WorldWideScience

Sample records for transcriptional network classifiers

  1. Classifying transcription factor targets and discovering relevant biological features

    Directory of Open Access Journals (Sweden)

    DeLisi Charles

    2008-05-01

    Full Text Available Abstract Background An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets of 104 transcription factors in yeast. We now include a new sequence conservation measure, expand our predictions to include 59 new TFs, introduce a web-server, and implement an improved ranking method to reveal the biological features contributing to regulation. The classifiers combine 8 genomic datasets covering a broad range of measurements including sequence conservation, sequence overrepresentation, gene expression, and DNA structural properties. Principal Findings (1 Application of the method yields an amplification of information about yeast regulators. The ratio of total targets to previously known targets is greater than 2 for 11 TFs, with several having larger gains: Ash1(4, Ino2(2.6, Yaf1(2.4, and Yap6(2.4. (2 Many predicted targets for TFs match well with the known biology of their regulators. As a case study we discuss the regulator Swi6, presenting evidence that it may be important in the DNA damage response, and that the previously uncharacterized gene YMR279C plays a role in DNA damage response and perhaps in cell-cycle progression. (3 A procedure based on recursive-feature-elimination is able to uncover from the large initial data sets those features that best distinguish targets for any TF, providing clues relevant to its biology. An analysis of Swi6 suggests a possible role in lipid metabolism, and more specifically in metabolism of ceramide, a bioactive lipid currently being investigated for anti-cancer properties. (4 An analysis of global network properties highlights the transcriptional network hubs; the factors which control the most genes and the genes which are bound by the largest set of regulators. Cell-cycle and

  2. Artificial neural networks for classifying olfactory signals.

    Science.gov (United States)

    Linder, R; Pöppl, S J

    2000-01-01

    For practical applications, artificial neural networks have to meet several requirements: Mainly they should learn quick, classify accurate and behave robust. Programs should be user-friendly and should not need the presence of an expert for fine tuning diverse learning parameters. The present paper demonstrates an approach using an oversized network topology, adaptive propagation (APROP), a modified error function, and averaging outputs of four networks described for the first time. As an example, signals from different semiconductor gas sensors of an electronic nose were classified. The electronic nose smelt different types of edible oil with extremely different a-priori-probabilities. The fully-specified neural network classifier fulfilled the above mentioned demands. The new approach will be helpful not only for classifying olfactory signals automatically but also in many other fields in medicine, e.g. in data mining from medical databases.

  3. Neural Network Classifiers for Local Wind Prediction.

    Science.gov (United States)

    Kretzschmar, Ralf; Eckert, Pierre; Cattani, Daniel; Eggimann, Fritz

    2004-05-01

    This paper evaluates the quality of neural network classifiers for wind speed and wind gust prediction with prediction lead times between +1 and +24 h. The predictions were realized based on local time series and model data. The selection of appropriate input features was initiated by time series analysis and completed by empirical comparison of neural network classifiers trained on several choices of input features. The selected input features involved day time, yearday, features from a single wind observation device at the site of interest, and features derived from model data. The quality of the resulting classifiers was benchmarked against persistence for two different sites in Switzerland. The neural network classifiers exhibited superior quality when compared with persistence judged on a specific performance measure, hit and false-alarm rates.

  4. Neural Network Classifier Based on Growing Hyperspheres

    Czech Academy of Sciences Publication Activity Database

    Jiřina Jr., Marcel; Jiřina, Marcel

    2000-01-01

    Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics

  5. Design of Robust Neural Network Classifiers

    DEFF Research Database (Denmark)

    Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads

    1998-01-01

    This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...

  6. Ensemble of classifiers based network intrusion detection system performance bound

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  7. Multiple classifier fusion in probabilistic neural networks

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří; Kittler, J.; Pudil, Pavel; Somol, Petr

    2002-01-01

    Roč. 5, č. 7 (2002), s. 221-233 ISSN 1433-7541 R&D Projects: GA ČR GA402/01/0981 Institutional research plan: CEZ:AV0Z1075907 Keywords : EM algorithm * information preserving transform * multiple classifier fusion Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.667, year: 2002

  8. Revealing effective classifiers through network comparison

    Science.gov (United States)

    Gallos, Lazaros K.; Fefferman, Nina H.

    2014-11-01

    The ability to compare complex systems can provide new insight into the fundamental nature of the processes captured, in ways that are otherwise inaccessible to observation. Here, we introduce the n-tangle method to directly compare two networks for structural similarity, based on the distribution of edge density in network subgraphs. We demonstrate that this method can efficiently introduce comparative analysis into network science and opens the road for many new applications. For example, we show how the construction of a “phylogenetic tree” across animal taxa according to their social structure can reveal commonalities in the behavioral ecology of the populations, or how students create similar networks according to the University size. Our method can be expanded to study many additional properties, such as network classification, changes during time evolution, convergence of growth models, and detection of structural changes during damage.

  9. Neural network classifier of attacks in IP telephony

    Science.gov (United States)

    Safarik, Jakub; Voznak, Miroslav; Mehic, Miralem; Partila, Pavol; Mikulec, Martin

    2014-05-01

    Various types of monitoring mechanism allow us to detect and monitor behavior of attackers in VoIP networks. Analysis of detected malicious traffic is crucial for further investigation and hardening the network. This analysis is typically based on statistical methods and the article brings a solution based on neural network. The proposed algorithm is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. Information about attacks on these honeypots is collected on a centralized server and then classified. This classification is based on different mechanisms. One of them is based on the multilayer perceptron neural network. The article describes inner structure of used neural network and also information about implementation of this network. The learning set for this neural network is based on real attack data collected from IP telephony honeypot called Dionaea. We prepare the learning set from real attack data after collecting, cleaning and aggregation of this information. After proper learning is the neural network capable to classify 6 types of most commonly used VoIP attacks. Using neural network classifier brings more accurate attack classification in a distributed system of honeypots. With this approach is possible to detect malicious behavior in a different part of networks, which are logically or geographically divided and use the information from one network to harden security in other networks. Centralized server for distributed set of nodes serves not only as a collector and classifier of attack data, but also as a mechanism for generating a precaution steps against attacks.

  10. One pass learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2016-01-01

    Generalized classifier neural network introduced as a kind of radial basis function neural network, uses gradient descent based optimized smoothing parameter value to provide efficient classification. However, optimization consumes quite a long time and may cause a drawback. In this work, one pass learning for generalized classifier neural network is proposed to overcome this disadvantage. Proposed method utilizes standard deviation of each class to calculate corresponding smoothing parameter. Since different datasets may have different standard deviations and data distributions, proposed method tries to handle these differences by defining two functions for smoothing parameter calculation. Thresholding is applied to determine which function will be used. One of these functions is defined for datasets having different range of values. It provides balanced smoothing parameters for these datasets through logarithmic function and changing the operation range to lower boundary. On the other hand, the other function calculates smoothing parameter value for classes having standard deviation smaller than the threshold value. Proposed method is tested on 14 datasets and performance of one pass learning generalized classifier neural network is compared with that of probabilistic neural network, radial basis function neural network, extreme learning machines, and standard and logarithmic learning generalized classifier neural network in MATLAB environment. One pass learning generalized classifier neural network provides more than a thousand times faster classification than standard and logarithmic generalized classifier neural network. Due to its classification accuracy and speed, one pass generalized classifier neural network can be considered as an efficient alternative to probabilistic neural network. Test results show that proposed method overcomes computational drawback of generalized classifier neural network and may increase the classification performance. Copyright

  11. Classifying emotion in Twitter using Bayesian network

    Science.gov (United States)

    Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya

    2018-03-01

    Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.

  12. A convolutional neural network neutrino event classifier

    International Nuclear Information System (INIS)

    Aurisano, A.; Sousa, A.; Radovic, A.; Vahle, P.; Rocco, D.; Pawloski, G.; Himmel, A.; Niner, E.; Messier, M.D.; Psihas, F.

    2016-01-01

    Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.

  13. Reconstructing Curvilinear Networks Using Path Classifiers and Integer Programming.

    Science.gov (United States)

    Turetken, Engin; Benmansour, Fethallah; Andres, Bjoern; Glowacki, Przemyslaw; Pfister, Hanspeter; Fua, Pascal

    2016-12-01

    We propose a novel approach to automated delineation of curvilinear structures that form complex and potentially loopy networks. By representing the image data as a graph of potential paths, we first show how to weight these paths using discriminatively-trained classifiers that are both robust and generic enough to be applied to very different imaging modalities. We then present an Integer Programming approach to finding the optimal subset of paths, subject to structural and topological constraints that eliminate implausible solutions. Unlike earlier approaches that assume a tree topology for the networks, ours explicitly models the fact that the networks may contain loops, and can reconstruct both cyclic and acyclic ones. We demonstrate the effectiveness of our approach on a variety of challenging datasets including aerial images of road networks and micrographs of neural arbors, and show that it outperforms state-of-the-art techniques.

  14. Transforming Musical Signals through a Genre Classifying Convolutional Neural Network

    Science.gov (United States)

    Geng, S.; Ren, G.; Ogihara, M.

    2017-05-01

    Convolutional neural networks (CNNs) have been successfully applied on both discriminative and generative modeling for music-related tasks. For a particular task, the trained CNN contains information representing the decision making or the abstracting process. One can hope to manipulate existing music based on this 'informed' network and create music with new features corresponding to the knowledge obtained by the network. In this paper, we propose a method to utilize the stored information from a CNN trained on musical genre classification task. The network was composed of three convolutional layers, and was trained to classify five-second song clips into five different genres. After training, randomly selected clips were modified by maximizing the sum of outputs from the network layers. In addition to the potential of such CNNs to produce interesting audio transformation, more information about the network and the original music could be obtained from the analysis of the generated features since these features indicate how the network 'understands' the music.

  15. Classifying Radio Galaxies with the Convolutional Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Aniyan, A. K.; Thorat, K. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa)

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff–Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ∼200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  16. Classifying Radio Galaxies with the Convolutional Neural Network

    Science.gov (United States)

    Aniyan, A. K.; Thorat, K.

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff-Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ˜200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  17. Classifying Radio Galaxies with the Convolutional Neural Network

    International Nuclear Information System (INIS)

    Aniyan, A. K.; Thorat, K.

    2017-01-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff–Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ∼200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  18. Specificity and robustness in transcription control networks.

    Science.gov (United States)

    Sengupta, Anirvan M; Djordjevic, Marko; Shraiman, Boris I

    2002-02-19

    Recognition by transcription factors of the regulatory DNA elements upstream of genes is the fundamental step in controlling gene expression. How does the necessity to provide stability with respect to mutation constrain the organization of transcription control networks? We examine the mutation load of a transcription factor interacting with a set of n regulatory response elements as a function of the factor/DNA binding specificity and conclude on theoretical grounds that the optimal specificity decreases with n. The predicted correlation between variability of binding sites (for a given transcription factor) and their number is supported by the genomic data for Escherichia coli. The analysis of E. coli genomic data was carried out using an algorithm suggested by the biophysical model of transcription factor/DNA binding. Complete results of the search for candidate transcription factor binding sites are available at http://www.physics.rockefeller.edu/~boris/public/search_ecoli.

  19. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  20. Classifying images using restricted Boltzmann machines and convolutional neural networks

    Science.gov (United States)

    Zhao, Zhijun; Xu, Tongde; Dai, Chenyu

    2017-07-01

    To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts subject classification by exacting structural higher-order statistics features of images. While the method transfers the trained convolutional neural networks to the target datasets, fully-connected layers can be replaced by restricted Boltzmann machine layers; then the restricted Boltzmann machine layers and Softmax classifier are retrained, and BP neural network can be used to fine-tuned the hybrid model. The restricted Boltzmann machine layers has not only fully integrated the whole feature maps, but also learns the statistical features of target datasets in the view of the biggest logarithmic likelihood, thus removing the effects caused by the content differences between datasets. The experimental results show that the proposed method has improved the accuracy of image classification, outperforming other methods on Pascal VOC2007 and Caltech101 datasets.

  1. Reverse engineering transcriptional gene networks.

    Science.gov (United States)

    Belcastro, Vincenzo; di Bernardo, Diego

    2014-01-01

    The aim of this chapter is a step-by-step guide on how to infer gene networks from gene expression profiles. The definition of a gene network is given in Subheading 1, where the different types of networks are discussed. The chapter then guides the readers through a data-gathering process in order to build a compendium of gene expression profiles from a public repository. Gene expression profiles are then discretized and a statistical relationship between genes, called mutual information (MI), is computed. Gene pairs with insignificant MI scores are then discarded by applying one of the described pruning steps. The retained relationships are then used to build up a Boolean adjacency matrix used as input for a clustering algorithm to divide the network into modules (or communities). The gene network can then be used as a hypothesis generator for discovering gene function and analyzing gene signatures. Some case studies are presented, and an online web-tool called Netview is described.

  2. Learning Bayesian network classifiers for credit scoring using Markov Chain Monte Carlo search

    NARCIS (Netherlands)

    Baesens, B.; Egmont-Petersen, M.; Castelo, R.; Vanthienen, J.

    2001-01-01

    In this paper, we will evaluate the power and usefulness of Bayesian network classifiers for credit scoring. Various types of Bayesian network classifiers will be evaluated and contrasted including unrestricted Bayesian network classifiers learnt using Markov Chain Monte Carlo (MCMC) search.

  3. Transcriptional delay stabilizes bistable gene networks.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R

    2013-08-02

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner.

  4. Transcriptional networks in epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Christo Venkov

    Full Text Available Epithelial-mesenchymal transition (EMT changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

  5. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network......Transcriptional regulation is the most committed type of regulation in living cells where transcription factors (TFs) control the expression of their target genes and TF expression is controlled by other TFs forming complex transcriptional regulatory networks that can be highly interconnected. Here...... as a measure of the organization and interconnectivity of the network. We find that the number of driver nodes n(D) needed to control the whole network is 64% of the TFs in the E. coli transcriptional regulatory network in contrast to only 17% for the yeast network, 4% for the mouse network and 8...

  6. Complex network approach to classifying classical piano compositions

    Science.gov (United States)

    Xin, Chen; Zhang, Huishu; Huang, Jiping

    2016-10-01

    Complex network has been regarded as a useful tool handling systems with vague interactions. Hence, numerous applications have arised. In this paper we construct complex networks for 770 classical piano compositions of Mozart, Beethoven and Chopin based on musical note pitches and lengths. We find prominent distinctions among network edges of different composers. Some stylized facts can be explained by such parameters of network structures and topologies. Further, we propose two classification methods for music styles and genres according to the discovered distinctions. These methods are easy to implement and the results are sound. This work suggests that complex network could be a decent way to analyze the characteristics of musical notes, since it could provide a deep view into understanding of the relationships among notes in musical compositions and evidence for classification of different composers, styles and genres of music.

  7. Strategies for Transporting Data Between Classified and Unclassified Networks

    Science.gov (United States)

    2016-03-01

    Sustainment Logistics CPC System mission command (S2MC) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...analyze the national enterprise data portal (NEDP), a foundational component of the sustainment system mission command. The analysis focused on...Taps,” Network Performance Channel GmbH, Langen, Germany , July 2011. 7. United States Navy, “Tactical Command System – MIP,” Defense Technical

  8. Neural Networks Classifier for Data Selection in Statistical Machine Translation

    Directory of Open Access Journals (Sweden)

    Peris Álvaro

    2017-06-01

    Full Text Available Corpora are precious resources, as they allow for a proper estimation of statistical machine translation models. Data selection is a variant of the domain adaptation field, aimed to extract those sentences from an out-of-domain corpus that are the most useful to translate a different target domain. We address the data selection problem in statistical machine translation as a classification task. We present a new method, based on neural networks, able to deal with monolingual and bilingual corpora. Empirical results show that our data selection method provides slightly better translation quality, compared to a state-of-the-art method (cross-entropy, requiring substantially less data. Moreover, the results obtained are coherent across different language pairs, demonstrating the robustness of our proposal.

  9. Feature selection for Bayesian network classifiers using the MDL-FS score

    NARCIS (Netherlands)

    Drugan, Madalina M.; Wiering, Marco A.

    When constructing a Bayesian network classifier from data, the more or less redundant features included in a dataset may bias the classifier and as a consequence may result in a relatively poor classification accuracy. In this paper, we study the problem of selecting appropriate subsets of features

  10. Arabic Language WEKA-Based Dialect Classifier for Arabic Automatic Speech Recognition Transcripts

    OpenAIRE

    Alshutayri, A; Atwell, ES; Alosaimy, A; Dickins, J; Ingleby, M; Watson, J

    2016-01-01

    This paper describes an Arabic dialect identification system which we developed for the Discriminating Similar Languages (DSL) 2016 shared task. We classified Arabic dialects by using Waikato Environment for Knowledge Analysis (WEKA) data analytic tool which contains many alternative filters and classifiers for machine learning. We experimented with several classifiers and the best accuracy was achieved using the Sequential Minimal Optimization (SMO) algorithm for training and testing process...

  11. Transcriptional networks of TCP transcription factors in Arabidopsis development

    NARCIS (Netherlands)

    Danisman, S.D.

    2011-01-01

    Leaves are a plant’s main organs of photosynthesis and hence the development of this organ is under strict control. The different phases of leaf development are under the control of both endogenous and exogenous influences. In this work we were interested in a particular class of transcription

  12. 76 FR 63811 - Structural Reforms To Improve the Security of Classified Networks and the Responsible Sharing and...

    Science.gov (United States)

    2011-10-13

    ... Structural Reforms To Improve the Security of Classified Networks and the Responsible Sharing and... classified national security information (classified information) on computer networks, it is hereby ordered as follows: Section 1. Policy. Our Nation's security requires classified information to be shared...

  13. A network-based approach to classify the three domains of life

    Directory of Open Access Journals (Sweden)

    Mueller Laurin AJ

    2011-10-01

    Full Text Available Abstract Background Identifying group-specific characteristics in metabolic networks can provide better insight into evolutionary developments. Here, we present an approach to classify the three domains of life using topological information about the underlying metabolic networks. These networks have been shown to share domain-independent structural similarities, which pose a special challenge for our endeavour. We quantify specific structural information by using topological network descriptors to classify this set of metabolic networks. Such measures quantify the structural complexity of the underlying networks. In this study, we use such measures to capture domain-specific structural features of the metabolic networks to classify the data set. So far, it has been a challenging undertaking to examine what kind of structural complexity such measures do detect. In this paper, we apply two groups of topological network descriptors to metabolic networks and evaluate their classification performance. Moreover, we combine the two groups to perform a feature selection to estimate the structural features with the highest classification ability in order to optimize the classification performance. Results By combining the two groups, we can identify seven topological network descriptors that show a group-specific characteristic by ANOVA. A multivariate analysis using feature selection and supervised machine learning leads to a reasonable classification performance with a weighted F-score of 83.7% and an accuracy of 83.9%. We further demonstrate that our approach outperforms alternative methods. Also, our results reveal that entropy-based descriptors show the highest classification ability for this set of networks. Conclusions Our results show that these particular topological network descriptors are able to capture domain-specific structural characteristics for classifying metabolic networks between the three domains of life.

  14. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...... changes induced by complex regulatory mechanisms coordinating the activity of different metabolic pathways. It is difficult to map such global transcriptional responses by using traditional methods, because many genes in the metabolic network have relatively small changes at their transcription level. We...... in the metabolic network that follow a common transcriptional response. Thus, the algorithm enables identification of so-called reporter metabolites (metabolites around which the most significant transcriptional changes occur) and a set of connected genes with significant and coordinated response to genetic...

  15. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin...... remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications....... Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression....

  16. Automatic construction of a recurrent neural network based classifier for vehicle passage detection

    Science.gov (United States)

    Burnaev, Evgeny; Koptelov, Ivan; Novikov, German; Khanipov, Timur

    2017-03-01

    Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.

  17. Inferring a transcription regulatory network by directed perturbation

    NARCIS (Netherlands)

    Sameith, K.

    2013-01-01

    Transcription plays a key role in cellular processes and its regulation is of paramount importance. The aim of the work described in this thesis is to study the transcription regulatory network of Saccharomyces cerevisiae, employing genome-wide approaches. All the three presented research studies

  18. Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kluger Yuval

    2006-03-01

    Full Text Available Abstract Background Gene expression and transcription factor (TF binding data have been used to reveal gene transcriptional regulatory networks. Existing knowledge of gene regulation can be presented using gene connectivity networks. However, these composite connectivity networks do not specify the range of biological conditions of the activity of each link in the network. Results We present a novel method that utilizes the expression and binding patterns of the neighboring nodes of each link in existing experimentally-based, literature-derived gene transcriptional regulatory networks and extend them in silico using TF-gene binding motifs and a compendium of large expression data from Saccharomyces cerevisiae. Using this method, we predict several hundreds of new transcriptional regulatory TF-gene links, along with experimental conditions in which known and predicted links become active. This approach unravels new links in the yeast gene transcriptional regulatory network by utilizing the known transcriptional regulatory interactions, and is particularly useful for breaking down the composite transcriptional regulatory network to condition specific networks. Conclusion Our methods can facilitate future binding experiments, as they can considerably help focus on the TFs that must be surveyed to understand gene regulation. (Supplemental material and the latest version of the MATLAB implementation of the United Signature Algorithm is available online at 1 or [see Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Additional File 1 overview of supplemental data Click here for file Additional File 2 experimental conditions for each link in figure 5. These are the experimental conditions in which the links are likely to be active. Click here for file Additional File 3 experimental conditions for each link in figure 7. These are the experimental conditions in which the links are likely to be active. Click here for file Additional File 4 Alon

  19. Prediction models in the design of neural network based ECG classifiers: A neural network and genetic programming approach

    Directory of Open Access Journals (Sweden)

    Smith Ann E

    2002-01-01

    Full Text Available Abstract Background Classification of the electrocardiogram using Neural Networks has become a widely used method in recent years. The efficiency of these classifiers depends upon a number of factors including network training. Unfortunately, there is a shortage of evidence available to enable specific design choices to be made and as a consequence, many designs are made on the basis of trial and error. In this study we develop prediction models to indicate the point at which training should stop for Neural Network based Electrocardiogram classifiers in order to ensure maximum generalisation. Methods Two prediction models have been presented; one based on Neural Networks and the other on Genetic Programming. The inputs to the models were 5 variable training parameters and the output indicated the point at which training should stop. Training and testing of the models was based on the results from 44 previously developed bi-group Neural Network classifiers, discriminating between Anterior Myocardial Infarction and normal patients. Results Our results show that both approaches provide close fits to the training data; p = 0.627 and p = 0.304 for the Neural Network and Genetic Programming methods respectively. For unseen data, the Neural Network exhibited no significant differences between actual and predicted outputs (p = 0.306 while the Genetic Programming method showed a marginally significant difference (p = 0.047. Conclusions The approaches provide reverse engineering solutions to the development of Neural Network based Electrocardiogram classifiers. That is given the network design and architecture, an indication can be given as to when training should stop to obtain maximum network generalisation.

  20. A Robust Text Classifier Based on Denoising Deep Neural Network in the Analysis of Big Data

    Directory of Open Access Journals (Sweden)

    Wulamu Aziguli

    2017-01-01

    Full Text Available Text classification has always been an interesting issue in the research area of natural language processing (NLP. While entering the era of big data, a good text classifier is critical to achieving NLP for scientific big data analytics. With the ever-increasing size of text data, it has posed important challenges in developing effective algorithm for text classification. Given the success of deep neural network (DNN in analyzing big data, this article proposes a novel text classifier using DNN, in an effort to improve the computational performance of addressing big text data with hybrid outliers. Specifically, through the use of denoising autoencoder (DAE and restricted Boltzmann machine (RBM, our proposed method, named denoising deep neural network (DDNN, is able to achieve significant improvement with better performance of antinoise and feature extraction, compared to the traditional text classification algorithms. The simulations on benchmark datasets verify the effectiveness and robustness of our proposed text classifier.

  1. FERAL : Network-based classifier with application to breast cancer outcome prediction

    NARCIS (Netherlands)

    Allahyar, A.; De Ridder, J.

    2015-01-01

    Motivation: Breast cancer outcome prediction based on gene expression profiles is an important strategy for personalize patient care. To improve performance and consistency of discovered markers of the initial molecular classifiers, network-based outcome prediction methods (NOPs) have been proposed.

  2. A critical evaluation of network and pathway based classifiers for outcome prediction in breast cancer

    NARCIS (Netherlands)

    C. Staiger (Christine); S. Cadot; R Kooter; M. Dittrich (Marcus); T. Müller (Tobias); G.W. Klau (Gunnar); L.F.A. Wessels (Lodewyk)

    2011-01-01

    htmlabstractRecently, several classifiers that combine primary tumor data, like gene expression data, and secondary data sources, such as protein-protein interaction networks, have been proposed for predicting outcome in breast cancer. In these approaches, new composite features are typically

  3. A Critical Evaluation of Network and Pathway-Based Classifiers for Outcome Prediction in Breast Cancer

    NARCIS (Netherlands)

    C. Staiger (Christine); S. Cadot; R Kooter; M. Dittrich (Marcus); T. Müller (Tobias); G.W. Klau (Gunnar); L.F.A. Wessels (Lodewyk)

    2012-01-01

    htmlabstractRecently, several classifiers that combine primary tumor data, like gene expression data, and secondary data sources, such as protein-protein interaction networks, have been proposed for predicting outcome in breast cancer. In these approaches, new composite features are typically

  4. Feature extraction using convolutional neural network for classifying breast density in mammographic images

    Science.gov (United States)

    Thomaz, Ricardo L.; Carneiro, Pedro C.; Patrocinio, Ana C.

    2017-03-01

    Breast cancer is the leading cause of death for women in most countries. The high levels of mortality relate mostly to late diagnosis and to the direct proportionally relationship between breast density and breast cancer development. Therefore, the correct assessment of breast density is important to provide better screening for higher risk patients. However, in modern digital mammography the discrimination among breast densities is highly complex due to increased contrast and visual information for all densities. Thus, a computational system for classifying breast density might be a useful tool for aiding medical staff. Several machine-learning algorithms are already capable of classifying small number of classes with good accuracy. However, machinelearning algorithms main constraint relates to the set of features extracted and used for classification. Although well-known feature extraction techniques might provide a good set of features, it is a complex task to select an initial set during design of a classifier. Thus, we propose feature extraction using a Convolutional Neural Network (CNN) for classifying breast density by a usual machine-learning classifier. We used 307 mammographic images downsampled to 260x200 pixels to train a CNN and extract features from a deep layer. After training, the activation of 8 neurons from a deep fully connected layer are extracted and used as features. Then, these features are feedforward to a single hidden layer neural network that is cross-validated using 10-folds to classify among four classes of breast density. The global accuracy of this method is 98.4%, presenting only 1.6% of misclassification. However, the small set of samples and memory constraints required the reuse of data in both CNN and MLP-NN, therefore overfitting might have influenced the results even though we cross-validated the network. Thus, although we presented a promising method for extracting features and classifying breast density, a greater database is

  5. Transcriptional Network growing Models using Motif-based Preferential Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Farouk Abdelzaher

    2015-10-01

    Full Text Available Understanding relationships between architectural properties of gene-regulatory networks (GRNs has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs--i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent ``building blocks'' of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops, its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  6. Classifying Algorithm Based on a Fuzzy Neural network for the control of a Network Attached Optical Jukebox

    Science.gov (United States)

    Liu, Xuan; Jia, Hui-Bo; Cheng, Ming

    2006-11-01

    A new analytical method for improving the performance of a network attached optical jukebox is presented by means of artificial neural networks. Through analyzing operation (request) process in this system, the mathematics model and algorithm are built for this storage system, and then a classified method based on artificial neural networks for this system is proposed. Simulation results testified the feasibility and validity of the proposed method that it could overcome the drawbacks of the frequent I/O operation and provide an effective way for using the Network Attached Optical Jukebox.

  7. On cycles in the transcription network of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Berman Piotr

    2008-01-01

    Full Text Available Abstract Background We investigate the cycles in the transcription network of Saccharomyces cerevisiae. Unlike a similar network of Escherichia coli, it contains many cycles. We characterize properties of these cycles and their place in the regulatory mechanism of the cell. Results Almost all cycles in the transcription network of Saccharomyces cerevisiae are contained in a single strongly connected component, which we call LSCC (L for "largest", except for a single cycle of two transcription factors. The fact that LSCC includes almost all cycles is well explained by the properties of a random graph with the same in- and out-degrees of the nodes. Among different physiological conditions, cell cycle has the most significant relationship with LSCC, as the set of 64 transcription interactions that are active in all phases of the cell cycle has overlap of 27 with the interactions of LSCC (of which there are 49. Conversely, if we remove the interactions that are active in all phases of the cell cycle (25% of interactions to transcription factors, the LSCC would have only three nodes and 5 edges, many fewer than expected. This subgraph of the transcription network consists mostly of interactions that are active only in the stress response subnetwork. We also characterize the role of LSCC in the topology of the network. We show that LSCC can be used to define a natural hierarchy in the network and that in every physiological subnetwork LSCC plays a pivotal role. Conclusion Apart from those well-defined conditions, the transcription network of Saccharomyces cerevisiae is devoid of cycles. It was observed that two conditions that were studied and that have no cycles of their own are exogenous: diauxic shift and DNA repair, while cell cycle and sporulation are endogenous. We claim that in a certain sense (slow recovery stress response is endogenous as well.

  8. Generating prior probabilities for classifiers of brain tumours using belief networks

    Directory of Open Access Journals (Sweden)

    Arvanitis Theodoros N

    2007-09-01

    Full Text Available Abstract Background Numerous methods for classifying brain tumours based on magnetic resonance spectra and imaging have been presented in the last 15 years. Generally, these methods use supervised machine learning to develop a classifier from a database of cases for which the diagnosis is already known. However, little has been published on developing classifiers based on mixed modalities, e.g. combining imaging information with spectroscopy. In this work a method of generating probabilities of tumour class from anatomical location is presented. Methods The method of "belief networks" is introduced as a means of generating probabilities that a tumour is any given type. The belief networks are constructed using a database of paediatric tumour cases consisting of data collected over five decades; the problems associated with using this data are discussed. To verify the usefulness of the networks, an application of the method is presented in which prior probabilities were generated and combined with a classification of tumours based solely on MRS data. Results Belief networks were constructed from a database of over 1300 cases. These can be used to generate a probability that a tumour is any given type. Networks are presented for astrocytoma grades I and II, astrocytoma grades III and IV, ependymoma, pineoblastoma, primitive neuroectodermal tumour (PNET, germinoma, medulloblastoma, craniopharyngioma and a group representing rare tumours, "other". Using the network to generate prior probabilities for classification improves the accuracy when compared with generating prior probabilities based on class prevalence. Conclusion Bayesian belief networks are a simple way of using discrete clinical information to generate probabilities usable in classification. The belief network method can be robust to incomplete datasets. Inclusion of a priori knowledge is an effective way of improving classification of brain tumours by non-invasive methods.

  9. Motif Participation by Genes in E. coli Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Michael eMayo

    2012-09-01

    Full Text Available Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium Escherichia coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

  10. An innovative method to classify SERMs based on the dynamics of estrogen receptor transcriptional activity in living animals.

    Science.gov (United States)

    Rando, Gianpaolo; Horner, David; Biserni, Andrea; Ramachandran, Balaji; Caruso, Donatella; Ciana, Paolo; Komm, Barry; Maggi, Adriana

    2010-04-01

    Using a mouse model engineered to measure estrogen receptor (ER) transcriptional activity in living organisms, we investigated the effect of long-term (21 d) hormone replacement on ER signaling by whole-body in vivo imaging. Estrogens and selective ER modulators were administered daily at doses equivalent to those used in humans as calculated by the allometric approach. As controls, ER activity was measured also in cycling and ovariectomized mice. The study demonstrated that ER-dependent transcriptional activity oscillated in time, and the frequency and amplitude of the transcription pulses was strictly associated with the target tissue and the estrogenic compound administered. Our results indicate that the spatiotemporal activity of selective ER modulators is predictive of their structure, demonstrating that the analysis of the effect of estrogenic compounds on a single surrogate marker of ER transcriptional activity is sufficient to classify families of compounds structurally and functionally related. For more than one century, the measure of drug structure-activity relationships has been based on mathematical equations describing the interaction of the drug with its biological receptor. The understanding of the multiplicity of biological responses induced by the drug-receptor interaction demonstrated the limits of current approach and the necessity to develop novel concepts for the quantitative analysis of drug action. Here, a systematic study of spatiotemporal effects is proposed as a measure of drug efficacy for the classification of pharmacologically active compounds. The application of this methodology is expected to simplify the identification of families of molecules functionally correlated and to speed up the process of drug discovery.

  11. Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance.

    Science.gov (United States)

    Mazurowski, Maciej A; Habas, Piotr A; Zurada, Jacek M; Lo, Joseph Y; Baker, Jay A; Tourassi, Georgia D

    2008-01-01

    This study investigates the effect of class imbalance in training data when developing neural network classifiers for computer-aided medical diagnosis. The investigation is performed in the presence of other characteristics that are typical among medical data, namely small training sample size, large number of features, and correlations between features. Two methods of neural network training are explored: classical backpropagation (BP) and particle swarm optimization (PSO) with clinically relevant training criteria. An experimental study is performed using simulated data and the conclusions are further validated on real clinical data for breast cancer diagnosis. The results show that classifier performance deteriorates with even modest class imbalance in the training data. Further, it is shown that BP is generally preferable over PSO for imbalanced training data especially with small data sample and large number of features. Finally, it is shown that there is no clear preference between oversampling and no compensation approach and some guidance is provided regarding a proper selection.

  12. Autoregressive Integrated Adaptive Neural Networks Classifier for EEG-P300 Classification

    Directory of Open Access Journals (Sweden)

    Demi Soetraprawata

    2013-06-01

    Full Text Available Brain Computer Interface has a potency to be applied in mechatronics apparatus and vehicles in the future. Compared to the other techniques, EEG is the most preferred for BCI designs. In this paper, a new adaptive neural network classifier of different mental activities from EEG-based P300 signals is proposed. To overcome the over-training that is caused by noisy and non-stationary data, the EEG signals are filtered and extracted using autoregressive models before passed to the adaptive neural networks classifier. To test the improvement in the EEG classification performance with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis. The experiment results show that the all subjects achieve a classification accuracy of 100%.

  13. ELHnet: a convolutional neural network for classifying cochlear endolymphatic hydrops imaged with optical coherence tomography.

    Science.gov (United States)

    Liu, George S; Zhu, Michael H; Kim, Jinkyung; Raphael, Patrick; Applegate, Brian E; Oghalai, John S

    2017-10-01

    Detection of endolymphatic hydrops is important for diagnosing Meniere's disease, and can be performed non-invasively using optical coherence tomography (OCT) in animal models as well as potentially in the clinic. Here, we developed ELHnet, a convolutional neural network to classify endolymphatic hydrops in a mouse model using learned features from OCT images of mice cochleae. We trained ELHnet on 2159 training and validation images from 17 mice, using only the image pixels and observer-determined labels of endolymphatic hydrops as the inputs. We tested ELHnet on 37 images from 37 mice that were previously not used, and found that the neural network correctly classified 34 of the 37 mice. This demonstrates an improvement in performance from previous work on computer-aided classification of endolymphatic hydrops. To the best of our knowledge, this is the first deep CNN designed for endolymphatic hydrops classification.

  14. Covert Network Analysis for Key Player Detection and Event Prediction Using a Hybrid Classifier

    Directory of Open Access Journals (Sweden)

    Wasi Haider Butt

    2014-01-01

    attraction of researchers and practitioners to design systems which can detect main members which are actually responsible for such kind of events. In this paper, we present a novel method to predict key players from a covert network by applying a hybrid framework. The proposed system calculates certain centrality measures for each node in the network and then applies novel hybrid classifier for detection of key players. Our system also applies anomaly detection to predict any terrorist activity in order to help law enforcement agencies to destabilize the involved network. As a proof of concept, the proposed framework has been implemented and tested using different case studies including two publicly available datasets and one local network.

  15. Covert network analysis for key player detection and event prediction using a hybrid classifier.

    Science.gov (United States)

    Butt, Wasi Haider; Akram, M Usman; Khan, Shoab A; Javed, Muhammad Younus

    2014-01-01

    National security has gained vital importance due to increasing number of suspicious and terrorist events across the globe. Use of different subfields of information technology has also gained much attraction of researchers and practitioners to design systems which can detect main members which are actually responsible for such kind of events. In this paper, we present a novel method to predict key players from a covert network by applying a hybrid framework. The proposed system calculates certain centrality measures for each node in the network and then applies novel hybrid classifier for detection of key players. Our system also applies anomaly detection to predict any terrorist activity in order to help law enforcement agencies to destabilize the involved network. As a proof of concept, the proposed framework has been implemented and tested using different case studies including two publicly available datasets and one local network.

  16. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    Science.gov (United States)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  17. Patient Specific Seizure Prediction System Using Hilbert Spectrum and Bayesian Networks Classifiers

    OpenAIRE

    Ozdemir, Nilufer; Yildirim, Esen

    2014-01-01

    The aim of this paper is to develop an automated system for epileptic seizure prediction from intracranial EEG signals based on Hilbert-Huang transform (HHT) and Bayesian classifiers. Proposed system includes decomposition of the signals into intrinsic mode functions for obtaining features and use of Bayesian networks with correlation based feature selection for binary classification of preictal and interictal recordings. The system was trained and tested on Freiburg EEG database. 58 hours of...

  18. Monitoring industrial facilities using principles of integration of fiber classifier and local sensor networks

    Science.gov (United States)

    Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.

    2015-05-01

    The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.

  19. Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Alexander E. Hramov

    2017-12-01

    Full Text Available In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces.

  20. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  1. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  2. Novel transcriptional networks regulated by CLOCK in human neurons.

    Science.gov (United States)

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  3. A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2016-01-01

    Full Text Available The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN. To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs and intuitionistic fuzzy cross-entropy (IFCE with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.

  4. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  5. Transcriptional control in the segmentation gene network of Drosophila.

    Science.gov (United States)

    Schroeder, Mark D; Pearce, Michael; Fak, John; Fan, HongQing; Unnerstall, Ulrich; Emberly, Eldon; Rajewsky, Nikolaus; Siggia, Eric D; Gaul, Ulrike

    2004-09-01

    The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross-) regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules) with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a uniform set of

  6. Transcriptional control in the segmentation gene network of Drosophila.

    Directory of Open Access Journals (Sweden)

    Mark D Schroeder

    2004-09-01

    Full Text Available The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross- regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a

  7. Isolated guitar transcription using a deep belief network

    Directory of Open Access Journals (Sweden)

    Gregory Burlet

    2017-03-01

    Full Text Available Music transcription involves the transformation of an audio recording to common music notation, colloquially referred to as sheet music. Manually transcribing audio recordings is a difficult and time-consuming process, even for experienced musicians. In response, several algorithms have been proposed to automatically analyze and transcribe the notes sounding in an audio recording; however, these algorithms are often general-purpose, attempting to process any number of instruments producing any number of notes sounding simultaneously. This paper presents a polyphonic transcription algorithm that is constrained to processing the audio output of a single instrument, specifically an acoustic guitar. The transcription system consists of a novel note pitch estimation algorithm that uses a deep belief network and multi-label learning techniques to generate multiple pitch estimates for each analysis frame of the input audio signal. Using a compiled dataset of synthesized guitar recordings for evaluation, the algorithm described in this work results in an 11% increase in the f-measure of note transcriptions relative to Zhou et al.’s (2009 transcription algorithm in the literature. This paper demonstrates the effectiveness of deep, multi-label learning for the task of polyphonic transcription.

  8. Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima

    Directory of Open Access Journals (Sweden)

    Dmitry A Rodionov

    2013-08-01

    Full Text Available Hyperthermophilic bacteria from the Thermotogales lineage can produce hydrogen by fermenting a wide range of carbohydrates. Previous experimental studies identified a large fraction of genes committed to carbohydrate degradation and utilization in the model bacterium Thermotoga maritima. Knowledge of these genes enabled comprehensive reconstruction of biochemical pathways comprising the carbohydrate utilization network. However, transcriptional factors (TFs and regulatory mechanisms driving this network remained largely unknown. Here, we used an integrated approach based on comparative analysis of genomic and transcriptomic data for the reconstruction of the carbohydrate utilization regulatory networks in 11 Thermotogales genomes. We identified DNA-binding motifs and regulons for 19 orthologous TFs in the Thermotogales. The inferred regulatory network in T. maritima contains 181 genes encoding TFs, sugar catabolic enzymes and ABC-family transporters. In contrast to many previously described bacteria, a transcriptional regulation strategy of Thermotoga does not employ global regulatory factors. The reconstructed regulatory network in T. maritima was validated by gene expression profiling on a panel of mono- and disaccharides and by in vitro DNA-binding assays. The observed upregulation of genes involved in catabolism of pectin, trehalose, cellobiose, arabinose, rhamnose, xylose, glucose, galactose, and ribose showed a strong correlation with the UxaR, TreR, BglR, CelR, AraR, RhaR, XylR, GluR, GalR, and RbsR regulons. Ultimately, this study elucidated the transcriptional regulatory network and mechanisms controlling expression of carbohydrate utilization genes in T. maritima. In addition to improving the functional annotations of associated transporters and catabolic enzymes, this research provides novel insights into the evolution of regulatory networks in Thermotogales.

  9. Multilayer cellular neural network and fuzzy C-mean classifiers: comparison and performance analysis

    Science.gov (United States)

    Trujillo San-Martin, Maite; Hlebarov, Vejen; Sadki, Mustapha

    2004-11-01

    Neural Networks and Fuzzy systems are considered two of the most important artificial intelligent algorithms which provide classification capabilities obtained through different learning schemas which capture knowledge and process it according to particular rule-based algorithms. These methods are especially suited to exploit the tolerance for uncertainty and vagueness in cognitive reasoning. By applying these methods with some relevant knowledge-based rules extracted using different data analysis tools, it is possible to obtain a robust classification performance for a wide range of applications. This paper will focus on non-destructive testing quality control systems, in particular, the study of metallic structures classification according to the corrosion time using a novel cellular neural network architecture, which will be explained in detail. Additionally, we will compare these results with the ones obtained using the Fuzzy C-means clustering algorithm and analyse both classifiers according to its classification capabilities.

  10. Hierarchical Wireless Multimedia Sensor Networks for Collaborative Hybrid Semi-Supervised Classifier Learning

    Directory of Open Access Journals (Sweden)

    Liang Ding

    2007-11-01

    Full Text Available Wireless multimedia sensor networks (WMSN have recently emerged as one ofthe most important technologies, driven by the powerful multimedia signal acquisition andprocessing abilities. Target classification is an important research issue addressed in WMSN,which has strict requirement in robustness, quickness and accuracy. This paper proposes acollaborative semi-supervised classifier learning algorithm to achieve durative onlinelearning for support vector machine (SVM based robust target classification. The proposedalgorithm incrementally carries out the semi-supervised classifier learning process inhierarchical WMSN, with the collaboration of multiple sensor nodes in a hybrid computingparadigm. For decreasing the energy consumption and improving the performance, somemetrics are introduced to evaluate the effectiveness of the samples in specific sensor nodes,and a sensor node selection strategy is also proposed to reduce the impact of inevitablemissing detection and false detection. With the ant optimization routing, the learningprocess is implemented with the selected sensor nodes, which can decrease the energyconsumption. Experimental results demonstrate that the collaborative hybrid semi-supervised classifier learning algorithm can effectively implement target classification inhierarchical WMSN. It has outstanding performance in terms of energy efficiency and timecost, which verifies the effectiveness of the sensor nodes selection and ant optimizationrouting.

  11. Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes.

    Science.gov (United States)

    Luo, Yuan; Cheng, Yu; Uzuner, Özlem; Szolovits, Peter; Starren, Justin

    2018-01-01

    We propose Segment Convolutional Neural Networks (Seg-CNNs) for classifying relations from clinical notes. Seg-CNNs use only word-embedding features without manual feature engineering. Unlike typical CNN models, relations between 2 concepts are identified by simultaneously learning separate representations for text segments in a sentence: preceding, concept1, middle, concept2, and succeeding. We evaluate Seg-CNN on the i2b2/VA relation classification challenge dataset. We show that Seg-CNN achieves a state-of-the-art micro-average F-measure of 0.742 for overall evaluation, 0.686 for classifying medical problem-treatment relations, 0.820 for medical problem-test relations, and 0.702 for medical problem-medical problem relations. We demonstrate the benefits of learning segment-level representations. We show that medical domain word embeddings help improve relation classification. Seg-CNNs can be trained quickly for the i2b2/VA dataset on a graphics processing unit (GPU) platform. These results support the use of CNNs computed over segments of text for classifying medical relations, as they show state-of-the-art performance while requiring no manual feature engineering. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong, E-mail: jungkim@cau.ac.kr; Choi, Kyung-Hee, E-mail: khchoi@cau.ac.kr

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.

  13. Performance Analysis and Optimization for Cognitive Radio Networks with Classified Secondary Users and Impatient Packets

    Directory of Open Access Journals (Sweden)

    Yuan Zhao

    2017-01-01

    Full Text Available A cognitive radio network with classified Secondary Users (SUs is considered. There are two types of SU packets, namely, SU1 packets and SU2 packets, in the system. The SU1 packets have higher priority than the SU2 packets. Considering the diversity of the SU packets and the real-time need of the interrupted SU packets, a novel spectrum allocation strategy with classified SUs and impatient packets is proposed. Based on the number of PU packets, SU1 packets, and SU2 packets in the system, by modeling the queue dynamics of the networks users as a three-dimensional discrete-time Markov chain, the transition probability matrix of the Markov chain is given. Then with the steady-state analysis, some important performance measures of the SU2 packets are derived to show the system performance with numerical results. Specially, in order to optimize the system actions of the SU2 packets, the individually optimal strategy and the socially optimal strategy for the SU2 packets are demonstrated. Finally, a pricing mechanism is provided to oblige the SU2 packets to follow the socially optimal strategy.

  14. Classifying Sources Influencing Indoor Air Quality (IAQ Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Shaharil Mad Saad

    2015-05-01

    Full Text Available Monitoring indoor air quality (IAQ is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC, base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room’s conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.

  15. Use of artificial neural networks and geographic objects for classifying remote sensing imagery

    Directory of Open Access Journals (Sweden)

    Pedro Resende Silva

    2014-06-01

    Full Text Available The aim of this study was to develop a methodology for mapping land use and land cover in the northern region of Minas Gerais state, where, in addition to agricultural land, the landscape is dominated by native cerrado, deciduous forests, and extensive areas of vereda. Using forest inventory data, as well as RapidEye, Landsat TM and MODIS imagery, three specific objectives were defined: 1 to test use of image segmentation techniques for an object-based classification encompassing spectral, spatial and temporal information, 2 to test use of high spatial resolution RapidEye imagery combined with Landsat TM time series imagery for capturing the effects of seasonality, and 3 to classify data using Artificial Neural Networks. Using MODIS time series and forest inventory data, time signatures were extracted from the dominant vegetation formations, enabling selection of the best periods of the year to be represented in the classification process. Objects created with the segmentation of RapidEye images, along with the Landsat TM time series images, were classified by ten different Multilayer Perceptron network architectures. Results showed that the methodology in question meets both the purposes of this study and the characteristics of the local plant life. With excellent accuracy values for native classes, the study showed the importance of a well-structured database for classification and the importance of suitable image segmentation to meet specific purposes.

  16. Classifying Sources Influencing Indoor Air Quality (IAQ) Using Artificial Neural Network (ANN).

    Science.gov (United States)

    Saad, Shaharil Mad; Andrew, Allan Melvin; Shakaff, Ali Yeon Md; Saad, Abdul Rahman Mohd; Kamarudin, Azman Muhamad Yusof; Zakaria, Ammar

    2015-05-20

    Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN--a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC), base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room's conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.

  17. Evolutionary Analysis of DELLA-Associated Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Miguel A. Blázquez

    2017-04-01

    Full Text Available DELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs, whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of transcriptional networks in land plants, and how has the recruitment of DELLAs by GA signaling affected this regulation. To address these issues, we have constructed gene co-expression networks of four different organisms within the green lineage with different properties regarding DELLAs: Arabidopsis thaliana and Solanum lycopersicum (both with GA-regulated DELLA proteins, Physcomitrella patens (with GA-independent DELLA proteins and Chlamydomonas reinhardtii (a green alga without DELLA, and we have examined the relative evolution of the subnetworks containing the potential DELLA-dependent transcriptomes. Network analysis indicates a relative increase in parameters associated with the degree of interconnectivity in the DELLA-associated subnetworks of land plants, with a stronger effect in species with GA-regulated DELLA proteins. These results suggest that DELLAs may have played a role in the coordination of multiple transcriptional programs along evolution, and the function of DELLAs as regulatory ‘hubs’ became further consolidated after their recruitment by GA signaling in higher plants.

  18. A stochastic differential equation model for transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Quirk Michelle D

    2007-05-01

    Full Text Available Abstract Background This work explores the quantitative characteristics of the local transcriptional regulatory network based on the availability of time dependent gene expression data sets. The dynamics of the gene expression level are fitted via a stochastic differential equation model, yielding a set of specific regulators and their contribution. Results We show that a beta sigmoid function that keeps track of temporal parameters is a novel prototype of a regulatory function, with the effect of improving the performance of the profile prediction. The stochastic differential equation model follows well the dynamic of the gene expression levels. Conclusion When adapted to biological hypotheses and combined with a promoter analysis, the method proposed here leads to improved models of the transcriptional regulatory networks.

  19. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm.

    Science.gov (United States)

    Yang, Xinan H; Nadadur, Rangarajan D; Hilvering, Catharina Re; Bianchi, Valerio; Werner, Michael; Mazurek, Stefan R; Gadek, Margaret; Shen, Kaitlyn M; Goldman, Joseph Aaron; Tyan, Leonid; Bekeny, Jenna; Hall, Johnathon M; Lee, Nutishia; Perez-Cervantes, Carlos; Burnicka-Turek, Ozanna; Poss, Kenneth D; Weber, Christopher R; de Laat, Wouter; Ruthenburg, Alexander J; Moskowitz, Ivan P

    2017-12-27

    The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to define enhancers and enhancer-associated ncRNAs that are involved in a TF-dependent regulatory network. TBX5, a cardiac TF, regulates a network of cardiac channel genes to maintain cardiac rhythm. We deep sequenced wildtype and Tbx5 -mutant mouse atria, identifying ~2600 novel Tbx5 -dependent ncRNAs. Tbx5-dependent ncRNAs were enriched for tissue-specific marks of active enhancers genome-wide. Tbx5-dependent ncRNAs emanated from regions that are enriched for TBX5-binding and that demonstrated Tbx5-dependent enhancer activity. Tbx5 -dependent ncRNA transcription provided a quantitative metric of Tbx5 -dependent enhancer activity, correlating with target gene expression. We identified RACER , a novel Tbx5 -dependent long noncoding RNA (lncRNA) required for the expression of the calcium-handling gene Ryr2 . We illustrate that TF-dependent enhancer transcription can illuminate components of TF-dependent gene regulatory networks.

  20. Classifying region of interests from mammograms with breast cancer into BIRADS using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Estefanía D. Avalos-Rivera

    2017-05-01

    Full Text Available Breast cancer is one of the most common cancers among female diseases all over the world. Early diagnosis and treatment is particularly important in reducing the mortality rate. This research is focused on the prevention of breast cancer, therefore it is important to detect micro-calcifications (MCs which are a sign of early stage breast cancer. Micro-calcifications are tiny deposits of calcium which are visible on mammograms as they present as tiny white spots. A computer-aided diagnosis system (CAD is created with the development of computer technology that way radiologists are aided improving their diagnostics while using CAD as a second reader. We are aiming to classify into BIRADS 2, 3 and 4 which are the stages when the cancer can be prevented and a fourth category called No lesion which are veins and tissue that our high pass Gaussian filter detects. This research focuses on classification using ANN (Artificial Neural Network. Experimenting with the categories to classify into using ANN, the results were the following: into the four mentioned before an overall accuracy of 71% was obtained, then joining categories BIRADS 2 and 3 into one and classifying into 3 categories gave an 80% of accuracy. Joining this two categories was the result of analizing the ROC curve and observation of the ROI images of the MCs as the regions measured are very alike in this two categories and variation is that MCs are more present in BIRADS 3 than in BIRADS 2. Data matrix was reduced using PCA (Principal Component Analysis but it did not gave better results so it was discarded as the ANN accuracy to classify was reduced to a 69.8%.

  1. Evolution of transcriptional networks in yeast: alternative teams of transcriptional factors for different species

    Directory of Open Access Journals (Sweden)

    Adriana Muñoz

    2016-11-01

    Full Text Available Abstract Background The diversity in eukaryotic life reflects a diversity in regulatory pathways. Nocedal and Johnson argue that the rewiring of gene regulatory networks is a major force for the diversity of life, that changes in regulation can create new species. Results We have created a method (based on our new “ping-pong algorithm for detecting more complicated rewirings, where several transcription factors can substitute for one or more transcription factors in the regulation of a family of co-regulated genes. An example is illustrative. A rewiring has been reported by Hogues et al. that RAP1 in Saccharomyces cerevisiae substitutes for TBF1/CBF1 in Candida albicans for ribosomal RP genes. There one transcription factor substitutes for another on some collection of genes. Such a substitution is referred to as a “rewiring”. We agree with this finding of rewiring as far as it goes but the situation is more complicated. Many transcription factors can regulate a gene and our algorithm finds that in this example a “team” (or collection of three transcription factors including RAP1 substitutes for TBF1 for 19 genes. The switch occurs for a branch of the phylogenetic tree containing 10 species (including Saccharomyces cerevisiae, while the remaining 13 species (Candida albicans are regulated by TBF1. Conclusions To gain insight into more general evolutionary mechanisms, we have created a mathematical algorithm that finds such general switching events and we prove that it converges. Of course any such computational discovery should be validated in the biological tests. For each branch of the phylogenetic tree and each gene module, our algorithm finds a sub-group of co-regulated genes and a team of transcription factors that substitutes for another team of transcription factors. In most cases the signal will be small but in some cases we find a strong signal of switching. We report our findings for 23 Ascomycota fungi species.

  2. A systems approach to mapping transcriptional networks controlling surfactant homeostasis

    Directory of Open Access Journals (Sweden)

    Dave Vrushank

    2010-07-01

    Full Text Available Abstract Background Pulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown. Results We integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF - target gene (TG similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung. Conclusions Within the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth.

  3. Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers

    Science.gov (United States)

    Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez

    2013-01-01

    Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182

  4. Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles

    Science.gov (United States)

    Ha, Jin Gwan; Moon, Hyeonjoon; Kwak, Jin Tae; Hassan, Syed Ibrahim; Dang, Minh; Lee, O. New; Park, Han Yong

    2017-10-01

    Recently, unmanned aerial vehicles (UAVs) have gained much attention. In particular, there is a growing interest in utilizing UAVs for agricultural applications such as crop monitoring and management. We propose a computerized system that is capable of detecting Fusarium wilt of radish with high accuracy. The system adopts computer vision and machine learning techniques, including deep learning, to process the images captured by UAVs at low altitudes and to identify the infected radish. The whole radish field is first segmented into three distinctive regions (radish, bare ground, and mulching film) via a softmax classifier and K-means clustering. Then, the identified radish regions are further classified into healthy radish and Fusarium wilt of radish using a deep convolutional neural network (CNN). In identifying radish, bare ground, and mulching film from a radish field, we achieved an accuracy of ≥97.4%. In detecting Fusarium wilt of radish, the CNN obtained an accuracy of 93.3%. It also outperformed the standard machine learning algorithm, obtaining 82.9% accuracy. Therefore, UAVs equipped with computational techniques are promising tools for improving the quality and efficiency of agriculture today.

  5. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer.

    Science.gov (United States)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong; Choi, Kyung-Hee

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.

    Science.gov (United States)

    Adabor, Emmanuel S; Acquaah-Mensah, George K; Oduro, Francis T

    2015-02-01

    Bayesian Networks have been used for the inference of transcriptional regulatory relationships among genes, and are valuable for obtaining biological insights. However, finding optimal Bayesian Network (BN) is NP-hard. Thus, heuristic approaches have sought to effectively solve this problem. In this work, we develop a hybrid search method combining Simulated Annealing with a Greedy Algorithm (SAGA). SAGA explores most of the search space by undergoing a two-phase search: first with a Simulated Annealing search and then with a Greedy search. Three sets of background-corrected and normalized microarray datasets were used to test the algorithm. BN structure learning was also conducted using the datasets, and other established search methods as implemented in BANJO (Bayesian Network Inference with Java Objects). The Bayesian Dirichlet Equivalence (BDe) metric was used to score the networks produced with SAGA. SAGA predicted transcriptional regulatory relationships among genes in networks that evaluated to higher BDe scores with high sensitivities and specificities. Thus, the proposed method competes well with existing search algorithms for Bayesian Network structure learning of transcriptional regulatory networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis

    Directory of Open Access Journals (Sweden)

    Kao Cheng-Yan

    2009-11-01

    Full Text Available Abstract Background Network Component Analysis (NCA is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to principal component analysis, which can be employed to select the high-variance genes, NCA makes use of the connectivity structure from transcriptional regulatory networks to infer dynamics of transcription factor activities. Using the budding yeast Saccharomyces cerevisiae as a model system, we aim to deduce regulatory actions of cytokinesis-related genes, using precise spatial proximity (midbody and/or temporal synchronicity (cytokinesis to avoid full-scale computation from genome-wide databases. Results NCA was applied to infer regulatory actions of transcription factor activity from microarray data and partial transcription factor-gene connectivity information for cytokinesis-related genes, which were a subset of genome-wide datasets. No literature has so far discussed the inferred results through NCA are independent of the scale of the gene expression dataset. To avoid full-scale computation from genome-wide databases, four cytokinesis-related gene cases were selected for NCA by running computational analysis over the transcription factor database to confirm the approach being scale-free. The inferred dynamics of transcription factor activity through NCA were independent of the scale of the data matrix selected from the four cytokinesis-related gene sets. Moreover, the inferred regulatory actions were nearly identical to published observations for the selected cytokinesis-related genes in the budding yeast; namely, Mcm1, Ndd1, and Fkh2, which form a transcription factor complex to control expression of the CLB2 cluster (i.e. BUD4, CHS2, IQG1, and CDC5. Conclusion In this study, using S. cerevisiae as a model system, NCA was successfully applied to infer similar regulatory actions of transcription factor activities from two various microarray databases and several partial transcription factor

  8. Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis.

    Science.gov (United States)

    Chen, Shun-Fu; Juang, Yue-Li; Chou, Wei-Kang; Lai, Jin-Mei; Huang, Chi-Ying F; Kao, Cheng-Yan; Wang, Feng-Sheng

    2009-11-27

    Network Component Analysis (NCA) is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to principal component analysis, which can be employed to select the high-variance genes, NCA makes use of the connectivity structure from transcriptional regulatory networks to infer dynamics of transcription factor activities. Using the budding yeast Saccharomyces cerevisiae as a model system, we aim to deduce regulatory actions of cytokinesis-related genes, using precise spatial proximity (midbody) and/or temporal synchronicity (cytokinesis) to avoid full-scale computation from genome-wide databases. NCA was applied to infer regulatory actions of transcription factor activity from microarray data and partial transcription factor-gene connectivity information for cytokinesis-related genes, which were a subset of genome-wide datasets. No literature has so far discussed the inferred results through NCA are independent of the scale of the gene expression dataset. To avoid full-scale computation from genome-wide databases, four cytokinesis-related gene cases were selected for NCA by running computational analysis over the transcription factor database to confirm the approach being scale-free. The inferred dynamics of transcription factor activity through NCA were independent of the scale of the data matrix selected from the four cytokinesis-related gene sets. Moreover, the inferred regulatory actions were nearly identical to published observations for the selected cytokinesis-related genes in the budding yeast; namely, Mcm1, Ndd1, and Fkh2, which form a transcription factor complex to control expression of the CLB2 cluster (i.e. BUD4, CHS2, IQG1, and CDC5). In this study, using S. cerevisiae as a model system, NCA was successfully applied to infer similar regulatory actions of transcription factor activities from two various microarray databases and several partial transcription factor-gene connectivity datasets for selected cytokinesis

  9. Transcriptional regulatory networks underlying gene expression changes in Huntington's disease.

    Science.gov (United States)

    Ament, Seth A; Pearl, Jocelynn R; Cantle, Jeffrey P; Bragg, Robert M; Skene, Peter J; Coffey, Sydney R; Bergey, Dani E; Wheeler, Vanessa C; MacDonald, Marcy E; Baliga, Nitin S; Rosinski, Jim; Hood, Leroy E; Carroll, Jeffrey B; Price, Nathan D

    2018-03-26

    Transcriptional changes occur presymptomatically and throughout Huntington's disease (HD), motivating the study of transcriptional regulatory networks (TRNs) in HD We reconstructed a genome-scale model for the target genes of 718 transcription factors (TFs) in the mouse striatum by integrating a model of genomic binding sites with transcriptome profiling of striatal tissue from HD mouse models. We identified 48 differentially expressed TF-target gene modules associated with age- and CAG repeat length-dependent gene expression changes in Htt CAG knock-in mouse striatum and replicated many of these associations in independent transcriptomic and proteomic datasets. Thirteen of 48 of these predicted TF-target gene modules were also differentially expressed in striatal tissue from human disease. We experimentally validated a specific model prediction that SMAD3 regulates HD-related gene expression changes using chromatin immunoprecipitation and deep sequencing (ChIP-seq) of mouse striatum. We found CAG repeat length-dependent changes in the genomic occupancy of SMAD3 and confirmed our model's prediction that many SMAD3 target genes are downregulated early in HD. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.

    Science.gov (United States)

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice

  11. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  12. Comparative study of artificial neural network and multivariate methods to classify Spanish DO rose wines.

    Science.gov (United States)

    Pérez-Magariño, S; Ortega-Heras, M; González-San José, M L; Boger, Z

    2004-04-19

    Classical multivariate analysis techniques such as factor analysis and stepwise linear discriminant analysis and artificial neural networks method (ANN) have been applied to the classification of Spanish denomination of origin (DO) rose wines according to their geographical origin. Seventy commercial rose wines from four different Spanish DO (Ribera del Duero, Rioja, Valdepeñas and La Mancha) and two successive vintages were studied. Nineteen different variables were measured in these wines. The stepwise linear discriminant analyses (SLDA) model selected 10 variables obtaining a global percentage of correct classification of 98.8% and of global prediction of 97.3%. The ANN model selected seven variables, five of which were also selected by the SLDA model, and it gave a 100% of correct classification for training and prediction. So, both models can be considered satisfactory and acceptable, being the selected variables useful to classify and differentiate these wines by their origin. Furthermore, the casual index analysis gave information that can be easily explained from an enological point of view.

  13. An Unobtrusive Fall Detection and Alerting System Based on Kalman Filter and Bayes Network Classifier.

    Science.gov (United States)

    He, Jian; Bai, Shuang; Wang, Xiaoyi

    2017-06-16

    Falls are one of the main health risks among the elderly. A fall detection system based on inertial sensors can automatically detect fall event and alert a caregiver for immediate assistance, so as to reduce injuries causing by falls. Nevertheless, most inertial sensor-based fall detection technologies have focused on the accuracy of detection while neglecting quantization noise caused by inertial sensor. In this paper, an activity model based on tri-axial acceleration and gyroscope is proposed, and the difference between activities of daily living (ADLs) and falls is analyzed. Meanwhile, a Kalman filter is proposed to preprocess the raw data so as to reduce noise. A sliding window and Bayes network classifier are introduced to develop a wearable fall detection system, which is composed of a wearable motion sensor and a smart phone. The experiment shows that the proposed system distinguishes simulated falls from ADLs with a high accuracy of 95.67%, while sensitivity and specificity are 99.0% and 95.0%, respectively. Furthermore, the smart phone can issue an alarm to caregivers so as to provide timely and accurate help for the elderly, as soon as the system detects a fall.

  14. Automatic Assessing of Tremor Severity Using Nonlinear Dynamics, Artificial Neural Networks and Neuro-Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    GEMAN, O.

    2014-02-01

    Full Text Available Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, postural instability, small handwriting and tremor. Commercial activity-promoting gaming systems such as the Nintendo Wii and Xbox Kinect can be used as tools for tremor, gait or other biomedical signals acquisitions. They also can aid for rehabilitation in clinical settings. This paper emphasizes the use of intelligent optical sensors or accelerometers in biomedical signal acquisition, and of the specific nonlinear dynamics parameters or fuzzy logic in Parkinson's disease tremor analysis. Nowadays, there is no screening test for early detection of PD. So, we investigated a method to predict PD, based on the image processing of the handwriting belonging to a candidate of PD. For classification and discrimination between healthy people and PD people we used Artificial Neural Networks (Radial Basis Function - RBF and Multilayer Perceptron - MLP and an Adaptive Neuro-Fuzzy Classifier (ANFC. In general, the results may be expressed as a prognostic (risk degree to contact PD.

  15. Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction.

    Science.gov (United States)

    Kumudha, P; Venkatesan, R

    Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.

  16. Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction

    Directory of Open Access Journals (Sweden)

    P. Kumudha

    2016-01-01

    Full Text Available Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN and the novel adaptive dimensional biogeography based optimization (ADBBO model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.

  17. WAVELET ANALYSIS AND NEURAL NETWORK CLASSIFIERS TO DETECT MID-SAGITTAL SECTIONS FOR NUCHAL TRANSLUCENCY MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Giuseppa Sciortino

    2016-04-01

    Full Text Available We propose a methodology to support the physician in the automatic identification of mid-sagittal sections of the fetus in ultrasound videos acquired during the first trimester of pregnancy. A good mid-sagittal section is a key requirement to make the correct measurement of nuchal translucency which is one of the main marker for screening of chromosomal defects such as trisomy 13, 18 and 21. NT measurement is beyond the scope of this article. The proposed methodology is mainly based on wavelet analysis and neural network classifiers to detect the jawbone and on radial symmetry analysis to detect the choroid plexus. Those steps allow to identify the frames which represent correct mid-sagittal sections to be processed. The performance of the proposed methodology was analyzed on 3000 random frames uniformly extracted from 10 real clinical ultrasound videos. With respect to a ground-truth provided by an expert physician, we obtained a true positive, a true negative and a balanced accuracy equal to 87.26%, 94.98% and 91.12% respectively.

  18. Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast.

    Directory of Open Access Journals (Sweden)

    Chun Ye

    2009-03-01

    Full Text Available Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request.

  19. DMPD: The interferon signaling network and transcription factor C/EBP-beta. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18163952 The interferon signaling network and transcription factor C/EBP-beta. Li H... The interferon signaling network and transcription factor C/EBP-beta. PubmedID 18163952 Title The interferon signaling network

  20. Influence of Acoustic Feedback on the Learning Strategies of Neural Network-Based Sound Classifiers in Digital Hearing Aids

    Directory of Open Access Journals (Sweden)

    Lorena Álvarez

    2009-01-01

    Full Text Available Sound classifiers embedded in digital hearing aids are usually designed by using sound databases that do not include the distortions associated to the feedback that often occurs when these devices have to work at high gain and low gain margin to oscillation. The consequence is that the classifier learns inappropriate sound patterns. In this paper we explore the feasibility of using different sound databases (generated according to 18 configurations of real patients, and a variety of learning strategies for neural networks in the effort of reducing the probability of erroneous classification. The experimental work basically points out that the proposed methods assist the neural network-based classifier in reducing its error probability in more than 18%. This helps enhance the elderly user's comfort: the hearing aid automatically selects, with higher success probability, the program that is best adapted to the changing acoustic environment the user is facing.

  1. Transcription of Spanish Historical Handwritten Documents with Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Emilio Granell

    2018-01-01

    Full Text Available The digitization of historical handwritten document images is important for the preservation of cultural heritage. Moreover, the transcription of text images obtained from digitization is necessary to provide efficient information access to the content of these documents. Handwritten Text Recognition (HTR has become an important research topic in the areas of image and computational language processing that allows us to obtain transcriptions from text images. State-of-the-art HTR systems are, however, far from perfect. One difficulty is that they have to cope with image noise and handwriting variability. Another difficulty is the presence of a large amount of Out-Of-Vocabulary (OOV words in ancient historical texts. A solution to this problem is to use external lexical resources, but such resources might be scarce or unavailable given the nature and the age of such documents. This work proposes a solution to avoid this limitation. It consists of associating a powerful optical recognition system that will cope with image noise and variability, with a language model based on sub-lexical units that will model OOV words. Such a language modeling approach reduces the size of the lexicon while increasing the lexicon coverage. Experiments are first conducted on the publicly available Rodrigo dataset, which contains the digitization of an ancient Spanish manuscript, with a recognizer based on Hidden Markov Models (HMMs. They show that sub-lexical units outperform word units in terms of Word Error Rate (WER, Character Error Rate (CER and OOV word accuracy rate. This approach is then applied to deep net classifiers, namely Bi-directional Long-Short Term Memory (BLSTMs and Convolutional Recurrent Neural Nets (CRNNs. Results show that CRNNs outperform HMMs and BLSTMs, reaching the lowest WER and CER for this image dataset and significantly improving OOV recognition.

  2. The p53 Transcriptional Network Influences Microglia Behavior and Neuroinflammation.

    Science.gov (United States)

    Aloi, Macarena S; Su, Wei; Garden, Gwenn A

    2015-01-01

    The tumor-suppressor protein p53 belongs to a family of proteins that play pivotal roles in multiple cellular functions including cell proliferation, cell death, genome stability, and regulation of inflammation. Neuroinflammation is a common feature of central nervous system (CNS) pathology, and microglia are the specialized resident population of CNS myeloid cells that initiate innate immune responses. Microglia maintain CNS homeostasis through pathogen containment, phagocytosis of debris, and initiation of tissue-repair cascades. However, an unregulated pro-inflammatory response can lead to tissue injury and dysfunction in both acute and chronic inflammatory states. Therefore, regulation of the molecular signals that control the induction, magnitude, and resolution of inflammation are necessary for optimal CNS health. We and others have described a novel mechanism by which p53 transcriptional activity modulates microglia behaviors in vitro and in vivo. Activation of p53 induces expression of microRNAs (miRNAs) that support microglia pro-inflammatory functions and suppress anti-inflammatory and tissue repair behaviors. In this review, we introduce the previously described roles of the p53 signaling network and discuss novel functions of p53 in the microglia-mediated inflammatory response in CNS health and disease. Ultimately, improved understanding of the molecular regulators modulated by p53 transcriptional activity in microglia will enhance the development of rational therapeutic strategies to harness the homeostatic and tissue repair functions of microglia.

  3. Infrared dim moving target tracking via sparsity-based discriminative classifier and convolutional network

    Science.gov (United States)

    Qian, Kun; Zhou, Huixin; Wang, Bingjian; Song, Shangzhen; Zhao, Dong

    2017-11-01

    Infrared dim and small target tracking is a great challenging task. The main challenge for target tracking is to account for appearance change of an object, which submerges in the cluttered background. An efficient appearance model that exploits both the global template and local representation over infrared image sequences is constructed for dim moving target tracking. A Sparsity-based Discriminative Classifier (SDC) and a Convolutional Network-based Generative Model (CNGM) are combined with a prior model. In the SDC model, a sparse representation-based algorithm is adopted to calculate the confidence value that assigns more weights to target templates than negative background templates. In the CNGM model, simple cell feature maps are obtained by calculating the convolution between target templates and fixed filters, which are extracted from the target region at the first frame. These maps measure similarities between each filter and local intensity patterns across the target template, therefore encoding its local structural information. Then, all the maps form a representation, preserving the inner geometric layout of a candidate template. Furthermore, the fixed target template set is processed via an efficient prior model. The same operation is applied to candidate templates in the CNGM model. The online update scheme not only accounts for appearance variations but also alleviates the migration problem. At last, collaborative confidence values of particles are utilized to generate particles' importance weights. Experiments on various infrared sequences have validated the tracking capability of the presented algorithm. Experimental results show that this algorithm runs in real-time and provides a higher accuracy than state of the art algorithms.

  4. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data

    Directory of Open Access Journals (Sweden)

    Evangelos Stromatias

    2017-06-01

    Full Text Available This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77% and Poker-DVS (100% real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  5. Time-aware service-classified spectrum defragmentation algorithm for flex-grid optical networks

    Science.gov (United States)

    Qiu, Yang; Xu, Jing

    2018-01-01

    By employing sophisticated routing and spectrum assignment (RSA) algorithms together with a finer spectrum granularity (namely frequency slot) in resource allocation procedures, flex-grid optical networks can accommodate diverse kinds of services with high spectrum-allocation flexibility and resource-utilization efficiency. However, the continuity and the contiguity constraints in spectrum allocation procedures may always induce some isolated, small-sized, and unoccupied spectral blocks (known as spectrum fragments) in flex-grid optical networks. Although these spectrum fragments are left unoccupied, they can hardly be utilized by the subsequent service requests directly because of their spectral characteristics and the constraints in spectrum allocation. In this way, the existence of spectrum fragments may exhaust the available spectrum resources for a coming service request and thus worsens the networking performance. Therefore, many reactive defragmentation algorithms have been proposed to handle the fragmented spectrum resources via re-optimizing the routing paths and the spectrum resources for the existing services. But the routing-path and the spectrum-resource re-optimization in reactive defragmentation algorithms may possibly disrupt the traffic of the existing services and require extra components. By comparison, some proactive defragmentation algorithms (e.g. fragmentation-aware algorithms) were proposed to suppress spectrum fragments from their generation instead of handling the fragmented spectrum resources. Although these proactive defragmentation algorithms induced no traffic disruption and required no extra components, they always left the generated spectrum fragments unhandled, which greatly affected their efficiency in spectrum defragmentation. In this paper, by comprehensively considering the characteristics of both the reactive and the proactive defragmentation algorithms, we proposed a time-aware service-classified (TASC) spectrum

  6. Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patients data.

    Science.gov (United States)

    Sierra, B; Serrano, N; Larrañaga, P; Plasencia, E J; Inza, I; Jiménez, J J; Revuelta, P; Mora, M L

    2001-06-01

    Combining the predictions of a set of classifiers has shown to be an effective way to create composite classifiers that are more accurate than any of the component classifiers. There are many methods for combining the predictions given by component classifiers. We introduce a new method that combine a number of component classifiers using a Bayesian network as a classifier system given the component classifiers predictions. Component classifiers are standard machine learning classification algorithms, and the Bayesian network structure is learned using a genetic algorithm that searches for the structure that maximises the classification accuracy given the predictions of the component classifiers. Experimental results have been obtained on a datafile of cases containing information about ICU patients at Canary Islands University Hospital. The accuracy obtained using the presented new approach statistically improve those obtained using standard machine learning methods.

  7. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.

    Directory of Open Access Journals (Sweden)

    Christopher E Hart

    2006-12-01

    Full Text Available A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction data (ChIP/Array with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network, which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily subjected to in silico "mutation" to uncover biological redundancies; and they can use the full range of factor binding values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network. This postulated that "network-local discrimination" occurs when regulatory connections (here between MBF and target genes are explicitly disfavored in one network module (G2, relative to others and to the class of genes outside the mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of

  8. COMPOSITE MATERIALS' CONDITION CLASSIFIER BASED ON NEURAL NETWORK OF ADAPTIVE RESONANCE THEORY

    Directory of Open Access Journals (Sweden)

    В. Єременко

    2012-04-01

    Full Text Available In this article proposed to use a modified neural network Fuzzy-ART for classification of thetechnical condition of composite materials. This neural network is used as a part of nondestructivetesting system to perform diagnosis of composite materials and provides cluster analysis andclassification of units under test. The advantage of the described neural network and the system ingeneral is its flexible architecture, high performance and high reliability of data processing

  9. Network based transcription factor analysis of regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Cameron Jo Ann

    2011-03-01

    Full Text Available Abstract Background Studies on amphibian limb regeneration began in the early 1700's but we still do not completely understand the cellular and molecular events of this unique process. Understanding a complex biological process such as limb regeneration is more complicated than the knowledge of the individual genes or proteins involved. Here we followed a systems biology approach in an effort to construct the networks and pathways of protein interactions involved in formation of the accumulation blastema in regenerating axolotl limbs. Results We used the human orthologs of proteins previously identified by our research team as bait to identify the transcription factor (TF pathways and networks that regulate blastema formation in amputated axolotl limbs. The five most connected factors, c-Myc, SP1, HNF4A, ESR1 and p53 regulate ~50% of the proteins in our data. Among these, c-Myc and SP1 regulate 36.2% of the proteins. c-Myc was the most highly connected TF (71 targets. Network analysis showed that TGF-β1 and fibronectin (FN lead to the activation of these TFs. We found that other TFs known to be involved in epigenetic reprogramming, such as Klf4, Oct4, and Lin28 are also connected to c-Myc and SP1. Conclusions Our study provides a systems biology approach to how different molecular entities inter-connect with each other during the formation of an accumulation blastema in regenerating axolotl limbs. This approach provides an in silico methodology to identify proteins that are not detected by experimental methods such as proteomics but are potentially important to blastema formation. We found that the TFs, c-Myc and SP1 and their target genes could potentially play a central role in limb regeneration. Systems biology has the potential to map out numerous other pathways that are crucial to blastema formation in regeneration-competent limbs, to compare these to the pathways that characterize regeneration-deficient limbs and finally, to identify stem

  10. Using Unsupervised Learning to Improve the Naive Bayes Classifier for Wireless Sensor Networks

    NARCIS (Netherlands)

    Zwartjes, G.J.; Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Hurink, Johann L.

    2012-01-01

    Online processing is essential for many sensor network applications. Sensor nodes can sample far more data than what can practically be transmitted using state of the art sensor network radios. Online processing, however, is complicated due to limited resources of individual nodes. The naive Bayes

  11. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  12. Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier

    OpenAIRE

    Luqman, Muhammad Muzzamil; Brouard, Thierry; Ramel, Jean-Yves

    2010-01-01

    We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational g...

  13. Transcriptional and epigenetic networks that drive helper T cell identities

    Science.gov (United States)

    Shih, Han-Yu; Sciumè, Giuseppe; Poholek, Amanda C; Vahedi, Golnaz; Hirahara, Kiyoshi; Villarino, Alejandro V; Bonelli, Michael; Bosselut, Remy; Kanno, Yuka; Muljo, Stefan A; O’Shea, John J.

    2014-01-01

    The discovery of the specification of CD4+ helper T cells to discrete effector “lineages” represented a watershed event in conceptualizing mechanisms of host defense and immunoregulation. However, our appreciation for the actual complexity of helper T cell subsets continues unabated. Just as the Sami language of Scandinavia has 1000 different words for reindeer, the range of fates available for a CD4+ T cell is numerous and may be underestimated. Added to the crowded scene for helper T cell subsets is the continuously growing family of innate lymphoid cells (ILCs), endowed with common effector responses and the previously defined “master regulators” for CD4+ helper T cell subsets are also shared by ILC subsets. Within the context of this extraordinary complexity are concomitant advances in the understanding of transcriptomes and epigenomes. So what do terms like “lineage commitment” and helper T cell “specification” mean in the early 21st century? How do we put all of this together in a coherent conceptual framework? It would be arrogant to assume that we have a sophisticated enough understanding to seriously answer these questions. Instead, we will review the current status of the flexibility of helper T cell responses in relation to their genetic regulatory networks and epigenetic landscapes. Recent data have provided major surprises as to what master regulators can or cannot do, how they interact with other transcription factors and impact global genome-wide changes and how all these factors come together to influence helper cell function. PMID:25123275

  14. Detecting Cyber-Attacks on Wireless Mobile Networks Using Multicriterion Fuzzy Classifier with Genetic Attribute Selection

    Directory of Open Access Journals (Sweden)

    El-Sayed M. El-Alfy

    2015-01-01

    Full Text Available With the proliferation of wireless and mobile network infrastructures and capabilities, a wide range of exploitable vulnerabilities emerges due to the use of multivendor and multidomain cross-network services for signaling and transport of Internet- and wireless-based data. Consequently, the rates and types of cyber-attacks have grown considerably and current security countermeasures for protecting information and communication may be no longer sufficient. In this paper, we investigate a novel methodology based on multicriterion decision making and fuzzy classification that can provide a viable second-line of defense for mitigating cyber-attacks. The proposed approach has the advantage of dealing with various types and sizes of attributes related to network traffic such as basic packet headers, content, and time. To increase the effectiveness and construct optimal models, we augmented the proposed approach with a genetic attribute selection strategy. This allows efficient and simpler models which can be replicated at various network components to cooperatively detect and report malicious behaviors. Using three datasets covering a variety of network attacks, the performance enhancements due to the proposed approach are manifested in terms of detection errors and model construction times.

  15. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej; Pers, Tune Hannes; Pinho Soares, Simao Pedro

    2010-01-01

    mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets...... with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment...... factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic...

  16. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.

    Science.gov (United States)

    Liu, Lijun; Filkov, Vladimir; Groover, Andrew

    2014-06-01

    The complex interactions among the genes that underlie a biological process can be modeled and presented as a transcriptional network, in which genes (nodes) and their interactions (edges) are shown in a graphical form similar to a wiring diagram. A large number of genes have been identified that are expressed during the radial woody growth of tree stems (secondary growth), but a comprehensive understanding of how these genes interact to influence woody growth is currently lacking. Modeling transcriptional networks has recently been made tractable by next-generation sequencing-based technologies that can comprehensively catalog gene expression and transcription factor-binding genome-wide, but has not yet been extensively applied to undomesticated tree species or woody growth. Here we discuss basic features of transcriptional networks, approaches for modeling biological networks, and examples of biological network models developed for forest trees to date. We discuss how transcriptional network research is being developed in the model forest tree genus, Populus, and how this research area can be further developed and applied. Transcriptional network models for forest tree secondary growth and wood formation could ultimately provide new predictive models to accelerate hypothesis-driven research and develop new breeding applications. © 2013 Scandinavian Plant Physiology Society.

  17. A modular neural network classifier for the recognition of occluded characters in automatic license plate reading

    NARCIS (Netherlands)

    Nijhuis, JAG; Broersma, A; Spaanenburg, L; Ruan, D; Dhondt, P; Kerre, EE

    2002-01-01

    Occlusion is the most common reason for lowered recognition yield in free-flow license-plate reading systems. (Non-)occluded characters can readily be learned in separate neural networks but not together. Even a small proportion of occluded characters in the training set will already significantly

  18. An Estimation of QoS for Classified Based Approach and Nonclassified Based Approach of Wireless Agriculture Monitoring Network Using a Network Model

    Directory of Open Access Journals (Sweden)

    Ismail Ahmedy

    2017-01-01

    Full Text Available Wireless Sensor Network (WSN can facilitate the process of monitoring the crops through agriculture monitoring network. However, it is challenging to implement the agriculture monitoring network in large scale and large distributed area. Typically, a large and dense network as a form of multihop network is used to establish communication between source and destination. This network continuously monitors the crops without sensitivity classification that can lead to message collision and packets drop. Retransmissions of drop messages can increase the energy consumption and delay. Therefore, to ensure a high quality of service (QoS, we propose an agriculture monitoring network that monitors the crops based on their sensitivity conditions wherein the crops with higher sensitivity are monitored constantly, while less sensitive crops are monitored occasionally. This approach selects a set of nodes rather than utilizing all the nodes in the network which reduces the power consumption in each node and network delay. The QoS of the proposed classified based approach is compared with the nonclassified approach in two scenarios; the backoff periods are changed in the first scenario while the numbers of nodes are changed in the second scenario. The simulation results demonstrate that the proposed approach outperforms the nonclassified approach on different test scenarios.

  19. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks

    DEFF Research Database (Denmark)

    Olsen, Anders Krüger; Boyd, Mette; Danielsen, Erik Thomas

    2012-01-01

    Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell or tissue type. Novel methods including ChIP-chip and ChIP-Seq have been...

  20. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks

    DEFF Research Database (Denmark)

    Olsen, Anders Krûger; Boyd, Mette; Danielsen, Erik Thomas

    2012-01-01

    Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell- or tissue-type. Novel methods including ChIP-chip and ChIP-Seq have...

  1. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...

  2. Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database.

    Science.gov (United States)

    Choi, Joon Yul; Yoo, Tae Keun; Seo, Jeong Gi; Kwak, Jiyong; Um, Terry Taewoong; Rim, Tyler Hyungtaek

    2017-01-01

    Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen's kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals.

  3. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).

    Science.gov (United States)

    Simeonidis, Evangelos; Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

  4. Analysis of the Earth's magnetosphere states using the algorithm of adaptive construction of hierarchical neural network classifiers

    Science.gov (United States)

    Dolenko, Sergey; Svetlov, Vsevolod; Isaev, Igor; Myagkova, Irina

    2017-10-01

    This paper presents analysis of the results of clusterization of the array of increases in the flux of relativistic electrons in the outer radiation belt of the Earth by two clustering algorithms. One of them is the algorithm for adaptive construction of hierarchical neural network classifiers developed by the authors, applied in clustering mode; the other one is the well-known k-means clusterization algorithm. The obtained clusters are analysed from the point of view of their possible matching to characteristic types of events, the partitions obtained by both methods are compared with each other.

  5. Picasso: A Modular Framework for Visualizing the Learning Process of Neural Network Image Classifiers

    Directory of Open Access Journals (Sweden)

    Ryan Henderson

    2017-09-01

    Full Text Available Picasso is a free open-source (Eclipse Public License web application written in Python for rendering standard visualizations useful for analyzing convolutional neural networks. Picasso ships with occlusion maps and saliency maps, two visualizations which help reveal issues that evaluation metrics like loss and accuracy might hide: for example, learning a proxy classification task. Picasso works with the Tensorflow deep learning framework, and Keras (when the model can be loaded into the Tensorflow backend. Picasso can be used with minimal configuration by deep learning researchers and engineers alike across various neural network architectures. Adding new visualizations is simple: the user can specify their visualization code and HTML template separately from the application code.

  6. Crystal surface analysis using matrix textural features classified by a Probabilistic Neural Network

    International Nuclear Information System (INIS)

    Sawyer, C.R.; Quach, V.T.; Nason, D.; van den Berg, L.

    1991-01-01

    A system is under development in which surface quality of a growing bulk mercuric iodide crystal is monitored by video camera at regular intervals for early detection of growth irregularities. Mercuric iodide single crystals are employed in radiation detectors. A microcomputer system is used for image capture and processing. The digitized image is divided into multiple overlappings subimage and features are extracted from each subimage based on statistical measures of the gray tone distribution, according to the method of Haralick [1]. Twenty parameters are derived from each subimage and presented to a Probabilistic Neural Network (PNN) [2] for classification. This number of parameters was found to be optimal for the system. The PNN is a hierarchical, feed-forward network that can be rapidly reconfigured as additional training data become available. Training data is gathered by reviewing digital images of many crystals during their growth cycle and compiling two sets of images, those with and without irregularities. 6 refs., 4 figs

  7. Structure and weights optimisation of a modified Elman network emotion classifier using hybrid computational intelligence algorithms: a comparative study

    Science.gov (United States)

    Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood

    2015-10-01

    Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.

  8. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Barabási Albert-László

    2004-01-01

    Full Text Available Abstract Background Transcriptional regulation of cellular functions is carried out through a complex network of interactions among transcription factors and the promoter regions of genes and operons regulated by them.To better understand the system-level function of such networks simplification of their architecture was previously achieved by identifying the motifs present in the network, which are small, overrepresented, topologically distinct regulatory interaction patterns (subgraphs. However, the interaction of such motifs with each other, and their form of integration into the full network has not been previously examined. Results By studying the transcriptional regulatory network of the bacterium, Escherichia coli, we demonstrate that the two previously identified motif types in the network (i.e., feed-forward loops and bi-fan motifs do not exist in isolation, but rather aggregate into homologous motif clusters that largely overlap with known biological functions. Moreover, these clusters further coalesce into a supercluster, thus establishing distinct topological hierarchies that show global statistical properties similar to the whole network. Targeted removal of motif links disintegrates the network into small, isolated clusters, while random disruptions of equal number of links do not cause such an effect. Conclusion Individual motifs aggregate into homologous motif clusters and a supercluster forming the backbone of the E. coli transcriptional regulatory network and play a central role in defining its global topological organization.

  9. Robust Template Decomposition without Weight Restriction for Cellular Neural Networks Implementing Arbitrary Boolean Functions Using Support Vector Classifiers

    Directory of Open Access Journals (Sweden)

    Yih-Lon Lin

    2013-01-01

    Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.

  10. The Transcriptional Network Structure of a Myeloid Cell: A Computational Approach

    Directory of Open Access Journals (Sweden)

    Jesús Espinal-Enríquez

    2017-01-01

    Full Text Available Understanding the general principles underlying genetic regulation in eukaryotes is an incomplete and challenging endeavor. The lack of experimental information regarding the regulation of the whole set of transcription factors and their targets in different cell types is one of the main reasons to this incompleteness. So far, there is a small set of curated known interactions between transcription factors and their downstream genes. Here, we built a transcription factor network for human monocytic THP-1 myeloid cells based on the experimentally curated FANTOM4 database where nodes are genes and the experimental interactions correspond to links. We present the topological parameters which define the network as well as some global structural features and introduce a relative inuence parameter to quantify the relevance of a transcription factor in the context of induction of a phenotype. Genes like ZHX2, ADNP, or SMAD6 seem to be highly regulated to avoid an avalanche transcription event. We compare these results with those of RegulonDB, a highly curated transcriptional network for the prokaryotic organism E. coli, finding similarities between general hallmarks on both transcriptional programs. We believe that an approach, such as the one shown here, could help to understand the one regulation of transcription in eukaryotic cells.

  11. A Neural Network Classifier Model for Forecasting Safety Behavior at Workplaces

    Directory of Open Access Journals (Sweden)

    Fakhradin Ghasemi

    2017-07-01

    Full Text Available The construction industry is notorious for having an unacceptable rate of fatal accidents. Unsafe behavior has been recognized as the main cause of most accidents occurring at workplaces, particularly construction sites. Having a predictive model of safety behavior can be helpful in preventing construction accidents. The aim of the present study was to build a predictive model of unsafe behavior using the Artificial Neural Network approach. A brief literature review was conducted on factors affecting safe behavior at workplaces and nine factors were selected to be included in the study. Data were gathered using a validated questionnaire from several construction sites. Multilayer perceptron approach was utilized for constructing the desired neural network. Several models with various architectures were tested to find the best one. Sensitivity analysis was conducted to find the most influential factors. The model with one hidden layer containing fourteen hidden neurons demonstrated the best performance (Sum of Squared Errors=6.73. The error rate of the model was approximately 21 percent. The results of sensitivity analysis showed that safety attitude, safety knowledge, supportive environment, and management commitment had the highest effects on safety behavior, while the effects from resource allocation and perceived work pressure were identified to be lower than those of others. The complex nature of human behavior at workplaces and the presence of many influential factors make it difficult to achieve a model with perfect performance.

  12. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line

    DEFF Research Database (Denmark)

    Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik

    2009-01-01

    , we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks......Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites...... involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process....

  13. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the 'Extreme Learning Machine' Algorithm.

    Science.gov (United States)

    McDonnell, Mark D; Tissera, Migel D; Vladusich, Tony; van Schaik, André; Tapson, Jonathan

    2015-01-01

    Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the 'Extreme Learning Machine' (ELM) approach, which also enables a very rapid training time (∼ 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random 'receptive field' sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems.

  14. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the 'Extreme Learning Machine' Algorithm.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Recent advances in training deep (multi-layer architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the 'Extreme Learning Machine' (ELM approach, which also enables a very rapid training time (∼ 10 minutes. Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random 'receptive field' sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems.

  15. Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure

    Directory of Open Access Journals (Sweden)

    Bilmes Jeff

    2011-05-01

    Full Text Available Abstract Background Protein secondary structure prediction provides insight into protein function and is a valuable preliminary step for predicting the 3D structure of a protein. Dynamic Bayesian networks (DBNs and support vector machines (SVMs have been shown to provide state-of-the-art performance in secondary structure prediction. As the size of the protein database grows, it becomes feasible to use a richer model in an effort to capture subtle correlations among the amino acids and the predicted labels. In this context, it is beneficial to derive sparse models that discourage over-fitting and provide biological insight. Results In this paper, we first show that we are able to obtain accurate secondary structure predictions. Our per-residue accuracy on a well established and difficult benchmark (CB513 is 80.3%, which is comparable to the state-of-the-art evaluated on this dataset. We then introduce an algorithm for sparsifying the parameters of a DBN. Using this algorithm, we can automatically remove up to 70-95% of the parameters of a DBN while maintaining the same level of predictive accuracy on the SD576 set. At 90% sparsity, we are able to compute predictions three times faster than a fully dense model evaluated on the SD576 set. We also demonstrate, using simulated data, that the algorithm is able to recover true sparse structures with high accuracy, and using real data, that the sparse model identifies known correlation structure (local and non-local related to different classes of secondary structure elements. Conclusions We present a secondary structure prediction method that employs dynamic Bayesian networks and support vector machines. We also introduce an algorithm for sparsifying the parameters of the dynamic Bayesian network. The sparsification approach yields a significant speed-up in generating predictions, and we demonstrate that the amino acid correlations identified by the algorithm correspond to several known features of

  16. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm

    NARCIS (Netherlands)

    Yang, Xinan H; Nadadur, Rangarajan D; Hilvering, Catharina Re; Bianchi, Valerio; Werner, Michael; Mazurek, Stefan R; Gadek, Margaret; Shen, Kaitlyn M; Goldman, Joseph Aaron; Tyan, Leonid; Bekeny, Jenna; Hall, Johnathan M; Lee, Nutishia; Perez-Cervantes, Carlos; Burnicka-Turek, Ozanna; Poss, Kenneth D; Weber, Christopher R; de Laat, Wouter; Ruthenburg, Alexander J; Moskowitz, Ivan P

    2017-01-01

    The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to

  17. Muon Neutrino Disappearance in NOvA with a Deep Convolutional Neural Network Classifier

    Energy Technology Data Exchange (ETDEWEB)

    Rocco, Dominick Rosario [Minnesota U.

    2016-03-01

    The NuMI Off-axis Neutrino Appearance Experiment (NOvA) is designed to study neutrino oscillation in the NuMI (Neutrinos at the Main Injector) beam. NOvA observes neutrino oscillation using two detectors separated by a baseline of 810 km; a 14 kt Far Detector in Ash River, MN and a functionally identical 0.3 kt Near Detector at Fermilab. The experiment aims to provide new measurements of Δm2 and θ23 and has potential to determine the neutrino mass hierarchy as well as observe CP violation in the neutrino sector. Essential to these analyses is the classification of neutrino interaction events in NOvA detectors. Raw detector output from NOvA is interpretable as a pair of images which provide orthogonal views of particle interactions. A recent advance in the field of computer vision is the advent of convolutional neural networks, which have delivered top results in the latest image recognition contests. This work presents an approach novel to particle physics analysis in which a convolutional neural network is used for classification of particle interactions. The approach has been demonstrated to improve the signal efficiency and purity of the event selection, and thus physics sensitivity. Early NOvA data has been analyzed (2.74×1020 POT, 14 kt equivalent) to provide new best- fit measurements of sin2(θ23) = 0.43 (with a statistically-degenerate compliment near 0.60) and |Δm2 | = 2.48 × 10-3 eV2.

  18. Classifying U.S. Army Military Occupational Specialties using the Occupational Information Network.

    Science.gov (United States)

    Gadermann, Anne M; Heeringa, Steven G; Stein, Murray B; Ursano, Robert J; Colpe, Lisa J; Fullerton, Carol S; Gilman, Stephen E; Gruber, Michael J; Nock, Matthew K; Rosellini, Anthony J; Sampson, Nancy A; Schoenbaum, Michael; Zaslavsky, Alan M; Kessler, Ronald C

    2014-07-01

    To derive job condition scales for future studies of the effects of job conditions on soldier health and job functioning across Army Military Occupation Specialties (MOSs) and Areas of Concentration (AOCs) using Department of Labor (DoL) Occupational Information Network (O*NET) ratings. A consolidated administrative dataset was created for the "Army Study to Assess Risk and Resilience in Servicemembers" (Army STARRS) containing all soldiers on active duty between 2004 and 2009. A crosswalk between civilian occupations and MOS/AOCs (created by DoL and the Defense Manpower Data Center) was augmented to assign scores on all 246 O*NET dimensions to each soldier in the dataset. Principal components analysis was used to summarize these dimensions. Three correlated components explained the majority of O*NET dimension variance: "physical demands" (20.9% of variance), "interpersonal complexity" (17.5%), and "substantive complexity" (15.0%). Although broadly consistent with civilian studies, several discrepancies were found with civilian results reflecting potentially important differences in the structure of job conditions in the Army versus the civilian labor force. Principal components scores for these scales provide a parsimonious characterization of key job conditions that can be used in future studies of the effects of MOS/AOC job conditions on diverse outcomes. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  19. Classifying and profiling Social Networking Site users: a latent segmentation approach.

    Science.gov (United States)

    Alarcón-del-Amo, María-del-Carmen; Lorenzo-Romero, Carlota; Gómez-Borja, Miguel-Ángel

    2011-09-01

    Social Networking Sites (SNSs) have showed an exponential growth in the last years. The first step for an efficient use of SNSs stems from an understanding of the individuals' behaviors within these sites. In this research, we have obtained a typology of SNS users through a latent segmentation approach, based on the frequency by which users perform different activities within the SNSs, sociodemographic variables, experience in SNSs, and dimensions related to their interaction patterns. Four different segments have been obtained. The "introvert" and "novel" users are the more occasional. They utilize SNSs mainly to communicate with friends, although "introverts" are more passive users. The "versatile" user performs different activities, although occasionally. Finally, the "expert-communicator" performs a greater variety of activities with a higher frequency. They tend to perform some marketing-related activities such as commenting on ads or gathering information about products and brands as well as commenting ads. The companies can take advantage of these segmentation schemes in different ways: first, by tracking and monitoring information interchange between users regarding their products and brands. Second, they should match the SNS users' profiles with their market targets to use SNSs as marketing tools. Finally, for most business, the expert users could be interesting opinion leaders and potential brand influencers.

  20. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    DEFF Research Database (Denmark)

    Fang, Xin; Sastry, Anand; Mih, Nathan

    2017-01-01

    gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions...... algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose...... definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems...

  1. Convolutional Neural Networks with Batch Normalization for Classifying Hi-hat, Snare, and Bass Percussion Sound Samples

    DEFF Research Database (Denmark)

    Gajhede, Nicolai; Beck, Oliver; Purwins, Hendrik

    2016-01-01

    After having revolutionized image and speech processing, convolu- tional neural networks (CNN) are now starting to become more and more successful in music information retrieval as well. We compare four CNN types for classifying a dataset of more than 3000 acoustic and synthesized samples...... of the most prominent drum set instru- ments (bass, snare, hi-hat). We use the Mel scale log magnitudes (MLS) as a representation for the input of the CNN. We compare the classification results of 1) a CNN (3 conv/max-pool layers and 2 fully connected layers) without drop-out and batch normalization vs. three...... variants, 2) with drop-out, 3) with batch normalization (BN), and 4) with both drop-out and BN. The CNNs with BN yield the best classification results (97% accuracy)....

  2. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Directory of Open Access Journals (Sweden)

    de los Reyes Benildo G

    2008-04-01

    Full Text Available Abstract Background Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM, facilitates the inference. Identifying NMs defined by specific transcription factors (TF establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO information. Results The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1 Gene set enrichment

  3. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.

    Science.gov (United States)

    McAllister, Patrick; Zheng, Huiru; Bond, Raymond; Moorhead, Anne

    2018-04-01

    Obesity is increasing worldwide and can cause many chronic conditions such as type-2 diabetes, heart disease, sleep apnea, and some cancers. Monitoring dietary intake through food logging is a key method to maintain a healthy lifestyle to prevent and manage obesity. Computer vision methods have been applied to food logging to automate image classification for monitoring dietary intake. In this work we applied pretrained ResNet-152 and GoogleNet convolutional neural networks (CNNs), initially trained using ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset with MatConvNet package, to extract features from food image datasets; Food 5K, Food-11, RawFooT-DB, and Food-101. Deep features were extracted from CNNs and used to train machine learning classifiers including artificial neural network (ANN), support vector machine (SVM), Random Forest, and Naive Bayes. Results show that using ResNet-152 deep features with SVM with RBF kernel can accurately detect food items with 99.4% accuracy using Food-5K validation food image dataset and 98.8% with Food-5K evaluation dataset using ANN, SVM-RBF, and Random Forest classifiers. Trained with ResNet-152 features, ANN can achieve 91.34%, 99.28% when applied to Food-11 and RawFooT-DB food image datasets respectively and SVM with RBF kernel can achieve 64.98% with Food-101 image dataset. From this research it is clear that using deep CNN features can be used efficiently for diverse food item image classification. The work presented in this research shows that pretrained ResNet-152 features provide sufficient generalisation power when applied to a range of food image classification tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. [Pluripotency candidate signaling network and transcription factors in domesticated ungulates: a review].

    Science.gov (United States)

    Zhao, Yuncheng; Chen, Bo; Zhou, Chuan; Zhang, Xiuhua; Huang, Juncheng

    2010-12-01

    Domesticated ungulates embryonic stem (ES) cells have great significances in biology and wide application prospects. This review compared the key signaling pathways related with pluripotency between mouse and human ES cells, and the difference of transcription factors in mouse, human and domesticated ungulates ES cells were elaborated. Finally the pluripotency candidate signaling network and transcription factors related in the derivation of domesticated ungulates ES cell were discussed combined with practical experience of ovine embryonic stem cell derivation in our laboratory.

  5. Information-Theoretic Inference of Large Transcriptional Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Meyer Patrick

    2007-01-01

    Full Text Available The paper presents MRNET, an original method for inferring genetic networks from microarray data. The method is based on maximum relevance/minimum redundancy (MRMR, an effective information-theoretic technique for feature selection in supervised learning. The MRMR principle consists in selecting among the least redundant variables the ones that have the highest mutual information with the target. MRNET extends this feature selection principle to networks in order to infer gene-dependence relationships from microarray data. The paper assesses MRNET by benchmarking it against RELNET, CLR, and ARACNE, three state-of-the-art information-theoretic methods for large (up to several thousands of genes network inference. Experimental results on thirty synthetically generated microarray datasets show that MRNET is competitive with these methods.

  6. Information-Theoretic Inference of Large Transcriptional Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Patrick E. Meyer

    2007-06-01

    Full Text Available The paper presents MRNET, an original method for inferring genetic networks from microarray data. The method is based on maximum relevance/minimum redundancy (MRMR, an effective information-theoretic technique for feature selection in supervised learning. The MRMR principle consists in selecting among the least redundant variables the ones that have the highest mutual information with the target. MRNET extends this feature selection principle to networks in order to infer gene-dependence relationships from microarray data. The paper assesses MRNET by benchmarking it against RELNET, CLR, and ARACNE, three state-of-the-art information-theoretic methods for large (up to several thousands of genes network inference. Experimental results on thirty synthetically generated microarray datasets show that MRNET is competitive with these methods.

  7. Transcriptional regulation and steady-state modeling of metabolic networks

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej

    with the changes in gene expression of both reactions that produce and reactions that consume a given metabolite. Analysis of a large compendium of gene expression data further suggested that, contrary to previous thinking, transcriptional regulation at metabolic branch points is highly plastic and, in several...... to exhibit a biodegradation performance superior to pure cultures, making them attractive research targets. It is believed that nutrition plays a crucial role in shaping microbial communities. Interspecies metabolite cross-feeding can confer several advantages to the community as a whole. For example, more...

  8. Transcriptional Networks in the Liver: Hepatocyte Nuclear Factor 6 Function Is Largely Independent of Foxa2

    OpenAIRE

    Rubins, Nir E.; Friedman, Joshua R.; Le, Phillip P.; Zhang, Liping; Brestelli, John; Kaestner, Klaus H.

    2005-01-01

    A complex network of hepatocyte nuclear transcription factors, including HNF6 and Foxa2, regulates the expression of liver-specific genes. The current model, based on in vitro studies, suggests that HNF6 and Foxa2 interact physically. This interaction is thought to synergistically stimulate Foxa2-dependent transcription through the recruitment of p300/CBP by HNF6 and to inhibit HNF6-mediated transcription due to the interference of Foxa2 with DNA binding by HNF6. To test this model in vivo, w...

  9. ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks.

    Science.gov (United States)

    Pavesi, Giulio

    The first step in the definition of transcriptional regulatory networks is to establish correct relationships between transcription factors (TFs) and their target genes, together with the effect of their regulatory activity (activator or repressor). Fundamental advances in this direction have been made possible by the introduction of experimental techniques such as Chromatin Immunoprecipitation, which, coupled with next-generation sequencing technologies (ChIP-Seq), permit the genome-wide identification of TF binding sites. This chapter provides a survey on how data of this kind are to be processed and integrated with expression and other types of data to infer transcriptional regulatory rules and codes.

  10. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  11. Localizing potentially active post-transcriptional regulations in the Ewing's sarcoma gene regulatory network

    Directory of Open Access Journals (Sweden)

    Delyon Bernard

    2010-11-01

    Full Text Available Abstract Background A wide range of techniques is now available for analyzing regulatory networks. Nonetheless, most of these techniques fail to interpret large-scale transcriptional data at the post-translational level. Results We address the question of using large-scale transcriptomic observation of a system perturbation to analyze a regulatory network which contained several types of interactions - transcriptional and post-translational. Our method consisted of post-processing the outputs of an open-source tool named BioQuali - an automatic constraint-based analysis mimicking biologist's local reasoning on a large scale. The post-processing relied on differences in the behavior of the transcriptional and post-translational levels in the network. As a case study, we analyzed a network representation of the genes and proteins controlled by an oncogene in the context of Ewing's sarcoma. The analysis allowed us to pinpoint active interactions specific to this cancer. We also identified the parts of the network which were incomplete and should be submitted for further investigation. Conclusions The proposed approach is effective for the qualitative analysis of cancer networks. It allows the integrative use of experimental data of various types in order to identify the specific information that should be considered a priority in the initial - and possibly very large - experimental dataset. Iteratively, new dataset can be introduced into the analysis to improve the network representation and make it more specific.

  12. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    DEFF Research Database (Denmark)

    Soberano de Oliveira, Ana Paula; Patil, Kiran Raosaheb; Nielsen, Jens

    2008-01-01

    is to use the topology of bio-molecular interaction networks in order to constrain the solution space. Such approaches systematically integrate the existing biological knowledge with the 'omics' data. Results: Here we introduce a hypothesis-driven method that integrates bio-molecular network topology...... with transcriptome data, thereby allowing the identification of key biological features (Reporter Features) around which transcriptional changes are significantly concentrated. We have combined transcriptome data with different biological networks in order to identify Reporter Gene Ontologies, Reporter Transcription...... Factors, Reporter Proteins and Reporter Complexes, and use this to decipher the logic of regulatory circuits playing a key role in yeast glucose repression and human diabetes. Conclusion: Reporter Features offer the opportunity to identify regulatory hot-spots in bio-molecular interaction networks...

  13. Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier.

    Science.gov (United States)

    Raghu, S; Sriraam, N; Kumar, G Pradeep

    2017-02-01

    Electroencephalogram shortly termed as EEG is considered as the fundamental segment for the assessment of the neural activities in the brain. In cognitive neuroscience domain, EEG-based assessment method is found to be superior due to its non-invasive ability to detect deep brain structure while exhibiting superior spatial resolutions. Especially for studying the neurodynamic behavior of epileptic seizures, EEG recordings reflect the neuronal activity of the brain and thus provide required clinical diagnostic information for the neurologist. This specific proposed study makes use of wavelet packet based log and norm entropies with a recurrent Elman neural network (REN) for the automated detection of epileptic seizures. Three conditions, normal, pre-ictal and epileptic EEG recordings were considered for the proposed study. An adaptive Weiner filter was initially applied to remove the power line noise of 50 Hz from raw EEG recordings. Raw EEGs were segmented into 1 s patterns to ensure stationarity of the signal. Then wavelet packet using Haar wavelet with a five level decomposition was introduced and two entropies, log and norm were estimated and were applied to REN classifier to perform binary classification. The non-linear Wilcoxon statistical test was applied to observe the variation in the features under these conditions. The effect of log energy entropy (without wavelets) was also studied. It was found from the simulation results that the wavelet packet log entropy with REN classifier yielded a classification accuracy of 99.70 % for normal-pre-ictal, 99.70 % for normal-epileptic and 99.85 % for pre-ictal-epileptic.

  14. A network of paralogous stress response transcription factors in the human pathogen Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Jawad eMerhej

    2016-05-01

    Full Text Available The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq, transcriptome analyses and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1 transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption and iron metabolism.

  15. Coevolution within a transcriptional network by compensatory trans and cis mutations

    KAUST Repository

    Kuo, D.

    2010-10-26

    Transcriptional networks have been shown to evolve very rapidly, prompting questions as to how such changes arise and are tolerated. Recent comparisons of transcriptional networks across species have implicated variations in the cis-acting DNA sequences near genes as the main cause of divergence. What is less clear is how these changes interact with trans-acting changes occurring elsewhere in the genetic circuit. Here, we report the discovery of a system of compensatory trans and cis mutations in the yeast AP-1 transcriptional network that allows for conserved transcriptional regulation despite continued genetic change. We pinpoint a single species, the fungal pathogen Candida glabrata, in which a trans mutation has occurred very recently in a single AP-1 family member, distinguishing it from its Saccharomyces ortholog. Comparison of chromatin immunoprecipitation profiles between Candida and Saccharomyces shows that, despite their different DNA-binding domains, the AP-1 orthologs regulate a conserved block of genes. This conservation is enabled by concomitant changes in the cis-regulatory motifs upstream of each gene. Thus, both trans and cis mutations have perturbed the yeast AP-1 regulatory system in such a way as to compensate for one another. This demonstrates an example of “coevolution” between a DNA-binding transcription factor and its cis-regulatory site, reminiscent of the coevolution of protein binding partners.

  16. Information processing in the transcriptional regulatory network of yeast: Functional robustness

    Directory of Open Access Journals (Sweden)

    Dehmer Matthias

    2009-03-01

    Full Text Available Abstract Background Gene networks are considered to represent various aspects of molecular biological systems meaningfully because they naturally provide a systems perspective of molecular interactions. In this respect, the functional understanding of the transcriptional regulatory network is considered as key to elucidate the functional organization of an organism. Results In this paper we study the functional robustness of the transcriptional regulatory network of S. cerevisiae. We model the information processing in the network as a first order Markov chain and study the influence of single gene perturbations on the global, asymptotic communication among genes. Modification in the communication is measured by an information theoretic measure allowing to predict genes that are 'fragile' with respect to single gene knockouts. Our results demonstrate that the predicted set of fragile genes contains a statistically significant enrichment of so called essential genes that are experimentally found to be necessary to ensure vital yeast. Further, a structural analysis of the transcriptional regulatory network reveals that there are significant differences between fragile genes, hub genes and genes with a high betweenness centrality value. Conclusion Our study does not only demonstrate that a combination of graph theoretical, information theoretical and statistical methods leads to meaningful biological results but also that such methods allow to study information processing in gene networks instead of just their structural properties.

  17. Classifying spaces and classifying topoi

    CERN Document Server

    Moerdijk, Izak

    1995-01-01

    This monograph presents a new, systematic treatment of the relation between classifying topoi and classifying spaces of topological categories. Using a new generalized geometric realization which applies to topoi, a weak homotopy equival- ence is constructed between the classifying space and the classifying topos of any small (topological) category. Topos theory is then applied to give an answer to the question of what structures are classified by "classifying" spaces. The monograph should be accessible to anyone with basic knowledge of algebraic topology, sheaf theory, and a little topos theory.

  18. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees

    Science.gov (United States)

    Lijun Liu; Vladimir Filkov; Andrew Groover

    2013-01-01

    The complex interactions among the genes that underlie a biological process can be modeled and presented as a transcriptional network, in which genes (nodes) and their interactions (edges) are shown in a graphical form similar to a wiring diagram. A large number of genes have been identified that are expressed during the radial woody growth of tree stems (secondary...

  19. HAND2 targets define a network of transcriptional regulators that compartmentalize the early limb bud mesenchyme

    NARCIS (Netherlands)

    Osterwalder, Marco; Speziale, Dario; Shoukry, Malak; Mohan, Rajiv; Ivanek, Robert; Kohler, Manuel; Beisel, Christian; Wen, Xiaohui; Scales, Suzie J.; Christoffels, Vincent M.; Visel, Axel; Lopez-Rios, Javier; Zeller, Rolf

    2014-01-01

    The genetic networks that govern vertebrate development are well studied, but how the interactions of trans-acting factors with cis-regulatory modules (CRMs) are integrated into spatiotemporal regulation of gene expression is not clear. The transcriptional regulator HAND2 is required during limb,

  20. NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers.

    Science.gov (United States)

    He, Baoji; Mortuza, S M; Wang, Yanting; Shen, Hong-Bin; Zhang, Yang

    2017-08-01

    Recent CASP experiments have witnessed exciting progress on folding large-size non-humongous proteins with the assistance of co-evolution based contact predictions. The success is however anecdotal due to the requirement of the contact prediction methods for the high volume of sequence homologs that are not available to most of the non-humongous protein targets. Development of efficient methods that can generate balanced and reliable contact maps for different type of protein targets is essential to enhance the success rate of the ab initio protein structure prediction. We developed a new pipeline, NeBcon, which uses the naïve Bayes classifier (NBC) theorem to combine eight state of the art contact methods that are built from co-evolution and machine learning approaches. The posterior probabilities of the NBC model are then trained with intrinsic structural features through neural network learning for the final contact map prediction. NeBcon was tested on 98 non-redundant proteins, which improves the accuracy of the best co-evolution based meta-server predictor by 22%; the magnitude of the improvement increases to 45% for the hard targets that lack sequence and structural homologs in the databases. Detailed data analysis showed that the major contribution to the improvement is due to the optimized NBC combination of the complementary information from both co-evolution and machine learning predictions. The neural network training also helps to improve the coupling of the NBC posterior probability and the intrinsic structural features, which were found particularly important for the proteins that do not have sufficient number of homologous sequences to derive reliable co-evolution profiles. On-line server and standalone package of the program are available at http://zhanglab.ccmb.med.umich.edu/NeBcon/ . zhng@umich.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For

  1. A cross-sectional evaluation of meditation experience on electroencephalography data by artificial neural network and support vector machine classifiers.

    Science.gov (United States)

    Lee, Yu-Hao; Hsieh, Ya-Ju; Shiah, Yung-Jong; Lin, Yu-Huei; Chen, Chiao-Yun; Tyan, Yu-Chang; GengQiu, JiaCheng; Hsu, Chung-Yao; Chen, Sharon Chia-Ju

    2017-04-01

    To quantitate the meditation experience is a subjective and complex issue because it is confounded by many factors such as emotional state, method of meditation, and personal physical condition. In this study, we propose a strategy with a cross-sectional analysis to evaluate the meditation experience with 2 artificial intelligence techniques: artificial neural network and support vector machine. Within this analysis system, 3 features of the electroencephalography alpha spectrum and variant normalizing scaling are manipulated as the evaluating variables for the detection of accuracy. Thereafter, by modulating the sliding window (the period of the analyzed data) and shifting interval of the window (the time interval to shift the analyzed data), the effect of immediate analysis for the 2 methods is compared. This analysis system is performed on 3 meditation groups, categorizing their meditation experiences in 10-year intervals from novice to junior and to senior. After an exhausted calculation and cross-validation across all variables, the high accuracy rate >98% is achievable under the criterion of 0.5-minute sliding window and 2 seconds shifting interval for both methods. In a word, the minimum analyzable data length is 0.5 minute and the minimum recognizable temporal resolution is 2 seconds in the decision of meditative classification. Our proposed classifier of the meditation experience promotes a rapid evaluation system to distinguish meditation experience and a beneficial utilization of artificial techniques for the big-data analysis.

  2. Deep Convolutional Neural Network Analysis of Flow Imaging Microscopy Data to Classify Subvisible Particles in Protein Formulations.

    Science.gov (United States)

    Calderon, Christopher P; Daniels, Austin L; Randolph, Theodore W

    2018-04-01

    Flow-imaging microscopy (FIM) is commonly used to characterize subvisible particles in therapeutic protein formulations. Although pharmaceutical companies often collect large repositories of FIM images of protein therapeutic products, current state-of-the-art methods for analyzing these images rely on low-dimensional lists of "morphological features" to characterize particles that ignore much of the information encoded in the existing image databases. Deep convolutional neural networks (sometimes referred to as "CNNs or ConvNets") have demonstrated the ability to extract predictive information from raw macroscopic image data without requiring the selection or specification of "morphological features" in a variety of tasks. However, the inherent heterogeneity of protein therapeutics and optical phenomena associated with subvisible FIM particle measurements introduces new challenges regarding the application of ConvNets to FIM image analysis. We demonstrate a supervised learning technique leveraging ConvNets to extract information from raw images in order to predict the process conditions or stress states (freeze-thawing, mechanical shaking, etc.) that produced a variety of different protein particles. We demonstrate that our new classifier, in combination with a "data pooling" strategy, can nearly perfectly differentiate between protein formulations in a variety of scenarios of relevance to protein therapeutics quality control and process monitoring using as few as 20 particles imaged via FIM. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Joshi Anagha

    2009-05-01

    Full Text Available Abstract Background A myriad of methods to reverse-engineer transcriptional regulatory networks have been developed in recent years. Direct methods directly reconstruct a network of pairwise regulatory interactions while module-based methods predict a set of regulators for modules of coexpressed genes treated as a single unit. To date, there has been no systematic comparison of the relative strengths and weaknesses of both types of methods. Results We have compared a recently developed module-based algorithm, LeMoNe (Learning Module Networks, to a mutual information based direct algorithm, CLR (Context Likelihood of Relatedness, using benchmark expression data and databases of known transcriptional regulatory interactions for Escherichia coli and Saccharomyces cerevisiae. A global comparison using recall versus precision curves hides the topologically distinct nature of the inferred networks and is not informative about the specific subtasks for which each method is most suited. Analysis of the degree distributions and a regulator specific comparison show that CLR is 'regulator-centric', making true predictions for a higher number of regulators, while LeMoNe is 'target-centric', recovering a higher number of known targets for fewer regulators, with limited overlap in the predicted interactions between both methods. Detailed biological examples in E. coli and S. cerevisiae are used to illustrate these differences and to prove that each method is able to infer parts of the network where the other fails. Biological validation of the inferred networks cautions against over-interpreting recall and precision values computed using incomplete reference networks. Conclusion Our results indicate that module-based and direct methods retrieve largely distinct parts of the underlying transcriptional regulatory networks. The choice of algorithm should therefore be based on the particular biological problem of interest and not on global metrics which cannot be

  4. TIGERi: modeling and visualizing the responses to perturbation of a transcription factor network.

    Science.gov (United States)

    Han, Namshik; Noyes, Harry A; Brass, Andy

    2017-05-31

    Transcription factor (TF) networks play a key role in controlling the transfer of genetic information from gene to mRNA. Much progress has been made on understanding and reverse-engineering TF network topologies using a range of experimental and theoretical methodologies. Less work has focused on using these models to examine how TF networks respond to changes in the cellular environment. In this paper, we have developed a simple, pragmatic methodology, TIGERi (Transcription-factor-activity Illustrator for Global Explanation of Regulatory interaction), to model the response of an inferred TF network to changes in cellular environment. The methodology was tested using publicly available data comparing gene expression profiles of a mouse p38α (Mapk14) knock-out line to the original wild-type. Using the model, we have examined changes in the TF network resulting from the presence or absence of p38α. A part of this network was confirmed by experimental work in the original paper. Additional relationships were identified by our analysis, for example between p38α and HNF3, and between p38α and SOX9, and these are strongly supported by published evidence. FXR and MYC were also discovered in our analysis as two novel links of p38α. To provide a computational methodology to the biomedical communities that has more user-friendly interface, we also developed a standalone GUI (graphical user interface) software for TIGERi and it is freely available at https://github.com/namshik/tigeri/ . We therefore believe that our computational approach can identify new members of networks and new interactions between members that are supported by published data but have not been integrated into the existing network models. Moreover, ones who want to analyze their own data with TIGERi could use the software without any command line experience. This work could therefore accelerate researches in transcriptional gene regulation in higher eukaryotes.

  5. Classifying Microorganisms

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2006-01-01

    This paper describes the coexistence of two systems for classifying organisms and species: a dominant genetic system and an older naturalist system. The former classifies species and traces their evolution on the basis of genetic characteristics, while the latter employs physiological characteris......This paper describes the coexistence of two systems for classifying organisms and species: a dominant genetic system and an older naturalist system. The former classifies species and traces their evolution on the basis of genetic characteristics, while the latter employs physiological...... of Denmark. It is thus a 'real time' and material study of scientific paradigms and discourses....

  6. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors.

    Science.gov (United States)

    Motohashi, Hozumi; O'Connor, Tania; Katsuoka, Fumiki; Engel, James Douglas; Yamamoto, Masayuki

    2002-07-10

    Recent progress in the analysis of transcriptional regulation has revealed the presence of an exquisite functional network comprising the Maf and Cap 'n' collar (CNC) families of regulatory proteins, many of which have been isolated. Among Maf factors, large Maf proteins are important in the regulation of embryonic development and cell differentiation, whereas small Maf proteins serve as obligatory heterodimeric partner molecules for members of the CNC family. Both Maf homodimers and CNC-small Maf heterodimers bind to the Maf recognition element (MARE). Since the MARE contains a consensus TRE sequence recognized by AP-1, Jun and Fos family members may act to compete or interfere with the function of CNC-small Maf heterodimers. Overall then, the quantitative balance of transcription factors interacting with the MARE determines its transcriptional activity. Many putative MARE-dependent target genes such as those induced by antioxidants and oxidative stress are under concerted regulation by the CNC family member Nrf2, as clearly proven by mouse germline mutagenesis. Since these genes represent a vital aspect of the cellular defense mechanism against oxidative stress, Nrf2-null mutant mice are highly sensitive to xenobiotic and oxidative insults. Deciphering the molecular basis of the regulatory network composed of Maf and CNC families of transcription factors will undoubtedly lead to a new paradigm for the cooperative function of transcription factors.

  7. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  8. Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes.

    Science.gov (United States)

    Zelezniak, Aleksej; Pers, Tune H; Soares, Simão; Patti, Mary Elizabeth; Patil, Kiran Raosaheb

    2010-04-01

    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites--metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with T2DM), we identified several reporter metabolites representing novel biomarker candidates. For example, the highly connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM.

  9. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks.

    Science.gov (United States)

    Huber, René; Pietsch, Daniel; Günther, Johannes; Welz, Bastian; Vogt, Nico; Brand, Korbinian

    2014-01-01

    Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.

  10. Uncovering transcription factor and microRNA risk regulatory pathways associated with osteoarthritis by network analysis.

    Science.gov (United States)

    Song, Zhenhua; Zhang, Chi; He, Lingxiao; Sui, Yanfang; Lin, Xiafei; Pan, Jingjing

    2018-04-27

    Osteoarthritis (OA) is the most common form of joint disease. The development of inflammation have been considered to play a key role during the progression of OA. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, deciphering these risk regulatory pathways is critical for elucidating the mechanisms underlying OA. We constructed an OA-specific regulatory network by integrating comprehensive curated transcription and post-transcriptional resource involving transcription factor (TF) and microRNA (miRNA). To deepen our understanding of underlying molecular mechanisms of OA, we developed an integrated systems approach to identify OA-specific risk regulatory pathways. In this study, we identified 89 significantly differentially expressed genes between normal and inflamed areas of OA patients. We found the OA-specific regulatory network was a standard scale-free network with small-world properties. It significant enriched many immune response-related functions including leukocyte differentiation, myeloid differentiation and T cell activation. Finally, 141 risk regulatory pathways were identified based on OA-specific regulatory network, which contains some known regulator of OA. The risk regulatory pathways may provide clues for the etiology of OA and be a potential resource for the discovery of novel OA-associated disease genes. Copyright © 2018. Published by Elsevier Inc.

  11. DropConnected neural networks trained on time-frequency and inter-beat features for classifying heart sounds.

    Science.gov (United States)

    Kay, Edmund; Agarwal, Anurag

    2017-07-31

    Automatic heart sound analysis has the potential to improve the diagnosis of valvular heart diseases in the primary care phase, as well as in countries where there is neither the expertise nor the equipment to perform echocardiograms. An algorithm has been trained, on the PhysioNet open-access heart sounds database, to classify heart sounds as normal or abnormal. The heart sounds are segmented using an open-source algorithm based on a hidden semi-Markov model. Following this, the time-frequency behaviour of a single heartbeat is characterized by using a novel implementation of the continuous wavelet transform, mel-frequency cepstral coefficients, and certain complexity measures. These features help detect the presence of any murmurs. A number of other features are also extracted to characterise the inter-beat behaviour of the heart sounds, which helps to recognize diseases such as arrhythmia. The extracted features are normalized and their dimensionality is reduced using principal component analysis. They are then used as the input to a fully-connected, two-hidden-layer neural network, trained by error backpropagation, and regularized with DropConnect. This algorithm achieved an accuracy of 85.2% on the test data, which placed third in the PhysioNet/Computing in Cardiology Challenge (first place scored 86.0%). However, this is unrealistic of real-world performance, as the test data contained a dataset (dataset-e) in which normal and abnormal heart sounds were recorded with different stethoscopes. A 10-fold cross-validation study on the training data (excluding dataset-e) gives a mean score of 74.8%, which is a more realistic estimate of accuracy. With dataset-e excluded from training, the algorithm scored only 58.1% on the test data.

  12. A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2014-09-01

    Full Text Available In this work, we decided to apply a hierarchical weighted decision, proposed and used in other research fields, for the recognition of gait phases. The developed and validated novel distributed classifier is based on hierarchical weighted decision from outputs of scalar Hidden Markov Models (HMM applied to angular velocities of foot, shank, and thigh. The angular velocities of ten healthy subjects were acquired via three uni-axial gyroscopes embedded in inertial measurement units (IMUs during one walking task, repeated three times, on a treadmill. After validating the novel distributed classifier and scalar and vectorial classifiers-already proposed in the literature, with a cross-validation, classifiers were compared for sensitivity, specificity, and computational load for all combinations of the three targeted anatomical segments. Moreover, the performance of the novel distributed classifier in the estimation of gait variability in terms of mean time and coefficient of variation was evaluated. The highest values of specificity and sensitivity (>0.98 for the three classifiers examined here were obtained when the angular velocity of the foot was processed. Distributed and vectorial classifiers reached acceptable values (>0.95 when the angular velocity of shank and thigh were analyzed. Distributed and scalar classifiers showed values of computational load about 100 times lower than the one obtained with the vectorial classifier. In addition, distributed classifiers showed an excellent reliability for the evaluation of mean time and a good/excellent reliability for the coefficient of variation. In conclusion, due to the better performance and the small value of computational load, the here proposed novel distributed classifier can be implemented in the real-time application of gait phases recognition, such as to evaluate gait variability in patients or to control active orthoses for the recovery of mobility of lower limb joints.

  13. Methods of MicroRNA Promoter Prediction and Transcription Factor Mediated Regulatory Network.

    Science.gov (United States)

    Zhao, Yuming; Wang, Fang; Chen, Su; Wan, Jun; Wang, Guohua

    2017-01-01

    MicroRNAs (miRNAs) are short (~22 nucleotides) noncoding RNAs and disseminated throughout the genome, either in the intergenic regions or in the intronic sequences of protein-coding genes. MiRNAs have been proved to play important roles in regulating gene expression. Hence, understanding the transcriptional mechanism of miRNA genes is a very critical step to uncover the whole regulatory network. A number of miRNA promoter prediction models have been proposed in the past decade. This review summarized several most popular miRNA promoter prediction models which used genome sequence features, or other features, for example, histone markers, RNA Pol II binding sites, and nucleosome-free regions, achieved by high-throughput sequencing data. Some databases were described as resources for miRNA promoter information. We then performed comprehensive discussion on prediction and identification of transcription factor mediated microRNA regulatory networks.

  14. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development.

    Science.gov (United States)

    Angelovici, Ruthie; Fait, Aaron; Zhu, Xiaohong; Szymanski, Jedrzej; Feldmesser, Ester; Fernie, Alisdair R; Galili, Gad

    2009-12-01

    In order to elucidate transcriptional and metabolic networks associated with lysine (Lys) metabolism, we utilized developing Arabidopsis (Arabidopsis thaliana) seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor; however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the tricarboxylic acid cycle while largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor while suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.

  15. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.

    Science.gov (United States)

    Marbach, Daniel; Roy, Sushmita; Ay, Ferhat; Meyer, Patrick E; Candeias, Rogerio; Kahveci, Tamer; Bristow, Christopher A; Kellis, Manolis

    2012-07-01

    Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein-protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level.

  16. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks

    Science.gov (United States)

    Marbach, Daniel; Roy, Sushmita; Ay, Ferhat; Meyer, Patrick E.; Candeias, Rogerio; Kahveci, Tamer; Bristow, Christopher A.; Kellis, Manolis

    2012-01-01

    Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein–protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level. PMID:22456606

  17. GAM: a web-service for integrated transcriptional and metabolic network analysis.

    Science.gov (United States)

    Sergushichev, Alexey A; Loboda, Alexander A; Jha, Abhishek K; Vincent, Emma E; Driggers, Edward M; Jones, Russell G; Pearce, Edward J; Artyomov, Maxim N

    2016-07-08

    Novel techniques for high-throughput steady-state metabolomic profiling yield information about changes of nearly thousands of metabolites. Such metabolomic profiles, when analyzed together with transcriptional profiles, can reveal novel insights about underlying biological processes. While a number of conceptual approaches have been developed for data integration, easily accessible tools for integrated analysis of mammalian steady-state metabolomic and transcriptional data are lacking. Here we present GAM ('genes and metabolites'): a web-service for integrated network analysis of transcriptional and steady-state metabolomic data focused on identification of the most changing metabolic subnetworks between two conditions of interest. In the web-service, we have pre-assembled metabolic networks for humans, mice, Arabidopsis and yeast and adapted exact solvers for an optimal subgraph search to work in the context of these metabolic networks. The output is the most regulated metabolic subnetwork of size controlled by false discovery rate parameters. The subnetworks are then visualized online and also can be downloaded in Cytoscape format for subsequent processing. The web-service is available at: https://artyomovlab.wustl.edu/shiny/gam/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg

    2008-03-01

    Full Text Available Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-Apo(100/100Mttp(flox/flox Mx1-Cre. Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.

  19. Context-Aware Mobile Service Adaptation via a Co-Evolution eXtended Classifier System in Mobile Network Environments

    OpenAIRE

    Shangguang Wang; Zibin Zheng; Zhengping Wu; Qibo Sun; Hua Zou; Fangchun Yang

    2014-01-01

    With the popularity of mobile services, an effective context-aware mobile service adaptation is becoming more and more important for operators. In this paper, we propose a Co-evolution eXtended Classifier System (CXCS) to perform context-aware mobile service adaptation. Our key idea is to learn user context, match adaptation rule, and provide the best suitable mobile services for users. Different from previous adaptation schemes, our proposed CXCS can produce a new user's initial classifier p...

  20. Propagation of New Innovations: An Approach to Classify Human Behavior and Movement from Available Social Network Data

    Science.gov (United States)

    Mahmud, Faisal; Samiul, Hasan

    2010-01-01

    It is interesting to observe new innovations, products, or ideas propagating into the society. One important factor of this propagation is the role of individual's social network; while another factor is individual's activities. In this paper, an approach will be made to analyze the propagation of different ideas in a popular social network. Individuals' responses to different activities in the network will be analyzed. The properties of network will also be investigated for successful propagation of innovations.

  1. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.

    Directory of Open Access Journals (Sweden)

    Eliska Vohradska

    Full Text Available Study of genetic networks has moved from qualitative description of interactions between regulators and regulated genes to the analysis of the interaction dynamics. This paper focuses on the analysis of dynamics of one particular network--the yeast cyclins network. Using a dedicated mathematical model of gene expression and a procedure for computation of the parameters of the model from experimental data, a complete numerical model of the dynamics of the cyclins genetic network was attained. The model allowed for performing virtual experiments on the network and observing their influence on the expression dynamics of the genes downstream in the regulatory cascade. Results show that when the network structure is more complicated, and the regulatory interactions are indirect, results of gene deletion are highly unpredictable. As a consequence of quantitative behavior of the genes and their connections within the network, causal relationship between a regulator and target gene may not be discovered by gene deletion. Without including the dynamics of the system into the network, its functional properties cannot be studied and interpreted correctly.

  2. Estimating the similarity of alternative Affymetrix probe sets using transcriptional networks

    Science.gov (United States)

    2013-01-01

    Background The usefulness of the data from Affymetrix microarray analysis depends largely on the reliability of the files describing the correspondence between probe sets, genes and transcripts. Particularly, when a gene is targeted by several probe sets, these files should give information about the similarity of each alternative probe set pair. Transcriptional networks integrate the multiple correlations that exist between all probe sets and supply much more information than a simple correlation coefficient calculated for two series of signals. In this study, we used the PSAWN (Probe Set Assignment With Networks) programme we developed to investigate whether similarity of alternative probe sets resulted in some specific properties. Findings PSAWNpy delivered a full textual description of each probe set and information on the number and properties of secondary targets. PSAWNml calculated the similarity of each alternative probe set pair and allowed finding relationships between similarity and localisation of probes in common transcripts or exons. Similar alternative probe sets had very low negative correlation, high positive correlation and similar neighbourhood overlap. Using these properties, we devised a test that allowed grouping similar probe sets in a given network. By considering several networks, additional information concerning the similarity reproducibility was obtained, which allowed defining the actual similarity of alternative probe set pairs. In particular, we calculated the common localisation of probes in exons and in known transcripts and we showed that similarity was correctly correlated with them. The information collected on all pairs of alternative probe sets in the most popular 3’ IVT Affymetrix chips is available in tabular form at http://bns.crbm.cnrs.fr/download.html. Conclusions These processed data can be used to obtain a finer interpretation when comparing microarray data between biological conditions. They are particularly well

  3. The cis-regulatory logic of the mammalian photoreceptor transcriptional network.

    Science.gov (United States)

    Hsiau, Timothy H-C; Diaconu, Claudiu; Myers, Connie A; Lee, Jongwoo; Cepko, Constance L; Corbo, Joseph C

    2007-07-25

    The photoreceptor cells of the retina are subject to a greater number of genetic diseases than any other cell type in the human body. The majority of more than 120 cloned human blindness genes are highly expressed in photoreceptors. In order to establish an integrative framework in which to understand these diseases, we have undertaken an experimental and computational analysis of the network controlled by the mammalian photoreceptor transcription factors, Crx, Nrl, and Nr2e3. Using microarray and in situ hybridization datasets we have produced a model of this network which contains over 600 genes, including numerous retinal disease loci as well as previously uncharacterized photoreceptor transcription factors. To elucidate the connectivity of this network, we devised a computational algorithm to identify the photoreceptor-specific cis-regulatory elements (CREs) mediating the interactions between these transcription factors and their target genes. In vivo validation of our computational predictions resulted in the discovery of 19 novel photoreceptor-specific CREs near retinal disease genes. Examination of these CREs permitted the definition of a simple cis-regulatory grammar rule associated with high-level expression. To test the generality of this rule, we used an expanded form of it as a selection filter to evolve photoreceptor CREs from random DNA sequences in silico. When fused to fluorescent reporters, these evolved CREs drove strong, photoreceptor-specific expression in vivo. This study represents the first systematic identification and in vivo validation of CREs in a mammalian neuronal cell type and lays the groundwork for a systems biology of photoreceptor transcriptional regulation.

  4. The cis-regulatory logic of the mammalian photoreceptor transcriptional network.

    Directory of Open Access Journals (Sweden)

    Timothy H-C Hsiau

    2007-07-01

    Full Text Available The photoreceptor cells of the retina are subject to a greater number of genetic diseases than any other cell type in the human body. The majority of more than 120 cloned human blindness genes are highly expressed in photoreceptors. In order to establish an integrative framework in which to understand these diseases, we have undertaken an experimental and computational analysis of the network controlled by the mammalian photoreceptor transcription factors, Crx, Nrl, and Nr2e3. Using microarray and in situ hybridization datasets we have produced a model of this network which contains over 600 genes, including numerous retinal disease loci as well as previously uncharacterized photoreceptor transcription factors. To elucidate the connectivity of this network, we devised a computational algorithm to identify the photoreceptor-specific cis-regulatory elements (CREs mediating the interactions between these transcription factors and their target genes. In vivo validation of our computational predictions resulted in the discovery of 19 novel photoreceptor-specific CREs near retinal disease genes. Examination of these CREs permitted the definition of a simple cis-regulatory grammar rule associated with high-level expression. To test the generality of this rule, we used an expanded form of it as a selection filter to evolve photoreceptor CREs from random DNA sequences in silico. When fused to fluorescent reporters, these evolved CREs drove strong, photoreceptor-specific expression in vivo. This study represents the first systematic identification and in vivo validation of CREs in a mammalian neuronal cell type and lays the groundwork for a systems biology of photoreceptor transcriptional regulation.

  5. SINCERITIES: Inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles.

    Science.gov (United States)

    Papili Gao, Nan; Ud-Dean, S M Minhaz; Gandrillon, Olivier; Gunawan, Rudiyanto

    2017-09-14

    Single cell transcriptional profiling opens up a new avenue in studying the functional role of cell-to-cell variability in physiological processes. The analysis of single cell expression profiles creates new challenges due to the distributive nature of the data and the stochastic dynamics of gene transcription process. The reconstruction of gene regulatory networks (GRNs) using single cell transcriptional profiles is particularly challenging, especially when directed gene-gene relationships are desired. We developed SINCERITIES (SINgle CEll Regularized Inference using TIme-stamped Expression profileS) for the inference of GRNs from single cell transcriptional profiles. We focused on time-stamped cross-sectional expression data, commonly generated from transcriptional profiling of single cells collected at multiple time points after cell stimulation. SINCERITIES recovers directed regulatory relationships among genes by employing regularized linear regression (ridge regression), using temporal changes in the distributions of gene expressions. Meanwhile, the modes of the gene regulations (activation and repression) come from partial correlation analyses between pairs of genes. We demonstrated the efficacy of SINCERITIES in inferring GRNs using in silico time-stamped single cell expression data and single cell transcriptional profiles of THP-1 monocytic human leukemia cells. The case studies showed that SINCERITIES could provide accurate GRN predictions, significantly better than other GRN inference algorithms such as TSNI, GENIE3 and JUMP3. Moreover, SINCERITIES has a low computational complexity and is amenable to problems of extremely large dimensionality. Finally, an application of SINCERITIES to single cell expression data of T2EC chicken erythrocytes pointed to BATF as a candidate novel regulator of erythroid development. The MATLAB and R version of SINCERITIES is freely available from the following websites: http://www.cabsel.ethz.ch/tools/sincerities.html and

  6. Meta-analysis reveals conserved cell cycle transcriptional network across multiple human cell types.

    Science.gov (United States)

    Giotti, Bruno; Joshi, Anagha; Freeman, Tom C

    2017-01-05

    Cell division is central to the physiology and pathology of all eukaryotic organisms. The molecular machinery underpinning the cell cycle has been studied extensively in a number of species and core aspects of it have been found to be highly conserved. Similarly, the transcriptional changes associated with this pathway have been studied in different organisms and different cell types. In each case hundreds of genes have been reported to be regulated, however there seems to be little consensus in the genes identified across different studies. In a recent comparison of transcriptomic studies of the cell cycle in different human cell types, only 96 cell cycle genes were reported to be the same across all studies examined. Here we perform a systematic re-examination of published human cell cycle expression data by using a network-based approach to identify groups of genes with a similar expression profile and therefore function. Two clusters in particular, containing 298 transcripts, showed patterns of expression consistent with cell cycle occurrence across the four human cell types assessed. Our analysis shows that there is a far greater conservation of cell cycle-associated gene expression across human cell types than reported previously, which can be separated into two distinct transcriptional networks associated with the G 1 /S-S and G 2 -M phases of the cell cycle. This work also highlights the benefits of performing a re-analysis on combined datasets.

  7. New neural network classifier of fall-risk based on the Mahalanobis distance and kinematic parameters assessed by a wearable device

    International Nuclear Information System (INIS)

    Giansanti, Daniele; Macellari, Velio; Maccioni, Giovanni

    2008-01-01

    Fall prevention lacks easy, quantitative and wearable methods for the classification of fall-risk (FR). Efforts must be thus devoted to the choice of an ad hoc classifier both to reduce the size of the sample used to train the classifier and to improve performances. A new methodology that uses a neural network (NN) and a wearable device are hereby proposed for this purpose. The NN uses kinematic parameters assessed by a wearable device with accelerometers and rate gyroscopes during a posturography protocol. The training of the NN was based on the Mahalanobis distance and was carried out on two groups of 30 elderly subjects with varying fall-risk Tinetti scores. The validation was done on two groups of 100 subjects with different fall-risk Tinetti scores and showed that, both in terms of specificity and sensitivity, the NN performed better than other classifiers (naive Bayes, Bayes net, multilayer perceptron, support vector machines, statistical classifiers). In particular, (i) the proposed NN methodology improved the specificity and sensitivity by a mean of 3% when compared to the statistical classifier based on the Mahalanobis distance (SCMD) described in Giansanti (2006 Physiol. Meas. 27 1081–90); (ii) the assessed specificity was 97%, the assessed sensitivity was 98% and the area under receiver operator characteristics was 0.965. (note)

  8. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2006-11-01

    Full Text Available Many biological processes are controlled by intricate networks of transcriptional regulators. With the development of microarray technology, transcriptional changes can be examined at the whole-genome level. However, such analysis often lacks information on the hierarchical relationship between components of a given system. Systemic acquired resistance (SAR is an inducible plant defense response involving a cascade of transcriptional events induced by salicylic acid through the transcription cofactor NPR1. To identify additional regulatory nodes in the SAR network, we performed microarray analysis on Arabidopsis plants expressing the NPR1-GR (glucocorticoid receptor fusion protein. Since nuclear translocation of NPR1-GR requires dexamethasone, we were able to control NPR1-dependent transcription and identify direct transcriptional targets of NPR1. We show that NPR1 directly upregulates the expression of eight WRKY transcription factor genes. This large family of 74 transcription factors has been implicated in various defense responses, but no specific WRKY factor has been placed in the SAR network. Identification of NPR1-regulated WRKY factors allowed us to perform in-depth genetic analysis on a small number of WRKY factors and test well-defined phenotypes of single and double mutants associated with NPR1. Among these WRKY factors we found both positive and negative regulators of SAR. This genomics-directed approach unambiguously positioned five WRKY factors in the complex transcriptional regulatory network of SAR. Our work not only discovered new transcription regulatory components in the signaling network of SAR but also demonstrated that functional studies of large gene families have to take into consideration sequence similarity as well as the expression patterns of the candidates.

  9. Data-based model and parameter evaluation in dynamic transcriptional regulatory networks.

    Science.gov (United States)

    Cavelier, German; Anastassiou, Dimitris

    2004-05-01

    Finding the causality and strength of connectivity in transcriptional regulatory networks from time-series data will provide a powerful tool for the analysis of cellular states. Presented here is the design of tools for the evaluation of the network's model structure and parameters. The most effective tools are found to be based on evolution strategies. We evaluate models of increasing complexity, from lumped, algebraic phenomenological models to Hill functions and thermodynamically derived functions. These last functions provide the free energies of binding of transcription factors to their operators, as well as cooperativity energies. Optimization results based on published experimental data from a synthetic network in Escherichia coli are presented. The free energies of binding and cooperativity found by our tools are in the same physiological ranges as those experimentally derived in the bacteriophage lambda system. We also use time-series data from high-density oligonucleotide microarrays of yeast meiotic expression patterns. The algorithm appropriately finds the parameters of pairs of regulated regulatory yeast genes, showing that for related genes an overall reasonable computation effort is sufficient to find the strength and causality of the connectivity of large numbers of them. Copyright 2004 Wiley-Liss, Inc.

  10. Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic.

    Science.gov (United States)

    Khan, Faiz M; Schmitz, Ulf; Nikolov, Svetoslav; Engelmann, David; Pützer, Brigitte M; Wolkenhauer, Olaf; Vera, Julio

    2014-01-01

    A decade of successful results indicates that systems biology is the appropriate approach to investigate the regulation of complex biochemical networks involving transcriptional and post-transcriptional regulations. It becomes mandatory when dealing with highly interconnected biochemical networks, composed of hundreds of compounds, or when networks are enriched in non-linear motifs like feedback and feedforward loops. An emerging dilemma is to conciliate models of massive networks and the adequate description of non-linear dynamics in a suitable modeling framework. Boolean networks are an ideal representation of massive networks that are humble in terms of computational complexity and data demand. However, they are inappropriate when dealing with nested feedback/feedforward loops, structural motifs common in biochemical networks. On the other hand, models of ordinary differential equations (ODEs) cope well with these loops, but they require enormous amounts of quantitative data for a full characterization of the model. Here we propose hybrid models, composed of ODE and logical sub-modules, as a strategy to handle large scale, non-linear biochemical networks that include transcriptional and post-transcriptional regulations. We illustrate the construction of this kind of models using as example a regulatory network centered on E2F1, a transcription factor involved in cancer. The hybrid modeling approach proposed is a good compromise between quantitative/qualitative accuracy and scalability when considering large biochemical networks with a small highly interconnected core, and module of transcriptionally regulated genes that are not part of critical regulatory loops. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions

    Science.gov (United States)

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-01

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  12. Inference of Transcription Regulatory Network in Low Phytic Acid Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Neelam Redekar

    2017-11-01

    Full Text Available A dominant loss of function mutation in myo-inositol phosphate synthase (MIPS gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified a set of putative candidate transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed dormancy. We evaluated the performance of our unsupervised network inference method by comparing the predicted regulatory network with published regulatory interactions in Arabidopsis. Some contrasting regulatory interactions were observed in low phytic acid mutants compared to non-mutant lines. These findings provide important hypotheses on expression regulation of myo-inositol metabolism and phytohormone signaling in developing low phytic acid soybeans. The computational pipeline used for unsupervised network learning in this study is provided as open source software and is freely available at https://lilabatvt.github.io/LPANetwork/.

  13. Methods of MicroRNA Promoter Prediction and Transcription Factor Mediated Regulatory Network

    OpenAIRE

    Zhao, Yuming; Wang, Fang; Chen, Su; Wan, Jun; Wang, Guohua

    2017-01-01

    MicroRNAs (miRNAs) are short (~22 nucleotides) noncoding RNAs and disseminated throughout the genome, either in the intergenic regions or in the intronic sequences of protein-coding genes. MiRNAs have been proved to play important roles in regulating gene expression. Hence, understanding the transcriptional mechanism of miRNA genes is a very critical step to uncover the whole regulatory network. A number of miRNA promoter prediction models have been proposed in the past decade. This review su...

  14. Inference of Transcriptional Network for Pluripotency in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Aburatani, S.

    2015-01-01

    In embryonic stem cells, various transcription factors (TFs) maintain pluripotency. To gain insights into the regulatory system controlling pluripotency, I inferred the regulatory relationships between the TFs expressed in ES cells. In this study, I applied a method based on structural equation modeling (SEM), combined with factor analysis, to 649 expression profiles of 19 TF genes measured in mouse Embryonic Stem Cells (ESCs). The factor analysis identified 19 TF genes that were regulated by several unmeasured factors. Since the known cell reprogramming TF genes (Pou5f1, Sox2 and Nanog) are regulated by different factors, each estimated factor is considered to be an input for signal transduction to control pluripotency in mouse ESCs. In the inferred network model, TF proteins were also arranged as unmeasured factors that control other TFs. The interpretation of the inferred network model revealed the regulatory mechanism for controlling pluripotency in ES cells.

  15. Virtual Mutagenesis of the Yeast Cyclins Genetic Network Reveals Complex Dynamics of Transcriptional Control Networks

    Czech Academy of Sciences Publication Activity Database

    Vohradská, E.; Vohradský, Jiří

    2011-01-01

    Roč. 6, č. 4 (2011), s. 1-9 E-ISSN 1932-6203 R&D Projects: GA ČR GA310/07/1009; GA ČR GAP302/11/0229 Institutional research plan: CEZ:AV0Z50200510 Keywords : REGULATORY NETWORKS * SACCHAROMYCES-CEREVISIAE * CELL-CYCLE Subject RIV: EE - Microbiology, Virology Impact factor: 4.092, year: 2011

  16. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  17. Neural stem cell transcriptional networks highlight genes essential for nervous system development.

    Science.gov (United States)

    Southall, Tony D; Brand, Andrea H

    2009-12-16

    Neural stem cells must strike a balance between self-renewal and multipotency, and differentiation. Identification of the transcriptional networks regulating stem cell division is an essential step in understanding how this balance is achieved. We have shown that the homeodomain transcription factor, Prospero, acts to repress self-renewal and promote differentiation. Among its targets are three neural stem cell transcription factors, Asense, Deadpan and Snail, of which Asense and Deadpan are repressed by Prospero. Here, we identify the targets of these three factors throughout the genome. We find a large overlap in their target genes, and indeed with the targets of Prospero, with 245 genomic loci bound by all factors. Many of the genes have been implicated in vertebrate stem cell self-renewal, suggesting that this core set of genes is crucial in the switch between self-renewal and differentiation. We also show that multiply bound loci are enriched for genes previously linked to nervous system phenotypes, thereby providing a shortcut to identifying genes important for nervous system development.

  18. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity.

    Science.gov (United States)

    Prát, Tomáš; Hajný, Jakub; Grunewald, Wim; Vasileva, Mina; Molnár, Gergely; Tejos, Ricardo; Schmid, Markus; Sauer, Michael; Friml, Jiří

    2018-01-01

    Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development.

  19. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity.

    Directory of Open Access Journals (Sweden)

    Tomáš Prát

    2018-01-01

    Full Text Available Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development.

  20. Transcription factor networks in B-cell differentiation link development to acute lymphoid leukemia.

    Science.gov (United States)

    Somasundaram, Rajesh; Prasad, Mahadesh A J; Ungerbäck, Jonas; Sigvardsson, Mikael

    2015-07-09

    B-lymphocyte development in the bone marrow is controlled by the coordinated action of transcription factors creating regulatory networks ensuring activation of the B-lymphoid program and silencing of alternative cell fates. This process is tightly connected to malignant transformation because B-lineage acute lymphoblastic leukemia cells display a pronounced block in differentiation resulting in the expansion of immature progenitor cells. Over the last few years, high-resolution analysis of genetic changes in leukemia has revealed that several key regulators of normal B-cell development, including IKZF1, TCF3, EBF1, and PAX5, are genetically altered in a large portion of the human B-lineage acute leukemias. This opens the possibility of directly linking the disrupted development as well as aberrant gene expression patterns in leukemic cells to molecular functions of defined transcription factors in normal cell differentiation. This review article focuses on the roles of transcription factors in early B-cell development and their involvement in the formation of human leukemia. © 2015 by The American Society of Hematology.

  1. A tripartite transcription factor network regulates primordial germ cell specification in mice.

    Science.gov (United States)

    Magnúsdóttir, Erna; Dietmann, Sabine; Murakami, Kazuhiro; Günesdogan, Ufuk; Tang, Fuchou; Bao, Siqin; Diamanti, Evangelia; Lao, Kaiqin; Gottgens, Berthold; Azim Surani, M

    2013-08-01

    Transitions in cell states are controlled by combinatorial actions of transcription factors. BLIMP1, the key regulator of primordial germ cell (PGC) specification, apparently acts together with PRDM14 and AP2γ. To investigate their individual and combinatorial functions, we first sought an in vitro system for transcriptional readouts and chromatin immunoprecipitation sequencing analysis. We then integrated this data with information from single-cell transcriptome analysis of normal and mutant PGCs. Here we show that BLIMP1 binds directly to repress somatic and cell proliferation genes. It also directly induces AP2γ, which together with PRDM14 initiates the PGC-specific fate. We determined the occupancy of critical genes by AP2γ-which, when computed altogether with those of BLIMP1 and PRDM14 (both individually and cooperatively), reveals a tripartite mutually interdependent transcriptional network for PGCs. We also demonstrate that, in principle, BLIMP1, AP2γ and PRDM14 are sufficient for PGC specification, and the unprecedented resetting of the epigenome towards a basal state.

  2. Transcriptional Network Analysis Reveals Drought Resistance Mechanisms of AP2/ERF Transgenic Rice

    Directory of Open Access Journals (Sweden)

    Hongryul Ahn

    2017-06-01

    Full Text Available This study was designed to investigate at the molecular level how a transgenic version of rice “Nipponbare” obtained a drought-resistant phenotype. Using multi-omics sequencing data, we compared wild-type rice (WT and a transgenic version (erf71 that had obtained a drought-resistant phenotype by overexpressing OsERF71, a member of the AP2/ERF transcription factor (TF family. A comprehensive bioinformatics analysis pipeline, including TF networks and a cascade tree, was developed for the analysis of multi-omics data. The results of the analysis showed that the presence of OsERF71 at the source of the network controlled global gene expression levels in a specific manner to make erf71 survive longer than WT. Our analysis of the time-series transcriptome data suggests that erf71 diverted more energy to survival-critical mechanisms related to translation, oxidative response, and DNA replication, while further suppressing energy-consuming mechanisms, such as photosynthesis. To support this hypothesis further, we measured the net photosynthesis level under physiological conditions, which confirmed the further suppression of photosynthesis in erf71. In summary, our work presents a comprehensive snapshot of transcriptional modification in transgenic rice and shows how this induced the plants to acquire a drought-resistant phenotype.

  3. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    Science.gov (United States)

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  4. Integrated genome-scale prediction of detrimental mutations in transcription networks.

    Directory of Open Access Journals (Sweden)

    Mirko Francesconi

    2011-05-01

    Full Text Available A central challenge in genetics is to understand when and why mutations alter the phenotype of an organism. The consequences of gene inhibition have been systematically studied and can be predicted reasonably well across a genome. However, many sequence variants important for disease and evolution may alter gene regulation rather than gene function. The consequences of altering a regulatory interaction (or "edge" rather than a gene (or "node" in a network have not been as extensively studied. Here we use an integrative analysis and evolutionary conservation to identify features that predict when the loss of a regulatory interaction is detrimental in the extensively mapped transcription network of budding yeast. Properties such as the strength of an interaction, location and context in a promoter, regulator and target gene importance, and the potential for compensation (redundancy associate to some extent with interaction importance. Combined, however, these features predict quite well whether the loss of a regulatory interaction is detrimental across many promoters and for many different transcription factors. Thus, despite the potential for regulatory diversity, common principles can be used to understand and predict when changes in regulation are most harmful to an organism.

  5. Transcriptional regulatory networks underlying the reprogramming of spermatogonial stem cells to multipotent stem cells.

    Science.gov (United States)

    Jeong, Hoe-Su; Bhin, Jinhyuk; Joon Kim, Hyung; Hwang, Daehee; Ryul Lee, Dong; Kim, Kye-Seong

    2017-04-14

    Spermatogonial stem cells (SSCs) are germline stem cells located along the basement membrane of seminiferous tubules in testes. Recently, SSCs were shown to be reprogrammed into multipotent SSCs (mSSCs). However, both the key factors and biological networks underlying this reprogramming remain elusive. Here, we present transcriptional regulatory networks (TRNs) that control cellular processes related to the SSC-to-mSSC reprogramming. Previously, we established intermediate SSCs (iSSCs) undergoing the transition to mSSCs and generated gene expression profiles of SSCs, iSSCs and mSSCs. By comparing these profiles, we identified 2643 genes that were up-regulated during the reprogramming process and 15 key transcription factors (TFs) that regulate these genes. Using the TF-target relationships, we developed TRNs describing how these TFs regulate three pluripotency-related processes (cell proliferation, stem cell maintenance and epigenetic regulation) during the reprogramming. The TRNs showed that 4 of the 15 TFs (Oct4/Pou5f1, Cux1, Zfp143 and E2f4) regulated cell proliferation during the early stages of reprogramming, whereas 11 TFs (Oct4/Pou5f1, Foxm1, Cux1, Zfp143, Trp53, E2f4, Esrrb, Nfyb, Nanog, Sox2 and Klf4) regulated the three pluripotency-related processes during the late stages of reprogramming. Our TRNs provide a model for the temporally coordinated transcriptional regulation of pluripotency-related processes during the SSC-to-mSSC reprogramming, which can be further tested in detailed functional studies.

  6. A central integrator of transcription networks in plant stress and energy signalling.

    Science.gov (United States)

    Baena-González, Elena; Rolland, Filip; Thevelein, Johan M; Sheen, Jen

    2007-08-23

    Photosynthetic plants are the principal solar energy converter sustaining life on Earth. Despite its fundamental importance, little is known about how plants sense and adapt to darkness in the daily light-dark cycle, or how they adapt to unpredictable environmental stresses that compromise photosynthesis and respiration and deplete energy supplies. Current models emphasize diverse stress perception and signalling mechanisms. Using a combination of cellular and systems screens, we show here that the evolutionarily conserved Arabidopsis thaliana protein kinases, KIN10 and KIN11 (also known as AKIN10/At3g01090 and AKIN11/At3g29160, respectively), control convergent reprogramming of transcription in response to seemingly unrelated darkness, sugar and stress conditions. Sensing and signalling deprivation of sugar and energy, KIN10 targets a remarkably broad array of genes that orchestrate transcription networks, promote catabolism and suppress anabolism. Specific bZIP transcription factors partially mediate primary KIN10 signalling. Transgenic KIN10 overexpression confers enhanced starvation tolerance and lifespan extension, and alters architecture and developmental transitions. Significantly, double kin10 kin11 deficiency abrogates the transcriptional switch in darkness and stress signalling, and impairs starch mobilization at night and growth. These studies uncover surprisingly pivotal roles of KIN10/11 in linking stress, sugar and developmental signals to globally regulate plant metabolism, energy balance, growth and survival. In contrast to the prevailing view that sucrose activates plant SnRK1s (Snf1-related protein kinases), our functional analyses of Arabidopsis KIN10/11 provide compelling evidence that SnRK1s are inactivated by sugars and share central roles with the orthologous yeast Snf1 and mammalian AMPK in energy signalling.

  7. Comparison of two neural network classifiers in the differential diagnosis of essential tremor and Parkinson's disease by 123I-FP-CIT brain SPECT

    International Nuclear Information System (INIS)

    Palumbo, Barbara; Fravolini, Mario Luca; Nuvoli, Susanna; Spanu, Angela; Madeddu, Giuseppe; Paulus, Kai Stephan; Schillaci, Orazio

    2010-01-01

    To contribute to the differentiation of Parkinson's disease (PD) and essential tremor (ET), we compared two different artificial neural network classifiers using 123 I-FP-CIT SPECT data, a probabilistic neural network (PNN) and a classification tree (ClT). 123 I-FP-CIT brain SPECT with semiquantitative analysis was performed in 216 patients: 89 with ET, 64 with PD with a Hoehn and Yahr (H and Y) score of ≤2 (early PD), and 63 with PD with a H and Y score of ≥2.5 (advanced PD). For each of the 1,000 experiments carried out, 108 patients were randomly selected as the PNN training set, while the remaining 108 validated the trained PNN, and the percentage of the validation data correctly classified in the three groups of patients was computed. The expected performance of an ''average performance PNN'' was evaluated. In analogy, for ClT 1,000 classification trees with similar structures were generated. For PNN, the probability of correct classification in patients with early PD was 81.9±8.1% (mean±SD), in patients with advanced PD 78.9±8.1%, and in ET patients 96.6±2.6%. For ClT, the first decision rule gave a mean value for the putamen of 5.99, which resulted in a probability of correct classification of 93.5±3.4%. This means that patients with putamen values >5.99 were classified as having ET, while patients with putamen values <5.99 were classified as having PD. Furthermore, if the caudate nucleus value was higher than 6.97 patients were classified as having early PD (probability 69.8±5.3%), and if the value was <6.97 patients were classified as having advanced PD (probability 88.1%±8.8%). These results confirm that PNN achieved valid classification results. Furthermore, ClT provided reliable cut-off values able to differentiate ET and PD of different severities. (orig.)

  8. Transcription Factor and lncRNA Regulatory Networks Identify Key Elements in Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Dan Li

    2018-01-01

    Full Text Available Lung cancer is the second most commonly diagnosed carcinoma and is the leading cause of cancer death. Although significant progress has been made towards its understanding and treatment, unraveling the complexities of lung cancer is still hampered by a lack of comprehensive knowledge on the mechanisms underlying the disease. High-throughput and multidimensional genomic data have shed new light on cancer biology. In this study, we developed a network-based approach integrating somatic mutations, the transcriptome, DNA methylation, and protein-DNA interactions to reveal the key regulators in lung adenocarcinoma (LUAD. By combining Bayesian network analysis with tissue-specific transcription factor (TF and targeted gene interactions, we inferred 15 disease-related core regulatory networks in co-expression gene modules associated with LUAD. Through target gene set enrichment analysis, we identified a set of key TFs, including known cancer genes that potentially regulate the disease networks. These TFs were significantly enriched in multiple cancer-related pathways. Specifically, our results suggest that hepatitis viruses may contribute to lung carcinogenesis, highlighting the need for further investigations into the roles that viruses play in treating lung cancer. Additionally, 13 putative regulatory long non-coding RNAs (lncRNAs, including three that are known to be associated with lung cancer, and nine novel lncRNAs were revealed by our study. These lncRNAs and their target genes exhibited high interaction potentials and demonstrated significant expression correlations between normal lung and LUAD tissues. We further extended our study to include 16 solid-tissue tumor types and determined that the majority of these lncRNAs have putative regulatory roles in multiple cancers, with a few showing lung-cancer specific regulations. Our study provides a comprehensive investigation of transcription factor and lncRNA regulation in the context of LUAD

  9. Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory

    Science.gov (United States)

    Sayyed-Ahmad, Abdallah; Tuncay, Kagan; Ortoleva, Peter J

    2007-01-01

    Background Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs) is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF) thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. Results Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. Conclusion Multiplex time series data can be used for the construction of the network of

  10. Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images

    International Nuclear Information System (INIS)

    Sahiner, B.; Chan, H.P.; Petrick, N.; Helvie, M.A.; Adler, D.D.; Goodsitt, M.M.; Wei, D.

    1996-01-01

    The authors investigated the classification of regions of interest (ROI's) on mammograms as either mass or normal tissue using a convolution neural network (CNN). A CNN is a back-propagation neural network with two-dimensional (2-D) weight kernels that operate on images. A generalized, fast and stable implementation of the CNN was developed. The input images to the CNN were obtained form the ROI's using two techniques. The first technique employed averaging and subsampling. The second technique employed texture feature extraction methods applied to small subregions inside the ROI. Features computed over different subregions were arranged as texture images, which were subsequently used as CNN inputs. The effects of CNN architecture and texture feature parameters on classification accuracy were studied. Receiver operating characteristic (ROC) methodology was used to evaluate the classification accuracy. A data set consisting of 168 ROI's containing biopsy-proven masses and 504 ROI's containing normal breast tissue was extracted from 168 mammograms by radiologists experienced in mammography. This data set was used for training and testing the CNN. With the best combination of CNN architecture and texture feature parameters, the area under the test ROC curve reached 0.87, which corresponded to a true-positive fraction of 90% at a false positive fraction of 31%. The results demonstrate the feasibility of using a CNN for classification of masses and normal tissue on mammograms

  11. OpaR controls a network of downstream transcription factors in Vibrio parahaemolyticus BB22OP.

    Directory of Open Access Journals (Sweden)

    Alison Kernell Burke

    Full Text Available Vibrio parahaemolyticus is an emerging world-wide human pathogen that is associated with food-borne gastroenteritis when raw or undercooked seafood is consumed. Expression of virulence factors in this organism is modulated by the phenomenon known as quorum sensing, which permits differential gene regulation at low versus high cell density. The master regulator of quorum sensing in V. parahaemolyticus is OpaR. OpaR not only controls virulence factor gene expression, but also the colony and cellular morphology associated with growth on a surface and biofilm formation. Whole transcriptome Next Generation sequencing (RNA-Seq was utilized to determine the OpaR regulon by comparing strains BB22OP (opaR+, LM5312 and BB22TR (∆opaR1, LM5674. This work, using the published V. parahaemolyticus BB22OP genome sequence, confirms and expands upon a previous microarray analysis for these two strains that used an Affymetrix GeneChip designed from the closely related V. parahaemolyticus RIMD2210633 genome sequence. Overall there was excellent correlation between the microarray and RNA-Seq data. Eleven transcription factors under OpaR control were identified by both methods and further confirmed by quantitative reverse transcription PCR (qRT-PCR analysis. Nine of these transcription factors were demonstrated to be direct OpaR targets via in vitro electrophoretic mobility shift assays with purified hexahistidine-tagged OpaR. Identification of the direct and indirect targets of OpaR, including small RNAs, will enable the construction of a network map of regulatory interactions important for the switch between the nonpathogenic and pathogenic states.

  12. Novel Strategy for Discrimination of Transcription Factor Binding Motifs Employing Mathematical Neural Network

    Science.gov (United States)

    Sugimoto, Asuka; Sumi, Takuya; Kang, Jiyoung; Tateno, Masaru

    2017-07-01

    Recognition in biological macromolecular systems, such as DNA-protein recognition, is one of the most crucial problems to solve toward understanding the fundamental mechanisms of various biological processes. Since specific base sequences of genome DNA are discriminated by proteins, such as transcription factors (TFs), finding TF binding motifs (TFBMs) in whole genome DNA sequences is currently a central issue in interdisciplinary biophysical and information sciences. In the present study, a novel strategy to create a discriminant function for discrimination of TFBMs by constituting mathematical neural networks (NNs) is proposed, together with a method to determine the boundary of signals (TFBMs) and noise in the NN-score (output) space. This analysis also leads to the mathematical limitation of discrimination in the recognition of features representing TFBMs, in an information geometrical manifold. Thus, the present strategy enables the identification of the whole space of TFBMs, right up to the noise boundary.

  13. Structure, function and networks of transcription factors involved in abiotic stress responses

    DEFF Research Database (Denmark)

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh

    2013-01-01

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes...... and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based...... disorder (ID), referring to their lack of fixed tertiary structures. ID is now an emerging topic in plant science. Furthermore, the importance of the ubiquitin-proteasome protein degradation systems and modification by sumoylation is also apparent from the interactomes. Therefore; TF interaction partners...

  14. Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock.

    Science.gov (United States)

    Park, James; Zhu, Haisun; O'Sullivan, Sean; Ogunnaike, Babatunde A; Weaver, David R; Schwaber, James S; Vadigepalli, Rajanikanth

    2016-01-01

    Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN). Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies toward understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  15. Single-cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks involved In the Central Circadian Clock

    Directory of Open Access Journals (Sweden)

    James Park

    2016-10-01

    Full Text Available Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN. Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies towards understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  16. Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.; Alm, EricJ.; Gelfand, Mikhail S.

    2005-09-01

    result, we demonstrate considerable interconnection between various nitrogen-oxides-responsive regulatory systems for the denitrification and NO detoxification genes and evolutionary plasticity of this transcriptional network.

  17. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    denitrification genes. As the result, we demonstrate considerable interconnection between various nitrogen-oxides-responsive regulatory systems for the denitrification and NO detoxification genes and evolutionary plasticity of this transcriptional network.

  18. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  19. Nfat/calcineurin signaling promotes oligodendrocyte differentiation and myelination by transcription factor network tuning.

    Science.gov (United States)

    Weider, Matthias; Starost, Laura Julia; Groll, Katharina; Küspert, Melanie; Sock, Elisabeth; Wedel, Miriam; Fröb, Franziska; Schmitt, Christian; Baroti, Tina; Hartwig, Anna C; Hillgärtner, Simone; Piefke, Sandra; Fadler, Tanja; Ehrlich, Marc; Ehlert, Corinna; Stehling, Martin; Albrecht, Stefanie; Jabali, Ammar; Schöler, Hans R; Winkler, Jürgen; Kuhlmann, Tanja; Wegner, Michael

    2018-03-02

    Oligodendrocytes produce myelin for rapid transmission and saltatory conduction of action potentials in the vertebrate central nervous system. Activation of the myelination program requires several transcription factors including Sox10, Olig2, and Nkx2.2. Functional interactions among them are poorly understood and important components of the regulatory network are still unknown. Here, we identify Nfat proteins as Sox10 targets and regulators of oligodendroglial differentiation in rodents and humans. Overall levels and nuclear fraction increase during differentiation. Inhibition of Nfat activity impedes oligodendrocyte differentiation in vitro and in vivo. On a molecular level, Nfat proteins cooperate with Sox10 to relieve reciprocal repression of Olig2 and Nkx2.2 as precondition for oligodendroglial differentiation and myelination. As Nfat activity depends on calcium-dependent activation of calcineurin signaling, regulatory network and oligodendroglial differentiation become sensitive to calcium signals. NFAT proteins are also detected in human oligodendrocytes, downregulated in active multiple sclerosis lesions and thus likely relevant in demyelinating disease.

  20. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors.

    Science.gov (United States)

    Zandi, Sasan; Mansson, Robert; Tsapogas, Panagiotis; Zetterblad, Jenny; Bryder, David; Sigvardsson, Mikael

    2008-09-01

    Development of B-lymphoid cells in the bone marrow is a process under strict control of a hierarchy of transcription factors. To understand the development of a B-lymphoid-restricted functional network of transcription factors, we have investigated the cell autonomous role of the transcription factor EBF1 in early B cell development. This revealed that even though transplanted EBF1-deficient fetal liver cells were able to generate common lymphoid progenitors (CLPs) as well as B220(+)CD43(+)AA4.1(+) candidate precursor B cells, none of these populations showed signs of B lineage priming. The isolated CLPs were able to generate T lymphocytes in vitro supporting the idea that the phenotype of EBF1-deficient mice is restricted to the development of the B lineage. Furthermore, EBF deficient CLPs displayed a reduction in Ig H chain recombination as compared with their wild-type counterpart and essentially lacked transcription of B-lineage-associated genes. Among the genes displaying reduced expression in the EBF1 deficient CLPs were the transcription factors Pax5, Pou2af1 (OcaB), and FoxO1 that all appear to be direct genetic targets for EBF1 because their promoters contained functional binding sites for this factor. This leads us to suggest that EBF1 regulates a transcription factor network crucial for B lineage commitment.

  1. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators.

    Science.gov (United States)

    Malitsky, Sergey; Blum, Eyal; Less, Hadar; Venger, Ilya; Elbaz, Moshe; Morin, Shai; Eshed, Yuval; Aharoni, Asaph

    2008-12-01

    In this study, transcriptomics and metabolomics data were integrated in order to examine the regulation of glucosinolate (GS) biosynthesis in Arabidopsis (Arabidopsis thaliana) and its interface with pathways of primary metabolism. Our genetic material for analyses were transgenic plants overexpressing members of two clades of genes (ALTERED TRYPTOPHAN REGULATION1 [ATR1]-like and MYB28-like) that regulate the aliphatic and indole GS biosynthetic pathways (AGs and IGs, respectively). We show that activity of these regulators is not restricted to the metabolic space surrounding GS biosynthesis but is tightly linked to more distal metabolic networks of primary metabolism. This suggests that with similarity to the regulators we have investigated here, other factors controlling pathways of secondary metabolism might also control core pathways of central metabolism. The relatively broad view of transcripts and metabolites altered in transgenic plants overexpressing the different factors underlined novel links of GS metabolism to additional metabolic pathways, including those of jasmonic acid, folate, benzoic acid, and various phenylpropanoids. It also revealed transcriptional and metabolic hubs in the "distal" network of metabolic pathways supplying precursors to GS biosynthesis and that overexpression of the ATR1-like clade genes has a much broader effect on the metabolism of indolic compounds than described previously. While the reciprocal, negative cross talk between the methionine and tryptophan pathways that generate GSs in Arabidopsis has been suggested previously, we now show that it is not restricted to AGs and IGs but includes additional metabolites, such as the phytoalexin camalexin. Combining the profiling data of transgenic lines with gene expression correlation analysis allowed us to propose a model of how the balance in the metabolic network is maintained by the GS biosynthesis regulators. It appears that ATR1/MYB34 is an important mediator between the gene

  2. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening.

    Science.gov (United States)

    Kuang, Jian-Fei; Chen, Jian-Ye; Liu, Xun-Cheng; Han, Yan-Chao; Xiao, Yun-Yi; Shan, Wei; Tang, Yang; Wu, Ke-Qiang; He, Jun-Xian; Lu, Wang-Jin

    2017-04-01

    Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Comparison of Two Classifiers; K-Nearest Neighbor and Artificial Neural Network, for Fault Diagnosis on a Main Engine Journal-Bearing

    Directory of Open Access Journals (Sweden)

    A. Moosavian

    2013-01-01

    Full Text Available Vibration analysis is an accepted method in condition monitoring of machines, since it can provide useful and reliable information about machine working condition. This paper surveys a new scheme for fault diagnosis of main journal-bearings of internal combustion (IC engine based on power spectral density (PSD technique and two classifiers, namely, K-nearest neighbor (KNN and artificial neural network (ANN. Vibration signals for three different conditions of journal-bearing; normal, with oil starvation condition and extreme wear fault were acquired from an IC engine. PSD was applied to process the vibration signals. Thirty features were extracted from the PSD values of signals as a feature source for fault diagnosis. KNN and ANN were trained by training data set and then used as diagnostic classifiers. Variable K value and hidden neuron count (N were used in the range of 1 to 20, with a step size of 1 for KNN and ANN to gain the best classification results. The roles of PSD, KNN and ANN techniques were studied. From the results, it is shown that the performance of ANN is better than KNN. The experimental results dèmonstrate that the proposed diagnostic method can reliably separate different fault conditions in main journal-bearings of IC engine.

  4. Gene Networks in the Wild: Identifying Transcriptional Modules that Mediate Coral Resistance to Experimental Heat Stress.

    Science.gov (United States)

    Rose, Noah H; Seneca, Francois O; Palumbi, Stephen R

    2015-12-28

    Organisms respond to environmental variation partly through changes in gene expression, which underlie both homeostatic and acclimatory responses to environmental stress. In some cases, so many genes change in expression in response to different influences that understanding expression patterns for all these individual genes becomes difficult. To reduce this problem, we use a systems genetics approach to show that variation in the expression of thousands of genes of reef-building corals can be explained as variation in the expression of a small number of coexpressed "modules." Modules were often enriched for specific cellular functions and varied predictably among individuals, experimental treatments, and physiological state. We describe two transcriptional modules for which expression levels immediately after heat stress predict bleaching a day later. One of these early "bleaching modules" is enriched for sequence-specific DNA-binding proteins, particularly E26 transformation-specific (ETS)-family transcription factors. The other module is enriched for extracellular matrix proteins. These classes of bleaching response genes are clear in the modular gene expression analysis we conduct but are much more difficult to discern in single gene analyses. Furthermore, the ETS-family module shows repeated differences in expression among coral colonies grown in the same common garden environment, suggesting a heritable genetic or epigenetic basis for these expression polymorphisms. This finding suggests that these corals harbor high levels of gene-network variation, which could facilitate rapid evolution in the face of environmental change. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Cropping Pattern Detection and Change Analysis in Central Luzon, Philippines Using Multi-Temporal MODIS Imagery and Artificial Neural Network Classifier

    Science.gov (United States)

    dela Torre, D. M.; Perez, G. J. P.

    2016-12-01

    Cropping practices in the Philippines has been intensifying with greater demand for food and agricultural supplies in view of an increasing population and advanced technologies for farming. This has not been monitored regularly using traditional methods but alternative methods using remote sensing has been promising yet underutilized. This study employed multi-temporal data from MODIS and neural network classifier to map annual land use in agricultural areas from 2001-2014 in Central Luzon, the primary rice growing area of the Philippines. Land use statistics derived from these maps were compared with historical El Nino events to examine how land area is affected by drought events. Fourteen maps of agricultural land use was produced, with the primary classes being single-cropping, double-cropping and perennial crops with secondary classes of forests, urban, bare, water and other classes. Primary classes were produced from the neural network classifier while secondary classes were derived from NDVI threshold masks. The overall accuracy for the 2014 map was 62.05% and a kappa statistic of 0.45. 155.56% increase in single-cropping systems from 2001 to 2014 was observed while double cropping systems decreased by 14.83%. Perennials increased by 76.21% while built-up areas decreased by 12.22% within the 14-year interval. There are several sources of error including mixed-pixels, scale-conversion problems and limited ground reference data. An analysis including El Niño events in 2004 and 2010 demonstrated that marginally irrigated areas that usually planted twice in a year resorted to single cropping, indicating that scarcity of water limited the intensification allowable in the area. Findings from this study can be used to predict future use of agricultural land in the country and also examine how farmlands have responded to climatic factors and stressors.

  6. Helicase-like transcription factor (Hltf regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis.

    Directory of Open Access Journals (Sweden)

    Rebecca A Helmer

    Full Text Available HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05 - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf's regulation of the G2/M transition (p=9.726E(-15 of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2 and lysyl (Plod2 collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3 for collagen trimerization, and lysyl oxidase (Loxl2 for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and

  7. Mapping and Dynamics of Regulatory DNA and Transcription Factor Networks in A. thaliana

    Directory of Open Access Journals (Sweden)

    Alessandra M. Sullivan

    2014-09-01

    Full Text Available Our understanding of gene regulation in plants is constrained by our limited knowledge of plant cis-regulatory DNA and its dynamics. We mapped DNase I hypersensitive sites (DHSs in A. thaliana seedlings and used genomic footprinting to delineate ∼700,000 sites of in vivo transcription factor (TF occupancy at nucleotide resolution. We show that variation associated with 72 diverse quantitative phenotypes localizes within DHSs. TF footprints encode an extensive cis-regulatory lexicon subject to recent evolutionary pressures, and widespread TF binding within exons may have shaped codon usage patterns. The architecture of A. thaliana TF regulatory networks is strikingly similar to that of animals in spite of diverged regulatory repertoires. We analyzed regulatory landscape dynamics during heat shock and photomorphogenesis, disclosing thousands of environmentally sensitive elements and enabling mapping of key TF regulatory circuits underlying these fundamental responses. Our results provide an extensive resource for the study of A. thaliana gene regulation and functional biology.

  8. Lineage-specific transcription factors and the evolution of gene regulatory networks.

    Science.gov (United States)

    Nowick, Katja; Stubbs, Lisa

    2010-01-01

    Nature is replete with examples of diverse cell types, tissues and body plans, forming very different creatures from genomes with similar gene complements. However, while the genes and the structures of proteins they encode can be highly conserved, the production of those proteins in specific cell types and at specific developmental time points might differ considerably between species. A full understanding of the factors that orchestrate gene expression will be essential to fully understand evolutionary variety. Transcription factor (TF) proteins, which form gene regulatory networks (GRNs) to act in cooperative or competitive partnerships to regulate gene expression, are key components of these unique regulatory programs. Although many TFs are conserved in structure and function, certain classes of TFs display extensive levels of species diversity. In this review, we highlight families of TFs that have expanded through gene duplication events to create species-unique repertoires in different evolutionary lineages. We discuss how the hierarchical structures of GRNs allow for flexible small to large-scale phenotypic changes. We survey evidence that explains how newly evolved TFs may be integrated into an existing GRN and how molecular changes in TFs might impact the GRNs. Finally, we review examples of traits that evolved due to lineage-specific TFs and species differences in GRNs.

  9. A quantitative proteomics approach identifies ETV6 and IKZF1 as new regulators of an ERG-driven transcriptional network.

    Science.gov (United States)

    Unnikrishnan, Ashwin; Guan, Yi F; Huang, Yizhou; Beck, Dominik; Thoms, Julie A I; Peirs, Sofie; Knezevic, Kathy; Ma, Shiyong; de Walle, Inge V; de Jong, Ineke; Ali, Zara; Zhong, Ling; Raftery, Mark J; Taghon, Tom; Larsson, Jonas; MacKenzie, Karen L; Van Vlierberghe, Pieter; Wong, Jason W H; Pimanda, John E

    2016-12-15

    Aberrant stem cell-like gene regulatory networks are a feature of leukaemogenesis. The ETS-related gene (ERG), an important regulator of normal haematopoiesis, is also highly expressed in T-ALL and acute myeloid leukaemia (AML). However, the transcriptional regulation of ERG in leukaemic cells remains poorly understood. In order to discover transcriptional regulators of ERG, we employed a quantitative mass spectrometry-based method to identify factors binding the 321 bp ERG +85 stem cell enhancer region in MOLT-4 T-ALL and KG-1 AML cells. Using this approach, we identified a number of known binders of the +85 enhancer in leukaemic cells along with previously unknown binders, including ETV6 and IKZF1. We confirmed that ETV6 and IKZF1 were also bound at the +85 enhancer in both leukaemic cells and in healthy human CD34 + haematopoietic stem and progenitor cells. Knockdown experiments confirmed that ETV6 and IKZF1 are transcriptional regulators not just of ERG, but also of a number of genes regulated by a densely interconnected network of seven transcription factors. At last, we show that ETV6 and IKZF1 expression levels are positively correlated with expression of a number of heptad genes in AML and high expression of all nine genes confers poorer overall prognosis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia

    OpenAIRE

    Palomero, Teresa; Odom, Duncan T.; O'Neil, Jennifer; Ferrando, Adolfo A.; Margolin, Adam; Neuberg, Donna S.; Winter, Stuart S.; Larson, Richard S.; Li, Wei; Liu, X. Shirley; Young, Richard A.; Look, A. Thomas

    2006-01-01

    Aberrant expression of 1 or more transcription factor oncogenes is a critical component of the molecular pathogenesis of human T-cell acute lymphoblastic leukemia (T-ALL); however, oncogenic transcriptional programs downstream of T-ALL oncogenes are mostly unknown. TAL1/SCL is a basic helix-loop-helix (bHLH) transcription factor oncogene aberrantly expressed in 60% of human T-ALLs. We used chromatin immunoprecipitation (ChIP) on chip to identify 71 direct transcriptional targets of TAL1/SCL. ...

  11. Long noncoding RNAs as a novel component of the Myc transcriptional network

    NARCIS (Netherlands)

    Winkle, Melanie; van den Berg, Anke; Tayari, Masoumeh; Sietzema, Jantine; Terpstra, Martijn; Kortman, Gertrud; de Jong, Debora; Visser, Lydia; Diepstra, Arjan; Kok, Klaas; Kluiver, Joost

    Myc is a well-known transcription factor with important roles in cell cycle, apoptosis, and cellular transformation. Long noncoding RNAs (lncRNAs) have recently emerged as an important class of regulatory RNAs. Here, we show that lncRNAs are a main component of the Myc-regulated transcriptional

  12. An LHX1-Regulated Transcriptional Network Controls Sleep/Wake Coupling and Thermal Resistance of the Central Circadian Clockworks.

    Science.gov (United States)

    Bedont, Joseph L; LeGates, Tara A; Buhr, Ethan; Bathini, Abhijith; Ling, Jonathan P; Bell, Benjamin; Wu, Mark N; Wong, Philip C; Van Gelder, Russell N; Mongrain, Valerie; Hattar, Samer; Blackshaw, Seth

    2017-01-09

    The suprachiasmatic nucleus (SCN) is the central circadian clock in mammals. It is entrained by light but resistant to temperature shifts that entrain peripheral clocks [1-5]. The SCN expresses many functionally important neuropeptides, including vasoactive intestinal peptide (VIP), which drives light entrainment, synchrony, and amplitude of SCN cellular clocks and organizes circadian behavior [5-16]. The transcription factor LHX1 drives SCN Vip expression, and cellular desynchrony in Lhx1-deficient SCN largely results from Vip loss [17, 18]. LHX1 regulates many genes other than Vip, yet activity rhythms in Lhx1-deficient mice are similar to Vip -/- mice under light-dark cycles and only somewhat worse in constant conditions. We suspected that LHX1 targets other than Vip have circadian functions overlooked in previous studies. In this study, we compared circadian sleep and temperature rhythms of Lhx1- and Vip-deficient mice and found loss of acute light control of sleep in Lhx1 but not Vip mutants. We also found loss of circadian resistance to fever in Lhx1 but not Vip mice, which was partially recapitulated by heat application to cultured Lhx1-deficient SCN. Having identified VIP-independent functions of LHX1, we mapped the VIP-independent transcriptional network downstream of LHX1 and a largely separable VIP-dependent transcriptional network. The VIP-independent network does not affect core clock amplitude and synchrony, unlike the VIP-dependent network. These studies identify Lhx1 as the first gene required for temperature resistance of the SCN clockworks and demonstrate that acute light control of sleep is routed through the SCN and its immediate output regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network.

    Science.gov (United States)

    Ninkovic, Jovica; Steiner-Mezzadri, Andrea; Jawerka, Melanie; Akinci, Umut; Masserdotti, Giacomo; Petricca, Stefania; Fischer, Judith; von Holst, Alexander; Beckers, Johanes; Lie, Chichung D; Petrik, David; Miller, Erik; Tang, Jiong; Wu, Jiang; Lefebvre, Veronique; Demmers, Jeroen; Eisch, Amelia; Metzger, Daniel; Crabtree, Gerald; Irmler, Martin; Poot, Raymond; Götz, Magdalena

    2013-10-03

    Numerous transcriptional regulators of neurogenesis have been identified in the developing and adult brain, but how neurogenic fate is programmed at the epigenetic level remains poorly defined. Here, we report that the transcription factor Pax6 directly interacts with the Brg1-containing BAF complex in adult neural progenitors. Deletion of either Brg1 or Pax6 in the subependymal zone (SEZ) causes the progeny of adult neural stem cells to convert to the ependymal lineage within the SEZ while migrating neuroblasts convert to different glial lineages en route to or in the olfactory bulb (OB). Genome-wide analyses reveal that the majority of genes downregulated in the Brg1 null SEZ and OB contain Pax6 binding sites and are also downregulated in Pax6 null SEZ and OB. Downstream of the Pax6-BAF complex, we find that Sox11, Nfib, and Pou3f4 form a transcriptional cross-regulatory network that drives neurogenesis and can convert postnatal glia into neurons. Taken together, elements of our work identify a tripartite effector network activated by Pax6-BAF that programs neuronal fate. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    Directory of Open Access Journals (Sweden)

    Yeh Cheng-Yu

    2009-12-01

    Full Text Available Abstract Background Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. Results To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2 regulated by RUNX1 and STAT3 is correlated to the pathological stage

  15. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.

    Science.gov (United States)

    Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra

    2018-03-01

    The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2007-06-01

    Full Text Available Abstract Background Glucose is the preferred carbon and energy source for Escherichia coli. A complex regulatory network coordinates gene expression, transport and enzyme activities in response to the presence of this sugar. To determine the extent of the cellular response to glucose, we applied an approach combining global transcriptome and regulatory network analyses. Results Transcriptome data from isogenic wild type and crp- strains grown in Luria-Bertani medium (LB or LB + 4 g/L glucose (LB+G were analyzed to identify differentially transcribed genes. We detected 180 and 200 genes displaying increased and reduced relative transcript levels in the presence of glucose, respectively. The observed expression pattern in LB was consistent with a gluconeogenic metabolic state including active transport and interconversion of small molecules and macromolecules, induction of protease-encoding genes and a partial heat shock response. In LB+G, catabolic repression was detected for transport and metabolic interconversion activities. We also detected an increased capacity for de novo synthesis of nucleotides, amino acids and proteins. Cluster analysis of a subset of genes revealed that CRP mediates catabolite repression for most of the genes displaying reduced transcript levels in LB+G, whereas Fis participates in the upregulation of genes under this condition. An analysis of the regulatory network, in terms of topological functional units, revealed 8 interconnected modules which again exposed the importance of Fis and CRP as directly responsible for the coordinated response of the cell. This effect was also seen with other not extensively connected transcription factors such as FruR and PdhR, which showed a consistent response considering media composition. Conclusion This work allowed the identification of eight interconnected regulatory network modules that includes CRP, Fis and other transcriptional factors that respond directly or indirectly to the

  17. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate.

    Science.gov (United States)

    Lin, Yin C; Jhunjhunwala, Suchit; Benner, Christopher; Heinz, Sven; Welinder, Eva; Mansson, Robert; Sigvardsson, Mikael; Hagman, James; Espinoza, Celso A; Dutkowski, Janusz; Ideker, Trey; Glass, Christopher K; Murre, Cornelis

    2010-07-01

    It is now established that the transcription factors E2A, EBF1 and Foxo1 have critical roles in B cell development. Here we show that E2A and EBF1 bound regulatory elements present in the Foxo1 locus. E2A and EBF1, as well as E2A and Foxo1, in turn, were wired together by a vast spectrum of cis-regulatory sequences. These associations were dynamic during developmental progression. Occupancy by the E2A isoform E47 directly resulted in greater abundance, as well as a pattern of monomethylation of histone H3 at lysine 4 (H3K4) across putative enhancer regions. Finally, we divided the pro-B cell epigenome into clusters of loci with occupancy by E2A, EBF and Foxo1. From this analysis we constructed a global network consisting of transcriptional regulators, signaling and survival factors that we propose orchestrates B cell fate.

  18. Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression networks.

    Directory of Open Access Journals (Sweden)

    Nicholas J Hudson

    Full Text Available BACKGROUND: Despite modern technologies and novel computational approaches, decoding causal transcriptional regulation remains challenging. This is particularly true for less well studied organisms and when only gene expression data is available. In muscle a small number of well characterised transcription factors are proposed to regulate development. Therefore, muscle appears to be a tractable system for proposing new computational approaches. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a simple algorithm that asks "which transcriptional regulator has the highest average absolute co-expression correlation to the genes in a co-expression module?" It correctly infers a number of known causal regulators of fundamental biological processes, including cell cycle activity (E2F1, glycolysis (HLF, mitochondrial transcription (TFB2M, adipogenesis (PIAS1, neuronal development (TLX3, immune function (IRF1 and vasculogenesis (SOX17, within a skeletal muscle context. However, none of the canonical pro-myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6 and MEF2C were linked to muscle structural gene expression modules. Co-expression values were computed using developing bovine muscle from 60 days post conception (early foetal to 30 months post natal (adulthood for two breeds of cattle, in addition to a nutritional comparison with a third breed. A number of transcriptional landscapes were constructed and integrated into an always correlated landscape. One notable feature was a 'metabolic axis' formed from glycolysis genes at one end, nuclear-encoded mitochondrial protein genes at the other, and centrally tethered by mitochondrially-encoded mitochondrial protein genes. CONCLUSIONS/SIGNIFICANCE: The new module-to-regulator algorithm complements our recently described Regulatory Impact Factor analysis. Together with a simple examination of a co-expression module's contents, these three gene expression approaches are starting to illuminate the in vivo

  19. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.

    Science.gov (United States)

    Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L

    2017-05-01

    Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

  20. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    Directory of Open Access Journals (Sweden)

    Hinton Jay CD

    2009-11-01

    Full Text Available Abstract Background The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells and 16 days (old cells. Results A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186 than in young cells (467. Relatively, few genes (62 were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells. Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young

  1. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    LENUS (Irish Health Repository)

    Pin, Carmen

    2009-11-16

    Abstract Background The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells) and 16 days (old cells). Results A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186) than in young cells (467). Relatively, few genes (62) were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells. Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young and old cells

  2. Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    He Weiming

    2010-07-01

    Full Text Available Abstract Background Network co-regulated modules are believed to have the functionality of packaging multiple biological entities, and can thus be assumed to coordinate many biological functions in their network neighbouring regions. Results Here, we weighted edges of a human protein interaction network and a transcriptional regulatory network to construct an integrated network, and introduce a probabilistic model and a bipartite graph framework to exploit human co-regulated modules and uncover their specific features in packaging different biological entities (genes, protein complexes or metabolic pathways. Finally, we identified 96 human co-regulated modules based on this method, and evaluate its effectiveness by comparing it with four other methods. Conclusions Dysfunctions in co-regulated interactions often occur in the development of cancer. Therefore, we focussed on an example co-regulated module and found that it could integrate a number of cancer-related genes. This was extended to causal dysfunctions of some complexes maintained by several physically interacting proteins, thus coordinating several metabolic pathways that directly underlie cancer.

  3. Dynamic transcriptional signatures and network responses for clinical symptoms in influenza-infected human subjects using systems biology approaches.

    Science.gov (United States)

    Linel, Patrice; Wu, Shuang; Deng, Nan; Wu, Hulin

    2014-10-01

    Recent studies demonstrate that human blood transcriptional signatures may be used to support diagnosis and clinical decisions for acute respiratory viral infections such as influenza. In this article, we propose to use a newly developed systems biology approach for time course gene expression data to identify significant dynamically response genes and dynamic gene network responses to viral infection. We illustrate the methodological pipeline by reanalyzing the time course gene expression data from a study with healthy human subjects challenged by live influenza virus. We observed clear differences in the number of significant dynamic response genes (DRGs) between the symptomatic and asymptomatic subjects and also identified DRG signatures for symptomatic subjects with influenza infection. The 505 common DRGs shared by the symptomatic subjects have high consistency with the signature genes for predicting viral infection identified in previous works. The temporal response patterns and network response features were carefully analyzed and investigated.

  4. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Mathilde de Taffin

    Full Text Available Collier, the single Drosophila COE (Collier/EBF/Olf-1 transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.

  5. Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina.

    Directory of Open Access Journals (Sweden)

    Nicolas Mazurier

    Full Text Available In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.

  6. Phylogeny, Functional Annotation, and Protein Interaction Network Analyses of the Xenopus tropicalis Basic Helix-Loop-Helix Transcription Factors

    Directory of Open Access Journals (Sweden)

    Wuyi Liu

    2013-01-01

    Full Text Available The previous survey identified 70 basic helix-loop-helix (bHLH proteins, but it was proved to be incomplete, and the functional information and regulatory networks of frog bHLH transcription factors were not fully known. Therefore, we conducted an updated genome-wide survey in the Xenopus tropicalis genome project databases and identified 105 bHLH sequences. Among the retrieved 105 sequences, phylogenetic analyses revealed that 103 bHLH proteins belonged to 43 families or subfamilies with 46, 26, 11, 3, 15, and 4 members in the corresponding supergroups. Next, gene ontology (GO enrichment analyses showed 65 significant GO annotations of biological processes and molecular functions and KEGG pathways counted in frequency. To explore the functional pathways, regulatory gene networks, and/or related gene groups coding for Xenopus tropicalis bHLH proteins, the identified bHLH genes were put into the databases KOBAS and STRING to get the signaling information of pathways and protein interaction networks according to available public databases and known protein interactions. From the genome annotation and pathway analysis using KOBAS, we identified 16 pathways in the Xenopus tropicalis genome. From the STRING interaction analysis, 68 hub proteins were identified, and many hub proteins created a tight network or a functional module within the protein families.

  7. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis.

    Science.gov (United States)

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-11-06

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ(70)-dependent and the contrasting σ(54)-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ(54)-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ(70)-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ(54)-regulated promoters. Strikingly, removal of the σ(54) Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Transcriptional-metabolic networks in beta-carotene-enriched potato tubers: the long and winding road to the Golden phenotype.

    Science.gov (United States)

    Diretto, Gianfranco; Al-Babili, Salim; Tavazza, Raffaela; Scossa, Federico; Papacchioli, Velia; Migliore, Melania; Beyer, Peter; Giuliano, Giovanni

    2010-10-01

    Vitamin A deficiency is a public health problem in a large number of countries. Biofortification of major staple crops (wheat [Triticum aestivum], rice [Oryza sativa], maize [Zea mays], and potato [Solanum tuberosum]) with β-carotene has the potential to alleviate this nutritional problem. Previously, we engineered transgenic "Golden" potato tubers overexpressing three bacterial genes for β-carotene synthesis (CrtB, CrtI, and CrtY, encoding phytoene synthase, phytoene desaturase, and lycopene β-cyclase, respectively) and accumulating the highest amount of β-carotene in the four aforementioned crops. Here, we report the systematic quantitation of carotenoid metabolites and transcripts in 24 lines carrying six different transgene combinations under the control of the 35S and Patatin (Pat) promoters. Low levels of B-I expression are sufficient for interfering with leaf carotenogenesis, but not for β-carotene accumulation in tubers and calli, which requires high expression levels of all three genes under the control of the Pat promoter. Tubers expressing the B-I transgenes show large perturbations in the transcription of endogenous carotenoid genes, with only minor changes in carotenoid content, while the opposite phenotype (low levels of transcriptional perturbation and high carotenoid levels) is observed in Golden (Y-B-I) tubers. We used hierarchical clustering and pairwise correlation analysis, together with a new method for network correlation analysis, developed for this purpose, to assess the perturbations in transcript and metabolite levels in transgenic leaves and tubers. Through a "guilt-by-profiling" approach, we identified several endogenous genes for carotenoid biosynthesis likely to play a key regulatory role in Golden tubers, which are candidates for manipulations aimed at the further optimization of tuber carotenoid content.

  9. Unexpected complexity of the reef-building coral Acropora millepora transcription factor network.

    KAUST Repository

    Ryu, Tae Woo

    2011-04-28

    Coral reefs are disturbed on a global scale by environmental changes including rising sea surface temperatures and ocean acidification. Little is known about how corals respond or adapt to these environmental changes especially at the molecular level. This is mostly because of the paucity of genome-wide studies on corals and the application of systems approaches that incorporate the latter. Like in any other organism, the response of corals to stress is tightly controlled by the coordinated interplay of many transcription factors.

  10. Comparative study of discretization methods of microarray data for inferring transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Ji Wei

    2010-10-01

    Full Text Available Abstract Background Microarray data discretization is a basic preprocess for many algorithms of gene regulatory network inference. Some common discretization methods in informatics are used to discretize microarray data. Selection of the discretization method is often arbitrary and no systematic comparison of different discretization has been conducted, in the context of gene regulatory network inference from time series gene expression data. Results In this study, we propose a new discretization method "bikmeans", and compare its performance with four other widely-used discretization methods using different datasets, modeling algorithms and number of intervals. Sensitivities, specificities and total accuracies were calculated and statistical analysis was carried out. Bikmeans method always gave high total accuracies. Conclusions Our results indicate that proper discretization methods can consistently improve gene regulatory network inference independent of network modeling algorithms and datasets. Our new method, bikmeans, resulted in significant better total accuracies than other methods.

  11. Transcriptional Infidelity Promotes Heritable Phenotypic Change in a Bistable Gene Network

    Science.gov (United States)

    Gordon, Alasdair J. E; Halliday, Jennifer A; Blankschien, Matthew D; Burns, Philip A; Yatagai, Fumio; Herman, Christophe

    2009-01-01

    Bistable epigenetic switches are fundamental for cell fate determination in unicellular and multicellular organisms. Regulatory proteins associated with bistable switches are often present in low numbers and subject to molecular noise. It is becoming clear that noise in gene expression can influence cell fate. Although the origins and consequences of noise have been studied, the stochastic and transient nature of RNA errors during transcription has not been considered in the origin or modeling of noise nor has the capacity for such transient errors in information transfer to generate heritable phenotypic change been discussed. We used a classic bistable memory module to monitor and capture transient RNA errors: the lac operon of Escherichia coli comprises an autocatalytic positive feedback loop producing a heritable all-or-none epigenetic switch that is sensitive to molecular noise. Using single-cell analysis, we show that the frequency of epigenetic switching from one expression state to the other is increased when the fidelity of RNA transcription is decreased due to error-prone RNA polymerases or to the absence of auxiliary RNA fidelity factors GreA and GreB (functional analogues of eukaryotic TFIIS). Therefore, transcription infidelity contributes to molecular noise and can effect heritable phenotypic change in genetically identical cells in the same environment. Whereas DNA errors allow genetic space to be explored, RNA errors may allow epigenetic or expression space to be sampled. Thus, RNA infidelity should also be considered in the heritable origin of altered or aberrant cell behaviour. PMID:19243224

  12. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Lodowski Kerrie H

    2009-01-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  13. Hybrid classifiers methods of data, knowledge, and classifier combination

    CERN Document Server

    Wozniak, Michal

    2014-01-01

    This book delivers a definite and compact knowledge on how hybridization can help improving the quality of computer classification systems. In order to make readers clearly realize the knowledge of hybridization, this book primarily focuses on introducing the different levels of hybridization and illuminating what problems we will face with as dealing with such projects. In the first instance the data and knowledge incorporated in hybridization were the action points, and then a still growing up area of classifier systems known as combined classifiers was considered. This book comprises the aforementioned state-of-the-art topics and the latest research results of the author and his team from Department of Systems and Computer Networks, Wroclaw University of Technology, including as classifier based on feature space splitting, one-class classification, imbalance data, and data stream classification.

  14. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells.

    Science.gov (United States)

    Hardy, W Reef; Moldovan, Nicanor I; Moldovan, Leni; Livak, Kenneth J; Datta, Krishna; Goswami, Chirayu; Corselli, Mirko; Traktuev, Dmitry O; Murray, Iain R; Péault, Bruno; March, Keith

    2017-05-01

    Adipose tissue is a rich source of multipotent mesenchymal stem-like cells, located in the perivascular niche. Based on their surface markers, these have been assigned to two main categories: CD31 - /CD45 - /CD34 + /CD146 - cells (adventitial stromal/stem cells [ASCs]) and CD31 - /CD45 - /CD34 - /CD146 + cells (pericytes [PCs]). These populations display heterogeneity of unknown significance. We hypothesized that aldehyde dehydrogenase (ALDH) activity, a functional marker of primitivity, could help to better define ASC and PC subclasses. To this end, the stromal vascular fraction from a human lipoaspirate was simultaneously stained with fluorescent antibodies to CD31, CD45, CD34, and CD146 antigens and the ALDH substrate Aldefluor, then sorted by fluorescence-activated cell sorting. Individual ASCs (n = 67) and PCs (n = 73) selected from the extremities of the ALDH-staining spectrum were transcriptionally profiled by Fluidigm single-cell quantitative polymerase chain reaction for a predefined set (n = 429) of marker genes. To these single-cell data, we applied differential expression and principal component and clustering analysis, as well as an original gene coexpression network reconstruction algorithm. Despite the stochasticity at the single-cell level, covariation of gene expression analysis yielded multiple network connectivity parameters suggesting that these perivascular progenitor cell subclasses possess the following order of maturity: (a) ALDH br ASC (most primitive); (b) ALDH dim ASC; (c) ALDH br PC; (d) ALDH dim PC (least primitive). This order was independently supported by specific combinations of class-specific expressed genes and further confirmed by the analysis of associated signaling pathways. In conclusion, single-cell transcriptional analysis of four populations isolated from fat by surface markers and enzyme activity suggests a developmental hierarchy among perivascular mesenchymal stem cells supported by markers and coexpression

  15. Epigenetic hereditary transcription profiles III, evidence for an epigenetic network resulting in gender, tissue and age-specific variation in overall transcription

    Directory of Open Access Journals (Sweden)

    Simons Johannes WIM

    2009-10-01

    Full Text Available Abstract Background We have previously shown that deviations from the average transcription profile of a group of functionally related genes are not only heritable, but also demonstrate specific patterns associated with age, gender and differentiation, thereby implicating genome-wide nuclear programming as the cause. To determine whether these results could be reproduced, a different micro-array database (obtained from two types of muscle tissue, derived from 81 human donors aged between 16 to 89 years was studied. Results This new database also revealed the existence of age, gender and tissue-specific features in a small group of functionally related genes. In order to further analyze this phenomenon, a method was developed for quantifying the contribution of different factors to the variability in gene expression, and for generating a database limited to residual values reflecting constitutional differences between individuals. These constitutional differences, presumably epigenetic in origin, contribute to about 50% of the observed residual variance which is connected with a network of interrelated changes in gene expression with some genes displaying a decrease or increase in residual variation with age. Conclusion Epigenetic variation in gene expression without a clear concomitant relation to gene function appears to be a widespread phenomenon. This variation is connected with interactions between genes, is gender and tissue specific and is related to cellular aging. This finding, together with the method developed for analysis, might contribute to the elucidation of the role of nuclear programming in differentiation, aging and carcinogenesis Reviewers This article was reviewed by Thiago M. Venancio (nominated by Aravind Iyer, Hua Li (nominated by Arcady Mushegian and Arcady Mushegian and J.P.de Magelhaes (nominated by G. Church.

  16. Natural and Unnatural Oil Layers on the Surface of the Gulf of Mexico Detected and Quantified in Synthetic Aperture RADAR Images with Texture Classifying Neural Network Algorithms

    Science.gov (United States)

    MacDonald, I. R.; Garcia-Pineda, O. G.; Morey, S. L.; Huffer, F.

    2011-12-01

    Effervescent hydrocarbons rise naturally from hydrocarbon seeps in the Gulf of Mexico and reach the ocean surface. This oil forms thin (~0.1 μm) layers that enhance specular reflectivity and have been widely used to quantify the abundance and distribution of natural seeps using synthetic aperture radar (SAR). An analogous process occurred at a vastly greater scale for oil and gas discharged from BP's Macondo well blowout. SAR data allow direct comparison of the areas of the ocean surface covered by oil from natural sources and the discharge. We used a texture classifying neural network algorithm to quantify the areas of naturally occurring oil-covered water in 176 SAR image collections from the Gulf of Mexico obtained between May 1997 and November 2007, prior to the blowout. Separately we also analyzed 36 SAR images collections obtained between 26 April and 30 July, 2010 while the discharged oil was visible in the Gulf of Mexico. For the naturally occurring oil, we removed pollution events and transient oceanographic effects by including only the reflectance anomalies that that recurred in the same locality over multiple images. We measured the area of oil layers in a grid of 10x10 km cells covering the entire Gulf of Mexico. Floating oil layers were observed in only a fraction of the total Gulf area amounting to 1.22x10^5 km^2. In a bootstrap sample of 2000 replications, the combined average area of these layers was 7.80x10^2 km^2 (sd 86.03). For a regional comparison, we divided the Gulf of Mexico into four quadrates along 90° W longitude, and 25° N latitude. The NE quadrate, where the BP discharge occurred, received on average 7.0% of the total natural seepage in the Gulf of Mexico (5.24 x10^2 km^2, sd 21.99); the NW quadrate received on average 68.0% of this total (5.30 x10^2 km^2, sd 69.67). The BP blowout occurred in the NE quadrate of the Gulf of Mexico; discharged oil that reached the surface drifted over a large area north of 25° N. Performing a

  17. A lncRNA-H19 transcript from secondary hair follicle of Liaoning cashmere goat: Identification, regulatory network and expression regulated potentially by its promoter methylation.

    Science.gov (United States)

    Zhu, Yu B; Wang, Ze Y; Yin, Rong H; Jiao, Qian; Zhao, Su J; Cong, Yu Y; Xue, Hui L; Guo, Dan; Wang, Shi Q; Zhu, Yan X; Bai, Wen L

    2018-01-30

    The H19 transcript (imprinted maternally expressed transcript) is well-known as long noncoding RNA (lncRNA), and it is thought to be associated with the inductive capacity of dermal papilla cells for hair-follicle reconstruction. In this study, we isolated and characterized a lncRNA-H19 transcript from the secondary hair follicle of Liaoning cashmere goat. Also, we investigated its transcriptional pattern and methylation status of H19 gene in secondary hair follicle of this breed during different stages of hair follicle cycle. Nucleotide composition analysis indicated that guanine (G) and cytosine (C) are the dominant nucleotides in the lncRNA-H19 transcript of Liaoning cashmere goat with the highest frequency distribution (11.25%) of GG nucleotide pair. The regulatory network showed that lncRNA-H19 transcript appears to have remarkably diverse regulatory relationships with its related miRNAs and the potential target genes. In secondary hair follicle, the relative expression of lncRNA-H19 transcript at the anagen phase is significantly higher than that at both telogen and catagen phases suggesting that lncRNA-H19 transcript might play essential roles in the formation and growth of cashmere fiber of goat. Methylation analysis indicated that the methylation of the promoter region of H19 gene most likely participates in its transcriptional suppression in secondary hair follicle of Liaoning cashmere goat. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  19. A Multiparameter Network Reveals Extensive Divergence between C. elegans bHLH Transcription Factors

    DEFF Research Database (Denmark)

    Grove, C.; De Masi, Federico; Newburger, Daniel

    2009-01-01

    parameters remain undetermined. We comprehensively identify dimerization partners, spatiotemporal expression patterns, and DNA-binding specificities for the C. elegans bHLH family of TFs, and model these data into an integrated network. This network displays both specificity and promiscuity, as some b......HLH proteins, DNA sequences, and tissues are highly connected, whereas others are not. By comparing all bHLH TFs, we find extensive divergence and that all three parameters contribute equally to bHLH divergence. Our approach provides a framework for examining divergence for other protein families in C. elegans...

  20. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency

    Science.gov (United States)

    Artyomov, Maxim; Meissner, Alex; Chakraborty, Arup

    2010-03-01

    Most cells in an organism have the same DNA. Yet, different cell types express different proteins and carry out different functions. This is because of epigenetic differences; i.e., DNA in different cell types is packaged distinctly, making it hard to express certain genes while facilitating the expression of others. During development, upon receipt of appropriate cues, pluripotent embryonic stem cells differentiate into diverse cell types that make up the organism (e.g., a human). There has long been an effort to make this process go backward -- i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent status. Recently, this has been achieved by transfecting certain transcription factors into differentiated cells. This method does not use embryonic material and promises the development of patient-specific regenerative medicine, but it is inefficient. The mechanisms that make reprogramming rare, or even possible, are poorly understood. We have developed the first computational model of transcription factor-induced reprogramming. Results obtained from the model are consistent with diverse observations, and identify the rare pathways that allow reprogramming to occur. If validated, our model could be further developed to design optimal strategies for reprogramming and shed light on basic questions in biology.

  1. Network modeling of the transcriptional effects of copy number aberrations in glioblastoma

    Science.gov (United States)

    Jörnsten, Rebecka; Abenius, Tobias; Kling, Teresia; Schmidt, Linnéa; Johansson, Erik; Nordling, Torbjörn E M; Nordlander, Bodil; Sander, Chris; Gennemark, Peter; Funa, Keiko; Nilsson, Björn; Lindahl, Linda; Nelander, Sven

    2011-01-01

    DNA copy number aberrations (CNAs) are a hallmark of cancer genomes. However, little is known about how such changes affect global gene expression. We develop a modeling framework, EPoC (Endogenous Perturbation analysis of Cancer), to (1) detect disease-driving CNAs and their effect on target mRNA expression, and to (2) stratify cancer patients into long- and short-term survivors. Our method constructs causal network models of gene expression by combining genome-wide DNA- and RNA-level data. Prognostic scores are obtained from a singular value decomposition of the networks. By applying EPoC to glioblastoma data from The Cancer Genome Atlas consortium, we demonstrate that the resulting network models contain known disease-relevant hub genes, reveal interesting candidate hubs, and uncover predictors of patient survival. Targeted validations in four glioblastoma cell lines support selected predictions, and implicate the p53-interacting protein Necdin in suppressing glioblastoma cell growth. We conclude that large-scale network modeling of the effects of CNAs on gene expression may provide insights into the biology of human cancer. Free software in MATLAB and R is provided. PMID:21525872

  2. Characterizing Transcriptional Networks in Male Rainbow Darter (Etheostoma caeruleum that Regulate Testis Development over a Complete Reproductive Cycle.

    Directory of Open Access Journals (Sweden)

    Paulina A Bahamonde

    Full Text Available Intersex is a condition that has been associated with exposure to sewage effluents in male rainbow darter (Etheostoma caeruleum. To better understand changes in the transcriptome that are associated with intersex, we characterized annual changes in the testis transcriptome in wild, unexposed fish. Rainbow darter males were collected from the Grand River (Ontario, Canada in May (spawning, August (post-spawning, October (recrudescence, January (developing and March (pre-spawning. Histology was used to determine the proportion of spermatogenic cell types that were present during each period of testicular maturation. Regression analysis determined that the proportion of spermatozoa versus spermatocytes in all stages of development (R2 ≥ 0.58 were inversely related; however this was not the case when males were in the post-spawning period. Gene networks that were specific to the transition from developing to pre-spawning stages included nitric oxide biosynthesis, response to wounding, sperm cell function, and stem cell maintenance. The pre-spawning to spawning transition included gene networks related to amino acid import, glycogenesis, Sertoli cell proliferation, sperm capacitation, and sperm motility. The spawning to post-spawning transition included unique gene networks associated with chromosome condensation, ribosome biogenesis and assembly, and mitotic spindle assembly. Lastly, the transition from post-spawning to recrudescence included gene networks associated with egg activation, epithelial to mesenchymal transition, membrane fluidity, and sperm cell adhesion. Noteworthy was that there were a significant number of gene networks related to immune system function that were differentially expressed throughout reproduction, suggesting that immune network signalling has a prominent role in the male testis. Transcripts in the testis of post-spawning individuals showed patterns of expression that were most different for the majority of transcripts

  3. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.

    Science.gov (United States)

    Motamedian, Ehsan; Mohammadi, Maryam; Shojaosadati, Seyed Abbas; Heydari, Mona

    2017-04-01

    Integration of different biological networks and data-types has been a major challenge in systems biology. The present study introduces the transcriptional regulated flux balance analysis (TRFBA) algorithm that integrates transcriptional regulatory and metabolic models using a set of expression data for various perturbations. TRFBA considers the expression levels of genes as a new continuous variable and introduces two new linear constraints. The first constraint limits the rate of reaction(s) supported by a metabolic gene using a constant parameter (C) that converts the expression levels to the upper bounds of the reactions. Considering the concept of constraint-based modeling, the second set of constraints correlates the expression level of each target gene with that of its regulating genes. A set of constraints and binary variables was also added to prevent the second set of constraints from overlapping. TRFBA was implemented on Escherichia coli and Saccharomyces cerevisiae models to estimate growth rates under various environmental and genetic perturbations. The error sensitivity to the algorithm parameter was evaluated to find the best value of C. The results indicate a significant improvement in the quantitative prediction of growth in comparison with previously presented algorithms. The robustness of the algorithm to change in the expression data and the regulatory network was tested to evaluate the effect of noisy and incomplete data. Furthermore, the use of added constraints for perturbations without their gene expression profile demonstrates that these constraints can be applied to improve the growth prediction of FBA. TRFBA is implemented in Matlab software and requires COBRA toolbox. Source code is freely available at http://sbme.modares.ac.ir . : motamedian@modares.ac.ir. Supplementary data are available at Bioinformatics online.

  4. Surgical intervention for symptomatic benign prostatic hyperplasia is correlated with expression of the AP-1 transcription factor network.

    Science.gov (United States)

    Lin-Tsai, Opal; Clark, Peter E; Miller, Nicole L; Fowke, Jay H; Hameed, Omar; Hayward, Simon W; Strand, Douglas W

    2014-05-01

    Approximately one-third of patients fail medical treatment for benign prostatic hyperplasia and associated lower urinary tract symptoms (BPH/LUTS) requiring surgical intervention. Our purpose was to establish a molecular characterization for patients undergoing surgical intervention for LUTS to address therapeutic deficiencies. Clinical, molecular, and histopathological profiles were analyzed in 26 patients undergoing surgery for severe LUTS. Incidental transitional zone nodules were isolated from 37 patients with mild symptoms undergoing radical prostatectomy. Clinical parameters including age, prostate volume, medication, prostate specific antigen, symptom score, body mass index, and incidence of diabetes were collected. Multivariate logistic regression analysis with adjustments for potential confounding variables was used to examine associations between patient clinical characteristics and molecular targets identified through molecular profiling. Compared to incidental BPH, progressive symptomatic BPH was associated with increased expression of the activating protein-1 transcription factor/chemokine network. As expected, inverse correlations were drawn between androgen receptor levels and age, as well as between 5α-reductase inhibitor (5ARI) treatment and tissue prostate specific antigen levels; however, a novel association was also drawn between 5ARI treatment and increased c-FOS expression. This study provides molecular evidence that a network of pro-inflammatory activating protein-1 transcription factors and associated chemokines are highly enriched in symptomatic prostate disease, a profile that molecularly categorizes with many other chronic autoimmune diseases. Because 5ARI treatment was associated with increased c-FOS expression, future studies should explore whether increased activating protein-1 proteins are causal factors in the development of symptomatic prostate disease, inflammation or resistance to traditional hormonal therapy. © 2014 Wiley

  5. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young

    2010-01-25

    Background: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach.Results: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters.Conclusion: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. 2010 Yun et al; licensee BioMed Central Ltd.

  6. PRDM14 Is a Unique Epigenetic Regulator Stabilizing Transcriptional Networks for Pluripotency

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Seki

    2018-02-01

    Full Text Available PR-domain containing protein 14 (PRDM14 is a site-specific DNA-binding protein and is required for establishment of pluripotency in embryonic stem cells (ESCs and primordial germ cells (PGCs in mice. DNA methylation status is regulated by the balance between de novo methylation and passive/active demethylation, and global DNA hypomethylation is closely associated with cellular pluripotency and totipotency. PRDM14 ensures hypomethylation in mouse ESCs and PGCs through two distinct layers, transcriptional repression of the DNA methyltransferases Dnmt3a/b/l and active demethylation by recruitment of TET proteins. However, the function of PRDM14 remains unclear in other species including humans. Hence, here we focus on the unique characteristics of mouse PRDM14 in the epigenetic regulation of pluripotent cells and primordial germ cells. In addition, we discuss the expression regulation and function of PRDM14 in other species compared with those in mice.

  7. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening.

    Science.gov (United States)

    Qin, Guozheng; Wang, Yuying; Cao, Baohua; Wang, Weihao; Tian, Shiping

    2012-04-01

    The MADS box transcription factor RIN is a global regulator of fruit ripening. However, the direct targets modulated by RIN and the mechanisms underlying the transcriptional regulation remain largely unknown. Here we identified 41 protein spots representing 35 individual genes as potential targets of RIN by comparative proteomic analysis of a rin mutant in tomato fruits. Gene expression analysis showed that the mRNA level of 26 genes correlated well with the protein level. After examining the promoter regions of the candidate genes, a variable number of RIN binding sites were found. Five genes (E8, TomloxC, PNAE, PGK and ADH2) were identified as novel direct targets of RIN by chromatin immunoprecipitation. The results of a gel mobility shift assay confirmed the direct binding of RIN to the promoters of these genes. Of the direct target genes, TomloxC and ADH2, which encode lipoxygenase (LOX) and alcohol dehydrogenase, respectively, are critical for the production of characteristic tomato aromas derived from LOX pathway. Further study indicated that RIN also directly regulates the expression of HPL, which encodes hydroperoxide lyase, another rate-limiting enzyme in the LOX pathway. Loss of function of RIN causes de-regulation of the LOX pathway, leading to a specific defect in the generation of aroma compounds derived from this pathway. These results indicate that RIN modulates aroma formation by direct and rigorous regulation of expression of genes in the LOX pathway. Taken together, our findings suggest that the regulatory effect of RIN on fruit ripening is achieved by targeting specific molecular pathways. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  8. Evolution of Transcriptional Regulatory Networks in Pseudomonas aeruginosa During Long Time Growth in Human Hosts

    DEFF Research Database (Denmark)

    Andresen, Eva Kammer

    are subjected to forces that allow the bacteria to break genomic constraints, remodel existing regulatory networks, and colonise new environments. While experimental evolution studies have documented that global regulators of gene expression are indeed targets for adaptive mutations, it is less clear to which...... extent these observations relate to natural microbial populations. The focus of this thesis has been to study how regulatory networks evolve in natural systems. By using a particular infectious disease scenario (human associated persistent airway infections caused by the bacterium Pseudomonas aeruginosa...... in global regulator genes facilitate the generation of novel phenotypes which again facilitate the shift in life-style of the bacterium from an environmental opportunistic pathogen to a human airway specific pathogen. These findings are not only applicable to P. aeruginosa specific studies, but suggest that...

  9. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi

    2016-10-24

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical “external stimulus-induced information loss” model of biological systems.

  10. PML-RARA-associated cooperating mutations belong to a transcriptional network that is deregulated in myeloid leukemias.

    Science.gov (United States)

    Ronchini, C; Brozzi, A; Riva, L; Luzi, L; Gruszka, A M; Melloni, G E M; Scanziani, E; Dharmalingam, G; Mutarelli, M; Belcastro, V; Lavorgna, S; Rossi, V; Spinelli, O; Biondi, A; Rambaldi, A; Lo-Coco, F; di Bernardo, D; Pelicci, P G

    2017-09-01

    It has been shown that individual acute myeloid leukemia (AML) patients are characterized by one of few initiating DNA mutations and 5-10 cooperating mutations not yet defined among hundreds identified by massive sequencing of AML genomes. We report an in vivo insertional-mutagenesis screen for genes cooperating with one AML initiating mutations (PML-RARA, oncogene of acute promyelocytic leukemia, APL), which allowed identification of hundreds of genetic cooperators. The cooperators are mutated at low frequency in APL or AML patients but are always abnormally expressed in a cohort of 182 APLs and AMLs analyzed. These deregulations appear non-randomly distributed and present in all samples, regardless of their associated genomic mutations. Reverse-engineering approaches showed that these cooperators belong to a single transcriptional gene network, enriched in genes mutated in AMLs, where perturbation of single genes modifies expression of others. Their gene-ontology analysis showed enrichment of genes directly involved in cell proliferation control. Therefore, the pool of PML-RARA cooperating mutations appears large and heterogeneous, but functionally equivalent and deregulated in the majority of APLs and AMLs. Our data suggest that the high heterogeneity of DNA mutations in APLs and AMLs can be reduced to patterns of gene expression deregulation of a single 'mutated' gene network.

  11. Identification of a Dynamic Core Transcriptional Network in t(8;21 AML that Regulates Differentiation Block and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Anetta Ptasinska

    2014-09-01

    Full Text Available Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21, subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21 cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21 cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21 is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation.

  12. The Transcript and Metabolite Networks Affected by the Two Clades of Arabidopsis Glucosinolate Biosynthesis Regulators1[W

    Science.gov (United States)

    Malitsky, Sergey; Blum, Eyal; Less, Hadar; Venger, Ilya; Elbaz, Moshe; Morin, Shai; Eshed, Yuval; Aharoni, Asaph

    2008-01-01

    In this study, transcriptomics and metabolomics data were integrated in order to examine the regulation of glucosinolate (GS) biosynthesis in Arabidopsis (Arabidopsis thaliana) and its interface with pathways of primary metabolism. Our genetic material for analyses were transgenic plants overexpressing members of two clades of genes (ALTERED TRYPTOPHAN REGULATION1 [ATR1]-like and MYB28-like) that regulate the aliphatic and indole GS biosynthetic pathways (AGs and IGs, respectively). We show that activity of these regulators is not restricted to the metabolic space surrounding GS biosynthesis but is tightly linked to more distal metabolic networks of primary metabolism. This suggests that with similarity to the regulators we have investigated here, other factors controlling pathways of secondary metabolism might also control core pathways of central metabolism. The relatively broad view of transcripts and metabolites altered in transgenic plants overexpressing the different factors underlined novel links of GS metabolism to additional metabolic pathways, including those of jasmonic acid, folate, benzoic acid, and various phenylpropanoids. It also revealed transcriptional and metabolic hubs in the “distal” network of metabolic pathways supplying precursors to GS biosynthesis and that overexpression of the ATR1-like clade genes has a much broader effect on the metabolism of indolic compounds than described previously. While the reciprocal, negative cross talk between the methionine and tryptophan pathways that generate GSs in Arabidopsis has been suggested previously, we now show that it is not restricted to AGs and IGs but includes additional metabolites, such as the phytoalexin camalexin. Combining the profiling data of transgenic lines with gene expression correlation analysis allowed us to propose a model of how the balance in the metabolic network is maintained by the GS biosynthesis regulators. It appears that ATR1/MYB34 is an important mediator between the

  13. A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function

    Directory of Open Access Journals (Sweden)

    Cory A. Rubel

    2016-10-01

    Full Text Available Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2 are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage.

  14. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development

    KAUST Repository

    Park, Myoungryoul

    2010-09-28

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  15. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network.

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-02-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.

  16. Positioning the expanded akirin gene family of Atlantic salmon within the transcriptional networks of myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Macqueen, Daniel J., E-mail: djm59@st-andrews.ac.uk [Laboratory of Physiological and Evolutionary Genomics, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB (United Kingdom); Bower, Neil I., E-mail: nib@st-andrews.ac.uk [Laboratory of Physiological and Evolutionary Genomics, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB (United Kingdom); Johnston, Ian A., E-mail: iaj@st-andrews.ac.uk [Laboratory of Physiological and Evolutionary Genomics, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB (United Kingdom)

    2010-10-01

    Research highlights: {yields} The expanded akirin gene family of Atlantic salmon was characterised. {yields} akirin paralogues are regulated between mono- and multi-nucleated muscle cells. {yields} akirin paralogues positioned within known genetic networks controlling myogenesis. {yields} Co-expression of akirin paralogues is evident across cell types/during myogenesis. {yields} Selection has likely maintained common regulatory elements among akirin paralogues. -- Abstract: Vertebrate akirin genes usually form a family with one-to-three members that regulate gene expression during the innate immune response, carcinogenesis and myogenesis. We recently established that an expanded family of eight akirin genes is conserved across salmonid fish. Here, we measured mRNA levels of the akirin family of Atlantic salmon (Salmo salar L.) during the differentiation of primary myoblasts cultured from fast-skeletal muscle. Using hierarchical clustering and correlation, the data was positioned into a network of expression profiles including twenty further genes that regulate myogenesis. akirin1(2b) was not significantly regulated during the maturation of the cell culture. akirin2(1a) and 2(1b), along with IGF-II and several igfbps, were most highly expressed in mononuclear cells, then significantly and constitutively downregulated as differentiation proceeded and myotubes formed/matured. Conversely, akirin1(1a), 1(1b), 1(2a), 2(2a) and 2(2b) were expressed at lowest levels when mononuclear cells dominated the culture and highest levels when confluent layers of myotubes were evident. However, akirin1(2a) and 2(2a) were first upregulated earlier than akirin1(1a), 1(1b) and 2(2b), when rates of myoblast proliferation were highest. Interestingly, akirin1(1b), 1(2a), 2(2a) and 2(2b) formed part of a module of co-expressed genes involved in muscle differentiation, including myod1a, myog, mef2a, 14-3-3{beta} and 14-3-3{gamma}. All akirin paralogues were expressed ubiquitously across ten

  17. Positioning the expanded akirin gene family of Atlantic salmon within the transcriptional networks of myogenesis

    International Nuclear Information System (INIS)

    Macqueen, Daniel J.; Bower, Neil I.; Johnston, Ian A.

    2010-01-01

    Research highlights: → The expanded akirin gene family of Atlantic salmon was characterised. → akirin paralogues are regulated between mono- and multi-nucleated muscle cells. → akirin paralogues positioned within known genetic networks controlling myogenesis. → Co-expression of akirin paralogues is evident across cell types/during myogenesis. → Selection has likely maintained common regulatory elements among akirin paralogues. -- Abstract: Vertebrate akirin genes usually form a family with one-to-three members that regulate gene expression during the innate immune response, carcinogenesis and myogenesis. We recently established that an expanded family of eight akirin genes is conserved across salmonid fish. Here, we measured mRNA levels of the akirin family of Atlantic salmon (Salmo salar L.) during the differentiation of primary myoblasts cultured from fast-skeletal muscle. Using hierarchical clustering and correlation, the data was positioned into a network of expression profiles including twenty further genes that regulate myogenesis. akirin1(2b) was not significantly regulated during the maturation of the cell culture. akirin2(1a) and 2(1b), along with IGF-II and several igfbps, were most highly expressed in mononuclear cells, then significantly and constitutively downregulated as differentiation proceeded and myotubes formed/matured. Conversely, akirin1(1a), 1(1b), 1(2a), 2(2a) and 2(2b) were expressed at lowest levels when mononuclear cells dominated the culture and highest levels when confluent layers of myotubes were evident. However, akirin1(2a) and 2(2a) were first upregulated earlier than akirin1(1a), 1(1b) and 2(2b), when rates of myoblast proliferation were highest. Interestingly, akirin1(1b), 1(2a), 2(2a) and 2(2b) formed part of a module of co-expressed genes involved in muscle differentiation, including myod1a, myog, mef2a, 14-3-3β and 14-3-3γ. All akirin paralogues were expressed ubiquitously across ten tissues, although mRNA levels

  18. Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms.

    Directory of Open Access Journals (Sweden)

    Alan E Bilsland

    2014-02-01

    Full Text Available Cancer cells depend on transcription of telomerase reverse transcriptase (TERT. Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3'-oxime (BIO predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several

  19. Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2.

    Science.gov (United States)

    Wang, Dong; Wang, Qin; Qiu, Yimin; Nomura, Christopher T; Li, Junhui; Chen, Shouwen

    The bacitracin synthetase gene cluster in Bacillus licheniformis DW2 is composed of the bacABC operon encoding a non-ribosomal peptide synthetase and bacT encoding a thioesterase. Although the bacitracin gene cluster has been well studied, little is known about how this gene cluster is regulated. This study provides insight into how the transcription factors Spo0A and AbrB regulate bacitracin biosynthesis. Deletion of spo0A resulted in drastically reduced expression of bacA and bacT, and subsequently bacitracin production. On the other hand, the expression of bacA and bacT increased significantly in B. licheniformis DW2ΔabrB and DW2Δ0AΔabrB compared to the wild-type strain DW2. The bacitracin yields on cell numbers (U/CFU) in DW2ΔabrB and DW2Δ0A/pHY300-0A-sad67 were 17.5% and 14.9% higher than that of the wild-type strain. An electrophoretic mobility shift assay (EMSA) further confirmed that AbrB could directly bind to the promoter regions of bacA and bacT. These results indicate that AbrB acts as a repressor of bacitracin biosynthesis by inhibiting bacA and bacT expression, while Spo0A indirectly promotes bacitracin biosynthesis by repressing abrB expression. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet.

    Science.gov (United States)

    Martínez-Micaelo, Neus; González-Abuín, Noemi; Terra, Ximena; Ardévol, Ana; Pinent, Montserrat; Petretto, Enrico; Behmoaras, Jacques; Blay, Mayte

    2016-10-01

    Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF) diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY) and Lewis (LEW) show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2) as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA) levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity. © 2016. Published by The Company of Biologists Ltd.

  1. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Neus Martínez-Micaelo

    2016-10-01

    Full Text Available Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY and Lewis (LEW show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2 as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity.

  2. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network.

    Directory of Open Access Journals (Sweden)

    Avital Adato

    2009-12-01

    Full Text Available The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB-type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle.

  3. Characterization of transcription factor networks involved in umbilical cord blood CD34+ stem cells-derived erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Biaoru Li

    Full Text Available Fetal stem cells isolated from umbilical cord blood (UCB possess a great capacity for proliferation and differentiation and serve as a valuable model system to study gene regulation. Expanded knowledge of the molecular control of hemoglobin synthesis will provide a basis for rational design of therapies for β-hemoglobinopathies. Transcriptome data are available for erythroid progenitors derived from adult stem cells, however studies to define molecular mechanisms controlling globin gene regulation during fetal erythropoiesis are limited. Here, we utilize UCB-CD34+ stem cells induced to undergo erythroid differentiation to characterize the transcriptome and transcription factor networks (TFNs associated with the γ/β-globin switch during fetal erythropoiesis. UCB-CD34+ stem cells grown in the one-phase liquid culture system displayed a higher proliferative capacity than adult CD34+ stem cells. The γ/β-globin switch was observed after day 42 during fetal erythropoiesis in contrast to adult progenitors where the switch occurred around day 21. To gain insights into transcription factors involved in globin gene regulation, microarray analysis was performed on RNA isolated from UCB-CD34+ cell-derived erythroid progenitors harvested on day 21, 42, 49 and 56 using the HumanHT-12 Expression BeadChip. After data normalization, Gene Set Enrichment Analysis identified transcription factors (TFs with significant changes in expression during the γ/β-globin switch. Forty-five TFs were silenced by day 56 (Profile-1 and 30 TFs were activated by day 56 (Profile-2. Both GSEA datasets were analyzed using the MIMI Cytoscape platform, which discovered TFNs centered on KLF4 and GATA2 (Profile-1 and KLF1 and GATA1 for Profile-2 genes. Subsequent shRNA studies in KU812 leukemia cells and human erythroid progenitors generated from UCB-CD34+ cells supported a negative role of MAFB in γ-globin regulation. The characteristics of erythroblasts derived from UCB-CD34

  4. Promotion of cooperation in the form C0C1D classified by 'degree grads' in a scale-free network

    International Nuclear Information System (INIS)

    Zhao, Li; Ye, Xiang-Jun; Huang, Zi-Gang; Sun, Jin-Tu; Yang, Lei; Wang, Ying-Hai; Do, Younghae

    2010-01-01

    In this paper, we revisit the issue of the public goods game (PGG) on a heterogeneous graph. By introducing a new effective topology parameter, 'degree grads' ψ, we clearly classify the agents into three kinds, namely, C 0 , C 1 , and D. The mechanism for the heterogeneous topology promoting cooperation is discussed in detail from the perspective of C 0 C 1 D, which reflects the fact that the unreasoning imitation behaviour of C 1 agents, who are 'cheated' by the well-paid C 0 agents inhabiting special positions, stabilizes the formation of the cooperation community. The analytical and simulation results for certain parameters are found to coincide well with each other. The C 0 C 1 D case provides a picture of the actual behaviours in real society and thus is potentially of interest

  5. Robust clinical outcome prediction based on Bayesian analysis of transcriptional profiles and prior causal networks.

    Science.gov (United States)

    Zarringhalam, Kourosh; Enayetallah, Ahmed; Reddy, Padmalatha; Ziemek, Daniel

    2014-06-15

    Understanding and predicting an individual's response in a clinical trial is the key to better treatments and cost-: effective medicine. Over the coming years, more and more large-scale omics datasets will become available to characterize patients with complex and heterogeneous diseases at a molecular level. Unfortunately, genetic, phenotypical and environmental variation is much higher in a human trial population than currently modeled or measured in most animal studies. In our experience, this high variability can lead to failure of trained predictors in independent studies and undermines the credibility and utility of promising high-dimensional datasets. We propose a method that utilizes patient-level genome-wide expression data in conjunction with causal networks based on prior knowledge. Our approach determines a differential expression profile for each patient and uses a Bayesian approach to infer corresponding upstream regulators. These regulators and their corresponding posterior probabilities of activity are used in a regularized regression framework to predict response. We validated our approach using two clinically relevant phenotypes, namely acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. To demonstrate pitfalls in translating trained predictors across independent trials, we analyze performance characteristics of our approach as well as alternative feature sets in the regression on two independent datasets for each phenotype. We show that the proposed approach is able to successfully incorporate causal prior knowledge to give robust performance estimates. © The Author 2014. Published by Oxford University Press.

  6. Classifying Returns as Extreme

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I consider extreme returns for the stock and bond markets of 14 EU countries using two classification schemes: One, the univariate classification scheme from the previous literature that classifies extreme returns for each market separately, and two, a novel multivariate classification scheme...... that classifies extreme returns for several markets jointly. The new classification scheme holds about the same information as the old one, while demanding a shorter sample period. The new classification scheme is useful....

  7. Dynamic Response Genes in CD4+ T Cells Reveal a Network of Interactive Proteins that Classifies Disease Activity in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Sandra Hellberg

    2016-09-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disease of the CNS and has a varying disease course as well as variable response to treatment. Biomarkers may therefore aid personalized treatment. We tested whether in vitro activation of MS patient-derived CD4+ T cells could reveal potential biomarkers. The dynamic gene expression response to activation was dysregulated in patient-derived CD4+ T cells. By integrating our findings with genome-wide association studies, we constructed a highly connected MS gene module, disclosing cell activation and chemotaxis as central components. Changes in several module genes were associated with differences in protein levels, which were measurable in cerebrospinal fluid and were used to classify patients from control individuals. In addition, these measurements could predict disease activity after 2 years and distinguish low and high responders to treatment in two additional, independent cohorts. While further validation is needed in larger cohorts prior to clinical implementation, we have uncovered a set of potentially promising biomarkers.

  8. Principal component analysis coupled with artificial neural networks--a combined technique classifying small molecular structures using a concatenated spectral database.

    Science.gov (United States)

    Gosav, Steluţa; Praisler, Mirela; Birsa, Mihail Lucian

    2011-01-01

    In this paper we present several expert systems that predict the class identity of the modeled compounds, based on a preprocessed spectral database. The expert systems were built using Artificial Neural Networks (ANN) and are designed to predict if an unknown compound has the toxicological activity of amphetamines (stimulant and hallucinogen), or whether it is a nonamphetamine. In attempts to circumvent the laws controlling drugs of abuse, new chemical structures are very frequently introduced on the black market. They are obtained by slightly modifying the controlled molecular structures by adding or changing substituents at various positions on the banned molecules. As a result, no substance similar to those forming a prohibited class may be used nowadays, even if it has not been specifically listed. Therefore, reliable, fast and accessible systems capable of modeling and then identifying similarities at molecular level, are highly needed for epidemiological, clinical, and forensic purposes. In order to obtain the expert systems, we have preprocessed a concatenated spectral database, representing the GC-FTIR (gas chromatography-Fourier transform infrared spectrometry) and GC-MS (gas chromatography-mass spectrometry) spectra of 103 forensic compounds. The database was used as input for a Principal Component Analysis (PCA). The scores of the forensic compounds on the main principal components (PCs) were then used as inputs for the ANN systems. We have built eight PC-ANN systems (principal component analysis coupled with artificial neural network) with a different number of input variables: 15 PCs, 16 PCs, 17 PCs, 18 PCs, 19 PCs, 20 PCs, 21 PCs and 22 PCs. The best expert system was found to be the ANN network built with 18 PCs, which accounts for an explained variance of 77%. This expert system has the best sensitivity (a rate of classification C = 100% and a rate of true positives TP = 100%), as well as a good selectivity (a rate of true negatives TN = 92.77%). A

  9. High-Resolution Mapping and Dynamics of the Transcriptome, Transcription Factors, and Transcription Co-Factor Networks in Classically and Alternatively Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Amitabh Das

    2018-01-01

    Full Text Available Macrophages are the prime innate immune cells of the inflammatory response, and the combination of multiple signaling inputs derived from the recognition of host factors [e.g., interferon-g (IFN-γ] and invading pathogen products (e.g., toll-like receptors (TLRs agonists are required to maintain essential macrophage function. The profound effects on biological outcomes of inflammation associated with IFN-γ pretreatment (“priming” and TLR4 ligand bacterial lipopolysaccharide (LPS-induced macrophage activation (M1 or classical activation have long been recognized, but the underlying mechanisms are not well defined. Therefore, we analyzed gene expression profiles of macrophages and identified genes, transcription factors (TFs, and transcription co-factors (TcoFs that are uniquely or highly expressed in IFN-γ-mediated TLR4 ligand LPS-inducible versus only TLR4 ligand LPS-inducible primary macrophages. This macrophage gene expression has not been observed in macrophage cell lines. We also showed that interleukin (IL-4 and IL-13 (M2 or alternative activation elicited the induction of a distinct subset of genes related to M2 macrophage polarization. Importantly, this macrophage gene expression was also associated with promoter conservation. In particular, our approach revealed novel roles for the TFs and TcoFs in response to inflammation. We believe that the systematic approach presented herein is an important framework to better understand the transcriptional machinery of different macrophage subtypes.

  10. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  11. Right putamen and age are the most discriminant features to diagnose Parkinson's disease by using 123I-FP-CIT brain SPET data by using an artificial neural network classifier, a classification tree (ClT).

    Science.gov (United States)

    Cascianelli, S; Tranfaglia, C; Fravolini, M L; Bianconi, F; Minestrini, M; Nuvoli, S; Tambasco, N; Dottorini, M E; Palumbo, B

    2017-01-01

    The differential diagnosis of Parkinson's disease (PD) and other conditions, such as essential tremor and drug-induced parkinsonian syndrome or normal aging brain, represents a diagnostic challenge. 123 I-FP-CIT brain SPET is able to contribute to the differential diagnosis. Semiquantitative analysis of radiopharmaceutical uptake in basal ganglia (caudate nuclei and putamina) is very useful to support the diagnostic process. An artificial neural network classifier using 123 I-FP-CIT brain SPET data, a classification tree (CIT), was applied. CIT is an automatic classifier composed of a set of logical rules, organized as a decision tree to produce an optimised threshold based classification of data to provide discriminative cut-off values. We applied a CIT to 123 I-FP-CIT brain SPET semiquantitave data, to obtain cut-off values of radiopharmaceutical uptake ratios in caudate nuclei and putamina with the aim to diagnose PD versus other conditions. We retrospectively investigated 187 patients undergoing 123 I-FP-CIT brain SPET (Millenium VG, G.E.M.S.) with semiquantitative analysis performed with Basal Ganglia (BasGan) V2 software according to EANM guidelines; among them 113 resulted affected by PD (PD group) and 74 (N group) by other non parkinsonian conditions, such as Essential Tremor and drug-induced PD. PD group included 113 subjects (60M and 53F of age: 60-81yrs) having Hoehn and Yahr score (HY): 0.5-1.5; Unified Parkinson Disease Rating Scale (UPDRS) score: 6-38; N group included 74 subjects (36M and 38 F range of age 60-80 yrs). All subjects were clinically followed for at least 6-18 months to confirm the diagnosis. To examinate data obtained by using CIT, for each of the 1,000 experiments carried out, 10% of patients were randomly selected as the CIT training set, while the remaining 90% validated the trained CIT, and the percentage of the validation data correctly classified in the two groups of patients was computed. The expected performance of an "average

  12. Classifying features in CT imagery: accuracy for some single- and multiple-species classifiers

    Science.gov (United States)

    Daniel L. Schmoldt; Jing He; A. Lynn Abbott

    1998-01-01

    Our current approach to automatically label features in CT images of hardwood logs classifies each pixel of an image individually. These feature classifiers use a back-propagation artificial neural network (ANN) and feature vectors that include a small, local neighborhood of pixels and the distance of the target pixel to the center of the log. Initially, this type of...

  13. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis.

    Science.gov (United States)

    Zhong, Shilong; Han, Weichao; Hou, Chuqi; Liu, Junjin; Wu, Lili; Liu, Menghua; Liang, Zhi; Lin, Haoming; Zhou, Lili; Liu, Shuwen; Tang, Lan

    2017-01-01

    Cytochrome P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism of exogenous and endogenous compounds. The gene transcription of CYPs and UGTs can be enhanced or reduced by transcription factors (TFs). This study aims to explore novel TFs involved in the regulatory network of human hepatic UGTs/CYPs. Correlations between the transcription levels of 683 key TFs and CYPs/UGTs in three different human liver expression profiles (n = 640) were calculated first. Supervised weighted correlation network analysis (sWGCNA) was employed to define hub genes among the selected TFs. The relationship among 17 defined TFs, CYPs/UGTs expression, and activity were evaluated in 30 liver samples from Chinese patients. The positive controls (e.g., PPARA, NR1I2, NR1I3) and hub TFs (NFIA, NR3C2, and AR) in the Grey sWGCNA Module were significantly and positively associated with CYPs/UGTs expression. And the cancer- or inflammation-related TFs (TEAD4, NFKB2, and NFKB1) were negatively associated with mRNA expression of CYP2C9/CYP2E1/UGT1A9. Furthermore, the effect of NR1I2, NR1I3, AR, TEAD4, and NFKB2 on CYP450/UGT1A gene transcription translated into moderate influences on enzyme activities. To our knowledge, this is the first study to integrate Gene Expression Omnibus (GEO) datasets and supervised weighted correlation network analysis (sWGCNA) for defining TFs potentially related to CYPs/UGTs. We detected several novel TFs involved in the regulatory network of hepatic CYPs and UGTs in humans. Further validation and investigation may reveal their exact mechanism of CYPs/UGTs regulation.

  14. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights

    Energy Technology Data Exchange (ETDEWEB)

    Acquaah-Mensah, George K.; Taylor, Ronald C.

    2016-07-01

    Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen BrainAtlasmouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networkswere learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations inmousewhole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, andSyn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.

  15. Classifying Cereal Data

    Science.gov (United States)

    The DSQ includes questions about cereal intake and allows respondents up to two responses on which cereals they consume. We classified each cereal reported first by hot or cold, and then along four dimensions: density of added sugars, whole grains, fiber, and calcium.

  16. LCC: Light Curves Classifier

    Science.gov (United States)

    Vo, Martin

    2017-08-01

    Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

  17. Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2010-05-01

    Full Text Available Abstract Background The neonatal bovine mammary fat pad (MFP surrounding the mammary parenchyma (PAR is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. Results Over 9,000 differentially expressed genes (DEG; False discovery rate ≤ 0.05 were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736 we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742 belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR. Conclusions Functional analyses underscored a reciprocal influence in

  18. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin.

    Science.gov (United States)

    Larkin, Andrew; Siddens, Lisbeth K; Krueger, Sharon K; Tilton, Susan C; Waters, Katrina M; Williams, David E; Baird, William M

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log(2) fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. An Integrative Analysis of Preeclampsia Based on the Construction of an Extended Composite Network Featuring Protein-Protein Physical Interactions and Transcriptional Relationships.

    Directory of Open Access Journals (Sweden)

    Daniel Vaiman

    Full Text Available Preeclampsia (PE is a pregnancy disorder defined by hypertension and proteinuria. This disease remains a major cause of maternal and fetal morbidity and mortality. Defective placentation is generally described as being at the root of the disease. The characterization of the transcriptome signature of the preeclamptic placenta has allowed to identify differentially expressed genes (DEGs. However, we still lack a detailed knowledge on how these DEGs impact the function of the placenta. The tools of network biology offer a methodology to explore complex diseases at a systems level. In this study we performed a cross-platform meta-analysis of seven publically available gene expression datasets comparing non-pathological and preeclamptic placentas. Using the rank product algorithm we identified a total of 369 DEGs consistently modified in PE. The DEGs were used as seeds to build both an extended physical protein-protein interactions network and a transcription factors regulatory network. Topological and clustering analysis was conducted to analyze the connectivity properties of the networks. Finally both networks were merged into a composite network which presents an integrated view of the regulatory pathways involved in preeclampsia and the crosstalk between them. This network is a useful tool to explore the relationship between the DEGs and enable hypothesis generation for functional experimentation.

  20. Intelligent Garbage Classifier

    Directory of Open Access Journals (Sweden)

    Ignacio Rodríguez Novelle

    2008-12-01

    Full Text Available IGC (Intelligent Garbage Classifier is a system for visual classification and separation of solid waste products. Currently, an important part of the separation effort is based on manual work, from household separation to industrial waste management. Taking advantage of the technologies currently available, a system has been built that can analyze images from a camera and control a robot arm and conveyor belt to automatically separate different kinds of waste.

  1. Classifying Linear Canonical Relations

    OpenAIRE

    Lorand, Jonathan

    2015-01-01

    In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.

  2. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Yamasaki, Yuji; Gao, Feng; Jordan, Mark C; Ayele, Belay T

    2017-09-16

    Maturation forms one of the critical seed developmental phases and it is characterized mainly by programmed cell death, dormancy and desiccation, however, the transcriptional programs and regulatory networks underlying acquisition of dormancy and deposition of storage reserves during the maturation phase of seed development are poorly understood in wheat. The present study performed comparative spatiotemporal transcriptomic analysis of seed maturation in two wheat genotypes with contrasting seed weight/size and dormancy phenotype. The embryo and endosperm tissues of maturing seeds appeared to exhibit genotype-specific temporal shifts in gene expression profile that might contribute to the seed phenotypic variations. Functional annotations of gene clusters suggest that the two tissues exhibit distinct but genotypically overlapping molecular functions. Motif enrichment predicts genotypically distinct abscisic acid (ABA) and gibberellin (GA) regulated transcriptional networks contribute to the contrasting seed weight/size and dormancy phenotypes between the two genotypes. While other ABA responsive element (ABRE) motifs are enriched in both genotypes, the prevalence of G-box-like motif specifically in tissues of the dormant genotype suggests distinct ABA mediated transcriptional mechanisms control the establishment of dormancy during seed maturation. In agreement with this, the bZIP transcription factors that co-express with ABRE enriched embryonic genes differ with genotype. The enrichment of SITEIIATCYTC motif specifically in embryo clusters of maturing seeds irrespective of genotype predicts a tissue specific role for the respective TCP transcription factors with no or minimal contribution to the variations in seed dormancy. The results of this study advance our understanding of the seed maturation associated molecular mechanisms underlying variation in dormancy and weight/size in wheat seeds, which is a critical step towards the designing of molecular strategies

  3. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.

    Science.gov (United States)

    Zhou, Ke-Ren; Liu, Shun; Sun, Wen-Ju; Zheng, Ling-Ling; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2017-01-04

    The abnormal transcriptional regulation of non-coding RNAs (ncRNAs) and protein-coding genes (PCGs) is contributed to various biological processes and linked with human diseases, but the underlying mechanisms remain elusive. In this study, we developed ChIPBase v2.0 (http://rna.sysu.edu.cn/chipbase/) to explore the transcriptional regulatory networks of ncRNAs and PCGs. ChIPBase v2.0 has been expanded with ∼10 200 curated ChIP-seq datasets, which represent about 20 times expansion when comparing to the previous released version. We identified thousands of binding motif matrices and their binding sites from ChIP-seq data of DNA-binding proteins and predicted millions of transcriptional regulatory relationships between transcription factors (TFs) and genes. We constructed 'Regulator' module to predict hundreds of TFs and histone modifications that were involved in or affected transcription of ncRNAs and PCGs. Moreover, we built a web-based tool, Co-Expression, to explore the co-expression patterns between DNA-binding proteins and various types of genes by integrating the gene expression profiles of ∼10 000 tumor samples and ∼9100 normal tissues and cell lines. ChIPBase also provides a ChIP-Function tool and a genome browser to predict functions of diverse genes and visualize various ChIP-seq data. This study will greatly expand our understanding of the transcriptional regulations of ncRNAs and PCGs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling

    Directory of Open Access Journals (Sweden)

    Craigon Marie

    2009-08-01

    Full Text Available Abstract Background Interferons (IFNs are potent antiviral cytokines capable of reprogramming the macrophage phenotype through the induction of interferon-stimulated genes (ISGs. Here we have used targeted RNA interference to suppress the expression of a number of key genes associated with IFN signalling in murine macrophages prior to stimulation with interferon-gamma. Genome-wide changes in transcript abundance caused by siRNA activity were measured using exon-level microarrays in the presence or absence of IFNγ. Results Transfection of murine bone-marrow derived macrophages (BMDMs with a non-targeting (control siRNA and 11 sequence-specific siRNAs was performed using a cationic lipid transfection reagent (Lipofectamine2000 prior to stimulation with IFNγ. Total RNA was harvested from cells and gene expression measured on Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. Network-based analysis of these data revealed six siRNAs to cause a marked shift in the macrophage transcriptome in the presence or absence IFNγ. These six siRNAs targeted the Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2 transcripts. The perturbation of the transcriptome by the six siRNAs was highly similar in each case and affected the expression of over 600 downstream transcripts. Regulated transcripts were clustered based on co-expression into five major groups corresponding to transcriptional networks associated with the type I and II IFN response, cell cycle regulation, and NF-KB signalling. In addition we have observed a significant non-specific immune stimulation of cells transfected with siRNA using Lipofectamine2000, suggesting use of this reagent in BMDMs, even at low concentrations, is enough to induce a type I IFN response. Conclusion Our results provide evidence that the type I IFN response in murine BMDMs is dependent on Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2, and that siRNAs targeted to these genes results in perturbation of key transcriptional networks associated

  5. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression

    NARCIS (Netherlands)

    G. Denecker (Geertrui); A.M. Vandamme (Anne Mieke); E. Akay (Ela); D. Koludrovic (D.); J. Taminau (J.); K. Lemeire (K.); A. Gheldof (A.); B. de Craene (B.); M. van Gele (M.); L. Brochez (L.); G.M. Udupi (G.); S.M. Rafferty; B. Balint (B.); W.M. Gallagher (W.); M.A.I. Ghanem (Mazen); D. Huylebroeck (Danny); K. Haigh (Katharina); J.J. van den Oord (Joost); L. Larue; I. Davidson (Irwin); J.-C. Marine (J.); G. Berx (Geert)

    2014-01-01

    textabstractDeregulation of signaling pathways that control differentiation, expansion and migration of neural crest-derived melanoblasts during normal development contributes also to melanoma progression and metastasis. Although several epithelial-to-mesenchymal (EMT) transcription factors, such as

  6. Classifying TDSS Stellar Variables

    Science.gov (United States)

    Amaro, Rachael Christina; Green, Paul J.; TDSS Collaboration

    2017-01-01

    The Time Domain Spectroscopic Survey (TDSS), a subprogram of SDSS-IV eBOSS, obtains classification/discovery spectra of point-source photometric variables selected from PanSTARRS and SDSS multi-color light curves regardless of object color or lightcurve shape. Tens of thousands of TDSS spectra are already available and have been spectroscopically classified both via pipeline and by visual inspection. About half of these spectra are quasars, half are stars. Our goal is to classify the stars with their correct variability types. We do this by acquiring public multi-epoch light curves for brighter stars (rpulsating white dwarfs, and other exotic systems. The key difference between our catalog and others is that along with the light curves, we will be using TDSS spectra to help in the classification of variable type, as spectra are rich with information allowing estimation of physical parameters like temperature, metallicity, gravity, etc. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  7. Classifying basic research designs.

    Science.gov (United States)

    Burkett, G L

    1990-01-01

    Considerable confusion over terminology for classifying basic types of research design in family medicine stems from the rich variety of substantive topics studied by family medicine researchers, differences in research terminology among the disciplines that family medicine research draws from, and lack of uniform research design terminology within these disciplines themselves. Many research design textbooks themselves fail to specify the dimensions on which research designs are classified or the logic underlying the classification systems proposed. This paper describes a typology based on three dimensions that may be used to characterize the basic design qualities of any study. These dimensions are: 1) the nature of the research objective (exploratory, descriptive, or analytic); 2) the time frame under investigation (retrospective, cross-sectional, or prospective); and 3) whether the investigator intervenes in the events under study (observational or interventional). This three-dimensional typology may be helpful for teaching basic research design concepts, for contemplating research design decisions in planning a study, and as a basis for further consideration of a more detailed, uniform research design classification system.

  8. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, Andrew [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Department of Statistics, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Krueger, Sharon K. [Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Tilton, Susan C.; Waters, Katrina M. [Superfund Research Center, Oregon State University (United States); Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Baird, William M. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States)

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  9. Classifying network attack scenarios using an ontology

    CSIR Research Space (South Africa)

    Van Heerden, RP

    2012-03-01

    Full Text Available on the web soon after the breach. Kelley et al used these publicly available lists for testing password cracking algorithms (Kelley, 2011). 5.3.6 Snooping for secrets This scenario represents curious individuals nosing around for secrets. Gary Mc... and again): Measuring password strength by simulating password-cracking algorithms (CMU-CyLab-11-008). Lancor, L., & Workman, R. (2007). Using Google hacking to enhance defense strategies. ACM SIGCSE Bulletin, 39(1), 491-495. Lau, F., Rubin, S. H...

  10. A Simple Neural Network Contextual Classifier

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Tidemann, J.

    1997-01-01

    I. Kanellopoulos, G.G. Wilkinson, F. Roli and J. Austin (Eds.)Proceedings of European Union Environment and Climate Programme Concerted Action COMPARES (COnnectionist Methods in Pre-processing and Analysis of REmote Sensing data).......I. Kanellopoulos, G.G. Wilkinson, F. Roli and J. Austin (Eds.)Proceedings of European Union Environment and Climate Programme Concerted Action COMPARES (COnnectionist Methods in Pre-processing and Analysis of REmote Sensing data)....

  11. The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent

    Directory of Open Access Journals (Sweden)

    Sutcliffe Margaret

    2011-04-01

    Full Text Available Abstract Background Humans and mice with loss of function mutations in GPR54 (KISS1R or kisspeptin do not progress through puberty, caused by a failure to release GnRH. The transcriptional networks regulated by these proteins in the hypothalamus have yet to be explored by genome-wide methods. Results We show here, using 1 million exon mouse arrays (Exon 1.0 Affymetrix and quantitative polymerase chain reaction (QPCR validation to analyse microdissected hypothalamic tissue from Gpr54 and Kiss1 knockout mice, the extent of transcriptional regulation in the hypothalamus. The sensitivity to detect important transcript differences in microdissected RNA was confirmed by the observation of counter-regulation of Kiss1 expression in Gpr54 knockouts and confirmed by immunohistochemistry (IHC. Since Gpr54 and Kiss1 knockout animals are effectively pre-pubertal with low testosterone (T levels, we also determined which of the validated transcripts were T-responsive and which varied according to genotype alone. We observed four types of transcriptional regulation (i genotype only dependent regulation, (ii T only dependent regulation, (iii genotype and T-dependent regulation with interaction between these variables, (iv genotype and T-dependent regulation with no interaction between these variables. The results implicate for the first time several transcription factors (e.g. Npas4, Esr2, proteases (Klk1b22, and the orphan 10-transmembrane transporter TMEM144 in the biology of GPR54/kisspeptin function in the hypothalamus. We show for the neuronal activity regulated transcription factor NPAS4, that distinct protein over-expression is seen in the hypothalamus and hippocampus in Gpr54 knockout mice. This links for the first time the hypothalamic-gonadal axis with this important regulator of inhibitory synapse formation. Similarly we confirm TMEM144 up-regulation in the hypothalamus by RNA in situ hybridization and western blot. Conclusions Taken together, global

  12. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  13. Construction and analysis of the transcription factor-microRNA co-regulatory network response to Mycobacterium tuberculosis: a view from the blood.

    Science.gov (United States)

    Lin, Yan; Duan, Zipeng; Xu, Feng; Zhang, Jiayuan; Shulgina, Marina V; Li, Fan

    2017-01-01

    Mycobacterium tuberculosis ( Mtb ) infection has been regional outbreak, recently. The traditional focus on the patterns of "reductionism" which was associated with single molecular changes has been unable to meet the demand of early diagnosis and clinical application when current tuberculosis infection happened. In this study, we employed a systems biology approach to collect large microarray data sets including mRNAs and microRNAs (miRNAs) to identify the differentially expressed mRNAs and miRNAs in the whole blood of TB patients. The aim was to identify key genes associated with the immune response in the pathogenic process of tuberculosis by analyzing the co-regulatory network that was consisted of transcription factors and miRNAs as well as their target genes. The network along with their co-regulatory genes was analyzed utilizing Transcriptional Regulatory Element Database (TRED) and Database for Annotation, Visualization and Integrated Discovery (DAVID). We got 21 (19 up-regulated and 2 down-regulated) differentially expressed genes that were co-regulated by transcription factors and miRNAs. KEGG pathway enrichment analysis showed that the 21 differentially expressed genes were predominantly involved in Tuberculosis signaling pathway, which may play a major role in tuberculosis biological process. Quantitative real-time PCR was performed to verify the over expression of co-regulatory genes ( FCGR1A and CEBPB ). The genetic expression was correlated with clinicopathological characteristics in TB patients and inferences drawn. Our results suggest the TF-miRNA gene co-regulatory network may help us further understand the molecular mechanism of immune response to tuberculosis and provide us a new angle of future biomarker and therapeutic targets.

  14. Classifiers and Plurality: evidence from a deictic classifier language

    Directory of Open Access Journals (Sweden)

    Filomena Sandalo

    2016-12-01

    Full Text Available This paper investigates the semantic contribution of plural morphology and its interaction with classifiers in Kadiwéu. We show that Kadiwéu, a Waikurúan language spoken in South America, is a classifier language similar to Chinese but classifiers are an obligatory ingredient of all determiner-like elements, such as quantifiers, numerals, and wh-words for arguments. What all elements with classifiers have in common is that they contribute an atomized/individualized interpretation of the NP. Furthermore, this paper revisits the relationship between classifiers and number marking and challenges the common assumption that classifiers and plurals are mutually exclusive.

  15. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van

    2014-01-01

    Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve...... the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene...... of complementary functional genomics filters, makes it possible to translate, for each TF, protein binding microarray data into a set of high-quality target genes. With this approach, we confirm NAC target genes reported from independent in vivo analyses. We emphasize that candidate target gene sets together...

  16. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line.

    Science.gov (United States)

    Lizio, Marina; Ishizu, Yuri; Itoh, Masayoshi; Lassmann, Timo; Hasegawa, Akira; Kubosaki, Atsutaka; Severin, Jessica; Kawaji, Hideya; Nakamura, Yukio; Suzuki, Harukazu; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R

    2015-01-01

    Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting Ch

  17. Directed network modules

    International Nuclear Information System (INIS)

    Palla, Gergely; Farkas, Illes J; Pollner, Peter; Derenyi, Imre; Vicsek, Tamas

    2007-01-01

    A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Renyi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs

  18. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.

    Science.gov (United States)

    Truman, William; de Zabala, Marta Torres; Grant, Murray

    2006-04-01

    To successfully infect a plant, bacterial pathogens inject a collection of Type III effector proteins (TTEs) directly into the plant cell that function to overcome basal defences and redirect host metabolism for nutrition and growth. We examined (i) the transcriptional dynamics of basal defence responses between Arabidopsis thaliana and Pseudomonas syringae and (ii) how basal defence is subsequently modulated by virulence factors during compatible interactions. A set of 96 genes displaying an early, sustained induction during basal defence was identified. These were also universally co-regulated following other bacterial basal resistance and non-host responses or following elicitor challenges. Eight hundred and eighty genes were conservatively identified as being modulated by TTEs within 12 h post-inoculation (hpi), 20% of which represented transcripts previously induced by the bacteria at 2 hpi. Significant over-representation of co-regulated transcripts encoding leucine rich repeat receptor proteins and protein phosphatases were, respectively, suppressed and induced 12 hpi. These data support a model in which the pathogen avoids detection through diminution of extracellular receptors and attenuation of kinase signalling pathways. Transcripts associated with several metabolic pathways, particularly plastid based primary carbon metabolism, pigment biosynthesis and aromatic amino acid metabolism, were significantly modified by the bacterial challenge at 12 hpi. Superimposed upon this basal response, virulence factors (most likely TTEs) targeted genes involved in phenylpropanoid biosynthesis, consistent with the abrogation of lignin deposition and other wall modifications likely to restrict the passage of nutrients and water to the invading bacteria. In contrast, some pathways associated with stress tolerance are transcriptionally induced at 12 hpi by TTEs.

  19. The ETS transcription factors ELK1 and GABPA regulate different gene networks to control MCF10A breast epithelial cell migration.

    Science.gov (United States)

    Odrowaz, Zaneta; Sharrocks, Andrew D

    2012-01-01

    Members of the ETS transcription factor family often target the same binding regions and hence have the potential to regulate the same genes and downstream biological processes. However, individual family members also preferentially bind to other genomic regions, thus providing the potential for controlling distinct transcriptional programmes and generating specific biological effects. The ETS transcription factor ELK1 controls cell migration in breast epithelial cells through targeting a cohort of genes, independently from another family member GABPA, and therefore achieves biological specificity. Here, we demonstrate that GABPA also controls cell migration in breast epithelial cells. However, GABPA controls the expression of a different network of target genes to ELK1. Both direct and indirect target genes for GABPA are identified and amongst the direct targets we confirm the importance of RAC1 and KIF20A for cell migration. Therefore, although ELK1 and GABPA ultimately control the same biological process, they do so by regulating different cohorts of target genes associated with cytoskeletal functions and cell migration control.

  20. Identification of host transcriptional networks showing concentration-dependent regulation by HPV16 E6 and E7 proteins in basal cervical squamous epithelial cells.

    Science.gov (United States)

    Smith, Stephen P; Scarpini, Cinzia G; Groves, Ian J; Odle, Richard I; Coleman, Nicholas

    2016-07-26

    Development of cervical squamous cell carcinoma requires increased expression of the major high-risk human-papillomavirus (HPV) oncogenes E6 and E7 in basal cervical epithelial cells. We used a systems biology approach to identify host transcriptional networks in such cells and study the concentration-dependent changes produced by HPV16-E6 and -E7 oncoproteins. We investigated sample sets derived from the W12 model of cervical neoplastic progression, for which high quality phenotype/genotype data were available. We defined a gene co-expression matrix containing a small number of highly-connected hub nodes that controlled large numbers of downstream genes (regulons), indicating the scale-free nature of host gene co-expression in W12. We identified a small number of 'master regulators' for which downstream effector genes were significantly associated with protein levels of HPV16 E6 (n = 7) or HPV16 E7 (n = 5). We validated our data by depleting E6/E7 in relevant cells and by functional analysis of selected genes in vitro. We conclude that the network of transcriptional interactions in HPV16-infected basal-type cervical epithelium is regulated in a concentration-dependent manner by E6/E7, via a limited number of central master-regulators. These effects are likely to be significant in cervical carcinogenesis, where there is competitive selection of cells with elevated expression of virus oncoproteins.

  1. NANOG Plays a Hierarchical Role in the Transcription Network Regulating the Pluripotency and Plasticity of Adipose Tissue-Derived Stem Cells.

    Science.gov (United States)

    Pitrone, Maria; Pizzolanti, Giuseppe; Tomasello, Laura; Coppola, Antonina; Morini, Lorenzo; Pantuso, Gianni; Ficarella, Romina; Guarnotta, Valentina; Perrini, Sebastio; Giorgino, Francesco; Giordano, Carla

    2017-05-23

    The stromal vascular cell fraction (SVF) of visceral and subcutaneous adipose tissue (VAT and SAT) has increasingly come into focus in stem cell research, since these compartments represent a rich source of multipotent adipose-derived stem cells (ASCs). ASCs exhibit a self-renewal potential and differentiation capacity. Our aim was to study the different expression of the embryonic stem cell markers NANOG (homeobox protein NANOG), SOX2 (SRY (sex determining region Y)-box 2) and OCT4 (octamer-binding transcription factor 4) and to evaluate if there exists a hierarchal role in this network in ASCs derived from both SAT and VAT. ASCs were isolated from SAT and VAT biopsies of 72 consenting patients (23 men, 47 women; age 45 ± 10; BMI between 25 ± 5 and 30 ± 5 range) undergoing elective open-abdominal surgery. Sphere-forming capability was evaluated by plating cells in low adhesion plastic. Stem cell markers CD90, CD105, CD29, CD31, CD45 and CD146 were analyzed by flow cytometry, and the stem cell transcription factors NANOG, SOX2 and OCT4 were detected by immunoblotting and real-time PCR. NANOG , SOX2 and OCT4 interplay was explored by gene silencing. ASCs from VAT and SAT confirmed their mesenchymal stem cell (MSC) phenotype expressing the specific MSC markers CD90, CD105, NANOG, SOX2 and OCT4. NANOG silencing induced a significant OCT4 (70 ± 0.05%) and SOX2 (75 ± 0.03%) downregulation, whereas SOX2 silencing did not affect NANOG gene expression. Adipose tissue is an important source of MSC, and siRNA experiments endorse a hierarchical role of NANOG in the complex transcription network that regulates pluripotency.

  2. Early transcriptome analyses of Z-3-Hexenol-treated zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles.

    Directory of Open Access Journals (Sweden)

    Jurgen Engelberth

    Full Text Available Green leaf volatiles (GLV, which are rapidly emitted by plants in response to insect herbivore damage, are now established as volatile defense signals. Receiving plants utilize these molecules to prime their defenses and respond faster and stronger when actually attacked. To further characterize the biological activity of these compounds we performed a microarray analysis of global gene expression. The focus of this project was to identify early transcriptional events elicited by Z-3-hexenol (Z-3-HOL as our model GLV in maize (Zea mays seedlings. The microarray results confirmed previous studies on Z-3-HOL -induced gene expression but also provided novel information about the complexity of Z-3-HOL -induced transcriptional networks. Besides identifying a distinct set of genes involved in direct and indirect defenses we also found significant expression of genes involved in transcriptional regulation, Ca(2+-and lipid-related signaling, and cell wall reinforcement. By comparing these results with those obtained by treatment of maize seedlings with insect elicitors we found a high degree of correlation between the two expression profiles at this early time point, in particular for those genes related to defense. We further analyzed defense gene expression induced by other volatile defense signals and found Z-3-HOL to be significantly more active than methyl jasmonate, methyl salicylate, and ethylene. The data presented herein provides important information on early genetic networks that are activated by Z-3-HOL and demonstrates the effectiveness of this compound in the regulation of typical plant defenses against insect herbivores in maize.

  3. Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network

    Directory of Open Access Journals (Sweden)

    Angela M Arensdorf

    2013-09-01

    Full Text Available The unfolded protein response (UPR responds to disruption of endoplasmic reticulum (ER function by initiating signaling cascades that ultimately culminate in extensive transcriptional regulation. Classically, this regulation includes genes encoding ER chaperones, ER-associated degradation factors, and others involved in secretory protein folding and processing, and is carried out by the transcriptional activators that are produced as a consequence of UPR activation. However, up to half of the mRNAs regulated by ER stress are downregulated rather than upregulated, and the mechanisms linking ER stress and UPR activation to mRNA suppression are poorly understood. To begin to address this issue, we used a bottom-up approach to study the metabolic gene regulatory network controlled by the UPR in the liver, because ER in the liver stress leads to lipid accumulation, and fatty liver disease is the most common liver disease in the western world. qRT-PCR profiling of mouse liver mRNAs during ER stress revealed that suppression of the transcriptional regulators C/EBPα, PPARα, and PGC-1α preceded lipid accumulation, and was then followed by suppression of mRNAs encoding key enzymes involved in fatty acid oxidation and lipoprotein biogenesis and transport. Mice lacking the ER stress sensor ATF6α, which experience persistent ER stress and profound lipid accumulation during challenge, were then used as the basis for a functional genomics approach that allowed genes to be grouped into distinct expression profiles. This clustering predicted that ER stress would suppress the activity of the metabolic transcriptional regulator HNF4α--a finding subsequently confirmed by chromatin immunopreciptation at the Cebpa and Pgc1a promoters. Our results establish a framework for hepatic gene regulation during ER stress and suggest that HNF4α occupies the apex of that framework. They also provide a unique resource for the community to further explore the temporal

  4. MINCR is a MYC-induced lncRNA able to modulate MYC’s transcriptional network in Burkitt lymphoma cells

    Science.gov (United States)

    Doose, Gero; Haake, Andrea; Bernhart, Stephan H.; López, Cristina; Duggimpudi, Sujitha; Wojciech, Franziska; Bergmann, Anke K.; Borkhardt, Arndt; Burkhardt, Birgit; Claviez, Alexander; Dimitrova, Lora; Haas, Siegfried; Hoell, Jessica I.; Hummel, Michael; Karsch, Dennis; Klapper, Wolfram; Kleo, Karsten; Kretzmer, Helene; Kreuz, Markus; Küppers, Ralf; Lawerenz, Chris; Lenze, Dido; Loeffler, Markus; Mantovani-Löffler, Luisa; Möller, Peter; Ott, German; Richter, Julia; Rohde, Marius; Rosenstiel, Philip; Rosenwald, Andreas; Schilhabel, Markus; Schneider, Markus; Scholz, Ingrid; Stilgenbauer, Stephan; Stunnenberg, Hendrik G.; Szczepanowski, Monika; Trümper, Lorenz; Weniger, Marc A.; Hoffmann, Steve; Siebert, Reiner; Iaccarino, Ingram

    2015-01-01

    Despite the established role of the transcription factor MYC in cancer, little is known about the impact of a new class of transcriptional regulators, the long noncoding RNAs (lncRNAs), on MYC ability to influence the cellular transcriptome. Here, we have intersected RNA-sequencing data from two MYC-inducible cell lines and a cohort of 91 B-cell lymphomas with or without genetic variants resulting in MYC overexpression. We identified 13 lncRNAs differentially expressed in IG-MYC-positive Burkitt lymphoma and regulated in the same direction by MYC in the model cell lines. Among them, we focused on a lncRNA that we named MYC-induced long noncoding RNA (MINCR), showing a strong correlation with MYC expression in MYC-positive lymphomas. To understand its cellular role, we performed RNAi and found that MINCR knockdown is associated with an impairment in cell cycle progression. Differential gene expression analysis after RNAi showed a significant enrichment of cell cycle genes among the genes down-regulated after MINCR knockdown. Interestingly, these genes are enriched in MYC binding sites in their promoters, suggesting that MINCR acts as a modulator of the MYC transcriptional program. Accordingly, MINCR knockdown was associated with a reduction in MYC binding to the promoters of selected cell cycle genes. Finally, we show that down-regulation of Aurora kinases A and B and chromatin licensing and DNA replication factor 1 may explain the reduction in cellular proliferation observed on MINCR knockdown. We, therefore, suggest that MINCR is a newly identified player in the MYC transcriptional network able to control the expression of cell cycle genes. PMID:26351698

  5. Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species.

    Science.gov (United States)

    Mateos, Julieta L; Tilmes, Vicky; Madrigal, Pedro; Severing, Edouard; Richter, René; Rijkenberg, Colin W M; Krajewski, Paweł; Coupland, George

    2017-12-19

    Genome-wide landscapes of transcription factor (TF) binding sites (BSs) diverge during evolution, conferring species-specific transcriptional patterns. The rate of divergence varies in different metazoan lineages but has not been widely studied in plants. We identified the BSs and assessed the effects on transcription of FLOWERING LOCUS C (FLC) and PERPETUAL FLOWERING 1 (PEP1), two orthologous MADS-box TFs that repress flowering and confer vernalization requirement in the Brassicaceae species Arabidopsis thaliana and Arabis alpina , respectively. We found that only 14% of their BSs were conserved in both species and that these contained a CArG-box that is recognized by MADS-box TFs. The CArG-box consensus at conserved BSs was extended compared with the core motif. By contrast, species-specific BSs usually lacked the CArG-box in the other species. Flowering-time genes were highly overrepresented among conserved targets, and their CArG-boxes were widely conserved among Brassicaceae species. Cold-regulated (COR) genes were also overrepresented among targets, but the cognate BSs and the identity of the regulated genes were usually different in each species. In cold, COR gene transcript levels were increased in flc and pep1-1 mutants compared with WT, and this correlated with reduced growth in pep1-1 Therefore, FLC orthologs regulate a set of conserved target genes mainly involved in reproductive development and were later independently recruited to modulate stress responses in different Brassicaceae lineages. Analysis of TF BSs in these lineages thus distinguishes widely conserved targets representing the core function of the TF from those that were recruited later in evolution. Copyright © 2017 the Author(s). Published by PNAS.

  6. A Bayesian classifier for symbol recognition

    OpenAIRE

    Barrat , Sabine; Tabbone , Salvatore; Nourrissier , Patrick

    2007-01-01

    URL : http://www.buyans.com/POL/UploadedFile/134_9977.pdf; International audience; We present in this paper an original adaptation of Bayesian networks to symbol recognition problem. More precisely, a descriptor combination method, which enables to improve significantly the recognition rate compared to the recognition rates obtained by each descriptor, is presented. In this perspective, we use a simple Bayesian classifier, called naive Bayes. In fact, probabilistic graphical models, more spec...

  7. Detecting and classifying faults on transmission systems using a backpropagation neural network; Deteccion y clasificacion de fallas en sistemas de transmision empleando una red neuronal con retropropagacion del error

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Ortiz, German

    2000-01-01

    Fault detection and diagnosis on transmission systems is an interesting area of investigation to Artificial Intelligence (AI) based systems. Neurocomputing is one of fastest growing areas of research in the fields of AI and pattern recognition. This work explores the possible suitability of pattern recognition approach of neural networks for fault detection and classification on power systems. The conventional detection techniques in modern relays are based in digital processing of signals and it need some time (around 1 cycle) to send a tripping signal, also they are likely to make incorrect decisions if the signals are noisy. It's desirable to develop a fast, accurate and robust approach that perform accurately for changing system conditions (like load variations and fault resistance). The aim of this work is to develop a novel technique based on Artificial Neural Networks (ANN), which explores the suitability of a pattern classification approach for fault detection and diagnosis. The suggested approach is based in the fact that when a fault occurs, a change in the system impedance take place and, as a consequence changes in amplitude and phase of line voltage and current signals take place. The ANN-based fault discriminator is trained to detect this changes as indicators of the instant of fault inception. This detector uses instantaneous values of these signals to make decisions. Suitability of using neural network as pattern classifiers for transmission systems fault diagnosis is described in detail a neural network design and simulation environment for real-time is presented. Results showing the performance of this approach are presented and indicate that it is fast, secure and exact enough, and it can be used in high speed fault detection and classification schemes. [Spanish] El diagnostico y la deteccion de fallas en sistemas de transmision es una area de interes en investigacion para sistemas basados en Inteligencia Artificial (IA). El calculo neuronal

  8. Shifts in the Gut Microbiota Composition Due to Depleted Bone Marrow Beta Adrenergic Signaling Are Associated with Suppressed Inflammatory Transcriptional Networks in the Mouse Colon.

    Science.gov (United States)

    Yang, Tao; Ahmari, Niousha; Schmidt, Jordan T; Redler, Ty; Arocha, Rebeca; Pacholec, Kevin; Magee, Kacy L; Malphurs, Wendi; Owen, Jennifer L; Krane, Gregory A; Li, Eric; Wang, Gary P; Vickroy, Thomas W; Raizada, Mohan K; Martyniuk, Christopher J; Zubcevic, Jasenka

    2017-01-01

    The brain-gut axis plays a critical role in the regulation of different diseases, many of which are characterized by sympathetic dysregulation. However, a direct link between sympathetic dysregulation and gut dysbiosis remains to be illustrated. Bone marrow (BM)-derived immune cells continuously interact with the gut microbiota to maintain homeostasis in the host. Their function is largely dependent upon the sympathetic nervous system acting via adrenergic receptors present on the BM immune cells. In this study, we utilized a novel chimera mouse that lacks the expression of BM beta1/2 adrenergic receptors (b1/2-ARs) to investigate the role of the sympathetic drive to the BM in gut and microbiota homeostasis. Fecal analyses demonstrated a shift from a dominance of Firmicutes to Bacteroidetes phylum in the b1/2-ARs KO chimera, resulting in a reduction in Firmicutes/Bacteroidetes ratio. Meanwhile, a significant reduction in Proteobacteria phylum was determined. No changes in the abundance of acetate-, butyrate-, and lactate-producing bacteria, and colon pathology were observed in the b1/2-ARs KO chimera. Transcriptomic profiling in colon identified Killer Cell Lectin-Like Receptor Subfamily D, Member 1 (Klrd1), Membrane-Spanning 4-Domains Subfamily A Member 4A (Ms4a4b), and Casein Kinase 2 Alpha Prime Polypeptide (Csnk2a2) as main transcripts associated with the microbiota shifts in the b1/2-ARs KO chimera. Suppression of leukocyte-related transcriptome networks (i.e., function, differentiation, migration), classical compliment pathway, and networks associated with intestinal function, barrier integrity, and excretion was also observed in the colon of the KO chimera. Moreover, reduced expression of transcriptional networks related to intestinal diseases (i.e., ileitis, enteritis, inflammatory lesions, and stress) was noted. The observed suppressed transcriptome networks were associated with a reduction in NK cells, macrophages, and CD4 + T cells in the b1/2-ARs KO

  9. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803

    DEFF Research Database (Denmark)

    Montagud, Arnau; Zelezniak, Aleksej; Navarro, Emilio

    2011-01-01

    Synechocystis sp. PCC6803 is a model cyanobacterium capable of producing biofuels with CO2 as carbon source and with its metabolism fueled by light, for which it stands as a potential production platform of socio-economic importance. Compilation and characterization of Synechocystis genome...... networks, surrounded by a stable core of pathways leading to biomass building blocks. This analysis identified potential bottlenecks for hydrogen and ethanol production. Integration of transcriptomic data with the Synechocystis flux coupling networks lead to identification of reporter flux coupling pairs...... and reporter flux coupling groups - regulatory hot spots during metabolic shifts triggered by the availability of light. Overall, flux coupling analysis provided insight into the structural organization of Synechocystis sp. PCC6803 metabolic network toward designing of a photosynthesis-based production...

  10. The response of the prostate to circulating cholesterol: activating transcription factor 3 (ATF3 as a prominent node in a cholesterol-sensing network.

    Directory of Open Access Journals (Sweden)

    Jayoung Kim

    Full Text Available Elevated circulating cholesterol is a systemic risk factor for cardiovascular disease and metabolic syndrome, however the manner in which the normal prostate responds to variations in cholesterol levels is poorly understood. In this study we addressed the molecular and cellular effects of elevated and suppressed levels of circulating cholesterol on the normal prostate. Integrated bioinformatic analysis was performed using DNA microarray data from two experimental formats: (1 ventral prostate from male mice with chronically elevated circulating cholesterol and (2 human prostate cells exposed acutely to cholesterol depletion. A cholesterol-sensitive gene expression network was constructed from these data and the transcription factor ATF3 was identified as a prominent node in the network. Validation experiments confirmed that elevated cholesterol reduced ATF3 expression and enhanced proliferation of prostate cells, while cholesterol depletion increased ATF3 levels and inhibited proliferation. Cholesterol reduction in vivo alleviated dense lymphomononuclear infiltrates in the periprostatic adipose tissue, which were closely associated with nerve tracts and blood vessels. These findings open new perspectives on the role of cholesterol in prostate health, and provide a novel role for ATF3, and associated proteins within a large signaling network, as a cholesterol-sensing mechanism.

  11. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin.

    Science.gov (United States)

    Treiber, Thomas; Mandel, Elizabeth M; Pott, Sebastian; Györy, Ildiko; Firner, Sonja; Liu, Edison T; Grosschedl, Rudolf

    2010-05-28

    The transcription factor early B cell factor-1 (Ebf1) is a key determinant of B lineage specification and differentiation. To gain insight into the molecular basis of Ebf1 function in early-stage B cells, we combined a genome-wide ChIP sequencing analysis with gain- and loss-of-function transcriptome analyses. Among 565 genes that are occupied and transcriptionally regulated by Ebf1, we identified large sets involved in (pre)-B cell receptor and Akt signaling, cell adhesion, and migration. Interestingly, a third of previously described Pax5 targets was found to be occupied by Ebf1. In addition to Ebf1-activated and -repressed genes, we identified targets at which Ebf1 induces chromatin changes that poise the genes for expression at subsequent stages of differentiation. Poised chromatin states on specific targets could also be established by Ebf1 expression in T cells but not in NIH 3T3 cells, suggesting that Ebf1 acts as a "pioneer" factor in a hematopoietic chromatin context. Copyright 2010 Elsevier Inc. All rights reserved.

  12. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  13. Investigations of Escherichia coli promoter sequences with artificial neural networks: new signals discovered upstream of the transcriptional startpoint

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Engelbrecht, Jacob

    1995-01-01

    We present a novel method for using the learning ability of a neural network as a measure of information in local regions of input data. Using the method to analyze Escherichia coli promoters, we discover all previously described signals, and furthermore find new signals that are regularly spaced...

  14. Dynamic network of transcription and pathway crosstalk to reveal molecular mechanism of MGd-treated human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Liyan Shao

    Full Text Available Recent research has revealed various molecular markers in lung cancer. However, the organizational principles underlying their genetic regulatory networks still await investigation. Here we performed Network Component Analysis (NCA and Pathway Crosstalk Analysis (PCA to construct a regulatory network in human lung cancer (A549 cells which were treated with 50 uM motexafin gadolinium (MGd, a metal cation-containing chemotherapeutic drug for 4, 12, and 24 hours. We identified a set of key TFs, known target genes for these TFs, and signaling pathways involved in regulatory networks. Our work showed that putative interactions between these TFs (such as ESR1/Sp1, E2F1/Sp1, c-MYC-ESR, Smad3/c-Myc, and NFKB1/RELA, between TFs and their target genes (such as BMP41/Est1, TSC2/Myc, APE1/Sp1/p53, RARA/HOXA1, and SP1/USF2, and between signaling pathways (such as PPAR signaling pathway and Adipocytokines signaling pathway. These results will provide insights into the regulatory mechanism of MGd-treated human lung cancer cells.

  15. Classifier Selection with Permutation Tests

    OpenAIRE

    Arias, Marta; Arratia, Argimiro; Duarte-Lopez, Ariel

    2017-01-01

    This work presents a content-based recommender system for machine learning classifier algorithms. Given a new data set, a recommendation of what classifier is likely to perform best is made based on classifier performance over similar known data sets. This similarity is measured according to a data set characterization that includes several state-of-the-art metrics taking into account physical structure, statis- tics, and information theory. A novelty with respect to prior work is the use of ...

  16. Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach.

    Science.gov (United States)

    Lancashire, Lee J; Rees, Robert C; Ball, Graham R

    2008-06-01

    The advent of microarrays has attracted considerable interest from biologists due to the potential for high throughput analysis of hundreds of thousands of gene transcripts. Subsequent analysis of the data may identify specific features which correspond to characteristics of interest within the population, for example, analysis of gene expression profiles in cancer patients to identify molecular signatures corresponding with prognostic outcome. These high throughput technologies have resulted in an unprecedented rate of data generation, often of high complexity, highlighting the need for novel data analysis methodologies that will cope with data of this nature. Stepwise methods using artificial neural networks (ANNs) have been developed to identify an optimal subset of predictive gene transcripts from highly dimensional microarray data. Here these methods have been applied to a gene microarray dataset to identify and validate gene signatures corresponding with estrogen receptor and lymph node status in breast cancer. Many gene transcripts were identified whose expression could differentiate patients to very high accuracies based upon firstly whether they were positive or negative for estrogen receptor, and secondly whether metastasis to the axillary lymph node had occurred. A number of these genes had been previously reported to have a role in cancer. Significantly fewer genes were used compared to other previous studies. The models using the optimal gene subsets were internally validated using an extensive random sample cross-validation procedure and externally validated using a follow up dataset from a different cohort of patients on a newer array chip containing the same and additional probe sets. Here, the models retained high accuracies, emphasising the potential power of this approach in analysing complex systems. These findings show how the proposed method allows for the rapid analysis and subsequent detailed interrogation of gene expression signatures to

  17. Single and combinatorial chromatin coupling events underlies the function of transcript factor krüppel-like factor 11 in the regulation of gene networks

    Science.gov (United States)

    2014-01-01

    Background Krüppel-like factors (KLFs) are a group of master regulators of gene expression conserved from flies to human. However, scant information is available on either the mechanisms or functional impact of the coupling of KLF proteins to chromatin remodeling machines, a deterministic step in transcriptional regulation. Results and discussion In the current study, we use genome-wide analyses of chromatin immunoprecipitation (ChIP-on-Chip) and Affymetrix-based expression profiling to gain insight into how KLF11, a human transcription factor involved in tumor suppression and metabolic diseases, works by coupling to three co-factor groups: the Sin3-histone deacetylase system, WD40-domain containing proteins, and the HP1-histone methyltransferase system. Our results reveal that KLF11 regulates distinct gene networks involved in metabolism and growth by using single or combinatorial coupling events. Conclusion This study, the first of its type for any KLF protein, reveals that interactions with multiple chromatin systems are required for the full gene regulatory function of these proteins. PMID:24885560

  18. AtMYB61, an R2R3-MYB transcription factor, functions as a pleiotropic regulator via a small gene network.

    Science.gov (United States)

    Romano, Julia M; Dubos, Christian; Prouse, Michael B; Wilkins, Olivia; Hong, Henry; Poole, Mervin; Kang, Kyu-Young; Li, Eryang; Douglas, Carl J; Western, Tamara L; Mansfield, Shawn D; Campbell, Malcolm M

    2012-09-01

    Throughout their lifetimes, plants must coordinate the regulation of various facets of growth and development. Previous evidence has suggested that the Arabidopsis thaliana R2R3-MYB, AtMYB61, might function as a coordinate regulator of multiple aspects of plant resource allocation. Using a combination of cell biology, transcriptome analysis and biochemistry, in conjunction with gain-of-function and loss-of-function genetics, the role of AtMYB61 in conditioning resource allocation throughout the plant life cycle was explored. In keeping with its role as a regulator of resource allocation, AtMYB61 is expressed in sink tissues, notably xylem, roots and developing seeds. Loss of AtMYB61 function decreases xylem formation, induces qualitative changes in xylem cell structure and decreases lateral root formation; in contrast, gain of AtMYB61 function has the opposite effect on these traits. AtMYB61 coordinates a small network of downstream target genes, which contain a motif in their upstream regulatory regions that is bound by AtMYB61, and AtMYB61 activates transcription from this same motif. Loss-of-function analysis supports the hypothesis that AtMYB61 targets play roles in shaping subsets of AtMYB61-related phenotypes. Taken together, these findings suggest that AtMYB61 links the transcriptional control of multiple aspects of plant resource allocation. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. HFR1 Sequesters PIF1 to Govern the Transcriptional Network Underlying Light-Initiated Seed Germination in Arabidopsis[C][W][OPEN

    Science.gov (United States)

    Shi, Hui; Zhong, Shangwei; Mo, Xiaorong; Liu, Na; Nezames, Cynthia D.; Deng, Xing Wang

    2013-01-01

    Seed germination is the first step for seed plants to initiate a new life cycle. Light plays a predominant role in promoting seed germination, where the initial phase is mediated by photoreceptor phytochrome B (phyB). Previous studies showed that PHYTOCHROME-INTERACTING FACTOR1 (PIF1) represses seed germination downstream of phyB. Here, we identify a positive regulator of phyB-dependent seed germination, LONG HYPOCOTYL IN FAR-RED1 (HFR1). HFR1 blocks PIF1 transcriptional activity by forming a heterodimer with PIF1 that prevents PIF1 from binding to DNA. Our whole-genomic analysis shows that HFR1 and PIF1 oppositely mediate the light-regulated transcriptome in imbibed seeds. Through the HFR1–PIF1 module, light regulates expression of numerous genes involved in cell wall loosening, cell division, and hormone pathways to initiate seed germination. The functionally antagonistic HFR1–PIF1 pair constructs a fail-safe mechanism for fine-tuning seed germination during low-level illumination, ensuring a rapid response to favorable environmental changes. This study identifies the HFR1–PIF1 pair as a central module directing the whole genomic transcriptional network to rapidly initiate light-induced seed germination. PMID:24179122

  20. Plurality in a Classifier Language.

    Science.gov (United States)

    Li, Yen-Hui Audrey

    1999-01-01

    Argues that a classifier language can have a plural morpheme within a nominal expression, suggesting that -men in Mandarin Chinese is best analyzed as a plural morpheme, in contrast to a regular plural on an element in N, such as the English -s. The paper makes a prediction about the structures of nominal expressions in classifier and…

  1. Classified

    CERN Multimedia

    Computer Security Team

    2011-01-01

    In the last issue of the Bulletin, we have discussed recent implications for privacy on the Internet. But privacy of personal data is just one facet of data protection. Confidentiality is another one. However, confidentiality and data protection are often perceived as not relevant in the academic environment of CERN.   But think twice! At CERN, your personal data, e-mails, medical records, financial and contractual documents, MARS forms, group meeting minutes (and of course your password!) are all considered to be sensitive, restricted or even confidential. And this is not all. Physics results, in particular when being preliminary and pending scrutiny, are sensitive, too. Just recently, an ATLAS collaborator copy/pasted the abstract of an ATLAS note onto an external public blog, despite the fact that this document was clearly marked as an "Internal Note". Such an act was not only embarrassing to the ATLAS collaboration, and had negative impact on CERN’s reputation --- i...

  2. RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors

    DEFF Research Database (Denmark)

    Thompson, Nancy; Gésina, Emilie; Scheinert, Peter

    2012-01-01

    by PTF1a. These proteins, most of which were previously shown to be necessary for pancreas bud maintenance or formation, form a transcription factor network that allows the maintenance of pancreas progenitors. In addition, we identify Bmp7, Nr5a2, RhoV, and P2rx1 as new targets of PTF1a in pancreas...

  3. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures.

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Moreira-Filho

    Full Text Available Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS constitute an initial precipitating insult (IPI commonly associated with mesial temporal lobe epilepsy (MTLE. FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E or late (L disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i the visualization and analysis of differentially expressed (DE and complete (CO - all valid GO annotated transcripts - GCNs for the E and L groups; ii the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less

  4. Neural Classifier Construction using Regularization, Pruning

    DEFF Research Database (Denmark)

    Hintz-Madsen, Mads; Hansen, Lars Kai; Larsen, Jan

    1998-01-01

    In this paper we propose a method for construction of feed-forward neural classifiers based on regularization and adaptive architectures. Using a penalized maximum likelihood scheme, we derive a modified form of the entropic error measure and an algebraic estimate of the test error. In conjunctio...... with optimal brain damage pruning, a test error estimate is used to select the network architecture. The scheme is evaluated on four classification problems.......In this paper we propose a method for construction of feed-forward neural classifiers based on regularization and adaptive architectures. Using a penalized maximum likelihood scheme, we derive a modified form of the entropic error measure and an algebraic estimate of the test error. In conjunction...

  5. Classifying objects in LWIR imagery via CNNs

    Science.gov (United States)

    Rodger, Iain; Connor, Barry; Robertson, Neil M.

    2016-10-01

    The aim of the presented work is to demonstrate enhanced target recognition and improved false alarm rates for a mid to long range detection system, utilising a Long Wave Infrared (LWIR) sensor. By exploiting high quality thermal image data and recent techniques in machine learning, the system can provide automatic target recognition capabilities. A Convolutional Neural Network (CNN) is trained and the classifier achieves an overall accuracy of > 95% for 6 object classes related to land defence. While the highly accurate CNN struggles to recognise long range target classes, due to low signal quality, robust target discrimination is achieved for challenging candidates. The overall performance of the methodology presented is assessed using human ground truth information, generating classifier evaluation metrics for thermal image sequences.

  6. Occupancy classification of position weight matrix-inferred transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Hollis Wright

    Full Text Available BACKGROUND: Computational prediction of Transcription Factor Binding Sites (TFBS from sequence data alone is difficult and error-prone. Machine learning techniques utilizing additional environmental information about a predicted binding site (such as distances from the site to particular chromatin features to determine its occupancy/functionality class show promise as methods to achieve more accurate prediction of true TFBS in silico. We evaluate the Bayesian Network (BN and Support Vector Machine (SVM machine learning techniques on four distinct TFBS data sets and analyze their performance. We describe the features that are most useful for classification and contrast and compare these feature sets between the factors. RESULTS: Our results demonstrate good performance of classifiers both on TFBS for transcription factors used for initial training and for TFBS for other factors in cross-classification experiments. We find that distances to chromatin modifications (specifically, histone modification islands as well as distances between such modifications to be effective predictors of TFBS occupancy, though the impact of individual predictors is largely TF specific. In our experiments, Bayesian network classifiers outperform SVM classifiers. CONCLUSIONS: Our results demonstrate good performance of machine learning techniques on the problem of occupancy classification, and demonstrate that effective classification can be achieved using distances to chromatin features. We additionally demonstrate that cross-classification of TFBS is possible, suggesting the possibility of constructing a generalizable occupancy classifier capable of handling TFBS for many different transcription factors.

  7. Comparative transcriptional profiling of 3 murine models of SLE nephritis reveals both unique and shared regulatory networks.

    Directory of Open Access Journals (Sweden)

    Ramalingam Bethunaickan

    Full Text Available To define shared and unique features of SLE nephritis in mouse models of proliferative and glomerulosclerotic renal disease.Perfused kidneys from NZB/W F1, NZW/BXSB and NZM2410 mice were harvested before and after nephritis onset. Affymetrix based gene expression profiles of kidney RNA were analyzed using Genomatix Pathway Systems and Ingenuity Pathway Analysis software. Gene expression patterns were confirmed using real-time PCR.955, 1168 and 755 genes were regulated in the kidneys of nephritic NZB/W F1, NZM2410 and NZW/BXSB mice respectively. 263 genes were regulated concordantly in all three strains reflecting immune cell infiltration, endothelial cell activation, complement activation, cytokine signaling, tissue remodeling and hypoxia. STAT3 was the top associated transcription factor, having a binding site in the gene promoter of 60/263 regulated genes. The two strains with proliferative nephritis shared a macrophage/DC infiltration and activation signature. NZB/W and NZM2410 mice shared a mitochondrial dysfunction signature. Dominant T cell and plasma cell signatures in NZB/W mice reflected lymphoid aggregates; this was the only strain with regulatory T cell infiltrates. NZW/BXSB mice manifested tubular regeneration and NZM2410 mice had the most metabolic stress and manifested loss of nephrin, indicating podocyte loss.These findings identify shared inflammatory mechanisms of SLE nephritis that can be therapeutically targeted. Nevertheless, the heterogeneity of effector mechanisms suggests that individualized therapy might need to be based on biopsy findings. Some common mechanisms are shared with non-immune-mediated renal diseases, suggesting that strategies to prevent tissue hypoxia and remodeling may be useful in SLE nephritis.

  8. Quantum ensembles of quantum classifiers.

    Science.gov (United States)

    Schuld, Maria; Petruccione, Francesco

    2018-02-09

    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.

  9. IAEA safeguards and classified materials

    International Nuclear Information System (INIS)

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-01-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA's safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials

  10. Transcriptional networks associated with the immune system are disrupted by organochlorine pesticides in largemouth bass (Micropterus salmoides) ovary.

    Science.gov (United States)

    Martyniuk, Christopher J; Doperalski, Nicholas J; Feswick, April; Prucha, Melinda S; Kroll, Kevin J; Barber, David S; Denslow, Nancy D

    2016-08-01

    Largemouth bass (Micropterus salmoides) inhabiting Lake Apopka, Florida are exposed to high levels of persistent organochlorine pesticides (OCPs) and dietary uptake is a significant route of exposure for these apex predators. The objectives of this study were to determine the dietary effects of two organochlorine pesticides (p, p'-dichlorodiphenyldichloroethylene; p, p' DDE and methoxychlor; MXC) on the reproductive axis of largemouth bass. Reproductive bass (late vitellogenesis) were fed one of the following diets: control pellets, 125ppm p, p'-DDE, or 10ppm MXC (mg/kg) for 84days. Due to the fact that both p,p' DDE and MXC have anti-androgenic properties, the anti-androgenic pharmaceutical flutamide was fed to a fourth group of largemouth bass (750ppm). Following a 3 month exposure, fish incorporated p,p' DDE and MXC into both muscle and ovary tissue, with the ovary incorporating 3 times more organochlorine pesticides compared to muscle. Endpoints assessed were those related to reproduction due to previous studies demonstrating that these pesticides impact the reproductive axis and we hypothesized that a dietary exposure would result in impaired reproduction. However, oocyte distribution, gonadosomatic index, plasma vitellogenin, and plasma sex steroids (17β-estradiol, E2 and testosterone, T) were not different between control animals and contaminant-fed largemouth bass. Moreover, neither p, p' DDE nor MXC affected E2 or T production in ex vivo oocyte cultures from chemical-fed largemouth bass. However, both pesticides did interfere with the normal upregulation of androgen receptor that is observed in response to human chorionic gonadotropin in ex vivo cultures, an observation that may be related to their anti-androgenic properties. Transcriptomics profiling in the ovary revealed that gene networks related to cell processes such as leukocyte cell adhesion, ossification, platelet function and inhibition, xenobiotic metabolism, fibrinolysis, and thermoregulation

  11. Uncovering transcriptional interactions via an adaptive fuzzy logic approach

    Directory of Open Access Journals (Sweden)

    Chen Chung-Ming

    2009-12-01

    Full Text Available Abstract Background To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM performed poorly in inferring transcriptional interactions (TIs, which represent physical interactions between transcription factors (TF and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy. Results AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF, and using 19 transcription factors (TFs, we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms. Conclusion AdaFuzzy successfully integrates multiple types of

  12. Visualized gene network reveals the novel target transcripts Sox2 and Pax6 of neuronal development in trans-placental exposure to bisphenol A.

    Directory of Open Access Journals (Sweden)

    Chung-Wei Yang

    Full Text Available Bisphenol A (BPA is a ubiquitous endocrine disrupting chemical in our daily life, and its health effect in response to prenatal exposure is still controversial. Early-life BPA exposure may impact brain development and contribute to childhood neurological disorders. The aim of the present study was to investigate molecular target genes of neuronal development in trans-placental exposure to BPA.A meta-analysis of three public microarray datasets was performed to screen for differentially expressed genes (DEGs in exposure to BPA. The candidate genes of neuronal development were identified from gene ontology analysis in a reconstructed neuronal sub-network, and their gene expressions were determined using real-time PCR in 20 umbilical cord blood samples dichotomized into high and low BPA level groups upon the median 16.8 nM.Among 36 neuronal transcripts sorted from DAVID ontology clusters of 457 DEGs using the analysis of Bioconductor limma package, we found two neuronal genes, sex determining region Y-box 2 (Sox2 and paired box 6 (Pax6, had preferentially down-regulated expression (Bonferroni correction p-value <10(-4 and log2-transformed fold change ≤-1.2 in response to BPA exposure. Fetal cord blood samples had the obviously attenuated gene expression of Sox2 and Pax6 in high BPA group referred to low BPA group. Visualized gene network of Cytoscape analysis showed that Sox2 and Pax6 which were contributed to neural precursor cell proliferation and neuronal differentiation might be down-regulated through sonic hedgehog (Shh, vascular endothelial growth factor A (VEGFA and Notch signaling.These results indicated that trans-placental BPA exposure down-regulated gene expression of Sox2 and Pax6 potentially underlying the adverse effect on childhood neuronal development.

  13. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  14. Classifying Cereal Data (Earlier Methods)

    Science.gov (United States)

    The DSQ includes questions about cereal intake and allows respondents up to two responses on which cereals they consume. We classified each cereal reported first by hot or cold, and then along four dimensions: density of added sugars, whole grains, fiber, and calcium.

  15. Knowledge Uncertainty and Composed Classifier

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Dana; Ocelíková, E.

    2007-01-01

    Roč. 1, č. 2 (2007), s. 101-105 ISSN 1998-0140 Institutional research plan: CEZ:AV0Z10750506 Keywords : Boosting architecture * contextual modelling * composed classifier * knowledge management , * knowledge * uncertainty Subject RIV: IN - Informatics, Computer Science

  16. Classifying polynomials and identity testing

    Indian Academy of Sciences (India)

    hard to compute [3,4]! Therefore, the solution to. PIT problem has a key role in our attempt to com- putationally classify polynomials. In this article, we will focus on this connection between PIT and polynomial classification. We now formally define arithmetic circuits and the identity testing problem. 1.1 Problem definition.

  17. Correlation Dimension-Based Classifier

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel; Jiřina jr., M.

    2014-01-01

    Roč. 44, č. 12 (2014), s. 2253-2263 ISSN 2168-2267 R&D Projects: GA MŠk(CZ) LG12020 Institutional support: RVO:67985807 Keywords : classifier * multidimensional data * correlation dimension * scaling exponent * polynomial expansion Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.469, year: 2014

  18. Transcriptional circuits in B cell transformation.

    Science.gov (United States)

    Hu, Yeguang; Yoshida, Toshimi; Georgopoulos, Katia

    2017-07-01

    Loss of IKAROS in committed B cell precursors causes a block in differentiation while at the same time augments aberrant cellular properties, such as bone marrow stromal adhesion, self-renewal and resistance to glucocorticoid-mediated cell death. B cell acute lymphoblastic leukaemias originating from these early stages of B cell differentiation and associated with IKAROS mutations share a high-risk cellular phenotype suggesting that deregulation of IKAROS-based mechanisms cause a highly malignant disease process. Recent studies show that IKAROS is critical for the activity of super-enhancers at genes required for pre-B cell receptor (BCR) signalling and differentiation, working either downstream of or in parallel with B cell master regulators such as EBF1 and PAX5. IKAROS also directly represses a cryptic regulatory network of transcription factors prevalent in mesenchymal and epithelial precursors that includes YAP1, TEAD1/2, LHX2 and LMO2, and their targets, which are not normally expressed in lymphocytes. IKAROS prevents not only expression of these 'extra-lineage' transcription factors but also their cooperation with endogenous B cell master regulators, such as EBF1 and PAX5, leading to the formation of a de novo for lymphocytes super-enhancer network. IKAROS coordinates with the Polycomb repression complex (PRC2) to provide stable repression of associated genes during B cell development. However, induction of regulatory factors normally repressed by IKAROS starts a feed-forward loop that activates de-novo enhancers and elevates them to super-enhancer status, thereby diminishing PRC2 repression and awakening aberrant epithelial-like cell properties in B cell precursors. Insight into IKAROS-based transcriptional circuits not only sets new paradigms for cell differentiation but also provides new approaches for classifying and treating high-risk human B-ALL that originates from these early stages of B cell differentiation.

  19. 76 FR 34761 - Classified National Security Information

    Science.gov (United States)

    2011-06-14

    ... MARINE MAMMAL COMMISSION Classified National Security Information [Directive 11-01] AGENCY: Marine... Commission's (MMC) policy on classified information, as directed by Information Security Oversight Office... of Executive Order 13526, ``Classified National Security Information,'' and 32 CFR part 2001...

  20. Classification of wheat varieties: Use of two-dimensional gel electrophoresis for varieties that can not be classified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and an artificial neural network

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Nesic, Ljiljana; Petersen, Marianne Kjerstine

    2001-01-01

    Analyzing a gliadin extract by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI- TOF-MS) combined with an artificial neural network (ANN) is a suitable method for identification of wheat varieties. However, the ANN can not distinguish between all different wheat...

  1. Classification of wheat varieties: Use of two-dimensional gel electrophoresis for varieties that can not be classified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and an artificial neural network

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Nesic, Ljiljana; Petersen, Marianne Kjerstine

    2001-01-01

    Analyzing a gliadin extract by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI- TOF-MS) combined with an artificial neural network (ANN) is a suitable method for identification of wheat varieties. However, the ANN can not distinguish between all different wheat...... not be separated by MALDI-TOF-MS and NN....

  2. Two channel EEG thought pattern classifier.

    Science.gov (United States)

    Craig, D A; Nguyen, H T; Burchey, H A

    2006-01-01

    This paper presents a real-time electro-encephalogram (EEG) identification system with the goal of achieving hands free control. With two EEG electrodes placed on the scalp of the user, EEG signals are amplified and digitised directly using a ProComp+ encoder and transferred to the host computer through the RS232 interface. Using a real-time multilayer neural network, the actual classification for the control of a powered wheelchair has a very fast response. It can detect changes in the user's thought pattern in 1 second. Using only two EEG electrodes at positions O(1) and C(4) the system can classify three mental commands (forward, left and right) with an accuracy of more than 79 %

  3. Fcoused crawler bused on Bayesian classifier

    Directory of Open Access Journals (Sweden)

    JIA Haijun

    2013-12-01

    Full Text Available With the rapid development of the network,its information resources are increasingly large and faced a huge amount of information database,search engine plays an important role.Focused crawling technique,as the main core portion of search engine,is used to calculate the relationship between search results and search topics,which is called correlation.Normally,focused crawling method is used only to calculate the correlation between web content and search related topics.In this paper,focused crawling method is used to compute the importance of links through link content and anchor text,then Bayesian classifier is used to classify the links,and finally cosine similarity function is used to calculate the relevance of web pages.If the correlation value is greater than the threshold the page is considered to be associated with the predetermined topics,otherwise not relevant.Experimental results show that a high accuracy can be obtained by using the proposed crawling approach.

  4. The Closing of the Classified Catalog at Boston University

    Science.gov (United States)

    Hazen, Margaret Hindle

    1974-01-01

    Although the classified catalog at Boston University libraries has been a useful research tool, it has proven too expensive to keep current. The library has converted to a traditional alphabetic subject catalog and will recieve catalog cards from the Ohio College Library Center through the New England Library Network. (Author/LS)

  5. Diagnosis of Broiler Livers by Classifying Image Patches

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Fagertun, Jens; Moeslund, Thomas B.

    2017-01-01

    The manual health inspection are becoming the bottleneck at poultry processing plants. We present a computer vision method for automatic diagnosis of broiler livers. The non-rigid livers, of varying shape and sizes, are classified in patches by a convolutional neural network, outputting maps...

  6. Dimensionality Reduction Through Classifier Ensembles

    Science.gov (United States)

    Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)

    1999-01-01

    In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.

  7. Transcriptional profiling in human HaCaT keratinocytes in response to kaempferol and identification of potential transcription factors for regulating differential gene expression

    Science.gov (United States)

    Kang, Byung Young; Lee, Ki-Hwan; Lee, Yong Sung; Hong, Il; Lee, Mi-Ock; Min, Daejin; Chang, Ihseop; Hwang, Jae Sung; Park, Jun Seong; Kim, Duck Hee

    2008-01-01

    Kaempferol is the major flavonol in green tea and exhibits many biomedically useful properties such as antioxidative, cytoprotective and anti-apoptotic activities. To elucidate its effects on the skin, we investigated the transcriptional profiles of kaempferol-treated HaCaT cells using cDNA microarray analysis and identified 147 transcripts that exhibited significant changes in expression. Of these, 18 were up-regulated and 129 were down-regulated. These transcripts were then classified into 12 categories according to their functional roles: cell adhesion/cytoskeleton, cell cycle, redox homeostasis, immune/defense responses, metabolism, protein biosynthesis/modification, intracellular transport, RNA processing, DNA modification/ replication, regulation of transcription, signal transduction and transport. We then analyzed the promoter sequences of differentially-regulated genes and identified over-represented regulatory sites and candidate transcription factors (TFs) for gene regulation by kaempferol. These included c-REL, SAP-1, Ahr-ARNT, Nrf-2, Elk-1, SPI-B, NF-κB and p65. In addition, we validated the microarray results and promoter analyses using conventional methods such as real-time PCR and ELISA-based transcription factor assay. Our microarray analysis has provided useful information for determining the genetic regulatory network affected by kaempferol, and this approach will be useful for elucidating gene-phytochemical interactions. PMID:18446059

  8. T cell post-transcriptional miRNA-mRNA interaction networks identify targets associated with susceptibility/resistance to collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Paula B Donate

    Full Text Available BACKGROUND: Due to recent studies indicating that the deregulation of microRNAs (miRNAs in T cells contributes to increased severity of rheumatoid arthritis, we hypothesized that deregulated miRNAs may interact with key mRNA targets controlling the function or differentiation of these cells in this disease. METHODOLOGY/PRINCIPAL FINDINGS: To test our hypothesis, we used microarrays to survey, for the first time, the expression of all known mouse miRNAs in parallel with genome-wide mRNAs in thymocytes and naïve and activated peripheral CD3(+ T cells from two mouse strains the DBA-1/J strain (MHC-H2q, which is susceptible to collagen induced arthritis (CIA, and the DBA-2/J strain (MHC-H2d, which is resistant. Hierarchical clustering of data showed the several T cell miRNAs and mRNAs differentially expressed between the mouse strains in different stages of immunization with collagen. Bayesian statistics using the GenMir(++ algorithm allowed reconstruction of post-transcriptional miRNA-mRNA interaction networks for target prediction. We revealed the participation of miR-500, miR-202-3p and miR-30b*, which established interactions with at least one of the following mRNAs: Rorc, Fas, Fasl, Il-10 and Foxo3. Among the interactions that were validated by calculating the minimal free-energy of base pairing between the miRNA and the 3'UTR of the mRNA target and luciferase assay, we highlight the interaction of miR-30b*-Rorc mRNA because the mRNA encodes a protein implicated in pro-inflammatory Th17 cell differentiation (Rorγt. FACS analysis revealed that Rorγt protein levels and Th17 cell counts were comparatively reduced in the DBA-2/J strain. CONCLUSIONS/SIGNIFICANCE: This result showed that the miRNAs and mRNAs identified in this study represent new candidates regulating T cell function and controlling susceptibility and resistance to CIA.

  9. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    in their regulation at multiple steps of their activation. Plant signaling in connection with transcription factor regulation is an exciting field, allowing research on multiple regulatory mechanisms. This thesis shed light on the importance of integrating all steps of transcription factor activation in a regulatory......Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model...

  10. Classifying Transition Behaviour in Postural Activity Monitoring

    Directory of Open Access Journals (Sweden)

    James BRUSEY

    2009-10-01

    Full Text Available A few accelerometers positioned on different parts of the body can be used to accurately classify steady state behaviour, such as walking, running, or sitting. Such systems are usually built using supervised learning approaches. Transitions between postures are, however, difficult to deal with using posture classification systems proposed to date, since there is no label set for intermediary postures and also the exact point at which the transition occurs can sometimes be hard to pinpoint. The usual bypass when using supervised learning to train such systems is to discard a section of the dataset around each transition. This leads to poorer classification performance when the systems are deployed out of the laboratory and used on-line, particularly if the regimes monitored involve fast paced activity changes. Time-based filtering that takes advantage of sequential patterns is a potential mechanism to improve posture classification accuracy in such real-life applications. Also, such filtering should reduce the number of event messages needed to be sent across a wireless network to track posture remotely, hence extending the system’s life. To support time-based filtering, understanding transitions, which are the major event generators in a classification system, is a key. This work examines three approaches to post-process the output of a posture classifier using time-based filtering: a naïve voting scheme, an exponentially weighted voting scheme, and a Bayes filter. Best performance is obtained from the exponentially weighted voting scheme although it is suspected that a more sophisticated treatment of the Bayes filter might yield better results.

  11. Networking

    OpenAIRE

    Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise

    2016-01-01

    The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...

  12. Combining multiple classifiers for age classification

    CSIR Research Space (South Africa)

    Van Heerden, C

    2009-11-01

    Full Text Available classifier is also developed by using an SVM to predict posterior class probabilities using two different types of classifier outputs; gender classification results and regression age estimates. The authors show that for combining posterior probabilities...

  13. Aggregation Operator Based Fuzzy Pattern Classifier Design

    DEFF Research Database (Denmark)

    Mönks, Uwe; Larsen, Henrik Legind; Lohweg, Volker

    2009-01-01

    This paper presents a novel modular fuzzy pattern classifier design framework for intelligent automation systems, developed on the base of the established Modified Fuzzy Pattern Classifier (MFPC) and allows designing novel classifier models which are hardware-efficiently implementable. The perfor...

  14. Feature selection based classifier combination approach for ...

    Indian Academy of Sciences (India)

    based classifier combination is the simplest method in which final decision is that class for which maximum (greater than N/2) participating classifier vote, where N is the number of classifiers. 3.2b Decision templates: The method based on decision template, (Kuncheva et al 2001) firstly creates DT for each class using ...

  15. 15 CFR 4.8 - Classified Information.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Classified Information. 4.8 Section 4... INFORMATION Freedom of Information Act § 4.8 Classified Information. In processing a request for information..., the information shall be reviewed to determine whether it should remain classified. Ordinarily the...

  16. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley

    DEFF Research Database (Denmark)

    Hansen, Michael; Friis, Carsten; Bowra, Steve

    2009-01-01

    The aim of the study was to describe the molecular and biochemical interactions associated with amino acid biosynthesis and storage protein accumulation in the developing grains of field-grown barley. Our strategy was to analyse the transcription of genes associated with the biosynthesis of stora...

  17. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J.

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehens...

  18. A native Bayesian classifier based routing protocol for VANETS

    Science.gov (United States)

    Bao, Zhenshan; Zhou, Keqin; Zhang, Wenbo; Gong, Xiaolei

    2016-12-01

    Geographic routing protocols are one of the most hot research areas in VANET (Vehicular Ad-hoc Network). However, there are few routing protocols can take both the transmission efficient and the usage of ratio into account. As we have noticed, different messages in VANET may ask different quality of service. So we raised a Native Bayesian Classifier based routing protocol (Naive Bayesian Classifier-Greedy, NBC-Greedy), which can classify and transmit different messages by its emergency degree. As a result, we can balance the transmission efficient and the usage of ratio with this protocol. Based on Matlab simulation, we can draw a conclusion that NBC-Greedy is more efficient and stable than LR-Greedy and GPSR.

  19. Hybrid feature vector extraction in unsupervised learning neural classifier.

    Science.gov (United States)

    Kostka, P S; Tkacz, E J; Komorowski, D

    2005-01-01

    Feature extraction and selection method as a preliminary stage of heart rate variability (HRV) signals unsupervised learning neural classifier is presented. Multi-domain, mixed new feature vector is created from time, frequency and time-frequency parameters of HRV analysis. The optimal feature set for given classification task was chosen as a result of feature ranking, obtained after computing the class separability measure for every independent feature. Such prepared a new signal representation in reduced feature space is the input to neural classifier based on introduced by Grosberg Adaptive Resonance Theory (ART2) structure. Test of proposed method carried out on the base of 62 patients with coronary artery disease divided into learning and verifying set allowed to chose these features, which gave the best results. Classifier performance measures obtained for unsupervised learning ART2 neural network was comparable with these reached for multiplayer perceptron structures.

  20. Deep Feature Learning and Cascaded Classifier for Large Scale Data

    DEFF Research Database (Denmark)

    Prasoon, Adhish

    from data rather than having a predefined feature set. We explore deep learning approach of convolutional neural network (CNN) for segmenting three dimensional medical images. We propose a novel system integrating three 2D CNNs, which have a one-to-one association with the xy, yz and zx planes of 3D...... image, respectively and this system is referred as triplanar convolutional neural network in the thesis. We applied the triplanar CNN for segmenting articular cartilage in knee MRI and compared its performance with the same state-of-the-art method which was used as a benchmark for cascaded classifier...... contextualized convolutional neural network (SCCNN) which incorporates the labels of the neighbouring pixels/voxels while training the network. We demonstrate its application for the 2D problem of segmenting horses from the Weizmann horses database using 2D CNN and our 3D problem of segmenting tibial cartilage...

  1. Classifier fusion for VoIP attacks classification

    Science.gov (United States)

    Safarik, Jakub; Rezac, Filip

    2017-05-01

    SIP is one of the most successful protocols in the field of IP telephony communication. It establishes and manages VoIP calls. As the number of SIP implementation rises, we can expect a higher number of attacks on the communication system in the near future. This work aims at malicious SIP traffic classification. A number of various machine learning algorithms have been developed for attack classification. The paper presents a comparison of current research and the use of classifier fusion method leading to a potential decrease in classification error rate. Use of classifier combination makes a more robust solution without difficulties that may affect single algorithms. Different voting schemes, combination rules, and classifiers are discussed to improve the overall performance. All classifiers have been trained on real malicious traffic. The concept of traffic monitoring depends on the network of honeypot nodes. These honeypots run in several networks spread in different locations. Separation of honeypots allows us to gain an independent and trustworthy attack information.

  2. Ensemble of Neural Classifiers for Scoring Knowledge Base Triples

    OpenAIRE

    Yamada, Ikuya; Sato, Motoki; Shindo, Hiroyuki

    2017-01-01

    This paper describes our approach for the triple scoring task at the WSDM Cup 2017. The task required participants to assign a relevance score for each pair of entities and their types in a knowledge base in order to enhance the ranking results in entity retrieval tasks. We propose an approach wherein the outputs of multiple neural network classifiers are combined using a supervised machine learning model. The experimental results showed that our proposed method achieved the best performance ...

  3. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    Directory of Open Access Journals (Sweden)

    Sang Woo Seo

    2015-08-01

    Full Text Available Three transcription factors (TFs, OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands the genome-wide roles of these factors to include direct activation of genes related to amino acid biosynthesis (methionine and aromatic amino acids, cell wall synthesis (lipid A biosynthesis and peptidoglycan growth, and divalent metal ion transport (Mn2+, Zn2+, and Mg2+. Investigating the co-regulation of these genes with other stress-response TFs reveals that they are independently regulated by stress-specific TFs.

  4. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo

    2005-01-01

    level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has...

  5. Error minimizing algorithms for nearest eighbor classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory; Zimmer, G. Beate [TEXAS A& M

    2011-01-03

    Stack Filters define a large class of discrete nonlinear filter first introd uced in image and signal processing for noise removal. In recent years we have suggested their application to classification problems, and investigated their relationship to other types of discrete classifiers such as Decision Trees. In this paper we focus on a continuous domain version of Stack Filter Classifiers which we call Ordered Hypothesis Machines (OHM), and investigate their relationship to Nearest Neighbor classifiers. We show that OHM classifiers provide a novel framework in which to train Nearest Neighbor type classifiers by minimizing empirical error based loss functions. We use the framework to investigate a new cost sensitive loss function that allows us to train a Nearest Neighbor type classifier for low false alarm rate applications. We report results on both synthetic data and real-world image data.

  6. Constructing and Classifying Email Networks from Raw Forensic Images

    Science.gov (United States)

    2016-09-01

    set of categories an observation belongs. Two major approaches to classification problems are supervised and unsupervised learning . In supervised ...there is no prior knowledge [26], [27]. Unsupervised learning , in contrast to supervised learning , draws inferences about datasets without having...Support Vector Machines Support vector machines (SVM) are another type of supervised learning model. Given a set of training examples, with the knowledge

  7. Layered recognition networks that pre-process, classify, and describe

    Science.gov (United States)

    Uhr, L.

    1971-01-01

    A brief overview is presented of six types of pattern recognition programs that: (1) preprocess, then characterize; (2) preprocess and characterize together; (3) preprocess and characterize into a recognition cone; (4) describe as well as name; (5) compose interrelated descriptions; and (6) converse. A computer program (of types 3 through 6) is presented that transforms and characterizes the input scene through the successive layers of a recognition cone, and then engages in a stylized conversation to describe the scene.

  8. Progressive Email Classifier (PEC) for Ingress Enterprise Network Traffic Analysis

    Science.gov (United States)

    2010-09-21

    different packet types of  TCP  sessions  ( SYN , ACK, FIN, RST, etc), so that one can measure and monitor the congestion control behaviors of a  TCP ...Streams", to be submitted 2. Shengya Lin, Jyh-Charn Liu, "On Classification of TCP Flows in the Middle of End-to-End Path", to be submitted 3. Hao Wang, Jyh... flooding  of spam at the gateway, so that  they can be  intercepted or quarantined before reaching end users. Despite  the rich collection of signatures

  9. Data characteristics that determine classifier performance

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2006-11-01

    Full Text Available The relationship between the distribution of data, on the one hand, and classifier performance, on the other, for non-parametric classifiers has been studied. It is shown that predictable factors such as the available amount of training data...

  10. Hierarchical mixtures of naive Bayes classifiers

    NARCIS (Netherlands)

    Wiering, M.A.

    2002-01-01

    Naive Bayes classifiers tend to perform very well on a large number of problem domains, although their representation power is quite limited compared to more sophisticated machine learning algorithms. In this pa- per we study combining multiple naive Bayes classifiers by using the hierar- chical

  11. Feature selection based classifier combination approach for ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Feature selection based classifier combination approach for handwritten Devanagari numeral recognition. Pratibha Singh Ajay Verma ... ensemble of classifiers. The main contribution of the proposed method is that, the method gives quite efficient results utilizing only 10% patterns of the available dataset.

  12. A fuzzy classifier system for process control

    Science.gov (United States)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  13. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy

    2010-01-01

    OBJECTIVE: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cy...

  14. Deconvolution When Classifying Noisy Data Involving Transformations

    KAUST Repository

    Carroll, Raymond

    2012-09-01

    In the present study, we consider the problem of classifying spatial data distorted by a linear transformation or convolution and contaminated by additive random noise. In this setting, we show that classifier performance can be improved if we carefully invert the data before the classifier is applied. However, the inverse transformation is not constructed so as to recover the original signal, and in fact, we show that taking the latter approach is generally inadvisable. We introduce a fully data-driven procedure based on cross-validation, and use several classifiers to illustrate numerical properties of our approach. Theoretical arguments are given in support of our claims. Our procedure is applied to data generated by light detection and ranging (Lidar) technology, where we improve on earlier approaches to classifying aerosols. This article has supplementary materials online.

  15. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L. Exposed to Water Deficit

    Directory of Open Access Journals (Sweden)

    Stefania Savoi

    2017-07-01

    Full Text Available Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis-regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.

  16. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis viniferaL.) Exposed to Water Deficit.

    Science.gov (United States)

    Savoi, Stefania; Wong, Darren C J; Degu, Asfaw; Herrera, Jose C; Bucchetti, Barbara; Peterlunger, Enrico; Fait, Aaron; Mattivi, Fulvio; Castellarin, Simone D

    2017-01-01

    Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis -regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.

  17. Theta-burst stimulation of hippocampal slices induces network-level calcium oscillations and activates analogous gene transcription to spatial learning.

    Directory of Open Access Journals (Sweden)

    Graham K Sheridan

    Full Text Available Over four decades ago, it was discovered that high-frequency stimulation of the dentate gyrus induces long-term potentiation (LTP of synaptic transmission. LTP is believed to underlie how we process and code external stimuli before converting it to salient information that we store as 'memories'. It has been shown that rats performing spatial learning tasks display theta-frequency (3-12 Hz hippocampal neural activity. Moreover, administering theta-burst stimulation (TBS to hippocampal slices can induce LTP. TBS triggers a sustained rise in intracellular calcium [Ca2+]i in neurons leading to new protein synthesis important for LTP maintenance. In this study, we measured TBS-induced [Ca2+]i oscillations in thousands of cells at increasing distances from the source of stimulation. Following TBS, a calcium wave propagates radially with an average speed of 5.2 µm/s and triggers multiple and regular [Ca2+]i oscillations in the hippocampus. Interestingly, the number and frequency of [Ca2+]i fluctuations post-TBS increased with respect to distance from the electrode. During the post-tetanic phase, 18% of cells exhibited 3 peaks in [Ca2+]i with a frequency of 17 mHz, whereas 2.3% of cells distributed further from the electrode displayed 8 [Ca2+]i oscillations at 33 mHz. We suggest that these observed [Ca2+]i oscillations could lead to activation of transcription factors involved in synaptic plasticity. In particular, the transcription factor, NF-κB, has been implicated in memory formation and is up-regulated after LTP induction. We measured increased activation of NF-κB 30 min post-TBS in CA1 pyramidal cells and also observed similar temporal up-regulation of NF-κB levels in CA1 neurons following water maze training in rats. Therefore, TBS of hippocampal slice cultures in vitro can mimic the cell type-specific up-regulations in activated NF-κB following spatial learning in vivo. This indicates that TBS may induce similar transcriptional changes to

  18. Deep Feature Learning and Cascaded Classifier for Large Scale Data

    DEFF Research Database (Denmark)

    Prasoon, Adhish

    from data rather than having a predefined feature set. We explore deep learning approach of convolutional neural network (CNN) for segmenting three dimensional medical images. We propose a novel system integrating three 2D CNNs, which have a one-to-one association with the xy, yz and zx planes of 3D......This thesis focuses on voxel/pixel classification based approaches for image segmentation. The main application is segmentation of articular cartilage in knee MRIs. The first major contribution of the thesis deals with large scale machine learning problems. Many medical imaging problems need huge...... amount of training data to cover sufficient biological variability. Learning methods scaling badly with number of training data points cannot be used in such scenarios. This may restrict the usage of many powerful classifiers having excellent generalization ability. We propose a cascaded classifier which...

  19. High dimensional classifiers in the imbalanced case

    DEFF Research Database (Denmark)

    Bak, Britta Anker; Jensen, Jens Ledet

    We consider the binary classification problem in the imbalanced case where the number of samples from the two groups differ. The classification problem is considered in the high dimensional case where the number of variables is much larger than the number of samples, and where the imbalance leads...... to a bias in the classification. A theoretical analysis of the independence classifier reveals the origin of the bias and based on this we suggest two new classifiers that can handle any imbalance ratio. The analytical results are supplemented by a simulation study, where the suggested classifiers in some...

  20. A CLASSIFIER SYSTEM USING SMOOTH GRAPH COLORING

    Directory of Open Access Journals (Sweden)

    JORGE FLORES CRUZ

    2017-01-01

    Full Text Available Unsupervised classifiers allow clustering methods with less or no human intervention. Therefore it is desirable to group the set of items with less data processing. This paper proposes an unsupervised classifier system using the model of soft graph coloring. This method was tested with some classic instances in the literature and the results obtained were compared with classifications made with human intervention, yielding as good or better results than supervised classifiers, sometimes providing alternative classifications that considers additional information that humans did not considered.

  1. 76 FR 19707 - Classified Information: Classification/Declassification/Access; Authority To Classify Information

    Science.gov (United States)

    2011-04-08

    ... Office of the Secretary of Transportation 49 CFR Part 8 RIN 9991-AA58 Classified Information: Classification/Declassification/Access; Authority To Classify Information AGENCY: Office of the Secretary of... originally classify information as SECRET or CONFIDENTIAL to the Administrator of the Federal Aviation...

  2. Classifiers based on optimal decision rules

    KAUST Repository

    Amin, Talha

    2013-11-25

    Based on dynamic programming approach we design algorithms for sequential optimization of exact and approximate decision rules relative to the length and coverage [3, 4]. In this paper, we use optimal rules to construct classifiers, and study two questions: (i) which rules are better from the point of view of classification-exact or approximate; and (ii) which order of optimization gives better results of classifier work: length, length+coverage, coverage, or coverage+length. Experimental results show that, on average, classifiers based on exact rules are better than classifiers based on approximate rules, and sequential optimization (length+coverage or coverage+length) is better than the ordinary optimization (length or coverage).

  3. Robust C-Loss Kernel Classifiers.

    Science.gov (United States)

    Xu, Guibiao; Hu, Bao-Gang; Principe, Jose C

    2018-03-01

    The correntropy-induced loss (C-loss) function has the nice property of being robust to outliers. In this paper, we study the C-loss kernel classifier with the Tikhonov regularization term, which is used to avoid overfitting. After using the half-quadratic optimization algorithm, which converges much faster than the gradient optimization algorithm, we find out that the resulting C-loss kernel classifier is equivalent to an iterative weighted least square support vector machine (LS-SVM). This relationship helps explain the robustness of iterative weighted LS-SVM from the correntropy and density estimation perspectives. On the large-scale data sets which have low-rank Gram matrices, we suggest to use incomplete Cholesky decomposition to speed up the training process. Moreover, we use the representer theorem to improve the sparseness of the resulting C-loss kernel classifier. Experimental results confirm that our methods are more robust to outliers than the existing common classifiers.

  4. Using Discriminative Dimensionality Reduction to Visualize Classifiers

    OpenAIRE

    Schulz, Alexander; Gisbrecht, Andrej; Hammer, Barbara

    2015-01-01

    Albeit automated classifiers offer a standard tool in many application areas, there exists hardly a generic possibility to directly inspect their behavior, which goes beyond the mere classification of (sets of) data points. In this contribution, we propose a general framework how to visualize a given classifier and its behavior as concerns a given data set in two dimensions. More specifically, we use modern nonlinear dimensionality reduction (DR) techniques to project a given set of data poin...

  5. Wreck finding and classifying with a sonar filter

    Science.gov (United States)

    Agehed, Kenneth I.; Padgett, Mary Lou; Becanovic, Vlatko; Bornich, C.; Eide, Age J.; Engman, Per; Globoden, O.; Lindblad, Thomas; Lodgberg, K.; Waldemark, Karina E.

    1999-03-01

    Sonar detection and classification of sunken wrecks and other objects is of keen interest to many. This paper describes the use of neural networks (NN) for locating, classifying and determining the alignment of objects on a lakebed in Sweden. A complex program for data preprocessing and visualization was developed. Part of this program, The Sonar Viewer, facilitates training and testing of the NN using (1) the MATLAB Neural Networks Toolbox for multilayer perceptrons with backpropagation (BP) and (2) the neural network O-Algorithm (OA) developed by Age Eide and Thomas Lindblad. Comparison of the performance of the two neural networks approaches indicates that, for this data BP generalizes better than OA, but use of OA eliminates the need for training on non-target (lake bed) images. The OA algorithm does not work well with the smaller ships. Increasing the resolution to counteract this problem would slow down processing and require interpolation to suggest data values between the actual sonar measurements. In general, good results were obtained for recognizing large wrecks and determining their alignment. The programs developed a useful tool for further study of sonar signals in many environments. Recent developments in pulse coupled neural networks techniques provide an opportunity to extend the use in real-world applications where experimental data is difficult, expensive or time consuming to obtain.

  6. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells

    Science.gov (United States)

    Bando, Silvia Yumi; Iamashita, Priscila; Guth, Beatriz E.; dos Santos, Luis F.; Fujita, André; Abe, Cecilia M.; Ferreira, Leandro R.

    2017-01-01

    Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its

  7. The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression.

    Science.gov (United States)

    Kalsotra, Auinash; Singh, Ravi K; Gurha, Priyatansh; Ward, Amanda J; Creighton, Chad J; Cooper, Thomas A

    2014-01-30

    Cardiac dysfunction is the second leading cause of death in myotonic dystrophy type 1 (DM1), primarily because of arrhythmias and cardiac conduction defects. A screen of more than 500 microRNAs (miRNAs) in a DM1 mouse model identified 54 miRNAs that were differentially expressed in heart. More than 80% exhibited downregulation toward the embryonic expression pattern and showed a DM1-specific response. A total of 20 of 22 miRNAs tested were also significantly downregulated in human DM1 heart tissue. We demonstrate that many of these miRNAs are direct MEF2 transcriptional targets, including miRNAs for which depletion is associated with arrhythmias or fibrosis. MEF2 protein is significantly reduced in both DM1 and mouse model heart samples, and exogenous MEF2C restores normal levels of MEF2 target miRNAs and mRNAs in a DM1 cardiac cell culture model. We conclude that loss of MEF2 in DM1 heart causes pathogenic features through aberrant expression of both miRNA and mRNA targets. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-10-01

    Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.

  9. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[W

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-01-01

    IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127

  10. Pixel Classification of SAR ice images using ANFIS-PSO Classifier

    Directory of Open Access Journals (Sweden)

    G. Vasumathi

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR is playing a vital role in taking extremely high resolution radar images. It is greatly used to monitor the ice covered ocean regions. Sea monitoring is important for various purposes which includes global climate systems and ship navigation. Classification on the ice infested area gives important features which will be further useful for various monitoring process around the ice regions. Main objective of this paper is to classify the SAR ice image that helps in identifying the regions around the ice infested areas. In this paper three stages are considered in classification of SAR ice images. It starts with preprocessing in which the speckled SAR ice images are denoised using various speckle removal filters; comparison is made on all these filters to find the best filter in speckle removal. Second stage includes segmentation in which different regions are segmented using K-means and watershed segmentation algorithms; comparison is made between these two algorithms to find the best in segmenting SAR ice images. The last stage includes pixel based classification which identifies and classifies the segmented regions using various supervised learning classifiers. The algorithms includes Back propagation neural networks (BPN, Fuzzy Classifier, Adaptive Neuro Fuzzy Inference Classifier (ANFIS classifier and proposed ANFIS with Particle Swarm Optimization (PSO classifier; comparison is made on all these classifiers to propose which classifier is best suitable for classifying the SAR ice image. Various evaluation metrics are performed separately at all these three stages.

  11. Catecholamines Facilitate Fuel Expenditure and Protect Against Obesity via a Novel Network of the Gut-Brain Axis in Transcription Factor Skn-1-deficient Mice.

    Science.gov (United States)

    Ushiama, Shota; Ishimaru, Yoshiro; Narukawa, Masataka; Yoshioka, Misako; Kozuka, Chisayo; Watanabe, Naoki; Tsunoda, Makoto; Osakabe, Naomi; Asakura, Tomiko; Masuzaki, Hiroaki; Abe, Keiko

    2016-06-01

    Taste signals and nutrient stimuli sensed by the gastrointestinal tract are transmitted to the brain to regulate feeding behavior and energy homeostasis. This system is referred to as the gut-brain axis. Here we show that both brush cells and type II taste cells are eliminated in the gastrointestinal tract of transcription factor Skn-1 knockout (KO) mice. Despite unaltered food intake, Skn-1 KO mice have reduced body weight with lower body fat due to increased energy expenditure. In this model, 24-h urinary excretion of catecholamines was significantly elevated, accompanied by increased fatty acid β-oxidation and fuel dissipation in skeletal muscle and impaired insulin secretion driven by glucose. These results suggest the existence of brain-mediated energy homeostatic pathways originating from brush cells and type II taste cells in the gastrointestinal tract and ending in peripheral tissues, including the adrenal glands. The discovery of food-derived factors that regulate these cells may open new avenues the treatment of obesity and diabetes. Taste signals and nutrient stimuli sensed by the gastrointestinal tract are transmitted to the brain to regulate feeding behavior and energy homeostasis along the gut-brain axis. We propose the concept that taste-receiving cells in the oral cavity and/or food-borne chemicals-receiving brush cells in the gut are involved in regulation of the body weight and adiposity via the brain. The discovery of food-derived factors that regulate these cells may open new avenues for the treatment of obesity and diabetes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Pilot plant trial of the reflux classifier

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, K.P.; Doroodchi, E.; Callen, A.M.; Lambert, N.; Pratten, S.J. [University of Newcastle, Callaghan, NSW (Australia). Dept. of Chemical Engineers

    2002-01-01

    The Ludowici LMPE Reflux Classifier is a new device designed for classifying and separating particles on the basis of size or density. This work presents a series of experimental results obtained from the first pilot scale study of the reflux classifier (RC). The main focus of the investigation was to assess the particle gravity separation and throughput performance of the device. In this study, the classifier was used to separate coal and mineral matter less than 2 mm in size. The experimental results were then compared with the performance data on a teetered bed separator (TBS). It was concluded that the classifier could offer an excellent gravity separation at a remarkably high solids throughput of 47 t/m{sup 2}h more than 3 times higher than for a TBS. The separation performance of the RC was also better, with significantly less variation in the D-50 with particle size. A simple theoretical model providing an explanation of the separation performance is also presented.

  13. Transcriptional networks of TCP transcription factors in Arabidopsis development

    NARCIS (Netherlands)

    Danisman, S.D.

    2011-01-01

    Leaves are a plant’s main organs of photosynthesis and hence the development of this organ is under strict control. The different phases of leaf development are under the control of both endogenous and exogenous influences. In this work we were interested in a particular class of

  14. General and Local: Averaged k-Dependence Bayesian Classifiers

    Directory of Open Access Journals (Sweden)

    Limin Wang

    2015-06-01

    Full Text Available The inference of a general Bayesian network has been shown to be an NP-hard problem, even for approximate solutions. Although k-dependence Bayesian (KDB classifier can construct at arbitrary points (values of k along the attribute dependence spectrum, it cannot identify the changes of interdependencies when attributes take different values. Local KDB, which learns in the framework of KDB, is proposed in this study to describe the local dependencies implicated in each test instance. Based on the analysis of functional dependencies, substitution-elimination resolution, a new type of semi-naive Bayesian operation, is proposed to substitute or eliminate generalization to achieve accurate estimation of conditional probability distribution while reducing computational complexity. The final classifier, averaged k-dependence Bayesian (AKDB classifiers, will average the output of KDB and local KDB. Experimental results on the repository of machine learning databases from the University of California Irvine (UCI showed that AKDB has significant advantages in zero-one loss and bias relative to naive Bayes (NB, tree augmented naive Bayes (TAN, Averaged one-dependence estimators (AODE, and KDB. Moreover, KDB and local KDB show mutually complementary characteristics with respect to variance.

  15. Entropy based classifier for cross-domain opinion mining

    Directory of Open Access Journals (Sweden)

    Jyoti S. Deshmukh

    2018-01-01

    Full Text Available In recent years, the growth of social network has increased the interest of people in analyzing reviews and opinions for products before they buy them. Consequently, this has given rise to the domain adaptation as a prominent area of research in sentiment analysis. A classifier trained from one domain often gives poor results on data from another domain. Expression of sentiment is different in every domain. The labeling cost of each domain separately is very high as well as time consuming. Therefore, this study has proposed an approach that extracts and classifies opinion words from one domain called source domain and predicts opinion words of another domain called target domain using a semi-supervised approach, which combines modified maximum entropy and bipartite graph clustering. A comparison of opinion classification on reviews on four different product domains is presented. The results demonstrate that the proposed method performs relatively well in comparison to the other methods. Comparison of SentiWordNet of domain-specific and domain-independent words reveals that on an average 72.6% and 88.4% words, respectively, are correctly classified.

  16. Self-organizing map classifier for stressed speech recognition

    Science.gov (United States)

    Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav

    2016-05-01

    This paper presents a method for detecting speech under stress using Self-Organizing Maps. Most people who are exposed to stressful situations can not adequately respond to stimuli. Army, police, and fire department occupy the largest part of the environment that are typical of an increased number of stressful situations. The role of men in action is controlled by the control center. Control commands should be adapted to the psychological state of a man in action. It is known that the psychological changes of the human body are also reflected physiologically, which consequently means the stress effected speech. Therefore, it is clear that the speech stress recognizing system is required in the security forces. One of the possible classifiers, which are popular for its flexibility, is a self-organizing map. It is one type of the artificial neural networks. Flexibility means independence classifier on the character of the input data. This feature is suitable for speech processing. Human Stress can be seen as a kind of emotional state. Mel-frequency cepstral coefficients, LPC coefficients, and prosody features were selected for input data. These coefficients were selected for their sensitivity to emotional changes. The calculation of the parameters was performed on speech recordings, which can be divided into two classes, namely the stress state recordings and normal state recordings. The benefit of the experiment is a method using SOM classifier for stress speech detection. Results showed the advantage of this method, which is input data flexibility.

  17. Classifier-Guided Sampling for Complex Energy System Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Backlund, Peter B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) effort enti tled "Classifier - Guided Sampling for Complex Energy System Optimization" that was conducted during FY 2014 and FY 2015. The goal of this proj ect was to develop, implement, and test major improvements to the classifier - guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm for perform ing search and optimization over a set of discrete design variables in the face of one or more objective functions. E xisting evolutionary algorithms, such as genetic algorithms , may require a large number of o bjecti ve function evaluations to identify optimal or near - optimal solutions . Reducing the number of evaluations can result in significant time savings, especially if the objective function is computationally expensive. CGS reduce s the evaluation count by us ing a Bayesian network classifier to filter out non - promising candidate designs , prior to evaluation, based on their posterior probabilit ies . In this project, b oth the single - objective and multi - objective version s of the CGS are developed and tested on a set of benchm ark problems. As a domain - specific case study, CGS is used to design a microgrid for use in islanded mode during an extended bulk power grid outage.

  18. A space-based radio frequency transient event classifier

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K.R.; Blain, C.P.; Caffrey, M.P.; Franz, R.C.; Henneke, K.M.; Jones, R.G.

    1998-03-01

    The Department of Energy is currently investigating economical and reliable techniques for space-based nuclear weapon treaty verification. Nuclear weapon detonations produce RF transients that are signatures of illegal nuclear weapons tests. However, there are many other sources of RF signals, both natural and man-made. Direct digitization of RF signals requires rates of 300 MSamples per second and produces 10{sup 13} samples per day of data to analyze. it is impractical to store and downlink all digitized RF data from such a satellite without a prohibitively expensive increase in the number and capacities of ground stations. Reliable and robust data processing and information extraction must be performed onboard the spacecraft in order to reduce downlinked data to a reasonable volume. The FORTE (Fast On-Orbit Recording of Transient Events) satellite records RF transients in space. These transients will be classified onboard the spacecraft with an Event Classifier specialized hardware that performs signal preprocessing and neural network classification. The authors describe the Event Classifier requirements, scientific constraints, design and implementation.

  19. Ranked Multi-Label Rules Associative Classifier

    Science.gov (United States)

    Thabtah, Fadi

    Associative classification is a promising approach in data mining, which integrates association rule discovery and classification. In this paper, we present a novel associative classification technique called Ranked Multilabel Rule (RMR) that derives rules with multiple class labels. Rules derived by current associative classification algorithms overlap in their training data records, resulting in many redundant and useless rules. However, RMR removes the overlapping between rules using a pruning heuristic and ensures that rules in the final classifier do not share training records, resulting in more accurate classifiers. Experimental results obtained on twenty data sets show that the classifiers produced by RMR are highly competitive if compared with those generated by decision trees and other popular associative techniques such as CBA, with respect to prediction accuracy.

  20. Reinforcement Learning Based Artificial Immune Classifier

    Directory of Open Access Journals (Sweden)

    Mehmet Karakose

    2013-01-01

    Full Text Available One of the widely used methods for classification that is a decision-making process is artificial immune systems. Artificial immune systems based on natural immunity system can be successfully applied for classification, optimization, recognition, and learning in real-world problems. In this study, a reinforcement learning based artificial immune classifier is proposed as a new approach. This approach uses reinforcement learning to find better antibody with immune operators. The proposed new approach has many contributions according to other methods in the literature such as effectiveness, less memory cell, high accuracy, speed, and data adaptability. The performance of the proposed approach is demonstrated by simulation and experimental results using real data in Matlab and FPGA. Some benchmark data and remote image data are used for experimental results. The comparative results with supervised/unsupervised based artificial immune system, negative selection classifier, and resource limited artificial immune classifier are given to demonstrate the effectiveness of the proposed new method.

  1. Reinforcement Learning Based Artificial Immune Classifier

    Science.gov (United States)

    Karakose, Mehmet

    2013-01-01

    One of the widely used methods for classification that is a decision-making process is artificial immune systems. Artificial immune systems based on natural immunity system can be successfully applied for classification, optimization, recognition, and learning in real-world problems. In this study, a reinforcement learning based artificial immune classifier is proposed as a new approach. This approach uses reinforcement learning to find better antibody with immune operators. The proposed new approach has many contributions according to other methods in the literature such as effectiveness, less memory cell, high accuracy, speed, and data adaptability. The performance of the proposed approach is demonstrated by simulation and experimental results using real data in Matlab and FPGA. Some benchmark data and remote image data are used for experimental results. The comparative results with supervised/unsupervised based artificial immune system, negative selection classifier, and resource limited artificial immune classifier are given to demonstrate the effectiveness of the proposed new method. PMID:23935424

  2. CLASSIFIED BY SUBJECT IN SPORT SCIENCES

    Directory of Open Access Journals (Sweden)

    Petar Protić

    2007-05-01

    Full Text Available High school and academic libraries users need precise classifi cation and subject access review of printed and electronic resources. In library catalogue since, Universal Decimal Classifi cation (UDC -similar to Dewey system - ex classifi es research and scientifi c areas. in subject areas of 796 Sport and 371 Teaching. Nowadays, users need structure of subjects by disciplines in science. Full-open resources of library must be set for users in subject access catalogue, because on the example of bachelors degree thesis in Faculty of Physical Education in Novi Sad they reaches for disciplines in database with 36 indexes sort by fi rst letters in names (Athletics, Boxing, Cycling, etc. This database have single and multiplied index for each thesis. Users in 80% cases of research according to the subject access catalogue of this library.

  3. Classifying Cervical Spondylosis Based on Fuzzy Calculation

    Directory of Open Access Journals (Sweden)

    Xinghu Yu

    2014-01-01

    Full Text Available Conventional evaluation of X-ray radiographs aiming at diagnosing cervical spondylosis (CS often depends on the clinic experiences, visual reading of radiography, and analysis of certain regions of interest (ROIs about clinician himself or herself. These steps are not only time consuming and subjective, but also prone to error for inexperienced clinicians due to low resolution of X-ray. This paper proposed an approach based on fuzzy calculation to classify CS. From the X-ray of CS manifestations, we extracted 10 effective ROIs to establish X-ray symptom-disease table of CS. Fuzzy calculation model based on the table can be carried out to classify CS and improve the diagnosis accuracy. The proposed model yields approximately 80.33% accuracy in classifying CS.

  4. Classifier Fusion With Contextual Reliability Evaluation.

    Science.gov (United States)

    Liu, Zhunga; Pan, Quan; Dezert, Jean; Han, Jun-Wei; He, You

    2018-05-01

    Classifier fusion is an efficient strategy to improve the classification performance for the complex pattern recognition problem. In practice, the multiple classifiers to combine can have different reliabilities and the proper reliability evaluation plays an important role in the fusion process for getting the best classification performance. We propose a new method for classifier fusion with contextual reliability evaluation (CF-CRE) based on inner reliability and relative reliability concepts. The inner reliability, represented by a matrix, characterizes the probability of the object belonging to one class when it is classified to another class. The elements of this matrix are estimated from the -nearest neighbors of the object. A cautious discounting rule is developed under belief functions framework to revise the classification result according to the inner reliability. The relative reliability is evaluated based on a new incompatibility measure which allows to reduce the level of conflict between the classifiers by applying the classical evidence discounting rule to each classifier before their combination. The inner reliability and relative reliability capture different aspects of the classification reliability. The discounted classification results are combined with Dempster-Shafer's rule for the final class decision making support. The performance of CF-CRE have been evaluated and compared with those of main classical fusion methods using real data sets. The experimental results show that CF-CRE can produce substantially higher accuracy than other fusion methods in general. Moreover, CF-CRE is robust to the changes of the number of nearest neighbors chosen for estimating the reliability matrix, which is appealing for the applications.

  5. A Novel Approach for Multi Class Fault Diagnosis in Induction Machine Based on Statistical Time Features and Random Forest Classifier

    Science.gov (United States)

    Sonje, M. Deepak; Kundu, P.; Chowdhury, A.

    2017-08-01

    Fault diagnosis and detection is the important area in health monitoring of electrical machines. This paper proposes the recently developed machine learning classifier for multi class fault diagnosis in induction machine. The classification is based on random forest (RF) algorithm. Initially, stator currents are acquired from the induction machine under various conditions. After preprocessing the currents, fourteen statistical time features are estimated for each phase of the current. These parameters are considered as inputs to the classifier. The main scope of the paper is to evaluate effectiveness of RF classifier for individual and mixed fault diagnosis in induction machine. The stator, rotor and mixed faults (stator and rotor faults) are classified using the proposed classifier. The obtained performance measures are compared with the multilayer perceptron neural network (MLPNN) classifier. The results show the much better performance measures and more accurate than MLPNN classifier. For demonstration of planned fault diagnosis algorithm, experimentally obtained results are considered to build the classifier more practical.

  6. Classifying and segmenting microscopy images with deep multiple instance learning.

    Science.gov (United States)

    Kraus, Oren Z; Ba, Jimmy Lei; Frey, Brendan J

    2016-06-15

    High-content screening (HCS) technologies have enabled large scale imaging experiments for studying cell biology and for drug screening. These systems produce hundreds of thousands of microscopy images per day and their utility depends on automated image analysis. Recently, deep learning approaches that learn feature representations directly from pixel intensity values have dominated object recognition challenges. These tasks typically have a single centered object per image and existing models are not directly applicable to microscopy datasets. Here we develop an approach that combines deep convolutional neural networks (CNNs) with multiple instance learning (MIL) in order to classify and segment microscopy images using only whole image level annotations. We introduce a new neural network architecture that uses MIL to simultaneously classify and segment microscopy images with populations of cells. We base our approach on the similarity between the aggregation function used in MIL and pooling layers used in CNNs. To facilitate aggregating across large numbers of instances in CNN feature maps we present the Noisy-AND pooling function, a new MIL operator that is robust to outliers. Combining CNNs with MIL enables training CNNs using whole microscopy images with image level labels. We show that training end-to-end MIL CNNs outperforms several previous methods on both mammalian and yeast datasets without requiring any segmentation steps. Torch7 implementation available upon request. oren.kraus@mail.utoronto.ca. © The Author 2016. Published by Oxford University Press.

  7. A Customizable Text Classifier for Text Mining

    Directory of Open Access Journals (Sweden)

    Yun-liang Zhang

    2007-12-01

    Full Text Available Text mining deals with complex and unstructured texts. Usually a particular collection of texts that is specified to one or more domains is necessary. We have developed a customizable text classifier for users to mine the collection automatically. It derives from the sentence category of the HNC theory and corresponding techniques. It can start with a few texts, and it can adjust automatically or be adjusted by user. The user can also control the number of domains chosen and decide the standard with which to choose the texts based on demand and abundance of materials. The performance of the classifier varies with the user's choice.

  8. A survey of decision tree classifier methodology

    Science.gov (United States)

    Safavian, S. R.; Landgrebe, David

    1991-01-01

    Decision tree classifiers (DTCs) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps the most important feature of DTCs is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issues. After considering potential advantages of DTCs over single-state classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.

  9. Classifying bicrossed products of two Taft algebras

    OpenAIRE

    Agore, A. L.

    2016-01-01

    We classify all Hopf algebras which factorize through two Taft algebras $\\mathbb{T}_{n^{2}}(\\bar{q})$ and respectively $T_{m^{2}}(q)$. To start with, all possible matched pairs between the two Taft algebras are described: if $\\bar{q} \

  10. Dynamic classifiers improve pulverizer performance and more

    Energy Technology Data Exchange (ETDEWEB)

    Sommerlad, R.E.; Dugdale, K.L. [Loesche Energy Systems (United States)

    2007-07-15

    Keeping coal-fired steam plants running efficiently and cleanly is a daily struggle. An article in the February 2007 issue of Power explained that one way to improve the combustion and emissions performance of a plant is to optimize the performance of its coal pulverizers. By adding a dynamic classifier to the pulverizers, you can better control coal particle sizing and fineness, and increase pulverizer capacity to boot. A dynamic classifier has an inner rotating cage and outer stationary vanes which, acting in concert, provide centrifugal or impinging classification. Replacing or upgrading a pulverizer's classifier from static to dynamic improves grinding performance reducing the level of unburned carbon in the coal in the process. The article describes the project at E.ON's Ratcliffe-on-Soar Power station in the UK to retrofit Loesche LSKS dynamic classifiers. It also mentions other successful projects at Scholven Power Station in Germany, Tilbury Power Station in the UK and J.B. Sims Power Plant in Michigan, USA. 8 figs.

  11. On the interpretation of number and classifiers

    NARCIS (Netherlands)

    Cheng, L.L.; Doetjes, J.S.; Sybesma, R.P.E.; Zamparelli, R.

    2012-01-01

    Mandarin and Cantonese, both of which are numeral classifier languages, present an interesting puzzle concerning a compositional account of number in the various forms of nominals. First, bare nouns are number neutral (or vague in number). Second, cl-noun combinations appear to have different

  12. Pragmatics of classifier use in Chinese discourse

    African Journals Online (AJOL)

    KATEVG

    The present study examines a particular syntactic phenomenon in Chinese discourse, namely complex noun phrases (CNPs), and investigates the occurrence and distribution of the various forms of such constructions. The study focuses on the presence and absence of classifier phrases that modify CNPs, and explores, ...

  13. Embedded feature ranking for ensemble MLP classifiers.

    Science.gov (United States)

    Windeatt, Terry; Duangsoithong, Rakkrit; Smith, Raymond

    2011-06-01

    A feature ranking scheme for multilayer perceptron (MLP) ensembles is proposed, along with a stopping criterion based upon the out-of-bootstrap estimate. To solve multi-class problems feature ranking is combined with modified error-correcting output coding. Experimental results on benchmark data demonstrate the versatility of the MLP base classifier in removing irrelevant features.

  14. Classifying web pages with visual features

    NARCIS (Netherlands)

    de Boer, V.; van Someren, M.; Lupascu, T.; Filipe, J.; Cordeiro, J.

    2010-01-01

    To automatically classify and process web pages, current systems use the textual content of those pages, including both the displayed content and the underlying (HTML) code. However, a very important feature of a web page is its visual appearance. In this paper, we show that using generic visual

  15. Feature selection based classifier combination approach for ...

    Indian Academy of Sciences (India)

    3.2c Dempster-Shafer rule based classifier combination: Dempster–Shafer (DS) method is based on the evidence theory, proposed by Glen Shafer as a way to represent cognitive knowledge. Here the probability is obtained using belief function instead of using the Bayesian distribution. Prob- ability values are assigned to a ...

  16. Measuring and Classifying Land-Based and Water-Based Daily Living Activities Using Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Koichi Kaneda

    2018-02-01

    Full Text Available This study classified motions of typical daily activities in both environments using inertial sensors attached at the chest and thigh to determine the optimal site to attach the sensors. Walking, chair standing and sitting, and step climbing were conducted both in water and on land. A mean, variance and skewness for acceleration data was calculated. A Neural Network and Decision Tree algorithm was applied for classifying each motion in both environments. In total, 126 and 144 samples of thigh and chest data sets were obtained for analysis in each condition. For the chest data, the algorithm correctly classified 80% of the water-based activities, and 90% of the land-based. Whilst the thigh sensor correctly classified 97% of water-based and 100% of land-based activities. The inertial sensor placed on the thigh provided the most appropriate protocol for classifying motions for land-based and water-based typical daily life activities.

  17. MScanner: a classifier for retrieving Medline citations.

    Science.gov (United States)

    Poulter, Graham L; Rubin, Daniel L; Altman, Russ B; Seoighe, Cathal

    2008-02-19

    Keyword searching through PubMed and other systems is the standard means of retrieving information from Medline. However, ad-hoc retrieval systems do not meet all of the needs of databases that curate information from literature, or of text miners developing a corpus on a topic that has many terms indicative of relevance. Several databases have developed supervised learning methods that operate on a filtered subset of Medline, to classify Medline records so that fewer articles have to be manually reviewed for relevance. A few studies have considered generalisation of Medline classification to operate on the entire Medline database in a non-domain-specific manner, but existing applications lack speed, available implementations, or a means to measure performance in new domains. MScanner is an implementation of a Bayesian classifier that provides a simple web interface for submitting a corpus of relevant training examples in the form of PubMed IDs and returning results ranked by decreasing probability of relevance. For maximum speed it uses the Medical Subject Headings (MeSH) and journal of publication as a concise document representation, and takes roughly 90 seconds to return results against the 16 million records in Medline. The web interface provides interactive exploration of the results, and cross validated performance evaluation on the relevant input against a random subset of Medline. We describe the classifier implementation, cross validate it on three domain-specific topics, and compare its performance to that of an expert PubMed query for a complex topic. In cross validation on the three sample topics against 100,000 random articles, the classifier achieved excellent separation of relevant and irrelevant article score distributions, ROC areas between 0.97 and 0.99, and averaged precision between 0.69 and 0.92. MScanner is an effective non-domain-specific classifier that operates on the entire Medline database, and is suited to retrieving topics for which

  18. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  19. 22 CFR 125.3 - Exports of classified technical data and classified defense articles.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Exports of classified technical data and classified defense articles. 125.3 Section 125.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC... in the Department of Defense National Industrial Security Program Operating Manual (unless such...

  20. Hybrid ANN optimized artificial fish swarm algorithm based classifier for classification of suspicious lesions in breast DCE-MRI

    Science.gov (United States)

    Janaki Sathya, D.; Geetha, K.

    2017-12-01

    Automatic mass or lesion classification systems are developed to aid in distinguishing between malignant and benign lesions present in the breast DCE-MR images, the systems need to improve both the sensitivity and specificity of DCE-MR image interpretation in order to be successful for clinical use. A new classifier (a set of features together with a classification method) based on artificial neural networks trained using artificial fish swarm optimization (AFSO) algorithm is proposed in this paper. The basic idea behind the proposed classifier is to use AFSO algorithm for searching the best combination of synaptic weights for the neural network. An optimal set of features based on the statistical textural features is presented. The investigational outcomes of the proposed suspicious lesion classifier algorithm therefore confirm that the resulting classifier performs better than other such classifiers reported in the literature. Therefore this classifier demonstrates that the improvement in both the sensitivity and specificity are possible through automated image analysis.

  1. ChIP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network

    Science.gov (United States)

    Matsuda, Kazunari; Oki, Shinya; Iida, Hideaki; Andrabi, Munazah; Yamaguchi, Katsushi

    2017-01-01

    To obtain insight into the transcription factor (TF)-dependent regulation of epiblast stem cells (EpiSCs), we performed ChIP-seq analysis of the genomic binding regions of five major TFs. Analysis of in vivo biotinylated ZIC2, OTX2, SOX2, POU5F1 and POU3F1 binding in EpiSCs identified several new features. (1) Megabase-scale genomic domains rich in ZIC2 peaks and genes alternate with those rich in POU3F1 but sparse in genes, reflecting the clustering of regulatory regions that act at short and long-range, which involve binding of ZIC2 and POU3F1, respectively. (2) The enhancers bound by ZIC2 and OTX2 prominently regulate TF genes in EpiSCs. (3) The binding sites for SOX2 and POU5F1 in mouse embryonic stem cells (ESCs) and EpiSCs are divergent, reflecting the shift in the major acting TFs from SOX2/POU5F1 in ESCs to OTX2/ZIC2 in EpiSCs. (4) This shift in the major acting TFs appears to be primed by binding of ZIC2 in ESCs at relevant genomic positions that later function as enhancers following the disengagement of SOX2/POU5F1 from major regulatory functions and subsequent binding by OTX2. These new insights into EpiSC gene regulatory networks gained from this study are highly relevant to early stage embryogenesis. PMID:28455373

  2. Using Evolving Fuzzy Classifiers to Classify Consumers with Different Model Architectures

    Science.gov (United States)

    Zhao, Rong; Chai, Chunlai; Zhou, Xiaowei

    This study introduces two alternative methods for evolving fuzzy classifiers (eClass and FLEXFIS-CLass) in order to classify consumers into different categories for directing marketing purposes. We describe in detail the learning mechanisms of these classifiers and different types of model architectures including single model architectures (SM) and multi-model architectures (MM). Note that single-model architectures have different consequents: singletons corresponding to class labels, linear consequents regressing over the features and eClass MIMO which is applicable in multi-class classification. Furthermore, we place emphasis on classification accuracy and effectiveness of these approaches and compare the proposed classifiers with well-established ones, such as CART and k-NN, and also popular SVM method. The result indicates that they compare favorably with others in term of precision. With these different model architectures, managers can use the introduced approaches to classify consumers to their categories and determine the most profitable decisions.

  3. Supervised Sequence Labelling with Recurrent Neural Networks

    CERN Document Server

    Graves, Alex

    2012-01-01

    Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary.    The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...

  4. Disassembly and Sanitization of Classified Matter

    International Nuclear Information System (INIS)

    Stockham, Dwight J.; Saad, Max P.

    2008-01-01

    The Disassembly Sanitization Operation (DSO) process was implemented to support weapon disassembly and disposition by using recycling and waste minimization measures. This process was initiated by treaty agreements and reconfigurations within both the DOD and DOE Complexes. The DOE is faced with disassembling and disposing of a huge inventory of retired weapons, components, training equipment, spare parts, weapon maintenance equipment, and associated material. In addition, regulations have caused a dramatic increase in the need for information required to support the handling and disposition of these parts and materials. In the past, huge inventories of classified weapon components were required to have long-term storage at Sandia and at many other locations throughout the DoE Complex. These materials are placed in onsite storage unit due to classification issues and they may also contain radiological and/or hazardous components. Since no disposal options exist for this material, the only choice was long-term storage. Long-term storage is costly and somewhat problematic, requiring a secured storage area, monitoring, auditing, and presenting the potential for loss or theft of the material. Overall recycling rates for materials sent through the DSO process have enabled 70 to 80% of these components to be recycled. These components are made of high quality materials and once this material has been sanitized, the demand for the component metals for recycling efforts is very high. The DSO process for NGPF, classified components established the credibility of this technique for addressing the long-term storage requirements of the classified weapons component inventory. The success of this application has generated interest from other Sandia organizations and other locations throughout the complex. Other organizations are requesting the help of the DSO team and the DSO is responding to these requests by expanding its scope to include Work-for- Other projects. For example

  5. Toward an efficient Photometric Supernova Classifier

    Science.gov (United States)

    McClain, Bradley

    2018-01-01

    The Sloan Digital Sky Survey Supernova Survey (SDSS) discovered more than 1,000 Type Ia Supernovae, yet less than half of these have spectroscopic measurements. As wide-field imaging telescopes such as The Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) discover more supernovae, the need for accurate and computationally cheap photometric classifiers increases. My goal is to use a photometric classification algorithm based on Sncosmo, a python library for supernova cosmology analysis, to reclassify previously identified Hubble SN and other non-spectroscopically confirmed surveys. My results will be compared to other photometric classifiers such as PSNID and STARDUST. In the near future, I expect to have the algorithm validated with simulated data, optimized for efficiency, and applied with high performance computing to real data.

  6. Comparing cosmic web classifiers using information theory

    International Nuclear Information System (INIS)

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin; Jasche, Jens

    2016-01-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  7. Ensembles of Classifiers based on Dimensionality Reduction

    OpenAIRE

    Schclar, Alon; Rokach, Lior; Amit, Amir

    2013-01-01

    We present a novel approach for the construction of ensemble classifiers based on dimensionality reduction. Dimensionality reduction methods represent datasets using a small number of attributes while preserving the information conveyed by the original dataset. The ensemble members are trained based on dimension-reduced versions of the training set. These versions are obtained by applying dimensionality reduction to the original training set using different values of the input parameters. Thi...

  8. Classifying Variable Sources in SDSS Stripe 82

    Science.gov (United States)

    Willecke Lindberg, Christina

    2018-01-01

    SDSS (Sloan Digital Sky Survey) Stripe 82 is a well-documented and researched region of the sky that does not have all of its ~67,500 variable objects labeled. By collecting data and consulting different catalogs such as the Catalina Survey, we are able to slowly cross-match more objects and add classifications within the Stripe 82 catalog. Such matching is performed either by pairing SDSS identification numbers, or by converting and comparing the coordinates of every object within the Stripe 82 catalog to every object within the classified catalog, such as the Catalina Survey catalog. If matching is performed with converted coordinates, a follow-up check is performed to ascertain that the magnitudes of the paired objects are within a reasonable margin of error and that objects have not been mismatched. Once matches have been confirmed, the light curves of classified objects can then be used to determine features that most effectively separate the different types of variable objects in feature spaces. By classifying variable objects, we can construct a reference for subsequent large research surveys, such as LSST (the Large Synoptic Survey Telescope), that could utilize SDSS data as a training set for its own classifications.

  9. SVM classifier on chip for melanoma detection.

    Science.gov (United States)

    Afifi, Shereen; GholamHosseini, Hamid; Sinha, Roopak

    2017-07-01

    Support Vector Machine (SVM) is a common classifier used for efficient classification with high accuracy. SVM shows high accuracy for classifying melanoma (skin cancer) clinical images within computer-aided diagnosis systems used by skin cancer specialists to detect melanoma early and save lives. We aim to develop a medical low-cost handheld device that runs a real-time embedded SVM-based diagnosis system for use in primary care for early detection of melanoma. In this paper, an optimized SVM classifier is implemented onto a recent FPGA platform using the latest design methodology to be embedded into the proposed device for realizing online efficient melanoma detection on a single system on chip/device. The hardware implementation results demonstrate a high classification accuracy of 97.9% and a significant acceleration factor of 26 from equivalent software implementation on an embedded processor, with 34% of resources utilization and 2 watts for power consumption. Consequently, the implemented system meets crucial embedded systems constraints of high performance and low cost, resources utilization and power consumption, while achieving high classification accuracy.

  10. Optimization of short amino acid sequences classifier

    Science.gov (United States)

    Barcz, Aleksy; Szymański, Zbigniew

    This article describes processing methods used for short amino acid sequences classification. The data processed are 9-symbols string representations of amino acid sequences, divided into 49 data sets - each one containing samples labeled as reacting or not with given enzyme. The goal of the classification is to determine for a single enzyme, whether an amino acid sequence would react with it or not. Each data set is processed separately. Feature selection is performed to reduce the number of dimensions for each data set. The method used for feature selection consists of two phases. During the first phase, significant positions are selected using Classification and Regression Trees. Afterwards, symbols appearing at the selected positions are substituted with numeric values of amino acid properties taken from the AAindex database. In the second phase the new set of features is reduced using a correlation-based ranking formula and Gram-Schmidt orthogonalization. Finally, the preprocessed data is used for training LS-SVM classifiers. SPDE, an evolutionary algorithm, is used to obtain optimal hyperparameters for the LS-SVM classifier, such as error penalty parameter C and kernel-specific hyperparameters. A simple score penalty is used to adapt the SPDE algorithm to the task of selecting classifiers with best performance measures values.

  11. Evolving edited k-nearest neighbor classifiers.

    Science.gov (United States)

    Gil-Pita, Roberto; Yao, Xin

    2008-12-01

    The k-nearest neighbor method is a classifier based on the evaluation of the distances to each pattern in the training set. The edited version of this method consists of the application of this classifier with a subset of the complete training set in which some of the training patterns are excluded, in order to reduce the classification error rate. In recent works, genetic algorithms have been successfully applied to determine which patterns must be included in the edited subset. In this paper we propose a novel implementation of a genetic algorithm for designing edited k-nearest neighbor classifiers. It includes the definition of a novel mean square error based fitness function, a novel clustered crossover technique, and the proposal of a fast smart mutation scheme. In order to evaluate the performance of the proposed method, results using the breast cancer database, the diabetes database and the letter recognition database from the UCI machine learning benchmark repository have been included. Both error rate and computational cost have been considered in the analysis. Obtained results show the improvement achieved by the proposed editing method.

  12. Analysis and minimization of overtraining effect in rule-based classifiers for computer-aided diagnosis

    International Nuclear Information System (INIS)

    Li Qiang; Doi Kunio

    2006-01-01

    Computer-aided diagnostic (CAD) schemes have been developed to assist radiologists detect various lesions in medical images. In CAD schemes, classifiers play a key role in achieving a high lesion detection rate and a low false-positive rate. Although many popular classifiers such as linear discriminant analysis and artificial neural networks have been employed in CAD schemes for reduction of false positives, a rule-based classifier has probably been the simplest and most frequently used one since the early days of development of various CAD schemes. However, with existing rule-based classifiers, there are major disadvantages that significantly reduce their practicality and credibility. The disadvantages include manual design, poor reproducibility, poor evaluation methods such as resubstitution, and a large overtraining effect. An automated rule-based classifier with a minimized overtraining effect can overcome or significantly reduce the extent of the above-mentioned disadvantages. In this study, we developed an 'optimal' method for the selection of cutoff thresholds and a fully automated rule-based classifier. Experimental results performed with Monte Carlo simulation and a real lung nodule CT data set demonstrated that the automated threshold selection method can completely eliminate overtraining effect in the procedure of cutoff threshold selection, and thus can minimize overall overtraining effect in the constructed rule-based classifier. We believe that this threshold selection method is very useful in the construction of automated rule-based classifiers with minimized overtraining effect

  13. Analysis and minimization of overtraining effect in rule-based classifiers for computer-aided diagnosis.

    Science.gov (United States)

    Li, Qiang; Doi, Kunio

    2006-02-01

    Computer-aided diagnostic (CAD) schemes have been developed to assist radiologists detect various lesions in medical images. In CAD schemes, classifiers play a key role in achieving a high lesion detection rate and a low false-positive rate. Although many popular classifiers such as linear discriminant analysis and artificial neural networks have been employed in CAD schemes for reduction of false positives, a rule-based classifier has probably been the simplest and most frequently used one since the early days of development of various CAD schemes. However, with existing rule-based classifiers, there are major disadvantages that significantly reduce their practicality and credibility. The disadvantages include manual design, poor reproducibility, poor evaluation methods such as resubstitution, and a large overtraining effect. An automated rule-based classifier with a minimized overtraining effect can overcome or significantly reduce the extent of the above-mentioned disadvantages. In this study, we developed an "optimal" method for the selection of cutoff thresholds and a fully automated rule-based classifier. Experimental results performed with Monte Carlo simulation and a real lung nodule CT data set demonstrated that the automated threshold selection method can completely eliminate overtraining effect in the procedure of cutoff threshold selection, and thus can minimize overall overtraining effect in the constructed rule-based classifier. We believe that this threshold selection method is very useful in the construction of automated rule-based classifiers with minimized overtraining effect.

  14. HIV-1 reverse transcription.

    Science.gov (United States)

    Hu, Wei-Shau; Hughes, Stephen H

    2012-10-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.

  15. Robust Framework to Combine Diverse Classifiers Assigning Distributed Confidence to Individual Classifiers at Class Level

    Directory of Open Access Journals (Sweden)

    Shehzad Khalid

    2014-01-01

    Full Text Available We have presented a classification framework that combines multiple heterogeneous classifiers in the presence of class label noise. An extension of m-Mediods based modeling is presented that generates model of various classes whilst identifying and filtering noisy training data. This noise free data is further used to learn model for other classifiers such as GMM and SVM. A weight learning method is then introduced to learn weights on each class for different classifiers to construct an ensemble. For this purpose, we applied genetic algorithm to search for an optimal weight vector on which classifier ensemble is expected to give the best accuracy. The proposed approach is evaluated on variety of real life datasets. It is also compared with existing standard ensemble techniques such as Adaboost, Bagging, and Random Subspace Methods. Experimental results show the superiority of proposed ensemble method as compared to its competitors, especially in the presence of class label noise and imbalance classes.

  16. Learning to Detect Traffic Incidents from Data Based on Tree Augmented Naive Bayesian Classifiers

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2017-01-01

    Full Text Available This study develops a tree augmented naive Bayesian (TAN classifier based incident detection algorithm. Compared with the Bayesian networks based detection algorithms developed in the previous studies, this algorithm has less dependency on experts’ knowledge. The structure of TAN classifier for incident detection is learned from data. The discretization of continuous attributes is processed using an entropy-based method automatically. A simulation dataset on the section of the Ayer Rajah Expressway (AYE in Singapore is used to demonstrate the development of proposed algorithm, including wavelet denoising, normalization, entropy-based discretization, and structure learning. The performance of TAN based algorithm is evaluated compared with the previous developed Bayesian network (BN based and multilayer feed forward (MLF neural networks based algorithms with the same AYE data. The experiment results show that the TAN based algorithms perform better than the BN classifiers and have a similar performance to the MLF based algorithm. However, TAN based algorithm would have wider vista of applications because the theory of TAN classifiers is much less complicated than MLF. It should be found from the experiment that the TAN classifier based algorithm has a significant superiority over the speed of model training and calibration compared with MLF.

  17. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    Science.gov (United States)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Haq, Mahmoodul; Udpa, Lalita

    2018-01-01

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions (EOC). To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations. We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a different segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using Monte-Carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate. We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all EOC, while the latter does not and leverages the fact that EOC vary slowly over time and can be modeled as a Gaussian process.

  18. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Haq, Mahmoodul; Udpa, Lalita

    2017-11-17

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions. To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations.We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a different segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using monte-carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate.We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all environmental and operating conditions, while the latter does not and leverages the fact that environmental and operating conditions vary slowly over time and can be modeled as a Gaussian process.

  19. Classifying smoking urges via machine learning.

    Science.gov (United States)

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-12-01

    Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights

  20. Classifying spaces of degenerating polarized Hodge structures

    CERN Document Server

    Kato, Kazuya

    2009-01-01

    In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinem

  1. Cubical sets as a classifying topos

    DEFF Research Database (Denmark)

    Spitters, Bas

    Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De...... Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation...

  2. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  3. Reconstructing the Prostate Cancer Transcriptional Regulatory Network

    Science.gov (United States)

    2010-09-01

    Matsushita N, Arakawa H, Lamerdin JE, et al. (2003) Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by...preparation. 2. Malhotra S, Lapointe J, Higgins JP, Ferrari M, Montgomery K, Salari K, van de Rijn M, Brooks JD, and Pollack JR. A tri-marker...Jul 3;4(7):e6146. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P

  4. Transcriptional regulatory network controlling secondary cell wall ...

    African Journals Online (AJOL)

    Secondary wall is an abundant component of plant biomass and has a potential to be a renewable resource of bioenergy and biomaterials. It is important to unravel the molecular mechanism underlying secondary wall formation and how it contributes to plant biomass production. In this review, we summarized the potential ...

  5. Classifying Coding DNA with Nucleotide Statistics

    Directory of Open Access Journals (Sweden)

    Nicolas Carels

    2009-10-01

    Full Text Available In this report, we compared the success rate of classification of coding sequences (CDS vs. introns by Codon Structure Factor (CSF and by a method that we called Universal Feature Method (UFM. UFM is based on the scoring of purine bias (Rrr and stop codon frequency. We show that the success rate of CDS/intron classification by UFM is higher than by CSF. UFM classifies ORFs as coding or non-coding through a score based on (i the stop codon distribution, (ii the product of purine probabilities in the three positions of nucleotide triplets, (iii the product of Cytosine (C, Guanine (G, and Adenine (A probabilities in the 1st, 2nd, and 3rd positions of triplets, respectively, (iv the probabilities of G in 1st and 2nd position of triplets and (v the distance of their GC3 vs. GC2 levels to the regression line of the universal correlation. More than 80% of CDSs (true positives of Homo sapiens (>250 bp, Drosophila melanogaster (>250 bp and Arabidopsis thaliana (>200 bp are successfully classified with a false positive rate lower or equal to 5%. The method releases coding sequences in their coding strand and coding frame, which allows their automatic translation into protein sequences with 95% confidence. The method is a natural consequence of the compositional bias of nucleotides in coding sequences.

  6. A systematic comparison of supervised classifiers.

    Directory of Open Access Journals (Sweden)

    Diego Raphael Amancio

    Full Text Available Pattern recognition has been employed in a myriad of industrial, commercial and academic applications. Many techniques have been devised to tackle such a diversity of applications. Despite the long tradition of pattern recognition research, there is no technique that yields the best classification in all scenarios. Therefore, as many techniques as possible should be considered in high accuracy applications. Typical related works either focus on the performance of a given algorithm or compare various classification methods. In many occasions, however, researchers who are not experts in the field of machine learning have to deal with practical classification tasks without an in-depth knowledge about the underlying parameters. Actually, the adequate choice of classifiers and parameters in such practical circumstances constitutes a long-standing problem and is one of the subjects of the current paper. We carried out a performance study of nine well-known classifiers implemented in the Weka framework and compared the influence of the parameter configurations on the accuracy. The default configuration of parameters in Weka was found to provide near optimal performance for most cases, not including methods such as the support vector machine (SVM. In addition, the k-nearest neighbor method frequently allowed the best accuracy. In certain conditions, it was possible to improve the quality of SVM by more than 20% with respect to their default parameter configuration.

  7. Enhancers and Transcriptional Regulation in CD4+ T Cells

    OpenAIRE

    Allison, Karmel Alon

    2015-01-01

    High-throughput sequencing has given us unprecedented insight into the regulatory networks that govern enhancer selection and transcription in mammalian cells, but many open questions remain as to how the mechanics of transcriptional regulation correspond to biological outputs such as gene expression and downstream signaling. In this dissertation, I address the nature of enhancer selection and transcriptional regulation in the context of CD4+ T cell signaling in two parts. The first study des...

  8. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard

    2015-01-01

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, an...

  9. 5 CFR 1312.23 - Access to classified information.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Access to classified information. 1312.23..., DOWNGRADING, DECLASSIFICATION AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION Control and Accountability of Classified Information § 1312.23 Access to classified information. Classified information may be made...

  10. HIV-1 Reverse Transcription

    OpenAIRE

    Hu, Wei-Shau; Hughes, Stephen H.

    2012-01-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name “retrovirus” derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral fact...

  11. Learning algorithms for stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory; Zimmer, Beate G [TEXAS A& M

    2009-01-01

    Stack Filters define a large class of increasing filter that is used widely in image and signal processing. The motivations for using an increasing filter instead of an unconstrained filter have been described as: (1) fast and efficient implementation, (2) the relationship to mathematical morphology and (3) more precise estimation with finite sample data. This last motivation is related to methods developed in machine learning and the relationship was explored in an earlier paper. In this paper we investigate this relationship by applying Stack Filters directly to classification problems. This provides a new perspective on how monotonicity constraints can help control estimation and approximation errors, and also suggests several new learning algorithms for Boolean function classifiers when they are applied to real-valued inputs.

  12. Communication Behaviour-Based Big Data Application to Classify and Detect HTTP Automated Software

    Directory of Open Access Journals (Sweden)

    Manh Cong Tran

    2016-01-01

    Full Text Available HTTP is recognized as the most widely used protocol on the Internet when applications are being transferred more and more by developers onto the web. Due to increasingly complex computer systems, diversity HTTP automated software (autoware thrives. Unfortunately, besides normal autoware, HTTP malware and greyware are also spreading rapidly in web environment. Consequently, network communication is not just rigorously controlled by users intention. This raises the demand for analyzing HTTP autoware communication behaviour to detect and classify malicious and normal activities via HTTP traffic. Hence, in this paper, based on many studies and analysis of the autoware communication behaviour through access graph, a new method to detect and classify HTTP autoware communication at network level is presented. The proposal system includes combination of MapReduce of Hadoop and MarkLogic NoSQL database along with xQuery to deal with huge HTTP traffic generated each day in a large network. The method is examined with real outbound HTTP traffic data collected through a proxy server of a private network. Experimental results obtained for proposed method showed that promised outcomes are achieved since 95.1% of suspicious autoware are classified and detected. This finding may assist network and system administrator in inspecting early the internal threats caused by HTTP autoware.

  13. Classifying patents based on their semantic content

    Science.gov (United States)

    2017-01-01

    In this paper, we extend some usual techniques of classification resulting from a large-scale data-mining and network approach. This new technology, which in particular is designed to be suitable to big data, is used to construct an open consolidated database from raw data on 4 million patents taken from the US patent office from 1976 onward. To build the pattern network, not only do we look at each patent title, but we also examine their full abstract and extract the relevant keywords accordingly. We refer to this classification as semantic approach in contrast with the more common technological approach which consists in taking the topology when considering US Patent office technological classes. Moreover, we document that both approaches have highly different topological measures and strong statistical evidence that they feature a different model. This suggests that our method is a useful tool to extract endogenous information. PMID:28445550

  14. Just-in-time adaptive classifiers-part II: designing the classifier.

    Science.gov (United States)

    Alippi, Cesare; Roveri, Manuel

    2008-12-01

    Aging effects, environmental changes, thermal drifts, and soft and hard faults affect physical systems by changing their nature and behavior over time. To cope with a process evolution adaptive solutions must be envisaged to track its dynamics; in this direction, adaptive classifiers are generally designed by assuming the stationary hypothesis for the process generating the data with very few results addressing nonstationary environments. This paper proposes a methodology based on k-nearest neighbor (NN) classifiers for designing adaptive classification systems able to react to changing conditions just-in-time (JIT), i.e., exactly when it is needed. k-NN classifiers have been selected for their computational-free training phase, the possibility to easily estimate the model complexity k and keep under control the computational complexity of the classifier through suitable data reduction mechanisms. A JIT classifier requires a temporal detection of a (possible) process deviation (aspect tackled in a companion paper) followed by an adaptive management of the knowledge base (KB) of the classifier to cope with the process change. The novelty of the proposed approach resides in the general framework supporting the real-time update of the KB of the classification system in response to novel information coming from the process both in stationary conditions (accuracy improvement) and in nonstationary ones (process tracking) and in providing a suitable estimate of k. It is shown that the classification system grants consistency once the change targets the process generating the data in a new stationary state, as it is the case in many real applications.

  15. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  16. The Transcription Factor Encyclopedia

    NARCIS (Netherlands)

    Yusuf, Dimas; Butland, Stefanie L.; Swanson, Magdalena I.; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A.; Zhang, Xiao Yu Cindy; Dickman, Christopher T. D.; Fulton, Debra L.; Lim, Jonathan S.; Schnabl, Jake M.; Ramos, Oscar H. P.; Vasseur-Cognet, Mireille; de Leeuw, Charles N.; Simpson, Elizabeth M.; Ryffel, Gerhart U.; Lam, Eric W.-F.; Kist, Ralf; Wilson, Miranda S. C.; Marco-Ferreres, Raquel; Brosens, Jan J.; Beccari, Leonardo L.; Bovolenta, Paola; Benayoun, Bérénice A.; Monteiro, Lara J.; Schwenen, Helma D. C.; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A.; Chakravarthy, Harini; Hoodless, Pamela A.; Mancarelli, M. Michela; Torbett, Bruce E.; Banham, Alison H.; Reddy, Sekhar P.; Cullum, Rebecca L.; Liedtke, Michaela; Tschan, Mario P.; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J.; Eijkelenboom, Astrid; Brown, Philip J.; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L.; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H.; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J.; van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W. Z.; Breslin, Mary B.; Lan, Michael S.; Nanan, Kyster K.; Wegner, Michael; Hou, Juan; Mullen, Rachel D.; Colvin, Stephanie C.; Noy, Peter John; Webb, Carol F.; Witek, Matthew E.; Ferrell, Scott; Daniel, Juliet M.; Park, Jason; Waldman, Scott A.; Peet, Daniel J.; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J.; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M.; Woodcroft, Mark W.; Hough, Margaret R.; Chen, Edwin; Europe-Finner, G. Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; Lebrun, David P.; Biswal, Shyam; Harvey, Christopher J.; Debruyne, Jason P.; Hogenesch, John B.; Hevner, Robert F.; Héligon, Christophe; Luo, Xin M.; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S.; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M.; Bradley, Philip H.; Wasserman, Wyeth W.

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review

  17. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein codi...

  18. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier.

    Science.gov (United States)

    Subbulakshmi, C V; Deepa, S N

    2015-01-01

    Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO) algorithm with the extreme learning machine (ELM) classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN), proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  19. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    Directory of Open Access Journals (Sweden)

    C. V. Subbulakshmi

    2015-01-01

    Full Text Available Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO algorithm with the extreme learning machine (ELM classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN, proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  20. Gene-expression Classifier in Papillary Thyroid Carcinoma: Validation and Application of a Classifier for Prognostication

    DEFF Research Database (Denmark)

    Londero, Stefano Christian; Jespersen, Marie Louise; Krogdahl, Annelise

    2016-01-01

    BACKGROUND: No reliable biomarker for metastatic potential in the risk stratification of papillary thyroid carcinoma exists. We aimed to develop a gene-expression classifier for metastatic potential. MATERIALS AND METHODS: Genome-wide expression analyses were used. Development cohort: freshly...

  1. Mechanical Properties of Transcription

    Science.gov (United States)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  2. Dynamic ad hoc networks

    CERN Document Server

    Rashvand, Habib

    2013-01-01

    Motivated by the exciting new application paradigm of using amalgamated technologies of the Internet and wireless, the next generation communication networks (also called 'ubiquitous', 'complex' and 'unstructured' networking) are changing the way we develop and apply our future systems and services at home and on local, national and global scales. Whatever the interconnection - a WiMAX enabled networked mobile vehicle, MEMS or nanotechnology enabled distributed sensor systems, Vehicular Ad hoc Networking (VANET) or Mobile Ad hoc Networking (MANET) - all can be classified under new networking s

  3. Deep Learning to Classify Radiology Free-Text Reports.

    Science.gov (United States)

    Chen, Matthew C; Ball, Robyn L; Yang, Lingyao; Moradzadeh, Nathaniel; Chapman, Brian E; Larson, David B; Langlotz, Curtis P; Amrhein, Timothy J; Lungren, Matthew P

    2018-03-01

    Purpose To evaluate the performance of a deep learning convolutional neural network (CNN) model compared with a traditional natural language processing (NLP) model in extracting pulmonary embolism (PE) findings from thoracic computed tomography (CT) reports from two institutions. Materials and Methods Contrast material-enhanced CT examinations of the chest performed between January 1, 1998, and January 1, 2016, were selected. Annotations by two human radiologists were made for three categories: the presence, chronicity, and location of PE. Classification of performance of a CNN model with an unsupervised learning algorithm for obtaining vector representations of words was compared with the open-source application PeFinder. Sensitivity, specificity, accuracy, and F1 scores for both the CNN model and PeFinder in the internal and external validation sets were determined. Results The CNN model demonstrated an accuracy of 99% and an area under the curve value of 0.97. For internal validation report data, the CNN model had a statistically significant larger F1 score (0.938) than did PeFinder (0.867) when classifying findings as either PE positive or PE negative, but no significant difference in sensitivity, specificity, or accuracy was found. For external validation report data, no statistical difference between the performance of the CNN model and PeFinder was found. Conclusion A deep learning CNN model can classify radiology free-text reports with accuracy equivalent to or beyond that of an existing traditional NLP model. © RSNA, 2017 Online supplemental material is available for this article.

  4. Comparative Transcriptional Profiling of Three Super-Hybrid Rice Combinations

    Directory of Open Access Journals (Sweden)

    Yonggang Peng

    2014-03-01

    Full Text Available Utilization of heterosis has significantly increased rice yields. However, its mechanism remains unclear. In this study, comparative transcriptional profiles of three super-hybrid rice combinations, LY2163, LY2186 and LYP9, at the flowering and filling stages, were created using rice whole-genome oligonucleotide microarray. The LY2163, LY2186 and LYP9 hybrids yielded 1193, 1630 and 1046 differentially expressed genes (DGs, accounting for 3.2%, 4.4% and 2.8% of the total number of genes (36,926, respectively, after using the z-test (p < 0.01. Functional category analysis showed that the DGs in each hybrid combination were mainly classified into the carbohydrate metabolism and energy metabolism categories. Further analysis of the metabolic pathways showed that DGs were significantly enriched in the carbon fixation pathway (p < 0.01 for all three combinations. Over 80% of the DGs were located in rice quantitative trait loci (QTLs of the Gramene database, of which more than 90% were located in the yield related QTLs in all three combinations, which suggested that there was a correlation between DGs and rice heterosis. Pathway Studio analysis showed the presence of DGs in the circadian regulatory network of all three hybrid combinations, which suggested that the circadian clock had a role in rice heterosis. Our results provide information that can help to elucidate the molecular mechanism underlying rice heterosis.

  5. Classifiability-based omnivariate decision trees.

    Science.gov (United States)

    Li, Yuanhong; Dong, Ming; Kothari, Ravi

    2005-11-01

    Top-down induction of decision trees is a simple and powerful method of pattern classification. In a decision tree, each node partitions the available patterns into two or more sets. New nodes are created to handle each of the resulting partitions and the process continues. A node is considered terminal if it satisfies some stopping criteria (for example, purity, i.e., all patterns at the node are from a single class). Decision trees may be univariate, linear multivariate, or nonlinear multivariate depending on whether a single attribute, a linear function of all the attributes, or a nonlinear function of all the attributes is used for the partitioning at each node of the decision tree. Though nonlinear multivariate decision trees are the most powerful, they are more susceptible to the risks of overfitting. In this paper, we propose to perform model selection at each decision node to build omnivariate decision trees. The model selection is done using a novel classifiability measure that captures the possible sources of misclassification with relative ease and is able to accurately reflect the complexity of the subproblem at each node. The proposed approach is fast and does not suffer from as high a computational burden as that incurred by typical model selection algorithms. Empirical results over 26 data sets indicate that our approach is faster and achieves better classification accuracy compared to statistical model select algorithms.

  6. Stress fracture development classified by bone scintigraphy

    International Nuclear Information System (INIS)

    Zwas, S.T.; Elkanovich, R.; Frank, G.; Aharonson, Z.

    1985-01-01

    There is no consensus on classifying stress fractures (SF) appearing on bone scans. The authors present a system of classification based on grading the severity and development of bone lesions by visual inspection, according to three main scintigraphic criteria: focality and size, intensity of uptake compare to adjacent bone, and local medular extension. Four grades of development (I-IV) were ranked, ranging from ill defined slightly increased cortical uptake to well defined regions with markedly increased uptake extending transversely bicortically. 310 male subjects aged 19-2, suffering several weeks from leg pains occurring during intensive physical training underwent bone scans of the pelvis and lower extremities using Tc-99-m-MDP. 76% of the scans were positive with 354 lesions, of which 88% were in th4e mild (I-II) grades and 12% in the moderate (III) and severe (IV) grades. Post-treatment scans were obtained in 65 cases having 78 lesions during 1- to 6-month intervals. Complete resolution was found after 1-2 months in 36% of the mild lesions but in only 12% of the moderate and severe ones, and after 3-6 months in 55% of the mild lesions and 15% of the severe ones. 75% of the moderate and severe lesions showed residual uptake in various stages throughout the follow-up period. Early recognition and treatment of mild SF lesions in this study prevented protracted disability and progression of the lesions and facilitated complete healing

  7. Combining classifiers for robust PICO element detection

    Directory of Open Access Journals (Sweden)

    Grad Roland

    2010-05-01

    Full Text Available Abstract Background Formulating a clinical information need in terms of the four atomic parts which are Population/Problem, Intervention, Comparison and Outcome (known as PICO elements facilitates searching for a precise answer within a large medical citation database. However, using PICO defined items in the information retrieval process requires a search engine to be able to detect and index PICO elements in the collection in order for the system to retrieve relevant documents. Methods In this study, we tested multiple supervised classification algorithms and their combinations for detecting PICO elements within medical abstracts. Using the structural descriptors that are embedded in some medical abstracts, we have automatically gathered large training/testing data sets for each PICO element. Results Combining multiple classifiers using a weighted linear combination of their prediction scores achieves promising results with an f-measure score of 86.3% for P, 67% for I and 56.6% for O. Conclusions Our experiments on the identification of PICO elements showed that the task is very challenging. Nevertheless, the performance achieved by our identification method is competitive with previously published results and shows that this task can be achieved with a high accuracy for the P element but lower ones for I and O elements.

  8. Is it important to classify ischaemic stroke?

    LENUS (Irish Health Repository)

    Iqbal, M

    2012-02-01

    Thirty-five percent of all ischemic events remain classified as cryptogenic. This study was conducted to ascertain the accuracy of diagnosis of ischaemic stroke based on information given in the medical notes. It was tested by applying the clinical information to the (TOAST) criteria. Hundred and five patients presented with acute stroke between Jan-Jun 2007. Data was collected on 90 patients. Male to female ratio was 39:51 with age range of 47-93 years. Sixty (67%) patients had total\\/partial anterior circulation stroke; 5 (5.6%) had a lacunar stroke and in 25 (28%) the mechanism of stroke could not be identified. Four (4.4%) patients with small vessel disease were anticoagulated; 5 (5.6%) with atrial fibrillation received antiplatelet therapy and 2 (2.2%) patients with atrial fibrillation underwent CEA. This study revealed deficiencies in the clinical assessment of patients and treatment was not tailored to the mechanism of stroke in some patients.

  9. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    International Nuclear Information System (INIS)

    Goodale, Britton C.; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn R.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert L.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression

  10. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  11. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    International Nuclear Information System (INIS)

    Lefkofsky, Hailey B.; Veloso, Artur; Ljungman, Mats

    2015-01-01

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death

  12. Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster.

    Science.gov (United States)

    Meers, Michael P; Adelman, Karen; Duronio, Robert J; Strahl, Brian D; McKay, Daniel J; Matera, A Gregory

    2018-02-21

    High-resolution transcription start site (TSS) mapping in D. melanogaster embryos and cell lines has revealed a rich and detailed landscape of both cis- and trans-regulatory elements and factors. However, TSS profiling has not been investigated in an orthogonal in vivo setting. Here, we present a comprehensive dataset that links TSS dynamics with nucleosome occupancy and gene expression in the wandering third instar larva, a developmental stage characterized by large-scale shifts in transcriptional programs in preparation for metamorphosis. The data recapitulate major regulatory classes of TSSs, based on peak width, promoter-proximal polymerase pausing, and cis-regulatory element density. We confirm the paucity of divergent transcription units in D. melanogaster, but also identify notable exceptions. Furthermore, we identify thousands of novel initiation events occurring at unannotated TSSs that can be classified into functional categories by their local density of histone modifications. Interestingly, a sub-class of these unannotated TSSs overlaps with functionally validated enhancer elements, consistent with a regulatory role for "enhancer RNAs" (eRNAs) in defining developmental transcription programs. High-depth TSS mapping is a powerful strategy for identifying and characterizing low-abunda