurysms with virtual 3-D data based on CTA. It significantly enhances the chosen therapeutic strategy of cerebral aneurysms.

  4. Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice

    Science.gov (United States)

    Nose, Keisuke; Pissuwan, Dakrong; Goto, Masahiro; Katayama, Yoshiki; Niidome, Takuro

    2012-05-01

    Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients.Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients. Electronic supplementary information (ESI) available. See DOI: 10

  5. Effect of components (polymer, plasticizer and solvent as a variable in fabrication of diclofenac transdermal patch

    Directory of Open Access Journals (Sweden)

    Chetna Modi

    2012-01-01

    Full Text Available Transdermal drug delivery influence consumer acceptance and marked increase in bioavailability of some drugs which undergoes hepatic first-pass metabolism. Fabrication of transdermal patch requires lots of attention regarding the amount of components used for it. Because of varied nature of polymer and plasticizer, transdermal patches have different properties and different drug release. This study is on the basis to evaluate the amount to be needed for fabrication of diclofenac transdermal patch. Study shows that Hydroxy Propyl Methyl Cellulose has great influence on transdermal patch, if it is used alone in combination with glycerin or PEG-4000 plasticizer.

  6. Therapeutical radiopharmaceuticals based In vivo generator system [166 Dy] Dy/166 Ho

    International Nuclear Information System (INIS)

    Ferro F, G.; Garcia S, L.; Monroy G, F.; Tendilla, J.I.; Pedraza L, M.; Murphy, C.A. de

    2002-01-01

    At the idea to administer to a patient a molecule containing in it structure a father radionuclide, with a half life enough large which allows to the radiolabelled molecule to take up position specifically in a white tissue and decaying In vivo to the daughter radionuclide with properties potentially therapeutic, it is known as In vivo generator system. In this work the preparation and the preliminary dosimetric valuations of radiopharmaceuticals based In vivo generator system 166 Dy Dy/ 166 Ho for applications in radioimmunotherapy, in the treatment of the rheumatoid arthritis and in the bone marrow ablation (m.o.) for candidates patients to bone marrow transplant are presented. (Author)

  7. Predicted and observed therapeutic dose exceedances of ionizable pharmaceuticals in fish plasma from urban coastal systems.

    Science.gov (United States)

    Scott, W Casan; Du, Bowen; Haddad, Samuel P; Breed, Christopher S; Saari, Gavin N; Kelly, Martin; Broach, Linda; Chambliss, C Kevin; Brooks, Bryan W

    2016-04-01

    Instream flows of the rapidly urbanizing watersheds and estuaries of the Gulf of Mexico in Texas (USA) are increasingly dominated by reclaimed waters. Though ionizable pharmaceuticals have received increasing attention in freshwaters, many research questions remain unanswered, particularly in tidally influenced urban coastal systems, which experience significant spatiotemporal variability in pH that influences bioavailability and bioaccumulation. The authors coupled fish plasma modeling of therapeutic hazard values with field monitoring of water chemistry variability and pharmaceutical occurrence to examine whether therapeutic hazards to fish existed within these urban coastal ecosystems and whether therapeutic hazards differed within and among coastal locations and seasons. Spatial and temporal fluctuations in pH within study sites altered the probability of encountering pharmaceutical hazards to fish. Significant water quality differences were consistently observed among traditional parameters and pharmaceuticals collected from surface and bottom waters, which are rarely sampled during routine surface water quality assessments. The authors then compared modeling predictions of fish plasma concentrations of pharmaceuticals to measured plasma levels from various field-collected fish species. Diphenhydramine and diltiazem were observed in plasma of multiple species, and diltiazem exceeded human therapeutic doses in largemouth bass, catfish, and mullet inhabiting these urban estuaries. Though the present study only examined a small number of target analytes, which represent a microcosm of the exposome of these fish, coastal systems are anticipated to be more strongly influenced by continued urbanization, altered instream flows, and population growth in the future. Unfortunately, aquatic toxicology information for diltiazem and many other pharmaceuticals is not available for marine and estuarine organisms, but such field observations suggest that potential adverse

  8. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  9. Therapeutic intervention at cellular quality control systems in Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Silva, Diana F F; Martins-Branco, Diogo; Santos, Daniel; Pimentel, Diana F Gomes; Cardoso, Sandra M

    2011-01-01

    Cellular homeostasis relies on quality control systems so that damaged biologic structures are either repaired or degraded and entirely replaced by newly formed proteins or even organelles. The clearance of dysfunctional cellular structures in long-lived postmitotic cells, like neurons, is essential to eliminate, per example, defective mitochondria, lipofuscin-loaded lysosomes and oxidized proteins. Short-lived proteins are degraded mainly by proteases and proteasomes whether most long-lived proteins and all organelles are digested by autophagy in the lysosomes. Recently, it an interplay was established between the ubiquitin-proteasome system and macroautophagy, so that both degradative mechanisms compensate for each other. In this article we describe each of these clearance systems and their contribution to neuronal quality control. We will highlight some of the findings that provide evidence for the dysfunction of these systems in Alzheimer's and Parkinson's diseases. Ultimately, we provide an outline on potential therapeutic interventions based on the modulation of cellular degradative systems.

  10. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery

    Directory of Open Access Journals (Sweden)

    Lin HW

    2018-02-01

    Full Text Available Hongwei Lin,1,2 Qingchun Xie,1,2 Xin Huang,1,2 Junfeng Ban,1,2 Bo Wang,1,2 Xing Wei,3 Yanzhong Chen,1,2 Zhufen Lu1,2 1Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China; 2Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China; 3Guangdong Shennong Chinese Medicine Research Institute, Guangzhou, People’s Republic of China Aim: The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs, to expand the applications of the Chinese herbal medicine, imperatorin (IMP, and increase its transdermal delivery. Methods: In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. Results: The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%, an acceptable particle size (82.4±0.65 nm, high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. Conclusion: The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP. Keywords: ultradeformable liposomes, cationic, imperatorin, skin permeation, transdermal drug delivery

  11. Transdermal testosterone replacement therapy in men

    Science.gov (United States)

    Ullah, M Iftekhar; Riche, Daniel M; Koch, Christian A

    2014-01-01

    Androgen deficiency syndrome in men is a frequently diagnosed condition associated with clinical symptoms including fatigue, decreased libido, erectile dysfunction, and metabolic syndrome. Serum testosterone concentrations decline steadily with age. The prevalence of androgen deficiency syndrome in men varies depending on the age group, known and unknown comorbidities, and the respective study group. Reported prevalence rates may be underestimated, as not every man with symptoms of androgen deficiency seeks treatment. Additionally, men reporting symptoms of androgen deficiency may not be correctly diagnosed due to the vagueness of the symptom quality. The treatment of androgen deficiency syndrome or male hypogonadism may sometimes be difficult due to various reasons. There is no consensus as to when to start treating a respective man or with regards to the best treatment option for an individual patient. There is also lack of familiarity with treatment options among general practitioners. The formulations currently available on the market are generally expensive and dose adjustment protocols for each differ. All these factors add to the complexity of testosterone replacement therapy. In this article we will discuss the general indications of transdermal testosterone replacement therapy, available formulations, dosage, application sites, and recommended titration schedule. PMID:24470750

  12. Pharmacokinetics of the transdermal delivery of benfotiamine.

    Science.gov (United States)

    Zhu, Zhen; Varadi, Gyula; Carter, Stephen G

    2016-04-01

    Accumulation of advanced glycation endpoints is a trigger to the development of diabetic peripheral neuropathy, which is a common complication of diabetes. Oral administration of benfotiamine (BFT) has shown some preclinical and clinical promise as a treatment for diabetic peripheral neuropathy. The purpose of this study was to evaluate the method of transdermal delivery of BFT as a possible, viable route of administration for the treatment of diabetic peripheral neuropathy. A single application of 10 mg of BFT was given to guinea pigs topically. The levels of thiamine (T), thiamine monophosphate, thiamine diphosphate, S-benzoylthiamine and BFT were measured in the blood, skin and muscle at different time points within 24 h. At the 24-h time point, following the single BFT dose, the T level was increased 10× in the blood, more than 7× in the skin and almost 4× in the muscle compared to the untreated animals. The total T content (total) was increased 7× in the blood, 17× in the skin and 3× in the muscle compared to the untreated animals. This strong increase in the tissue levels of T and the associated metabolic derivatives levels found in the blood and local tissues following a single dose indicate that topically applied BFT may be a viable and advantageous delivery method for the treatment of diabetic peripheral neuropathy.

  13. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery.

    Science.gov (United States)

    Chen, Rencai; Li, Rongli; Liu, Qian; Bai, Chao; Qin, Benlin; Ma, Yue; Han, Jing

    2017-07-01

    The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.

  14. Aromatherapy and the central nerve system (CNS): therapeutic mechanism and its associated genes.

    Science.gov (United States)

    Lv, Xiao Nan; Liu, Zhu Jun; Zhang, Huan Jing; Tzeng, Chi Meng

    2013-07-01

    Molecular medical research on aromatherapy has been steadily increasing for use as an adjuvant therapy in managing psychiatric disorders and to examine its therapeutic mechanisms. Most studies, as well as clinically applied experience, have indicated that various essential oils, such as lavender, lemon and bergamot can help to relieve stress, anxiety, depression and other mood disorders. Most notably, inhalation of essential oils can communicate signals to the olfactory system and stimulate the brain to exert neurotransmitters (e.g. serotonin and dopamine) thereby further regulating mood. However, little research has been done on the molecular mechanisms underlying these effects, thus their mechanism of action remains ambiguous. Several hypotheses have been proposed regarding the therapeutic mechanism of depression. These have mainly centered on possible deficiencies in monoamines, neurotrophins, the neuroendocrine system, c-AMP, cation channels as well as neuroimmune interactions and epigenetics, however the precise mechanism or mechanisms related to depression have yet to be elucidated. In the current study, the effectiveness of aromatherapy for alleviating psychiatric disorders was examined using data collected from previously published studies and our unpublished data. A possible signaling pathway from olfactory system to the central nerve system and the associated key molecular elements of aromatherapy are also proposed.

  15. A gamma-ray therapeutic system applied to treatment of body

    International Nuclear Information System (INIS)

    Huang Yu; Duan Zhengcheng; Zhu Guoli; Gong Shihua; Li Xiaoping

    2004-01-01

    In order to treat malignant tumors in human body, a stereotactic gamma-ray whole-body therapeutic system has been developed. This system is a typical large mechatronics treatment machine. In this paper, its main working principles and characteristics are introduced. This system comprises a special gallows frame with an open vertical structure, a changeable collimator device by which the size of convergence center can be chosen, and a 3D treatment couch. A computer brings the couch to target position automatically. Therefore precise and dynamic rotary converging therapy for tumors located anywhere in the body has been realized. The system's performance has been proved in practice, which includes good curative effect, reliable automation, and safe and secure operation. (authors)

  16. Transdermal carbamate poisoning – a case of misuse

    Directory of Open Access Journals (Sweden)

    Lalit Kumar Rajbanshi

    2017-01-01

    Full Text Available Acute pesticide poisoning is a common mode of intentional self harm. Oral ingestion is the usual mode of poisoning. However, inhalation, accidental or occupational transdermal exposure leading to acute or chronic poisoning can be the other route of poisoning. It has been seen that the purpose of poising is suicidal intensity in most of the cases. We report an unusual case where the victim had acute pesticide poisoning through transdermal route that was intended for non suicidal purpose. The patient was managed successfully with immediate decontamination and adequate antidote.

  17. The specific features of using a rivastigmine transdermal formulation in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Elena Evgenyevna Vasenina

    2012-01-01

    Full Text Available Cholinergic deficiency associated mainly with the degeneration of neurons in the nucleus basalis of Meynert is one of the key factors of the development of cognitive impairments in Alzheimer’s disease (AD. Cholinesterase inhibitors are used to treat mild and moderate dementia in AD. However, the wide use of this group of agents is limited by the high incidence of some side effects. The application of a novel rivastigmine transdermal (patch formulation substantially reduces the risk of adverse reactions chiefly associated with a negative effect on the gastrointestinal tract and increases treatment adherence. Thus, there is a rise in the number of patients who may be given the drug in the optimal therapeutic dose for a long time.

  18. Patient considerations in the use of transdermal iontophoretic fentanyl for acute postoperative pain

    Directory of Open Access Journals (Sweden)

    Hartrick CT

    2016-04-01

    Full Text Available Craig T Hartrick,1 Cecile R Pestano,1 Li Ding,2 Hassan Danesi,2 James B Jones,2 1Beaumont Health System, Troy, MI, 2The Medicines Company, Parsippany, NJ, USA Abstract: Opioids are commonly used in the management of moderate-to-severe postoperative pain. Patient-controlled analgesic techniques are recognized as preferred administration methods. Previously, research has focused on intravenously administered opioids via a programmable pump. More recently, an iontophoretic transdermal system (ITS, which is patient controlled, has been developed. The focus of this review is on pain management using the fentanyl ITS during the 24–72-hour time period immediately following surgery. Fentanyl ITS offers a needle-free alternative to traditional intravenous (IV patient-controlled analgesia (PCA system that is as effective and safe as IV PCA. This system is easy to use for both patients and nurses. The use of fentanyl ITS is generally associated with a better ease-of-care profile, including a greater ease of mobility, from a patients' perspective when compared with morphine IV PCA. Keywords: patient-controlled analgesia, fentanyl iontophoretic transdermal system, ease of care, mobility, patient perspective, review

  19. Cybernetics of change and stability in the context of counselling and therapeutic work with client system

    Directory of Open Access Journals (Sweden)

    Lea Šugman Bohinc

    2000-06-01

    Full Text Available The authoress defines the cybernetic concept of change and stability as a suitable description of constituting and maintaining the contex of counselling and therapeutic work with the client system. She explains the concept of first- and second-order change together with the (usual strategies for bringing forth first-order changes and second-order changes and different problem definitions as well as problem solutions, arising from the kind of changes created. The description of constitution and maintenance of the context of counselling and therapeutic work with the client system is summarized in the form of general views and strategies of cybernetic use of the concept of change and stability, such as: (aco-creation of the context for the development of desirable changes, (b testing the order of change needed for the desirable problem solution, (c common design of a plan of possible steps for bringing forth the desired changes, (d regular verification of epistemological assumptions of the counsellor or the therapist as well as of the client system regarding problem and solution understanding, regular verification (and redefinition of agreement on the desirable outcome of the problem all the way to the agreement on its realization.

  20. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Directory of Open Access Journals (Sweden)

    Umberto Tosi

    2017-02-01

    Full Text Available Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  1. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Science.gov (United States)

    Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.

    2017-01-01

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698

  2. Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs

    Science.gov (United States)

    Schoellhammer, Carl M.; Srinivasan, Sharanya; Barman, Ross; Mo, Stacy H.; Polat, Baris E.; Langer, Robert; Blankschtein, Daniel

    2016-01-01

    Low-frequency ultrasound presents an attractive method for transdermal drug delivery. The controlled, yet nonspecific nature of enhancement broadens the range of therapeutics that can be delivered, while minimizing necessary reformulation efforts for differing compounds. Long and inconsistent treatment times, however, have partially limited the attractiveness of this method. Building on recent advances made in this area, the simultaneous use of low- and high-frequency ultrasound is explored in a physiologically relevant experimental setup to enable the translation of this treatment to testing in vivo. Dual-frequency ultrasound, utilizing 20 kHz and 1 MHz wavelengths simultaneously, was found to significantly enhance the size of localized transport regions (LTRs) in both in vitro and in vivo models while decreasing the necessary treatment time compared to 20 kHz alone. Additionally, LTRs generated by treatment with 20 kHz + 1 MHz were found to be more permeable than those generated with 20 kHz alone. This was further corroborated with pore-size estimates utilizing hindered-transport theory, in which the pores in skin treated with 20 kHz + 1 MHz were calculated to be significantly larger than the pores in skin treated with 20 kHz alone. This demonstrates for the first time that LTRs generated with 20 kHz + 1 MHz are also more permeable than those generated with 20 kHz alone, which could broaden the range of therapeutics and doses administered transdermally. With regard to safety, treatment with 20 kHz + 1 MHz both in vitro and in vivo appeared to result in no greater skin disruption than that observed in skin treated with 20 kHz alone, an FDA-approved modality. This study demonstrates that dual-frequency ultrasound is more efficient and effective than single-frequency ultrasound and is well-tolerated in vivo. PMID:25662228

  3. Local transdermal therapy to the breast for breast cancer prevention and DCIS therapy: preclinical and clinical evaluation.

    Science.gov (United States)

    Lee, Oukseub; Ivancic, David; Allu, Subhashini; Shidfar, Ali; Kenney, Kara; Helenowski, Irene; Sullivan, Megan E; Muzzio, Miguel; Scholtens, Denise; Chatterton, Robert T; Bethke, Kevin P; Hansen, Nora M; Khan, Seema A

    2015-12-01

    Women at high risk of breast cancer and those with carcinoma in situ need non-toxic, well-tolerated preventive interventions. One promising approach is drug delivery through the breast skin (local transdermal therapy, LTT). Our goal was to test novel drugs for LTT, to establish that LTT is applicable to non-steroidal drugs. Athymic nude rats were treated with oral tamoxifen, transdermal 4-hydroxytamoxifen (4-OHT) or endoxifen gel applied daily to the axillary mammary gland for 6 weeks (Study 1). Study 2 was identical to Study 1, testing transdermal telapristone acetate (telapristone) gel versus subcutaneous implant. At euthanasia, mammary glands and blood were collected. In Study 3, consenting women requiring mastectomy were randomized to diclofenac patch applied to the abdomen or the breast for 3 days preoperatively. At surgery, eight tissue samples per breast were collected from predetermined locations, along with venous blood. Drug concentrations were measured using liquid chromatography-tandem mass spectroscopy. Mammary tissue concentrations of 4-OHT, endoxifen, and telapristone were significantly higher in the axillary glands of the gel-treated animals, compared to inguinal glands or to systemically treated animals. Plasma concentrations were similar in gel and systemically treated animals. The clinical trial showed significantly higher mammary concentrations when diclofenac was applied to the breast skin versus the abdominal skin, but concentrations were variable. These results demonstrate that lipophilic drugs can be developed for LTT; although the nude rat is suitable for testing drug permeability, delivery is systemic. In human, however, transdermal application to the breast skin provides local delivery.

  4. Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases.

    Science.gov (United States)

    Curtis, Chad; Zhang, Mengying; Liao, Rick; Wood, Thomas; Nance, Elizabeth

    2017-03-01

    Neurological diseases account for 13% of the global burden of disease. As a result, treating these diseases costs $750 billion a year. Nanotechnology, which consists of small (~1-100 nm) but highly tailorable platforms, can provide significant opportunities for improving therapeutic delivery to the brain. Nanoparticles can increase drug solubility, overcome the blood-brain and brain penetration barriers, and provide timed release of a drug at a site of interest. Many researchers have successfully used nanotechnology to overcome individual barriers to therapeutic delivery to the brain, yet no platform has translated into a standard of care for any neurological disease. The challenge in translating nanotechnology platforms into clinical use for patients with neurological disease necessitates a new approach to: (1) collect information from the fields associated with understanding and treating brain diseases and (2) apply that information using scalable technologies in a clinically-relevant way. This approach requires systems-level thinking to integrate an understanding of biological barriers to therapeutic intervention in the brain with the engineering of nanoparticle material properties to overcome those barriers. To demonstrate how a systems perspective can tackle the challenge of treating neurological diseases using nanotechnology, this review will first present physiological barriers to drug delivery in the brain and common neurological disease hallmarks that influence these barriers. We will then analyze the design of nanotechnology platforms in preclinical in vivo efficacy studies for treatment of neurological disease, and map concepts for the interaction of nanoparticle physicochemical properties and pathophysiological hallmarks in the brain. WIREs Nanomed Nanobiotechnol 2017, 9:e1422. doi: 10.1002/wnan.1422 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  5. The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Johannes Burtscher

    2017-08-01

    Full Text Available Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along the progression of the disease. The high incidence of resistance to antiepileptic drugs and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the urgent quest of novel treatment strategies, neuropeptides are interesting candidates, however, their therapeutic potential has not yet been exploited. This review focuses on the functional role of the endogenous opioid system with respect to temporal lobe epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid receptors (KOPr as modulators of neuronal excitability is well understood: both the reduced release of glutamate as well of postsynaptic hyperpolarization were shown in glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice increase the risk of epilepsy development. The role of enkephalins is not understood so well. On one hand, some agonists of the delta opioid receptors (DOPr display pro-convulsant properties probably through inhibition of GABAergic interneurons. On the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic conditions, most probably through positive effects on mitochondrial function. Despite the supposed absence of endorphins in the hippocampus, exogenous activation of the mu opioid receptors (MOPr induces pro-convulsant effects. Recently-expanded knowledge of the complex ways opioid receptors ligands elicit their effects (including biased agonism, mixed binding, and opioid receptor heteromers, opens up exciting new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side effects of KOPr agonists may be minimized through functional selectivity. Preclinical data suggest a high potential of such compounds to control seizures, with a strong predictive validity toward human

  6. Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance transdermal delivery.

    Science.gov (United States)

    Hwa, Kuo-Yuan; Chang, Vincent H S; Cheng, Yao-Yi; Wang, Yue-Da; Jan, Pey-Shynan; Subramani, Boopathi; Wu, Min-Ju; Wang, Bo-Kai

    2017-09-19

    Traditional drug delivery systems, using invasive, transdermal, and oral routes, are limited by various factors, such as the digestive system environment, skin protection, and sensory nerve stimulation. To improve the drug delivery system, we fabricated a polysaccharide-based, dissolvable microneedle-based array, which combines the advantages of both invasive and transdermal delivery systems, and promises to be an innovative solution for minimally invasive drug delivery. In this study, we designed a reusable aluminum mold that greatly improved the efficiency and convenience of microneedle fabrication. Physical characterization of the polysaccharides, individual or mixed at different ratios, was performed to identify a suitable molecule to fabricate the dissolvable microneedle. We used a vacuum deposition-based micro-molding method at low temperature to fabricate the model. Using a series of checkpoints from material into product, a systematic feedback mechanism was built into the "all-in-one" fabrication step, which helped to improve production yields. The physical properties of the fabricated microneedle were assessed. The cytotoxicity analysis and animal testing of the microneedle demonstrated the safety and compatibility of the microneedle, and the successful penetration and effective release of a model protein.

  7. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum

    Directory of Open Access Journals (Sweden)

    Ahlam Zaid Alkilani

    2015-10-01

    Full Text Available The skin offers an accessible and convenient site for the administration of medications. To this end, the field of transdermal drug delivery, aimed at developing safe and efficacious means of delivering medications across the skin, has in the past and continues to garner much time and investment with the continuous advancement of new and innovative approaches. This review details the progress and current status of the transdermal drug delivery field and describes numerous pharmaceutical developments which have been employed to overcome limitations associated with skin delivery systems. Advantages and disadvantages of the various approaches are detailed, commercially marketed products are highlighted and particular attention is paid to the emerging field of microneedle technologies.

  8. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum

    Science.gov (United States)

    Zaid Alkilani, Ahlam; McCrudden, Maelíosa T.C.; Donnelly, Ryan F.

    2015-01-01

    The skin offers an accessible and convenient site for the administration of medications. To this end, the field of transdermal drug delivery, aimed at developing safe and efficacious means of delivering medications across the skin, has in the past and continues to garner much time and investment with the continuous advancement of new and innovative approaches. This review details the progress and current status of the transdermal drug delivery field and describes numerous pharmaceutical developments which have been employed to overcome limitations associated with skin delivery systems. Advantages and disadvantages of the various approaches are detailed, commercially marketed products are highlighted and particular attention is paid to the emerging field of microneedle technologies. PMID:26506371

  9. Perioperative analgesia with a buprenorphine transdermal patch for hallux valgus surgery: a prospective, randomized, controlled study

    Directory of Open Access Journals (Sweden)

    Xu C

    2018-04-01

    Full Text Available Can Xu, Mingqing Li, Chenggong Wang, Hui Li, Hua Liu Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China Purpose: Hallux valgus surgery often results in significant postoperative pain. Adequate control of pain is essential for patient satisfaction and improves the outcome of the procedure. This study aimed to investigate the perioperative analgesic effect of a buprenorphine transdermal patch in patients who underwent hallux valgus surgery.Patients and methods: A total of 90 patients were randomly divided into the following three groups based on the perioperative analgesic method: flurbiprofen axetil intravenous injection (Group F, oral celecoxib (Group C, and buprenorphine transdermal delivery system (BTDS (Group BTDS. The pain status, degree of satisfaction, adverse effects, and administration of tramadol hydrochloride for uncontrolled pain were recorded on the night before surgery, postoperative day 1, postoperative day 2, and postoperative day 3.Results: The BTDS could effectively control perioperative pain for patients undergoing ­hallux valgus surgery. The analgesic effect of the BTDS was better than that of oral celecoxib. In addition, statistically significant differences were not observed in the visual analog scale (VAS scores, adverse effects, and rescue analgesia between the patients who received the BTDS and the patients who received the flurbiprofen axetil intravenous injection. However, the degree of patient satisfaction of the BTDS group was significantly higher (P<0.05 than that of the other two groups.Conclusion: The BTDS (a preemptive analgesia regimen could exert an analgesic effect during the perioperative period for patients who had received hallux valgus surgery, and this effect is beneficial for sustaining postoperative physiological and psychological states and promoting functional rehabilitation. Keywords: hallux valgus, buprenorphine transdermal

  10. Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches.

    Science.gov (United States)

    Oulas, Anastasis; Minadakis, George; Zachariou, Margarita; Sokratous, Kleitos; Bourdakou, Marilena M; Spyrou, George M

    2017-11-27

    Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinformatics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics. Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolution as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather than the sum of the properties derived from the system's individual components. A key approach in Systems Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a comprehensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success stories and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology and systems medicine. © The Author 2017. Published by Oxford University Press.

  11. Immune system of the inner ear as a novel therapeutic target for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Takayuki eOkano

    2014-09-01

    Full Text Available Sensorineural hearing loss (SNHL is a common clinical condition resulting from dysfunction in one or more parts in the auditory pathway between the inner ear and auditory cortex. Despite the prevalence of SNHL, little is known about its etiopathology, although several mechanisms have been postulated including ischemia, viral infection or reactivation, and microtrauma. Immune-mediated inner ear disease has been introduced and accepted as one SNHL pathophysiology; it responds to immunosuppressive therapy and is one of the few reversible forms of bilateral SNHL. The concept of immune-mediated inner ear disease is straightforward and comprehensible, but criteria for clinical diagnosis and the precise mechanism of hearing loss have not been determined. Moreover, the therapeutic mechanisms of corticosteroids are unclear, leading to several misconceptions by both clinicians and investigators concerning corticosteroid therapy. This review addresses our current understanding of the immune system in the inner ear and its involvement in the pathophysiology in SNHL. Treatment of SNHL, including immune-mediated inner ear disorder, will be discussed with a focus on the immune mechanism and immunocompetent cells as therapeutic targets. Finally, possible interventions modulating the immune system in the inner ear to repair the tissue organization and improve hearing in patients with SNHL will be discussed. Tissue macrophages in the inner ear appear to be a potential target for modulating the immune response in the inner ear in the pathophysiology of SNHL.

  12. [Cannabis: Effects in the Central Nervous System. Therapeutic, societal and legal consequences].

    Science.gov (United States)

    Rivera-Olmos, Víctor Manuel; Parra-Bernal, Marisela C

    2016-01-01

    The consumption of marijuana extracted from Cannabis sativa and indica plants involves an important cultural impact in Mexico. Their psychological stimulatory effect is widely recognized; their biochemical and molecular components interact with CB1 and CB2 (endocannabinoid system) receptors in various central nervous system structures (CNS) and immune cells. The psychoactive element Δ-9-tetrahydrocannabinol (THC) can be reproduced synthetically. Systematic reviews show evidence of therapeutic effectiveness of therapeutic marijuana only for certain symptoms of multiple sclerosis (spasticity, spasms and pain), despite attempts for its widespread use, including refractory childhood epilepsy. Evidence indicates significant adverse effects of smoked marijuana on the structure, functioning and brain connectivity. Cannabis exposure during pregnancy affects fetal brain development, potentially leading to later behavioral problems in children. Neuropsychological tests and advanced imaging techniques show involvement in the learning process in adolescents with substance use. Also, marijuana increases the cognitive impairment in patients with multiple sclerosis. Social and ethical consequences to legally free marijuana for recreational use may be deleterious transcendentally. The medicinal or psychoactive cannabinol no addictive effect requires controlled proven efficacy and safety before regulatory approval studies.

  13. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.

    Science.gov (United States)

    Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J

    1996-11-26

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.

  14. Studies on transdermal delivery enhancement of zidovudine.

    Science.gov (United States)

    Takmaz, Evrim Atilay; Inal, Ozge; Baykara, Tamer

    2009-01-01

    The purpose of this study was to investigate physicochemical characteristics and in vitro release of zidovudine from monolithic film of Eudragit RL 100 and ethyl cellulose. Films included 2.5% or 5% (w/w) zidovudine of the dry polymer weight were prepared in various ratios of polymers by solvent evaporation method from methanol/acetone solvent mixture. The release studies were carried out by vertical Franz cells (2.2 cm(2) area, 20 ml receptor fluid). Ex vivo studies were done on Wistar rat skin within the films F6 (Eudragit RL100) and F7 (Eudragit RL100/Ethylcellulose, 1:1) consisting 5% (w/w) zidovudine in comparison with the same amount of free drug. Either iontophoresis (0.1 and 0.5 mA/cm(2) direct currents, Ag/AgCl electrodes) or dimethyl sulfoxide (pretreatment of 1% and 5%, w/w, solutions) were used as enhancers. Films consisting of ethyl cellulose under the ratio of 50% (w/w) gave similar release profiles, and the highest in vitro cumulative released amount was achieved with F6 film which gave the closest results with the free drug. This result could be due to the high swelling capacity and re-crystallization inhibition effect of RL 100 polymer which also influenced the film homogenization. All the films were fitted to Higuchi release kinetics. It was also observed that both 0.5-mA/cm(2) current and 5% (w/w) dimethyl sulfoxide applications significantly increased the cumulative permeated amount of zidovudine after 8 h; however, the flux enhancement ratio was higher for 0.5-mA/cm(2) current application, especially within F6 film. Thus, it was concluded that Eudragit RL100 film (F6) could be further evaluated for the transdermal application of zidovudine.

  15. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    Science.gov (United States)

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  16. Patients' knowledge and attitude towards therapeutic reference pricing system in Slovenia.

    Science.gov (United States)

    Marđetko, Nika; Kos, Mitja

    2016-10-01

    Background The therapeutic reference pricing (TRP) in Slovenia was implemented for proton pump inhibitors in 2013 and for angiotensin-converting enzyme inhibitors and lipid-lowering medicines in 2014. Objective The study aimed to assess patients' knowledge and attitude towards the TRP system. Moreover, the patients' willingness to pay was evaluated for patients who rejected the substitution of a current medicine within a therapeutic class by the reference medicine for which no co-payment is needed. Setting Invitation of patients to participate in a survey and filling in the first part of the questionnaire was run in the community pharmacies in Slovenia. The second part of the questionnaire was filled in at patients' home. Method A representative sample of 676 patients that had been prescribed at least one medicine from the three therapeutic classes was surveyed. The survey was carried out from 15th May to 15th June 2014 in 40 community pharmacies with the help of the pharmacists, who filled in the first part of the questionnaire in the presence of the patients. The second part of the questionnaire was filled in by 475 patients at home and returned by prepaid mail. Main outcome measure Patients' knowledge of and attitude to the TRP system implemented into Slovenian health care practice. Results Most of the statements describing patient' rights and duties within the TRP system were known by approximately 50 % of the patients. Patients were inhomogeneous in their view about the necessity and benefits of the TRP system, most of them regarded it as an unnecessary burden. Among 50.4 % of the patients who were required to copay for their medicine, 46.7 % accepted and 3.7 % rejected co-payment. The average co-payment was € 6.92, while the expressed average willingness to co-pay was € 10.4 per 3 months of therapy. Conclusion Our results indicate that the implementation of the TRP system and potential upgrades represent a significant challenge for the patients.

  17. Galactosyl Pentadecene Reversibly Enhances Transdermal and Topical Drug Delivery

    Czech Academy of Sciences Publication Activity Database

    Kopečná, M.; Macháček, M.; Prchalová, Eva; Štěpánek, P.; Drašar, P.; Kotora, Martin; Vávrová, K.

    2017-01-01

    Roč. 34, č. 10 (2017), s. 2097-2108 ISSN 0724-8741 Institutional support: RVO:61388963 Keywords : galactoside * penetration enhancers * sugar * topical drug delivery * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.002, year: 2016

  18. Plasma Concentrations of Fentanyl Achieved With Transdermal Application in Chickens

    NARCIS (Netherlands)

    Delaski, Kristina M; Gehring, Ronette; Heffron, Brendan T; Negrusz, Adam; Gamble, Kathryn C

    2017-01-01

    Providing appropriate analgesia is an important concern in any species. Fentanyl, a μ-receptor specific opioid, use is common in mammalian species but has been incompletely evaluated for this purpose in avian species. Transdermal fentanyl patches were applied to domestic chickens (n = 10) of varying

  19. Transdermal Physostigmine—Absence of Effect on Topographic Brain Mapping

    Directory of Open Access Journals (Sweden)

    M. Y. Neufeld

    1993-01-01

    Full Text Available Nine patients with primary degenerative dementia (PDD participated in an open trial of transdermal physostigmine (TPh. In order to evaluate the neurophysiologic effects of TPh, EEG data were recorded and compared at baseline and following 2 months of continuous treatment. There was no significant effect of TPh on EEG spectra in patients with PDD.

  20. Efficacy and transdermal absorption of permethrin in scabies patients

    NARCIS (Netherlands)

    van der Rhee, H.J.; Farquhar, J A; Vermeulen, N P

    1989-01-01

    The clinical efficacy and transdermal absorption of permethrin, a new synthetic insecticide was investigated in ten scabies patients. All patients were successfully treated with one application of a cream, containing 5% permethrin. Apart from mild postscabies dermatitis no side-effects were

  1. Avanafil Liposomes as Transdermal Drug Delivery for Erectile ...

    African Journals Online (AJOL)

    Avanafil is slightly soluble in ethanol, practically insoluble in water ... transdermal permeability and bioavailability for the treatment of .... Table 1 shows that the EE had higher values for the MLVs .... reason is the lower solubility of avanafil at pH.

  2. Switching Therapy from Intravenous Landiolol to Transdermal Bisoprolol in a Patient with Thyroid Storm Complicated by Decompensated Heart Failure and Gastrointestinal Dysfunction.

    Science.gov (United States)

    Godo, Shigeo; Kawazoe, Yu; Ozaki, Hiroshi; Fujita, Motoo; Kudo, Daisuke; Nomura, Ryosuke; Shimokawa, Hiroaki; Kushimoto, Shigeki

    2017-10-01

    Thyroid storm is a life-threatening disorder that remains a therapeutic challenge. Although β-blockers are the mainstay for treatment, their use can be challenging in cases complicated by rapid atrial fibrillation and decompensated heart failure. We present a case of thyroid storm-associated atrial fibrillation and decompensated heart failure complicated by gastrointestinal dysfunction secondary to diffuse peritonitis that was successfully managed by a switching therapy, in which the continuous intravenous administration of landiolol was changed to bisoprolol via transdermal patch, in the acute phase treatment. This switching therapy may offer a promising therapeutic option for this potentially lethal disorder.

  3. Efficacy of biorhythmic transdermal combined hormone treatment in relieving climacteric symptoms: a pilot study

    Directory of Open Access Journals (Sweden)

    B Formby

    2011-02-01

    Full Text Available B Formby, F SchmidtThe Rasmus Institute for Medical Research, Program in Reproductive Endocrinology, Santa Barbara, CA, USAObjective: To evaluate the efficacy of a combination of bioidentical combined 17β-estradiol and progesterone transdermal delivery system (lipophilic emulsion-type base to relieve climacteric symptoms. The hormonal replacement was given during a period of 6 months at four different cyclic doses to mimic the normal ovary secretory pattern.Design: An open, randomized, comparative, between-patient trial conducted over 6 months in 29 menopausal women with climacteric symptoms assessed with the Kupperman index at baseline and during treatments. Saliva and serum values of 17β-estradiol and progesterone were quantitated before treatment and after 3 and 6 months. Pharmacokinetic data following transdermal administration of 17β-estradiol (0.3 mg, daily and progesterone (100 mg, daily were calculated from saliva levels using high-performance liquid chromatography analysis.Results: Improvement in climacteric symptoms was reported in 93% of women evaluated before and after 3 and 6 months of treatment. Values of saliva 17β-estradiol increased after 6 months from 0.6 ± 0.3 pg/mL to 14.1 ± 3.3 pg/mL, and the values of serum 17β-estradiol increased from 3.3 ± 2.8 pg/mL to 80.6 ± 21.9 pg/mL. Of responders, 88% characterized symptom relief as complete. No adverse health-related events were attributed to the bioidentical hormone therapy. Time to maximum saliva concentrations (Tmax, in all experimental cases, was observed after 6 hours. Baseline values were reached within 24 hours, indicating a diurnal rhythm of 17β-estradiol seen in normally cyclic women over the 24-hour period, ie, its daily biological rhythm.Conclusion: Percutaneous absorption of 17β-estradiol, as well as the absorption of progesterone, was associated with relief of climacteric symptoms. The cyclical transdermal delivery of combined bioidentical hormones may be

  4. Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Alana M. Horowitz

    2017-08-01

    Full Text Available Neurodegenerative diseases are a devastating group of conditions that cause progressive loss of neuronal integrity, affecting cognitive and motor functioning in an ever-increasing number of older individuals. Attempts to slow neurodegenerative disease advancement have met with little success in the clinic; however, a new therapeutic approach may stem from classic interventions, such as caloric restriction, exercise, and parabiosis. For decades, researchers have reported that these systemic-level manipulations can promote major functional changes that extend organismal lifespan and healthspan. Only recently, however, have the functional effects of these interventions on the brain begun to be appreciated at a molecular and cellular level. The potential to counteract the effects of aging in the brain, in effect rejuvenating the aged brain, could offer broad therapeutic potential to combat dementia-related neurodegenerative disease in the elderly. In particular, results from heterochronic parabiosis and young plasma administration studies indicate that pro-aging and rejuvenating factors exist in the circulation that can independently promote or reverse age-related phenotypes. The recent demonstration that human umbilical cord blood similarly functions to rejuvenate the aged brain further advances this work to clinical translation. In this review, we focus on these blood-based rejuvenation strategies and their capacity to delay age-related molecular and functional decline in the aging brain. We discuss new findings that extend the beneficial effects of young blood to neurodegenerative disease models. Lastly, we explore the translational potential of blood-based interventions, highlighting current clinical trials aimed at addressing therapeutic applications for the treatment of dementia-related neurodegenerative disease in humans.

  5. Integration of systems biology with organs-on-chips to humanize therapeutic development

    Science.gov (United States)

    Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.

    2017-02-01

    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.

  6. Costimulatory Pathways: Physiology and Potential Therapeutic Manipulation in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Nien Yee Kow

    2013-01-01

    Full Text Available System lupus erythematosus (SLE is an immune-complex-mediated autoimmune condition with protean immunological and clinical manifestation. While SLE has classically been advocated as a B-cell or T-cell disease, it is unlikely that a particular cell type is more pathologically predominant than the others. Indeed, SLE is characterized by an orchestrated interplay amongst different types of immunopathologically important cells participating in both innate and adaptive immunity including the dendritic cells, macrophages, neutrophils and lymphocytes, as well as traditional nonimmune cells such as endothelial, epithelial, and renal tubular cells. Amongst the antigen-presenting cells and lymphocytes, and between lymphocytes, the costimulatory pathways which involve mutual exchange of information and signalling play an essential role in initiating, perpetuating, and, eventually, attenuating the proinflammatory immune response. In this review, advances in the knowledge of established costimulatory pathways such as CD28/CTLA-4-CD80/86, ICOS-B7RP1, CD70-CD27, OX40-OX40L, and CD137-CD137L as well as their potential roles involved in the pathophysiology of SLE will be discussed. Attempts to target these costimulatory pathways therapeutically will pave more potential treatment avenues for patients with SLE. Preliminary laboratory and clinical evidence of the potential therapeutic value of manipulating these costimulatory pathways in SLE will also be discussed in this review.

  7. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    Directory of Open Access Journals (Sweden)

    Chae-Ryon Kong

    2011-09-01

    Full Text Available Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC converts the wide angular range of scattered photons (numerical aperture (NA of 1.0 from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22. A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests.

  8. Development of Novel Formulations to Enhance in Vivo Transdermal Permeation of Tocopherol

    Directory of Open Access Journals (Sweden)

    Nada Aly H.

    2014-09-01

    Full Text Available Tocopherol represents a big challenge for transdermal permeation owing to its extreme hydrophobicity and large molecular mass. The aim of the present study was to develop alpha-tocopherol (T topical formulations and evaluate their ex vivo and in vivo permeation. Franz diffusion cells were used for ex vivo permeation, and neonatal rats were used for in vivo permeation. Seven gel formulations and 21 liquid formulations were investigated for physical stability, viscosity and permeation of T. Analysis of T was performed by a validated HPLC method using a UV detector. The ex vivo permeation from gel and emulsion formulations was very poor (0.001-0.015 %. Highest permeation was observed from monophasic liquid formulations containing dimethyl sulfoxide (DMSO, tocopheryl polyethylene glycols (TPGs, propylene glycol, ethanol and 9.5 % T. The in vivo results demonstrated higher retention in the epidermis compared to subcutaneous tissues, 1377 and 1.13 μg g-1, respectively. Increasing T concentration from 4.8 to 9.5 % did not increase the amount permeated or % of T retained. It was concluded that simple solutions of T in the presence of DMSO and TPGs were more promising systems for effective transdermal permeation compared to gel, emulsion or oleaginous systems.

  9. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    Science.gov (United States)

    Hoffmeister, Cristiane RD; Durli, Taís L.; Schaffazick, Scheila R.; Raffin, Renata P.; Bender, Eduardo A.; Beck, Ruy CR; Pohlmann, Adriana R.; Guterres, Sílvia S.

    2012-05-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% ( w/ v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation.

  10. Therapeutic Innovations for Targeting Childhood Neuroblastoma: Implications of the Neurokinin-1 Receptor System.

    Science.gov (United States)

    Berger, Michael; VON Schweinitz, Dietrich

    2017-11-01

    Neuroblastoma is the most common solid extracranial malignant tumor in children. Despite recent advances in the treatment of this heterogenous tumor with surgery and chemotherapy, the prognosis in advanced stages remains poor. Interestingly, neuroblastoma is one of the few solid tumors, to date, in which an effect for targeted immunotherapy has been proven in controlled clinical trials, giving hope for further advances in the treatment of this and other tumors by targeted therapy. A large array of novel therapeutic options for targeted therapy of neuroblastoma is on the horizon. To this repεrtoirε, the neurokinin-1 receptor (NK1R) system was recently added. The present article explores the most recent developments in targeting neuroblastoma cells via the NK1R and how this new knowledge could be helpful to create new anticancer therapies agains neuroblastoma and other cancers. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Adrenaline and serotonin therapeutic effect on the hemopoietic system of irradiated mice

    International Nuclear Information System (INIS)

    Smirnova, I.B.; Dontsova, G.V.; Rakhmanina, O.N.; Konstantinova, M.M.

    1984-01-01

    Post-irradiation effect of adrenaline and serotonin on the hemopoietic system of irradiated mice has been studied. The pharmaceuticals were injected subcutaneously 15 minutes before the X-radiation exposure at a dose of 7 Gy or immediately after it. The degree of radiation injury has been estimated from 30-day survival fraction of the animals, cell state of the bone marrow, mass of spleen, cfu quantity in the bone marrow at exo- and endocolonial growth (following implantation of bone marrow cells from mice that had been injected with these drugs to irradiated recipients). Post-irradiation effect of adrenaline turned to be weaker than that of serotonin, the latter increasing the survival rate of irradiated mice to 50%. It is stated that post-irradiation therapeutic effect of adrenaline and serotonin expressed in acceleration of the irradiated hemopoietic tissue repair can be realized under direct effect of drugs on the viable hemopoietic cells, probably, by enchancement of their proliferation

  12. Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Jinfeng Xing

    2009-10-01

    Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine

  13. Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy.

    Directory of Open Access Journals (Sweden)

    Tomoya Uehara

    Full Text Available L-[methyl-11C]Methionine (11C-Met is useful for estimating the therapeutic efficacy of particle radiotherapy at early stages of the treatment. Given the short half-life of 11C, the development of longer-lived 18F- and 123I-labeled probes that afford diagnostic information similar to 11C-Met, are being sought. Tumor uptake of 11C-Met is involved in many cellular functions such as amino acid transport System-L, protein synthesis, and transmethylation. Among these processes, since the energy-dependent intracellular functions involved with 11C-Met are more reflective of the radiotherapeutic effects, we evaluated the activity of the amino acid transport System-A as an another energy-dependent cellular function in order to estimate radiotherapeutic effects. In this study, using a carbon-ion beam as the radiation source, the activity of System-A was evaluated by a specific System-A substrate, alpha-[1-14C]-methyl-aminoisobutyric acid (14C-MeAIB. Cellular growth and the accumulation of 14C-MeAIB or 14C-Met were evaluated over time in vitro in cultured human salivary gland (HSG tumor cells (3-Gy or in vivo in murine xenografts of HSG tumors (6- or 25-Gy before and after irradiation with the carbon-ion beam. Post 3-Gy irradiation, in vitro accumulation of 14C-Met and 14C-MeAIB decreased over a 5-day period. In xenografts of HSG tumors in mice, tumor re-growth was observed in vivo on day-10 after a 6-Gy irradiation dose, but no re-growth was detected after the 25-Gy irradiation dose. Consistent with the growth results, the in vivo tumor accumulation of 14C-MeAIB did not decrease after the 6-Gy irradiation dose, whereas a significant decrease was observed after the 25-Gy irradiation dose. These results indicate that the activity of energy dependent System-A transporter may reflect the therapeutic efficacy of carbon-ion radiotherapy and suggests that longer half-life radionuclide-labeled probes for System-A may also provide widely available probes to

  14. Transdermal granisetron: a guide to its use in preventing nausea and vomiting induced by chemotherapy.

    Science.gov (United States)

    Keating, Gillian M; Duggan, Sean T; Curran, Monique P

    2012-09-01

    Transdermal granisetron (Sancuso®) is effective in the prevention of nausea and vomiting in patients with cancer who are receiving moderately or highly emetogenic chemotherapy for 3-5 days. Transdermal granisetron is noninferior to oral granisetron in this indication, and is generally well tolerated in this indication. Thus, transdermal granisetron provides a convenient option for the prevention of chemotherapy-induced nausea and vomiting, with the potential to improve patient compliance.

  15. Development of w/o microemulsion for transdermal delivery of iodide ions.

    Science.gov (United States)

    Lou, Hao; Qiu, Ni; Crill, Catherine; Helms, Richard; Almoazen, Hassan

    2013-03-01

    The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P valuemicroemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.

  16. Enhanced Transdermal Delivery by Combined Application of Dissolving Microneedle Patch on Serum-Treated Skin.

    Science.gov (United States)

    Kim, Suyong; Dangol, Manita; Kang, Geonwoo; Lahiji, Shayan F; Yang, Huisuk; Jang, Mingyu; Ma, Yonghao; Li, Chengguo; Lee, Sang Gon; Kim, Chang Hyun; Choi, Young Wook; Kim, So Jeong; Ryu, Ja Hyun; Baek, Ji Hwoon; Koh, Jaesuk; Jung, Hyungil

    2017-06-05

    Dissolving microneedle (DMN), a transdermal drug delivery system in which drugs are encapsulated in a biodegradable polymeric microstructure, is designed to dissolve after skin penetration and release the encapsulated drugs into the body. However, because of limited loading capacity of drugs within microsized structures, only a small dosage can be delivered, which is often insufficient for patients. We propose a novel DMN application that combines topical and DMN application simultaneously to improve skin permeation efficiency. Drugs in pretreated topical formulation and encapsulated drugs in DMN patch are delivered into the skin through microchannels created by DMN application, thus greatly increasing the delivered dose. We used 4-n-butylresorcinol to treat human hyperpigmentation and found that sequential application of serum formulation and DMNs was successful. In skin distribution experiments using Alexa Fluor 488 and 568 dyes as model drugs, we confirmed that the pretreated serum formulation was delivered into the skin through microchannels created by the DMNs. In vitro skin permeation and retention experiments confirmed that this novel combined application delivered more 4-n-butylresorcinol into the skin than traditional DMN-only and serum-only applications. Moreover, this combined application showed a higher efficacy in reducing patients' melanin index and hyperpigmented regions compared with the serum-only application. As combined application of DMNs on serum-treated skin can overcome both dose limitations and safety concerns, this novel approach can advance developments in transdermal drug delivery.

  17. Evaluations of imidazolium ionic liquids as novel skin permeation enhancers for drug transdermal delivery.

    Science.gov (United States)

    Zhang, Ding; Wang, Huai-Ji; Cui, Xiu-Ming; Wang, Cheng-Xiao

    2017-06-01

    In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.

  18. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Directory of Open Access Journals (Sweden)

    Hong X

    2013-09-01

    Full Text Available Xiaoyun Hong,1,2,* Liangming Wei,3,* Fei Wu,2,* Zaozhan Wu,2 Lizhu Chen,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, Shanghai, People's Republic of China; 2School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China; 3Research Institute of Micro/Nano Science and Technology, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. Keywords: microneedle, dissolving, biodegradable, sustained release

  19. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery.

    Science.gov (United States)

    Lin, Hongwei; Xie, Qingchun; Huang, Xin; Ban, Junfeng; Wang, Bo; Wei, Xing; Chen, Yanzhong; Lu, Zhufen

    2018-01-01

    The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs), to expand the applications of the Chinese herbal medicine, imperatorin (IMP), and increase its transdermal delivery. In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%), an acceptable particle size (82.4±0.65 nm), high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP.

  20. A Novel Transdermal Power Transfer Device for the Application of Implantable Microsystems

    Directory of Open Access Journals (Sweden)

    Jing-Quan Liu

    2015-03-01

    Full Text Available This paper presents a transdermal power transfer device for the application of implantable devices or systems. The device mainly consists of plug and socket. The power transfer process can be started after inserting the plug into the socket with an applied potential on the plug. In order to improve the maneuverability and reliability of device during power transfer process, the metal net with mesh structure were added as a part of the socket to serve as intermediate electrical connection layer. The socket was encapsulated by polydimethylsiloxane (PDMS with good biocompatibility and flexibility. Two stainless steel hollow needles placed in the same plane acted as the insertion part of the needle plug, and Parylene C thin films were deposited on needles to serve as insulation layers. At last, the properties of the transdermal power transfer device were tested. The average contact resistance between needle and metal mesh was 0.454 Ω after 50 random insertions, which showed good electrical connection. After NiMH (nickel-metal hydride batteries were recharged for 10 min with current up to 200 mA, the caused resistive heat was less than 0.6 °C, which also demonstrated the low charging temperature and was suitable for charging implantable devices.

  1. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification.

    Science.gov (United States)

    Lu, Wen-Chien; Chiang, Been-Huang; Huang, Da-Wei; Li, Po-Hsien

    2014-03-01

    Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Safety, efficacy and patient acceptability of the combined estrogen and progestin transdermal contraceptive patch: a review

    Directory of Open Access Journals (Sweden)

    Alessandra Graziottin

    2008-11-01

    Full Text Available Alessandra GraziottinCenter of Gynecology and Medical Sexology, H San Raffaele Resnati, Via Santa Croce 10/a, 20123 Milano, ItalyAbstract: The worldwide introduction of the first, unique patch for hormonal contraception (ethinyl estradiol/norelgestromin, EE/NGMN patch was widely recognized as a significant event in the development of drug delivery systems. This innovation offers a number of advantages over the oral route, and extensive clinical trials have proved its safety, efficacy, effectiveness, and tolerability. The weekly administration and ease of use/simplicity of the EE/NGMN patch contribute to its acceptability, and help to resolve the two main problems of non-adherence, namely early discontinuation and inconsistent use. The patch offers additional benefits to adolescents (improvement of dysmenorrhea and acne, adults (improvement in emotional and physical well-being, premenstrual syndrome, and menstrual irregularities, and perimenopausal women (correction of hormonal imbalance, modulation of premenopausal symptoms, thus providing high satisfaction rates (in nearly 90% of users. Since its introduction, the transdermal contraceptive patch has proved to be a useful choice for women who seek a convenient formulation which is easy to use, with additional, non-contraceptive tailored benefits for all the ages.Keywords: transdermal, hormonal contraceptive, patient satisfaction, patient adherence

  3. Phosphodiesterase-4 inhibition as a therapeutic approach to treat capillary leakage in systemic inflammation.

    Science.gov (United States)

    Schick, Martin Alexander; Wunder, Christian; Wollborn, Jakob; Roewer, Norbert; Waschke, Jens; Germer, Christoph-Thomas; Schlegel, Nicolas

    2012-06-01

    In sepsis and systemic inflammation, increased microvascular permeability and consecutive breakdown of microcirculatory flow significantly contribute to organ failure and death. Evidence points to a critical role of cAMP levels in endothelial cells to maintain capillary endothelial barrier properties in acute inflammation. However, approaches to verify this observation in systemic models are rare. Therefore we tested here whether systemic application of the phosphodiesterase-4-inhibitors (PD-4-Is) rolipram or roflumilast to increase endothelial cAMP was effective to attenuate capillary leakage and breakdown of microcirculatory flow in severe lipopolysaccharide (LPS)-induced systemic inflammation in rats. Measurements of cAMP in mesenteric microvessels demonstrated significant LPS-induced loss of cAMP levels which was blocked by application of rolipram. Increased endothelial cAMP by application of either PD-4-I rolipram or roflumilast led to stabilization of endothelial barrier properties as revealed by measurements of extravasated FITC-albumin in postcapillary mesenteric venules. Accordingly, microcirculatory flow in mesenteric venules was significantly increased following PD-4-I treatment and blood gas analyses indicated improved metabolism. Furthermore application of PD-4-I after manifestation of LPS-induced systemic inflammation and capillary leakage therapeutically stabilized endothelial barrier properties as revealed by significantly reduced volume resuscitation for haemodynamic stabilization. Accordingly microcirculation was significantly improved following treatment with PD-4-Is. Our results demonstrate that inflammation-derived loss of endothelial cAMP contributes to capillary leakage which was blocked by systemic PD-4-I treatment. Therefore these data suggest a highly clinically relevant and applicable approach to stabilize capillary leakage in sepsis and systemic inflammation.

  4. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis.

    Science.gov (United States)

    González-Vázquez, Patricia; Larrañeta, Eneko; McCrudden, Maelíosa T C; Jarrahian, Courtney; Rein-Weston, Annie; Quintanar-Solares, Manjari; Zehrung, Darin; McCarthy, Helen; Courtenay, Aaron J; Donnelly, Ryan F

    2017-11-10

    Neonatal infections are a leading cause of childhood mortality in low-resource settings. World Health Organization guidelines for outpatient treatment of possible serious bacterial infection (PSBI) in neonates and young infants when referral for hospital treatment is not feasible include intramuscular gentamicin (GEN) and oral amoxicillin. GEN is supplied as an aqueous solution of gentamicin sulphate in vials or ampoules and requires health care workers to be trained in dose calculation or selection of an appropriate dose based on the patient's weight band and to have access to safe injection supplies and appropriate sharps disposal. A simplified formulation, packaging, and delivery method to treat PSBI in low-resource settings could decrease user error and expand access to lifesaving outpatient antibiotic treatment for infants with severe infection during the neonatal period. We developed dissolving polymeric microneedles (MN) arrays to deliver GEN transdermally. MN arrays were produced from aqueous blends containing 30% (w/w) of GEN and two polymers approved by the US Food and Drug Administration: sodium hyaluronate and poly(vinylpyrrolidone). The arrays (19×19 needles and 500μm height) were mechanically strong and were able to penetrate a skin simulant to a depth of 378μm. The MN arrays were tested in vitro using a Franz Cell setup delivering approximately 4.45mg of GEN over 6h. Finally, three different doses (low, medium, and high) of GEN delivered by MN arrays were tested in an animal model. Maximum plasma levels of GEN were dose-dependent and ranged between 2 and 5μg/mL. The time required to reach these levels post-MN array application ranged between 1 and 6h. This work demonstrated the potential of dissolving MN arrays to deliver GEN transdermally at therapeutic levels in vivo. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Minimization of CYP2D6 Polymorphic Differences and Improved Bioavailability via Transdermal Administration: Latrepirdine Example.

    Science.gov (United States)

    Chew, Marci L; Mordenti, Joyce; Yeoh, Thean; Ranade, Gautam; Qiu, Ruolun; Fang, Juanzhi; Liang, Yali; Corrigan, Brian

    2016-08-01

    Transdermal delivery has the potential to offer improved bioavailability by circumventing first-pass gut and hepatic metabolism. This study evaluated the pharmacokinetics of oral immediate release and transdermal latrepirdine in extensive and poor CYP2D6 metabolizers (EM/PM). Latrepirdine transdermal solution was prepared extemporaneously. The solution was applied with occlusive dressing to upper or middle back for 24 h. Each subject received a single dose of 8.14 mg oral, 5 mg transdermal, and 10 mg transdermal (EMs only) latrepirdine free base in a fixed sequence. Twelve EMs and 7 PMs (50-79 years) enrolled and completed the study. Latrepirdine was well tolerated following both routes of administration. Dose-normalized latrepirdine total exposures were approximately 11-fold and 1.5-fold higher in EMs and PMs, respectively following administration of transdermal relative to oral. Differences between EM and PM latrepirdine exposures were decreased, with PMs having 1.9- and 2.7-fold higher peak and total exposures, respectively, following transdermal administration compared to 11- and 20-fold higher exposures, respectively, following oral administration. Transdermal delivery can potentially mitigate the large intersubject differences observed with compounds metabolized primarily by CYP2D6. Transdermal delivery was readily accomplished in the clinic using an extemporaneously prepared solution [NCT00990613].

  6. [Patients' intervention in a therapeutic education program dedicated to systemic lupus: definitions, setting and benefits].

    Science.gov (United States)

    Hervier, B; Magar, Y; Allab, F; Richard, K; Neves, Y; Danjou, S; Amoura, Z; Ayçaguer, S

    2015-10-01

    Though recommended, participation of patients with specific expertise in therapeutic education programs (TEP) is rare. This work reports the experience of a national reference centre for rare systemic diseases. Involvement of "expert patients" (EP) has been planned from the development of a TEP dedicated to systemic lupus: patients' roles and required expertise have been defined and linked to the pedagogical tools. Such patients have been recruited during individual interviews and called to participate to specific pedagogical training. EP intervention have been evaluated by questionnaire to EP and health care providers. Three EP's functions have been identified: sharing experiences, giving "tips and tricks" and promoting dialogue. EP's interventions has been organised into a hierarchy (from sharing to co-animation). Among 298 patients enrolled in the TEP, 25 (8.4%) have been identified as possible EP. Eight of them (32%) benefited from a specific training of 12 hours. Among these patients, two (25%) regularly participate to the education sessions. For EP as well as for health care providers, EP's intervention seems beneficial (visual scale scores of 7.5 and 9.5, respectively). Though difficult to organise, EP's intervention in TEP dedicated to rare systemic diseases seems useful and would earn to be increase. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  7. A remotely operated, automated system for the infusion of shielded therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Macfarlane, D.J.; Bartlett, M.; Bellen, J.; Peters, J.; Domagala, M.; Allison, R.

    1999-01-01

    Full text: A number of radiopharmaceuticals may soon emerge into mainstream clinical oncology for palliative and therapeutic treatment for a variety of malignancies. These agents are characterized by high linear energy transfer particulate emissions. Dispensing and administration of these therapies on a regular basis pose a substantial radiation burden to staff, from direct g-emissions and from Bremsstrahlung (braking) radiations. In an effort to implement the ALARA principle, a multidisciplinary team was given the brief to design a system which permitted: (1) safe, sterile transfer of a nominated quantity of radiopharmaceutical into a shielded reservoir compatible with the infusion pump; (2) remote variation of volume and administration rate upon command; (3) purging of delivery system following administration of dose; (4) monitoring of and communication with patient during infusion; (5) use of TGA-approved delivery system. The final design centred around an Abbott 'Lifecare 5000' volumetric dual-channel intravenous infusion pump and featured: microprocessor control with mutiline LCD prompting display; remote operation of keypad by pneumatic actuator; CCTV monitoring of patient, pump and physiological data; delivery of therapy dose from a shielded vial; flushing of therapy vial by 'back-priming'; and full array of safety alarms (air in line, occlusion, empty vial, etc). Further developments include audio communication with patient and remote physiological monitoring

  8. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.

    Science.gov (United States)

    Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D

    2016-02-01

    During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Antisense Oligonucleotide-mediated Exon Skipping as a Systemic Therapeutic Approach for Recessive Dystrophic Epidermolysis Bullosa.

    Science.gov (United States)

    Bremer, Jeroen; Bornert, Olivier; Nyström, Alexander; Gostynski, Antoni; Jonkman, Marcel F; Aartsma-Rus, Annemieke; van den Akker, Peter C; Pasmooij, Anna Mg

    2016-10-18

    The "generalized severe" form of recessive dystrophic epidermolysis bullosa (RDEB-gen sev) is caused by bi-allelic null mutations in COL7A1, encoding type VII collagen. The absence of type VII collagen leads to blistering of the skin and mucous membranes upon the slightest trauma. Because most patients carry exonic point mutations or small insertions/deletions, most exons of COL7A1 are in-frame, and low levels of type VII collagen already drastically improve the disease phenotype, this gene seems a perfect candidate for antisense oligonucleotide (AON)-mediated exon skipping. In this study, we examined the feasibility of AON-mediated exon skipping in vitro in primary cultured keratinocytes and fibroblasts, and systemically in vivo using a human skin-graft mouse model. We show that treatment with AONs designed against exon 105 leads to in-frame exon 105 skipping at the RNA level and restores type VII collagen protein production in vitro. Moreover, we demonstrate that systemic delivery in vivo induces de novo expression of type VII collagen in skin grafts generated from patient cells. Our data demonstrate strong proof-of-concept for AON-mediated exon skipping as a systemic therapeutic strategy for RDEB.

  10. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases.

    Science.gov (United States)

    Tan, Wan Shun Daniel; Liao, Wupeng; Zhou, Shuo; Mei, Dan; Wong, Wai-Shiu Fred

    2017-12-27

    The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT 1 R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Therapeutic drug monitoring of flucytosine in serum using a SERS-active membrane system

    Science.gov (United States)

    Berger, Adam G.; White, Ian M.

    2017-02-01

    A need exists for near real-time therapeutic drug monitoring (TDM), in particular for antibiotics and antifungals in patient samples at the point-of-care. To truly fit the point-of-care need, techniques must be rapid and easy to use. Here we report a membrane system utilizing inkjet-fabricated surface enhanced Raman spectroscopy (SERS) sensors that allows sensitive and specific analysis despite the elimination of sophisticated chromatography equipment, expensive analytical instruments, and other systems relegated to the central lab. We utilize inkjet-fabricated paper SERS sensors as substrates for 5FC detection; the use of paper-based SERS substrates leverages the natural wicking ability and filtering properties of microporous membranes. We investigate the use of microporous membranes in the vertical flow assay to allow separation of the flucytosine from whole blood. The passive vertical flow assay serves as a valuable method for physical separation of target analytes from complex biological matrices. This work further establishes a platform for easy, sensitive, and specific TDM of 5FC from whole blood.

  12. The third therapeutic system: faith healing strategies in the context of a generalized AIDS epidemic.

    Science.gov (United States)

    Manglos, Nicolette D; Trinitapoli, Jenny

    2011-03-01

    Faith healing in sub-Saharan Africa has primarily been studied qualitatively among Pentecostal-Charismatic groups, and considered as its own phenomenon with little attention to its relationship to other modes of healing. Using data from Malawi, a religiously diverse African country with high HIV prevalence, we find that faith healing is pervasive across multiple religious traditions. For individuals, attending a faith healing congregation is associated with lower levels of generalized worry about AIDS, and this association is driven by those who switched churches before AIDS became widespread in rural areas. Use of condoms and traditional medicine are, on the other hand, positively associated with worry about AIDS. We argue that faith healing can be understood as a third therapeutic system that coexists with the well-documented biomedical and traditional systems. The success of faith healing approaches lies in their unique ability to combine individual-pragmatic and communal-ritualized aspects of healing to inform interpretations of the AIDS epidemic and its consequences.

  13. The Third Therapeutic System: Faith Healing Strategies in the Context of a Generalized AIDS Epidemic

    Science.gov (United States)

    Manglos, Nicolette D.; Trinitapoli, Jenny

    2014-01-01

    Faith healing in sub-Saharan Africa has primarily been studied qualitatively among Pentecostal-Charismatic groups, and considered as its own phenomenon with little attention to its relationship to other modes of healing. Using data from Malawi, a religiously diverse African country with high HIV prevalence, we find that faith healing is pervasive across multiple religious traditions. For individuals, attending a faith healing congregation is associated with lower levels of generalized worry about AIDS, and this association is driven by those who switched churches before AIDS became widespread in rural areas. Use of condoms and traditional medicine are, on the other hand, positively associated with worry about AIDS. We argue that faith healing can be understood as a third therapeutic system that coexists with the well-documented biomedical and traditional systems. The success of faith healing approaches lies in their unique ability to combine individual-pragmatic and communal-ritualized aspects of healing to inform interpretations of the AIDS epidemic and its consequences. PMID:21362615

  14. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle.

    Science.gov (United States)

    Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue

    2014-10-01

    The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm(2)/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen.

  15. Inkjet printing of insulin microneedles for transdermal delivery.

    Science.gov (United States)

    Ross, Steven; Scoutaris, Nicolaos; Lamprou, Dimitrios; Mallinson, David; Douroumis, Dennis

    2015-08-01

    Inkjet printing technology was used to apply insulin polymeric layers on metal microneedles for transdermal delivery. A range of various polymers such as gelatin (GLN), polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol (SOL), poly(2-ethyl-2-oxazoline) (POX) and trehalose (THL) were assessed for their capacity to form thin uniform and homogeneous layers that preserve insulin intact. Atomic force microscopy (AFM) showed homogeneous insulin-polymer layers without any phase separation while SOL demonstrated the best performance. Circular discroism (CD) analysis of rehydrated films showed that insulin's alpha helices and β-sheet were well preserved for THL and SOL. In contrast, GLN and POX insulin layers revealed small band shifts indicating possible conformational changes. Insulin release in Franz diffusion cells from MNs inserted into porcine skin showed rapid release rates for POX and GLN within the first 20 min. Inkjet printing was proved an effective approach for transdermal delivery of insulin in solid state.

  16. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    OpenAIRE

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2013-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. ...

  17. Current advances in transdermal delivery of drugs for alzheimer's disease

    OpenAIRE

    Thuy Trang Nguyen; Vo Van Giau; Tuong Kha Vo

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the...

  18. Optimization of transdermal delivery using magainin pore-forming peptide

    OpenAIRE

    Kim, Yeu-Chun; Ludovice, Peter J.; Prausnitz, Mark R.

    2008-01-01

    The skin's outer layer of stratum corneum, which is a thin tissue containing multilamellar lipid bilayers, is the main barrier to drug delivery to the skin. To increase skin permeability, our previous work has shown large enhancement of transdermal permeation using a pore-forming peptide, magainin, which was formulated with N-lauroyl sarcosine (NLS) in 50% ethanol-in-PBS. Mechanistic analysis suggested that magainin and NLS can increase skin permeability by disrupting stratum corneum lipid st...

  19. Evaluation of mesotherapy as a transdermal drug delivery tool.

    Science.gov (United States)

    Kim, S; Kye, J; Lee, M; Park, B

    2016-05-01

    There has been no research about the exact mechanism of transdermal drug delivery during mesotherapy. We aimed to evaluate whether the commercial mesogun can be an appropriate technique for a transdermal drug delivery. We injected blue ink into the polyurethane foam or pig skin with three types of mesotherapy using a commercial mesogun, or local made intradermal injector, or a manual injection of syringe. To assess the internal pressure of the cylinder and drug delivery time, we designed the evaluation setup using a needle tip pressure transducer. All types of injectors induced adequate penetration of blue ink into the polyurethane foam without backflow. In the pig skin, blue ink leaked out rapidly with the backward movement of the needle in the commercial mesogun in contrast to the local made injector or the manual injection of syringe. When the time for backward movement of the syringe approaches 1000 ms, the cylinder pressure of the syringe is saturated at around 25 mmHg which can be translated into the dermal pressure of the pig skin. There should be sufficient time between the insertion and withdrawal of the needle of injector for the adequate transdermal drug delivery and it must be considered for mesotherapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Development and evaluation of transdermal organogels containing nicorandil.

    Science.gov (United States)

    Madan, J R; Sagar, Banode; Chellappan, Dinesh K; Dua, Kamal

    2013-01-01

    The objective of the study was to formulate a transdermal product containing Nicorandil as a model drug, because it has been first drug of choice to treat angina and hypertension. A further objective was to reduce its side effects. The transdermal product was prepared using various synthetic and natural gelling agents such as Carbopol 934p, Carbopol 974p, HPMC K15M and HPMC K100M. Various penetration enhancers were incorporated to enhance the diffusion across the rat skin. A further objective was to formulate organogels and minimize the concentration of penetration enhancer to 50% of the concentration used in gels and yet to achieve the maximum drug release. The prepared formulations were evaluated for their physical appearance, viscosity, spreadability, drug content and freeze thaw cycle. Based on in vitro studies across rat skin and human cadaver skin it was concluded that Nicrorandil transdermal organogel formulation using HPMC K100M with 2% w/w Transcutol-P shows increase in cumulative diffusion of Nicorandil amongst all other formulations.

  1. Microneedles array with biodegradable tips for transdermal drug delivery

    Science.gov (United States)

    Iliescu, Ciprian; Chen, Bangtao; Wei, Jiashen; Tay, Francis E. H.

    2008-12-01

    The paper presented an enhancement solution for transdermal drug delivery using microneedles array with biodegradable tips. The microneedles array was fabricated by using deep reactive ion etching (DRIE) and the biodegradable tips were made to be porous by electrochemical etching process. The porous silicon microneedle tips can greatly enhance the transdermal drug delivery in a minimum invasion, painless, and convenient manner, at the same time; they are breakable and biodegradable. Basically, the main problem of the silicon microneedles consists of broken microneedles tips during the insertion. The solution proposed is to fabricate the microneedle tip from a biodegradable material - porous silicon. The silicon microneedles are fabricated using DRIE notching effect of reflected charges on mask. The process overcomes the difficulty in the undercut control of the tips during the classical isotropic silicon etching process. When the silicon tips were formed, the porous tips were then generated using a classical electrochemical anodization process in MeCN/HF/H2O solution. The paper presents the experimental results of in vitro release of calcein and BSA with animal skins using a microneedle array with biodegradable tips. Compared to the transdermal drug delivery without any enhancer, the microneedle array had presented significant enhancement of drug release.

  2. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation.

    Science.gov (United States)

    Abdulbaqi, Ibrahim M; Darwis, Yusrida; Assi, Reem Abou; Khan, Nurzalina Abdul Karim

    2018-01-01

    Colchicine is used for the treatment of gout, pseudo-gout, familial Mediterranean fever, and many other illnesses. Its oral administration is associated with poor bioavailability and severe gastrointestinal side effects. The drug is also known to have a low therapeutic index. Thus to overcome these drawbacks, the transdermal delivery of colchicine was investigated using transethosomal gels as potential carriers. Colchicine-loaded transethosomes (TEs) were prepared by the cold method and statistically optimized using three sets of 24 factorial design experiments. The optimized formulations were incorporated into Carbopol 940 ® gel base. The prepared colchicine-loaded transethosomal gels were further characterized for vesicular size, dispersity, zeta potential, drug content, pH, viscosity, yield, rheological behavior, and ex vivo skin permeation through Sprague Dawley rats' back skin. The results showed that the colchicine-loaded TEs had aspherical irregular shape, nanometric size range, and high entrapment efficiency. All the formulated gels exhibited non-Newtonian plastic flow without thixotropy. Colchicine-loaded transethosomal gels were able to significantly enhance the skin permeation parameters of the drug in comparison to the non-ethosomal gel. These findings suggested that the transethosomal gels are promising carriers for the transdermal delivery of colchicine, providing an alternative route for drug administration.

  3. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation

    Directory of Open Access Journals (Sweden)

    Abdulbaqi IM

    2018-04-01

    Full Text Available Ibrahim M Abdulbaqi, Yusrida Darwis, Reem Abou Assi, Nurzalina Abdul Karim Khan School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia Introduction: Colchicine is used for the treatment of gout, pseudo-gout, familial Mediterranean fever, and many other illnesses. Its oral administration is associated with poor bioavailability and severe gastrointestinal side effects. The drug is also known to have a low therapeutic index. Thus to overcome these drawbacks, the transdermal delivery of colchicine was investigated using transethosomal gels as potential carriers.Methods: Colchicine-loaded transethosomes (TEs were prepared by the cold method and statistically optimized using three sets of 24 factorial design experiments. The optimized formulations were incorporated into Carbopol 940® gel base. The prepared colchicine-loaded transethosomal gels were further characterized for vesicular size, dispersity, zeta potential, drug content, pH, viscosity, yield, rheological behavior, and ex vivo skin permeation through Sprague Dawley rats’ back skin.Results: The results showed that the colchicine-loaded TEs had aspherical irregular shape, nanometric size range, and high entrapment efficiency. All the formulated gels exhibited non-Newtonian plastic flow without thixotropy. Colchicine-loaded transethosomal gels were able to significantly enhance the skin permeation parameters of the drug in comparison to the non-ethosomal gel.Conclusion: These findings suggested that the transethosomal gels are promising carriers for the transdermal delivery of colchicine, providing an alternative route for drug administration. Keywords: transethosomes, ethosomal nanocarriers, colchicine, factorial design, skin permeation, rheology

  4. New Sides of Aldosterone Action in Cardiovascular System as Potential Targets for Therapeutic Intervention.

    Science.gov (United States)

    Kolodziejczyk, Patrycjusz; Gromotowicz-Poplawska, Anna; Aleksiejczuk, Michal; Chabielska, Ewa; Tutka, Piotr; Miltyk, Wojciech

    2018-03-26

    Aldosterone, the main mineralocorticoid hormone, plays a crucial role in the regulation of electrolyte homeostasis and blood pressure. Although, this role is undoubtedly important, it is not a hormonal action that attracts the most attention. Aldosterone seems to be very important important as a local messenger in the pathology of cardiovascular diseases (CVD). In the last few years, the attention was focused on the correlation between raised aldosterone level and increased risk of cardiovascular events. It has been demonstrated that aldosterone contributes to fibrosis, inflammation, endothelial dysfunction, fibrinolytic disordes, and oxidative stress leading to CVD development and progression. It used to be thought that the effects of aldosterone are mediated via classic nuclear receptors - mineralocorticoid receptors (MR). Now we know that the mechanism of aldosterone action in cardiovascular system is much more complex, since experimental and clinical studies indicate that MR blockade may be not sufficient to abolish aldosterone-incuced harmful effects in the cardiovascular system. Therefore, the involvement of some other than MR, receptors and factors is suggested. Moreover, in addition to the generally known genomic action of aldosterone, which involves MR activation, the nongenomic pathways are postulated in the mode of hormone action. More and more attention is focused on the membrane-coupled receptors, which mediate the rapid effects of aldosterone and have been already confirmed in different cells and tissues of a cardiovascular system. The confirmation of multiple mechanisms of aldosterone action opens a new perspective for more effective therapeutic intervention in aldosterone-related CVD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Involvement of Renin-Angiotensin System in Retinopathy of Prematurity - A Possible Target for Therapeutic Intervention.

    Directory of Open Access Journals (Sweden)

    Madhu Nath

    Full Text Available Examining the Retinal Renin Angiotensin System (RRAS in the ROP neonates and analyzing the possibility of modulating the RRAS to prevent the progression in Oxygen Induced Retinopathy (OIR model.Vitreous of ROP patients (n = 44, median age 5.5 months was quantified for RRAS components, VEGF, HIF-1α and compared with age matched control. The involvement of RRAS in ROP was tested in the rat model of OIR and compared with normoxia. Expressions of RAS components, VEGF and HIF-1α in retina were analyzed using qPCR and retinal structure and function was also analyzed. Effect of Angiotensin Converting Enzyme Inhibitor (ACEI and Angiotensin Receptor Blocker (ARB was evaluated and compared with Bevacizumab which served as a positive control. Drug penetration into retina was confirmed by liquid chromatography coupled ESI-tandem mass spectroscopy (LC-MS/MS.Multifold increase in the expression of RAS components in human vitreous and rat retina showed their involvement in ROP. ERG & fundus studies in OIR revealed the altered function of retina and were successfully prevented by ARB (telmisartan, ACEI (lisinopril and bevacizumab. Retinal analysis revealed the presence of ACEI and ARB in their therapeutic levels.This study for the first time demonstrates the upregulated level of RAS components in human ROP vitreous and further that the pharmacological intervention in RRAS can functionally and structurally preserve retina against the progression of ROP in the OIR model.

  6. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system

    Science.gov (United States)

    Choi, Jin-Ha; Lee, Jaewon; Shin, Woojung; Choi, Jeong-Woo; Kim, Hyun Jung

    2016-10-01

    Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.

  7. From Molecular Classification to Targeted Therapeutics: The Changing Face of Systemic Therapy in Metastatic Gastroesophageal Cancer

    Directory of Open Access Journals (Sweden)

    Adrian Murphy

    2015-01-01

    Full Text Available Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1 or mismatch repair genes (Lynch syndrome were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician’s therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients.

  8. Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Jaehee V. Shim

    2017-09-01

    Full Text Available Tyrosine kinase inhibitors (TKIs are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation–contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs.

  9. The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target?

    Science.gov (United States)

    Lansdown, Andrew; Rees, D Aled

    2012-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition associated with long-term health risks, including type 2 diabetes and vascular dysfunction in addition to reproductive sequelae. Many of the common features of PCOS, such as central obesity, hyperinsulinaemia and obstructive sleep apnoea (OSA), are associated with chronic sympathetic overactivity, suggesting that sympathoexcitation may be involved in the pathogenesis of this condition. Rodent models of polycystic ovaries have shown that ovarian sympathetic outflow may be increased, accompanied by elevated intra-ovarian synthesis of nerve growth factor (NGF) which may be involved in initiation of ovarian pathology. Patients with PCOS have evidence of increased muscle sympathetic nerve activity (MSNA), altered heart rate variability and attenuated heart rate recovery postexercise, compared with age- and BMI-matched controls, suggesting a generalized increase in sympathetic nerve activity. Active weight loss can reduce MSNA and whole body noradrenaline spillover, whereas low-frequency electroacupuncture decreased MSNA in overweight women with PCOS. Treatment of OSA with continuous positive airways pressure may reduce plasma noradrenaline levels and diastolic blood pressure and improve cardiac sympathovagal balance. Renal sympathetic denervation also reduced MSNA, noradrenaline spillover and blood pressure in two PCOS subjects with hypertension, accompanied by improved insulin sensitivity. The sympathetic nervous system may thus offer a new therapeutic target in PCOS but larger and longer-term studies are needed before these treatments can be considered in clinical practice. © 2012 Blackwell Publishing Ltd.

  10. Toward a Blended Ontology: Applying Knowledge Systems to Compare Therapeutic and Toxicological Nanoscale Domains

    Directory of Open Access Journals (Sweden)

    Christopher M. Grulke

    2012-01-01

    Full Text Available Bionanomedicine and environmental research share need common terms and ontologies. This study applied knowledge systems, data mining, and bibliometrics used in nano-scale ADME research from 1991 to 2011. The prominence of nano-ADME in environmental research began to exceed the publication rate in medical research in 2006. That trend appears to continue as a result of the growing products in commerce using nanotechnology, that is, 5-fold growth in number of countries with nanomaterials research centers. Funding for this research virtually did not exist prior to 2002, whereas today both medical and environmental research is funded globally. Key nanoparticle research began with pharmacology and therapeutic drug-delivery and contrasting agents, but the advances have found utility in the environmental research community. As evidence ultrafine aerosols and aquatic colloids research increased 6-fold, indicating a new emphasis on environmental nanotoxicology. User-directed expert elicitation from the engineering and chemical/ADME domains can be combined with appropriate Boolean logic and queries to define the corpus of nanoparticle interest. The study combined pharmacological expertise and informatics to identify the corpus by building logical conclusions and observations. Publication records informatics can lead to an enhanced understanding the connectivity between fields, as well as overcoming the differences in ontology between the fields.

  11. Mechanisms of atherosclerosis and cardiovascular disease in antiphospholipid syndrome and systemic lupus erythematosus. New therapeutic approaches.

    Science.gov (United States)

    Lopez-Pedrera, Chary; Aguirre-Zamorano, M Ángeles; Pérez-Sánchez, Carlos

    2017-08-22

    Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are 2 highly related autoimmune-rheumatic diseases associated with an increased risk of developing cardiovascular (CV) diseases. Despite the great progresses made in understanding the pathological mechanisms leading to CV diseases in those pathologies, there is still the unmet need to improve long term prognosis. CV diseases in SLE and APS is thought to happen as the result of a complex interaction between traditional CV risk factors, immune deregulation and disease activity, including the synergic effect of cytokines, chemokines, adipokines, proteases, autoantibodies, adhesion receptors, oxidative stress and a plethora of intracellular signalling molecules. Genomic and epigenomic analyses have further allowed the identification of specific signatures explaining the proathero-thrombotic profiles of APS and SLE patients. This review examines the complex role of these heterogeneous factors, and analyses new therapeutic approaches under study to reduce the CV risk in these autoimmune disorders. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  12. Long Noncoding RNAs in Digestive System Malignancies: A Novel Class of Cancer Biomarkers and Therapeutic Targets?

    Directory of Open Access Journals (Sweden)

    Athina Kladi-Skandali

    2015-01-01

    Full Text Available High throughput methodologies have revealed the existence of an unexpectedly large number of long noncoding RNAs (lncRNAs. The unconventional role of lncRNAs in gene expression regulation and their broad implication in oncogenic and tumor suppressive pathways have introduced lncRNAs as novel biological tumor markers. The most prominent example of lncRNAs application in routine clinical practice is PCA3, a FDA-approved biomarker for prostate cancer. Regarding digestive system malignancies, the oncogenic HOTAIR is one of the most widely studied lncRNAs in the preclinical level and has already been identified as a potent prognostic marker for major malignancies of the gastrointestinal tract. Here, we provide an overview of recent findings regarding the emerging role of lncRNAs not only as key regulators of cancer initiation and progression in colon, stomach, pancreatic, liver, and esophageal cancers, but also as reliable tumor markers and therapeutic tools. lncRNAs can be easily, rapidly, and cost-effectively determined in tissues, serum, and gastric juice, making them highly versatile analytes. Taking also into consideration the largely unmet clinical need for early diagnosis and more accurate prognostic/predictive markers for gastrointestinal cancer patients, we comment upon the perspectives of lncRNAs as efficient molecular tools that could aid in the clinical management.

  13. Efficacy of a single dose of a transdermal diclofenac patch as pre ...

    African Journals Online (AJOL)

    Background: We compared the analgesic efficacy of a transdermal diclofenac patch 100 mg (NuPatch® 100, Zydus Cadila, Ahmedabad, India) and intramuscular diclofenac sodium 75 mg (Voveran®, Novartis, India) for postoperative analgesia, and the associated side-effects of the transdermal diclofenac patch. Method: ...

  14. Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery

    Science.gov (United States)

    Jang, Hun-jae; Yeo, Seonggu; Yoh, Jack J.

    2016-04-01

    An Er:YAG laser with 2940-nm wavelength and 150-µs pulse duration was built for the purpose of combined ablation and microjet injection. A shorter pulse duration compared to common erbium lasers in dentistry is desirable for a synchronization of skin ablation and subsequent microjet injection into target skin for transdermal injection of liquid dose. A single laser beam is split into two for an optimal energy of pre-ablation of skin and the residual energy allocated to a microjet ejection. A newly designed injector consists of an L-shaped chamber and a parabolic mirror in a single unit, and the handheld laser is a part of an integrated system requiring no optical fiber. Through various injection tests using the porcine skin, the effectiveness of the new delivery system is herein evaluated.

  15. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    Science.gov (United States)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  16. Zein-alginate based oral drug delivery systems: Protection and release of therapeutic proteins.

    Science.gov (United States)

    Lee, Sungmun; Kim, Yeu-Chun; Park, Ji-Ho

    2016-12-30

    Reactive oxygen species (ROS) play an important role in the development of inflammatory bowel diseases. Superoxide dismutase (SOD) has a great therapeutic potential by scavenging superoxide that is one of ROS; however, in vivo application is limited especially when it is orally administered. SOD is easily degraded in vivo by the harsh conditions of gastrointestinal tract. Here, we design a zein-alginate based oral drug delivery system that protects SOD from the harsh conditions of gastrointestinal tract and releases it in the environment of the small intestine. SOD is encapsulated in zein-alginate nanoparticles (ZAN) via a phase separation method. We demonstrate that ZAN protect SOD from the harsh conditions of the stomach or small intestine condition. ZAN (200:40) at the weight ratio of 200mg zein to 40mg of alginate releases SOD in a pH dependent manner, and it releases 90.8±1.2% of encapsulated SOD at pH 7.4 in 2h, while only 11.4±0.4% of SOD was released at pH 1.3. The encapsulation efficiency of SOD in ZAN (200:40) was 62.1±2.0%. SOD in ZAN (200:40) reduced the intracellular ROS level and it saved 88.9±7.5% of Caco-2 cells from the toxic superoxide in 4 hours. Based on the results, zein-alginate based oral drug delivery systems will have numerous applications to drugs that are easily degradable in the harsh conditions of gastrointestinal tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Molecular chaperone assisted expression systems: obtaining pure soluble and active recombinant proteins for structural and therapeutic purposes

    CSIR Research Space (South Africa)

    Makhoba, XH

    2015-09-01

    Full Text Available For many years recombinant protein production has been at the center of biosciences used for structural and therapeutic purposes. The production of recombinant proteins in foreign host system such as E. coli has been a biggest challenge. This has...

  18. Extracellular secretion of a recombinant therapeutic peptide by Bacillus halodurans utilizing a modified flagellin type III secretion system

    CSIR Research Space (South Africa)

    Berger, E

    2011-08-01

    Full Text Available further 3.5-fold increase in the secretion of recombinant peptide fusions. Conclusions: The type III flagellar secretion system of B. halodurans has been shown to successfully secrete a therapeutic peptide as a heterologous flagellin fusion. Improvements...

  19. Glycerol monooleate/solvents systems for progesterone transdermal delivery: In vitro permeation and microscopic studies Sistemas monoleína/solventes para a liberação transdérmica da progesterona: estudos de permeação cutânea e microscópicos

    Directory of Open Access Journals (Sweden)

    Gislaine R Pereira

    2002-03-01

    Full Text Available Transdermal delivery of most drugs is precluded by the barrier characteristics of the stratum corneum (SC. Chemical penetration enhancers are capable of interacting with SC constituents, inducing a temporary reversible increase in the skin permeability. The aim of this work was to assess the influence of glycerol monooleate (GMO/solvents systems on percutaneous absorption across hairless mouse SC of a lipophilic drug, progesterone (PG, as well as its effect on the SC structural characteristics, by scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM. The morphological changes observed in the hairless mouse SC suggest a GMO effect on the skin barrier. In addition, the increase in the In vitro PG flux and in vivo penetration of a fluorescent label point towards GMO as a potential absorption enhancer. The results obtained showed that GMO/solvents systems provoked changes in the SC that could be causing increased permeation of PG across hairless mouse skin, optimising in this way the transdermal delivery of this drug.A liberação transdérmica de muitos fármacos é dificultada pelas características de barreira do estrato córneo. Promotores químicos de absorção cutânea são capazes de interagir com os constituintes do estrato córneo, induzindo aumento temporário e reversível na permeabilidade da pele. O objetivo deste trabalho foi avaliar a influência de sistemas monoleína (monoleato de glicerol/solventes na absorção percutânea de um fármaco lipofílico (a progesterona, através do estrato córneo de camundongos sem pelo, bem como o efeito da monoleína nas características estruturais do estrato córneo, por meio de microscopia eletrônica de varredura (SEM e microscopia de varredura confocal a laser (CLSM. As alterações morfológicas observadas no estrato córneo de camundongos sem pelo sugerem efeito da monoleína na barreira da pele. E, ainda, o aumento no fluxo In vitro da progesterona, bem como na

  20. Tuberculosis therapeutics: Engineering of nanomedicinal systems for local delivery of targeted drug cocktails

    Science.gov (United States)

    D'Addio, Suzanne M.

    In this thesis, a multifunctional nanocarrier drug delivery system was investigated and optimized to improve tuberculosis therapy by promoting the intracellular delivery of high payloads of antibiotics. To meet the needs of a patient population which continues to grow by close to 10 million people a year, innovative therapeutics must be formulated by robust and scalable processes. We use Flash NanoPrecipitation for the continuous precipitation of nanocarriers by block copolymer directed assembly, which enables the development of nanocarriers with tunable properties. Stable nanocarriers of Rifampicin and a hydrophobic Rifampicin prodrug have efficacy against tuberculosis in vitro that is equivalent to the soluble Rifampicin. To overcome poor in vivo efficacy of the recently discovered antitubercular drug SQ641, we co-encapsulate SQ641 and Cyclosporine A in a stable aqueous nanocarrier suspension, which enables drug administration and also enhances intracellular accumulation and antitubercular efficacy relative to SQ641 in solution. Since the mannose receptor is involved in the phagocytosis of tuberculosis bacilli, we modify the surface of nanocarriers with mannoside residues to target specific intracellular accumulation in macrophages. The surface density of mannoside terminated polyethylene glycol chains was controlled between 0 and 75% and in vitro cellular association reveals a 9% surface density is optimal for internalization mediated by the mannose receptor. We explore the preparation of large, porous aerosol carrier particles of with tunable deposition characteristics by spray freeze drying with ultrasonic atomization for direct dosing to the lungs. Nanocarriers are loaded at 3 - 50 wt% in mannitol particles with constant size, limited nanocarrier aggregation, and 63% dose delivered to the lungs, as determined by in vitro cascade impaction. There has been a lag in the development of new technologies to facilitate development and commercialization of

  1. Lichen-derived compounds show potential for central nervous system therapeutics.

    Science.gov (United States)

    Reddy, R Gajendra; Veeraval, Lenin; Maitra, Swati; Chollet-Krugler, Marylène; Tomasi, Sophie; Dévéhat, Françoise Lohézic-Le; Boustie, Joël; Chakravarty, Sumana

    2016-11-15

    Natural products from lichens are widely investigated for their biological properties, yet their potential as central nervous system (CNS) therapeutic agents is less explored. The present study investigated the neuroactive properties of selected lichen compounds (atranorin, perlatolic acid, physodic acid and usnic acid), for their neurotrophic, neurogenic and acetylcholine esterase (AChE) activities. Neurotrophic activity (neurite outgrowth) was determined using murine neuroblastoma Neuro2A cells. A MTT assay was performed to assess the cytotoxicity of compounds at optimum neurotrophic activity. Neuro2A cells treated with neurotrophic lichen compounds were used for RT-PCR to evaluate the induction of genes that code for the neurotrophic markers BDNF and NGF. Immunoblotting was used to assess acetyl H3 and H4 levels, the epigenetic markers associated with neurotrophic and/or neurogenic activity. The neurogenic property of the compounds was determined using murine hippocampal primary cultures. AChE inhibition activity was performed using a modified Ellman's esterase method. Lichen compounds atranorin, perlatolic acid, physodic acid and (+)-usnic acid showed neurotrophic activity in a preliminary cell-based screening based on Neuro2A neurite outgrowth. Except for usnic acid, no cytotoxic effects were observed for the two depsides (atranorin and perlatolic acid) and the alkyl depsidone (physodic acid). Perlatolic acid appears to be promising, as it also exhibited AChE inhibition activity and potent proneurogenic activity. The neurotrophic lichen compounds (atranorin, perlatolic acid, physodic acid) modulated the gene expression of BDNF and NGF. In addition, perlatolic acid showed increased protein levels of acetyl H3 and H4 in Neuro2A cells. These lichen depsides and depsidones showed neuroactive properties in vitro (Neuro2A cells) and ex vivo (primary neural stem or progenitor cells), suggesting their potential to treat CNS disorders. Copyright © 2016 Elsevier Gmb

  2. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: an overview

    Science.gov (United States)

    Zuki, S. A. Mohd; Rahman, N. Abd; Abu Bakar, N. F.

    2018-03-01

    Wound must be carefully treated to avoid serious infection that needs costly treatment. Method to enhance the recovery of the wound is crucial to have effective wound treatment. One of the technologies in wound treatment is transdermal patch that has the benefits of being non-invasive, easy to handle and permits constant drug dosage. In order to obtain a good controlled drug release, drug excipient needs to be investigated. Recently, natural Nanocrystal Cellulose (NCC) which can be synthesized from animal, algae, microorganism or plant has been actively used in drug delivery system as excipient. The application of NCC is advantageous due to its large surface area, biodegradable, non-toxic and abundance source.

  3. Transdermal glyceryl trinitrate (nitroglycerin in healthy persons: acute effects on skin temperature and hemodynamic orthostatic response

    Directory of Open Access Journals (Sweden)

    Eva Maria Augusta Boeckh Haebisch

    Full Text Available In order to find an explanation for individual reactions to transdermal glyceryl trinitrate (GTN we studied the skin temperature and hemodynamic reactions in 63 healthy persons. The data were obtained before and after the application of GTN and Glycerin (GL placebo patches, during one hour. The skin temperature was measured on both forearms, the local (left sided and systemic (right sided reaction on GTN was related to the skin fold and the calculated body fat content. The bilateral rise of skin temperature and its duration was higher and longer in obese than in lean persons mainly in obese women. The UV induced thermo and the later photothermoreaction (Erythema was reduced on the left forearm after the application of GTN and GL patches. The observed hemodynamic GTN effect confirmed known postural reactions, such as decreased arterial pressure (ΔmAP = -2.9%, increased heart rate (ΔHR = +7,4% and QTc prolongation (ΔQTc = +4,9% in upright position. An adverse drug effect with increased mean blood pressure (ΔmAP = +12% and increased heart rate (ΔHR = + 10.4% mainly in supine position was observed in 11 % of the participants, but only in men. Such a reaction was already described by Murell, 1879. Individual GTN effects were analyzed and related to habits and family history. In male smokers and in persons with hypertensive and diabetic close relatives, the hypotensive GTN effect was accentuated in supine position. In the upright position the group with hypertensives in the family presented a moderate hypotensive reaction without secondary tachycardia and the smokers presented only a slightly increased heart rate. Our observations suggest that individual reactions to transdermal glyceryl trinitrate (GTN with its active component nitric oxide (NO depends on physiological conditions, related to endogenous vasoactive substances, mainly the interaction with EDRF (the endogenous NO and the activity of the Renin-Angiotensin System.

  4. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Gavin A

    2015-02-01

    Full Text Available Amy Gavin,1 Jimmy TH Pham,2 Dawei Wang,2 Bill Brownlow,3 Tamer A Elbayoumi3 1College of Dental Medicine, 2Arizona College of Osteopathic Medicine, 3Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA Abstract: Oral cavity and oropharyngeal cancers are considered the eighth most common cancer worldwide, with relatively poor prognosis (62% of patients surviving 5 years, after diagnosis. The aim of this study was to develop a proof-of-concept mucoadhesive lozenge/buccal tablet, as a potential platform for direct sustained delivery of therapeutic antimitotic nanomedicines. Our system would serve as an adjuvant therapy for oral cancer patients undergoing full-scale diagnostic and operative treatment plans. We utilized lipid-based nanocarriers, namely nanoemulsions (NEs, containing mixed-polyethoxylated emulsifiers and a tocopheryl moiety–enriched oil phase. Prototype NEs, loaded with the proapoptotic lipophilic drug genistein (Gen, were further processed into buccal tablet formulations. The chitosan polyelectrolyte solution overcoat rendered NE droplets cationic, by acting as a mucoadhesive interfacial NE layer. With approximate size of 110 nm, the positively charged chitosan-layered NE (+25 mV vs negatively charged chitosan-free/primary aqueous NE (-28 mV exhibited a controlled-release profile and effective mucoadhesion for liquid oral spray prototypes. When punch-pressed, porous NE-based buccal tablets were physically evaluated for hardness, friability, and swelling in addition to ex vivo tissue mucoadhesion force and retention time measurements. Chitosan-containing NE tablets were found equivalent to primary NE and placebo tablets in compression tests, yet significantly superior in all ex vivo adhesion and in vitro release assays (P≤0.05. Following biocompatibility screening of prototype chitosan-layered NEs, substantial anticancer activity of selected cationic Gen-loaded NE

  5. Optimization of Microemulsion Based Transdermal Gel of Triamcinolone.

    Science.gov (United States)

    Jagdale, Swati; Chaudhari, Bhagyashree

    2017-01-01

    Triamcinolone is a long acting corticosteroid used in the treatment of arthritis, eczema, psoriasis and similar conditions which cause inflammation. Triamcinolone has half-life of 88min. Prolonged oral use is associated with gastrointestinal adverse effects as peptic ulcer, abdominal distention and ulcerative esophagitis as described in various patents. Microemulgel offers advantage of better stability, better loading capacity and controlled release especially for drug with short half life. Objective of the present study was to optimize microemulgel based transdermal delivery of triamcinolone. Saturated solubility of triamcinolone in various oils, surfactants and co-surfactants is estimated. Pseudo-ternary phase diagrams were constructed to determine the region of transparent microemulsion. Microemulsion was evaluated for globule size (FE-SEM, zetasizer), % transmittance, pH, viscosity, conductivity etc. Design of experiment was used to optimize microemulsion based gel. Carbopol 971P and HPMC K100M were used as independent variables. Microemulsion based gel was evaluated for in-vitro as well as ex-vivo parameters. Microemulsion was formulated with oleic acid, lauroglycol FCC and propylene glycol. PDI 0.197 indicated microemulsion is mono-disperse. 32 factorial design gave batch F8 as optimized. Design expert suggested drug release; gel viscosity and bio-adhesive strength were three significant dependant factors affecting the transdermal delivery. F8 showed drug release 92.62.16±1.22% through egg membrane, 95.23±1.44% through goat skin after 8hr and Korsmeyer-Peppas release model was followed. It can be concluded that a stable, effective controlled release transdermal microemulgel was optimised for triamcinolone. This would be a promising tool to deliver triamcinolone with enhanced bioavailability and reduced dosing frequency. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.

    Science.gov (United States)

    Chen, Z X; Li, B; Liu, T; Wang, X; Zhu, Y; Wang, L; Wang, X H; Niu, X; Xiao, Y; Sun, Q

    2017-03-01

    Paeonol shows effective anti-allergic, anti-inflammatory and analgesic activities. However, because of its poor solubility in water and high volatility at room temperature, the application of this drug is restricted in the clinic. The objective of this research was to develop a biocompatible paeonol formulation with improved stability, skin delivery and pharmacokinetic efficiency. In this paper, paeonol-loaded vesicles were prepared using an ethanol injection method. Nano-vesicles were characterized for their physical properties and encapsulation efficiency (EE). Drug permeation behavior in vitro and deposition quantity in porcine ear skin were measured with a Valia-Chien (V-C) diffusion device. Additionally, a validated and sensitive high performance liquid chromatography (HPLC) method was developed to analyze paeonol concentrations in rat plasma after transdermal administration. The results showed that the particle-size order of the nano-vesicles was the following: transethosomes (122.5±7.5nm)transethosomes had a higher EE (85.5±5.2%), and they showed a spherical morphology with a smooth surface when viewed under a transmission electron microscope (TEM). In an in vitro permeation study, the paeonol transethosomes showed an enhanced transdermal flux of 95.7±8.8μg/cm 2 /h and a higher deposition quantity in porcine ear skin compared to the transfersomes. A one-compartment first-order absorption model could be used to describe the pharmacokinetics of paeonol in rats after transdermal administration. The AUC of the paeonol transethosomes was approximately 1.57- and 3.52-fold higher than those of the transfersomes and a saturated solution of paeonol in 35% ethanol, respectively. The results demonstrated that the paeonol transethosomes had a narrow size distribution, high encapsulation efficiency, and long residence in the plasma. This formulation remarkably enhanced the bioavailability of paeonol. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Preventive and therapeutic effects of lithium carbonate on acute radiation injury of hemopoietic system in mice.

    Science.gov (United States)

    Ke, X Y; Wang, Y F; Jia, T Z

    1991-01-01

    The administration of Li2CO3 to female LACA mice for three consecutive days before or after 4Gy whole body gamma-irradiation appeared to have both preventive and therapeutic effects on radiation-induced leucopenia, especially on the depression of CFU-GM. It is effective in small dosage, short course, and even when given 24 hours after irradiation.

  8. Precision cut lung slices as test system for candidate therapeutics in organophosphate poisoning.

    Science.gov (United States)

    Herbert, Julia; Thiermann, Horst; Worek, Franz; Wille, Timo

    2017-08-15

    Standard therapeutic options in organophosphate (OP) poisoning are limited to the administration of atropine and oximes, a regimen often lacking in efficacy and applicability. Treatment alternatives are needed, preferably covering a broad spectrum of OP intoxications. Although recent research yielded several promising compounds, e.g. bioscavengers, modulators of the muscarinic acetylcholine (ACh) receptor or bispyridinium non-oximes, these substances still need further evaluation, especially regarding effects on the potentially lethal respiratory symptoms of OP poisoning. Aim of this study was the development of an applicable and easy method to test the therapeutic efficiency of such substances. For this purpose, airway responsiveness in viable precision cut lung slices (PCLS) from rats was analysed. We showed that ACh-induced airway contractions were spontaneously reversible in non-poisoned PCLS, whereas in OP poisoned PCLS, contractions were irreversible. This effect could be antagonized by addition of the standard therapeutic atropine, thereby presenting a clear indication for treatment efficiency. Now, candidate therapeutic compounds can be evaluated, based on their ability to counteract the irreversible airway contraction in OP poisoned PCLS. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain

    DEFF Research Database (Denmark)

    Gegelashvili, Georgi; Bjerrum, Ole Jannik

    2017-01-01

    , anticonvulsant valproate, tetracycline antibiotic minocycline, β-lactam antibiotic ceftriaxone and its structural analog devoid of antibacterial activity, clavulanic acid) can significantly increase the spinal glutamate uptake. Thus, mounting evidence points at GluTs as prospective therapeutic target for chronic...

  10. Treatment of Severe Cancer Pain by Transdermal Fentanyl

    Directory of Open Access Journals (Sweden)

    Dženita Ljuca

    2010-05-01

    Full Text Available The goal of research was to determine the frequency, intensity, time of occurrence, duration and causes of breakthrough pain (BTP in patients whose carcinoma pain was treated by transdermal fentanyl. (TDF. A prospective study was conducted in a hospice for recumbent patients of the Centre for Palliative Care (hospice University Clinical Centre Tuzla from October 2009 to December 2010. 33 patients in terminal stage of carcinoma, who had been treated by transdermal fentanyl due to their excruciating pain (7-10 mark on numerica! scale with initial dosage of 25 μg as a strong opiate analgesic, were monitored within the time period of 10 days. In the statistics we used the even T - test, the Wilcox test and Mann -Whitney test. The difference was seen to be significant at p < 0,05. Treatment by transdermal fentanyl significantly reduces the intensity of strong carcinoma pain (p < 0.0001, with a frequent requirement for dose increase with bone metastasis. The intensity of BTP is higher compared to the pain experienced upon reception. The frequency and intensity of BTP are significantly reduced already in the second day of treatment by transdermal fentanyl (p = 0,0024. The BTP is most intense in patients with neck and head tumours (9,26 ± 0,66, and most frequent with abdomen and pelvic tumour. The biggest number of BTP (68.3 % occurs within first three days of treatment. BTP most frequently occurs in the evening or at night (between 18:00 and 06:00 h in 62,2 % of the cases, with the duration of usually less than 15 minutes (65,2% of the cases. In 61,6 % cases the occurrence of BTP is related to physical activities or psychosocial incidents, while the cause is undetermined in 38,4 % of examinees.BTP is most frequent within first three days of treatment by TDF. Using the optimal dosage a good control of carcinoma pain is enabled, regardless of the occurrence of bone metastasis, while it also helps reduce the frequency and intensity of BTP.

  11. Stability of therapeutic albumin solutions used for molecular adsorbent recirculating system-based liver dialysis.

    Science.gov (United States)

    De Bruyn, Tom; Meijers, Björn; Evenepoel, Pieter; Laub, Ruth; Willems, Ludo; Augustijns, Patrick; Annaert, Pieter

    2012-01-01

    Mounting evidence suggests beneficial effects of albumin dialysis-based liver support in patients suffering from acute-on-chronic liver failure. Molecular adsorbent recirculating system (MARS) is a nonbiological liver support device, based on the exchange of albumin-bound toxins between the patient's blood and a 20% human serum albumin solution in a secondary circuit. Bound toxins are continuously removed from the circulating albumin by exposure to activated charcoal and an ion-exchange resin. The aim of the present in vitro study was to determine the impact of exposure to charcoal and resin on the ligand binding properties of albumins, containing various levels of stabilizers and obtained from different suppliers (Baxter, CAF-DCF [Red Cross], and Sigma-Aldrich). Albumin binding properties were assessed by measuring equilibrium binding properties of warfarin, diazepam, and salicylate before and after incubation (for up to 7 h) with adsorbing materials; albumin-associated esterase-like activities were also determined. Notable changes in albumin binding upon incubation with adsorbing materials were only observed when using warfarin as a ligand. Affinity of warfarin for the Baxter and Sigma albumins showed a pronounced decrease (higher K(d) ) after the 1-7-h exposure to charcoal or resin. In the absence of adsorbing materials, similar effects were found, indicating that incubation time per se affects albumin binding properties. Following exposure to resin, Baxter albumin binding capacity (B(max)) increased about twofold. For albumin obtained from CAF-DCF, binding affinity and capacity for warfarin were constant under all conditions tested. Esterase-like activities associated with these albumins were either maintained or enhanced (up to 2.5-fold in case of Sigma albumin) following 7-h incubations with adsorbing materials. Our data suggest limited direct influence of the presence of stabilizers in therapeutic albumin solutions on baseline binding properties of human

  12. The Multidimensional Therapeutic Potential of Targeting the Brain Oxytocin System for the Treatment of Substance Use Disorders.

    Science.gov (United States)

    Bowen, Michael T; Neumann, Inga D

    2017-09-24

    The neuropeptide oxytocin is released both into the blood and within the brain in response to reproductive stimuli, such as birth, suckling and sex, but also in response to social interaction and stressors. Substance use disorders, or addictions, are chronic, relapsing brain disorders and are one of the major causes of global burden of disease. Unfortunately, current treatment options for substance use disorders are extremely limited and a treatment breakthrough is sorely needed. There is mounting preclinical evidence that targeting the brain oxytocin system may provide that breakthrough. Substance use disorders are characterised by a viscous cycle of bingeing and intoxication, followed by withdrawal and negative affect, and finally preoccupation and anticipation that triggers relapse and further consumption. Administration of oxytocin has been shown to have a potential therapeutic benefit at each stage of this addiction cycle for numerous drugs of abuse. This multidimensional therapeutic utility is likely due to oxytocin's interactions with key biological systems that underlie the development and maintenance of addiction. Only a few human trials of oxytocin in addicted populations have been completed with the results thus far being mixed. There are numerous other trials underway, and the results are eagerly awaited. However, the ability to fully harness the potential therapeutic benefit of targeting the brain oxytocin system may depend on the development of molecules that selectively stimulate the oxytocin system, but that have superior pharmacokinetic properties to oxytocin itself.

  13. Development of Microemulsion Based Nabumetone Transdermal Delivery For Treatment of Arthritis.

    Science.gov (United States)

    Jagdale, Swati; Deore, Gokul; Chabukswar, Anuruddha

    2018-02-26

    Background Nabumetone is biopharmaceutics classification system (BCS) class II drug, widely used in the treatment of osteoarthritis and rheumatoid arthritis. The most frequently reported adverse reactions for the drug involve disturbance in gastrointestinal tract , diarrhea, dyspepsia and abdominal pain. Microemulgel has advantages of microemulsion for improving solubility for hydrophobic drug. Patent literature had shown that the work for drug has been carried on spray chilling, enteric coated tablet, and topical formulation which gave idea for present research work for development of transdermal delivery. Objective Objective of the present research work was to optimize transdermal microemulgel delivery for Nabumetone for treatment of arthritis. Method Oil, surfactant and co-surfactant were selected based on solubility study for the drug. Gelling agents used were Carbopol 934 and HPMC K100M. Optimization was carried out using 32 factorial design. Characterization and evaluation were carried out for microemulsion and microemulsion based gel. Results Field emission-scanning electron microscopy (FE-SEM) study of the microemulsion revealed globules of 50-200 nm size . Zeta potential -9.50 mV indicated good stability of microemulsion. Globule size measured by dynamic light scattering (zetasizer) was 160 nm. Design expert gave optimized batch as F7 which contain 0.2% w/w drug, 4.3% w/w liquid paraffin, 0.71% w/w tween 80, 0.35% w/w propylene glycol, 0.124% w/w Carbopol 934, 0.187% w/w HPMC K100M and 11.68% w/w water. In-vitro diffusion study for F7 batch showed 99.16±2.10 % drug release through egg membrane and 99.15±2.73% drug release in ex-vivo study. Conclusion Nabumetone microemulgel exhibiting good in-vitro and ex-vivo controlled drug release was optimized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. The application of anethole, menthone, and eugenol in transdermal penetration of valsartan: Enhancement and mechanistic investigation.

    Science.gov (United States)

    Ahad, Abdul; Aqil, Mohd; Ali, Asgar

    2016-01-01

    The main barrier for transdermal delivery is the obstacle property of the stratum corneum. Many types of chemical penetration enhancers have been used to breach the skin barrier; among the penetration enhancers, terpenes are found as the most highly advanced, safe, and proven category. In the present investigation, the terpenes anethole, menthone, and eugenol were used to enhance the permeation of valsartan through rat skin in vitro and their enhancement mechanism was investigated. Skin permeation studies of valsartan across rat skin in the absence and the presence of terpenes at 1% w/v, 3% w/v, and 5% w/v in vehicle were carried out using the transdermal diffusion cell sampling system across rat skin and samples were withdrawn from the receptor compartment at 1, 2, 3, 4, 6, 8, 10, 12, and 24 h and analysed for drug content by the HPLC method. The mechanism of skin permeation enhancement of valsartan by terpenes treatment was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and differential scanning calorimetry (DSC). All the investigated terpenes provided a significant (p valsartan flux at a concentration of 1%, and less so at 3% and 5%. The effectiveness of terpenes at 1% concentration was in the following order: anethole > menthone > eugenol with 4.4-, 4.0-, and 3.0-fold enhancement ratio over control, respectively. DSC study showed that the treatment of stratum corneum with anethole shifted endotherm down to lower melting point while FTIR studies revealed that anethole produced maximum decrease in peak height and area than other two terpenes. The investigated terpenes can be successfully used as potential enhancers for the enhancement of skin permeation of lipophilic drug.

  15. Enhanced transdermal bioavailability of testosterone propionate via surfactant-modified ethosomes

    Directory of Open Access Journals (Sweden)

    Meng S

    2013-08-01

    Full Text Available Shu Meng,1 Zaixing Chen,2 Liqun Yang,1 Wei Zhang,1 Danhua Liu,1 Jing Guo,1 Yanmin Guan,1 Jianxin Li11Liaoning Research Institute of Family Planning, Shenyang, Liaoning Province, People's Republic of China; 2School of Pharmacy, China Medical University, Shenyang, Liaoning Province, People's Republic of ChinaAbstract: The current investigation aimed to evaluate the transdermal potential of novel testosterone propionate (TP ethosomes and liposomes prepared by surfactant modification. The effect of hexadecyl trimethyl ammonium bromide and cremophor EL-35 on the particle size and zeta potential of the prepared vesicles was investigated. The entrapment efficiency and stability, as well as in vitro and in vivo skin permeation, were studied with the various techniques, such as differential scanning calorimetry, confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, and so on. The results indicated that the ethosomes were defined as spherical, unilamellar structures with low polydispersity (0.100 ± 0.015 and nanometric size (156.5 ± 3.5 nm. The entrapment efficiency of TP in ethosomal and liposomal carriers was 92.7% ± 3.7% and 64.7% ± 2.1%, respectively. The stability profile of the prepared TP ethosomal system assessed for 120 days revealed very low aggregation and very low growth in vesicular size. TP ethosomes also provided an enhanced transdermal flux of 37.85 ± 2.8 µg/cm2/hour and a decreased lag time of 0.18 hours across mouse skin. The skin permeation efficiency of the TP ethosomes as further assessed by confocal laser scanning microscopy revealed enhanced permeation of rhodamine red-loaded formulations to the deeper layers of the skin (260 µm than that of the liposomal formation (120 µm.Keywords: testosterone propionate, surfactant-modified ethosomes, liposomes, confocal laser scanning microscopy

  16. In vitro transdermal delivery of propranolol hydrochloride through rat skin from various niosomal formulations

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2013-09-01

    Full Text Available   Objective(s: The purpose of the present study was to prepare and to evaluate a novel niosome as transdermal drug delivery system for propranolol hydrochloride and to compare the in vitro efficiency of niosome by either thin film hydration or hand shaking method.   Materials and Methods: Niosomes were prepared by Thin Film Hydration (TFH or Hand Shaking (HS method. Propranolol niosomes were prepared using different surfactants (span20, 80 ratios and a constant cholesterol concentration. In vitro characterization of niosomes included microscopical observation, size distribution, laser light scattering evaluation, stability of propranolol niosomes and permeability of formulations in phosphate buffer (pH=7 through rat abdominal skin. Results: The percentage of entrapment efficiency (%EE increased with increase in surfactant concentration in all formulations. Among them, F3 formulation (containing span80:cholesterol ratio of 3:1 showed the highest entrapment efficiency (86.74±2.01%, Jss (6.33μg/cm2.h and permeability coefficient ( . By increasing the percentage of entrapment efficiency (resulting in increase in surfactant concentration, the drug released time is not prolonged. Among all the formulations, F4 needed more time for maximum drug release. Among these formulations, F4 was also found to have the maximum vesicle size as compared to other formulations. It was observed that niosomal suspension prepared from span 80 was more stable than span 20. Conclusion: This study demonstrates that niosomal formulations may offer a promise transdermal delivery of propranolol which improves drug efficiency and can be used for controlled delivery of propranolol

  17. Treatment with subcutaneous and transdermal fentanyl: results from a population pharmacokinetic study in cancer patients.

    Science.gov (United States)

    Oosten, Astrid W; Abrantes, João A; Jönsson, Siv; de Bruijn, Peter; Kuip, Evelien J M; Falcão, Amílcar; van der Rijt, Carin C D; Mathijssen, Ron H J

    2016-04-01

    Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we studied the pharmacokinetics of subcutaneous and transdermal fentanyl. Furthermore, we evaluated rotations from the subcutaneous to the transdermal route. Fifty-two patients treated with subcutaneous and/or transdermal fentanyl for moderate to severe cancer-related pain participated. A population pharmacokinetic model was developed and evaluated using non-linear mixed-effects modelling. For rotations from subcutaneous to transdermal fentanyl, a 1:1 dose conversion ratio was used while the subcutaneous infusion was continued for 12 h (with a 50 % tapering after 6 h). A 6-h scheme with 50 % tapering after 3 h was simulated using the final model. A one-compartment model with first-order elimination and separate first-order absorption processes for each route adequately described the data. The estimated apparent clearance of fentanyl was 49.6 L/h; the absorption rate constant for subcutaneous and transdermal fentanyl was 0.0358 and 0.0135 h(-1), respectively. Moderate to large inter-individual and inter-occasion variability was found. Around rotation from subcutaneous to transdermal fentanyl, measured and simulated plasma fentanyl concentrations rose and increasing side effects were observed. We describe the pharmacokinetics of subcutaneous and transdermal fentanyl in one patient cohort and report several findings that are relevant for clinical practice. Further research is warranted to study the optimal scheme for rotations from the subcutaneous to the transdermal route.

  18. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.

    Science.gov (United States)

    Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam

    2016-08-20

    In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A mechanics approach to the study of pressure sensitive adhesives and human skin for transdermal drug delivery applications

    Science.gov (United States)

    Taub, Marc Barry

    Transdermal drug delivery is an alternative approach to the systemic delivery of pharmaceuticals where drugs are administered through the skin and absorbed percutaneously. This method of delivery offers several advantages over more traditional routes; most notably, the avoidance of the fast-pass metabolism of the liver and gut, the ability to offer controlled release rates, and the possibility for novel devices. Pressure sensitive adhesives (PSAs) are used to bond transdermal drug delivery devices to the skin because of their good initial and long-term adhesion, clean removability, and skin and drug compatibility. However, an understanding of the mechanics of adhesion to the dermal layer, together with quantitative and reproducible test methods for measuring adhesion, have been lacking. This study utilizes a mechanics-based approach to quantify the interfacial adhesion of PSAs bonded to selected substrates, including human dermal tissue. The delamination of PSA layers is associated with cavitation in the PSA followed by the formation of an extensive cohesive zone behind the debond tip. A quantitative metrology was developed to assess the adhesion and delamination of PSAs, such that it could be possible to easily distinguish between the adhesive characteristics of different PSA compositions and to provide a quantitative basis from which the reliability of adhesive layers bonded to substrates could be studied. A mechanics-based model was also developed to predict debonding in terms of the relevant energy dissipation mechanisms active during this process. As failure of transdermal devices may occur cohesively within the PSA layer, adhesively at the interface between the PSA and the skin, or cohesively between the corneocytes that comprise the outermost layer of the skin, it was also necessary to explore the mechanical and fracture properties of human skin. The out-of-plane delamination of corneocytes was studied by determining the strain energy release rate during

  20. Management of chemotherapy-induced nausea and vomiting in patients receiving multiple-day highly or moderately emetogenic chemotherapy: role of transdermal granisetron.

    Science.gov (United States)

    Coluzzi, Flaminia; Mattia, Consalvo

    2016-08-01

    Granisetron transdermal delivery system (GTDS) is the first 5-HT3 drug to be transdermally delivered and represents a convenient alternative to oral and intravenous antiemetics for the treatment of chemotherapy-induced nausea and vomiting. GTDS is effective and well tolerated in patients receiving multiple-day moderate-to-highly emetogenic chemotherapy. In this setting noninferiority studies showed similar efficacy when GTDS was compared with intravenous and oral granisetron and intravenous palonosetron. GTDS has shown good cardiovascular safety; however, special caution is needed in patients at risk for developing excessive QTc interval prolongation and arrhythmias. So far, GTDS has been investigated for intravenous prevention in comparison with granisetron and palonosetron; however, further prospects open the route to future clinical investigations.

  1. The value of oxybutynin in transdermal patches for treating overactive bladder.

    Science.gov (United States)

    Salinas-Casado, J; Esteban-Fuertes, M; Serrano, O; Galván, J

    2015-12-01

    There is currently a broad therapeutic arsenal of drugs for treating overactive bladder syndrome (OAB). However, there is still a need for new compounds and for improving known drugs in terms of efficacy, compliance and tolerability. To report the scientific evidence on the safety and efficacy of transdermal oxybutynin (OXY-TDS) for treating OAB. A systematic review without time restrictions was conducted until May 2015 in the MEDLINE/PubMed database. We also performed a manual review of abstracts published in international urogynaecology congresses. The evaluated studies show that patients treated with OXY-TDS experience a significant reduction in urinary incontinence episodes compared with placebo, which is comparable to that observed in patients treated with oral oxybutynin or with tolterodine. In all of the studies, we observed improvements in symptoms from the second or third week of treatment and in a sustained manner until the end of treatment (6, 12 or 24 weeks). The clinical practice study also showed improved quality of life, achieving benefits in numerous patient profiles, with an efficacy independent of previous treatments. The safety of the drug was demonstrated in the various patient profiles. OXY-TDS represents an effective alternative for the symptomatic treatment of adult patients with OAB, which, thanks to its pharmacokinetic profile, better tolerability, different administration method and dosage, could represent an added value in treating special populations. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Potential of Essential Oils as Penetration Enhancers for Transdermal Administration of Ibuprofen to Treat Dysmenorrhoea

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2015-10-01

    Full Text Available The present study was conducted to evaluate and compare five essential oils (EOs as penetration enhancers (PEs to improve the transdermal drug delivery (TDD of ibuprofen to treat dysmenorrhoea. The EOs were prepared using the steam distillation method and their chemical compositions were identified by GC-MS. The corresponding cytotoxicities were evaluated in epidermal keartinocyte HaCaT cell lines by an MTT assay. Furthermore, the percutaneous permeation studies were carried out to compare the permeation enhancement effect of EOs. Then the therapeutic efficacy of ibuprofen with EOs was evaluated using dysmenorrheal model mice. The data supports a decreasing trend of skin cell viability in which Clove oil >Angelica oil > Chuanxiong oil > Cyperus oil > Cinnamon oil >> Azone. Chuanxiong oil and Angelica oil had been proved to possess a significant permeation enhancement for TDD of ibuprofen. More importantly, the pain inhibitory intensity of ibuprofen hydrogel was demonstrated to be greater with Chuanxiong oil when compared to ibuprofen without EOs (p < 0.05. The contents of calcium ion and nitric oxide (NO were also significantly changed after the addition of Chuanxiong oil (p < 0.05. In summary, we suggest that Chuanxiong oil should be viewed as the best PE for TDD of ibuprofen to treat dysmenorrhea.

  3. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  4. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  5. Tolterodine Tartrate Proniosomal Gel Transdermal Delivery for Overactive Bladder

    Directory of Open Access Journals (Sweden)

    Rajan Rajabalaya

    2016-08-01

    Full Text Available The goal of this study was to formulate and evaluate side effects of transdermal delivery of proniosomal gel compared to oral tolterodine tartrate (TT for the treatment of overactive bladder (OAB. Proniosomal gels are surfactants, lipids and soy lecithin, prepared by coacervation phase separation. Formulations were analyzed for drug entrapment efficiency (EE, vesicle size, surface morphology, attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy, in vitro skin permeation, and in vivo effects. The EE was 44.87%–91.68% and vesicle size was 253–845 nm for Span formulations and morphology showed a loose structure. The stability and skin irritancy test were also carried out for the optimized formulations. Span formulations with cholesterol-containing formulation S1 and glyceryl distearate as well as lecithin containing S3 formulation showed higher cumulative percent of permeation such as 42% and 35%, respectively. In the in vivo salivary secretion model, S1 proniosomal gel had faster recovery, less cholinergic side effect on the salivary gland compared with that of oral TT. Histologically, bladder of rats treated with the proniosomal gel formulation S1 showed morphological improvements greater than those treated with S3. This study demonstrates the potential of proniosomal vesicles for transdermal delivery of TT to treat OAB.

  6. Evaluation of diclofenac prodrugs for enhancing transdermal delivery.

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2014-03-01

    Abstract Objective: The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD) and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in the Franz diffusion cell were determined on DA-, MD-, ED-, GD- and PD-saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery.

  7. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2016-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in Franz diffusion cell were determined on DA, MD, ED, GD, and PD saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Overall, diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery. PMID:24517636

  8. Nanostructured lipid carriers for transdermal delivery of acid labile lansoprazole.

    Science.gov (United States)

    Lin, Wen Jen; Duh, Yi Shein

    2016-11-01

    The aim of this study was to develop nanostructured lipid carriers (NLCs) for transdermal delivery of acid-labile lansoprazole (LPZ). The drug loading, particle size, zeta potential, thermal behavior and stability of NLCs were evaluated. The particle size of NLCs was in the range of 90-210nm and the zeta potential was -61.9 to +3.2mV dependent of the compositions. Stearylamine (SA) prevented lansoprazole degradation and maintained drug stable in NLCs. The anionic sodium dodecyl sulfate (SDS) adsorbed on the lipid surface and formed complex with cationic SA to prevent NLCs aggregation. The effects of type (e.g., isopropyl myristate (IPM), menthol) and concentration (e.g., 1.25, 2.50, 3.75%w/w) of enhancers on penetration of lansoprazole NLC hydrogels were investigated in vitro using Wistar rat skin. The steady-state flux of lansoprazole NLC hydrogel containing 3.75% IPM was the highest which was enhanced by 2.7 folds as compared to enhancer-free NLC hydrogel. In vivo pharmacokinetics of lansoprazole following transdermal delivery of NLC hydrogel showed that the elimination of drug was significantly reduced and the mean residence time of drug was prominently prolonged as compared to intravenous drug solution (p<0.005). The accumulation of drug in the skin and continuous penetration of drug through the skin accounted for the maintenance of drug concentration for at least 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The effect of transdermal nicotine patches on sleep and dreams.

    Science.gov (United States)

    Page, F; Coleman, G; Conduit, R

    2006-07-30

    This study was undertaken to determine the effect of 24-h transdermal nicotine patches on sleep and dream mentation in 15 smokers aged 20 to 33. Utilising a repeated measures design, it was found that more time awake and more ASDA micro-arousals occurred while wearing the nicotine patch compared to placebo. Also, the percentage of REM sleep decreased, but REM latency and the proportion of time spent in NREM sleep stages did not change significantly. Dream reports containing visual imagery, visual imagery ratings and the number of visualizable nouns were significantly greater from REM compared to Stage 2 awakenings, regardless of patch condition. However, a general interaction effect was observed. Stage 2 dream variables remained equivalent across nicotine and placebo conditions. Within REM sleep, more dream reports containing visual imagery occurred while wearing the nicotine patch, and these were rated as more vivid. The greater frequency of visual imagery reports and higher imagery ratings specifically from REM sleep suggests that previously reported dreaming side effects from 24-h nicotine patches may be specific to REM sleep. Combined with previous animal studies showing that transdermally delivered nicotine blocks PGO activity in REM sleep, the current results do no appear consistent with PGO-based hypotheses of dreaming, such as the Activation-Synthesis (AS) or Activation, Input and Modulation (AIM) models.

  10. The Effect and Mechanism of Transdermal Penetration Enhancement of Fu's Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics.

    Science.gov (United States)

    Xie, Wei-Jie; Zhang, Yong-Ping; Xu, Jian; Sun, Xiao-Bo; Yang, Fang-Fang

    2017-03-27

    In this paper, a new type of physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics is presented. Fu's cupping therapy (FCT), was established and studied using in vitro and in vivo experiments and the penetration effect and mechanism of FCT physical penetration technology was preliminarily discussed. With 1-(4-chlorobenzoyl)-5-methoxy-2-methylindole-3-ylacetic acid (indomethacin, IM) as a model drug, the establishment of high, medium, and low references was completed for the chemical permeation system via in vitro transdermal tests. Furthermore, using chemical penetration enhancers (CPEs) and iontophoresis as references, the percutaneous penetration effect of FCT for IM patches was evaluated using seven species of in vitro diffusion kinetics models and in vitro drug distribution; the IM quantitative analysis method in vivo was established using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS), and pharmacokinetic parameters: area under the zero and first moment curves from 0 to last time t (AUC 0-t , AUMC 0-t ), area under the zero and first moment curves from 0 to infinity (AUC 0-∞ , AUMC 0-∞ ), maximum plasma concentration (C max ) and mean residence time (MRT), were used as indicators to evaluate the percutaneous penetration effect of FCT in vivo. Additionally, we used the 3 K factorial design to study the joint synergistic penetration effect on FCT and chemical penetration enhancers. Through scanning electron microscopy (SEM) and transmission electron microscope (TEM) imaging, micro- and ultrastructural changes on the surface of the stratum corneum (SC) were observed to explore the FCT penetration mechanism. In vitro and in vivo skin permeation experiments revealed that both the total cumulative percutaneous amount and in vivo percutaneous absorption amount of IM using FCT were greater than the amount using CPEs and iontophoresis. Firstly, compared with

  11. Long-Term Impact of Immunosuppressants at Therapeutic Doses on Male Reproductive System in Unilateral Nephrectomized Rats: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yehui Chen

    2013-01-01

    Full Text Available Cyclosporine, tacrolimus, and sirolimus are commonly used in renal transplant recipients to prevent rejection. However, information for comparative effects of these agents on the male productive system is extremely limited and controversial. In a physiologically and clinically relevant rat model of unilateral nephrectomy, we demonstrated that long-term oral administration of both cyclosporine and sirolimus at doses equivalent to the therapeutic levels used for postrenal transplant patients significantly affects testicular development and the hypothalamic-pituitary-gonadal axis accompanied by profound histological changes of testicular structures on both light and electron microscopic examinations. Spermatogenesis was also severely impaired as indicated by low total sperm counts along with reduction of sperm motility and increase in sperm abnormality after treatment with these agents, which may lead to male infertility. On the other hand, treatment with therapeutic dose of tacrolimus only induced mild reduction of sperm count without histological evidence of testicular injury. The current study clearly demonstrates that commonly used immunosuppressants have various impacts on male reproductive system even at therapeutic levels. Our data provide useful information for the assessment of male infertility in renal transplant recipients who wish to father children. Clinical trials to address these issues should be urged.

  12. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment.

    Science.gov (United States)

    Kamran, Mohd; Ahad, Abdul; Aqil, Mohd; Imam, Syed Sarim; Sultana, Yasmin; Ali, Asgar

    2016-05-30

    Olmesartan is a hydrophobic antihypertensive drug with a short biological half-life, and low bioavailability, presents a challenge with respect to its oral administration. The objective of the work was to formulate, optimize and evaluate the transdermal potential of novel vesicular nano-invasomes, containing above anti-hypertensive agent. To achieve the above purpose, soft carriers (viz. nano-invasomes) of olmesartan with β-citronellene as potential permeation enhancer were developed and optimized using Box-Behnken design. The physicochemical characteristics e.g., vesicle size, shape, entrapment efficiency and skin permeability of the nano-invasomes formulations were evaluated. The optimized formulation was further evaluated for in vitro drug release, confocal microscopy and in vivo pharmacokinetic study. The optimum nano-invasomes formulation showed vesicles size of 83.35±3.25nm, entrapment efficiency of 65.21±2.25% and transdermal flux of 32.78±0.703 (μg/cm(2)/h) which were found in agreement with the predicted value generated by Box-Behnken design. Confocal laser microscopy of rat skin showed that optimized formulation was eventually distributed and permeated deep into the skin. The pharmacokinetic study presented that transdermal nano-invasomes formulation showed 1.15 times improvement in bioavailability of olmesartan with respect to the control formulation in Wistar rats. It was concluded that the response surfaces estimated by Design Expert(®) illustrated obvious relationship between formulation factors and response variables and nano-invasomes were found to be a proficient carrier system for transdermal delivery of olmesartan. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain.

    Science.gov (United States)

    Lee, Se Jeong; Kang, Won Young; Yoon, Yeup; Jin, Ju Youn; Song, Hye Jin; Her, Jung Hyun; Kang, Sang Mi; Hwang, Yu Kyeong; Kang, Kyeong Jin; Joo, Kyeung Min; Nam, Do-Hyun

    2015-12-24

    Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.

  14. Quantitative characterization of chitosan in the skin by Fourier-transform infrared spectroscopic imaging and ninhydrin assay: application in transdermal sciences.

    Science.gov (United States)

    Nawaz, A; Wong, T W

    2016-07-01

    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. Comparative enhancing effects of electret with chemical enhancers on transdermal delivery of meloxicam in vitro

    International Nuclear Information System (INIS)

    Cui, L L; Hou, X M; Li, G D; Jiang, J; Liang, Y Y; Xin, X

    2008-01-01

    Electret offers enhancing effect in transdermal drug delivery for altering of the arrangement of lipid molecules in the stratum corneum, forming many transient permeable apertures and enhancing the transdermal drug delivery. In this paper, meloxicam patch formulations were developed to make the comparative study of transdermal drug delivery between electret and chemical enhancers. Patches were made into control, electret, chemical enhancer and electret with chemical enhancer ones, according to the preparation procedure. The electret combined with chemical enhancer patch was designed to probe the incorporation between electret and chemical enhancer in transdermal drug delivery. The meloxicam release from the patch was found to increase in order of blank, chemical enhancer, electret and electret with chemical enhancer patch, in general.

  16. Cholinergic drugs as therapeutic tools in inflammatory diseases: participation of neuronal and non-neuronal cholinergic systems.

    Science.gov (United States)

    Sales, María Elena

    2013-01-01

    Acetylcholine (ACh) is synthesized by choline acetyltransferase (ChAT) from acetylcoenzime A and choline. This reaction occurs not only in pre-ganglionic fibers of the autonomic nervous system and post-ganglionic parasympathetic nervous fibers but also in non neuronal cells. This knowledge led to expand the role of ACh as a neurotransmitter and to consider it as a "cytotransmitter" and also to evaluate the existence of a non-neuronal cholinergic system comprising ACh, ChAT, acetylcholinesterase, and the nicotinic and muscarinic ACh receptors, outside the nervous system. This review analyzes the participation of cholinergic system in inflammation and discusses the role of different muscarinic and nicotinic drugs that are being used to treat skin inflammatory disorders, asthma, and chronic obstructive pulmonary disease as well as, intestinal inflammation and systemic inflammatory diseases, among others, to assess the potential application of these compounds as therapeutic tools.

  17. On the slow diffusion of Point of Care systems in Therapeutic Drug Monitoring

    Directory of Open Access Journals (Sweden)

    Barbara eSanavio

    2015-02-01

    Full Text Available Recent advancements in point-of-care technologies show great transformative promises for personalized preventative and predictive medicine. However, fields like therapeutic drug monitoring, that first allowed for personalized treatment of patient’ disease, still lag behind in the widespread application of point-of-care devices for monitoring of patients. Surprisingly, very few applications in commonly monitored drugs, such as anti-epileptics, are paving the way for a point of care (PoC approach to patient’ therapy monitoring, compared to other fields –like intensive care cardiac markers monitoring, glycemic controls in diabetes, or bench-top hematological parameters analysis at the local drug store. Such delay in the development of portable fast clinically effective drug monitoring devices is in our opinion due more to an inertial drag on the pervasiveness of these new devices into the clinical field than a lack of technical capability. At the same time, some very promising technologies failed in the clinical practice for inadequate understanding of the outcome parameters necessary for a relevant technological breakthrough that has superior clinical performance. We hope, by overviewing both therapeutic drug monitoring practice and its yet unmet needs and latest advancement in micro and nanotechnology applications to PoC clinical devices, to help bridging the two communities, the one exploiting analytical technologies and the one mastering the most advanced techniques, into translating existing and forthcoming technologies in effective devices.

  18. Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics.

    Science.gov (United States)

    ElRakaiby, Marwa; Dutilh, Bas E; Rizkallah, Mariam R; Boleij, Annemarie; Cole, Jason N; Aziz, Ramy K

    2014-07-01

    The Human Microbiome Project (HMP) is a global initiative undertaken to identify and characterize the collection of human-associated microorganisms at multiple anatomic sites (skin, mouth, nose, colon, vagina), and to determine how intra-individual and inter-individual alterations in the microbiome influence human health, immunity, and different disease states. In this review article, we summarize the key findings and applications of the HMP that may impact pharmacology and personalized therapeutics. We propose a microbiome cloud model, reflecting the temporal and spatial uncertainty of defining an individual's microbiome composition, with examples of how intra-individual variations (such as age and mode of delivery) shape the microbiome structure. Additionally, we discuss how this microbiome cloud concept explains the difficulty to define a core human microbiome and to classify individuals according to their biome types. Detailed examples are presented on microbiome changes related to colorectal cancer, antibiotic administration, and pharmacomicrobiomics, or drug-microbiome interactions, highlighting how an improved understanding of the human microbiome, and alterations thereof, may lead to the development of novel therapeutic agents, the modification of antibiotic policies and implementation, and improved health outcomes. Finally, the prospects of a collaborative computational microbiome research initiative in Africa are discussed.

  19. Novel therapeutic approach targeting the HIF-HRE system in the kidney.

    Science.gov (United States)

    Nangaku, Masaomi

    2009-01-01

    Recent studies emphasize the role of chronic hypoxia in the tubulointerstitium as a final common pathway to end-stage renal disease. Therefore, therapeutic approaches which target the chronic hypoxia should prove effective against a broad range of renal diseases. Many of hypoxia-triggered protective mechanisms are hypoxia inducible factor (HIF)-dependent. Although HIF-1 alpha and HIF-2 alpha share both structural and functional similarity, they have different localization and can contribute in a non-redundant manner. While gene transfer of constitutively active HIF has been shown effective, pharmacological approaches to activate HIF are more desirable. Oxygen-dependent activation of prolyl hydroxylases (PHD) regulates the amount of HIF by degradation of this transcription factor. Therefore, PHD inhibitors have been the focus of recent studies on novel strategies to stabilize HIF. Cobalt is one of the inhibitors of PHD, and stimulation of HIF with cobalt is effective in a variety of kidney disease models. Furthermore, crystal structures of the catalytic domain of human prolyl hydroxylase 2 have been clarified recently. The structure aids in the design of PHD selective inhibitors for the treatment of hypoxic tissue injury. Current advance has elucidated the detailed mechanism of hypoxia-induced transcription, giving hope for the development of novel therapeutic approaches against hypoxia.

  20. A fully automated primary screening system for the discovery of therapeutic antibodies directly from B cells.

    Science.gov (United States)

    Tickle, Simon; Howells, Louise; O'Dowd, Victoria; Starkie, Dale; Whale, Kevin; Saunders, Mark; Lee, David; Lightwood, Daniel

    2015-04-01

    For a therapeutic antibody to succeed, it must meet a range of potency, stability, and specificity criteria. Many of these characteristics are conferred by the amino acid sequence of the heavy and light chain variable regions and, for this reason, can be screened for during antibody selection. However, it is important to consider that antibodies satisfying all these criteria may be of low frequency in an immunized animal; for this reason, it is essential to have a mechanism that allows for efficient sampling of the immune repertoire. UCB's core antibody discovery platform combines high-throughput B cell culture screening and the identification and isolation of single, antigen-specific IgG-secreting B cells through a proprietary technique called the "fluorescent foci" method. Using state-of-the-art automation to facilitate primary screening, extremely efficient interrogation of the natural antibody repertoire is made possible; more than 1 billion immune B cells can now be screened to provide a useful starting point from which to identify the rare therapeutic antibody. This article will describe the design, construction, and commissioning of a bespoke automated screening platform and two examples of how it was used to screen for antibodies against two targets. © 2014 Society for Laboratory Automation and Screening.

  1. Regulation of matriptase and HAI-1 system, a novel therapeutic target in human endometrial cancer cells.

    Science.gov (United States)

    Sun, Pengming; Xue, Lifang; Song, Yiyi; Mao, Xiaodan; Chen, Lili; Dong, Binhua; Braicu, Elena Loana; Sehouli, Jalid

    2018-02-27

    The effects of specific and non-specific regulation of matriptase on endometrial cancer cells in vitro were investigated. Messenger ribonucleic acid (mRNA) and protein expression of matriptase and hepatocyte growth factor activator inhibitor-1 (HAI-1) in RL-952, HEC-1A, and HEC-1B endometrial cancer cells were detected by real-time quantitative PCR (RT-qPCR) and western blot. The cells were infected with lentivirus-mediated small-interfering RNA (siRNA) targeted on matriptase (MA-siRNA) or treated with different cisplatin (DDP) concentrations. After treatment, invasion, migration, and cellular apoptosis were analyzed. Matriptase mRNA and protein expression significantly decreased to 80% after infection with MA-siRNA ( P scratch and trans-well chamber assays showed significant inhibition of invasiveness and metastasis. Upon incubation with cisplatin at concentrations higher than the therapeutic dose for 24 h, the expressions of matriptase and HAI-1 significantly decreased ( P endometrial cancer cells were significantly decreased ( P endometrial cancer cells showed promising therapeutic features.

  2. Ultrasound in Biomedical Engineering: Ultrasound Microbubble Contrast Agents Promote Transdermal Permeation of Drugs

    OpenAIRE

    Ai-Ho Liao

    2016-01-01

    This report discusses a new development in the use of ultrasound microbubble contrast agents on transdermal drug delivery. The medium surrounding the microbubbles at the optimum concentration from liquid to gel can be modified and it can still achieve the same enhancement for transdermal drug permeation as liquid medium. It was also found that under the same ultrasound power density, microbubbles of larger particle sizes can extend the penetration depths of dye at the phantom surface.

  3. The Botulinum Toxin as a Therapeutic Agent: Molecular Structure and Mechanism of Action in Motor and Sensory Systems.

    Science.gov (United States)

    Kumar, Raj; Dhaliwal, Harkiran Preet; Kukreja, Roshan Vijay; Singh, Bal Ram

    2016-02-01

    Botulinum neurotoxin (BoNT) produced by Clostridium botulinum is the most potent molecule known to mankind. Higher potency of BoNT is attributed to several factors, including structural and functional uniqueness, target specificity, and longevity. Although BoNT is an extremely toxic molecule, it is now increasingly used for the treatment of disorders related to muscle hyperactivity and glandular hyperactivity. Weakening of muscles due to peripheral action of BoNT produces a therapeutic effect. Depending on the target tissue, BoNT can block the cholinergic neuromuscular or cholinergic autonomic innervation of exocrine glands and smooth muscles. In recent observations of the analgesic properties of BoNT, the toxin modifies the sensory feedback loop to the central nervous system. Differential effects of BoNT in excitatory and inhibitory neurons provide a unique therapeutic tool. In this review the authors briefly summarize the structure and mechanism of actions of BoNT on motor and sensory neurons to explain its therapeutic effects and future potential. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Pharmacokinetics of 2 Formulations of Transdermal Fentanyl in Cynomolgus Macaques (Macaca fascicularis)

    Science.gov (United States)

    Carlson, Amy M; Kelly, Richard; Fetterer, David P; Rico, Pedro J; Bailey, Emily J

    2016-01-01

    Fentanyl is a μ-opioid agonist that often is used as the analgesic component for balanced anesthesia in both human and veterinary patients. Minimal information has been published regarding appropriate dosing, and the pharmacokinetics of fentanyl are unknown in NHP. The pharmacokinetic properties of 2 transdermal fentanyl delivery methods, a solution (2.6 and 1.95 mg/kg) and a patch (25 µg/h), were determined when applied topically to the dorsal scapular area of cynomolgus macaques (Macaca fascicularis). Serum fentanyl concentrations were analyzed by using liquid chromatography–mass spectrometry. Compared with the patch, the transdermal fentanyl solution generated higher drug concentrations over longer time. Adverse reactions occurred in the macaques that received the transdermal fentanyl solution at 2.6 mg/kg. Both preparations showed significant interanimal variability in the maximal serum drug levels, time to achieve maximal fentanyl levels, elimination half-life, and AUC values. Both the maximal concentration and the time at which this concentration occurred were increased in macaques compared with most other species after application of the transdermal fentanyl patch and compared with dogs after application of the transdermal fentanyl solution. The pharmacokinetic properties of transdermal fentanyl in macaques are markedly different from those in other veterinary species and preclude its use as a long-acting analgesic drug in NHP. PMID:27423151

  5. Population pharmacokinetic model of transdermal nicotine delivered from a matrix-type patch.

    Science.gov (United States)

    Linakis, Matthew W; Rower, Joseph E; Roberts, Jessica K; Miller, Eleanor I; Wilkins, Diana G; Sherwin, Catherine M T

    2017-12-01

    Nicotine addiction is an issue faced by millions of individuals worldwide. As a result, nicotine replacement therapies, such as transdermal nicotine patches, have become widely distributed and used. While the pharmacokinetics of transdermal nicotine have been extensively described using noncompartmental methods, there are few data available describing the between-subject variability in transdermal nicotine pharmacokinetics. The aim of this investigation was to use population pharmacokinetic techniques to describe this variability, particularly as it pertains to the absorption of nicotine from the transdermal patch. A population pharmacokinetic parent-metabolite model was developed using plasma concentrations from 25 participants treated with transdermal nicotine. Covariates tested in this model included: body weight, body mass index, body surface area (calculated using the Mosteller equation) and sex. Nicotine pharmacokinetics were best described with a one-compartment model with absorption based on a Weibull distribution and first-order elimination and a single compartment for the major metabolite, cotinine. Body weight was a significant covariate on apparent volume of distribution of nicotine (exponential scaling factor 1.42). After the inclusion of body weight in the model, no other covariates were significant. This is the first population pharmacokinetic model to describe the absorption and disposition of transdermal nicotine and its metabolism to cotinine and the pharmacokinetic variability between individuals who were administered the patch. © 2017 The British Pharmacological Society.

  6. Engineering approaches to transdermal drug delivery: a tribute to contributions of prof. Robert Langer.

    Science.gov (United States)

    Mitragotri, S

    2013-01-01

    Transdermal drug delivery continues to provide an advantageous route of drug administration over injections. While the number of drugs delivered by passive transdermal patches has increased over the years, no macromolecule is currently delivered by the transdermal route. Substantial research efforts have been dedicated by a large number of researchers representing varied disciplines including biology, chemistry, pharmaceutics and engineering to understand, model and overcome the skin's barrier properties. This article focuses on engineering contributions to the field of transdermal drug delivery. The article pays tribute to Prof. Robert Langer, who pioneered the engineering approach towards transdermal drug delivery. Over a period spanning nearly 25 years since his first publication in the field of transdermal drug delivery, Bob Langer has deeply impacted the field by quantitative analysis and innovative engineering. At the same time, he has inspired several generations of engineers by collaborations and mentorship. His scientific insights, innovative technologies, translational efforts and dedicated mentorship have transformed the field. © 2013 S. Karger AG, Basel.

  7. A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction

    Science.gov (United States)

    Chaudhri, Buddhadev Paul; Ceyssens, Frederik; De Moor, Piet; Van Hoof, Chris; Puers, Robert

    2010-06-01

    Protein drugs, e.g. hormonal drugs, cannot be delivered orally to a patient as they get digested in the gastro-intestinal (GI) tract. Thus, it is imperative that these kinds of drugs are delivered transdermally through the skin. To provide for real-time feedback as well as to test independently for various substances in the blood, we also need a blood sampling system. Microneedles can perform both these functions. Further, microneedles made of silicon or metal have the risk of breaking inside the skin thereby leading to complications. SU-8, being approved of as being biocompatible by the Food and Drug Agency (FDA) of the United States, is an attractive alternative because firstly it is a polymer material, thereby reducing the chances of breakages inside the skin, and secondly it is a negative photoresist, thereby leading to ease of fabrication. Thus, here we present very tall (around 1600 µm) SU-8 polymer-based hollow microneedles fabricated by a simple and repeatable process, which are a very good candidate for transdermal drug delivery as well as blood extraction. The paper elaborates on the details that allow the fabrication of such extreme aspect ratios (>100).

  8. Investigations on the viscoelastic performance of pressure sensitive adhesives in drug-in-adhesive type transdermal films.

    Science.gov (United States)

    Wolff, Hans-Michael; Irsan; Dodou, Kalliopi

    2014-08-01

    We aimed to investigate the effect of solubility parameter and drug concentration on the rheological behaviour of drug-in-adhesive films intended for transdermal application. Films were prepared over a range of drug concentrations (5%, 10% and 20% w/w) using ibuprofen, benzoic acid, nicotinic acid and lidocaine as model drugs in acrylic (Duro-Tak 87-4287 and Duro-Tak 87900A) or silicone (Bio-PSA 7-4301 and Bio-PSA 7-4302) pressure sensitive adhesives (PSAs). Saturation status of films was determined using light microscopy. Viscoelastic parameters were measured in rheology tests at 32°C. Subsaturated films had lower viscoelastic moduli whereas saturated films had higher moduli than the placebo films and/or a concentration-dependent increase in their modulus. Saturation concentration of each drug in the films was reflected by decreasing/increasing viscoelastic patterns. The viscoelastic windows (VWs) of the adhesive and drug-in-adhesive films clearly depicted the effect of solubility parameter differences, molar concentration of drug in the adhesive film and differences in PSA chemistry. Drug solubility parameters and molar drug concentrations have an impact on rheological patterns and thus on the adhesive performance of tested pressure sensitive adhesives intended for use in transdermal drug delivery systems. Use of the Flory equation in its limiting form was appropriate to predict drug solubility in the tested formulations.

  9. A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction

    International Nuclear Information System (INIS)

    Chaudhri, Buddhadev Paul; Ceyssens, Frederik; Van Hoof, Chris; Puers, Robert; De Moor, Piet

    2010-01-01

    Protein drugs, e.g. hormonal drugs, cannot be delivered orally to a patient as they get digested in the gastro-intestinal (GI) tract. Thus, it is imperative that these kinds of drugs are delivered transdermally through the skin. To provide for real-time feedback as well as to test independently for various substances in the blood, we also need a blood sampling system. Microneedles can perform both these functions. Further, microneedles made of silicon or metal have the risk of breaking inside the skin thereby leading to complications. SU-8, being approved of as being biocompatible by the Food and Drug Agency (FDA) of the United States, is an attractive alternative because firstly it is a polymer material, thereby reducing the chances of breakages inside the skin, and secondly it is a negative photoresist, thereby leading to ease of fabrication. Thus, here we present very tall (around 1600 µm) SU-8 polymer-based hollow microneedles fabricated by a simple and repeatable process, which are a very good candidate for transdermal drug delivery as well as blood extraction. The paper elaborates on the details that allow the fabrication of such extreme aspect ratios (>100).

  10. The Endocannabinoid System as a Potential Therapeutic Target for Pain Modulation

    Directory of Open Access Journals (Sweden)

    Ahmet Ulugöl

    2014-06-01

    Full Text Available Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms. Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MAGL, the enzymes playing a role in endocannabinoid metabolism. Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme. In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.

  11. Diamond encapsulated photovoltaics for transdermal power delivery.

    Science.gov (United States)

    Ahnood, A; Fox, K E; Apollo, N V; Lohrmann, A; Garrett, D J; Nayagam, D A X; Karle, T; Stacey, A; Abberton, K M; Morrison, W A; Blakers, A; Prawer, S

    2016-03-15

    A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980 nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7 W/cm(2), a peak output power of 2.7 mW is delivered to the implant with an active PV cell dimension of 1.5 × 1.5 × 0.06 mm(3). This corresponds to a volumetric power output density of ~20 mW/mm(3), significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Transdermal power transfer for recharging implanted drug delivery devices via the refill port.

    Science.gov (United States)

    Evans, Allan T; Chiravuri, Srinivas; Gianchandani, Yogesh B

    2010-04-01

    This paper describes a system for transferring power across a transdermal needle into a smart refill port for recharging implantable drug delivery systems. The device uses a modified 26 gauge (0.46 mm outer diameter) Huber needle with multiple conductive elements designed to couple with mechanical springs in the septum of the refill port of a drug delivery device to form an electrical connection that can sustain the current required to recharge a battery during a reservoir refill session. The needle is fabricated from stainless steel coated with Parylene, and the refill port septum is made from micromachined stainless steel contact springs and polydimethylsiloxane. The device properties were characterized with dry and wet ambient conditions. The needle and port pair had an average contact resistance of less than 2 Omega when mated in either environment. Electrical isolation between the system, the liquid in the needle lumen, and surrounding material has been demonstrated. The device was used to recharge a NiMH battery with currents up to 500 mA with less than 15 degrees C of resistive heating. The system was punctured 100 times to provide preliminary information with regard to device longevity, and exhibited about 1 Omega variation in contact resistance. The results suggest that this needle and refill port system can be used in an implant to enable battery recharging. This allows for smaller batteries to be used and ultimately increases the volume efficiency of an implantable drug delivery device.

  13. Therapeutic Efficacy of an ω-3-Fatty Acid-Containing 17-β Estradiol Nano-Delivery System against Experimental Atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Dipti Deshpande

    Full Text Available Atherosclerosis and its consequences remain prevalent clinical challenges throughout the world. Initiation and progression of atherosclerosis involves a complex, dynamic interplay among inflammation, hyperlipidemia, and endothelial dysfunction. A multicomponent treatment approach targeted for delivery within diseased vessels could prove beneficial in treating atherosclerosis. This study was undertaken to evaluate the multimodal effects of a novel ω-3-fatty acid-rich, 17-β-estradiol (17-βE-loaded, CREKA-peptide-modified nanoemulsion system on experimental atherosclerosis. In vitro treatment of cultured human aortic endothelial cells (ECs with the 17-βE-loaded, CREKA-peptide-modified nanoemulsion system increased cellular nitrate/nitrite, indicating improved nitric oxide formation. In vivo, systemic administration of this nanoemulsion system to apolipoprotein-E knock out (ApoE-/- mice fed a high-fat diet significantly improved multiple parameters related to the etiology and development of occlusive atherosclerotic vasculopathy: lesion area, circulating plasma lipid levels, and expression of aortic-wall inflammatory markers. These salutary effects were attributed selectively to the 17-βE and/or ω-3 polyunsaturated fatty acid components of the nano-delivery system. At therapeutic doses, the 17-βE-loaded, CREKA-peptide modified nanoemulsion system appeared to be biocompatible in that it elicited no apparent adverse/toxic effects, as indexed by body weight, plasma alanine aminotransferase/aspartate aminotransferase levels, and liver and kidney histopathology. The study demonstrates the therapeutic potential of a novel, 17-βE-loaded, CREKA-peptide-modified nanoemulsion system against atherosclerosis in a multimodal fashion by reducing lesion size, lowering the levels of circulating plasma lipids and decreasing the gene expression of inflammatory markers associated with the disease.

  14. Brian Barry: innovative contributions to transdermal and topical drug delivery.

    Science.gov (United States)

    Williams, A C

    2013-01-01

    Brian Barry published over 300 research articles across topics ranging from colloid science, vasoconstriction and the importance of thermodynamics in dermal drug delivery to exploring the structure and organisation of the stratum corneum barrier lipids and numerous strategies for improving topical and transdermal drug delivery, including penetration enhancers, supersaturation, coacervation, eutectic formation and the use of varied liposomes. As research in the area blossomed in the early 1980s, Brian wrote the book that became essential reading for both new and established dermal delivery scientists, explaining the background mathematics and principles through to formulation design. Brian also worked with numerous scientists, as collaborators and students, who have themselves taken his rigorous approach to scientific investigation into their own research groups. This paper can only describe a small fraction of the many significant contributions that Brian made to the field during his 40-year academic career.

  15. Efficacy of transdermal nitroglycerine in idiopathic pre-term labour.

    Science.gov (United States)

    Shaikh, Shahida; Shaikh, Abdul Hameed; Akhter, Saleem; Isran, Basma

    2012-01-01

    To determine the efficacy of transdermal Nitroglycerine patch in idiopathic pre-term labour and foetomaternal outcome. This quasi-experimental study was conducted at the Obstetrics Unit-II of Shaikh Zayed Hospital for Women, Chandka Medical College, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, from Jan 1 to June 30, 2010. Sixtyfive pregnant women at 28-34 weeks of gestation were recruited after they met the selection criteria based on non-probability consecutive sampling. Initially, 73 patients were selected, but 65 of them completed the treatment, while 8 patients refused to continue. Patients diagnosed with pre-term labour were given glyceryl trinitrate (GTN) 5 mg/12 hours transdermal patch which was applied on the anterior abdominal wall. The second patch of same dose was given after 12 hours. Arrest of labour, prolongation of pregnancy in days or weeks along with side effects of the agent were monitored. Patients were followed till delivery to know the foeto-maternal outcome. Dramatic effects were seen in around 60 (92.3%), of the total patients who had felt relief from premature labour pains within the first hour and only 5 (7.6%) patients could not go beyond 24 hours, as among them 3 (4.61%) had previous uterine scar and 2 (3.07%) developed ruptured membranes after 12 hours of admission and their babies also could not survive. Mean pregnancy prolongation was 15.35 +/- 9.45 days (min: 4 max: 35), so delivery was deferred up to 48 hours, 3 to 7 days and more than 7 days in 4 (6.15%), 6 (9.23%) and 50 (76.92%) respectively. Glyceryl trinitrate, trans dermal patch is effective and safe tocolytic in idiopathic preterm labour. By prolonging pregnancy it improves neonatal outcome.

  16. Effect of Microneedle Type on Transdermal Permeation of Rizatriptan.

    Science.gov (United States)

    Uppuluri, Chandrateja; Shaik, Ashraf Sultana; Han, Tao; Nayak, Atul; Nair, Karthik J; Whiteside, Benjamin R; Nalluri, Buchi N; Das, Diganta B

    2017-07-01

    The present study was aimed to investigate the effect of salient microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation of rizatriptan (RIZ). Studies were carried out using two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 0.9, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PMs) of 0.6 mm length. In the case of the PMs, arrays were applied three times at different places within a 1.77-cm 2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Histological studies revealed that PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 4.9- and 4.2-fold increases in the RIZ steady-state flux values were observed with 1.5 mm ADM and PM-3 applications when compared to the passive studies. A good correlation between different dimensionless parameters like the amount of RIZ permeated (C t /C s ), thickness (h/L) and surface area (S a /L 2 ) of the skin was observed with scaling analyses. Numerical simulations provided further information regarding the distribution of RIZ in MN-treated skin after application of different MNs. Overall, the study suggests that MN application enhances the RIZ transdermal permeation and the geometrical parameters of MNs play an important role in the degree enhancement.

  17. A novel therapeutic approach for the treatment of central sleep apnea: The remedē{sup ®} system

    Energy Technology Data Exchange (ETDEWEB)

    Germany, Robin, E-mail: rgermany@respicardia.com [University of Oklahoma School of Medicine (United States); Joseph, Susan [Washington University School of Medicine (United States); James, Kristofer [Respicardia, Inc., Hopkins, MN (United States); Kao, Andrew [University of Missouri School of Medicine, Kansas City (United States); St. Luke' s Mid-America Heart Institute, Kansas City, MO (United States)

    2014-06-15

    Central sleep apnea (CSA) occurs primarily in cardiovascular patients and is associated with high morbidity and mortality. The disorder often is unrecognized due to the overlap of symptoms with those of the underlying cardiac disease. CSA can be easily diagnosed with a sleep study. Following optimization of all co-morbidities, the therapeutic approach available currently focuses on mask-based therapies which suffer from poor patient adherence. A new therapy, the remedē{sup ®} System, has been developed; it utilizes a transvenous, fully implantable system providing phrenic nerve stimulation intended to restore a more normal breathing pattern. The therapy demonstrated promising results based on an initial chronic study and a randomized trial is underway to further evaluate safety and efficacy of this novel system in patients with CSA.

  18. A novel therapeutic approach for the treatment of central sleep apnea: The remedē® system

    International Nuclear Information System (INIS)

    Germany, Robin; Joseph, Susan; James, Kristofer; Kao, Andrew

    2014-01-01

    Central sleep apnea (CSA) occurs primarily in cardiovascular patients and is associated with high morbidity and mortality. The disorder often is unrecognized due to the overlap of symptoms with those of the underlying cardiac disease. CSA can be easily diagnosed with a sleep study. Following optimization of all co-morbidities, the therapeutic approach available currently focuses on mask-based therapies which suffer from poor patient adherence. A new therapy, the remedē ® System, has been developed; it utilizes a transvenous, fully implantable system providing phrenic nerve stimulation intended to restore a more normal breathing pattern. The therapy demonstrated promising results based on an initial chronic study and a randomized trial is underway to further evaluate safety and efficacy of this novel system in patients with CSA

  19. Computerized clinical decision support systems for therapeutic drug monitoring and dosing: A decision-maker-researcher partnership systematic review

    Directory of Open Access Journals (Sweden)

    Weise-Kelly Lorraine

    2011-08-01

    Full Text Available Abstract Background Some drugs have a narrow therapeutic range and require monitoring and dose adjustments to optimize their efficacy and safety. Computerized clinical decision support systems (CCDSSs may improve the net benefit of these drugs. The objective of this review was to determine if CCDSSs improve processes of care or patient outcomes for therapeutic drug monitoring and dosing. Methods We conducted a decision-maker-researcher partnership systematic review. Studies from our previous review were included, and new studies were sought until January 2010 in MEDLINE, EMBASE, Evidence-Based Medicine Reviews, and Inspec databases. Randomized controlled trials assessing the effect of a CCDSS on process of care or patient outcomes were selected by pairs of independent reviewers. A study was considered to have a positive effect (i.e., CCDSS showed improvement if at least 50% of the relevant study outcomes were statistically significantly positive. Results Thirty-three randomized controlled trials were identified, assessing the effect of a CCDSS on management of vitamin K antagonists (14, insulin (6, theophylline/aminophylline (4, aminoglycosides (3, digoxin (2, lidocaine (1, or as part of a multifaceted approach (3. Cluster randomization was rarely used (18% and CCDSSs were usually stand-alone systems (76% primarily used by physicians (85%. Overall, 18 of 30 studies (60% showed an improvement in the process of care and 4 of 19 (21% an improvement in patient outcomes. All evaluable studies assessing insulin dosing for glycaemic control showed an improvement. In meta-analysis, CCDSSs for vitamin K antagonist dosing significantly improved time in therapeutic range. Conclusions CCDSSs have potential for improving process of care for therapeutic drug monitoring and dosing, specifically insulin and vitamin K antagonist dosing. However, studies were small and generally of modest quality, and effects on patient outcomes were uncertain, with no convincing

  20. A Computational Procedure for Assessing the Dynamic Performance of Diffusion-Controlled Transdermal Delivery Devices

    Directory of Open Access Journals (Sweden)

    Laurent Simon

    2011-08-01

    Full Text Available Abstract: The dynamic performances of two different controlled-release systems were analyzed. In a reservoir-type drug-delivery patch, the transdermal flux is influenced by the properties of the membrane. A constant thermodynamic drug activity is preserved in the donor compartment. Monolithic matrices are among the most inexpensive systems used to direct drug delivery. In these structures, the active pharmaceutical ingredients are encapsulated within a polymeric material. Despite the popularity of these two devices, to tailor the properties of the polymer and additives to specific transient behaviors can be challenging and time-consuming. The heuristic approaches often considered to select the vehicle formulation provide limited insight into key permeation mechanisms making it difficult to predict the device performance. In this contribution, a method to calculate the flux response time in a system consisting of a reservoir and a polymeric membrane was proposed and confirmed. Nearly 8.60 h passed before the metoprolol delivery rate reached ninety-eight percent of its final value. An expression was derived for the time it took to transport the active pharmaceutical ingredient out of the polymer. Ninety-eight percent of alpha-tocopherol acetate was released in 461.4 h following application to the skin. The effective time constant can be computed to help develop optimum design strategies.

  1. Delivery systems and local administration routes for therapeutic siRNA.

    Science.gov (United States)

    Vicentini, Fabiana Testa Moura de Carvalho; Borgheti-Cardoso, Lívia Neves; Depieri, Lívia Vieira; de Macedo Mano, Danielle; Abelha, Thais Fedatto; Petrilli, Raquel; Bentley, Maria Vitória Lopes Badra

    2013-04-01

    With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.

  2. In Silico Systems Pharmacology to Assess Drug's Therapeutic and Toxic Effects

    DEFF Research Database (Denmark)

    Orozco, Alejandro Aguayo; Audouze, Karine; Brunak, Soren

    2016-01-01

    For many years, the "one target, one drug" paradigm has been the driving force behind developments in pharmaceutical research. With the recent advances in molecular biology and genomics technologies, the focus is shifting toward "drug-holistic" systems based approaches (i.e. systems pharmacology......). The integration of large and diverse amount of data from chemistry and biology coupled with the development and the application of network-based approaches to cope with these data is the next paradigm of drug discovery. Systems pharmacology offers a novel way of approaching drug discovery by developing models...

  3. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, E., E-mail: eriuli@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Furukawa, T., E-mail: t_furu@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Inaniwa, T., E-mail: taku@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Sato, S., E-mail: shin_s@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Himukai, T., E-mail: himukai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Shirai, T., E-mail: t_shirai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Noda, K., E-mail: noda_k@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan)

    2011-12-15

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  4. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Science.gov (United States)

    Takeshita, E.; Furukawa, T.; Inaniwa, T.; Sato, S.; Himukai, T.; Shirai, T.; Noda, K.

    2011-12-01

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  5. Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria.

    Science.gov (United States)

    Lee, Ki-Young; Lee, Bong-Jin

    2016-10-22

    Bacterial toxin-antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein-protein interactions. Accumulating knowledge about the structure-function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.

  6. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Thomas Schwitzer

    2016-01-01

    Full Text Available Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.

  7. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer.

    Science.gov (United States)

    Daige, Christopher L; Wiggins, Jason F; Priddy, Leslie; Nelligan-Davis, Terri; Zhao, Jane; Brown, David

    2014-10-01

    miR34a is a tumor-suppressor miRNA that functions within the p53 pathway to regulate cell-cycle progression and apoptosis. With apparent roles in metastasis and cancer stem cell development, miR34a provides an interesting opportunity for therapeutic development. A mimic of miR34a was complexed with an amphoteric liposomal formulation and tested in two different orthotopic models of liver cancer. Systemic dosing of the formulated miR34a mimic increased the levels of miR34a in tumors by approximately 1,000-fold and caused statistically significant decreases in the mRNA levels of several miR34a targets. The administration of the formulated miR34a mimic caused significant tumor growth inhibition in both models of liver cancer, and tumor regression was observed in more than one third of the animals. The antitumor activity was observed in the absence of any immunostimulatory effects or dose-limiting toxicities. Accumulation of the formulated miR34a mimic was also noted in the spleen, lung, and kidney, suggesting the potential for therapeutic use in other cancers. ©2014 American Association for Cancer Research.

  8. Enhanced Transdermal Delivery of Diclofenac Sodium via Conventional Liposomes, Ethosomes, and Transfersomes

    Directory of Open Access Journals (Sweden)

    Saeed Ghanbarzadeh

    2013-01-01

    Full Text Available The aim of this study was to improve the transdermal permeation of Diclofenac sodium, a poorly water-soluble drug, employing conventional liposomes, ethosomes, and transfersomes. The prepared formulations had been characterized for the loaded drug amount and vesicle size. The prepared vesicular systems were incorporated into 1% Carbopol 914 gel, and a survey of in vitro drug release and drug retention into rat skin has been done on them using a modified Franz diffusion cell. The cumulative amount of drug permeated after 24 h, flux, and permeability coefficient were assessed. Stability studies were performed for three months. The size of vesicles ranged from 145 to 202 nm, and the encapsulation efficiency of the Diclofenac sodium was obtained between 42.61% and 51.72%. The transfersomes and ethosomes provided a significantly higher amount of cumulative permeation, steady state flux, permeability coefficient, and residual drug into skin compared to the conventional liposomes, conventional gel, or hydroethanolic solution. The in vitro release data of all vesicular systems were well fit into Higuchi model (RSD > 0.99. Stability tests indicated that the vesicular formulations were stable over three months. Results revealed that both ethosome and transfersome formulations can act as drug reservoir in skin and extend the pharmacologic effects of Diclofenac sodium.

  9. Evaluation of skin absorption of drugs from topical and transdermal formulations

    Directory of Open Access Journals (Sweden)

    André Luís Morais Ruela

    Full Text Available ABSTRACT The skin barrier function has been attributed to the stratum corneum and represents a major challenge in clinical practice pertaining to cutaneous administration of drugs. Despite this, a large number of bioactive compounds have been successfully administered via cutaneous administration because of advances in the design of topical and transdermal formulations. In vitro and in vivo evaluations of these novel drug delivery systems are necessary to characterize their quality and efficacy. This review covers the most well-known methods for assessing the cutaneous absorption of drugs as an auxiliary tool for pharmaceutical formulation scientists in the design of drug delivery systems. In vitro methods as skin permeation assays using Franz-type diffusion cells, cutaneous retention and tape-stripping methods to study the cutaneous penetration of drugs, and in vivo evaluations as pre-clinical pharmacokinetic studies in animal models are discussed. Alternative approaches to cutaneous microdialysis are also covered. Recent advances in research on skin absorption of drugs and the effect of skin absorption enhancers, as investigated using confocal laser scanning microscopy, Raman confocal microscopy, and attenuated total reflectance Fourier-transform infrared spectroscopy, are reviewed.

  10. Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems

    Science.gov (United States)

    Cooper, Edwin L.; Overstreet, Nicola

    2014-03-01

    Recent evidence supports that prokaryotes exhibit adaptive immunity in the form of CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) and Cas (CRISPR associated proteins). The CRISPR-Cas system confers resistance to exogenous genetic elements such as phages and plasmids by allowing for the recognition and silencing of these genetic elements. Moreover, CRISPR-Cas serves as a memory of past exposures. This suggests that the evolution of the immune system has counterparts among the prokaryotes, not exclusively among eukaryotes. Mathematical models have been proposed which simulate the evolutionary patterns of CRISPR, however large gaps in our understanding of CRISPR-Cas function and evolution still exist. The CRISPR-Cas system is analogous to small RNAs involved in resistance mechanisms throughout the tree of life, and a deeper understanding of the evolution of small RNA pathways is necessary before the relationship between these convergent systems is to be determined. Presented in this review are novel RNAi therapies based on CRISPR-Cas analogs and the potential for future therapies based on CRISPR-Cas system components.

  11. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke.

    Science.gov (United States)

    Winek, Katarzyna; Dirnagl, Ulrich; Meisel, Andreas

    2016-10-01

    Research on commensal microbiota and its contribution to health and disease is a new and very dynamically developing field of biology and medicine. Recent experimental and clinical investigations underscore the importance of gut microbiota in the pathogenesis and course of stroke. Importantly, microbiota may influence the outcome of cerebral ischemia by modulating central nervous system antigen-specific immune responses. In this review we summarize studies linking gut microbiota with physiological function and disorders of the central nervous system. Based on these insights we speculate about targeting the gut microbiome in order to treat stroke.

  12. The role of stress and beta-adrenergic system in melanoma: current knowledge and possible therapeutic options.

    Science.gov (United States)

    Colucci, Roberta; Moretti, Silvia

    2016-05-01

    The aim of the present review was to discuss recent findings on the role of beta-adrenergic system in melanoma, in order to provide information on the biological responses elicited by its activation and its potential application for melanoma treatment. A literature search was performed, and evidences regarding the involvement of stress and beta-adrenergic system in cancer and melanoma were found and discussed. Our search pointed out that beta-adrenergic system is a key regulator of important biological processes involved in the onset and progression of some solid tumors. In the last decade, functional beta-adrenoceptors have been also identified on melanoma cells, as well as on their microenvironment cells. Similarly to other common cancers too, the activation of such adrenoceptors by catecholamines, usually released under stress conditions, has been found to trigger pro-tumorigenic pathways contributing to cell proliferation and motility, immune system regulation, apoptosis, epithelial-mesenchymal transition, invasion and neoangiogenesis. The biological evidences we found clarify and sustain the clinical evidences reporting the involvement of chronic stress in melanoma onset and progression. In such scenario, it is conceivable that a therapeutic approach targeting beta-adrenergic system could constitute a novel and promising strategy for melanoma treatment.

  13. Formulation, in vitro and in vivo evaluation of transdermal patches containing risperidone.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; Hari Kumar, S L

    2013-01-01

    The efficacy of oral risperidone treatment in prevention of schizophrenia is well known. However, oral side effects and patient compliance is always a problem for schizophrenics. In this study, risperidone was formulated into matrix transdermal patches to overcome these problems. The formulation factors for such patches, including eudragit RL 100 and eudragit RS 100 as matrix forming polymers, olive oil, groundnut oil and jojoba oil in different concentrations as enhancers and amount of drug loaded were investigated. The transdermal patches containing risperidone were prepared by solvent casting method and characterized for physicochemical and in vitro permeation studies through excised rat skin. Among the tested preparations, formulations with 20% risperidone, 3:2 ERL 100 and ERS 100 as polymers, mixture of olive oil and jojoba oil as enhancer, exhibited greatest cumulative amount of drug permeated (1.87 ± 0.09 mg/cm(2)) in 72 h, so batch ROJ was concluded as optimized formulation and assessed for pharmacokinetic, pharmacodynamic and skin irritation potential. The pharmacokinetic characteristics of the optimized risperidone patch were determined using rabbits, while orally administered risperidone in solution was used for comparison. The calculated relative bioavailability of risperidone transdermal patch was 115.20% with prolonged release of drug. Neuroleptic efficacy of transdermal formulation was assessed by rota-rod and grip test in comparison with control and marketed oral formulations with no skin irritation. This suggests the transdermal application of risperidone holds promise for improved bioavailability and better management of schizophrenia in long-term basis.

  14. Investigation of microemulsion system for transdermal delivery of itraconazole

    Science.gov (United States)

    Chudasama, Arpan; Patel, Vineetkumar; Nivsarkar, Manish; Vasu, Kamala; Shishoo, Chamanlal

    2011-01-01

    A new oil-in-water microemulsion-based (ME) gel containing 1% itraconazole (ITZ) was developed for topical delivery. The solubility of ITZ in oils and surfactants was evaluated to identify potential excipients. The microemulsion existence ranges were defined through the construction of the pseudoternary phase diagrams. The optimized microemulsion was characterized for its morphology and particle size distribution. The optimized microemulsion was incorporated into polymeric gels of Lutrol F127, Xanthan gum, and Carbopol 934 for convenient application and evaluated for pH, drug content, viscosity, and spreadability. In vitro drug permeation of ME gels was determined across excised rat skins. Furthermore, in vitro antimycotic inhibitory activity of the gels was conducted using agar-cup method and Candida albicans as a test organism. The droplet size of the optimized microemulsion was found to be <100 nm. The optimized Lutrol F 127 ME gel showed pH in the range of 5.68±0.02 and spreadability of 5.75±1.396 gcm/s. The viscosity of ME gel was found to be 1805.535±542.4 mPa s. The permeation rate (flux) of ITZ from prepared ME gel was found to be 4.234 μg/cm/h. The release profile exhibited diffusion controlled mechanism of drug release from ME ITZ gel. The developed ME gels were nonirritant and there was no erythema or edema. The antifungal activity of ITZ showed the widest zone of inhibition with Lutrol F127 ME gel. These results indicate that the studied ME gel may be a promising vehicle for topical delivery of ITZ. PMID:22171289

  15. Probiotic bacteria and the immune system: mechanistic insights and therapeutic implications

    NARCIS (Netherlands)

    Mariman, R.

    2013-01-01

    This thesis aimed to provide insight into the role of microbiota-host interactions in the regulation of mucosal and systemic immunity in the context of IBD. Regulation of microbiota composition (e.g. by probiotics and prebiotics) offers the possibility to modulate immune responses and contribute to

  16. Novel Therapeutic Strategies for Solid Tumor Based on Body's Intrinsic Antitumor Immune System.

    Science.gov (United States)

    Duan, Haifeng

    2018-05-22

    The accumulation of mutated somatic cells due to the incompetency of body's immune system may lead to tumor onset. Therefore, enhancing the ability of the system to eliminate such cells should be the core of tumor therapy. The intrinsic antitumor immunity is triggered by tumor-specific antigens (TSA) or TSA-sensitized dendritic cells (DC). Once initiated, specific anti-tumor antibodies are produced and tumor-specific killer immune cells, including cytotoxic T lymphocytes (CTL), NK cells, and macrophages, are raised or induced. Several strategies may enhance antitumor action of immune system, such as supplying tumor-targeted antibody, activating T cells, enhancing the activity and tumor recognition of NK cells, promoting tumor-targeted phagocytosis of macrophages, and eliminating the immunosuppressive myeloid-derived suppressor cells (MDSCs) and Treg cells. Apart from the immune system, the removal of tumor burden still needs to be assisted by drugs, surgery or radiation. And the body's internal environment and tumor microenvironment should be improved to recover immune cell function and prevent tumor growth. Multiple microenvironment modulatory therapies may be applied, including addressing hypoxia and oxidative stress, correcting metabolic disorders, and controlling chronic inflammation. Finally, to cure tumor and prevent tumor recurrence, repairing or supporting therapy that consist of tissue repair and nu