WorldWideScience

Sample records for transcriptional factor recruitment

  1. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis

    DEFF Research Database (Denmark)

    Iankova, Irena; Petersen, Rasmus K; Annicotte, Jean-Sébastien

    2006-01-01

    Positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of RNA polymerase II, facilitating transcriptional elongation. In addition to its participation in general transcription, P-TEFb is recruited to specific promoters by some transcription factors such as c-Myc...

  2. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  3. Developmentally Regulated Recruitment of Transcription Factors and Chromatin Modification Activities to Chicken Lysozyme cis-Regulatory Elements In Vivo

    Science.gov (United States)

    Lefevre, Pascal; Melnik, Svitlana; Wilson, Nicola; Riggs, Arthur D.; Bonifer, Constanze

    2003-01-01

    Expression of the chicken lysozyme gene is upregulated during macrophage differentiation and reaches its highest level in bacterial lipopolysaccharide (LPS)-stimulated macrophages. This is accompanied by complex alterations in chromatin structure. We have previously shown that chromatin fine-structure alterations precede the onset of gene expression in macrophage precursor cells and mark the lysozyme chromatin domain for expression later in development. To further examine this phenomenon and to investigate the basis for the differentiation-dependent alterations of lysozyme chromatin, we studied the recruitment of transcription factors to the lysozyme locus in vivo at different stages of myeloid differentiation. Factor recruitment occurred in several steps. First, early-acting transcription factors such as NF1 and Fli-1 bound to a subset of enhancer elements and recruited CREB-binding protein. LPS stimulation led to an additional recruitment of C/EBPβ and a significant change in enhancer and promoter structure. Transcription factor recruitment was accompanied by specific changes in histone modification within the lysozyme chromatin domain. Interestingly, we present evidence for a transient interaction of transcription factors with lysozyme chromatin in lysozyme-nonexpressing macrophage precursors, which was accompanied by a partial demethylation of CpG sites. This indicates that a partially accessible chromatin structure of lineage-specific genes is a hallmark of hematopoietic progenitor cells. PMID:12773578

  4. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W

    2013-10-20

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF\\'s direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF\\'s motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  5. SUMOylation of the Forkhead transcription factor FOXL2 promotes its stabilization/activation through transient recruitment to PML bodies.

    Directory of Open Access Journals (Sweden)

    Adrien Georges

    Full Text Available BACKGROUND: FOXL2 is a transcription factor essential for ovarian development and maintenance. It is mutated in the genetic condition called Blepharophimosis Ptosis Epicantus inversus Syndrome (BPES and in cases of isolated premature ovarian failure. We and others have previously shown that FOXL2 undergoes several post-translational modifications. METHODS AND PRINCIPAL FINDINGS: Here, using cells in culture, we show that interference with FOXL2 SUMOylation leads to a robust inhibition of its transactivation ability, which correlates with a decreased stability. Interestingly, FOXL2 SUMOylation promotes its transient recruitment to subnuclear structures that we demonstrate to be PML (Promyelocytic Leukemia Nuclear Bodies. Since PML bodies are known to be sites where post-translational modifications of nuclear factors take place, we used tandem mass spectrometry to identify new post-translational modifications of FOXL2. Specifically, we detected four phosphorylated, one sulfated and three acetylated sites. CONCLUSIONS: By analogy with other transcription factors, we propose that PML Nuclear Bodies might transiently recruit FOXL2 to the vicinity of locally concentrated enzymes that could be involved in the post-translational maturation of FOXL2. FOXL2 acetylation, sulfation, phosphorylation as well as other modifications yet to be discovered might alter the transactivation capacity of FOXL2 and/or its stability, thus modulating its global intracellular activity.

  6. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren

    2008-01-01

    Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs, harb...... a promoter-proximal 5′ splice site via its U1 snRNA interaction can feed back to stimulate transcription initiation by enhancing preinitiation complex assembly.......Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs......, harboring wild-type or various 5′ splice site mutations, we demonstrate a strong positive correlation between splicing efficiency and transcription activity. Interestingly, a 5′ splice site can stimulate transcription even in the absence of splicing. Chromatin immunoprecipitation experiments show enhanced...

  7. A WRKY Transcription Factor Recruits the SYG1-Like Protein SHB1 to Activate Gene Expression and Seed Cavity Enlargement

    Science.gov (United States)

    Kang, Xiaojun; Li, Wei; Zhou, Yun; Ni, Min

    2013-01-01

    Seed development in Arabidopsis and in many dicots involves an early proliferation of the endosperm to form a large embryo sac or seed cavity close to the size of the mature seed, followed by a second phase during which the embryo grows and replaces the endosperm. SHORT HYPOCOTYL UNDER BLUE1 (SHB1) is a member of the SYG1 protein family in fungi, Caenorhabditis elegans, flies, and mammals. SHB1 gain-of-function enhances endosperm proliferation, increases seed size, and up-regulates the expression of the WRKY transcription factor gene MINISEED3 (MINI3) and the LRR receptor kinase gene HAIKU2 (IKU2). Mutations in either IKU2 or MINI3 retard endosperm proliferation and reduce seed size. However, the molecular mechanisms underlying the establishment of the seed cavity and hence the seed size remain largely unknown. Here, we show that the expression of MINI3 and IKU2 is repressed before fertilization and after 4 days after pollination (DAP), but is activated by SHB1 from 2 to 4 DAP prior to the formation of the seed cavity. SHB1 associates with their promoters but without a recognizable DNA binding motif, and this association is abolished in mini3 mutant. MINI3 binds to W-boxes in, and recruits SHB1 to, its own and IKU2 promoters. Interestingly, SHB1, but not MINI3, activates transcription of pMINI3::GUS or pIKU2::GUS. We reveal a critical developmental switch through the activation of MINI3 expression by SHB1. The recruitment of SHB1 by MINI3 to its own and IKU2 promoters represents a novel two-step amplification to counter the low expression level of IKU2, which is a trigger for endosperm proliferation and seed cavity enlargement. PMID:23505389

  8. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    Science.gov (United States)

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.

  9. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Lior Izhar

    2015-06-01

    Full Text Available Localization to sites of DNA damage is a hallmark of DNA damage response (DDR proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose polymerase (PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins.

  10. Sumoylation of the basic helix-loop-helix transcription factor sharp-1 regulates recruitment of the histone methyltransferase G9a and function in myogenesis.

    Science.gov (United States)

    Wang, Yaju; Shankar, Shilpa Rani; Kher, Devaki; Ling, Belinda Mei Tze; Taneja, Reshma

    2013-06-14

    Sumoylation is an important post-translational modification that alters the activity of many transcription factors. However, the mechanisms that link sumoylation to alterations in chromatin structure, which culminate in tissue specific gene expression, are not fully understood. In this study, we demonstrate that SUMO modification of the transcription factor Sharp-1 is required for its full transcriptional repression activity and function as an inhibitor of skeletal muscle differentiation. Sharp-1 is modified by sumoylation at two conserved lysine residues 240 and 255. Mutation of these SUMO acceptor sites in Sharp-1 does not impact its subcellular localization but attenuates its ability to act as a transcriptional repressor and inhibit myogenic differentiation. Consistently, co-expression of the SUMO protease SENP1 with wild type Sharp-1 abrogates Sharp-1-dependent inhibition of myogenesis. Interestingly, sumoylation acts as a signal for recruitment of the co-repressor G9a. Thus, enrichment of G9a, and histone H3 lysine 9 dimethylation (H3K9me2), a signature of G9a activity, is dramatically reduced at muscle promoters in cells expressing sumoylation-defective Sharp-1. Our findings demonstrate how sumoylation of Sharp-1 exerts an impact on chromatin structure and transcriptional repression of muscle gene expression through recruitment of G9a.

  11. Sumoylation of the Basic Helix-Loop-Helix Transcription Factor Sharp-1 Regulates Recruitment of the Histone Methyltransferase G9a and Function in Myogenesis*

    Science.gov (United States)

    Wang, Yaju; Shankar, Shilpa Rani; Kher, Devaki; Ling, Belinda Mei Tze; Taneja, Reshma

    2013-01-01

    Sumoylation is an important post-translational modification that alters the activity of many transcription factors. However, the mechanisms that link sumoylation to alterations in chromatin structure, which culminate in tissue specific gene expression, are not fully understood. In this study, we demonstrate that SUMO modification of the transcription factor Sharp-1 is required for its full transcriptional repression activity and function as an inhibitor of skeletal muscle differentiation. Sharp-1 is modified by sumoylation at two conserved lysine residues 240 and 255. Mutation of these SUMO acceptor sites in Sharp-1 does not impact its subcellular localization but attenuates its ability to act as a transcriptional repressor and inhibit myogenic differentiation. Consistently, co-expression of the SUMO protease SENP1 with wild type Sharp-1 abrogates Sharp-1-dependent inhibition of myogenesis. Interestingly, sumoylation acts as a signal for recruitment of the co-repressor G9a. Thus, enrichment of G9a, and histone H3 lysine 9 dimethylation (H3K9me2), a signature of G9a activity, is dramatically reduced at muscle promoters in cells expressing sumoylation-defective Sharp-1. Our findings demonstrate how sumoylation of Sharp-1 exerts an impact on chromatin structure and transcriptional repression of muscle gene expression through recruitment of G9a. PMID:23637228

  12. Recruitment of a ribosomal release factor for light- and stress-dependent regulation of petB transcript stability in Arabidopsis chloroplasts.

    Science.gov (United States)

    Stoppel, Rhea; Lezhneva, Lina; Schwenkert, Serena; Torabi, Salar; Felder, Susanne; Meierhoff, Karin; Westhoff, Peter; Meurer, Jörg

    2011-07-01

    Land plant genomes encode four functional ribosomal peptide chain release factors (Prf) of eubacterial origin, two (PrfA and PrfB homologs) for each endosymbiotic organelle. Formerly, we have shown that the Arabidopsis thaliana chloroplast-localized PrfB homolog, PrfB1, is required not only for termination of translation but also for stabilization of UGA stop codon-containing chloroplast transcripts. A previously undiscovered PrfB-like protein, PrfB3, is localized to the chloroplast stroma in a petB RNA-containing complex and found only in vascular plants. Highly conserved positions of introns unequivocally indicate that PrfB3 arose from a duplication of PrfB1. Notably, PrfB3 is lacking the two most important tripeptide motifs characteristic for all eubacterial and organellar PrfB homologs described so far: the stop codon recognition motif SPF and the catalytic center GGQ for peptidyl-tRNA hydrolysis. Complementation studies, as well as functional and molecular analyses of two allelic mutations in Arabidopsis, both of which lead to a specific deficiency of the cytochrome b₆f complex, revealed that PrfB3 is essentially required for photoautotrophic growth. Plastid transcript, polysome, and translation analyses indicate that PrfB3 has been recruited in vascular plants for light- and stress-dependent regulation of stability of 3' processed petB transcripts to adjust cytochrome b₆ levels.

  13. Recruitment of a Ribosomal Release Factor for Light- and Stress-Dependent Regulation of petB Transcript Stability in Arabidopsis Chloroplasts[W][OA

    Science.gov (United States)

    Stoppel, Rhea; Lezhneva, Lina; Schwenkert, Serena; Torabi, Salar; Felder, Susanne; Meierhoff, Karin; Westhoff, Peter; Meurer, Jörg

    2011-01-01

    Land plant genomes encode four functional ribosomal peptide chain release factors (Prf) of eubacterial origin, two (PrfA and PrfB homologs) for each endosymbiotic organelle. Formerly, we have shown that the Arabidopsis thaliana chloroplast-localized PrfB homolog, PrfB1, is required not only for termination of translation but also for stabilization of UGA stop codon-containing chloroplast transcripts. A previously undiscovered PrfB-like protein, PrfB3, is localized to the chloroplast stroma in a petB RNA-containing complex and found only in vascular plants. Highly conserved positions of introns unequivocally indicate that PrfB3 arose from a duplication of PrfB1. Notably, PrfB3 is lacking the two most important tripeptide motifs characteristic for all eubacterial and organellar PrfB homologs described so far: the stop codon recognition motif SPF and the catalytic center GGQ for peptidyl-tRNA hydrolysis. Complementation studies, as well as functional and molecular analyses of two allelic mutations in Arabidopsis, both of which lead to a specific deficiency of the cytochrome b6f complex, revealed that PrfB3 is essentially required for photoautotrophic growth. Plastid transcript, polysome, and translation analyses indicate that PrfB3 has been recruited in vascular plants for light- and stress-dependent regulation of stability of 3′ processed petB transcripts to adjust cytochrome b6 levels. PMID:21771930

  14. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  15. The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

    Science.gov (United States)

    Montero-Conde, Cristina; Inglada-Pérez, Lucía; Schiavi, Francesca; Leskelä, Susanna; Pita, Guillermo; Milne, Roger; Maravall, Javier; Ramos, Ignacio; Andía, Víctor; Rodríguez-Poyo, Paloma; Jara-Albarrán, Antonino; Meoro, Amparo; del Peso, Cristina; Arribas, Luis; Iglesias, Pedro; Caballero, Javier; Serrano, Joaquín; Picó, Antonio; Pomares, Francisco; Giménez, Gabriel; López-Mondéjar, Pedro; Castello, Roberto; Merante-Boschin, Isabella; Pelizzo, Maria-Rosa; Mauricio, Didac; Opocher, Giuseppe; Rodríguez-Antona, Cristina; González-Neira, Anna; Matías-Guiu, Xavier; Santisteban, Pilar; Robledo, Mercedes

    2009-01-01

    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. PMID:19730683

  16. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors.

    Directory of Open Access Journals (Sweden)

    Iñigo Landa

    2009-09-01

    Full Text Available In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30-1.70; P = 5.9x10(-9. Functional assays of rs1867277 (NM_004473.3:c.-283G>A within the FOXE1 5' UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/alphaCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era.

  17. The Transcription Factor Encyclopedia

    NARCIS (Netherlands)

    Yusuf, Dimas; Butland, Stefanie L.; Swanson, Magdalena I.; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A.; Zhang, Xiao Yu Cindy; Dickman, Christopher T. D.; Fulton, Debra L.; Lim, Jonathan S.; Schnabl, Jake M.; Ramos, Oscar H. P.; Vasseur-Cognet, Mireille; de Leeuw, Charles N.; Simpson, Elizabeth M.; Ryffel, Gerhart U.; Lam, Eric W.-F.; Kist, Ralf; Wilson, Miranda S. C.; Marco-Ferreres, Raquel; Brosens, Jan J.; Beccari, Leonardo L.; Bovolenta, Paola; Benayoun, Bérénice A.; Monteiro, Lara J.; Schwenen, Helma D. C.; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A.; Chakravarthy, Harini; Hoodless, Pamela A.; Mancarelli, M. Michela; Torbett, Bruce E.; Banham, Alison H.; Reddy, Sekhar P.; Cullum, Rebecca L.; Liedtke, Michaela; Tschan, Mario P.; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J.; Eijkelenboom, Astrid; Brown, Philip J.; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L.; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H.; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J.; van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W. Z.; Breslin, Mary B.; Lan, Michael S.; Nanan, Kyster K.; Wegner, Michael; Hou, Juan; Mullen, Rachel D.; Colvin, Stephanie C.; Noy, Peter John; Webb, Carol F.; Witek, Matthew E.; Ferrell, Scott; Daniel, Juliet M.; Park, Jason; Waldman, Scott A.; Peet, Daniel J.; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J.; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M.; Woodcroft, Mark W.; Hough, Margaret R.; Chen, Edwin; Europe-Finner, G. Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; Lebrun, David P.; Biswal, Shyam; Harvey, Christopher J.; Debruyne, Jason P.; Hogenesch, John B.; Hevner, Robert F.; Héligon, Christophe; Luo, Xin M.; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S.; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M.; Bradley, Philip H.; Wasserman, Wyeth W.

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review

  18. PTB-associated splicing factor (PSF) functions as a repressor of STAT6-mediated IG{epsilon} gene transcription by recruitment of HDAC1

    DEFF Research Database (Denmark)

    Dong, Lijie; Zhang, Xinyu; Fu, Xiao

    2010-01-01

    of phosphorylation, and IL-4 stimulation increased tyrosine phosphorylation of PSF and STAT6. Functional analysis demonstrated that ectopic expression of PSF resulted in inhibition of STAT6-mediated gene transcriptional activation and mRNA expression of Ig heavy chain germline Ig ε, while knockdown of PSF increased......Regulation of transcription requires cooperation between sequence specific transcription factors and numerous coregulatory proteins. In IL-4/IL-13 signaling several coactivators for STAT6 have been identified, but the molecular mechanisms of STAT6-mediated gene transcription are still not fully...... understood. Here we identified by proteomic approach that PTB-associated splicing factor (PSF) interacts with STAT6. In cells the interaction required IL-4 stimulation and was observed both with endogenous and ectopically expressed proteins. The ligand dependency of the interaction suggested involvement...

  19. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome

    Science.gov (United States)

    Szymula, Agnieszka; Palermo, Richard D.; Bayoumy, Amr; Groves, Ian J.

    2018-01-01

    The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. PMID:29462212

  20. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...... and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe....

  1. The transcription factor encyclopedia.

    Science.gov (United States)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  2. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions...

  3. Mitotic bookmarking by transcription factors.

    Science.gov (United States)

    Kadauke, Stephan; Blobel, Gerd A

    2013-04-02

    Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed "mitotic bookmarking." Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors.

  4. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes.

    Science.gov (United States)

    Chymkowitch, Pierre; Nguéa, Aurélie P; Aanes, Håvard; Koehler, Christian J; Thiede, Bernd; Lorenz, Susanne; Meza-Zepeda, Leonardo A; Klungland, Arne; Enserink, Jorrit M

    2015-06-01

    Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs. © 2015 Chymkowitch et al.; Published by Cold Spring Harbor Laboratory Press.

  5. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as i...

  6. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  7. HDG1 transcription factor targets

    NARCIS (Netherlands)

    Horstman, A.; Boutilier, K.A.; Sanchez Perez, Gabino

    2015-01-01

    The AIL transcription factor BABY BOOM (BBM) is required together with the related PLETHORA proteins for embryo and root meristem development and its expression is sufficient to confer pluripotency and totipotency to somatic tissues. We show that BBM and other AIL proteins interact with multiple

  8. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription.

    Directory of Open Access Journals (Sweden)

    Aamna Kaul

    2014-08-01

    Full Text Available Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling, and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase. We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in "active" chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone

  9. Recruitment of bloom-forming cyanobacteria and its driving factors

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Based on most of the literature, this paper reviewed the progress made in following aspects: cognition to cyanobacteria recruitment, various traps for studying cyanobacteria recruitment in lakes, recruitment patterns of some species of cyanobacteria, and the driving factors for recruitment. Additionally,.

  10. Recruitment of bloom-forming cyanobacteria and its driving factors ...

    African Journals Online (AJOL)

    Based on most of the literature, this paper reviewed the progress made in following aspects: cognition to cyanobacteria recruitment, various traps for studying cyanobacteria recruitment in lakes, recruitment patterns of some species of cyanobacteria, and the driving factors for recruitment. Additionally, perspective studies of ...

  11. Transcription factors: Time to deliver.

    Science.gov (United States)

    Ulasov, Alexey V; Rosenkranz, Andrey A; Sobolev, Alexander S

    2018-01-10

    Transcription factors (TFs) are at the center of the broad regulatory network orchestrating gene expression programs that elicit different biological responses. For a long time, TFs have been considered as potent drug targets due to their implications in the pathogenesis of a variety of diseases. At the same time, TFs, located at convergence points of cellular regulatory pathways, are powerful tools providing opportunities both for cell type change and for managing the state of cells. This task formulation requires the TF modulation problem to come to the fore. We review several ways to manage TF activity (small molecules, transfection, nanocarriers, protein-based approaches), analyzing their limitations and the possibilities to overcome them. Delivery of TFs could revolutionize the biomedical field. Whether this forecast comes true will depend on the ability to develop convenient technologies for targeted delivery of TFs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites

    DEFF Research Database (Denmark)

    Kjaerulff, S; Dooijes, D; Clevers, H

    1997-01-01

    The Schizosaccharomyces pombe mfm1 gene is expressed in an M cell-specific fashion. This regulation requires two HMG-box proteins: the ubiquitous Ste11 transcription factor and the M cell-controlling protein Mat1-Mc. Here we report that the mfm1 promoter contains a single, weak Stell-binding site...... of a complex containing both Ste11 and Mat1-Mc. A single copy of this fragment was sufficient to activate a heterologous promoter in an M-specific fashion, suggesting that these two boxes act in a synergistic manner....

  13. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    in their regulation at multiple steps of their activation. Plant signaling in connection with transcription factor regulation is an exciting field, allowing research on multiple regulatory mechanisms. This thesis shed light on the importance of integrating all steps of transcription factor activation in a regulatory......Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model...

  14. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    Science.gov (United States)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  15. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment

    DEFF Research Database (Denmark)

    Murholm, Maria; Dixen, Karen; Qvortrup, Klaus

    2009-01-01

    ) and a remarkably higher mitochondrial abundance in brown adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white...... and brown fat, brown adipose tissue fractions and in selected adipose tissues during cold exposure. We find a massive induction of the majority of such genes during brown adipocyte differentiation and recruitment, e.g. of the mitochondrial transcription factors A (Tfam) and B2 (Tfb2m), whereas only a subset...

  16. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and......A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co......-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated...... gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic...

  17. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo

    2005-01-01

    level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has...

  18. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses

    Directory of Open Access Journals (Sweden)

    Kathrin Davari

    2017-04-01

    Full Text Available Summary: Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP, and RNA polymerase II (RNA Pol II ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD and activation of the positive transcription elongation factor (pTEFb. Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation. : Davari et al. visualize global changes in RNA Pol II binding, transcription, splicing, and translation. T cells change their functional program by rapid de novo recruitment of RNA Pol II and coupled changes in transcription and translation. This coincides with fluctuations in RNA Pol II phosphorylation and a temporary reduction in cotranscriptional splicing. Keywords: RNA Pol II, cotranscriptional splicing, T cell activation, ribosome profiling, 4sU, H3K36, Ser-5 RNA Pol II, Ser-2 RNA Pol II, immune response, immediate-early genes

  19. The homeobox gene Mohawk represses transcription by recruiting the sin3A/HDAC co-repressor complex.

    Science.gov (United States)

    Anderson, Douglas M; Beres, Brian J; Wilson-Rawls, Jeanne; Rawls, Alan

    2009-03-01

    Mohawk is an atypical homeobox gene expressed in embryonic progenitor cells of skeletal muscle, tendon, and cartilage. We demonstrate that Mohawk functions as a transcriptional repressor capable of blocking the myogenic conversion of 10T1/2 fibroblasts. The repressor activity is located in three small, evolutionarily conserved domains (MRD1-3) in the carboxy-terminal half of the protein. Point mutation analysis revealed six residues in MRD1 are sufficient for repressor function. The carboxy-terminal half of Mohawk is able to recruit components of the Sin3A/HDAC co-repressor complex (Sin3A, Hdac1, and Sap18) and a subset of Polymerase II general transcription factors (Tbp, TFIIA1 and TFIIB). Furthermore, Sap18, a protein that bridges the Sin3A/HDAC complex to DNA-bound transcription factors, is co-immunoprecipitated by MRD1. These data predict that Mohawk can repress transcription through recruitment of the Sin3A/HDAC co-repressor complex, and as a result, repress target genes required for the differentiation of cells to the myogenic lineage. (c) 2009 Wiley-Liss, Inc.

  20. High throughput assays for analyzing transcription factors.

    Science.gov (United States)

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed.

  1. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  2. Step out of the groove : Epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, Pernette J.; Visser, Astrid E.; Rots, Marianne G.; Hall, JC; Dunlap, JC; Friedmann, T; VanHeyningen,

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  3. Step out of the groove : epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, P.J.; Visser, A.E.; Rots, M.G.

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  4. The spt5 C-terminal region recruits yeast 3' RNA cleavage factor I.

    Science.gov (United States)

    Mayer, Andreas; Schreieck, Amelie; Lidschreiber, Michael; Leike, Kristin; Martin, Dietmar E; Cramer, Patrick

    2012-04-01

    During transcription elongation, RNA polymerase II (Pol II) binds the general elongation factor Spt5. Spt5 contains a repetitive C-terminal region (CTR) that is required for cotranscriptional recruitment of the Paf1 complex (D. L. Lindstrom et al., Mol. Cell. Biol. 23:1368-1378, 2003; Z. Zhang, J. Fu, and D. S. Gilmour, Genes Dev. 19:1572-1580, 2005). Here we report a new role of the Spt5 CTR in the recruitment of 3' RNA-processing factors. Chromatin immunoprecipitation (ChIP) revealed that the Spt5 CTR is required for normal recruitment of pre-mRNA cleavage factor I (CFI) to the 3' ends of Saccharomyces cerevisiae genes. RNA contributes to CFI recruitment, as RNase treatment prior to ChIP further decreases CFI ChIP signals. Genome-wide ChIP profiling detected occupancy peaks of CFI subunits around 100 nucleotides downstream of the polyadenylation (pA) sites of genes. CFI recruitment to this defined region may result from simultaneous binding to the Spt5 CTR, to nascent RNA containing the pA sequence, and to the elongating Pol II isoform that is phosphorylated at serine 2 (S2) residues in its C-terminal domain (CTD). Consistent with this model, the CTR interacts with CFI in vitro but is not required for pA site recognition and transcription termination in vivo.

  5. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells.

    Science.gov (United States)

    Chen, Jiangzhi; Xu, Hong; Zou, Xiuqun; Wang, Jiamin; Zhu, Yi; Chen, Hao; Shen, Baiyong; Deng, Xiaxing; Zhou, Aiwu; Chin, Y Eugene; Rauscher, Frank J; Peng, Chenghong; Hou, Zhaoyuan

    2014-08-15

    Transcriptional repressor Snail is a master regulator of epithelial-mesenchymal transition (EMT), yet the epigenetic mechanism governing Snail to induce EMT is not well understood. Here, we report that in pancreatic ductal adenocarcinoma (PDAC), elevated levels of the ubiquitin E3 ligase Ring1B and Snail, along with elevated monoubiquitination of H2A at K119 (H2AK119Ub1), are highly correlated with poor survival. Mechanistic investigations identified Ring1B as a Snail-interacting protein and showed that the carboxyl zinc fingers of Snail recruit Ring1B and its paralog Ring1A to repress its target promoters. Simultaneous depletion of Ring1A and Ring1B in pancreatic cancer cells decreased Snail binding to the target chromatin, abolished H2AK119Ub1 modification, and thereby compromised Snail-mediated transcriptional repression and cell migration. We found that Ring1B and the SNAG-associated chromatin modifier EZH2 formed distinct protein complexes with Snail and that EZH2 was required for Snail-Ring1A/B recruitment to the target promoter. Collectively, our results unravel an epigenetic mechanism underlying transcriptional repression by Snail, suggest Ring1A/B as a candidate therapeutic target, and identify H2AK119Ub1 as a potential biomarker for PDAC diagnosis and prognosis. ©2014 American Association for Cancer Research.

  6. Runx transcription factors in neuronal development

    Directory of Open Access Journals (Sweden)

    Shiga Takashi

    2008-08-01

    Full Text Available Abstract Runt-related (Runx transcription factors control diverse aspects of embryonic development and are responsible for the pathogenesis of many human diseases. In recent years, the functions of this transcription factor family in the nervous system have just begun to be understood. In dorsal root ganglion neurons, Runx1 and Runx3 play pivotal roles in the development of nociceptive and proprioceptive sensory neurons, respectively. Runx appears to control the transcriptional regulation of neurotrophin receptors, numerous ion channels and neuropeptides. As a consequence, Runx contributes to diverse aspects of the sensory system in higher vertebrates. In this review, we summarize recent progress in determining the role of Runx in neuronal development.

  7. Targeted Recruitment of the Basal Transcriptional Machinery by LNK Clock Components Controls the Circadian Rhythms of Nascent RNAs in Arabidopsis.

    Science.gov (United States)

    Ma, Yuan; Gil, Sergio; Grasser, Klaus D; Mas, Paloma

    2018-04-04

    The rhythms of steady-state mRNA expression pervade nearly all circadian systems. However, the mechanisms behind the rhythmic transcriptional synthesis and its correlation with circadian expression remain fully unexplored, particularly in plants. Here, we discovered a multi-functional protein complex that orchestrates the rhythms of transcriptional activity in Arabidopsis thaliana. The expression of the circadian oscillator genes TOC1 (TIMING OF CAB EXPRESSION1/PSEUDO-RESPONSE REGULATOR1) and PRR5 (PSEUDO-RESPONSE REGULATOR5) initially relies on the modular function of the clock-related factor RVE8: its MYB domain provides the DNA binding specificity, while its LCL domain recruits the clock components, LNKs, to target promoters. LNKs, in turn, specifically interact with RNA Polymerase II and the transcript elongation FACT complex to rhythmically co-occupy the target loci. The functional interaction of these components is central for chromatin status, transcript initiation and elongation, as well as proper rhythms in nascent RNAs. Our findings thus explain how genome readout of environmental information ultimately results in rhythmic changes of gene expression. © 2018 American Society of Plant Biologists. All rights reserved.

  8. The LIM Homeodomain Transcription Factor LHX6

    Science.gov (United States)

    Zhang, Zichao; Gutierrez, Diana; Li, Xiao; Bidlack, Felicitas; Cao, Huojun; Wang, Jianbo; Andrade, Kelsey; Margolis, Henry C.; Amendt, Brad A.

    2013-01-01

    LHX6 is a LIM-homeobox transcription factor expressed during embryogenesis; however, the molecular mechanisms regulating LHX6 transcriptional activities are unknown. LHX6 and the PITX2 homeodomain transcription factor have overlapping expression patterns during tooth and craniofacial development, and in this report, we demonstrate new transcriptional mechanisms for these factors. PITX2 and LHX6 are co-expressed in the oral and dental epithelium and epithelial cell lines. Lhx6 expression is increased in Pitx2c transgenic mice and decreased in Pitx2 null mice. PITX2 activates endogenous Lhx6 expression and the Lhx6 promoter, whereas LHX6 represses its promoter activity. Chromatin immunoprecipitation experiments reveal endogenous PITX2 binding to the Lhx6 promoter. LHX6 directly interacts with PITX2 to inhibit PITX2 transcriptional activities and activation of multiple promoters. Bimolecular fluorescence complementation assays reveal an LHX6·PITX2 nuclear interaction in living cells. LHX6 has a dominant repressive effect on the PITX2 synergistic activation with LEF-1 and β-catenin co-factors. Thus, LHX6 acts as a transcriptional repressor and represses the expression of several genes involved in odontogenesis. We have identified specific defects in incisor, molar, mandible, bone, and root development and late stage enamel formation in Lhx6 null mice. Amelogenin and ameloblastin expression is reduced and/or delayed in the Lhx6 null mice, potentially resulting from defects in dentin deposition and ameloblast differentiation. Our results demonstrate that LHX6 regulates cell proliferation in the cervical loop and promotes cell differentiation in the anterior region of the incisor. We demonstrate new molecular mechanisms for LHX6 and an interaction with PITX2 for normal craniofacial and tooth development. PMID:23229549

  9. The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30

    DEFF Research Database (Denmark)

    Kruse, Thomas; Biedenkopf, Nadine; Hertz, Emil Peter Thrane

    2018-01-01

    Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase......A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention....

  10. Cross-Family Transcription Factor Interactions

    NARCIS (Netherlands)

    Bemer, Marian; Dijk, van Aalt-Jan; Immink, Richard G.H.; Angenent, Gerco C.

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger

  11. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  12. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  13. DISTANCE AS KEY FACTOR IN MODELLING STUDENTS’ RECRUITMENT BY UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    SIMONA MĂLĂESCU

    2015-10-01

    Full Text Available Distance as Key Factor in Modelling Students’ Recruitment by Universities. In a previous paper analysing the challenge of keeping up with the current methodologies in the analysis and modelling of students’ recruitment by universities in the case of some ECE countries which still don’t register or develop key data to take advantage from the state of the art knowledge on the domain, we have promised to approach the factor distance in a future work due to the extent of the topic. This paper fulfill that promise bringing a review of the literature especially dealing with modelling the geographical area of recruiting students of an university, where combining distance with the proximate key factors previously reviewed, complete the meta-analysis of existing literature we have started a year ago. Beyond the theoretical benefit from a practical perspective, the metaanalysis aimed at synthesizing elements of good practice that can be applied to the local university system.

  14. Factors influencing the recruitment and retention of faculty at the ...

    African Journals Online (AJOL)

    Background. Attracting and retaining faculty is essential for the success of any higher learning institution, especially in the newer medical institutions in Tanzania. Aim. To determine the factors favouring the recruitment and retention of faculty at the Catholic University of Health and Allied Sciences (CUHAS), Bugando, ...

  15. Perceived infrastructural factors afffecting adoption of e-recruitment ...

    African Journals Online (AJOL)

    86.0%), cost of acquisition, maintenance and upgrading of software (90.0%) and inadequate power supply (88.4%) as perceived major infrastructural factors affecting level of adoption of e-recruitment in South West Nigeria. It is recommended ...

  16. Factors Affecting Recruitment into Child and Adolescent Psychiatry Training

    Science.gov (United States)

    Shaw, Jon A.; Lewis, John E.; Katyal, Shalini

    2010-01-01

    Objective: The authors studied the factors affecting the recruitment into child and adolescent psychiatry training in the United States. Methods: Medical students (n = 154) and general and child and adolescent psychiatry residents (n = 111) completed a questionnaire to evaluate career choice in child psychiatry (n = 265). Results: Compared with…

  17. Eastern Baltic cod recruitment revisited—dynamics and impacting factors

    DEFF Research Database (Denmark)

    Köster, Fritz; Huwer, Bastian; Hinrichsen, Hans-Harald

    2017-01-01

    and casting doubts about the magnitude of the recent increase in recruitment. Earlier studies identified main factors impacting on cod reproductive success to be related to the loss of two out of three spawning areas in the 1980s caused by lack of major Baltic inflows with a concurrent reduction in salinity...

  18. AIRE recruits multiple transcriptional components to specific genomic regions through tethering to nuclear matrix.

    Science.gov (United States)

    Tao, Yunxia; Kupfer, Rene; Stewart, Benjamin J; Williams-Skipp, Cheryll; Crowell, Christopher K; Patel, Dhavalkumar D; Sain, Steven; Scheinman, Robert I

    2006-02-01

    Thymic selection requires that diverse self antigens be presented to developing thymocytes by stromal cells. Consistent with this function, medullary thymic epithelial cells have been shown to express a large number of genes, many of which are tissue restricted. Autoimmune regulator (AIRE) is a nuclear protein, which has recently been identified as a regulator of this process, however, the mechanism by which AIRE functions is not well understood. Here we use a transrepression assay to demonstrate that AIRE interacts with multiple components of the transcription complex including a novel interaction with the UBA domain protein, GBDR1. When AIRE is expressed in cultured human thymic epithelial cells, it tightly associates with nuclear matrix, suggesting that AIRE responsive genes may be localized to specific regions. Using a mathematical approach we have re-analyzed an Affymetrix dataset identifying AIRE responsive genes and show that they tend to localize to specific regions of the genome. Together, these data suggest that AIRE regulates gene expression by recruiting components of the transcription complex to specific regions of the genome via interactions with nuclear matrix.

  19. Fatty Acid–Regulated Transcription Factors in the Liver

    Science.gov (United States)

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  20. Transcription factor, promoter, and enhancer utilization in human myeloid cells

    NARCIS (Netherlands)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91

  1. Transcriptional networks of TCP transcription factors in Arabidopsis development

    NARCIS (Netherlands)

    Danisman, S.D.

    2011-01-01

    Leaves are a plant’s main organs of photosynthesis and hence the development of this organ is under strict control. The different phases of leaf development are under the control of both endogenous and exogenous influences. In this work we were interested in a particular class of transcription

  2. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors.

    Science.gov (United States)

    Estruch, Francisco; Hodge, Christine; Gómez-Navarro, Natalia; Peiró-Chova, Lorena; Heath, Catherine V; Cole, Charles N

    2012-09-10

    The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC) formation. Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.

  3. A transcription factor for cold sensation!

    Directory of Open Access Journals (Sweden)

    Milbrandt Jeffrey

    2005-03-01

    Full Text Available Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral responses to noxious heat or mechanical stimuli were normal. Furthermore, behavioral responses remained reduced or blocked in NGFIB knockout mice even after repetitive application of cold stimuli. Our results provide strong evidence that the first transcription factor NGFIB determines the ability of animals to respond to cold stimulation.

  4. Factors related to susceptibility and recruitment by cults.

    Science.gov (United States)

    Curtis, J M; Curtis, M J

    1993-10-01

    Unprecedented escalation of secular and religious cults has necessitated further inquiry into more precise conditions under which individuals develop vulnerability and become converted by these groups. The present discussion focuses on a number of factors which seem to influence individuals' susceptibility and recruitment by cults. These variables include (a) generalized ego-weakness and emotional vulnerability, (b) propensities toward dissociative states, (c) tenuous, deteriorated, or nonexistent family relations and support systems, (d) inadequate means of dealing with exigencies of survival, (e) history of severe child abuse or neglect, (f) exposure to idiosyncratic or eccentric family patterns, (g) proclivities toward or abuse of controlled substances, (h) unmanageable and debilitating situational stress and crises, and (i) intolerable socioeconomic conditions. Also presented are methods utilized by cults, e.g., intimidation, coercion, and indoctrination, for systematically recruiting, initiating, and influencing inductees. More careful attention to these factors might help health care providers, educators, clergy, and concerned family and friends determine more precisely individuals at greater risk for recruitment into cults.

  5. The MYST family histone acetyltransferase complex regulates stress resistance and longevity through transcriptional control of DAF-16/FOXO transcription factors.

    Science.gov (United States)

    Ikeda, Takako; Uno, Masaharu; Honjoh, Sakiko; Nishida, Eisuke

    2017-08-09

    The well-known link between longevity and the Sir2 histone deacetylase family suggests that histone deacetylation, a modification associated with repressed chromatin, is beneficial to longevity. However, the molecular links between histone acetylation and longevity remain unclear. Here, we report an unexpected finding that the MYST family histone acetyltransferase complex (MYS-1/TRR-1 complex) promotes rather than inhibits stress resistance and longevity in Caenorhabditis elegans Our results show that these beneficial effects are largely mediated through transcriptional up-regulation of the FOXO transcription factor DAF-16. MYS-1 and TRR-1 are recruited to the promoter regions of the daf-16 gene, where they play a role in histone acetylation, including H4K16 acetylation. Remarkably, we also find that the human MYST family Tip60/TRRAP complex promotes oxidative stress resistance by up-regulating the expression of FOXO transcription factors in human cells. Tip60 is recruited to the promoter regions of the foxo1 gene, where it increases H4K16 acetylation levels. Our results thus identify the evolutionarily conserved role of the MYST family acetyltransferase as a key epigenetic regulator of DAF-16/FOXO transcription factors. © 2017 The Authors.

  6. Risk Factors for Hepatitis B and C among Military Recruits

    International Nuclear Information System (INIS)

    Azam, N.; Azam, N.; Javed, K.

    2013-01-01

    Objectives: To determine significant risk factors for hepatitis B and C in young military recruits testing positive during pre enrollment screening. Study Design: Case control analytical study. Material and Method: Healthy male recruits during June-December 2005 at Pathology Laboratory, CMH Malir Cantt. Results: The analysis of risk factors among cases and controls has been categorized into two groups according to source of risk. History of previous therapeutic injection administration during the past 5 years, blood donation and sharing toothbrushes and razors in family revealed results which were significant with p-value of 0.002, 0.007 and 0.001 respectively. None of the other risk factors assessed in the comparable groups were found to be significant. Other factors considered plausible by other studies for transmission of hepatitis B and C viruses; like tattooing, ever lived in hostel and injection drug abuse showed OR < 1, this suggested insufficient sample size and frame before any suggestion of direction of association. Conclusion: History of injections for therapeutic purposes, blood donation and sharing toothbrushes and razors among family members were the factors which were significant amongst cases. (author)

  7. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response.

    Science.gov (United States)

    Pawlus, Matthew R; Hu, Cheng-Jun

    2013-09-01

    Hypoxia is a prevalent attribute of the solid tumor microenvironment that promotes the expression of genes through posttranslational modifications and stabilization of alpha subunits (HIF1α and HIF2α) of hypoxia-inducible factors (HIFs). Despite significant similarities, HIF1 (HIF1α/ARNT) and HIF2 (HIF2α/ARNT) activate common as well as unique target genes and exhibit different functions in cancer biology. More surprisingly, accumulating data indicates that the HIF1- and/or HIF2-mediated hypoxia responses can be oncogenic as well as tumor suppressive. While the role of HIF in the hypoxia response is well established, recent data support the concept that HIF is necessary, but not sufficient for the hypoxic response. Other transcription factors that are activated by hypoxia are also required for the HIF-mediated hypoxia response. HIFs, other transcription factors, co-factors and RNA poll II recruited by HIF and other transcription factors form multifactorial enhanceosome complexes on the promoters of HIF target genes to activate hypoxia inducible genes. Importantly, HIF1 or HIF2 requires distinct partners in activating HIF1 or HIF2 target genes. Because HIF enhanceosome formation is required for the gene activation and distinct functions of HIF1 and HIF2 in tumor biology, disruption of the HIF1 or HIF2 specific enhanceosome complex may prove to be a beneficial strategy in tumor treatment in which tumor growth is specifically dependent upon HIF1 or HIF2 activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. DNA residence time is a regulatory factor of transcription repression.

    Science.gov (United States)

    Clauß, Karen; Popp, Achim P; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N Henriette; Gebhardt, J Christof M

    2017-11-02

    Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    Science.gov (United States)

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  10. TOBFAC: the database of tobacco transcription factors

    Directory of Open Access Journals (Sweden)

    Brannock Jennifer F

    2008-01-01

    Full Text Available Abstract Background Regulation of gene expression at the level of transcription is a major control point in many biological processes. Transcription factors (TFs can activate and/or repress the transcriptional rate of target genes and vascular plant genomes devote approximately 7% of their coding capacity to TFs. Global analysis of TFs has only been performed for three complete higher plant genomes – Arabidopsis (Arabidopsis thaliana, poplar (Populus trichocarpa and rice (Oryza sativa. Presently, no large-scale analysis of TFs has been made from a member of the Solanaceae, one of the most important families of vascular plants. To fill this void, we have analysed tobacco (Nicotiana tabacum TFs using a dataset of 1,159,022 gene-space sequence reads (GSRs obtained by methylation filtering of the tobacco genome. An analytical pipeline was developed to isolate TF sequences from the GSR data set. This involved multiple (typically 10–15 independent searches with different versions of the TF family-defining domain(s (normally the DNA-binding domain followed by assembly into contigs and verification. Our analysis revealed that tobacco contains a minimum of 2,513 TFs representing all of the 64 well-characterised plant TF families. The number of TFs in tobacco is higher than previously reported for Arabidopsis and rice. Results TOBFAC: the database of tobacco transcription factors, is an integrative database that provides a portal to sequence and phylogeny data for the identified TFs, together with a large quantity of other data concerning TFs in tobacco. The database contains an individual page dedicated to each of the 64 TF families. These contain background information, domain architecture via Pfam links, a list of all sequences and an assessment of the minimum number of TFs in this family in tobacco. Downloadable phylogenetic trees of the major families are provided along with detailed information on the bioinformatic pipeline that was used to find

  11. Transcriptional Networks in the Liver: Hepatocyte Nuclear Factor 6 Function Is Largely Independent of Foxa2

    OpenAIRE

    Rubins, Nir E.; Friedman, Joshua R.; Le, Phillip P.; Zhang, Liping; Brestelli, John; Kaestner, Klaus H.

    2005-01-01

    A complex network of hepatocyte nuclear transcription factors, including HNF6 and Foxa2, regulates the expression of liver-specific genes. The current model, based on in vitro studies, suggests that HNF6 and Foxa2 interact physically. This interaction is thought to synergistically stimulate Foxa2-dependent transcription through the recruitment of p300/CBP by HNF6 and to inhibit HNF6-mediated transcription due to the interference of Foxa2 with DNA binding by HNF6. To test this model in vivo, w...

  12. Sumoylation controls CLOCK-BMAL1-mediated clock resetting via CBP recruitment in nuclear transcriptional foci.

    Science.gov (United States)

    Lee, Yool; Chun, Sung Kook; Kim, Kyungjin

    2015-10-01

    CLOCK-BMAL1 is a key transcription factor complex of the molecular clock system that generates circadian gene expression and physiology in mammals. Here, we demonstrate that sumoylation of BMAL1 mediates the rapid activation of CLOCK-BMAL1 by CREB-binding protein (CBP) in nuclear foci and also the resetting of the circadian clock. Under physiological conditions, a bimolecular fluorescence complementation-based fluorescence resonance energy transfer (BiFC-FRET) assay revealed that CLOCK-BMAL1 rapidly dimerized and formed a ternary complex with CBP in discrete nuclear foci in response to serum stimuli. We found that the formation of this ternary complex requires sumoylation of BMAL1 by SUMO3. These processes were abolished by both the ectopic expression of the SUMP2/3-specific protease, SUSP1, and mutation of the major sumoylation site (Lys259) of BMAL1. Moreover, molecular inhibition of BMAL1 sumoylation abrogated acute Per1 transcription and severely dampened the circadian gene oscillation triggered by clock synchronization stimuli. Taken together, these findings suggest that sumoylation plays a critical role in the spatiotemporal co-activation of CLOCK-BMAL1 by CBP for immediate-early Per induction and the resetting of the circadian clock. Copyright © 2015. Published by Elsevier B.V.

  13. Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II.

    Directory of Open Access Journals (Sweden)

    Dominik M Meinel

    2013-11-01

    Full Text Available Messenger RNA (mRNA synthesis and export are tightly linked, but the molecular mechanisms of this coupling are largely unknown. In Saccharomyces cerevisiae, the conserved TREX complex couples transcription to mRNA export and mediates mRNP formation. Here, we show that TREX is recruited to the transcription machinery by direct interaction of its subcomplex THO with the serine 2-serine 5 (S2/S5 diphosphorylated CTD of RNA polymerase II. S2 and/or tyrosine 1 (Y1 phosphorylation of the CTD is required for TREX occupancy in vivo, establishing a second interaction platform necessary for TREX recruitment in addition to RNA. Genome-wide analyses show that the occupancy of THO and the TREX components Sub2 and Yra1 increases from the 5' to the 3' end of the gene in accordance with the CTD S2 phosphorylation pattern. Importantly, in a mutant strain, in which TREX is recruited to genes but does not increase towards the 3' end, the expression of long transcripts is specifically impaired. Thus, we show for the first time that a 5'-3' increase of a protein complex is essential for correct expression of the genome. In summary, we provide insight into how the phospho-code of the CTD directs mRNP formation and export through TREX recruitment.

  14. Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II.

    Science.gov (United States)

    Meinel, Dominik M; Burkert-Kautzsch, Cornelia; Kieser, Anja; O'Duibhir, Eoghan; Siebert, Matthias; Mayer, Andreas; Cramer, Patrick; Söding, Johannes; Holstege, Frank C P; Sträßer, Katja

    2013-11-01

    Messenger RNA (mRNA) synthesis and export are tightly linked, but the molecular mechanisms of this coupling are largely unknown. In Saccharomyces cerevisiae, the conserved TREX complex couples transcription to mRNA export and mediates mRNP formation. Here, we show that TREX is recruited to the transcription machinery by direct interaction of its subcomplex THO with the serine 2-serine 5 (S2/S5) diphosphorylated CTD of RNA polymerase II. S2 and/or tyrosine 1 (Y1) phosphorylation of the CTD is required for TREX occupancy in vivo, establishing a second interaction platform necessary for TREX recruitment in addition to RNA. Genome-wide analyses show that the occupancy of THO and the TREX components Sub2 and Yra1 increases from the 5' to the 3' end of the gene in accordance with the CTD S2 phosphorylation pattern. Importantly, in a mutant strain, in which TREX is recruited to genes but does not increase towards the 3' end, the expression of long transcripts is specifically impaired. Thus, we show for the first time that a 5'-3' increase of a protein complex is essential for correct expression of the genome. In summary, we provide insight into how the phospho-code of the CTD directs mRNP formation and export through TREX recruitment.

  15. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    Directory of Open Access Journals (Sweden)

    Jill A Dembowski

    2015-05-01

    Full Text Available Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics

  16. Chromatin reader L(3)mbt requires the Myb-MuvB/DREAM transcriptional regulatory complex for chromosomal recruitment.

    Science.gov (United States)

    Blanchard, Daniel P; Georlette, Daphne; Antoszewski, Lisa; Botchan, Michael R

    2014-10-07

    Lethal malignant brain tumors (lmbt) result from the loss of the conserved transcriptional repressor l(3)mbt, in Drosophila melanogaster. Similar mutations in the human homolog L3MBTL1 correlate with some cancers. The protein's C-terminal MBT repeats bind mono and dimethylated histones in vitro, which could influence recruitment of L3MBTL1 to its target sites. The L(3)mbt chromatin targeting mechanism, however, is controversial and several studies suggest insufficiency or a minor role for histone methylation in determining the site specificity for recruitment. We report that L(3)mbt colocalizes with core members of the Myb-MuvB/DREAM (MMB/DREAM) transcriptional regulatory complex genome-wide, and that L(3)mbt-mediated repression requires this complex in salivary glands and larval brains. Loss of l(3)mbt or of MMB components through mutation cause similar spurious expression of genes, including the transposon regulatory gene piwi, in terminally differentiated cells. The DNA-binding MMB core component Mip120 (Lin54) is required for L(3)mbt recruitment to chromosomes, whereas Mip130 (Lin9) (an MMB core protein) and E2f2 (an MMB transcriptional repressor) are not, but are essential for repression. Cytolocalization experiments suggest the presence of site-specific differential composition of MMB in polytene chromosomes where some loci were bound by a Myb-containing or alternatively, an E2f2 and L(3)mbt form of the complex.

  17. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors

    OpenAIRE

    Gayvert, Kaitlyn; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark; Tatonetti, Nicholas P.; Rickman, David; Elemento, Olivier

    2016-01-01

    Mutations in transcription factors (TFs) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a Computational drug-Repositioning Approach For Targeting Transcription factor activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb T...

  18. The WRKY transcription factor family in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Tripathi Prateek

    2012-06-01

    Full Text Available Abstract Background A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. Results We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86 becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3% do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors

  19. Molecular architecture of transcription factor hotspots in early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Baek, Songjoon; Rabiee, Atefeh

    2014-01-01

    Transcription factors have recently been shown to colocalize in hotspot regions of the genome, which are further clustered into super-enhancers. However, the detailed molecular organization of transcription factors at hotspot regions is poorly defined. Here, we have used digital genomic footprint......Transcription factors have recently been shown to colocalize in hotspot regions of the genome, which are further clustered into super-enhancers. However, the detailed molecular organization of transcription factors at hotspot regions is poorly defined. Here, we have used digital genomic...... footprinting to precisely define factor localization at a genome-wide level during the early phase of 3T3-L1 adipocyte differentiation, which allows us to obtain detailed molecular insight into how transcription factors target hotspots. We demonstrate the formation of ATF-C/EBP heterodimers at a composite...

  20. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control.

    Science.gov (United States)

    Zhang, Lei; Ren, Fangfang; Zhang, Qing; Chen, Yongbin; Wang, Bing; Jiang, Jin

    2008-03-01

    The Hippo (Hpo) signaling pathway governs cell growth, proliferation, and apoptosis by controlling key regulatory genes that execute these processes; however, the transcription factor of the pathway has remained elusive. Here we provide evidence that the TEAD/TEF family transcription factor Scalloped (Sd) acts together with the coactivator Yorkie (Yki) to regulate Hpo pathway-responsive genes. Sd and Yki form a transcriptional complex whose activity is inhibited by Hpo signaling. Sd overexpression enhances, whereas its inactivation suppresses, tissue overgrowth caused by Yki overexpression or tumor suppressor mutations in the Hpo pathway. Inactivation of Sd diminishes Hpo target gene expression and reduces organ size, whereas a constitutively active Sd promotes tissue overgrowth. Sd promotes Yki nuclear localization, whereas Hpo signaling retains Yki in the cytoplasm by phosphorylating Yki at S168. Finally, Sd recruits Yki to the enhancer of the pathway-responsive gene diap1, suggesting that diap1 is a direct transcriptional target of the Hpo pathway.

  1. Transcription-dependent degradation controls the stability of the SREBP family of transcription factors.

    Science.gov (United States)

    Sundqvist, Anders; Ericsson, Johan

    2003-11-25

    Cholesterol metabolism is tightly controlled by members of the sterol regulatory element-binding protein (SREBP) family of transcription factors. Here we demonstrate that the ubiquitination and degradation of SREBPs depend on their transcriptional activity. Mutations in the transactivation or DNA-binding domains of SREBPs inhibit their transcriptional activity and stabilize the proteins. The transcriptional activity and degradation of these mutants are restored when fused to heterologous transactivation or DNA-binding domains. When SREBP1a was fused to the DBD of Gal4, the ubiquitination and degradation of the fusion protein depended on coexpression of a promoter-reporter gene containing Gal4-binding sites. In addition, disruption of the interaction between WT SREBP and endogenous p300/CBP resulted in inhibition of SREBP-dependent transcription and stabilization of SREBP. Chemical inhibitors of transcription reduced the degradation of transcriptionally active SREBP1a, whereas they had no effect on the stability of transcriptionally inactive mutants, demonstrating that transcriptional activation plays an important role in the degradation of SREBPs. Thus, transcription-dependent degradation of SREBP constitutes a feedback mechanism to regulate the expression of genes involved in cholesterol metabolism and may represent a general mechanism to regulate the duration of transcriptional responses.

  2. Functional characterization of MADS box transcription factors in Petunia hybrida

    NARCIS (Netherlands)

    Ferrario, S.I.T.

    2004-01-01

    Transcription factors play a central role in the regulation and integration of several developmental pathways in all organisms. MADS box proteins are, among transcription factors, key players in the regulation of flower induction, flower architecture and vegetative development and have been isolated

  3. Pioneering barren land: mitotic bookmarking by transcription factors.

    Science.gov (United States)

    Rada-Iglesias, Alvaro

    2013-02-25

    Genome condensation during mitosis presents a chromatin landscape largely inaccessible to RNA polymerase II and most transcription factors. Caravaca et al. (2013) now report in Genes and Development that the pioneer transcription factor FOXA1 is retained at mitotic chromosomes, bookmarking the genome to enable gene expression reestablishment upon mitotic exit. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  5. Incorporating evolution of transcription factor binding sites into ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Incorporating evolution of transcription factor binding sites into annotated alignments. 841. J. Biosci. 32(5), August 2007. 1. Introduction. A majority of computational approaches that aim to predict transcription factor binding sites employ cross- species comparison to focus on conserved locations. Such a comparison helps in ...

  6. The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Burek, C.; Sander, E. E.; Grummt, I.

    2001-01-01

    Roč. 29, č. 2 (2001), s. 423-429 ISSN 0305-1048 Institutional research plan: CEZ:AV0Z5052915 Keywords : rDNA transcription * PTRF * transcription reinitiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.373, year: 2001

  7. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.

    Directory of Open Access Journals (Sweden)

    Chieh-Chun Chen

    Full Text Available Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES cells, including DNA methylation (MeDIP-seq and MRE-seq, DNA hydroxymethylation (5-hmC-seq, and histone modifications (ChIP-seq. We discovered correlations of transcription factors (TFs for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg.

  8. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  9. Regulation of the Ets transcription factor Tel

    NARCIS (Netherlands)

    Roukens, Mark Guido

    2010-01-01

    In this thesis we report novel studies on the molecular regulation of the transcriptional repressor Tel (Translocation Ets Leukemia). The work in this thesis is presented as follows: Chapter 1 is an introduction which summarizes the literature about Tel and its Drosophila orthologue Yan as it was

  10. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors

    Directory of Open Access Journals (Sweden)

    Estruch Francisco

    2012-09-01

    Full Text Available Abstract Background The various steps of mRNP biogenesis (transcription, processing and export are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC formation. Conclusions Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.

  11. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1

    Directory of Open Access Journals (Sweden)

    Cornelia Kilchert

    2015-12-01

    Full Text Available In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these “decay-promoting” introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation.

  12. GATA family transcriptional factors: emerging suspects in hematologic disorders.

    Science.gov (United States)

    Gao, Juehua; Chen, Yi-Hua; Peterson, LoAnn C

    2015-01-01

    GATA transcription factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The three important GATA transcription factors GATA1, GATA2 and GATA3 play essential roles in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in genes encoding the GATA transcription factors or alteration in the protein expression level or their function have been linked to a variety of human hematologic disorders. In this review, we summarized the current knowledge regarding the disrupted biologic function of GATA in various hematologic disorders.

  13. The T-box transcription factor Eomesodermin is essential for AVE induction in the mouse embryo.

    Science.gov (United States)

    Nowotschin, Sonja; Costello, Ita; Piliszek, Anna; Kwon, Gloria S; Mao, Chai-an; Klein, William H; Robertson, Elizabeth J; Hadjantonakis, Anna-Katerina

    2013-05-01

    Reciprocal inductive interactions between the embryonic and extraembryonic tissues establish the anterior-posterior (AP) axis of the early mouse embryo. The anterior visceral endoderm (AVE) signaling center emerges at the distal tip of the embryo at embryonic day 5.5 and translocates to the prospective anterior side of the embryo. The process of AVE induction and migration are poorly understood. Here we demonstrate that the T-box gene Eomesodermin (Eomes) plays an essential role in AVE recruitment, in part by directly activating the homeobox transcription factor Lhx1. Thus, Eomes function in the visceral endoderm (VE) initiates an instructive transcriptional program controlling AP identity.

  14. Cooperative transcription factor associations discovered using regulatory variation.

    Science.gov (United States)

    Karczewski, Konrad J; Tatonetti, Nicholas P; Landt, Stephen G; Yang, Xinqiong; Slifer, Teri; Altman, Russ B; Snyder, Michael

    2011-08-09

    Regulation of gene expression at the transcriptional level is achieved by complex interactions of transcription factors operating at their target genes. Dissecting the specific combination of factors that bind each target is a significant challenge. Here, we describe in detail the Allele Binding Cooperativity test, which uses variation in transcription factor binding among individuals to discover combinations of factors and their targets. We developed the ALPHABIT (a large-scale process to hunt for allele binding interacting transcription factors) pipeline, which includes statistical analysis of binding sites followed by experimental validation, and demonstrate that this method predicts transcription factors that associate with NFκB. Our method successfully identifies factors that have been known to work with NFκB (E2A, STAT1, IRF2), but whose global coassociation and sites of cooperative action were not known. In addition, we identify a unique coassociation (EBF1) that had not been reported previously. We present a general approach for discovering combinatorial models of regulation and advance our understanding of the genetic basis of variation in transcription factor binding.

  15. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network......Transcriptional regulation is the most committed type of regulation in living cells where transcription factors (TFs) control the expression of their target genes and TF expression is controlled by other TFs forming complex transcriptional regulatory networks that can be highly interconnected. Here...... as a measure of the organization and interconnectivity of the network. We find that the number of driver nodes n(D) needed to control the whole network is 64% of the TFs in the E. coli transcriptional regulatory network in contrast to only 17% for the yeast network, 4% for the mouse network and 8...

  16. Evolution of transcriptional networks in yeast: alternative teams of transcriptional factors for different species

    Directory of Open Access Journals (Sweden)

    Adriana Muñoz

    2016-11-01

    Full Text Available Abstract Background The diversity in eukaryotic life reflects a diversity in regulatory pathways. Nocedal and Johnson argue that the rewiring of gene regulatory networks is a major force for the diversity of life, that changes in regulation can create new species. Results We have created a method (based on our new “ping-pong algorithm for detecting more complicated rewirings, where several transcription factors can substitute for one or more transcription factors in the regulation of a family of co-regulated genes. An example is illustrative. A rewiring has been reported by Hogues et al. that RAP1 in Saccharomyces cerevisiae substitutes for TBF1/CBF1 in Candida albicans for ribosomal RP genes. There one transcription factor substitutes for another on some collection of genes. Such a substitution is referred to as a “rewiring”. We agree with this finding of rewiring as far as it goes but the situation is more complicated. Many transcription factors can regulate a gene and our algorithm finds that in this example a “team” (or collection of three transcription factors including RAP1 substitutes for TBF1 for 19 genes. The switch occurs for a branch of the phylogenetic tree containing 10 species (including Saccharomyces cerevisiae, while the remaining 13 species (Candida albicans are regulated by TBF1. Conclusions To gain insight into more general evolutionary mechanisms, we have created a mathematical algorithm that finds such general switching events and we prove that it converges. Of course any such computational discovery should be validated in the biological tests. For each branch of the phylogenetic tree and each gene module, our algorithm finds a sub-group of co-regulated genes and a team of transcription factors that substitutes for another team of transcription factors. In most cases the signal will be small but in some cases we find a strong signal of switching. We report our findings for 23 Ascomycota fungi species.

  17. SoyDB: a knowledge database of soybean transcription factors

    Directory of Open Access Journals (Sweden)

    Valliyodan Babu

    2010-01-01

    Full Text Available Abstract Background Transcription factors play the crucial rule of regulating gene expression and influence almost all biological processes. Systematically identifying and annotating transcription factors can greatly aid further understanding their functions and mechanisms. In this article, we present SoyDB, a user friendly database containing comprehensive knowledge of soybean transcription factors. Description The soybean genome was recently sequenced by the Department of Energy-Joint Genome Institute (DOE-JGI and is publicly available. Mining of this sequence identified 5,671 soybean genes as putative transcription factors. These genes were comprehensively annotated as an aid to the soybean research community. We developed SoyDB - a knowledge database for all the transcription factors in the soybean genome. The database contains protein sequences, predicted tertiary structures, putative DNA binding sites, domains, homologous templates in the Protein Data Bank (PDB, protein family classifications, multiple sequence alignments, consensus protein sequence motifs, web logo of each family, and web links to the soybean transcription factor database PlantTFDB, known EST sequences, and other general protein databases including Swiss-Prot, Gene Ontology, KEGG, EMBL, TAIR, InterPro, SMART, PROSITE, NCBI, and Pfam. The database can be accessed via an interactive and convenient web server, which supports full-text search, PSI-BLAST sequence search, database browsing by protein family, and automatic classification of a new protein sequence into one of 64 annotated transcription factor families by hidden Markov models. Conclusions A comprehensive soybean transcription factor database was constructed and made publicly accessible at http://casp.rnet.missouri.edu/soydb/.

  18. TrSDB: a proteome database of transcription factors

    Science.gov (United States)

    Hermoso, Antoni; Aguilar, Daniel; Aviles, Francesc X.; Querol, Enrique

    2004-01-01

    TrSDB—TranScout Database—(http://ibb.uab.es/trsdb) is a proteome database of eukaryotic transcription factors based upon predicted motifs by TranScout and data sources such as InterPro and Gene Ontology Annotation. Nine eukaryotic proteomes are included in the current version. Extensive and diverse information for each database entry, different analyses considering TranScout classification and similarity relationships are offered for research on transcription factors or gene expression. PMID:14681387

  19. Potential Role of Activating Transcription Factor 5 during Osteogenesis

    Directory of Open Access Journals (Sweden)

    Luisa Vicari

    2016-01-01

    Full Text Available Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2, encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  20. Potential Role of Activating Transcription Factor 5 during Osteogenesis.

    Science.gov (United States)

    Vicari, Luisa; Calabrese, Giovanna; Forte, Stefano; Giuffrida, Raffaella; Colarossi, Cristina; Parrinello, Nunziatina Laura; Memeo, Lorenzo

    2016-01-01

    Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  1. Factors influencing the recruitment of students for university sport ...

    African Journals Online (AJOL)

    In the professional era of sport and increased competition between universities, recruitment of students and athletes have become a crucial strategic venture for higher education institutions using sport as a marketing tool, branding instrument and for status advancement. Students' and athletes' choice of an institution is ...

  2. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice

    Science.gov (United States)

    Overman, Jeroen; Fontaine, Frank; Moustaqil, Mehdi; Mittal, Deepak; Sierecki, Emma; Sacilotto, Natalia; Zuegg, Johannes; Robertson, Avril AB; Holmes, Kelly; Salim, Angela A; Mamidyala, Sreeman; Butler, Mark S; Robinson, Ashley S; Lesieur, Emmanuelle; Johnston, Wayne; Alexandrov, Kirill; Black, Brian L; Hogan, Benjamin M; De Val, Sarah; Capon, Robert J; Carroll, Jason S; Bailey, Timothy L; Koopman, Peter; Jauch, Ralf; Smyth, Mark J; Cooper, Matthew A; Gambin, Yann; Francois, Mathias

    2017-01-01

    Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics. DOI: http://dx.doi.org/10.7554/eLife.21221.001 PMID:28137359

  3. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis

    Science.gov (United States)

    Nicolas, Pierre; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane

    2017-01-01

    In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho–null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks. PMID:28723971

  4. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity

    International Nuclear Information System (INIS)

    Liu Wenjin; Sun Maoyun; Jiang Jianhai; Shen Xiaoyun; Sun Qing; Liu Weicheng; Shen Hailian; Gu Jianxin

    2004-01-01

    The Cyclin D3 protein is a member of the D-type cyclins. Besides serving as cell cycle regulators, D-type cyclins have been reported to be able to interact with several transcription factors and modulate their transcriptional activations. Here we report that human activating transcription factor 5 (hATF5) is a new interacting partner of Cyclin D3. The interaction was confirmed by in vivo coimmunoprecipitation and in vitro binding analysis. Neither interaction between Cyclin D1 and hATF5 nor interaction between Cyclin D2 and hATF5 was observed. Confocal microscopy analysis showed that Cyclin D3 could colocalize with hATF5 in the nuclear region. Cyclin D3 could potentiate hATF5 transcriptional activity independently of its Cdk4 partner. But Cyclin D1 and Cyclin D2 had no effect on hATF5 transcriptional activity. These data provide a new clue to understand the new role of Cyclin D3 as a transcriptional regulator

  5. Role of Slug transcription factor in human mesenchymal stem cells.

    Science.gov (United States)

    Torreggiani, Elena; Lisignoli, Gina; Manferdini, Cristina; Lambertini, Elisabetta; Penolazzi, Letizia; Vecchiatini, Renata; Gabusi, Elena; Chieco, Pasquale; Facchini, Andrea; Gambari, Roberto; Piva, Roberta

    2012-04-01

    The pathways that control mesenchymal stem cells (MSCs) differentiation are not well understood, and although some of the involved transcription factors (TFs) have been characterized, the role of others remains unclear. We used human MSCs from tibial plateau (TP) trabecular bone, iliac crest (IC) bone marrow and Wharton's jelly (WJ) umbilical cord demonstrating a variability in their mineral matrix deposition, and in the expression levels of TFs including Runx2, Sox9, Sox5, Sox6, STAT1 and Slug, all involved in the control of osteochondroprogenitors differentiation program. Because we reasoned that the basal expression level of some TFs with crucial role in the control of MSC fate may be correlated with osteogenic potential, we considered the possibility to affect the hMSCs behaviour by using gene silencing approach without exposing cells to induction media. In this study we found that Slug-silenced cells changed in morphology, decreased in their migration ability, increased Sox9 and Sox5 and decreased Sox6 and STAT1 expression. On the contrary, the effect of Slug depletion on Runx2 was influenced by cell type. Interestingly, we demonstrated a direct in vivo regulatory action of Slug by chromatin immunoprecipitation, showing a specific recruitment of this TF in the promoter of Runx2 and Sox9 genes. As a whole, our findings have important potential implication on bone tissue engineering applications, reinforcing the concept that manipulation of specific TF expression levels may elucidate MSC biology and the molecular mechanisms, which promote osteogenic differentiation. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  6. BACH transcription factors in innate and adaptive immunity.

    Science.gov (United States)

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4 + regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  7. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf

    2010-10-21

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  8. Protein interactions of heat stress transcription factors from Lycopersicon peruvianum

    OpenAIRE

    Calligaris, Raffaella

    2006-01-01

    The heat stress response is characterized by the presence of heat stress transcription factors (Hsfs) which mediate transcription of heat stress genes. In tomato (Lycopersicon peruvianum) cell cultures the simultaneous expression of four Hsfs, which are either constitutively (HsfA1 and HsfA3) or heat-stress inducible (HsfA2 and HsfB1) expressed, results in a complex network with dynamically changing cellular levels, intracellular localization and functional interactions. In order to examine t...

  9. Determination of specificity influencing residues for key transcription factor families

    DEFF Research Database (Denmark)

    Patel, Ronak Y.; Garde, Christian; Stormo, Gary D.

    2015-01-01

    Transcription factors (TFs) are major modulators of transcription and subsequent cellular processes. The binding of TFs to specific regulatory elements is governed by their specificity. Considering the gap between known TFs sequence and specificity, specificity prediction frameworks are highly...... desired. Key inputs to such frameworks are protein residues that modulate the specificity of TF under consideration. Simple measures like mutual information (MI) to delineate specificity influencing residues (SIRs) from alignment fail due to structural constraints imposed by the three...

  10. A transcription factor for cold sensation!

    OpenAIRE

    Kim, Susan J; Qu, Zhican; Milbrandt, Jeffrey; Zhuo, Min

    2005-01-01

    Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB) to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral respons...

  11. Prevalence of transcription factors in ascomycete and basidiomycete fungi

    NARCIS (Netherlands)

    Todd, Richard B; Zhou, M.; Ohm, Robin A; Leeggangers, Hendrika A C F; Visser, Loek; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    BACKGROUND: Gene regulation underlies fungal physiology and therefore is a major factor in fungal biodiversity. Analysis of genome sequences has revealed a large number of putative transcription factors in most fungal genomes. The presence of fungal orthologs for individual regulators has been

  12. Prevalence of transcription factors in ascomycete and basidiomycete fungi

    NARCIS (Netherlands)

    Todd, Richard B.; Zhou, Miaomiao; Ohm, Robin A.; Leeggangers, Melissa; Visser, Loek; Vries, De Ronald P.

    2014-01-01

    Gene regulation underlies fungal physiology and therefore is a major factor in fungal biodiversity. Analysis of genome sequences has revealed a large number of putative transcription factors in most fungal genomes. The presence of fungal orthologs for individual regulators has been analysed and

  13. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm

    NARCIS (Netherlands)

    Yang, Xinan H; Nadadur, Rangarajan D; Hilvering, Catharina Re; Bianchi, Valerio; Werner, Michael; Mazurek, Stefan R; Gadek, Margaret; Shen, Kaitlyn M; Goldman, Joseph Aaron; Tyan, Leonid; Bekeny, Jenna; Hall, Johnathan M; Lee, Nutishia; Perez-Cervantes, Carlos; Burnicka-Turek, Ozanna; Poss, Kenneth D; Weber, Christopher R; de Laat, Wouter; Ruthenburg, Alexander J; Moskowitz, Ivan P

    2017-01-01

    The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to

  14. Transcription factor trapping by RNA in gene regulatory elements.

    Science.gov (United States)

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  15. Regulation of the Hippo Pathway Transcription Factor TEAD.

    Science.gov (United States)

    Lin, Kimberly C; Park, Hyun Woo; Guan, Kun-Liang

    2017-11-01

    The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Inducible super-enhancers are organized based on canonical signal-specific transcription factor binding elements.

    Science.gov (United States)

    Bojcsuk, Dóra; Nagy, Gergely; Balint, Balint L

    2017-04-20

    Super-enhancers are established through the interactions of several enhancers and a large number of proteins, including transcription factors and co-regulators; however, the formation of these interactions is poorly understood. By re-analysing previously published estrogen receptor alpha (ERα) ChIP-seq data sets derived from the MCF-7 cell line, we observed that in the absence of stimulation, future super-enhancers are represented by one or a few transcription factor binding event(s) and these extraordinary enhancers possess a response element largely specific to the ERα dimer. Upon hormonal stimulation, these primary binding sites are surrounded by a large amount of ERα and the critical components of active enhancers, such as P300 and MED1, and together with neighbouring sites bound by newly recruited ERα, they generate the functional super-enhancers. To further validate the role of canonical elements in super-enhancer formation, we investigated some additional signal-dependent transcription factors, confirming that certain, distinguished binding elements have a general organizer function. These results suggest that certain signal-specific transcription factors guide super-enhancer formation upon binding to strong response elements. These findings may reshape the current understanding of how these regulatory units assemble, highlighting the involvement of DNA elements instead of protein-protein interactions. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. FOXO Transcriptional Factors and Long-Term Living

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2017-01-01

    Full Text Available Several pathologies such as neurodegeneration and cancer are associated with aging, which is affected by many genetic and environmental factors. Healthy aging conceives human longevity, possibly due to carrying the defensive genes. For instance, FOXO (forkhead box O genes determine human longevity. FOXO transcription factors are involved in the regulation of longevity phenomenon via insulin and insulin-like growth factor signaling. Only one FOXO gene (FOXO DAF-16 exists in invertebrates, while four FOXO genes, that is, FOXO1, FOXO3, FOXO4, and FOXO6 are found in mammals. These four transcription factors are involved in the multiple cellular pathways, which regulate growth, stress resistance, metabolism, cellular differentiation, and apoptosis in mammals. However, the accurate mode of longevity by FOXO factors is unclear until now. This article describes briefly the existing knowledge that is related to the role of FOXO factors in human longevity.

  18. NAC Transcription Factors in Stress Responses and Senescence

    DEFF Research Database (Denmark)

    O'Shea, Charlotte

    Plant-specific NAM/ATAF/CUC (NAC) transcription factors have recently received considerable attention due to their significant roles in plant development and stress signalling. This interest has resulted in a number of physiological, genetic and cell biological studies of their functions. Some...... NAC target genes identified by the systematic binding-site analysis. This platform uses tools such as knock-out phenotypes and over-expression available for the model plant Arabidopsis. The final contribution to the NAC transcription factor field presented in this thesis is an overall summary...

  19. OCTAMER-BINDING TRANSCRIPTION FACTORS: GENOMICS AND FUNCTIONS

    OpenAIRE

    Zhao, Feng-Qi

    2013-01-01

    The Octamer-binding proteins (Oct) are a group of highly conserved transcription factors that specifically bind to the octamer motif (ATGCAAAT) and closely related sequences that are found in promoters and enhancers of a wide variety of both ubiquitously expressed and cell type-specific genes. Oct factors belong to the larger family of POU domain factors that are characterized by the presence of a highly conserved bipartite DNA binding domain, consisting of an amino-terminal specific subdomai...

  20. Bioinformatic landscapes for plant transcription factor system research.

    Science.gov (United States)

    Wang, Yijun; Lu, Wenjie; Deng, Dexiang

    2016-02-01

    Diverse bioinformatic resources have been developed for plant transcription factor (TF) research. This review presents the bioinformatic resources and methodologies for the elucidation of plant TF-mediated biological events. Such information is helpful to dissect the transcriptional regulatory systems in the three reference plants Arabidopsis , rice, and maize and translation to other plants. Transcription factors (TFs) orchestrate diverse biological programs by the modulation of spatiotemporal patterns of gene expression via binding cis-regulatory elements. Advanced sequencing platforms accompanied by emerging bioinformatic tools revolutionize the scope and extent of TF research. The system-level integration of bioinformatic resources is beneficial to the decoding of TF-involved networks. Herein, we first briefly introduce general and specialized databases for TF research in three reference plants Arabidopsis, rice, and maize. Then, as proof of concept, we identified and characterized heat shock transcription factor (HSF) members through the TF databases. Finally, we present how the integration of bioinformatic resources at -omics layers can aid the dissection of TF-mediated pathways. We also suggest ways forward to improve the bioinformatic resources of plant TFs. Leveraging these bioinformatic resources and methodologies opens new avenues for the elucidation of transcriptional regulatory systems in the three model systems and translation to other plants.

  1. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  2. Transcription factor binding sites prediction based on modified nucleosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad Talebzadeh

    Full Text Available In computational methods, position weight matrices (PWMs are commonly applied for transcription factor binding site (TFBS prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, "modified nucleosomes neighboring" and "modified nucleosomes occupancy", to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method

  3. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Valentina eBoeva

    2016-02-01

    Full Text Available Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation.

  5. Posttranslational modifications of Forkhead box O transcription factors

    NARCIS (Netherlands)

    Horst, Aart Arno van der

    2006-01-01

    FOXO transcription factors play an important role in essential biological processes such as differentiation, proliferation, apoptosis, DNA repair, metabolism and stress resistance. Phosphorylation is the modification that was first found on FOXOs and much of the subsequent studies focused on this

  6. Distinct patterns of epigenetic marks and transcription factor binding ...

    Indian Academy of Sciences (India)

    Distinct patterns of epigenetic marks and transcription factor binding sites across promoters of sense-intronic long noncoding RNAs. Sourav Ghosh, Satish Sati, Shantanu Sengupta and Vinod Scaria. J. Genet. 94, 17–25. Gencode V9 lncRNA gene : 11004. Known lncRNA : 1175. Novel lncRNA : 5898. Putative lncRNA :.

  7. Transcriptional factor influence on OTA production and the quelling ...

    African Journals Online (AJOL)

    This study determined the influence of some transcriptional factors on ochratoxin A production as well as investigates the quelling attributes of some designed siRNA on the OTA producing Aspergillus section Nigri using standard recommended techniques. Results obtained following comparison of the pks gene promoter ...

  8. Inhibition of factor-dependent transcription termination in ...

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... H-NS might help reinforce xenogene silencing. [Chandraprakash D and Seshasayee ASN 2014 Inhibition of factor-dependent transcription termination in Escherichia coli might relieve xenogene silencing by abrogating H-NS-DNA interactions in vivo. J. Biosci. 39 53–61] DOI10.1007/s12038-014-9413-4. 1.

  9. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 3. Genomewide ... Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are ... To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family.

  10. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    TGFβ-induced expression of the NADPH oxidase Nox4 is essential for fibroblast-myofibroblast transition. Rho has been implicated in Nox4 regulation, but the underlying mechanisms are largely unknown. Myocardin-related transcription factor (MRTF), a Rho/actin polymerization-controlled coactivator o...

  11. Control of cellulose biosynthesis by overexpression of a transcription factor

    Science.gov (United States)

    Han, Kyung-Hwan; Ko, Jae-Heung; Kim, Won-Chan; Kim; , Joo-Yeol

    2017-05-16

    The invention relates to the over-expression of a transcription factor selected from the group consisting of MYB46, HAM1, HAM2, MYB112, WRKY11, ERF6, and any combination thereof in a plant, which can modulate and thereby modulating the cellulose content of the plant.

  12. The WRKY transcription factor family and senescence in switchgrass

    Science.gov (United States)

    Background: Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. Methods: All potential WRKY genes present in the version 1.0 of the...

  13. WRKY transcription factor superfamily: Structure, origin and functions

    African Journals Online (AJOL)

    WRKY transcription factors regulate the expression of pathogen-induced, senescence-induced, abscisic acid (ABA)-induced, gibberellic acid (GA)-induced and salcylic acid (SA)-induced genes and play an important role in the regulation of plant growth and development as well as in their response to many kinds of biotic ...

  14. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs.

    Science.gov (United States)

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-04-07

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27(kip1)and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27(kip1)mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells. © The Author(s) 2016. Published by Oxford

  15. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design

    DEFF Research Database (Denmark)

    Fazio, Alessandro; Jewett, Michael Christopher; Daran-Lapujade, Pascale

    2008-01-01

    transcription factor target sets, transcription factors that coordinate balanced growth were also identified. Our analysis shows that FhII, Rap1, and Sfp1, regulating protein biosynthesis, have significantly enriched target sets for genes up-regulated with increasing growth rate. Cell cycle regulators...

  16. Pro-neural transcription factors as cancer markers

    Directory of Open Access Journals (Sweden)

    Nikitin Alexander

    2008-05-01

    Full Text Available Abstract Background The aberrant transcription in cancer of genes normally associated with embryonic tissue differentiation at various organ sites may be a hallmark of tumour progression. For example, neuroendocrine differentiation is found more commonly in cancers destined to progress, including prostate and lung. We sought to identify proteins which are involved in neuroendocrine differentiation and differentially expressed in aggressive/metastatic tumours. Results Expression arrays were used to identify up-regulated transcripts in a neuroendocrine (NE transgenic mouse model of prostate cancer. Amongst these were several genes normally expressed in neural tissues, including the pro-neural transcription factors Ascl1 and Hes6. Using quantitative RT-PCR and immuno-histochemistry we showed that these same genes were highly expressed in castrate resistant, metastatic LNCaP cell-lines. Finally we performed a meta-analysis on expression array datasets from human clinical material. The expression of these pro-neural transcripts effectively segregates metastatic from localised prostate cancer and benign tissue as well as sub-clustering a variety of other human cancers. Conclusion By focussing on transcription factors known to drive normal tissue development and comparing expression signatures for normal and malignant mouse tissues we have identified two transcription factors, Ascl1 and Hes6, which appear effective markers for an aggressive phenotype in all prostate models and tissues examined. We suggest that the aberrant initiation of differentiation programs may confer a selective advantage on cells in all contexts and this approach to identify biomarkers therefore has the potential to uncover proteins equally applicable to pre-clinical and clinical cancer biology.

  17. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    Science.gov (United States)

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  18. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    Science.gov (United States)

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Medical School Factors Associated with Higher Rates of Recruitment into Psychiatry.

    Science.gov (United States)

    Spollen, John J; Beck Dallaghan, Gary L; Briscoe, Gregory W; Delanoche, Nancy D; Hales, Deborah J

    2017-04-01

    The medical school a student attends appears to be a factor in whether students eventually match into psychiatry. Knowledge of which factors are associated with medical schools with higher recruitment rates into psychiatry may assist in developing strategies to increase recruitment. Psychiatry leaders in medical student education in the 25 highest and lowest recruiting US allopathic schools were surveyed concerning various factors that could be important such as curriculum, educational leadership, and presence of anti-psychiatry stigma. The relationship between the survey results of high recruiting schools versus those of low recruiting schools was evaluated using Mann-Whitney U tests. Factors significantly associated (p psychiatry department and residents, perceived higher respect for psychiatry among non-psychiatry faculty, less perception that students dissuaded other students from pursuing psychiatry, and longer clerkship length. Educational culture and climate factors may have a significant impact on psychiatry recruitment rates. Clerkship length was associated with higher recruiting schools, but several previous studies with more complete samples have not shown this.

  20. Structural Fingerprints of Transcription Factor Binding Site Regions

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2009-03-01

    Full Text Available Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data.

  1. Gene expression of transcription factor NFATc1 in periodontal diseases

    OpenAIRE

    Belibasakis, G N; Emingil, G; Saygan, B; Turkoglu, O; Atilla, G; Bostanci, N

    2011-01-01

    Belibasakis GN, Emingil G, Saygan B, Turkoglu O, Atilla G, Bostanci N. Gene expression of transcription factor NFATc1 in periodontal diseases. APMIS 2011; 119: 167-172. Periodontitis is a disease of infectious aetiology that causes inflammatory destruction of the tooth-supporting tissues. Activated T cells are central to the pathogenesis of the disease, by producing receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) that stimulates bone resorption. Antigenic activation of T cells ...

  2. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Directory of Open Access Journals (Sweden)

    H. Susana Marinho

    2014-01-01

    Full Text Available The regulatory mechanisms by which hydrogen peroxide (H2O2 modulates the activity of transcription factors in bacteria (OxyR and PerR, lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4 and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1 are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1 synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for

  3. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    DEFF Research Database (Denmark)

    Fang, Xin; Sastry, Anand; Mih, Nathan

    2017-01-01

    gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions...... algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose...... definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems...

  4. Screening Driving Transcription Factors in the Processing of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Guangzhong Xu

    2016-01-01

    Full Text Available Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls, a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.

  5. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  6. A dynamic mode of mitotic bookmarking by transcription factors.

    Science.gov (United States)

    Teves, Sheila S; An, Luye; Hansen, Anders S; Xie, Liangqi; Darzacq, Xavier; Tjian, Robert

    2016-11-19

    During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking.

  7. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation.

    Science.gov (United States)

    Sebastian, Soji; Faralli, Hervé; Yao, Zizhen; Rakopoulos, Patricia; Palii, Carmen; Cao, Yi; Singh, Kulwant; Liu, Qi-Cai; Chu, Alphonse; Aziz, Arif; Brand, Marjorie; Tapscott, Stephen J; Dilworth, F Jeffrey

    2013-06-01

    Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Dα1) and muscle-specific (Mef2Dα2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Dα2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA). Phosphorylation of Mef2Dα1 by PKA provokes its association with corepressors. Conversely, exon switching allows Mef2Dα2 to escape this inhibitory phosphorylation, permitting recruitment of Ash2L for transactivation of muscle genes. Thus, our results reveal a novel mechanism in which a tissue-specific alternate splicing event has evolved that permits a ubiquitously expressed transcription factor to escape inhibitory signaling for temporal regulation of gene expression.

  8. Oct-2 forms a complex with Oct-1 on the iNOS promoter and represses transcription by interfering with recruitment of RNA PolII by Oct-1

    Science.gov (United States)

    Bentrari, Fatima; Chantôme, Aurelie; Knights, Andrew; Jeannin, Jean-François; Pance, Alena

    2015-01-01

    Oct-1 (POU2f1) and Oct-2 (POU2f2) are members of the POU family of transcription factors. They recognize the same DNA sequence but fulfil distinct functions: Oct-1 is ubiquitous and regulates a variety of genes while Oct-2 is restricted to B-cells and neurones. Here we examine the interplay and regulatory mechanisms of these factors to control the inducible nitric oxide synthase (iNOS, NOS2). Using two breast cancer cell lines as a comparative model, we found that MCF-7 express iNOS upon cytokine stimulation while MDA-MB-231 do not. Oct-1 is present in both cell lines but MDA-MB-231also express high levels of Oct-2. Manipulation of Oct-2 expression in these cell lines demonstrates that it is directly responsible for the repression of iNOS in MDA-MB-231. In MCF-7 cells Oct-1 binds the iNOS promoter, recruits RNA PolII and triggers initiation of transcription. In MDA-MB-231 cells, both Oct-1 and Oct-2 bind the iNOS promoter, forming a higher-order complex which fails to recruit RNA PolII, and as a consequence iNOS transcription does not proceed. Unravelling the mechanisms of transcription factor activity is paramount to the understanding of gene expression patterns that determine cell behaviour. PMID:26271992

  9. Multifunctional role of the transcription factor Blimp1 in coordinating plasma cell differentiation

    Science.gov (United States)

    Minnich, Martina; Tagoh, Hiromi; Bönelt, Peter; Axelsson, Elin; Fischer, Maria; Cebolla, Beatriz; Tarakhovsky, Alexander; Nutt, Stephen L.; Jaritz, Markus; Busslinger, Meinrad

    2018-01-01

    Blimp1 is an essential regulator of plasma cells. Here we studied its functions in plasmablast differentiation by identifying regulated Blimp1 target genes. Blimp1 promoted plasmablast migration and adhesion. It repressed several transcription factor genes and Aicda, thus silencing B-cell-specific gene expression, antigen presentation and class switch recombination in plasmablasts. It directly activated genes, leading to increased expression of the plasma cell regulator IRF4 and proteins involved in immunoglobulin secretion. Blimp1 induced immunoglobulin gene transcription by controlling Igh and Igk 3’ enhancers and regulated the posttranscriptional expression switch from the membrane-bound to secreted immunoglobulin heavy-chain by activating Ell2. Notably, Blimp1 recruited chromatin-remodeling and histone-modifying complexes to regulate its target genes. Hence, many essential functions of plasma cells are under Blimp1 control. PMID:26779602

  10. Functionally Significant, Rare Transcription Factor Variants in Tetralogy of Fallot

    Science.gov (United States)

    Töpf, Ana; Griffin, Helen R.; Glen, Elise; Soemedi, Rachel; Brown, Danielle L.; Hall, Darroch; Rahman, Thahira J.; Eloranta, Jyrki J.; Jüngst, Christoph; Stuart, A. Graham; O'Sullivan, John; Keavney, Bernard D.; Goodship, Judith A.

    2014-01-01

    Objective Rare variants in certain transcription factors involved in cardiac development cause Mendelian forms of congenital heart disease. The purpose of this study was to systematically assess the frequency of rare transcription factor variants in sporadic patients with the cardiac outflow tract malformation tetralogy of Fallot (TOF). Methods and Results We sequenced the coding, 5′UTR, and 3′UTR regions of twelve transcription factor genes implicated in cardiac outflow tract development (NKX2.5, GATA4, ISL1, TBX20, MEF2C, BOP/SMYD1, HAND2, FOXC1, FOXC2, FOXH, FOXA2 and TBX1) in 93 non-syndromic, non-Mendelian TOF cases. We also analysed Illumina Human 660W-Quad SNP Array data for copy number variants in these genes; none were detected. Four of the rare variants detected have previously been shown to affect transactivation in in vitro reporter assays: FOXC1 p.P297S, FOXC2 p.Q444R, FOXH1 p.S113T and TBX1 p.P43_G61del PPPPRYDPCAAAAPGAPGP. Two further rare variants, HAND2 p.A25_A26insAA and FOXC1 p.G378_G380delGGG, A488_491delAAAA, affected transactivation in in vitro reporter assays. Each of these six functionally significant variants was present in a single patient in the heterozygous state; each of the four for which parental samples were available were maternally inherited. Thus in the 93 TOF cases we identified six functionally significant mutations in the secondary heart field transcriptional network. Significance This study indicates that rare genetic variants in the secondary heart field transcriptional network with functional effects on protein function occur in 3–13% of patients with TOF. This is the first report of a functionally significant HAND2 mutation in a patient with congenital heart disease. PMID:25093829

  11. Functionally significant, rare transcription factor variants in tetralogy of Fallot.

    Directory of Open Access Journals (Sweden)

    Ana Töpf

    Full Text Available Rare variants in certain transcription factors involved in cardiac development cause Mendelian forms of congenital heart disease. The purpose of this study was to systematically assess the frequency of rare transcription factor variants in sporadic patients with the cardiac outflow tract malformation tetralogy of Fallot (TOF.We sequenced the coding, 5'UTR, and 3'UTR regions of twelve transcription factor genes implicated in cardiac outflow tract development (NKX2.5, GATA4, ISL1, TBX20, MEF2C, BOP/SMYD1, HAND2, FOXC1, FOXC2, FOXH, FOXA2 and TBX1 in 93 non-syndromic, non-Mendelian TOF cases. We also analysed Illumina Human 660W-Quad SNP Array data for copy number variants in these genes; none were detected. Four of the rare variants detected have previously been shown to affect transactivation in in vitro reporter assays: FOXC1 p.P297S, FOXC2 p.Q444R, FOXH1 p.S113T and TBX1 p.P43_G61del PPPPRYDPCAAAAPGAPGP. Two further rare variants, HAND2 p.A25_A26insAA and FOXC1 p.G378_G380delGGG, A488_491delAAAA, affected transactivation in in vitro reporter assays. Each of these six functionally significant variants was present in a single patient in the heterozygous state; each of the four for which parental samples were available were maternally inherited. Thus in the 93 TOF cases we identified six functionally significant mutations in the secondary heart field transcriptional network.This study indicates that rare genetic variants in the secondary heart field transcriptional network with functional effects on protein function occur in 3-13% of patients with TOF. This is the first report of a functionally significant HAND2 mutation in a patient with congenital heart disease.

  12. Subgroup-specific intrinsic disorder profiles of arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    Stender, Emil G.; O'Shea, Charlotte; Skriver, Karen

    2015-01-01

    Protein intrinsic disorder (ID), referring to the lack of a fixed tertiary structure, is significant in signaling and transcription. We recently characterized ID in 6 phylogenetically representative Arabidopsis thaliana NAC transcription factors. Their transcription regulatory domains are mostly...

  13. Factors affecting recruitment into psychiatry: a canadian experience.

    Science.gov (United States)

    Lau, Timothy; Zamani, Delara; Lee, Elliott Kyung; Asli, Khashayar D; Gill, Jasbir; Brager, Nancy; Hawa, Raed; Song, Wei-Yi; Gill, Eunice; Fitzpatrick, Renee; Menezes, Natasja M; Pham, Vu H; Douglass, Alan Bruce; Allain, Suzanne; Meterissian, Greg B; Gagnon, Nadine; Toeg, Hadi; Murphy, Cheryl

    2015-06-01

    There is a projected shortage of psychiatrists in Canada in forthcoming years. This study assessed factors in medical school education that are associated with students selecting psychiatry first and matching as a discipline. The Canadian Organization of Undergraduate Psychiatry Educators (COUPE) conducted telephone interviews and sent e-mail questionnaires to the 17 medical schools across Canada; all schools provided data for 2012. Relevant data were obtained from the Canadian Resident Matching Service. Statistics were performed using v12 STATA program, and significance was set at a p value of psychiatry as their first choice for residency. Final match results yielded similar numbers at 5.0 ± 0.6 %. Ten out of 17 programs filled all psychiatry residency positions, whereas the remaining 7 programs had vacancy rates from 5 to 100 % (mean = 43.4 ± 15.1 %). Medical students were exposed to an average of 2.8 ± 0.5 pre-clerkship psychiatry weeks and 6.2 ± 0.3 clerkship weeks. Linear regression analysis demonstrated that the percentage of graduating medical students entering a psychiatry residency program could be predicted from the number of weeks of pre-clerkship exposure (p = 0.01; R(2) = 0.36) but not from the number of clerkship weeks (p = 0.74). This study indicates that the duration of pre-clerkship exposure to psychiatry predicts the number of students selecting psychiatry as their first choice as a discipline. Thus, increasing the duration of pre-clerkship exposure may increase the enrollment of medical students into psychiatry.

  14. Ecological factors affecting Rainbow Smelt recruitment in the main basin of Lake Huron, 1976-2010

    Science.gov (United States)

    O'Brien, Timothy P.; Taylor, William W.; Roseman, Edward F.; Madenjian, Charles P.; Riley, Stephen C.

    2014-01-01

    Rainbow Smelt Osmerus mordax are native to northeastern Atlantic and Pacific–Arctic drainages and have been widely introduced throughout North America. In the Great Lakes region, Rainbow Smelt are known predators and competitors of native fish and a primary prey species in pelagic food webs. Despite their widespread distribution, importance as a prey species, and potential to negatively interact with native fish species, there is limited information concerning stock–recruitment relationships for Rainbow Smelt. To better understand recruitment mechanisms, we evaluated potential ecological factors determining recruitment dynamics for Rainbow Smelt in Lake Huron using data from bottom trawl catches. We specifically evaluated influence of stock size, environmental factors (water temperature, lake levels, and precipitation), and salmonine predation on the production of age-0 recruits from 1976 to 2010. Rainbow Smelt recruitment was negatively related to stock size exceeding 10 kg/ha, indicating that compensatory, density-dependent mortality from cannibalism or intraspecific competition was an important factor related to the production of age-0 recruits. Recruitment was positively related to spring precipitation suggesting that the amount of stream-spawning habitat as determined by precipitation was important for the production of strong Rainbow Smelt recruitment. Additionally, density of age-0 Rainbow Smelt was positively related to Lake Trout Salvelinus namaycush abundance. However, spawning stock biomass of Rainbow Smelt, which declined substantially from 1989 to 2010, was negatively associated with Lake Trout catch per effort suggesting predation was an important factor related to the decline of age-2 and older Rainbow Smelt in Lake Huron. As such, we found that recruitment of Rainbow Smelt in Lake Huron was regulated by competition with or cannibalism by older conspecifics, spring precipitation influencing stream spawning habitats, and predation by Lake Trout on

  15. Cdk phosphorylation of the Ste11 transcription factor constrains differentiation-specific transcription to G1

    DEFF Research Database (Denmark)

    Kjaerulff, Søren; Andersen, Nicoline Resen; Borup, Mia Trolle

    2007-01-01

    Eukaryotic cells normally differentiate from G(1); here we investigate the mechanism preventing expression of differentiation-specific genes outside G(1). In fission yeast, induction of the transcription factor Ste11 triggers sexual differentiation. We find that Ste11 is only active in G(1) when...... S phase. When we mutated T82 to aspartic acid, mimicking constant phosphorylation, cells no longer underwent differentiation. Conversely, changing T82 to alanine rendered Ste11-controlled transcription constitutive through the cell cycle, and allowed mating from S phase with increased frequency....... Thus, Cdk phosphorylation mediates periodic expression of Ste11 and its target genes, and we suggest this to be part of the mechanism restricting differentiation to G(1)....

  16. Identification and Transcript Analysis of the TCP Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca

    Science.gov (United States)

    Wei, Wei; Hu, Yang; Cui, Meng-Yuan; Han, Yong-Tao; Gao, Kuan; Feng, Jia-Yue

    2016-01-01

    Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors play versatile functions in multiple processes of plant growth and development. However, no systematic study has been performed in strawberry. In this study, 19 FvTCP genes were identified in the diploid woodland strawberry (Fragaria vesca) accession Heilongjiang-3. Phylogenetic analysis suggested that the FvTCP genes were classified into two main classes, with the second class further divided into two subclasses, which was supported by the exon-intron organizations and the conserved motif structures. Promoter analysis revealed various cis-acting elements related to growth and development, hormone and/or stress responses. We analyzed FvTCP gene transcript accumulation patterns in different tissues and fruit developmental stages. Among them, 12 FvTCP genes exhibited distinct tissue-specific transcript accumulation patterns. Eleven FvTCP genes were down-regulated in different fruit developmental stages, while five FvTCP genes were up-regulated. Transcripts of FvTCP genes also varied with different subcultural propagation periods and were induced by hormone treatments and biotic and abiotic stresses. Subcellular localization analysis showed that six FvTCP-GFP fusion proteins showed distinct localizations in Arabidopsis mesophyll protoplasts. Notably, transient over-expression of FvTCP9 in strawberry fruits dramatically affected the expression of a series of genes implicated in fruit development and ripening. Taken together, the present study may provide the basis for functional studies to reveal the role of this gene family in strawberry growth and development. PMID:28066489

  17. TFCat: the curated catalog of mouse and human transcription factors

    Science.gov (United States)

    Fulton, Debra L; Sundararajan, Saravanan; Badis, Gwenael; Hughes, Timothy R; Wasserman, Wyeth W; Roach, Jared C; Sladek, Rob

    2009-01-01

    Unravelling regulatory programs governed by transcription factors (TFs) is fundamental to understanding biological systems. TFCat is a catalog of mouse and human TFs based on a reliable core collection of annotations obtained by expert review of the scientific literature. The collection, including proven and homology-based candidate TFs, is annotated within a function-based taxonomy and DNA-binding proteins are organized within a classification system. All data and user-feedback mechanisms are available at the TFCat portal . PMID:19284633

  18. Transcription factors for modification of lignin content in plants

    Science.gov (United States)

    Wang, Huanzhong; Chen, Fang; Dixon, Richard A.

    2015-06-02

    The invention provides methods for modifying lignin, cellulose, xylan, and hemicellulose content in plants, and for achieving ectopic lignification and, for instance, secondary cell wall synthesis in pith cells, by altered regulation of a WRKY transcription factor. Nucleic acid constructs for altered WRKY-TF expression are described. Transgenic plants are provided that comprise modified pith cell walls, and lignin, cellulose, and hemicellulose content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops.

  19. Transcription factors: normal and malignant development of blood cells

    National Research Council Canada - National Science Library

    Ravid, Katya; Licht, Jonathan

    2001-01-01

    ... and the Development of the Erythroid Lineage James J. Bieker 71 II TRANSCRIPTION FACTORS AND THE MYELOID LINEAGE 85 6 RUNX1(AML1) and CBFB: Genes Required for the Development of All Definitive Hematopoietic Lineages 87 Nancy A. Speck and Elaine Dzierzak 7 PU.1 and the Development of the Myeloid Lineage Daniel G. Tenen 103 vvi CONTENTS 8 CCAAT/Enhancer-...

  20. Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I.

    Science.gov (United States)

    Peña-Hernández, Rodrigo; Marques, Maud; Hilmi, Khalid; Zhao, Teijun; Saad, Amine; Alaoui-Jamali, Moulay A; del Rincon, Sonia V; Ashworth, Todd; Roy, Ananda L; Emerson, Beverly M; Witcher, Michael

    2015-02-17

    CCCTC-binding factor (CTCF) is a key regulator of nuclear chromatin structure and gene regulation. The impact of CTCF on transcriptional output is highly varied, ranging from repression to transcriptional pausing and transactivation. The multifunctional nature of CTCF may be directed solely through remodeling chromatin architecture. However, another hypothesis is that the multifunctional nature of CTCF is mediated, in part, through differential association with protein partners having unique functions. Consistent with this hypothesis, our mass spectrometry analyses of CTCF interacting partners reveal a previously undefined association with the transcription factor general transcription factor II-I (TFII-I). Biochemical fractionation of CTCF indicates that a distinct CTCF complex incorporating TFII-I is assembled on DNA. Unexpectedly, we found that the interaction between CTCF and TFII-I is essential for directing CTCF to the promoter proximal regulatory regions of target genes across the genome, particularly at genes involved in metabolism. At genes coregulated by CTCF and TFII-I, we find knockdown of TFII-I results in diminished CTCF binding, lack of cyclin-dependent kinase 8 (CDK8) recruitment, and an attenuation of RNA polymerase II phosphorylation at serine 5. Phenotypically, knockdown of TFII-I alters the cellular response to metabolic stress. Our data indicate that TFII-I directs CTCF binding to target genes, and in turn the two proteins cooperate to recruit CDK8 and enhance transcription initiation.

  1. Analysis of expression of transcription factors in early human retina.

    Science.gov (United States)

    Chen, Jing; Ma, Lixiang; Wang, Songtao; Wang, Xiaobing; Sun, Yan; Gao, Lu; Li, Jin; Zhou, Guomin

    2017-08-01

    The retina originates in the central nervous system. Due to its accessibility and simplicity, the retina has become an invaluable model for studying the basic mechanisms involved in development. To date, considerable knowledge regarding the interactions among genes that coordinate retinal development has been gained from extensive research in model animals. However, our understanding of retinal development in humans remains undeveloped. Here, we analyze the expression of transcription factors that are involved in the early development of the retina in human embryos at 6-12 weeks post-conception. Our work demonstrates that early developing neural retinas can be divided into two layers, the outer and inner neuroblast layers. Eye-field transcription factors and those related to the early development of the retina have distinct expression patterns in the two layers. Cell-type-specific transcription factors emerge at 8 weeks. These data provide clear and systemic structures for early retinal development in human. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation.

    Science.gov (United States)

    Ilegems, Michael; Douet, Véronique; Meylan-Bettex, Marlyse; Uyttewaal, Magalie; Brand, Lukas; Bowman, John L; Stieger, Pia A

    2010-03-01

    Class III HD-ZIP and KANADI gene family members have complementary expression patterns in the vasculature and their gain-of-function and loss-of-function mutants have complementary vascular phenotypes. This suggests that members of the two gene families are involved in the establishment of the spatial arrangement of phloem, cambium and xylem. In this study, we have investigated the role of these two gene families in vascular tissue differentiation, in particular their interactions with the plant hormone auxin. We have analyzed the vasculature of plants that have altered expression levels of Class III HD-ZIP and KANADI transcription factors in provascular cells. Removal of either KANADI or Class III HD-ZIP expression in procambium cells led to a wider distribution of auxin in internal tissues, to an excess of procambium cell recruitment and to increased cambium activity. Ectopic expression of KANADI1 in provascular cells inhibited procambium cell recruitment due to negative effects of KANADI1 on expression and polar localization of the auxin efflux-associated protein PIN-FORMED1. Ectopic expression of Class III HD-ZIP genes promoted xylem differentiation. We propose that Class III HD-ZIP and KANADI transcription factors control cambium activity: KANADI proteins by acting on auxin transport, and Class III HD-ZIP proteins by promoting axial cell elongation and xylem differentiation.

  3. Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1.

    Science.gov (United States)

    Kadauke, Stephan; Udugama, Maheshi I; Pawlicki, Jan M; Achtman, Jordan C; Jain, Deepti P; Cheng, Yong; Hardison, Ross C; Blobel, Gerd A

    2012-08-17

    Tissue-specific transcription patterns are preserved throughout cell divisions to maintain lineage fidelity. We investigated whether transcription factor GATA1 plays a role in transmitting hematopoietic gene expression programs through mitosis when transcription is transiently silenced. Live-cell imaging revealed that a fraction of GATA1 is retained focally within mitotic chromatin. ChIP-seq of highly purified mitotic cells uncovered that key hematopoietic regulatory genes are occupied by GATA1 in mitosis. The GATA1 coregulators FOG1 and TAL1 dissociate from mitotic chromatin, suggesting that GATA1 functions as platform for their postmitotic recruitment. Mitotic GATA1 target genes tend to reactivate more rapidly upon entry into G1 than genes from which GATA1 dissociates. Mitosis-specific destruction of GATA1 delays reactivation selectively of genes that retain GATA1 during mitosis. These studies suggest a requirement of mitotic "bookmarking" by GATA1 for the faithful propagation of cell-type-specific transcription programs through cell division. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm.

    Science.gov (United States)

    Yang, Xinan H; Nadadur, Rangarajan D; Hilvering, Catharina Re; Bianchi, Valerio; Werner, Michael; Mazurek, Stefan R; Gadek, Margaret; Shen, Kaitlyn M; Goldman, Joseph Aaron; Tyan, Leonid; Bekeny, Jenna; Hall, Johnathon M; Lee, Nutishia; Perez-Cervantes, Carlos; Burnicka-Turek, Ozanna; Poss, Kenneth D; Weber, Christopher R; de Laat, Wouter; Ruthenburg, Alexander J; Moskowitz, Ivan P

    2017-12-27

    The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to define enhancers and enhancer-associated ncRNAs that are involved in a TF-dependent regulatory network. TBX5, a cardiac TF, regulates a network of cardiac channel genes to maintain cardiac rhythm. We deep sequenced wildtype and Tbx5 -mutant mouse atria, identifying ~2600 novel Tbx5 -dependent ncRNAs. Tbx5-dependent ncRNAs were enriched for tissue-specific marks of active enhancers genome-wide. Tbx5-dependent ncRNAs emanated from regions that are enriched for TBX5-binding and that demonstrated Tbx5-dependent enhancer activity. Tbx5 -dependent ncRNA transcription provided a quantitative metric of Tbx5 -dependent enhancer activity, correlating with target gene expression. We identified RACER , a novel Tbx5 -dependent long noncoding RNA (lncRNA) required for the expression of the calcium-handling gene Ryr2 . We illustrate that TF-dependent enhancer transcription can illuminate components of TF-dependent gene regulatory networks.

  5. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2010-03-01

    Full Text Available The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates.We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data.Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct-interaction detection and TFBS-discovery accuracy. We estimated the accuracy

  6. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong, E-mail: jungkim@cau.ac.kr; Choi, Kyung-Hee, E-mail: khchoi@cau.ac.kr

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.

  7. Role of a transcription factor (CREB) in memory processes.

    Science.gov (United States)

    De Luca, A; Giuditta, A

    1997-01-01

    Memory storage includes a short-term phase (STM) which requires the phosphorylation of pre-existing proteins, and a long-term phase (LTM) which needs the novel synthesis of RNA and proteins. Cyclic AMP and a specific transcription factor (cAMP response element binding protein or CREB) play a central role in the formation of LTM in aplysia, drosophila and mice. Following its phosphorylation by protein kinase A, CREB binds to the enhancer element CRE which is located in the upstream region of cAMP-responsive genes, thus triggering transcription. Some of the newly-synthesized proteins are additional transcription factors that ultimately give rise to the activation of late response genes, whose products are responsible for the modification of synaptic efficacy leading to LTM. In aplysia, CREB activation has been interfered with by microinjection of CRE containing oligonucleotides into cultured neurons. Under these conditions LTM is blocked while STM remains unchanged. In drosophila, CREB function has been disrupted using a reverse genetic approach. Thus, LTM has been specifically blocked by the induced expression of a CREB repressor isoform, and enhanced by the induced expression of an activator isoform. In mouse, the role of CREB has been confirmed by behavioural analyses of a knock-out line with a targeted mutation in the CREB gene. In these mutants, learning and STM are normal, whereas LTM is disrupted. On the whole, the data suggest that encoding of long term memories involve highly conserved molecular mechanisms.

  8. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors

    Directory of Open Access Journals (Sweden)

    Kaitlyn M. Gayvert

    2016-06-01

    Full Text Available Mutations in transcription factor (TF genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a computational drug-repositioning approach for targeting TF activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions, and a global drug-protein network analysis supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently overexpressed oncogenic TF, predicted that dexamethasone would inhibit ERG activity. Dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of electronic medical record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy for identifying drugs that specifically modulate TF activity.

  9. Chemically Induced Degradation of the Oncogenic Transcription Factor BCL6

    Directory of Open Access Journals (Sweden)

    Nina Kerres

    2017-09-01

    Full Text Available The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL. Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.

  10. Imbalances in T Cell-Related Transcription Factors Among Patients with Hashimoto’s Thyroiditis

    Directory of Open Access Journals (Sweden)

    Vahid Safdari

    2017-06-01

    Full Text Available Objectives: Imbalances in effector T cell functioning have been associated with a number of autoimmune diseases, including Hashimoto’s thyroiditis (HT. Differentiation of effector T helper (Th 1, Th2, Th17 and regulatory T cell (Treg lymphocytes is regulated by transcription factors, including Th1-specific T box (T-bet, GATA binding protein-3 (GATA3, retinoid-related orphan receptor (ROR-α and forkhead box P3 (FOXP3. This study aimed to investigate Th1/Th2, Th1/Treg, Th2/Treg and Th17/Treg balances at the level of these transcription factors. Methods: This study took place between October 2015 and August 2016. Peripheral blood mononuclear cells were collected from a control group of 40 healthy women recruited from the Zahedan University of Medical Sciences, Zahedan, Iran, and a patient group of 40 women with HT referred to the Hazrat Ali Asghar Hospital, Zahedan. Total ribonucleic acid extraction was performed and the gene expression of transcription factors was quantitated using a real-time polymerase chain reaction technique. Results: Expression of T-bet and GATA3 was significantly elevated, while FOXP3 expression was significantly diminished among HT patients in comparison with the controls (P = 0.03, 0.01 and 0.05, respectively. Expression of RORα was higher among HT patients, although this difference was not significant (P = 0.15. Expression of T-bet/FOXP3, GATA3/FOXP3 and RORα/FOXP3 ratios were increased among HT patients in comparison with the controls (P <0.02, <0.01 and <0.01, respectively. Conclusion: These results indicate that HT patients have imbalances in Th1/Treg, Th2/Treg and Th17/Treg lymphocytes at the level of the transcription factors, deviating towards Th1, Th2 and Th17 cells. Correction of these imbalances may therefore be therapeutic.

  11. Regulation of Myocyte Enhancer Factor-2 Transcription Factors by Neurotoxins

    Science.gov (United States)

    She, Hua; Mao, Zixu

    2011-01-01

    Various isoforms of myocyte enhancer factor-2 (MEF2) constitute a group of nuclear proteins found to play important roles in increasing types of cells. In neurons, MEF2s are required to regulate neuronal development, synaptic plasticity, as well as survival. MEF2s promote the survival of several types of neurons under different conditions. In cellular models, negative regulation of MEF2s by stress and toxic signals contributes to neuronal death. In contrast, enhancing MEF2 activity not only protects cultured primary neurons from death in vitro but also attenuates the loss of dopaminergic neurons in substantia nigra pars compacta in a 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. In this work, the mechanisms of regulation of MEF2 function by several well-known neurotoxins and their implications in various neurodegenerative diseases are reviewed. PMID:21741404

  12. Engineering phenolics metabolism in the grasses using transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Grotewold, Erich [The Ohio State University

    2013-07-26

    The economical competitiveness of agriculture-derived biofuels can be significantly enhanced by increasing biomass/acre yields and by furnishing the desired carbon balance for facilitating liquid fuel production (e.g., ethanol) or for high-energy solid waste availability to be used as biopower (e.g., for electricity production). Biomass production and carbon balance are tightly linked to the biosynthesis of phenolic compounds, which are found in crops and in agricultural residues either as lignins, as part of the cell wall, or as soluble phenolics which play a variety of functions in the biology of plants. The grasses, in particular maize, provide the single major source of agricultural biomass, offering significant opportunities for increasing renewable fuel production. Our laboratory has pioneered the use of transcription factors for manipulating plant metabolic pathways, an approach that will be applied here towards altering the composition of phenolic compounds in maize. Previously, we identified a small group of ten maize R2R3-MYB transcription factors with all the characteristics of regulators of different aspects of phenolic biosynthesis. Here, we propose to investigate the participation of these R2R3-MYB factors in the regulation of soluble and insoluble maize phenolics, using a combination of over-expression and down-regulation of these transcription factors in transgenic maize cultured cells and in maize plants. Maize cells and plants altered in the activity of these regulatory proteins will be analyzed for phenolic composition by targeted metabolic profiling. Specifically, we will I) Investigate the effect of gain- and loss-of-function of a select group of R2R3-MYB transcription factors on the phenolic composition of maize plants and II) Identify the biosynthetic genes regulated by each of the selected R2R3-MYB factors. While a likely outcome of these studies are transgenic maize plants with altered phenolic composition, this research will significantly

  13. A transcriptional cofactor YAP regulates IFNT expression via transcription factor TEAD in bovine conceptuses.

    Science.gov (United States)

    Kusama, K; Bai, R; Sakurai, T; Bai, H; Ideta, A; Aoyagi, Y; Imakawa, K

    2016-10-01

    Interferon tau (IFNT) is the pregnancy recognition protein in all ruminants, and its expression is restricted to trophoblast cells. Interferon tau production increases as the conceptus elongates; however, its expression is downregulated soon after the initiation of conceptus attachment to the uterine epithelium. Our previous study identified that among 8 bovine IFNT genes, only 2 forms of IFNTs, IFNT2 and IFN-tau-c1, were expressed by the conceptuses during the periattachment period. To characterize whether Hippo signaling including a transcription cofactor yes-associated protein (YAP) was involved in the IFNT regulation, we examined the expression and effects of YAP and/or TEAD in human choriocarcinoma JEG3 and bovine trophoblast CT-1 cells, and in bovine conceptuses obtained from day 17, 20 or 22 pregnant animals (pregnant day 19.5 = day of conceptus attachment to the endometrium). YAP was expressed in bovine conceptuses and transfection of YAP or TEAD4, a transcription factor partner of YAP, expression plasmid increased the luciferase activity of IFNT2 and IFN-tau-c1 reporter plasmids in JEG3 cells. In the presence of YAP expression plasmid, TEAD2 or TEAD4 expression plasmid further upregulated transcriptional activity of IFNT2 or IFN-tau-c1 constructs, which were substantially reduced in the absence of the TEAD-binding site on IFNT2 or IFN-tau-c1 promoter region in JEG3 cells. In CT-1 cells, treatment with TEAD2, TEAD4, or YAP small-interfering RNA downregulated endogenous IFNT expression. It should be noted that TEAD2 and TEAD4 were predominantly localized in the nuclei of trophectoderm of Day 17 conceptuses, but nuclear localization appeared to be lower in those cells of conceptuses on days 20 and 22 of pregnancy. Moreover, the binding of TEAD4 to the TEAD-binding site of the IFN-tau-c1 promoter region in day 17 conceptuses was less in day 20 and 22 conceptuses. Furthermore, the level of YAP phosphorylation increased in day 20 and 22 conceptuses. These

  14. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim, E-mail: ykpak@khu.ac.kr

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  15. RATA: A method for high-throughput identification of RNA bound transcription factors.

    Science.gov (United States)

    Schmidt, Karyn; Buquicchio, Frank; Carroll, Johanna S; Distel, Robert J; Novina, Carl D

    2017-01-01

    Long non-coding RNAs (lncRNAs) regulate critical cellular processes and their dysregulation contributes to multiple diseases. Although only a few lncRNAs have defined mechanisms, many of these characterized lncRNAs interact with transcription factors to regulate gene expression, suggesting a common mechanism of action. Identifying RNA-bound transcription factors is especially challenging due to inefficient RNA immunoprecipitation and low abundance of many transcription factors. Here we describe a highly sensitive, user-friendly, and inexpensive technique called RATA (RNA-associated transcription factor array), which utilizes a MS2-aptamer pulldown strategy coupled with transcription factor activation arrays for identification of transcription factors associated with a nuclear RNA of interest. RATA requires only ~5 million cells and standard molecular biology reagents for multiplexed identification of up to 96 transcription factors in 2-3 d. Thus, RATA offers significant advantages over other technologies for analysis of RNA-transcription factor interactions.

  16. Investigation of molecular size of transcription factor TFIIE in solution.

    Science.gov (United States)

    Itoh, Yoshiyuki; Unzai, Satoru; Sato, Mamoru; Nagadoi, Aritaka; Okuda, Masahiko; Nishimura, Yoshifumi; Akashi, Satoko

    2005-11-15

    Human general transcription factor IIE (TFIIE), a component of a transcription preinitiation complex associated with RNA polymerase II, was characterized by size-exclusion chromatography, mass spectrometry, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Recombinant human TFIIE was purified to homogeneity and shown to contain equimolar amounts of TFIIEalpha (50 kDa) and TFIIEbeta (35 kDa) by SDS-PAGE. In the analysis of size-exclusion chromatography of the purified sample, as already reported, TFIIE was shown to be a 170-kDa alpha(2)beta(2) heterotetramer. However, by using electrospray ionization mass spectrometry the purified sample gave the molecular mass of 84,152 +/- 5, indicating that TFIIE is an alphabeta heterodimer but not a heterotetramer. Analytical ultracentrifugation experiment of TFIIE provided that only a single component with the molecular mass of ca. 80,000 existed in solution, also suggesting an alphabeta heterodimer. In addition, its extraordinarily rod-like molecular shape was confirmed by SAXS. It is likely that the rod-like molecular shape of TFIIE has misled larger molecular size in size-exclusion chromatography, which was calibrated by globular proteins. It is demonstrated that TFIIE exists as a heterodimer under our present conditions in solution, although two molecules of heterodimer might be required for the formation of the preinitiation complex with RNA polymerase II for starting the transcription process. (c) 2005 Wiley-Liss, Inc.

  17. Factors influencing elk recruitment across ecotypes in the Western United States

    Science.gov (United States)

    Lukacs, Paul M.; Mitchell, Michael S.; Hebblewhite, Mark; Johnson, Bruce K.; Johnson, Heather; Kauffman, Matthew J.; Proffitt, Kelly M.; Zager, Peter; Brodie, Jedediah; Hersey, Kent R.; Holland, A. Andrew; Hurley, Mark; McCorquodale, Scott; Middleton, Arthur; Nordhagen, Matthew; Nowak, J. Joshua; Walsh, Daniel P.; White, P.J.

    2018-01-01

    Ungulates are key components in ecosystems and economically important for sport and subsistence harvest. Yet the relative importance of the effects of weather conditions, forage productivity, and carnivores on ungulates are not well understood. We examined changes in elk (Cervus canadensis) recruitment (indexed as age ratios) across 7 states and 3 ecotypes in the northwestern United States during 1989–2010, while considering the effects of predator richness, forage productivity, and precipitation. We found a broad‐scale, long‐term decrease in elk recruitment of 0.48 juveniles/100 adult females/year. Weather conditions (indexed as summer and winter precipitation) showed small, but measurable, influences on recruitment. Forage productivity on summer and winter ranges (indexed by normalized difference vegetation index [NDVI] metrics) had the strongest effect on elk recruitment relative to other factors. Relationships between forage productivity and recruitment varied seasonally and regionally. The productivity of winter habitat was more important in southern parts of the study area, whereas annual variation in productivity of summer habitat had more influence on recruitment in northern areas. Elk recruitment varied by up to 15 juveniles/100 adult females across the range of variation in forage productivity. Areas with more species of large carnivores had relatively low elk recruitment, presumably because of increased predation. Wolves (Canis lupus) were associated with a decrease of 5 juveniles/100 adult females, whereas grizzly bears (Ursus arctos) were associated with an additional decrease of 7 juveniles/100 adult females. Carnivore species can have a critical influence on ungulate recruitment because their influence rivals large ranges of variation in environmental conditions. A more pressing concern, however, stems from persistent broad‐scale decreases in recruitment across the distribution of elk in the northwestern United States, irrespective of

  18. Transcription Factors Responding to Pb Stress in Maize

    Directory of Open Access Journals (Sweden)

    Yanling Zhang

    2017-09-01

    Full Text Available Pb can damage the physiological function of human organs by entering the human body via food-chain enrichment. Revealing the mechanisms of maize tolerance to Pb is critical for preventing this. In this study, a Pb-tolerant maize inbred line, 178, was used to analyse transcription factors (TFs expressed under Pb stress based on RNA sequencing data. A total of 464 genes expressed in control check (CK or Pb treatment samples were annotated as TFs. Among them, 262 differentially expressed transcription factors (DETs were identified that responded to Pb treatment. Furthermore, the DETs were classified into 4 classes according to their expression patterns, and 17, 12 and 2 DETs were significantly annotated to plant hormone signal transduction, basal transcription factors and base excision repair, respectively. Seventeen DETs were found to participate in the plant hormone signal transduction pathway, where basic leucine zippers (bZIPs were the most significantly enriched TFs, with 12 members involved. We further obtained 5 Arabidopsis transfer DNA (T-DNA mutants for 6 of the maize bZIPs, among which the mutants atbzip20 and atbzip47, representing ZmbZIP54 and ZmbZIP107, showed obviously inhibited growth of roots and above-ground parts, compared with wild type. Five highly Pb-tolerant and 5 highly Pb-sensitive in maize lines were subjected to DNA polymorphism and expression level analysis of ZmbZIP54 and ZmbZIP107. The results suggested that differences in bZIPs expression partially accounted for the differences in Pb-tolerance among the maize lines. Our results contribute to the understanding of the molecular regulation mechanisms of TFs in maize under Pb stress.

  19. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato

    KAUST Repository

    Thirumalaikumar, Venkatesh P.

    2017-06-22

    Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species, and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels, and a decrease of the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2, and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato. This article is protected by copyright. All rights reserved.

  20. Cellular Inhibitor of Apoptosis Protein-1 (cIAP1) Can Regulate E2F1 Transcription Factor-mediated Control of Cyclin Transcription*

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-01-01

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity. PMID:21653699

  1. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.

  2. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer.

    Science.gov (United States)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong; Choi, Kyung-Hee

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A role for the transcription factor HEY1 in glioblastoma

    DEFF Research Database (Denmark)

    Hulleman, Esther; Quarto, Micaela; Vernell, Richard

    2009-01-01

    , such as the Notch and Ras signalling pathways, seem to play an important role in the formation of GBM. In the present study, we show by in situ hybridization on primary tumour material that the transcription factor HEY1, a target of the Notch signalling pathway, is specifically upregulated in glioma......, we show that ectopic expression of HEY1 induces cell proliferation in neural stem cells, while depletion of HEY1 by RNA interference reduces proliferation of glioblastoma cells in tissue culture. Together, these data imply a role for HEY1 in the progression of GBM, and therefore we propose that HEY1...

  4. Experimental strategies for studying transcription factor-DNA binding specificities.

    Science.gov (United States)

    Geertz, Marcel; Maerkl, Sebastian J

    2010-12-01

    Specific binding of transcription factors (TFs) determines in a large part the connectivity of gene regulatory networks as well as the quantitative level of gene expression. A multiplicity of both experimental and computational methods is currently used to discover and characterize the underlying TF-DNA interactions. Experimental methods can be further subdivided into in vitro- and in vivo-based approaches, each accenting different aspects of TF-binding events. In this review we summarize the flexibility and performance of a selection of both types of experimental methods. In conclusion, we argue that a serial combination of methods with different throughput and data type constitutes an optimal experimental strategy.

  5. E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    David G. Johnson

    2012-10-01

    Full Text Available Many of the biochemical details of nucleotide excision repair (NER have been established using purified proteins and DNA substrates. In cells however, DNA is tightly packaged around histones and other chromatin-associated proteins, which can be an obstacle to efficient repair. Several cooperating mechanisms enhance the efficiency of NER by altering chromatin structure. Interestingly, many of the players involved in modifying chromatin at sites of DNA damage were originally identified as regulators of transcription. These include ATP-dependent chromatin remodelers, histone modifying enzymes and several transcription factors. The p53 and E2F1 transcription factors are well known for their abilities to regulate gene expression in response to DNA damage. This review will highlight the underappreciated, transcription-independent functions of p53 and E2F1 in modifying chromatin structure in response to DNA damage to promote global NER.

  6. Classifying transcription factor targets and discovering relevant biological features

    Directory of Open Access Journals (Sweden)

    DeLisi Charles

    2008-05-01

    Full Text Available Abstract Background An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets of 104 transcription factors in yeast. We now include a new sequence conservation measure, expand our predictions to include 59 new TFs, introduce a web-server, and implement an improved ranking method to reveal the biological features contributing to regulation. The classifiers combine 8 genomic datasets covering a broad range of measurements including sequence conservation, sequence overrepresentation, gene expression, and DNA structural properties. Principal Findings (1 Application of the method yields an amplification of information about yeast regulators. The ratio of total targets to previously known targets is greater than 2 for 11 TFs, with several having larger gains: Ash1(4, Ino2(2.6, Yaf1(2.4, and Yap6(2.4. (2 Many predicted targets for TFs match well with the known biology of their regulators. As a case study we discuss the regulator Swi6, presenting evidence that it may be important in the DNA damage response, and that the previously uncharacterized gene YMR279C plays a role in DNA damage response and perhaps in cell-cycle progression. (3 A procedure based on recursive-feature-elimination is able to uncover from the large initial data sets those features that best distinguish targets for any TF, providing clues relevant to its biology. An analysis of Swi6 suggests a possible role in lipid metabolism, and more specifically in metabolism of ceramide, a bioactive lipid currently being investigated for anti-cancer properties. (4 An analysis of global network properties highlights the transcriptional network hubs; the factors which control the most genes and the genes which are bound by the largest set of regulators. Cell-cycle and

  7. RNA binding specificity of Ebola virus transcription factor VP30.

    Science.gov (United States)

    Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K

    2016-09-01

    The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.

  8. The next generation of transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Anthony Mathelier

    Full Text Available Finding where transcription factors (TFs bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs is based on basic position weight matrices (PWMs which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA

  9. Crystallization and preliminary structure determination of Escherichia coli Mfd, the transcription-repair coupling factor

    International Nuclear Information System (INIS)

    Deaconescu, Alexandra M.; Darst, Seth A.

    2005-01-01

    Crystals of the 130 kDa E. coli Mfd protein have been grown and analysed by X-ray diffraction techniques to 3.2 Å resolution. Phases were obtained by single-wavelength anomalous dispersion from selenomethionyl-substituted crystals. Transcription-repair coupling factors (TRCFs) are SF2 ATPases that couple transcription to DNA-damage repair by recognizing and removing RNA polymerase-elongation complexes stalled at DNA lesions and recruiting the nucleotide excision-repair machinery to the damaged sites. As a first step towards understanding the TRCF mechanism, the 130 kDa Escherichia coli TRCF (the product of the mfd gene) has been overexpressed, purified and crystallized using an unusual precipitant, pentaerythritol ethoxylate. Initial phases were obtained using single-wavelength anomalous dispersion with a highly redundant 4 Å resolution data set collected from selenomethionyl-substituted crystals and dramatically improved by density modification and phase extension to 3.2 Å resolution. Model building and refinement, which are in progress, will provide insight into transcription-coupled DNA-repair pathways, as this represents the first TRCF to be crystallized to date

  10. Examining Recruitment and Retention Factors for Minority STEM Majors through a Stereotype Threat Lens

    Science.gov (United States)

    Meador, Audrey

    2018-01-01

    Prior research regarding minorities in the science, technology, engineering, and mathematics (STEM) fields indicated that the factors of peer support and participation in STEM-related activities contributed positively to minority students' recruitment and retention in these fields. Utilizing stereotype threat as a conceptual framework, this…

  11. FOXO Transcription Factors: Their Clinical Significance and Regulation

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Members of the class O of forkhead box transcription factors (FOXO have important roles in metabolism, cellular proliferation, stress resistance, and apoptosis. The activity of FOXOs is tightly regulated by posttranslational modification, including phosphorylation, acetylation, and ubiquitylation. Activation of cell survival pathways such as phosphoinositide-3-kinase/AKT/IKK or RAS/mitogen-activated protein kinase phosphorylates FOXOs at different sites which regulate FOXOs nuclear localization or degradation. FOXO transcription factors are upregulated in a number of cell types including hepatocytes, fibroblasts, osteoblasts, keratinocytes, endothelial cells, pericytes, and cardiac myocytes. They are involved in a number of pathologic and physiologic processes that include proliferation, apoptosis, autophagy, metabolism, inflammation, cytokine expression, immunity, differentiation, and resistance to oxidative stress. These processes impact a number of clinical conditions such as carcinogenesis, diabetes, diabetic complications, cardiovascular disease, host response, and wound healing. In this paper, we focus on the potential role of FOXOs in different disease models and the regulation of FOXOs by various stimuli.

  12. Expression of the transcription factor PITX2 in ameloblastic carcinoma.

    Science.gov (United States)

    García-Muñoz, Alejandro; Rodríguez, Mario A; Licéaga-Escalera, Carlos; Licéaga-Reyes, Rodrigo; Carreón-Burciaga, Ramón Gil; González-González, Rogelio; Bologna-Molina, Ronell

    2015-06-01

    Ameloblastic carcinoma is a rare odontogenic tumour that combines the histological features of ameloblastoma with cytological atypia. Until 2005, the incidence of ameloblastic carcinoma was unknown, and since then, fewer than 60 cases have been reported. These tumours may originate from pre-existing tumours or cysts, or they arise de novo from the activation or transformation of embryological cells. PITX2 is a transcription factor that is a product and regulator of the WNT cell signalling pathway, which has been involved in development of several tumours. To analyse whether PITX2 could be involved in the biological behaviour of ameloblastic carcinoma, we analysed the expression of this transcription factor in a sample of this tumour and nine benign ameloblastomas to compare. The results of Western blotting and RT-PCR analyses were positive, and considering the hundreds of genes that PITX2 regulates, we believe that its expression could be intimately linked to the behaviour of ameloblastic carcinoma and possibly other odontogenic lesions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Transcription elongation factor GreA has functional chaperone activity.

    Science.gov (United States)

    Li, Kun; Jiang, Tianyi; Yu, Bo; Wang, Limin; Gao, Chao; Ma, Cuiqing; Xu, Ping; Ma, Yanhe

    2012-01-01

    Bacterial GreA is an indispensable factor in the RNA polymerase elongation complex. It plays multiple roles in transcriptional elongation, and may be implicated in resistance to various stresses. In this study, we show that Escherichia coli GreA inhibits aggregation of several substrate proteins under heat shock condition. GreA can also effectively promote the refolding of denatured proteins. These facts reveal that GreA has chaperone activity. Distinct from many molecular chaperones, GreA does not form stable complexes with unfolded substrates. GreA overexpression confers the host cells with enhanced resistance to heat shock and oxidative stress. Moreover, GreA expression in the greA/greB double mutant could suppress the temperature-sensitive phenotype, and dramatically alleviate the in vivo protein aggregation. The results suggest that bacterial GreA may act as chaperone in vivo. These results suggest that GreA, in addition to its function as a transcription factor, is involved in protection of cellular proteins against aggregation.

  14. DAF-16/FOXO Transcription Factor in Aging and Longevity.

    Science.gov (United States)

    Sun, Xiaojuan; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aging is associated with age-related diseases and an increase susceptibility of cancer. Dissecting the molecular mechanisms that underlie aging and longevity would contribute to implications for preventing and treating the age-dependent diseases or cancers. Multiple signaling pathways such as the insulin/IGF-1 signaling pathway, TOR signaling, AMPK pathway, JNK pathway and germline signaling have been found to be involved in aging and longevity. And DAF-16/FOXO, as a key transcription factor, could integrate different signals from these pathways to modulate aging, and longevity via shuttling from cytoplasm to nucleus. Hence, understanding how DAF-16/FOXO functions will be pivotal to illustrate the processes of aging and longevity. Here, we summarized how DAF-16/FOXO receives signals from these pathways to affect aging and longevity. We also briefly discussed the transcriptional regulation and posttranslational modifications of DAF-16/FOXO, its co-factors as well as its potential downstream targets participating in lifespan according to the published data in C. elegans and in mammals, and in most cases, we may focus on the studies in C. elegans which has been considered to be a very good animal model for longevity research.

  15. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  16. Imputation for transcription factor binding predictions based on deep learning.

    Directory of Open Access Journals (Sweden)

    Qian Qin

    2017-02-01

    Full Text Available Understanding the cell-specific binding patterns of transcription factors (TFs is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard. Despite tremendous efforts from the scientific community to conduct TF ChIP-seq experiments, the available data represent only a limited percentage of ChIP-seq experiments, considering all possible combinations of TFs and cell lines. In this study, we demonstrate a method for accurately predicting cell-specific TF binding for TF-cell line combinations based on only a small fraction (4% of the combinations using available ChIP-seq data. The proposed model, termed TFImpute, is based on a deep neural network with a multi-task learning setting to borrow information across transcription factors and cell lines. Compared with existing methods, TFImpute achieves comparable accuracy on TF-cell line combinations with ChIP-seq data; moreover, TFImpute achieves better accuracy on TF-cell line combinations without ChIP-seq data. This approach can predict cell line specific enhancer activities in K562 and HepG2 cell lines, as measured by massively parallel reporter assays, and predicts the impact of SNPs on TF binding.

  17. The EH1 motif in metazoan transcription factors

    Directory of Open Access Journals (Sweden)

    Copley Richard R

    2005-11-01

    Full Text Available Abstract Background The Engrailed Homology 1 (EH1 motif is a small region, believed to have evolved convergently in homeobox and forkhead containing proteins, that interacts with the Drosophila protein groucho (C. elegans unc-37, Human Transducin-like Enhancers of Split. The small size of the motif makes its reliable identification by computational means difficult. I have systematically searched the predicted proteomes of Drosophila, C. elegans and human for further instances of the motif. Results Using motif identification methods and database searching techniques, I delimit which homeobox and forkhead domain containing proteins also have likely EH1 motifs. I show that despite low database search scores, there is a significant association of the motif with transcription factor function. I further show that likely EH1 motifs are found in combination with T-Box, Zinc Finger and Doublesex domains as well as discussing other plausible candidate associations. I identify strong candidate EH1 motifs in basal metazoan phyla. Conclusion Candidate EH1 motifs exist in combination with a variety of transcription factor domains, suggesting that these proteins have repressor functions. The distribution of the EH1 motif is suggestive of convergent evolution, although in many cases, the motif has been conserved throughout bilaterian orthologs. Groucho mediated repression was established prior to the evolution of bilateria.

  18. Multiple phosphorylation events control chicken ovalbumin upstream promoter transcription factor I orphan nuclear receptor activity.

    Science.gov (United States)

    Gay, Frédérique; Baráth, Peter; Desbois-Le Péron, Christine; Métivier, Raphaël; Le Guével, Rémy; Birse, Darcy; Salbert, Gilles

    2002-06-01

    Chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) is an orphan member of the nuclear hormone receptor superfamily that comprises key regulators of many biological functions, such as embryonic development, metabolism, homeostasis, and reproduction. Although COUP-TFI can both actively silence gene transcription and antagonize the functions of various other nuclear receptors, the COUP-TFI orphan receptor also acts as a transcriptional activator in certain contexts. Moreover, COUP-TFI has recently been shown to serve as an accessory factor for some ligand-bound nuclear receptors, suggesting that it may modulate, both negatively and positively, a wide range of hormonal responses. In the absence of any identified cognate ligand, the mechanisms involved in the regulation of COUP-TFI activity remain unclear. The elucidation of several putative phosphorylation sites for MAPKs, PKC, and casein kinase II within the sequence of this orphan receptor led us to investigate phosphorylation events regulating the various COUP-TFI functions. After showing that COUP-TFI is phosphorylated in vivo, we provide evidence that in vivo inhibition of either MAPK or PKC signaling pathway leads to a specific and pronounced decrease in COUP-TFI-dependent transcriptional activation of the vitronectin gene promoter. Focusing on the molecular mechanisms underlying the MAPK- and PKC-mediated regulation of COUP-TFI activity, we show that COUP-TFI can be directly targeted by PKC and MAPK. These phosphorylation events differentially modulate COUP-TFI functions: PKC-mediated phosphorylation enhances COUP-TFI affinity for DNA and MAPK-mediated phosphorylation positively regulates the transactivation function of COUP-TFI, possibly through enhancing specific coactivator recruitment. These data provide evidence that COUP-TFI is likely to integrate distinct signaling pathways and raise the possibility that multiple extracellular signals influence biological processes controlled by COUP-TFI.

  19. The transcription factor Etv5 controls TH17 cell development and allergic airway inflammation.

    Science.gov (United States)

    Pham, Duy; Sehra, Sarita; Sun, Xin; Kaplan, Mark H

    2014-07-01

    The differentiation of TH17 cells, which promote pulmonary inflammation, requires the cooperation of a network of transcription factors. We sought to define the role of Etv5, an Ets-family transcription factor, in TH17 cell development and function. TH17 development was examined in primary mouse T cells wherein Etv5 expression was altered by retroviral transduction, small interfering RNA targeting a specific gene, and mice with a conditional deletion of Etv5 in T cells. The direct function of Etv5 on the Il17 locus was tested with chromatin immunoprecipitation and reporter assays. The house dust mite-induced allergic inflammation model was used to test the requirement for Etv5-dependent TH17 functions in vivo. We identify Etv5 as a signal transducer and activator of transcription 3-induced positive regulator of TH17 development. Etv5 controls TH17 differentiation by directly promoting Il17a and Il17f expression. Etv5 recruits histone-modifying enzymes to the Il17a-Il17f locus, resulting in increased active histone marks and decreased repressive histone marks. In a model of allergic airway inflammation, mice with Etv5-deficient T cells have reduced airway inflammation and IL-17A/F production in the lung and bronchoalveolar lavage fluid compared with wild-type mice, without changes in TH2 cytokine production. These data define signal transducer and activator of transcription 3-dependent feed-forward control of TH17 cytokine production and a novel role for Etv5 in promoting T cell-dependent airway inflammation. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair

    Science.gov (United States)

    Guerquin, Marie-Justine; Charvet, Benjamin; Nourissat, Geoffroy; Havis, Emmanuelle; Ronsin, Olivier; Bonnin, Marie-Ange; Ruggiu, Mathilde; Olivera-Martinez, Isabel; Robert, Nicolas; Lu, Yinhui; Kadler, Karl E.; Baumberger, Tristan; Doursounian, Levon; Berenbaum, Francis; Duprez, Delphine

    2013-01-01

    Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1–/– mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates. EGR1 was recruited to the Col1a1 and Col2a1 promoters in postnatal mouse tendons in vivo. Egr1 was required for the normal gene response following tendon injury in a mouse model of Achilles tendon healing. Forced Egr1 expression programmed MSCs toward the tendon lineage and promoted the formation of in vitro–engineered tendons from MSCs. The application of EGR1-producing MSCs increased the formation of tendon-like tissues in a rat model of Achilles tendon injury. We provide evidence that the ability of EGR1 to promote tendon differentiation is partially mediated by TGF-β2. This study demonstrates EGR1 involvement in adult tendon formation, healing, and repair and identifies Egr1 as a putative target in tendon repair strategies. PMID:23863709

  1. The transcription factor myocyte enhancer factor-2 (MEF2) in cardiac hypertrophy and heart failure

    NARCIS (Netherlands)

    Oort, R.J. van

    2007-01-01

    The heart responds to stress signals by hypertrophic growth, which is the first step towards heart failure (HF). The genetic pattern underlying HF remains largely elusive. Although the transcription factor Myocyte Enhancer Factor-2 (MEF2) is known to be a common endpoint for several hypertrophic

  2. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) Represses Transcription of the Tumor Suppressor Rb Gene via Binding Competition with Sp1 and Recruitment of Co-repressors*S⃞

    Science.gov (United States)

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-01-01

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp –308 to –188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp –65 to –56) and GC-box 2 (bp –18 to –9), the latter of which is also bound by FBI-1. We found that FRE3 (bp –244 to –236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. PMID:18801742

  3. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  4. Risk factors of military training-related injuries in recruits of Chinese People's Armed Police Forces.

    Science.gov (United States)

    Wang, Xin; Wang, Pei-shan; Zhou, Wei

    2003-02-01

    To assess the incidence, types and risk factors of military training-related injuries in recruits of Chinese People's Armed Police Forces (CPAPF). A cohort study was made on the risk factors of injuries in 805 male recruits during the military training from December 25, 1999 to December 25, 2000. A total of 111 recruits (14%) experienced one or more injuries, and the cumulative incidence was 16.1 injuries per 100 soldiers in a year. And 77.7% of the injuries belonged to overuse injuries of the skeletal and muscular systems, the most common type of which was stress fractures. Most injuries occurred in the 3rd month of training. Univariate analysis and logistic regression analysis of possible risk factors for overuse injuries were carried out, and a number of risk factors were identified: history of agricultural labor, history of lower limb injury, flatfoot and less running exercise before entry into the army. But a suitable body mass index (BMI) was a protective factor. Examination of age, body height, smoking, body flexibility and frequency of 2-mile running revealed no significant association with the injuries. History of agricultural labor, history of lower limb injury, flatfoot, less running exercise before entry into the army and lower BMI were risk factors of the overuse injuries. In order to decrease the incidence of overuse injuries, the young people with good physical ability and shapely body type should be selected during conscription. During the training, nutrition should be improved so as to decrease the incidence of injuries.

  5. Small-Molecule Inhibitors of the SOX18 Transcription Factor.

    Science.gov (United States)

    Fontaine, Frank; Overman, Jeroen; Moustaqil, Mehdi; Mamidyala, Sreeman; Salim, Angela; Narasimhan, Kamesh; Prokoph, Nina; Robertson, Avril A B; Lua, Linda; Alexandrov, Kirill; Koopman, Peter; Capon, Robert J; Sierecki, Emma; Gambin, Yann; Jauch, Ralf; Cooper, Matthew A; Zuegg, Johannes; Francois, Mathias

    2017-03-16

    Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Multiple steps in the regulation of transcription-factor level and activity

    NARCIS (Netherlands)

    Calkhoven, CF; Ab, G

    1996-01-01

    This review focuses on the regulation of transcription factors, many of which are DNA-binding proteins that recognize cis-regulatory elements of target genes and are the most direct regulators of gene transcription. Transcription factors serve as integration centres of the different

  7. The Yersinia pseudotuberculosis outer membrane protein Ail recruits the human complement regulatory protein factor H.

    Science.gov (United States)

    Ho, Derek K; Riva, Rauna; Skurnik, Mikael; Meri, Seppo

    2012-10-01

    Previous investigations characterizing the mechanism(s) of complement resistance in Yersinia pseudotuberculosis showed that the outer membrane protein Ail can functionally recruit the regulator of the classical and lectin pathways of complement, C4b-binding protein. In this study, we extend these observations and show that Ail can also recruit the regulator of the alternative pathway (AP), factor H (fH). Binding to fH was dependent on Ail expression and observed in the context of full-length LPS. Inactivation of ail resulted in loss of fH binding. Ail expression conferred resistance to AP-mediated killing. Bound fH was functional as a cofactor for factor I-mediated cleavage and inactivation of C3b. Ail alone is sufficient to mediate fH binding and resistance to AP-mediated killing, because Ail expression in a laboratory Escherichia coli strain conferred both of these phenotypes. Binding was specific and inhibited by increasing heparin and NaCl concentrations. Using a panel of fH recombinant fragments, we observed that both short consensus repeats 5-7 and 19-20 regions are responsible for mediating the interaction with Ail. Collectively, these results suggest that fH recruitment is an additional mechanism of complement resistance of Ail. Recruitment of both fH and C4BP by Ail may confer Y. pseudotuberculosis with the ability to resist all pathways of complement activation.

  8. Scoring functions for transcription factor binding site prediction

    Directory of Open Access Journals (Sweden)

    Friberg Markus

    2005-04-01

    Full Text Available Abstract Background Transcription factor binding site (TFBS prediction is a difficult problem, which requires a good scoring function to discriminate between real binding sites and background noise. Many scoring functions have been proposed in the literature, but it is difficult to assess their relative performance, because they are implemented in different software tools using different search methods and different TFBS representations. Results Here we compare how several scoring functions perform on both real and semi-simulated data sets in a common test environment. We have also developed two new scoring functions and included them in the comparison. The data sets are from the yeast (S. cerevisiae genome. Our new scoring function LLBG (least likely under the background model performs best in this study. It achieves the best average rank for the correct motifs. Scoring functions based on positional bias performed quite poorly in this study. Conclusion LLBG may provide an interesting alternative to current scoring functions for TFBS prediction.

  9. Tunable signal processing through modular control of transcription factor translocation.

    Science.gov (United States)

    Hao, Nan; Budnik, Bogdan A; Gunawardena, Jeremy; O'Shea, Erin K

    2013-01-25

    Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress-responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input-dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal-processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal-processing functions are integrated into a single molecule and provide a guide for the design of TFs with "programmable" signal-processing functions.

  10. Ets transcription factor GABP controls T cell homeostasis and immunity.

    Science.gov (United States)

    Luo, Chong T; Osmanbeyoglu, Hatice U; Do, Mytrang H; Bivona, Michael R; Toure, Ahmed; Kang, Davina; Xie, Yuchen; Leslie, Christina S; Li, Ming O

    2017-10-20

    Peripheral T cells are maintained in the absence of vigorous stimuli, and respond to antigenic stimulation by initiating cell cycle progression and functional differentiation. Here we show that depletion of the Ets family transcription factor GA-binding protein (GABP) in T cells impairs T-cell homeostasis. In addition, GABP is critically required for antigen-stimulated T-cell responses in vitro and in vivo. Transcriptome and genome-wide GABP-binding site analyses identify GABP direct targets encoding proteins involved in cellular redox balance and DNA replication, including the Mcm replicative helicases. These findings show that GABP has a nonredundant role in the control of T-cell homeostasis and immunity.

  11. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  12. Regulation of archicortical arealization by the transcription factor Zbtb20

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga; Tonchev, Anton B; Stoykova, Anastassia

    2012-01-01

    The molecular mechanisms of regionalization of the medial pallium (MP), the anlage of the hippocampus, and transitional (cingulate and retrosplenial) cortices are largely unknown. Previous analyses have outlined an important role of the transcription factor (TF) Zbtb20 for hippocampal CA1 field...... as an expression in postmitotic cells at the transitional cortex/neocortex border. Our detailed pattern analysis revealed that in Zbtb20 loss-of-function the molecular borders between neocortical, transitional, and hippocampal fields are progressively shifted ventrally, leading to an ectopic positioning of all...... dorsal fields into the neighboring ventrally located areas. Thus, in addition to its known importance for the specification of the hippocampal CA1 sector, the graded expression of TF Zbtb20 in ventricular zone of MP appears to translate early positional information for establishment of all developing MP...

  13. Isolation and mass spectrometry of transcription factor complexes.

    Science.gov (United States)

    Sebastiaan Winkler, G; Lacomis, Lynne; Philip, John; Erdjument-Bromage, Hediye; Svejstrup, Jesper Q; Tempst, Paul

    2002-03-01

    Protocols are described that enable the isolation of novel proteins associated with a known protein and the subsequent identification of these proteins by mass spectrometry. We review the basics of nanosample handling and of two complementary approaches to mass analysis, and provide protocols for the entire process. The protein isolation procedure is rapid and based on two high-affinity chromatography steps. The method does not require previous knowledge of complex composition or activity and permits subsequent biochemical characterization of the isolated factor. As an example, we provide the procedures used to isolate and analyze yeast Elongator, a histone acetyltransferase complex important for transcript elongation, which led to the identification of three novel subunits.

  14. Osteogenic Potential of the Transcription Factor c-MYB.

    Science.gov (United States)

    Oralova, V; Matalova, E; Killinger, M; Knopfova, L; Smarda, J; Buchtova, M

    2017-03-01

    The transcription factor c-MYB is a well-known marker of undifferentiated cells such as haematopoietic cell precursors, but recently it has also been observed in differentiated cells that produce hard tissues. Our previous findings showed the presence of c-MYB in intramembranous bones and its involvement in the chondrogenic steps of endochondral ossification, where the up-regulation of early chondrogenic markers after c-myb overexpression was observed. Since we previously detected c-MYB in osteoblasts, we aimed to analyse the localisation of c-MYB during later stages of endochondral bone formation and address its function during bone matrix production. c-MYB-positive cells were found in the chondro-osseous junction zone in osteoblasts of trabecular bone as well as deeper in the zone of ossification in cells of spongy bone. To experimentally evaluate the osteogenic potential of c-MYB during endochondral bone formation, micromasses derived from embryonic mouse limb buds were established. Nuclear c-MYB protein expression was observed in long-term micromasses, especially in the areas around nodules. c-myb overexpression induced the expression of osteogenic-related genes such as Bmp2, Comp, Csf2 and Itgb1. Moreover, alizarin red staining and osteocalcin labelling promoted mineralised matrix production in c-myb-overexpressing cultures, whereas downregulation of c-myb by siRNA reduced mineralised matrix production. In conclusion, c-Myb plays a role in the osteogenesis of long bones by inducing osteogenic genes and causing the enhancement of mineral matrix production. This action of the transcription factor c-Myb might be of interest in the future for the establishment of novel approaches to tissue regeneration.

  15. GATA transcription factors in testicular adrenal rest tumours.

    Science.gov (United States)

    Engels, Manon; Span, Paul N; Mitchell, Rod T; Heuvel, Joop J T M; Marijnissen-van Zanten, Monica A; van Herwaarden, Antonius E; Hulsbergen-van de Kaa, Christina A; Oosterwijk, Egbert; Stikkelbroeck, Nike M; Smith, Lee B; Sweep, Fred C G J; Claahsen-van der Grinten, Hedi L

    2017-11-01

    Testicular adrenal rest tumours (TARTs) are benign adrenal-like testicular tumours that frequently occur in male patients with congenital adrenal hyperplasia. Recently, GATA transcription factors have been linked to the development of TARTs in mice. The aim of our study was to determine GATA expression in human TARTs and other steroidogenic tissues. We determined GATA expression in TARTs ( n  = 16), Leydig cell tumours (LCTs; n  = 7), adrenal (foetal ( n  = 6) + adult ( n  = 10)) and testis (foetal ( n  = 13) + adult ( n  = 8)). We found testis-like GATA4 , and adrenal-like GATA3 and GATA6 gene expressions by qPCR in human TARTs, indicating mixed testicular and adrenal characteristics of TARTs. Currently, no marker is available to discriminate TARTs from LCTs, leading to misdiagnosis and incorrect treatment. GATA3 and GATA6 mRNAs exhibited excellent discriminative power (area under the curve of 0.908 and 0.816, respectively), while immunohistochemistry did not. GATA genes contain several CREB-binding sites and incubation with 0.1 mM dibutyryl cAMP for 4 h stimulated GATA3 , GATA4 and GATA6 expressions in a human foetal testis cell line (hs181.tes). Incubation of adrenocortical cells (H295RA) with ACTH, however, did not induce GATA expression in vitro Although ACTH did not dysregulate GATA expression in the only human ACTH-sensitive in vitro model available, our results do suggest that aberrant expression of GATA transcription factors in human TARTs might be involved in TART formation. © 2017 The authors.

  16. Inhibition of enterovirus 71 entry by transcription factor XBP1

    International Nuclear Information System (INIS)

    Jheng, Jia-Rong; Lin, Chiou-Yan; Horng, Jim-Tong; Lau, Kean Seng

    2012-01-01

    Highlights: ► IRE1 was activated but no XBP1 splicing was detected during enterovirus 71 infection. ► XBP1 was subject to translational shutoff by enterovirus 71-induced eIF4G cleavage. ► The uptake of UV-irradiated virus was decreased in XBP1-overexpressing cells. -- Abstract: Inositol-requiring enzyme 1 (IRE1) plays an important role in the endoplasmic reticulum (ER), or unfolded protein, stress response by activating its downstream transcription factor X-box-binding protein 1 (XBP1). We demonstrated previously that enterovirus 71 (EV71) upregulated XBP1 mRNA levels but did not activate spliced XBP1 (XBP1s) mRNA or its downstream target genes, EDEM and chaperones. In this study, we investigated further this regulatory mechanism and found that IRE1 was phosphorylated and activated after EV71 infection, whereas its downstream XBP1s protein level decreased. We also found that XBP1s was not cleaved directly by 2A pro , but that cleavage of eukaryotic translation initiation factor 4G by the EV71 2A pro protein may contribute to the decrease in XBP1s expression. Knockdown of XBP1 increased viral protein expression, and the synthesis of EV71 viral protein and the production of EV71 viral particles were inhibited in XBP1-overexpressing RD cells. When incubated with replication-deficient and UV-irradiated EV71, XBP1-overexpressing RD cells exhibited reduced viral RNA levels, suggesting that the inhibition of XBP1s by viral infection may underlie viral entry, which is required for viral replication. Our findings are the first indication of the ability of XBP1 to inhibit viral entry, possibly via its transcriptional activity in regulating molecules in the endocytic machinery.

  17. Inhibition of enterovirus 71 entry by transcription factor XBP1

    Energy Technology Data Exchange (ETDEWEB)

    Jheng, Jia-Rong; Lin, Chiou-Yan [Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Horng, Jim-Tong, E-mail: jimtong@mail.cgu.edu.tw [Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Lau, Kean Seng [Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer IRE1 was activated but no XBP1 splicing was detected during enterovirus 71 infection. Black-Right-Pointing-Pointer XBP1 was subject to translational shutoff by enterovirus 71-induced eIF4G cleavage. Black-Right-Pointing-Pointer The uptake of UV-irradiated virus was decreased in XBP1-overexpressing cells. -- Abstract: Inositol-requiring enzyme 1 (IRE1) plays an important role in the endoplasmic reticulum (ER), or unfolded protein, stress response by activating its downstream transcription factor X-box-binding protein 1 (XBP1). We demonstrated previously that enterovirus 71 (EV71) upregulated XBP1 mRNA levels but did not activate spliced XBP1 (XBP1s) mRNA or its downstream target genes, EDEM and chaperones. In this study, we investigated further this regulatory mechanism and found that IRE1 was phosphorylated and activated after EV71 infection, whereas its downstream XBP1s protein level decreased. We also found that XBP1s was not cleaved directly by 2A{sup pro}, but that cleavage of eukaryotic translation initiation factor 4G by the EV71 2A{sup pro} protein may contribute to the decrease in XBP1s expression. Knockdown of XBP1 increased viral protein expression, and the synthesis of EV71 viral protein and the production of EV71 viral particles were inhibited in XBP1-overexpressing RD cells. When incubated with replication-deficient and UV-irradiated EV71, XBP1-overexpressing RD cells exhibited reduced viral RNA levels, suggesting that the inhibition of XBP1s by viral infection may underlie viral entry, which is required for viral replication. Our findings are the first indication of the ability of XBP1 to inhibit viral entry, possibly via its transcriptional activity in regulating molecules in the endocytic machinery.

  18. Identifying differential transcription factor binding in ChIP-seq.

    Science.gov (United States)

    Wu, Dai-Ying; Bittencourt, Danielle; Stallcup, Michael R; Siegmund, Kimberly D

    2015-01-01

    ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal. These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement.

  19. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs

    OpenAIRE

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-01-01

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A)...

  20. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Carlos Farkas

    Full Text Available SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.

  1. Regulation of Memory Formation by the Transcription Factor XBP1

    Directory of Open Access Journals (Sweden)

    Gabriela Martínez

    2016-02-01

    Full Text Available Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer’s disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR, mediating adaptation to endoplasmic reticulum (ER stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP, whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF, a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress.

  2. Genome-wide identification of transcription factors and transcription-factor binding sites in oleaginous microalgae Nannochloropsis.

    Science.gov (United States)

    Hu, Jianqiang; Wang, Dongmei; Li, Jing; Jing, Gongchao; Ning, Kang; Xu, Jian

    2014-06-26

    Nannochloropsis spp. are a group of oleaginous microalgae that harbor an expanded array of lipid-synthesis related genes, yet how they are transcriptionally regulated remains unknown. Here a phylogenomic approach was employed to identify and functionally annotate the transcriptional factors (TFs) and TF binding-sites (TFBSs) in N. oceanica IMET1. Among 36 microalgae and higher plants genomes, a two-fold reduction in the number of TF families plus a seven-fold decrease of average family-size in Nannochloropsis, Rhodophyta and Chlorophyta were observed. The degree of similarity in TF-family profiles is indicative of the phylogenetic relationship among the species, suggesting co-evolution of TF-family profiles and species. Furthermore, comparative analysis of six Nannochloropsis genomes revealed 68 "most-conserved" TFBS motifs, with 11 of which predicted to be related to lipid accumulation or photosynthesis. Mapping the IMET1 TFs and TFBS motifs to the reference plant TF-"TFBS motif" relationships in TRANSFAC enabled the prediction of 78 TF-"TFBS motif" interaction pairs, which consisted of 34 TFs (with 11 TFs potentially involved in the TAG biosynthesis pathway), 30 TFBS motifs and 2,368 regulatory connections between TFs and target genes. Our results form the basis of further experiments to validate and engineer the regulatory network of Nannochloropsis spp. for enhanced biofuel production.

  3. Transcription factor 19 interacts with histone 3 lysine 4 trimethylation and controls gluconeogenesis via the nucleosome-remodeling-deacetylase complex.

    Science.gov (United States)

    Sen, Sabyasachi; Sanyal, Sulagna; Srivastava, Dushyant Kumar; Dasgupta, Dipak; Roy, Siddhartha; Das, Chandrima

    2017-12-15

    Transcription factor 19 (TCF19) has been reported as a type 1 diabetes-associated locus involved in maintenance of pancreatic β cells through a fine-tuned regulation of cell proliferation and apoptosis. TCF19 also exhibits genomic association with type 2 diabetes, although the precise molecular mechanism remains unknown. It harbors both a plant homeodomain and a forkhead-associated domain implicated in epigenetic recognition and gene regulation, a phenomenon that has remained unexplored. Here, we show that TCF19 selectively interacts with histone 3 lysine 4 trimethylation through its plant homeodomain finger. Knocking down TCF19 under high-glucose conditions affected many metabolic processes, including gluconeogenesis. We found that TCF19 overexpression represses de novo glucose production in HepG2 cells. The transcriptional repression of key genes, induced by TCF19, coincided with NuRD (nucleosome-remodeling-deacetylase) complex recruitment to the promoters of these genes. TCF19 interacted with CHD4 (chromodomain helicase DNA-binding protein 4), which is a part of the NuRD complex, in a glucose concentration-independent manner. In summary, our results show that TCF19 interacts with an active transcription mark and recruits a co-repressor complex to regulate gluconeogenic gene expression in HepG2 cells. Our study offers critical insights into the molecular mechanisms of transcriptional regulation of gluconeogenesis and into the roles of chromatin readers in metabolic homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Environmental Factors Influencing Antarctic Krill Recruitment along the Western Antarctic Peninsula

    Science.gov (United States)

    Cope, J. S.; Steinberg, D. K.; Thanassekos, S.

    2016-02-01

    Climate warming in the Western Antarctic Peninsula (WAP) is impacting pelagic food web structure. Antarctic krill, Euphausia superba, are a critical food-web link between primary producers and higher trophic levels such as penguins, seals, and whales. Climate-induced changes in krill recruitment are thus an important consideration when evaluating future WAP ecosystem trends. We examined long-term (1993 to 2015) and spatial (north/south) changes in summer krill recruitment. Krill were collected within the epipelagic zone during the Palmer Antarctica Long-Term Ecological Research (PAL LTER) cruises within a 700 x 260 km sampling grid along the WAP. Krill from each tow were enumerated and their lengths were measured. A simple recruitment index based on the proportion of krill smaller than 40 mm (F40) was used in our analyses. There was a significant 5-6-year cyclical trend in F40. In the last 5 years, the southern population has begun to deviate from this cycle. To investigate potential environmental factors leading to this pattern in recruitment success, F40 was regressed with environmental factors and climatological indices for both the whole PAL LTER grid and north/south sub-regions. Over the whole grid, F40 was positively correlated with chlorophyll a and primary production, both with a 1-year lag. Spatially, these trends were strongest for chlorophyll in the north, and primary production in the south. Krill recruitment in the south was also correlated to climatological indices such as the Multivariate El Niño/Southern Oscillation Index (MEI). These correlations could be used to forecast future krill population changes.

  5. Negative elongation factor NELF controls transcription of immediate early genes in a stimulus-specific manner

    International Nuclear Information System (INIS)

    Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner

    2009-01-01

    The transcription rate of immediate early genes (IEGs) is controlled directly by transcription elongation factors at the transcription elongation step. Negative elongation factor (NELF) and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) stall RNA polymerase II (pol II) soon after transcription initiation. Upon induction of IEG transcription, DSIF is converted into an accelerator for pol II elongation. To address whether and how NELF as well as DSIF controls overall IEG transcription, its expression was reduced using stable RNA interference in GH4C1 cells. NELF knock-down reduced thyrotropin-releasing hormone (TRH)-induced transcription of the IEGs c-fos, MKP-1, and junB. In contrast, epidermal growth factor (EGF)-induced transcription of these IEGs was unaltered or even slightly increased by NELF knock-down. Thus, stable knock-down of NELF affects IEG transcription stimulation-specifically. Conversely, DSIF knock-down reduced both TRH- and EGF-induced transcription of the three IEGs. Interestingly, TRH-induced activation of the MAP kinase pathway, a pathway essential for transcription of the three IEGs, was down-regulated by NELF knock-down. Thus, stable knock-down of NELF, by modulating intracellular signaling pathways, caused stimulation-specific loss of IEG transcription. These observations indicate that NELF controls overall IEG transcription via multiple mechanisms both directly and indirectly

  6. Expression profile of urothelial transcription factors in bladder biopsies with interstitial cystitis.

    Science.gov (United States)

    Kaga, Kanya; Inoue, Ken-Ichi; Kaga, Mayuko; Ichikawa, Tomohiko; Yamanishi, Tomonori

    2017-08-01

    To characterize interstitial cystitis pathology based on the expression profile of urothelial tissue-specific master transcription factors. Bladder carcinoma cell lines derived from the urothelial stem cells (epithelial or mesenchymal) were used to identify candidate urothelial master transcription factors. Gene expression was measured with quantitative reverse transcription polymerase chain reaction. From the initial screening of 170 transcription factors (human homologs of Drosophila segmentation genes and known master transcription factors from a database), 28 transcription factors were selected. Subsequently, messenger ribonucleic acid from bladder biopsies of interstitial cystitis patients was purified, and gene expression levels of known urothelial marker genes and candidate master transcription factors were measured. Multivariate expression data were analyzed with spss software. Factor analysis decomposed the expression profile into four axes: principal axis 1 included retinoic acid receptors and 17 candidate master transcription factors. Principal axis 2 included KRT5 and five candidates. Principal axis 3 included transcription factor TP63 and two candidates. Principal axis 4 included SHH and two candidates. Principal component analysis segregated biopsies from Hunner's lesion in the principal component 1 (retinoic acid)/principal component 2 (SOX13)/principal component 3 (TP63) space. Urothelial master transcription factors could serve as novel diagnostic markers and potentially explain the molecular pathology of interstitial cystitis. © 2017 The Japanese Urological Association.

  7. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

    International Nuclear Information System (INIS)

    Lim, Kihong; Chang, Hyo-Ihl

    2009-01-01

    The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.

  8. Smoking and other factors influencing the oral health of Lithuanian Army recruits.

    Science.gov (United States)

    Kelbauskas, Eduardas; Kelbauskiené, Solveiga; Paipaliené, Pajauta

    2005-09-01

    The aim of our research was to determine the prevalence of smoking among Lithuanian army recruits and how smoking and other factors affect oral health. The findings of our research showed that 70% of recruits smoke. The analysis of the research findings showed that smoking had a negative effect on oral hygiene. Especially smoking was harmful with respect to periodontal tissues. The periodontal lesions were more prevalent and severe among recruits who smoked. Smokers had a higher Community Periodontal Index of Treatment Needs index than nonsmokers. The analysis of the research findings showed that the state of oral health was related to other factors, such as oral hygiene, age, and education. It was determined that the oral hygiene of males living in the countryside and having poorer education was worse than that of males living in the city. Their status of periodontal tissues was worse, and they had more decayed and untreated teeth. The findings of the logistical regression analysis showed that poor education and living in the country, irregular tooth brushing, poor oral hygiene, and smoking were the most important factors related to a great number of untreated decayed tooth surfaces.

  9. Factors affecting the recruitment of Amphibalanus improvisus and Dreissena polymorpha in a highly eutrophic brackish bay

    Science.gov (United States)

    Oganjan, Katarina; Lauringson, Velda; Kotta, Jonne; Rostin, Liis; Martin, Georg

    2017-01-01

    Species invasions are modifying ecosystems worldwide. Coexistence of invasive species of no common evolutionary history in their new ranges enables the study of ecological rules shaping novel communities at their initial stages. In oligohaline parts of the Baltic Sea, the most dominant and widespread epifaunal suspension feeders are invasive mussels Dreissena polymorpha and cirripeds Amphibalanus improvisus. This study experimentally evaluated recruitment and microhabitat use in response to environmental forcing in these two species in a eutrophic bay. Recruitment was structured by different microhabitat exploitation patterns coupled with both individual and interactive effects of several environmental gradients. Despite functional similarity, the importance of environmental gradients differed between these species: mussel recruitment was best explained by temperature while barnacle recruitment was best explained by wave exposure. Zebra mussels were more fastidious about surface orientation than barnacles. The preferred orientations also differed between species, as mussels strongly preferred horizontal surfaces, while barnacles were more abundant on vertical surfaces. Increase in one species also predicted well the abundance of the other, especially for barnacles, as mussel abundance was the best predictor of barnacle abundance over all the other factors. The extent of microhabitat segregation correlated weakly over the studied range of the most important environmental gradients. The study shows that coexistence of functionally similar non-native D. polymorpha and A. improvisus in their sympatric range is likely determined by complex interactions between these species, their different microhabitat exploitation patterns, environmental limitations and optima.

  10. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.

    Science.gov (United States)

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice

  11. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  12. The transcription factor REST is lost in aggressive breast cancer.

    Directory of Open Access Journals (Sweden)

    Matthew P Wagoner

    2010-06-01

    Full Text Available The function of the tumor suppressor RE1 silencing transcription factor (REST is lost in colon and small cell lung cancers and is known to induce anchorage-independent growth in human mammary epithelial cells. However, nothing is currently known about the role of this tumor suppressor in breast cancer. Here, we test the hypothesis that loss of REST function plays a role in breast cancer. To assay breast tumors for REST function, we developed a 24-gene signature composed of direct targets of the transcriptional repressor. Using the 24- gene signature, we identified a previously undefined RESTless breast tumor subtype. Using gene set enrichment analysis, we confirmed the aberrant expression of REST target genes in the REST-less tumors, including neuronal gene targets of REST that are normally not expressed outside the nervous system. Examination of REST mRNA identified a truncated splice variant of REST present in the REST-less tumor population, but not other tumors. Histological analysis of 182 outcome-associated breast tumor tissues also identified a subpopulation of tumors that lack full-length, functional REST and over-express the neuroendocrine marker and REST target gene Chromogranin A. Importantly, patients whose tumors were found to be REST-less using either the 24-gene signature or histology had significantly poorer prognosis and were more than twice as likely to undergo disease recurrence within the first 3 years after diagnosis. We show here that REST function is lost in breast cancer, at least in part via an alternative splicing mechanism. Patients with REST-less breast cancer undergo significantly more early disease recurrence than those with fully functional REST, regardless of estrogen receptor or HER2 status. Importantly, REST status may serve as a predictor of poor prognosis, helping to untangle the heterogeneity inherent in disease course and response to treatment. Additionally, the alternative splicing observed in REST

  13. Transcription factor PIF4 controls the thermosensory activation of flowering

    KAUST Repository

    Kumar, S. Vinod

    2012-03-21

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved.

  14. Wood reinforcement of poplar by rice NAC transcription factor.

    Science.gov (United States)

    Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka

    2016-01-27

    Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species.

  15. Characterization of the MADS domain transcription factor family in Arabidopsis thaliana

    NARCIS (Netherlands)

    Folter, Stefan de

    2006-01-01

    Gene regulation at the level of transcription is crucial for almost all biological processes in a cell or organism. Transcription factors are sequence-specific DNA-binding proteins that are capable of activating and/or repressing transcription. The genome of Arabidopsis thaliana, for instance,

  16. Problem-Solving Test: The Mechanism of Transcription Termination by the Rho Factor

    Science.gov (United States)

    Szeberenyi, Jozsef

    2012-01-01

    Transcription termination comes in two forms in "E. coli" cells. Rho-dependent termination requires the binding of a termination protein called Rho factor to the transcriptional machinery at the terminator region, whereas Rho-independent termination is achieved by conformational changes in the transcript itself. This article presents a test…

  17. True Lies: The Double Life of the Nucleotide Excision Repair Factors in Transcription and DNA Repair

    Directory of Open Access Journals (Sweden)

    Nicolas Le May

    2010-01-01

    Full Text Available Nucleotide excision repair (NER is a major DNA repair pathway in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation or bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to three genetic disorders that result in predisposition to cancers, accelerated aging, neurological and developmental defects. During NER, more than 30 polypeptides cooperate to recognize, incise, and excise a damaged oligonucleotide from the genomic DNA. Recent papers reveal an additional and unexpected role for the NER factors. In the absence of a genotoxic attack, the promoters of RNA polymerases I- and II-dependent genes recruit XPA, XPC, XPG, and XPF to initiate gene expression. A model that includes the growth arrest and DNA damage 45α protein (Gadd45α and the NER factors, in order to maintain the promoter of active genes under a hypomethylated state, has been proposed but remains controversial. This paper focuses on the double life of the NER factors in DNA repair and transcription and describes the possible roles of these factors in the RNA synthesis process.

  18. Expression and activity of SNAIL transcription factor during Epithelial to Mesenchymal Transition (EMT in cancer progression

    Directory of Open Access Journals (Sweden)

    Izabela Papiewska-Pająk

    2016-09-01

    Full Text Available Inhibition of E-cadherin gene expression by transcription factor SNAIL is known to be a crucial element of Epithelial to Mesenchymal Transition; EMT. Epigenetic regulation of E-cadherin expression is regulated by SNAIL binding to E-box sequences in the CDH1 gene promoter and recruiting enzymes belonging to repressor complexes that are directly engaged in histone modifications and DNA methylation leading to the modification of chromatin structure. SNAIL involvement in cell acquisition of invasive phenotype is based on direct suppression of tight-junction and gap junction proteins.The nuclear localization of SNAIL is required for SNAIL activity and protects this factor fromproteasomal degradation in the cytoplasm. The main factor engaged in that process is GSK- 3β kinase. Expression and stability of SNAIL is regulated on the transctriptional and posttranscriptional levels by a number of signaling molecules and biological factors, for example: TGF-β, TNF-α, ILK and NFκB. The expression of SNAIL in cancer cells is also regulated by micro-RNA, mainly by miR-34.Increased expression of SNAIL, observed in many human cancers, has been correlated with increased resistance to chemio-, radio – or immunotherapy, gain of cancer stem cells features and migrative and invasive characteristics, which leads to tumor metastases. Understanding of the SNAIL’s mechanism of action may lead to new treatment strategies in cancer directed to interfere with signaling pathways that either activate SNAIL or are activated by SNAIL.

  19. Transcription factor IRF8 controls Th1-like regulatory T-cell function.

    Science.gov (United States)

    Lee, Wonyong; Kim, Hyeong Su; Baek, Song Yi; Lee, Gap Ryol

    2016-11-01

    Recent studies have suggested that regulatory T (Treg) cells comprise a heterogeneous population that regulates various aspects of the immune response, and that Treg cells use the factors that are expressed in their target cells to regulate them. We searched for factors that regulate Th1 response in Treg cells using a meta-analysis. In the process, we discovered that transcription factor interferon regulatory factor 8 (IRF8) was selectively expressed in Treg and Th1 cells. IRF8-deficient Treg cells showed defective expression of CXCR3 and aberrant expression of the Il4 and Il17 genes. Upon treatment with alpha galactosyl-C18-ceramide (αGal-C18-Cer), IRF8-deficient mice showed defective Treg cell recruitment in the liver. Eliciting Th1 immune response by anti-CD40 antibody injection in mice induced IRF8 expression in Treg cells. The expression of IRF8 was induced by Foxp3 in Treg cells. IRF8 had no effect on T-bet expression in Treg and vice versa. Thus, our results strongly suggest that IRF8 controls Th1 immune response in Treg cells independent of T-bet.

  20. Transcription factor HBP1 is a direct anti-cancer target of transcription factor FOXO1 in invasive oral cancer.

    Science.gov (United States)

    Chan, Chien-Yi; Huang, Shih-Yi; Sheu, Jim Jinn-Chyuan; Roth, Mendel M; Chou, I-Tai; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin

    2017-02-28

    Either FOXO1 or HBP1 transcription factor is a downstream effector of the PI3K/Akt pathway and associated with tumorigenesis. However, the relationship between FOXO1 and HBP1 in oral cancer remains unclear. Analysis of 30 oral tumor specimens revealed that mean mRNA levels of both FOXO1 and HBP1 in non-invasive and invasive oral tumors were found to be significantly lower than that of the control tissues, and the status of low FOXO1 and HBP1 (oral tumors. To investigate if HBP1 is a direct transcription target of FOXO1, we searched potential FOXO1 binding sites in the HBP1 promoter using the MAPPER Search Engine, and two putative FOXO1 binding sites located in the HBP1 promoter -132 to -125 bp and -343 to -336 bp were predicted. These binding sites were then confirmed by both reporter gene assays and the in cellulo ChIP assay. In addition, Akt activity manipulated by PI3K inhibitor LY294002 or Akt mutants was shown to negatively affect FOXO1-mediated HBP1 promoter activation and gene expression. Last, the biological significance of the FOXO1-HBP1 axis in oral cancer malignancy was evaluated in cell growth, colony formation, and invasiveness. The results indicated that HBP1 knockdown potently promoted malignant phenotypes of oral cancer and the suppressive effect of FOXO1 on cell growth, colony formation, and invasion was alleviated upon HBP1 knockdown in invasive oral cancer cells. Taken together, our data provide evidence for HBP1 as a direct downstream target of FOXO1 in oral cancer malignancy.

  1. Hacking an Algal Transcription Factor for Lipid Biosynthesis.

    Science.gov (United States)

    Chen, Xiulai; Hu, Guipeng; Liu, Liming

    2018-03-01

    Transcriptional engineering is a viable means for engineering microalgae to produce lipid, but it often results in a trade-off between production and growth. A recent study shows that engineering a single transcriptional regulator enables efficient carbon partitioning to lipid biosynthesis with high biomass productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation.

    Science.gov (United States)

    Fretz, Jackie A; Nelson, Tracy; Velazquez, Heino; Xi, Yougen; Moeckel, Gilbert W; Horowitz, Mark C

    2014-05-01

    The coordination of multiple cytokines and transcription factors with their downstream signaling pathways has been shown to be integral to nephron maturation. Here we present a completely novel role for the helix-loop-helix transcription factor Early B-cell factor 1 (Ebf1), originally identified for B-cell maturation, for the proper maturation of glomerular cells from mesenchymal progenitors. The expression of Ebf1 was both spatially and temporally regulated within the developing cortex and glomeruli. Using Ebf1-null mice, we then identified biochemical, metabolic, and histological abnormalities in renal development that arose in the absence of this transcription factor. In the Ebf1 knockout mice, the developed kidneys show thinned cortices and reduced glomerular maturation. The glomeruli showed abnormal vascularization and severely effaced podocytes. The mice exhibited early albuminuria and elevated blood urea nitrogen levels. Moreover, the glomerular filtration rate was reduced >66% and the expression of podocyte-derived vascular endothelial growth factor A was decreased compared with wild-type control mice. Thus, Ebf1 has a significant and novel role in glomerular development, podocyte maturation, and the maintenance of kidney integrity and function.

  3. Factors affecting recruitment into depression trials: Systematic review, meta-synthesis and conceptual framework.

    Science.gov (United States)

    Hughes-Morley, Adwoa; Young, Bridget; Waheed, Waquas; Small, Nicola; Bower, Peter

    2015-02-01

    Depression is common and clinical trials are crucial for evaluating treatments. Difficulties in recruiting participants into depression trials are well-documented, yet no study has examined the factors affecting recruitment. This review aims to identify the factors affecting recruitment into depression trials and to develop a conceptual framework through systematic assessment of published qualitative research. Systematic review and meta-synthesis of published qualitative studies. Meta-synthesis involves a synthesis of themes across a number of qualitative studies to produce findings that are "greater than the sum of the parts". ASSIA, CINAHL, Embase, Medline and PsychInfo were searched up to April 2013. Reference lists of included studies, key publications and relevant reviews were also searched. Quality appraisal adopted the "prompts for appraising qualitative research". 7977 citations were identified, and 15 studies were included. Findings indicate that the decision to enter a depression trial is made by patients and gatekeepers based on the patient׳s health state at the time of being approached to participate; on their attitude towards the research and trial interventions; and on the extent to which patients become engaged with the trial. Our conceptual framework highlights that the decision to participate by both the patient and the gatekeeper involves a judgement between risk and reward. Only English language publications were included in this review. Findings from this review have implications for the design of interventions to improve recruitment into depression trials. Such interventions may aim to diminish the perceived risks and increase the perceived rewards of participation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Functional analysis of Dof transcription factors controlling heading date and PPDK gene expression in rice

    NARCIS (Netherlands)

    Zhang, Yu

    2015-01-01

    Chapter 1 presents a general introduction to the factors involved in crop domestication and the specific role of transcription factors in this process. Chapter 2 describes the functional analysis of a Dof-type transcription factor, named OsDof24, from rice.chapter 3 describes the role of OsDof25 in

  5. SoxC transcription factors in retinal development and regeneration.

    Science.gov (United States)

    Chang, Kun-Che; Hertz, Jonathan

    2017-07-01

    Glaucoma and other optic neuropathies result in optic nerve degeneration and the loss of retinal ganglion cells (RGCs) through complex signaling pathways. Although the mechanisms that regulate RGC development remain unclear, uncovering novel developmental pathways may support new strategies to regenerate the optic nerve or replace RGCs. Here we review recent studies that provide strong evidence that the Sry-related high-mobility-group C (SoxC) subfamily of transcription factors (TFs) are necessary and sufficient for axon guidance and RGC fate specification. These findings also uncover novel SoxC-dependent mechanisms that serve as master regulators during important steps of RGC development. For example, we review work showing that SoxC TFs regulate RGC axon guidance and direction through the optic chiasm towards their appropriate targets in the brain. We also review work demonstrating that Sox11 subcellular localization is, in part, controlled through small ubiquitin-like post-translational modifier (SUMO) and suggest compensatory cross-talk between Sox4 and Sox11. Furthermore, Sox4 overexpression is shown to positively drive RGC differentiation in human induced pluripotent stem cells (hiPSCs). Finally, we discuss how these findings may contribute to the advancement of regenerative and cell-based therapies to treat glaucoma and other optic nerve neuropathies.

  6. Single molecule transcription factor dynamics in the syncytial Drosophila embryo

    Science.gov (United States)

    Darzacq, Xavier

    During early development in the Drosophila embryo, cell fates are determined over the course of just 2 hours with exquisite spatio-temoral precision. One of the key regulators of this process is the transcription factor Bicoid which forms a concentration gradient across the long axis of the embryo. Although Bicoids' primary role is activation at the anterior, where concentrations are highest, it is also known to play a role in the posterior where there are only 100s of molecules per nucleus. Understanding how Bicoid can find its target at such low concentrations has remained intractable, largely due to the inability to perform single molecule imaging in the context of the developing embryo. Here we use lattice light sheet microscopy to overcome the technical barriers of sample thickness and auto-fluorescence to characterize the single molecule dynamics of Bicoid. We find that off-rates do not vary across the embryo and that instead the on-rates are modulated through the formation of clusters that enrich local concentration. This data is contrary to the current concentration dependent model of Bicoid function since local concentration within the nucleus is now a regulated parameter and suggests a previously unknown mechanism for regulation at extremely low concentrations.

  7. Spatial expression of transcription factors in Drosophila embryonic organ development.

    Science.gov (United States)

    Hammonds, Ann S; Bristow, Christopher A; Fisher, William W; Weiszmann, Richard; Wu, Siqi; Hartenstein, Volker; Kellis, Manolis; Yu, Bin; Frise, Erwin; Celniker, Susan E

    2013-12-20

    Site-specific transcription factors (TFs) bind DNA regulatory elements to control expression of target genes, forming the core of gene regulatory networks. Despite decades of research, most studies focus on only a small number of TFs and the roles of many remain unknown. We present a systematic characterization of spatiotemporal gene expression patterns for all known or predicted Drosophila TFs throughout embryogenesis, the first such comprehensive study for any metazoan animal. We generated RNA expression patterns for all 708 TFs by in situ hybridization, annotated the patterns using an anatomical controlled vocabulary, and analyzed TF expression in the context of organ system development. Nearly all TFs are expressed during embryogenesis and more than half are specifically expressed in the central nervous system. Compared to other genes, TFs are enriched early in the development of most organ systems, and throughout the development of the nervous system. Of the 535 TFs with spatially restricted expression, 79% are dynamically expressed in multiple organ systems while 21% show single-organ specificity. Of those expressed in multiple organ systems, 77 TFs are restricted to a single organ system either early or late in development. Expression patterns for 354 TFs are characterized for the first time in this study. We produced a reference TF dataset for the investigation of gene regulatory networks in embryogenesis, and gained insight into the expression dynamics of the full complement of TFs controlling the development of each organ system.

  8. Reprogramming with Small Molecules instead of Exogenous Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tongxiang Lin

    2015-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs.

  9. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  10. Lipid-activated transcription factors control bile acid glucuronidation.

    Science.gov (United States)

    Barbier, Olivier; Trottier, Jocelyn; Kaeding, Jenny; Caron, Patrick; Verreault, Mélanie

    2009-06-01

    Bile acids subserve important physiological functions in the control of cholesterol homeostasis. Indeed, hepatic bile acid synthesis and biliary excretion constitute the main route for cholesterol removal from the human body. On the other hand, bile acids serve as natural detergents for the intestinal absorption of dietary cholesterol. However, due to their detergent properties, bile acids are inherently cytotoxic, and their cellular level may be tightly controlled to avoid pathological situations such as cholestasis. Recent investigations have illustrated the crucial roles that a series of ligand-activated transcription factors has in the control of hepatic bile acids synthesis, transport and metabolism. Thus, the lipid-activated nuclear receptors, farnesoid X-receptor (FXR), liver X-receptor (LXR), pregnane X-receptor (PXR) and peroxisome proliferator-activated receptor alpha (PPAR alpha), modulate the expression and activity of genes controlling bile acid homeostasis in the liver. Several members of the UDP-glucuronosyltransferase (UGT) enzymes family are among the bile acid metabolizing enzymes regulated by these receptors. UGTs catalyze glucuronidation, a major phase II metabolic reaction, which converts hydrophobic bile acids into polar and urinary excretable metabolites. This article summarizes our recent observations on the regulation of bile acid conjugating UGTs upon pharmacological activation of lipid-activated receptors, with a particular interest for the role of PPAR alpha and LXRalpha in controlling human UGT1A3 expression.

  11. Development of a Transcription Factor-Based Lactam Biosensor

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied a chemoi......Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied...... a chemoinformatic approach inspired by small molecule drug discovery. We define this approach as analogue generation toward catabolizable chemicals or AGTC. We discovered a lactam biosensor based on the ChnR/Pb transcription factor-promoter pair. The microbial biosensor is capable of sensing ε-caprolactam, Î......´-valerolactam, and butyrolactam in a dose-dependent manner. The biosensor has sufficient specificity to discriminate against lactam biosynthetic intermediates and therefore could potentially be applied for high-throughput metabolic engineering for industrially important high titer lactam biosynthesis....

  12. SoxC transcription factors in retinal development and regeneration

    Directory of Open Access Journals (Sweden)

    Kun-Che Chang

    2017-01-01

    Full Text Available Glaucoma and other optic neuropathies result in optic nerve degeneration and the loss of retinal ganglion cells (RGCs through complex signaling pathways. Although the mechanisms that regulate RGC development remain unclear, uncovering novel developmental pathways may support new strategies to regenerate the optic nerve or replace RGCs. Here we review recent studies that provide strong evidence that the Sry-related high-mobility-group C (SoxC subfamily of transcription factors (TFs are necessary and sufficient for axon guidance and RGC fate specification. These findings also uncover novel SoxC-dependent mechanisms that serve as master regulators during important steps of RGC development. For example, we review work showing that SoxC TFs regulate RGC axon guidance and direction through the optic chiasm towards their appropriate targets in the brain. We also review work demonstrating that Sox11 subcellular localization is, in part, controlled through small ubiquitin-like post-translational modifier (SUMO and suggest compensatory cross-talk between Sox4 and Sox11. Furthermore, Sox4 overexpression is shown to positively drive RGC differentiation in human induced pluripotent stem cells (hiPSCs. Finally, we discuss how these findings may contribute to the advancement of regenerative and cell-based therapies to treat glaucoma and other optic nerve neuropathies.

  13. Transcription factor-based biosensors enlightened by the analyte.

    Directory of Open Access Journals (Sweden)

    Raul eFernandez-Lopez

    2015-07-01

    Full Text Available Whole cell biosensors (WCBs have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC and LysR, metal ions (MerR, ArsR, DtxR, Fur and NikR or antibiotics (TetR and MarR. Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain (EBD. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.

  14. Transcriptional activation of Mina by Sp1/3 factors.

    Science.gov (United States)

    Lian, Shangli; Potula, Hari Hara S K; Pillai, Meenu R; Van Stry, Melanie; Koyanagi, Madoka; Chung, Linda; Watanabe, Makiko; Bix, Mark

    2013-01-01

    Mina is an epigenetic gene regulatory protein known to function in multiple physiological and pathological contexts, including pulmonary inflammation, cell proliferation, cancer and immunity. We showed previously that the level of Mina gene expression is subject to natural genetic variation linked to 21 SNPs occurring in the Mina 5' region. In order to explore the mechanisms regulating Mina gene expression, we set out to molecularly characterize the Mina promoter in the region encompassing these SNPs. We used three kinds of assays--reporter, gel shift and chromatin immunoprecipitation--to analyze a 2 kb genomic fragment spanning the upstream and intron 1 regions flanking exon 1. Here we discovered a pair of Mina promoters (P1 and P2) and a P1-specific enhancer element (E1). Pharmacologic inhibition and siRNA knockdown experiments suggested that Sp1/3 transcription factors trigger Mina expression through additive activity targeted to a cluster of four Sp1/3 binding sites forming the P1 promoter. These results set the stage for comprehensive analysis of Mina gene regulation from the context of tissue specificity, the impact of inherited genetic variation and the nature of upstream signaling pathways.

  15. Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms.

    Science.gov (United States)

    Schweikhard, Volker; Meng, Cong; Murakami, Kenji; Kaplan, Craig D; Kornberg, Roger D; Block, Steven M

    2014-05-06

    Recent evidence suggests that transcript elongation by RNA polymerase II (RNAPII) is regulated by mechanical cues affecting the entry into, and exit from, transcriptionally inactive states, including pausing and arrest. We present a single-molecule optical-trapping study of the interactions of RNAPII with transcription elongation factors TFIIS and TFIIF, which affect these processes. By monitoring the response of elongation complexes containing RNAPII and combinations of TFIIF and TFIIS to controlled mechanical loads, we find that both transcription factors are independently capable of restoring arrested RNAPII to productive elongation. TFIIS, in addition to its established role in promoting transcript cleavage, is found to relieve arrest by a second, cleavage-independent mechanism. TFIIF synergistically enhances some, but not all, of the activities of TFIIS. These studies also uncovered unexpected insights into the mechanisms underlying transient pauses. The direct visualization of pauses at near-base-pair resolution, together with the load dependence of the pause-entry phase, suggests that two distinct mechanisms may be at play: backtracking under forces that hinder transcription and a backtrack-independent activity under assisting loads. The measured pause lifetime distributions are inconsistent with prevailing views of backtracking as a purely diffusive process, suggesting instead that the extent of backtracking may be modulated by mechanisms intrinsic to RNAPII. Pauses triggered by inosine triphosphate misincorporation led to backtracking, even under assisting loads, and their lifetimes were reduced by TFIIS, particularly when aided by TFIIF. Overall, these experiments provide additional insights into how obstacles to transcription may be overcome by the concerted actions of multiple accessory factors.

  16. The Expression of BAFF Is Controlled by IRF Transcription Factors.

    Science.gov (United States)

    Sjöstrand, Maria; Johansson, Alina; Aqrawi, Lara; Olsson, Tomas; Wahren-Herlenius, Marie; Espinosa, Alexander

    2016-01-01

    Patients with systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) are typically characterized by the presence of autoantibodies and an IFN-signature. The strength of the IFN-signature positively correlates with disease severity, suggesting that type I IFNs are active players in these diseases. BAFF is a cytokine critical for development and proper selection of B cells, and the targeting of BAFF has emerged as a successful treatment strategy of SLE. Previous reports have suggested that BAFF expression is directly induced by type I IFNs, but the precise mechanism for this remains unknown. In this article, we demonstrate that BAFF is a bona fide ISG and that IFN regulatory factors (IRFs) control the expression of BAFF. We identify IRF1 and IRF2 as positive regulators of BAFF transcription and IRF4 and IRF8 as potent repressors; in addition, we have mapped the precise binding site for these factors in the BAFF promoter. IFN-β injections induced BAFF expression mainly in neutrophils and monocytes, and BAFF expression in neutrophils from pSS patients strongly correlated with the strength of the IFN-signature. In summary, we show that BAFF expression is directly induced by type I IFNs via IRF1 and IRF2, whereas IRF4 and IRF8 are negative regulators of BAFF expression. These data suggest that type I IFN blockade in SLE and pSS patients will lead to downregulation of BAFF and a consequential reduction of autoreactive B cell clones and autoantibodies. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  18. Early B cell factor 1 is an essential transcription factor for postnatal glomerular maturation

    Science.gov (United States)

    Fretz, Jackie A.; Nelson, Tracy; Velazquez, Heino; Xi, Yougen; Moeckel, Gilbert; Horowitz, Mark C.

    2013-01-01

    The coordination of multiple cytokines and transcription factors with their downstream signaling pathways have been shown to be integral to nephron maturation. Here we present a completely novel role for the helix-loop-helix transcription factor Early B cell Factor 1 (Ebf1), originally identified for B cell maturation, for the proper maturation of glomerular cells from mesenchymal progenitors. The expression of Ebf1 was both spatially and temporally regulated within the developing cortex and glomeruli. Using Ebf1-null mice we then identified biochemical, metabolic, and histological abnormalities in renal development that arose in the absence of this transcription factor. In the Ebf1 knockout mice the developed kidneys show thinned cortices and reduced glomerular maturation. The glomeruli showed abnormal vascularization and severely effaced podocytes. The mice exhibited early albuminuria and elevated blood urea nitrogen levels. Moreover, the GFR was reduced over 66 percent and the expression of podocyte-derived VEGF-A was decreased compared to wild type control mice. Thus, Ebf1 has a significant and novel role in glomerular development, podocyte maturation, and the maintenance of kidney integrity and function. PMID:24172684

  19. Hierarchical mechanisms for transcription factor-mediated reprogramming of fibroblasts to neurons

    Science.gov (United States)

    Wapinski, Orly L.; Vierbuchen, Thomas; Qu, Kun; Lee, Qian Yi; Chanda, Soham; Fuentes, Daniel R.; Giresi, Paul G.; Ng, Yi Han; Marro, Samuele; Neff, Norma F.; Drechsel, Daniela; Martynoga, Ben; Castro, Diogo S.; Webb, Ashley E.; Brunet, Anne; Guillemot, Francois; Chang, Howard Y.; Wernig, Marius

    2013-01-01

    SUMMARY Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine with poorly understood mechanisms. Here we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an “on target” pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead Ascl1 recruits Brn2 to Ascl1 sites genome-wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, precise match between pioneer factor and the chromatin context at key target genes is determinative for trans-differentiation to neurons and likely other cell types. PMID:24243019

  20. Replication-Coupled Recruitment of Viral and Cellular Factors to Herpes Simplex Virus Type 1 Replication Forks for the Maintenance and Expression of Viral Genomes

    Science.gov (United States)

    Dembowski, Jill A.

    2017-01-01

    Herpes simplex virus type 1 (HSV-1) infects over half the human population. Much of the infectious cycle occurs in the nucleus of cells where the virus has evolved mechanisms to manipulate host processes for the production of virus. The genome of HSV-1 is coordinately expressed, maintained, and replicated such that progeny virions are produced within 4–6 hours post infection. In this study, we selectively purify HSV-1 replication forks and associated proteins from virus-infected cells and identify select viral and cellular replication, repair, and transcription factors that associate with viral replication forks. Pulse chase analyses and imaging studies reveal temporal and spatial dynamics between viral replication forks and associated proteins and demonstrate that several DNA repair complexes and key transcription factors are recruited to or near replication forks. Consistent with these observations we show that the initiation of viral DNA replication is sufficient to license late gene transcription. These data provide insight into mechanisms that couple HSV-1 DNA replication with transcription and repair for the coordinated expression and maintenance of the viral genome. PMID:28095497

  1. Strand transfer and elongation of HIV-1 reverse transcription is facilitated by cell factors in vitro.

    Directory of Open Access Journals (Sweden)

    David Warrilow

    Full Text Available Recent work suggests a role for multiple host factors in facilitating HIV-1 reverse transcription. Previously, we identified a cellular activity which increases the efficiency of HIV-1 reverse transcription in vitro. Here, we describe aspects of the activity which shed light on its function. The cellular factor did not affect synthesis of strong-stop DNA but did improve downstream DNA synthesis. The stimulatory activity was isolated by gel filtration in a single fraction of the exclusion volume. Velocity-gradient purified HIV-1, which was free of detectable RNase activity, showed poor reverse transcription efficiency but was strongly stimulated by partially purified cell proteins. Hence, the cell factor(s did not inactivate an RNase activity that might degrade the viral genomic RNA and block completion of reverse transcription. Instead, the cell factor(s enhanced first strand transfer and synthesis of late reverse transcription suggesting it stabilized the reverse transcription complex. The factor did not affect lysis of HIV-1 by Triton X-100 in the endogenous reverse transcription (ERT system, and ERT reactions with HIV-1 containing capsid mutations, which varied the biochemical stability of viral core structures and impeded reverse transcription in cells, showed no difference in the ability to be stimulated by the cell factor(s suggesting a lack of involvement of the capsid in the in vitro assay. In addition, reverse transcription products were found to be resistant to exogenous DNase I activity when the active fraction was present in the ERT assay. These results indicate that the cell factor(s may improve reverse transcription by facilitating DNA strand transfer and DNA synthesis. It also had a protective function for the reverse transcription products, but it is unclear if this is related to improved DNA synthesis.

  2. Strand transfer and elongation of HIV-1 reverse transcription is facilitated by cell factors in vitro.

    Science.gov (United States)

    Warrilow, David; Warren, Kylie; Harrich, David

    2010-10-06

    Recent work suggests a role for multiple host factors in facilitating HIV-1 reverse transcription. Previously, we identified a cellular activity which increases the efficiency of HIV-1 reverse transcription in vitro. Here, we describe aspects of the activity which shed light on its function. The cellular factor did not affect synthesis of strong-stop DNA but did improve downstream DNA synthesis. The stimulatory activity was isolated by gel filtration in a single fraction of the exclusion volume. Velocity-gradient purified HIV-1, which was free of detectable RNase activity, showed poor reverse transcription efficiency but was strongly stimulated by partially purified cell proteins. Hence, the cell factor(s) did not inactivate an RNase activity that might degrade the viral genomic RNA and block completion of reverse transcription. Instead, the cell factor(s) enhanced first strand transfer and synthesis of late reverse transcription suggesting it stabilized the reverse transcription complex. The factor did not affect lysis of HIV-1 by Triton X-100 in the endogenous reverse transcription (ERT) system, and ERT reactions with HIV-1 containing capsid mutations, which varied the biochemical stability of viral core structures and impeded reverse transcription in cells, showed no difference in the ability to be stimulated by the cell factor(s) suggesting a lack of involvement of the capsid in the in vitro assay. In addition, reverse transcription products were found to be resistant to exogenous DNase I activity when the active fraction was present in the ERT assay. These results indicate that the cell factor(s) may improve reverse transcription by facilitating DNA strand transfer and DNA synthesis. It also had a protective function for the reverse transcription products, but it is unclear if this is related to improved DNA synthesis.

  3. A mechanistic overview of herbal medicine and botanical compounds to target transcriptional factors in Breast cancer.

    Science.gov (United States)

    Zhao, Yingke; Liu, Yue

    2018-04-01

    The abnormalities of transcription factors, such as NF-κB, STAT, estrogen receptor, play a critical role in the initiation and progression of breast cancer. Due to the limitation of current treatment, transcription factors could be promising therapeutic targets, which have received close attention. In this review, we introduced herbal medicines, as well as botanical compounds that had been verified with anti-tumor properties via regulating transcription factors. Herbs, compounds, as well as formulae reported with various transcriptional targets, were summarized thoroughly, to provide implication for the future research on basic experiment and clinical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biophysical fitness landscapes for transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Allan Haldane

    2014-07-01

    Full Text Available Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions.

  5. Biophysical fitness landscapes for transcription factor binding sites.

    Science.gov (United States)

    Haldane, Allan; Manhart, Michael; Morozov, Alexandre V

    2014-07-01

    Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions.

  6. Characterization of the Far Transcription Factor Family in Aspergillus flavus.

    Science.gov (United States)

    Luo, Xingyu; Affeldt, Katharyn J; Keller, Nancy P

    2016-10-13

    Metabolism of fatty acids is a critical requirement for the pathogenesis of oil seed pathogens including the fungus Aspergillus flavus Previous studies have correlated decreased ability to grow on fatty acids with reduced virulence of this fungus on host seed. Two fatty acid metabolism regulatory transcription factors, FarA and FarB, have been described in other filamentous fungi. Unexpectedly, we find A. flavus possesses three Far homologs, FarA, FarB, and FarC, with FarA and FarC showing a greater protein similarity to each other than FarB. farA and farB are located in regions of colinearity in all Aspergillus spp. sequenced to date, whereas farC is limited to a subset of species where it is inserted in an otherwise colinear region in Aspergillus genomes. Deletion and overexpression (OE) of farA and farB, but not farC, yielded mutants with aberrant growth patterns on specific fatty acids as well as altered expression of genes involved in fatty acid metabolism. Marked differences included significant growth defects of both ∆farA and ∆farB on medium-chain fatty acids and decreased growth of OE::farA on unsaturated fatty acids. Loss of farA diminished expression of mitochondrial β-oxidation genes whereas OE::farA inhibited expression of genes involved in unsaturated fatty acid catabolism. FarA also positively regulated the desaturase genes required to generate polyunsaturated fatty acids. Aflatoxin production on toxin-inducing media was significantly decreased in the ∆farB mutant and increased in the OE::farB mutant, with gene expression data supporting a role for FarB in tying β-oxidation processes with aflatoxin accumulation. Copyright © 2016 Luo et al.

  7. Characterization of the Far Transcription Factor Family in Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Xingyu Luo

    2016-10-01

    Full Text Available Metabolism of fatty acids is a critical requirement for the pathogenesis of oil seed pathogens including the fungus Aspergillus flavus. Previous studies have correlated decreased ability to grow on fatty acids with reduced virulence of this fungus on host seed. Two fatty acid metabolism regulatory transcription factors, FarA and FarB, have been described in other filamentous fungi. Unexpectedly, we find A. flavus possesses three Far homologs, FarA, FarB, and FarC, with FarA and FarC showing a greater protein similarity to each other than FarB. farA and farB are located in regions of colinearity in all Aspergillus spp. sequenced to date, whereas farC is limited to a subset of species where it is inserted in an otherwise colinear region in Aspergillus genomes. Deletion and overexpression (OE of farA and farB, but not farC, yielded mutants with aberrant growth patterns on specific fatty acids as well as altered expression of genes involved in fatty acid metabolism. Marked differences included significant growth defects of both ∆farA and ∆farB on medium-chain fatty acids and decreased growth of OE::farA on unsaturated fatty acids. Loss of farA diminished expression of mitochondrial β-oxidation genes whereas OE::farA inhibited expression of genes involved in unsaturated fatty acid catabolism. FarA also positively regulated the desaturase genes required to generate polyunsaturated fatty acids. Aflatoxin production on toxin-inducing media was significantly decreased in the ∆farB mutant and increased in the OE::farB mutant, with gene expression data supporting a role for FarB in tying β-oxidation processes with aflatoxin accumulation.

  8. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  9. Replication factor c recruits dna polymerase δ to sites of nucleotide excision repair but is not required for PCNA recruitment

    NARCIS (Netherlands)

    R.M. Overmeer (René); A.M. Gourdin (Audrey); G. Giglia-Mari (Giuseppina); H.J.M. Kool (Hanneke); A.B. Houtsmuller (Adriaan); T. Siegal (Tali); M.I. Fousteri (Maria); L.H.F. Mullenders (Leon); W. Vermeulen (Wim)

    2010-01-01

    textabstractNucleotide excision repair (NER) operates through coordinated assembly of repair factors into pre- and postincisioncomplexes. The postincision step of NER includes gap-filling DNA synthesis and ligation. However, the exact composition of this NER-associated DNA synthesis complex in vivo

  10. Overexpression of the OsERF71 Transcription Factor Alters Rice Root Structure and Drought Resistance1

    Science.gov (United States)

    Jang, Geupil; Jeong, Jin Seo; Kim, Youn Shic; Ha, Sun-Hwa

    2016-01-01

    Plant responses to drought stress require the regulation of transcriptional networks via drought-responsive transcription factors, which mediate a range of morphological and physiological changes. AP2/ERF transcription factors are known to act as key regulators of drought resistance transcriptional networks; however, little is known about the associated molecular mechanisms that give rise to specific morphological and physiological adaptations. In this study, we functionally characterized the rice (Oryza sativa) drought-responsive AP2/ERF transcription factor OsERF71, which is expressed predominantly in the root meristem, pericycle, and endodermis. Overexpression of OsERF71, either throughout the entire plant or specifically in roots, resulted in a drought resistance phenotype at the vegetative growth stage, indicating that overexpression in roots was sufficient to confer drought resistance. The root-specific overexpression was more effective in conferring drought resistance at the reproductive stage, such that grain yield was increased by 23% to 42% over wild-type plants or whole-body overexpressing transgenic lines under drought conditions. OsERF71 overexpression in roots elevated the expression levels of genes related to cell wall loosening and lignin biosynthetic genes, which correlated with changes in root structure, the formation of enlarged aerenchyma, and high lignification levels. Furthermore, OsERF71 was found to directly bind to the promoter of OsCINNAMOYL-COENZYME A REDUCTASE1, a key gene in lignin biosynthesis. These results indicate that the OsERF71-mediated drought resistance pathway recruits factors involved in cell wall modification to enable root morphological adaptations, thereby providing a mechanism for enhancing drought resistance. PMID:27382137

  11. Network based transcription factor analysis of regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Cameron Jo Ann

    2011-03-01

    Full Text Available Abstract Background Studies on amphibian limb regeneration began in the early 1700's but we still do not completely understand the cellular and molecular events of this unique process. Understanding a complex biological process such as limb regeneration is more complicated than the knowledge of the individual genes or proteins involved. Here we followed a systems biology approach in an effort to construct the networks and pathways of protein interactions involved in formation of the accumulation blastema in regenerating axolotl limbs. Results We used the human orthologs of proteins previously identified by our research team as bait to identify the transcription factor (TF pathways and networks that regulate blastema formation in amputated axolotl limbs. The five most connected factors, c-Myc, SP1, HNF4A, ESR1 and p53 regulate ~50% of the proteins in our data. Among these, c-Myc and SP1 regulate 36.2% of the proteins. c-Myc was the most highly connected TF (71 targets. Network analysis showed that TGF-β1 and fibronectin (FN lead to the activation of these TFs. We found that other TFs known to be involved in epigenetic reprogramming, such as Klf4, Oct4, and Lin28 are also connected to c-Myc and SP1. Conclusions Our study provides a systems biology approach to how different molecular entities inter-connect with each other during the formation of an accumulation blastema in regenerating axolotl limbs. This approach provides an in silico methodology to identify proteins that are not detected by experimental methods such as proteomics but are potentially important to blastema formation. We found that the TFs, c-Myc and SP1 and their target genes could potentially play a central role in limb regeneration. Systems biology has the potential to map out numerous other pathways that are crucial to blastema formation in regeneration-competent limbs, to compare these to the pathways that characterize regeneration-deficient limbs and finally, to identify stem

  12. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms.

    Science.gov (United States)

    Swinnen, Steve; Henriques, Sílvia F; Shrestha, Ranjan; Ho, Ping-Wei; Sá-Correia, Isabel; Nevoigt, Elke

    2017-01-09

    Besides being a major regulator of the response to acetic acid in Saccharomyces cerevisiae, the transcription factor Haa1 is an important determinant of the tolerance to this acid. The engineering of Haa1 either by overexpression or mutagenesis has therefore been considered to be a promising avenue towards the construction of more robust strains with improved acetic acid tolerance. By applying the concept of global transcription machinery engineering to the regulon-specific transcription factor Haa1, a mutant allele containing two point mutations could be selected that resulted in a significantly higher acetic acid tolerance as compared to the wild-type allele. The level of improvement obtained was comparable to the level obtained by overexpression of HAA1, which was achieved by introduction of a second copy of the native HAA1 gene. Dissection of the contribution of the two point mutations to the phenotype showed that the major improvement was caused by an amino acid exchange at position 135 (serine to phenylalanine). In order to further study the mechanisms underlying the tolerance phenotype, Haa1 translocation and transcriptional activation of Haa1 target genes was compared between Haa1 mutant, overproduction and wild-type strains. While the rapid Haa1 translocation from the cytosol to the nucleus in response to acetic acid was not affected in the Haa1 S135F mutant strain, the levels of transcriptional activation of four selected Haa1-target genes by acetic acid were significantly higher in cells of the mutant strain as compared to cells of the wild-type strain. Interestingly, the time-course of transcriptional activation in response to acetic acid was comparable for the mutant and wild-type strain whereas the maximum mRNA levels obtained correlate with each strain's tolerance level. Our data confirms that engineering of the regulon-specific transcription factor Haa1 allows the improvement of acetic acid tolerance in S. cerevisiae. It was also shown that the

  13. B-lineage transcription factors and cooperating gene lesions required for leukemia development

    NARCIS (Netherlands)

    Tijchon, E.J.H.; Havinga, J.; Leeuwen, F.N. van; Scheijen, B.

    2013-01-01

    Differentiation of hematopoietic stem cells into B lymphocytes requires the concerted action of specific transcription factors, such as RUNX1, IKZF1, E2A, EBF1 and PAX5. As key determinants of normal B-cell development, B-lineage transcription factors are frequently deregulated in hematological

  14. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    Science.gov (United States)

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  15. Cell Penetrating Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer

    Science.gov (United States)

    2016-12-01

    Bispecific Antibodies for Targeting Oncogenic Transcription Factors in Advanced Prostate Cancer Michael Lilly, MD Richard Weisbart, MD Medical...0534, entitled Cell- penetrating bispecific antibodies for targeting oncogenic transcription factors in advanced prostate cancer . The research is a... Prostate cancer , antibody, bispecific, androgen receptor, castration-resistant 3

  16. Transcription factor-mediated cell-to-cell signalling in plants.

    Science.gov (United States)

    Han, Xiao; Kumar, Dhinesh; Chen, Huan; Wu, Shuwei; Kim, Jae-Yean

    2014-04-01

    Plant cells utilize mobile transcription factors to transmit intercellular signals when they perceive environmental stimuli or initiate developmental programmes. Studies on these novel cell-to-cell signals have accumulated multiple pieces of evidence showing that non-cell-autonomous transcription factors play pivotal roles in most processes related to the formation and development of plant organs. Recent studies have explored the evolution of mobile transcription factors and proposed mechanisms for their trafficking through plasmodesmata, where a selective system exists to facilitate this process. Mobile transcription factors contribute to the diversity of the intercellular signalling network, which is also established by peptides, hormones, and RNAs. Crosstalk between mobile transcription factors and other intercellular molecules leads to the development of complex biological signalling networks in plants. The regulation of plasmodesmata appears to have been another major step in controlling the intercellular trafficking of transcription factors based on studies of many plasmodesmal components. Furthermore, diverse omics approaches are being successfully applied to explore a large number of candidate transcription factors as mobile signals in plants. Here, we review these fascinating discoveries to integrate current knowledge of non-cell-autonomous transcription factors.

  17. TF Target Mapper: a BLAST search tool for the identification of Transcription Factor target genes.

    NARCIS (Netherlands)

    S. Horsman (Sebastiaan); M.J. Moorhouse (Michael); V. de Jager (Victor); P.J. van der Spek (Peter); F.G. Grosveld (Frank); J. Strouboulis (John); E. Katsantoni (Eleni)

    2006-01-01

    textabstractBACKGROUND: In the current era of high throughput genomics a major challenge is the genome-wide identification of target genes for specific transcription factors. Chromatin immunoprecipitation (ChIP) allows the isolation of in vivo binding sites of transcription factors and provides a

  18. MADS interactomics : towards understanding the molecular mechanisms of plant MADS-domain transcription factor function

    NARCIS (Netherlands)

    Smaczniak, C.D.

    2013-01-01

    Protein-protein and protein-DNA interactions are essential for the molecular action of transcription factors. By combinatorial binding to target gene promoters, transcription factors are able to up- or down-regulate the expression of these genes. MADS-domain proteins comprise a large family of

  19. The oncogenic transcription factor ERG represses the transcription of the tumour suppressor gene PTEN in prostate cancer cells.

    Science.gov (United States)

    Adamo, Patricia; Porazinski, Sean; Rajatileka, Shavanthi; Jumbe, Samantha; Hagen, Rachel; Cheung, Man-Kim; Wilson, Ian; Ladomery, Michael R

    2017-11-01

    The oncogene ETS-related gene (ERG) encodes a transcription factor with roles in the regulation of haematopoiesis, angiogenesis, vasculogenesis, inflammation, migration and invasion. The ERG oncogene is activated in >50% of prostate cancer cases, generally through a gene fusion with the androgen-responsive promoter of transmembrane protease serine 2. Phosphatase and tensin homologue ( PTEN ) is an important tumour suppressor gene that is often inactivated in cancer. ERG overexpression combined with PTEN inactivation or loss is often associated with aggressive prostate cancer. The present study aimed to determine whether or not ERG regulates PTEN transcription directly. ERG was demonstrated to bind to the PTEN promoter and repress its transcription. ERG overexpression reduced endogenous PTEN expression, whereas ERG knockdown increased PTEN expression. The ability of ERG to repress PTEN may contribute to a more cancer-permissive environment.

  20. Transcript level characterization of a cDNA encoding stress regulated NAC transcription factor in the mangrove plant Avicennia marina.

    Science.gov (United States)

    Ganesan, G; Sankararamasubramanian, H M; Narayanan, Jithesh M; Sivaprakash, K R; Parida, Ajay

    2008-10-01

    NAC transcription factors are a family of functionally diverse proteins responsive to biotic and abiotic stresses. A full-length cDNA isolated from the salt stressed mangrove plant Avicennia marina showed high sequence identity to NAC proteins induced upon biotic stress in tomato and potato. The predicted protein sequence had all the highly conserved sub domains characteristic of NAC domain containing proteins. Northern analysis for AmNAC1 expression under tolerable (250 mM) concentration of NaCl revealed up regulation of the transcript after 48 h and higher transcript level after 10 days of treatment. Induction of AmNAC1 after 12h of ABA treatment was similar to the treatment with stressful (500 mM) concentration of NaCl. The results suggest the involvement of AmNAC1 in early salt stress response and long-term adjustment to salt, besides a role for ABA in its expression under salt stress conditions.

  1. FOXO transcription factors: from cell fate decisions to regulation of human female reproduction.

    Science.gov (United States)

    Brosens, Jan J; Wilson, Miranda S C; Lam, Eric W F

    2009-01-01

    All key reproductive events in the human ovary and uterus, including follicle activation, ovulation, implantation, decidualization, luteolysis and menstruation, are dependent upon profound tissue remodelling, characterised by cyclical waves of cell proliferation, differentiation, apoptosis, tissue breakdown and regeneration. FOXO transcription factors, an evolutionarily conserved subfamily of the forkhead transcription factors, have emerged as master regulators of cell fate decision capable of integrating avariety of stress, growth factor and cytokine signaling pathways with the transcription machinery. The ability of FOXOs to regulate seemingly opposing cellular responses, ranging from cell cycle arrest and oxidative stress responses to differentiation and apoptosis, renders these transcription factors indispensable for cyclic tissue remodelling in female reproduction. Conversely, perturbations in the expression or activity of FOXO transcription factors are increasingly linked to common reproductive disorders, such as pregnancy loss, endometriosis, endometrial cancer and primary ovarian insufficiency.

  2. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; John, Sam

    2011-01-01

    Adipogenesis is tightly controlled by a complex network of transcription factors acting at different stages of differentiation. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) family members are key regulators of this process. We have employed DNase I...... hypersensitive site analysis to investigate the genome-wide changes in chromatin structure that accompany the binding of adipogenic transcription factors. These analyses revealed a dramatic and dynamic modulation of the chromatin landscape during the first hours of adipocyte differentiation that coincides...... with cooperative binding of multiple early transcription factors (including glucocorticoid receptor, retinoid X receptor, Stat5a, C/EBPβ and -δ) to transcription factor 'hotspots'. Our results demonstrate that C/EBPβ marks a large number of these transcription factor 'hotspots' before induction of differentiation...

  3. Interactions between RNAP III transcription machinery and tRNA processing factors.

    Science.gov (United States)

    Arimbasseri, G Aneeshkumar

    2018-04-01

    Eukaryotes have at least three nuclear RNA polymerases to carry out transcription. While RNA polymerases I and II are responsible for ribosomal RNA transcription and messenger RNA transcription, respectively, RNA Polymerase III transcribes approximately up to 300 nt long noncoding RNAs, including tRNA. For all three RNAPs, the nascent transcripts generated undergo extensive post-transcriptional processing. Transcription of mRNAs by RNAP II and their processing are coupled with the aid of the C-terminal domain of the RNAP II. RNAP I transcription and the processing of its transcripts are co-localized to the nucleolus and to some extent, rRNA processing occurs co-transcriptionally. Here, I review the current evidence for the interaction between tRNA processing factors and RNA polymerase III. These interactions include the moonlighting functions of tRNA processing factors in RNAP III transcription and the indirect effect of tRNA transcription levels on tRNA modification machinery. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Transcription factor binding site enrichment analysis predicts drivers of altered gene expression in nonalcoholic steatohepatitis

    Czech Academy of Sciences Publication Activity Database

    Lake, A.D.; Chaput, A.L.; Novák, Petr; Cherrington, N.J.; Smith, C.L.

    2016-01-01

    Roč. 122, December 15 (2016), s. 62-71 ISSN 0006-2952 Institutional support: RVO:60077344 Keywords : Transcription factor * Liver * Gene expression * Bioinformatics Subject RIV: CE - Biochemistry Impact factor: 4.581, year: 2016

  5. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors.

    Science.gov (United States)

    Narasimhan, Kamesh; Micoine, Kevin; Lacôte, Emmanuel; Thorimbert, Serge; Cheung, Edwin; Hasenknopf, Bernold; Jauch, Ralf

    2014-01-01

    SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures

  6. The transcription factor DREAM represses A20 and mediates inflammation

    OpenAIRE

    Tiruppathi, Chinnaswamy; Soni, Dheeraj; Wang, Dong-Mei; Xue, Jiaping; Singh, Vandana; Thippegowda, Prabhakar B.; Cheppudira, Bopaiah P.; Mishra, Rakesh K.; DebRoy, Auditi; Qian, Zhijian; Bachmaier, Kurt; Zhao, Youyang; Christman, John W.; Vogel, Stephen M.; Ma, Averil

    2014-01-01

    Here we show that the transcription-repressor DREAM binds to the A20 promoter to repress the expression of A20, the deubiquitinase suppressing inflammatory NF-κB signaling. DREAM-deficient (Dream−/− ) mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, USF1 binding to the DRE-associated E-box domain activated A20 expression in response to inf...

  7. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.

    2011-08-18

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding of the transcription regulatory code. Results: We constructed binding motifs for TFs forming a complex with HIF-1α at the erythropoietin 3\\'-enhancer. Corresponding TFBSs were predicted in the segments around transcription start sites (TSSs) of all human genes. Using the genome-wide set of regulatory regions, we observed several strongly preferred distances between hypoxia-responsive element (HRE) and binding sites of a particular cofactor protein. The set of preferred distances was called as a preferred pair distance template (PPDT). PPDT dramatically depended on the TF and orientation of its binding sites relative to HRE. PPDT evaluated from the genome-wide set of regulatory sequences was used to detect significant PPDT-consistent binding site pairs in regulatory regions of hypoxia-responsive genes. We believe PPDT can help to reveal the layout of eukaryotic regulatory segments. © The Author 2011. Published by Oxford University Press. All rights reserved.

  8. Chromatin remodeling mediated by the FOXA1/A2 transcription factors activates CFTR expression in intestinal epithelial cells.

    Science.gov (United States)

    Kerschner, Jenny L; Gosalia, Nehal; Leir, Shih-Hsing; Harris, Ann

    2014-04-01

    The forkhead box A transcription factors, FOXA1 and FOXA2, function as pioneer factors to open condensed chromatin and facilitate binding of other proteins. We showed previously that these factors are key components of a transcriptional network that drives enhancer function at the cystic fibrosis transmembrane conductance regulator (CFTR) locus in intestinal epithelial cells. The CFTR promoter apparently lacks tissue-specific regulatory elements and expression of the gene is controlled by multiple cis-acting elements, which coordinate gene expression in different cell types. Here we show that concurrent depletion of FOXA1 and FOXA2 represses CFTR expression and alters the three-dimensional architecture of the active locus by diminishing interactions between the promoter and intronic cis-acting elements. Reduction of FOXA1/A2 also modifies the enrichment profile of the active enhancer marks H3K27ac and H3K4me2 across the CFTR locus and alters chromatin accessibility at individual cis-elements. Moreover, loss of FOXA1/A2 suppresses the recruitment of other members of the transcriptional network including HNF1 and CDX2, to multiple cis-elements. These data reveal a complex molecular mechanism underlying the role of FOXA1/A2 in achieving high levels of CFTR expression in intestinal epithelial cells.

  9. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor.

    Science.gov (United States)

    Gupta, S; Malviya, N; Kushwaha, H; Nasim, J; Bisht, N C; Singh, V K; Yadav, D

    2015-03-01

    The structural, functional and in-silico studies of Dof transcription factor attempted so far reveals immense opportunity to analyze the plant genomes in terms of number of Dof genes and discuss in light of the evolution. The multiple functions of Dof genes needs to explored for crop improvement. Transcription factors play a very vital role in gene regulation at transcriptional level and are being extensively studied across phylas. In recent years, sequencing of plant genomes has led to genome-wide identification and characterizations of diverse types of plant-specific transcription factor gene family providing key insights into their structural and functional diversity. The DNA binding with one finger (Dof), a class belonging to C2H2-type zinc finger family proteins, is a plant-specific transcription factor having multiple roles such as seed maturation and germination, phytohormone and light-mediated regulation and plant responses to biotic and abiotic stresses. Dof proteins are present across plant lineage, from green algae to higher angiosperm, and represent a unique class of transcription factor having bifunctional binding activities, with both DNA and proteins, to regulate the complex transcriptional machinery in plant cells. The structural and functional diversity of the Dof transcription factor family along with the bioinformatics analysis highlighting the phylogeny of Dof families is reviewed in light of its importance in plant biotechnology for crop improvement.

  10. Functional characterization of tobacco transcription factor TGA2.1

    DEFF Research Database (Denmark)

    Kegler, C.; Lenk, I.; Krawczyk, S.

    2004-01-01

    Activation sequence-1 (as-1)-like regulatory cis elements mediate transcriptional activation in response to increased levels of plant signalling molecules auxin and salicylic acid (SA). Our earlier work has shown that tobacco cellular as-1-binding complex SARP (salicylic acid responsive protein...

  11. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation

    Science.gov (United States)

    Cauchy, Pierre; Maqbool, Muhammad A.; Zacarias-Cabeza, Joaquin; Vanhille, Laurent; Koch, Frederic; Fenouil, Romain; Gut, Marta; Gut, Ivo; Santana, Maria A.; Griffon, Aurélien; Imbert, Jean; Moraes-Cabé, Carolina; Bories, Jean-Christophe; Ferrier, Pierre; Spicuglia, Salvatore; Andrau, Jean-Christophe

    2016-01-01

    Ets1 is a sequence-specific transcription factor that plays an important role during hematopoiesis, and is essential for the transition of CD4−/CD8− double negative (DN) to CD4+/CD8+ double positive (DP) thymocytes. Using genome-wide and functional approaches, we investigated the binding properties, transcriptional role and chromatin environment of Ets1 during this transition. We found that while Ets1 binding at distal sites was associated with active genes at both DN and DP stages, its enhancer activity was attained at the DP stage, as reflected by levels of the core transcriptional hallmarks H3K4me1/3, RNA Polymerase II and eRNA. This dual, stage-specific ability reflected a switch from non-T hematopoietic toward T-cell specific gene expression programs during the DN-to-DP transition, as indicated by transcriptome analyses of Ets1−/− thymic cells. Coincidentally, Ets1 associates more specifically with Runx1 in DN and with TCF1 in DP cells. We also provide evidence that Ets1 predominantly binds distal nucleosome-occupied regions in DN and nucleosome-depleted regions in DP. Finally and importantly, we demonstrate that Ets1 induces chromatin remodeling by displacing H3K4me1-marked nucleosomes. Our results thus provide an original model whereby the ability of a transcription factor to bind nucleosomal DNA changes during differentiation with consequences on its cognate enhancer activity. PMID:26673693

  12. Human Papillomaviruses Preferentially Recruit DNA Repair Factors to Viral Genomes for Rapid Repair and Amplification.

    Science.gov (United States)

    Mehta, Kavi; Laimins, Laimonis

    2018-02-13

    viral genomes but are rapidly repaired through the preferential recruitment of homologous repair factors such as RAD51 and BRCA1 to HPV episomes. The preferential repair of breaks in viral genomes leads to amplification. Our study identified a novel mechanism by which human papillomaviruses manipulate DNA repair pathways to productively replicate viral genomes. The induction of genetic instability in cellular DNAs likely contributes to the generation of mutations that lead to the development of cancers. Copyright © 2018 Mehta and Laimins.

  13. Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders.

    Science.gov (United States)

    Estruch, Sara B; Graham, Sarah A; Quevedo, Martí; Vino, Arianna; Dekkers, Dick H W; Deriziotis, Pelagia; Sollis, Elliot; Demmers, Jeroen; Poot, Raymond A; Fisher, Simon E

    2018-04-01

    FOXP transcription factors play important roles in neurodevelopment, but little is known about how their transcriptional activity is regulated. FOXP proteins cooperatively regulate gene expression by forming homo- and hetero-dimers with each other. Physical associations with other transcription factors might also modulate the functions of FOXP proteins. However, few FOXP-interacting transcription factors have been identified so far. Therefore, we sought to discover additional transcription factors that interact with the brain-expressed FOXP proteins, FOXP1, FOXP2 and FOXP4, through affinity-purifications of protein complexes followed by mass spectrometry. We identified seven novel FOXP-interacting transcription factors (NR2F1, NR2F2, SATB1, SATB2, SOX5, YY1 and ZMYM2), five of which have well-estabslished roles in cortical development. Accordingly, we found that these transcription factors are co-expressed with FoxP2 in the deep layers of the cerebral cortex and also in the Purkinje cells of the cerebellum, suggesting that they may cooperate with the FoxPs to regulate neural gene expression in vivo. Moreover, we demonstrated that etiological mutations of FOXP1 and FOXP2, known to cause neurodevelopmental disorders, severely disrupted the interactions with FOXP-interacting transcription factors. Additionally, we pinpointed specific regions within FOXP2 sequence involved in mediating these interactions. Thus, by expanding the FOXP interactome we have uncovered part of a broader neural transcription factor network involved in cortical development, providing novel molecular insights into the transcriptional architecture underlying brain development and neurodevelopmental disorders.

  14. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Rehli, Michael; Hume, David A

    2015-05-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. © The Author(s).

  15. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription

    OpenAIRE

    Warren, Kylie; Warrilow, David; Meredith, Luke; Harrich, David

    2009-01-01

    There is ample evidence that synthesis of HIV-1 proviral DNA from the viral RNA genome during reverse transcription requires host factors. However, only a few cellular proteins have been described in detail that affect reverse transcription and interact with reverse transcriptase (RT). HIV-1 integrase is an RT binding protein and a number of IN-binding proteins including INI1, components of the Sin3a complex, and Gemin2 affect reverse transcription. In addition, recent studies implicate the c...

  16. Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species.

    Science.gov (United States)

    Mateos, Julieta L; Tilmes, Vicky; Madrigal, Pedro; Severing, Edouard; Richter, René; Rijkenberg, Colin W M; Krajewski, Paweł; Coupland, George

    2017-12-19

    Genome-wide landscapes of transcription factor (TF) binding sites (BSs) diverge during evolution, conferring species-specific transcriptional patterns. The rate of divergence varies in different metazoan lineages but has not been widely studied in plants. We identified the BSs and assessed the effects on transcription of FLOWERING LOCUS C (FLC) and PERPETUAL FLOWERING 1 (PEP1), two orthologous MADS-box TFs that repress flowering and confer vernalization requirement in the Brassicaceae species Arabidopsis thaliana and Arabis alpina , respectively. We found that only 14% of their BSs were conserved in both species and that these contained a CArG-box that is recognized by MADS-box TFs. The CArG-box consensus at conserved BSs was extended compared with the core motif. By contrast, species-specific BSs usually lacked the CArG-box in the other species. Flowering-time genes were highly overrepresented among conserved targets, and their CArG-boxes were widely conserved among Brassicaceae species. Cold-regulated (COR) genes were also overrepresented among targets, but the cognate BSs and the identity of the regulated genes were usually different in each species. In cold, COR gene transcript levels were increased in flc and pep1-1 mutants compared with WT, and this correlated with reduced growth in pep1-1 Therefore, FLC orthologs regulate a set of conserved target genes mainly involved in reproductive development and were later independently recruited to modulate stress responses in different Brassicaceae lineages. Analysis of TF BSs in these lineages thus distinguishes widely conserved targets representing the core function of the TF from those that were recruited later in evolution. Copyright © 2017 the Author(s). Published by PNAS.

  17. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions

    KAUST Repository

    Schmeier, Sebastian

    2016-10-17

    Transcription factors (TFs) play a pivotal role in transcriptional regulation, making them crucial for cell survival and important biological functions. For the regulation of transcription, interactions of different regulatory proteins known as transcription co-factors (TcoFs) and TFs are essential in forming necessary protein complexes. Although TcoFs themselves do not bind DNA directly, their influence on transcriptional regulation and initiation, although indirect, has been shown to be significant, with the functionality of TFs strongly influenced by the presence of TcoFs. In the TcoF-DB v2 database, we collect information on TcoFs. In this article, we describe updates and improvements implemented in TcoF-DB v2. TcoF-DB v2 provides several new features that enables exploration of the roles of TcoFs. The content of the database has significantly expanded, and is enriched with information from Gene Ontology, biological pathways, diseases and molecular signatures. TcoF-DB v2 now includes many more TFs; has substantially increased the number of human TcoFs to 958, and now includes information on mouse (418 new TcoFs). TcoF-DB v2 enables the exploration of information on TcoFs and allows investigations into their influence on transcriptional regulation in humans and mice. TcoF-DB v2 can be accessed at http://tcofdb.org/.

  18. Transcription Factor Repertoire of Necrotrophic Fungal Phytopathogen Ascochyta rabiei: Predominance of MYB Transcription Factors As Potential Regulators of Secretome

    Directory of Open Access Journals (Sweden)

    Sandhya Verma

    2017-06-01

    Full Text Available Transcription factors (TFs are the key players in gene expression and their study is highly significant for shedding light on the molecular mechanisms and evolutionary history of organisms. During host–pathogen interaction, extensive reprogramming of gene expression facilitated by TFs is likely to occur in both host and pathogen. To date, the knowledge about TF repertoire in filamentous fungi is in infancy. The necrotrophic fungus Ascochyta rabiei, that causes destructive Ascochyta blight (AB disease of chickpea (Cicer arietinum, demands more comprehensive study for better understanding of Ascochyta-legume pathosystem. In the present study, we performed the genome-wide identification and analysis of TFs in A. rabiei. Taking advantage of A. rabiei genome sequence, we used a bioinformatic approach to predict the TF repertoire of A. rabiei. For identification and classification of A. rabiei TFs, we designed a comprehensive pipeline using a combination of BLAST and InterProScan software. A total of 381 A. rabiei TFs were predicted and divided into 32 fungal specific families of TFs. The gene structure, domain organization and phylogenetic analysis of abundant families of A. rabiei TFs were also carried out. Comparative study of A. rabiei TFs with that of other necrotrophic, biotrophic, hemibiotrophic, symbiotic, and saprotrophic fungi was performed. It suggested presence of both conserved as well as unique features among them. Moreover, cis-acting elements on promoter sequences of earlier predicted A. rabiei secretome were also identified. With the help of published A. rabiei transcriptome data, the differential expression of TF and secretory protein coding genes was analyzed. Furthermore, comprehensive expression analysis of few selected A. rabiei TFs using quantitative real-time polymerase chain reaction revealed variety of expression patterns during host colonization. These genes were expressed in at least one of the time points tested post

  19. Factors influencing the recruitment and retention of literacy learners in Oman

    Science.gov (United States)

    Al-Barwani, Thuwayba; Kelly, Edward F.

    1985-12-01

    The study investigates factors influencing the recruitment and retention of learners in the national adult literacy programme in Oman. Personal interviews were conducted in the interior and Capital regions of Oman (N=102). Respondents included 46 randomly selected enrolled learners, 26 randomly selected dropouts and 30 unenrolled adults. Results of the interviews were content-analyzed and frequencies, cross tabulations and Chi-square were calculated. Findings indicated regional differences in the adults' motivation for enrolling, but the spiritual motive was over all the most significant. Men and women reported different patterns of conflict and obstacles in completing their literacy studies: Men indicated work demands as their biggest obstacle while women complained about family responsibilities. Programme attrition was mainly attributed to structural characteristics of the programme.

  20. A critique on nuclear factor-kappa B and signal transducer and activator of transcription 3: The key transcription factors in periodontal pathogenesis

    Directory of Open Access Journals (Sweden)

    Ranjith Ambili

    2017-01-01

    Full Text Available Periodontal disease is initiated by microorganisms in dental plaque, and host immunoinflammatory response to the microbial challenge helps in disease progression. Conventional periodontal therapy was mainly targeted on the elimination of microbial component. However, a better understanding of molecular aspects in host response will enable the clinicians to formulate effective host modulation therapy (HMT for the periodontal management. Inflammatory mediators were the main targets for HMT in the past. Transcription factors can regulate the production of multiple mediators simultaneously, and inhibition of these factors will be more beneficial than blocking individual molecule. Two important transcription factors implicated in chronic inflammatory diseases are nuclear factor kappa B (NF-κB and signal transducers and activators of transcription 3. The role of these factors in periodontal disease is a less explored area. This comprehensive review is aimed at unveiling the critical role of NF-κB and signal transducers and activators of transcription 3 in periodontal pathogenesis. An online search was performed using MEDLINE/PubMed database. All publications till 2016 related to NF-κB, signal transducer and activator of transcription 3 (STAT3, and inflammation were included in writing this review. A total of 27,390 references were published based on the search terms used. Out of these, 507 were related to the periodontal research published in English till 2016. Relevant papers were chosen after carefully reading the abstract. This review has attempted to comprehend the existing knowledge regarding the role of transcription factors NF-κB and STAT3 in periodontal disease. Moreover, it also provides a connecting molecular link for the periodontal medicine concept.

  1. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.

    Science.gov (United States)

    Zhong, Bo; Yang, Yan; Li, Shu; Wang, Yan-Yi; Li, Ying; Diao, Feici; Lei, Caoqi; He, Xiao; Zhang, Lu; Tien, Po; Shu, Hong-Bing

    2008-10-17

    Viral infection triggers activation of transcription factors such as NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. Here, we identified MITA as a critical mediator of virus-triggered type I IFN signaling by expression cloning. Overexpression of MITA activated IRF3, whereas knockdown of MITA inhibited virus-triggered activation of IRF3, expression of type I IFNs, and cellular antiviral response. MITA was found to localize to the outer membrane of mitochondria and to be associated with VISA, a mitochondrial protein that acts as an adaptor in virus-triggered signaling. MITA also interacted with IRF3 and recruited the kinase TBK1 to the VISA-associated complex. MITA was phosphorylated by TBK1, which is required for MITA-mediated activation of IRF3. Our results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.

  2. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles

    Directory of Open Access Journals (Sweden)

    Katie L Lannan

    2015-02-01

    Full Text Available Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as cellular fragments is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryoctes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and nongenomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB family of proteins and peroxisome proliferator activated receptor gamma (PPARγ. In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the nongenomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and

  3. Host Cell Factor-1 Recruitment to E2F-Bound and Cell-Cycle-Control Genes Is Mediated by THAP11 and ZNF143

    Directory of Open Access Journals (Sweden)

    J. Brandon Parker

    2014-11-01

    Full Text Available Host cell factor-1 (HCF-1 is a metazoan transcriptional coregulator essential for cell-cycle progression and cell proliferation. Current models suggest a mechanism whereby HCF-1 functions as a direct coregulator of E2F proteins, facilitating the expression of genes necessary for cell proliferation. In this report, we show that HCF-1 recruitment to numerous E2F-bound promoters is mediated by the concerted action of zinc finger transcription factors THAP11 and ZNF143, rather than E2F proteins directly. THAP11, ZNF143, and HCF-1 form a mutually dependent complex on chromatin, which is independent of E2F occupancy. Disruption of the THAP11/ZNF143/HCF-1 complex results in altered expression of cell-cycle control genes and leads to reduced cell proliferation, cell-cycle progression, and cell viability. These data establish a model in which a THAP11/ZNF143/HCF-1 complex is a critical component of the transcriptional regulatory network governing cell proliferation.

  4. DREB1/CBF transcription factors: their structure, function and role in ...

    Indian Academy of Sciences (India)

    This review is mainly focussed on the structural characteristics as well as transcriptional regulation of gene expression in response to various abiotic stresses, with particular ... The recent progress related to genetic engineering of DREB1/CBF transcription factors in various crops and model plants is also summarized.

  5. Sp1 is an important transcriptional regulation factor for forkhead box ...

    Indian Academy of Sciences (India)

    DONG JIE ZHANG

    2018-02-08

    Feb 8, 2018 ... Abstract. The transcription factor forkhead box N1 (Foxn1) plays an important role in the development and function of thymic epithelial cells (TECs) in vertebrates. However, the transcriptional regulation of Foxn1 is still unknown. A series of dual luciferase report vectors were constructed and their relative ...

  6. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors

    Directory of Open Access Journals (Sweden)

    Kamesh Narasimhan

    2014-01-01

    Conclusion: Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity.

  7. Factors affecting recruitment and retention of community health workers in a newborn care intervention in Bangladesh.

    Science.gov (United States)

    Rahman, Syed Moshfiqur; Ali, Nabeel Ashraf; Jennings, Larissa; Seraji, M Habibur R; Mannan, Ishtiaq; Shah, Rasheduzzaman; Al-Mahmud, Arif Billah; Bari, Sanwarul; Hossain, Daniel; Das, Milan Krishna; Baqui, Abdullah H; El Arifeen, Shams; Winch, Peter J

    2010-05-03

    Well-trained and highly motivated community health workers (CHWs) are critical for delivery of many community-based newborn care interventions. High rates of CHW attrition undermine programme effectiveness and potential for implementation at scale. We investigated reasons for high rates of CHW attrition in Sylhet District in north-eastern Bangladesh. Sixty-nine semi-structured questionnaires were administered to CHWs currently working with the project, as well as to those who had left. Process documentation was also carried out to identify project strengths and weaknesses, which included in-depth interviews, focus group discussions, review of project records (i.e. recruitment and resignation), and informal discussion with key project personnel. Motivation for becoming a CHW appeared to stem primarily from the desire for self-development, to improve community health, and for utilization of free time. The most common factors cited for continuing as a CHW were financial incentive, feeling needed by the community, and the value of the CHW position in securing future career advancement. Factors contributing to attrition included heavy workload, night visits, working outside of one's home area, familial opposition and dissatisfaction with pay. The framework presented illustrates the decision making process women go through when deciding to become, or continue as, a CHW. Factors such as job satisfaction, community valuation of CHW work, and fulfilment of pre-hire expectations all need to be addressed systematically by programs to reduce rates of CHW attrition.

  8. Factors affecting recruitment and retention of community health workers in a newborn care intervention in Bangladesh

    Directory of Open Access Journals (Sweden)

    Bari Sanwarul

    2010-05-01

    Full Text Available Abstract Background Well-trained and highly motivated community health workers (CHWs are critical for delivery of many community-based newborn care interventions. High rates of CHW attrition undermine programme effectiveness and potential for implementation at scale. We investigated reasons for high rates of CHW attrition in Sylhet District in north-eastern Bangladesh. Methods Sixty-nine semi-structured questionnaires were administered to CHWs currently working with the project, as well as to those who had left. Process documentation was also carried out to identify project strengths and weaknesses, which included in-depth interviews, focus group discussions, review of project records (i.e. recruitment and resignation, and informal discussion with key project personnel. Results Motivation for becoming a CHW appeared to stem primarily from the desire for self-development, to improve community health, and for utilization of free time. The most common factors cited for continuing as a CHW were financial incentive, feeling needed by the community, and the value of the CHW position in securing future career advancement. Factors contributing to attrition included heavy workload, night visits, working outside of one's home area, familial opposition and dissatisfaction with pay. Conclusions The framework presented illustrates the decision making process women go through when deciding to become, or continue as, a CHW. Factors such as job satisfaction, community valuation of CHW work, and fulfilment of pre-hire expectations all need to be addressed systematically by programs to reduce rates of CHW attrition.

  9. Interactome analysis of transcriptional coactivator multiprotein bridging factor 1 unveils a yeast AP-1-like transcription factor involved in oxidation tolerance of mycopathogen Beauveria bassiana.

    Science.gov (United States)

    Chu, Xin-Ling; Dong, Wei-Xia; Ding, Jin-Li; Feng, Ming-Guang; Ying, Sheng-Hua

    2018-02-01

    Oxidation tolerance is an important determinant to predict the virulence and biocontrol potential of Beauveria bassiana, a well-known entomopathogenic fungus. As a transcriptional coactivator, multiprotein bridging factor 1 mediates the activity of transcription factor in diverse physiological processes, and its homolog in B. bassiana (BbMBF1) contributes to fungal oxidation tolerance. In this study, the BbMBF1-interactomes under oxidative stress and normal growth condition were deciphered by mass spectrometry integrated with the immunoprecipitation. BbMBF1p factor has a broad interaction with proteins that are involved in various cellular processes, and this interaction is dynamically regulated by oxidative stress. Importantly, a B. bassiana homolog of yeast AP-1-like transcription factor (BbAP-1) was specifically associated with the BbMBF1-interactome under oxidation and significantly contributed to fungal oxidation tolerance. In addition, qPCR analysis revealed that several antioxidant genes are jointly controlled by BbAP-1 and BbMBF1. Conclusively, it is proposed that BbMBF1p protein mediates BbAP-1p factor to transcribe the downstream antioxidant genes in B. bassiana under oxidative stress. This study demonstrates for the first time a proteomic view of the MBF1-interactome in fungi, and presents an initial framework to probe the transcriptional mechanism involved in fungal response to oxidation, which will provide a new strategy to improve the biocontrol efficacy of B. bassiana.

  10. Cocaine and the AP-1 transcription factor complex.

    Science.gov (United States)

    Hope, B T

    1998-05-30

    Cocaine addition in humans develops gradually with repeated administrations and persists long after cocaine has cleared the body. The mechanisms underlying this persistent form of neuroplasticity are not understood and can involve both structural and biochemical mechanisms. The long time course for cocaine addiction in humans and for development of cocaine self-administration in animal models suggest the involvement of alterations in gene expression leading to altered signaling in the brain. In the striatum (Str) and nucleus accumbens (NAc) of rats. Pretreatment with repeated cocaine administrations downregulates the induction of various immediate early genes (IEGs) by a subsequent acute challenge with cocaine. Some of these downregulated IEGs encode Fos-related components of the activator protein-1 (AP-1) complex, which is likely re regulate a number of genes important for neuronal function. Interestingly, repeated cocaine administration induces novel delta FosB-related proteins (called chronic Fos-related antigens (Fras)) in the NAc and Str that replace the downregulated isoforms of Fos. Unlike the acutely induced, short-lasting isoforms of Fos and FosB, the chronic Fras persist long after the last cocaine administration. The known form of delta FosB per se lacks the domain required to activate transcription. If the chronic Fras are similar in structure to delta FosB, then the induction of chronic Fras likely leads to a blockade of AP-1-dependent transcription resulting in altered gene expression. We presently purifying the chronic Fras to obtain amino acid sequence in order to directly examine our hypothesis about the effects of repeated cocaine administration on AP-1 dependent transcription and gene expression in the brain

  11. DMPD: The interferon signaling network and transcription factor C/EBP-beta. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18163952 The interferon signaling network and transcription factor C/EBP-beta. Li H... The interferon signaling network and transcription factor C/EBP-beta. PubmedID 18163952 Title The interferon signaling network

  12. Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization.

    Science.gov (United States)

    Gallou, Adrien; Declerck, Stéphane; Cranenbrouck, Sylvie

    2012-03-01

    The establishment of arbuscular mycorrhizal associations causes major changes in plant roots and affects significantly the host in term of plant nutrition and resistance against biotic and abiotic stresses. As a consequence, major changes in root transcriptome, especially in plant genes related to biotic stresses, are expected. Potato microarray analysis, followed by real-time quantitative PCR, was performed to detect the wide transcriptome changes induced during the pre-, early and late stages of potato root colonization by Glomus sp. MUCL 41833. The microarray analysis revealed 526 up-regulated and 132 down-regulated genes during the pre-stage, 272 up-regulated and 109 down-regulated genes during the early stage and 734 up-regulated and 122 down-regulated genes during the late stage of root colonization. The most important class of regulated genes was associated to plant stress and in particular to the WRKY transcription factors genes during the pre-stage of root colonization. The expression profiling clearly demonstrated a wide transcriptional change during the pre-, early and late stages of root colonization. It further suggested that the WRKY transcription factor genes are involved in the mechanisms controlling the arbuscular mycorrhizal establishment by the regulation of plant defence genes.

  13. Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Hypoxia-inducible factors (HIFs play key roles in the cellular response to hypoxia. It is widely accepted that whereas HIF-1 and HIF-2 function as transcriptional activators, HIF-3 inhibits HIF-1/2α action. Contrary to this idea, we show that zebrafish Hif-3α has strong transactivation activity. Hif-3α is degraded under normoxia. Mutation of P393, P493, and L503 inhibits this oxygen-dependent degradation. Transcriptomics and chromatin immunoprecipitation analyses identify genes that are regulated by Hif-3α, Hif-1α, or both. Under hypoxia or when overexpressed, Hif-3α binds to its target gene promoters and upregulates their expression. Dominant-negative inhibition and knockdown of Hif-3α abolish hypoxia-induced Hif-3α-promoter binding and gene expression. Hif-3α not only mediates hypoxia-induced growth and developmental retardation but also possesses hypoxia-independent activities. Importantly, transactivation activity is conserved and human HIF-3α upregulates similar genes in human cells. These findings suggest that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia.

  14. Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor

    Science.gov (United States)

    Noda, Chieko; Narita, Yohei; Watanabe, Takahiro; Yoshida, Masahiro; Ashio, Keiji; Sato, Yoshitaka; Goshima, Fumi; Kanda, Teru; Yoshiyama, Hironori; Tsurumi, Tatsuya; Kimura, Hiroshi

    2016-01-01

    ABSTRACT Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1. PMID:26819314

  15. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    Science.gov (United States)

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants.

    Science.gov (United States)

    Noguero, Mélanie; Atif, Rana Muhammad; Ochatt, Sergio; Thompson, Richard D

    2013-08-01

    The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida.

    Science.gov (United States)

    Rich, Mélanie K; Courty, Pierre-Emmanuel; Roux, Christophe; Reinhardt, Didier

    2017-08-08

    Development of arbuscular mycorrhiza (AM) requires a fundamental reprogramming of root cells for symbiosis. This involves the induction of hundreds of genes in the host. A recently identified GRAS-type transcription factor in Petunia hybrida, ATA/RAM1, is required for the induction of host genes during AM, and for morphogenesis of the fungal endosymbiont. To better understand the role of RAM1 in symbiosis, we set out to identify all genes that depend on activation by RAM1 in mycorrhizal roots. We have carried out a transcript profiling experiment by RNAseq of mycorrhizal plants vs. non-mycorrhizal controls in wild type and ram1 mutants. The results show that the expression of early genes required for AM, such as the strigolactone biosynthetic genes and the common symbiosis signalling genes, is independent of RAM1. In contrast, genes that are involved at later stages of symbiosis, for example for nutrient exchange in cortex cells, require RAM1 for induction. RAM1 itself is highly induced in mycorrhizal roots together with many other transcription factors, in particular GRAS proteins. Since RAM1 has previously been shown to be directly activated by the common symbiosis signalling pathway through CYCLOPS, we conclude that it acts as an early transcriptional switch that induces many AM-related genes, among them genes that are essential for the development of arbuscules, such as STR, STR2, RAM2, and PT4, besides hundreds of additional RAM1-dependent genes the role of which in symbiosis remains to be explored. Taken together, these results indicate that the defect in the morphogenesis of the fungal arbuscules in ram1 mutants may be an indirect consequence of functional defects in the host, which interfere with nutrient exchange and possibly other functions on which the fungus depends.

  18. Heat shock transcription factors regulate heat induced cell death in a ...

    Indian Academy of Sciences (India)

    2007-03-29

    Hsps) which is strictly regulated by different members of heat shock transcription factors (HSFs). We previously reported that a rat histiocytoma, BC-8 failed to synthesize Hsps when subjected to typical heat shock conditions (42°C, ...

  19. The transcription factor BATF modulates cytokine-mediated responses in T cells.

    Science.gov (United States)

    Sopel, Nina; Graser, Anna; Mousset, Stephanie; Finotto, Susetta

    2016-08-01

    The transcription factor BATF (basic leucine zipper transcription factor, ATF-like), belongs to the AP-1 family of transcription factors and has been shown to be predominantly expressed in cells of haematopoietic origin, especially in B and T cells. In studies using Batf-deficient mice, a profound defect in the differentiation of T helper cells type 17 (Th17) and follicular T helper cells (Tfh) was described, as well as an impairment of antibody production with switched isotypes. More recently BATF has been described to influence also Th2 and Th9 responses in models of murine experimental asthma. In CD8(+) T cells BATF has been found associated with anti-viral responses. This review summarizes the role of BATF in CD4(+) T cell subsets and in CD8(+) T cells, with particular focus on this transcription factor in the setting of allergic asthma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Systematic Identification of Proteins Binding to Chromatin-Embedded Ubiquitylated H2B Reveals Recruitment of SWI/SNF to Regulate Transcription

    Directory of Open Access Journals (Sweden)

    Efrat Shema-Yaacoby

    2013-08-01

    Full Text Available Chromatin posttranslational modifications (PTMs, including monoubiquitylation of histone H2B on lysine 120 (H2Bub1, play a major role in regulating genome functions. To elucidate the molecular mechanisms of H2Bub1 activity, a chromatin template uniformly containing H2Bub1 was used as an affinity matrix to identify preferentially interacting human proteins. Over 90 such factors were found, including proteins and protein complexes associated with transcription, RNA posttranscriptional modifications, and DNA replication and repair. Notably, we found that the SWI/SNF chromatin remodeling complex associates preferentially with H2Bub1-rich chromatin. Moreover, SWI/SNF is required for optimal transcription of a subset of genes that are selectively dependent on H2Bub1. Our findings substantially expand the known H2Bub1 interactome and provide insights into the functions of this PTM in mammalian gene regulation.

  1. The novel transcription factor IDEF1 regulates iron-deficiency response and tolerance

    OpenAIRE

    Kobayashi, Takanori; Ogo, Yuko; Nakanishi Itai, Reiko; Nakanishi, Hiromi; Takahashi, Michiko; Mori, Satoshi; Nishizawa, Naoko K.

    2009-01-01

    Iron is essential for most living organisms and is required for normal plant growth. Plants induce iron utilization systems under conditions of low iron availability, but the molecular mechanisms of this gene regulation system remain largely unknown. We identified the rice transcription factor IDEF1, which specifically binds the iron-deficiency-responsive cis-acting element IDE1. IDEF1 belongs to an uncharacterized branch of the plant-specific transcription factor family ABI3/VP1 and efficien...

  2. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants

    OpenAIRE

    Kobayashi, Takanori; Ogo, Yuko; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Takahashi, Michiko; Mori, Satoshi; Nishizawa, Naoko K.

    2007-01-01

    Iron is essential for most living organisms and is often the major limiting nutrient for normal growth. Plants induce iron utilization systems under conditions of low iron availability, but the molecular mechanisms of gene regulation under iron deficiency remain largely unknown. We identified the rice transcription factor IDEF1, which specifically binds the iron deficiency-responsive cis-acting element IDE1. IDEF1 belongs to an uncharacterized branch of the plant-specific transcription factor...

  3. [Pluripotency candidate signaling network and transcription factors in domesticated ungulates: a review].

    Science.gov (United States)

    Zhao, Yuncheng; Chen, Bo; Zhou, Chuan; Zhang, Xiuhua; Huang, Juncheng

    2010-12-01

    Domesticated ungulates embryonic stem (ES) cells have great significances in biology and wide application prospects. This review compared the key signaling pathways related with pluripotency between mouse and human ES cells, and the difference of transcription factors in mouse, human and domesticated ungulates ES cells were elaborated. Finally the pluripotency candidate signaling network and transcription factors related in the derivation of domesticated ungulates ES cell were discussed combined with practical experience of ovine embryonic stem cell derivation in our laboratory.

  4. Improving Aspergillus niger as a production host through manipulation of pH responding transcription factors

    DEFF Research Database (Denmark)

    Poulsen, Lars; Bruno, K.S.; Thykær, Jette

    ). In the present study the effect of modulation of transcription factors in Aspergillus niger, which is an industrially important micro-organism used in various processes including organic acid and enzyme production, was investigated. The strategy described in this work focuses on regulation connected to pH....... It was chosen as an important process parameter, due to its significant influences on both organic acid and enzyme production. A previous transcription analysis identified several putative transcription factors with pH responding behavior (Andersen et al., 2009). A number of these genes were selected as targets...

  5. Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites

    DEFF Research Database (Denmark)

    Tornøe, Jens; Kusk, P.; Johansen, T.E.

    2002-01-01

    promoters. The JeT promoter was made by separating the included consensus boxes by the same distances in base pairs as found in the wild-type promoters, thus preserving transcription factor interaction. The resulting promoter was shown to drive reporter expression to high levels in enhanced green...... fluorescent protein and secreted alkaline phosphatase reporter assays. By replacing sequences separating the transcription factor binding sites with randomized sequences of the same length, sets of new promoters with different strengths, spanning a 10-fold range of transcriptional activity in cell culture...

  6. The Drosophila stonewall gene encodes a putative transcription factor essential for germ cell development.

    Science.gov (United States)

    Clark, K A; McKearin, D M

    1996-03-01

    The differentiation of Drosophila germ cells is a useful model for studying mechanisms of cell specification. We report the identification of a gene, stonewall, that is required for germ cell development. Mutations in stonewall block proper oocyte differentiation and frequently cause the presumptive oocyte to develop as a nurse cell. Eventually, germ cells degenerate apoptotically. Stonewall is a germ cell nuclear protein; Stonewall has a DNA binding domain that shows similarities to the Myb and Adf-1 transcription factors and has other features that suggest that it is a transcription activating factor. We suggest that Stonewall transcriptional regulation is essential in cystocytes for maturation into specialized nurse cells and oocyte.

  7. Transcription factor retention on mitotic chromosomes: regulatory mechanisms and impact on cell fate decisions.

    Science.gov (United States)

    Raccaud, Mahé; Suter, David M

    2017-09-01

    During mitosis, gene transcription stops, and the bulk of DNA-binding proteins are excluded from condensed chromosomes. While most gene-specific transcription factors are largely evicted from mitotic chromosomes, a subset remains bound to specific and non-specific DNA sites. Here, we review the current knowledge on the mechanisms leading to the retention of a subset of transcription factors on mitotic chromosomes and discuss the implications in gene expression regulation and their potential as an epigenetic mechanism controlling stem cell self-renewal and differentiation. © 2017 Federation of European Biochemical Societies.

  8. PEA3/ETV4-related transcription factors coupled with active ERK signalling are associated with poor prognosis in gastric adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, R

    2011-06-28

    Background: Transcription factors often play important roles in tumourigenesis. Members of the PEA3 subfamily of ETS-domain transcription factors fulfil such a role and have been associated with tumour metastasis in several different cancers. Moreover, the activity of the PEA3 subfamily transcription factors is potentiated by Ras-ERK pathway signalling, which is itself often deregulated in tumour cells.\\r\

  9. A narrow bimalleolar width is a risk factor for ankle inversion injury in male military recruits: A prospective study.

    Science.gov (United States)

    Rice, Hannah; Nunns, Michael; House, Carol; Fallowfield, Joanne; Allsopp, Adrian; Dixon, Sharon

    2017-01-01

    Ankle inversion injuries are one of the most common and burdensome injuries in athletic populations. Research that prospectively identifies characteristics associated with this injury is lacking. This prospective study compared baseline anthropometric and biomechanical gait characteristics of military recruits who sustained an ankle inversion injury during training, with those who remained injury-free. Bilateral plantar pressure and three-dimensional lower limb kinematics were recorded in 1065 male, injury-free military recruits, during barefoot running. Injuries that occurred during the 32-week recruit training programme were subsequently recorded. Data were compared between recruits who sustained an ankle inversion injury during training (n=27) and a sample (n=120) of those who completed training injury-free. A logistic regression analysis was used to identify risk factors for this injury. A narrower bimalleolar width and an earlier peak pressure under the fifth metatarsal were predictors of ankle inversion injury. Those who sustained an ankle inversion injury also had a lower body mass, body mass index, and a smaller calf girth than those who completed training injury-free. Anthropometric and dynamic gait characteristics have been identified that may predispose recruits to an ankle inversion injury during Royal Marine recruit training, allowing identification of recruits at higher risk at the start of training. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  10. Identification of direct targets of plant transcription factors using the GR fusion technique.

    Science.gov (United States)

    Yamaguchi, Nobutoshi; Winter, Cara M; Wellmer, Frank; Wagner, Doris

    2015-01-01

    The glucocorticoid receptor-dependent activation of plant transcription factors has proven to be a powerful tool for the identification of their direct target genes. In the absence of the synthetic steroid hormone dexamethasone (dex), transcription factors fused to the hormone-binding domain of the glucocorticoid receptor (TF-GR) are held in an inactive state, due to their cytoplasmic localization. This requires physical interaction with the heat shock protein 90 (HSP90) complex. Hormone binding leads to disruption of the interaction between GR and HSP90 and allows TF-GR fusion proteins to enter the nucleus. Once inside the nucleus, they bind to specific DNA sequences and immediately activate or repress expression of their targets. This system is well suited for the identification of direct target genes of transcription factors in plants, as (A) there is little basal protein activity in the absence of dex, (B) steroid application leads to rapid transcription factor activation, (C) no side effects of dex treatment are observed on the physiology of the plant, and (D) secondary effects of transcription factor activity can be eliminated by simultaneous application of an inhibitor of protein biosynthesis, cycloheximide (cyc). In this chapter, we describe detailed protocols for the preparation of plant material, for dex and cyc treatment, for RNA extraction, and for the PCR-based or genome-wide identification of direct targets of transcription factors fused to GR.

  11. Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Toyoda Tetsuro

    2009-11-01

    Full Text Available Abstract Background Sharing a common ErbB/HER receptor signaling pathway, heregulin (HRG induces differentiation of MCF-7 human breast cancer cells while epidermal growth factor (EGF elicits proliferation. Although cell fates resulting from action of the aforementioned ligands completely different, the respective gene expression profiles in early transcription are qualitatively similar, suggesting that gene expression during late transcription, but not early transcription, may reflect ligand specificity. In this study, based on both the data from time-course quantitative real-time PCR on over 2,000 human transcription factors and microarray of all human genes, we identified a series of transcription factors which may control HRG-specific late transcription in MCF-7 cells. Results We predicted that four transcription factors including EGR4, FRA-1, FHL2, and DIPA should have responsibility of regulation in MCF-7 cell differentiation. Validation analysis suggested that one member of the activator protein 1 (AP-1 family, FOSL-1 (FRA-1 gene, appeared immediately following c-FOS expression, might be responsible for expression of transcription factor FHL2 through activation of the AP-1 complex. Furthermore, RNAi gene silencing of FOSL-1 and FHL2 resulted in increase of extracellular signal-regulated kinase (ERK phosphorylation of which duration was sustained by HRG stimulation. Conclusion Our analysis indicated that a time-dependent transcriptional regulatory network including c-FOS, FRA-1, and FHL2 is vital in controlling the ERK signaling pathway through a negative feedback loop for MCF-7 cell differentiation.

  12. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Science.gov (United States)

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  13. Assessing the Role of Environmental Factors on Baltic Cod Recruitment, a Complex Adaptive System Emergent Property

    Directory of Open Access Journals (Sweden)

    Dionysis Krekoukiotis

    2016-07-01

    Full Text Available For decades, fish recruitment has been a subject of intensive research with stock–recruitment models commonly used for recruitment prediction often only explaining a small fraction of the inter-annual recruitment variation. The use of environmental information to improve our ability to predict recruitment, could contribute considerably to fisheries management. However, the problem remains difficult because the mechanisms behind such complex relationships are often poorly understood; this in turn, makes it difficult to determine the forecast estimation robustness, leading to the failure of some relationships when new data become available. The utility of machine learning algorithms such as artificial neural networks (ANNs for solving complex problems has been demonstrated in aquatic studies and has led many researchers to advocate ANNs as an attractive, non-linear alternative to traditional statistical methods. The goal of this study is to design a Baltic cod recruitment model (FishANN that can account for complex ecosystem interactions. To this end, we (1 build a quantitative model representation of the conceptual understanding of the complex ecosystem interactions driving Baltic cod recruitment dynamics, and (2 apply the model to strengthen the current capability to project future changes in Baltic cod recruitment. FishANN is demonstrated to bring multiple stressors together into one model framework and estimate the relative importance of these stressors while interpreting the complex nonlinear interactions between them. Additional requirements to further improve the current study in the future are also proposed.

  14. Novel Sp family-like transcription factors are present in adult insect cells and are involved in transcription from the polyhedrin gene initiator promoter.

    Science.gov (United States)

    Ramachandran, A; Jain, A; Arora, P; Bashyam, M D; Chatterjee, U; Ghosh, S; Parnaik, V K; Hasnain, S E

    2001-06-29

    We earlier documented the involvement of a cellular factor, polyhedrin (polh) promoter-binding protein, in transcription from the Autographa californica nuclear polyhedrosis virus polh gene promoter. Sequences upstream of the polh promoter were found to influence polh promoter-driven transcription. Analysis of one such region, which could partially compensate for the mutated polh promoter and also activate transcription from the wild-type promoter, revealed a sequence (AcSp) containing a CACCC motif and a loose GC box resembling the binding motifs of the transcription factor Sp1. AcSp and the consensus Sp1 sequence (cSp) specifically bound factor(s) in HeLa and Spodoptera frugiperda (Sf9) insect cell nuclear extracts to generate identical binding patterns, indicating the similar nature of the factor(s) interacting with these sequences. The AcSp and cSp oligonucleotides enhanced in vivo expression of a polh promoter-driven luciferase gene. In vivo mopping of these factor(s) significantly reduced transcription from the polh promoter. Recombinant viruses carrying deletions in the upstream AcSp sequence confirmed the requirement of these factor(s) in polh promoter-driven transcription in the viral context. We demonstrate for the first time DNA-protein interactions involving novel members of the Sp family of proteins in adult insect cells and their involvement in transcription from the polh promoter.

  15. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors.

    Science.gov (United States)

    Karamitros, Dimitris; Patmanidi, Alexandra L; Kotantaki, Panoraia; Potocnik, Alexandre J; Bähr-Ivacevic, Tomi; Benes, Vladimir; Lygerou, Zoi; Kioussis, Dimitris; Taraviras, Stavros

    2015-01-01

    Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system. © 2015. Published by The Company of Biologists Ltd.

  16. A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tsai Chueh-Jen

    2010-01-01

    Full Text Available Abstract There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α and nuclear factor-kappa B (NF-κB were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors.

  17. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    Science.gov (United States)

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Novel Data Fusion Method and Exploration of Multiple Information Sources for Transcription Factor Target Gene Prediction

    Science.gov (United States)

    Dai, Xiaofeng; Yli-Harja, Olli; Lähdesmäki, Harri

    2010-12-01

    Background. Revealing protein-DNA interactions is a key problem in understanding transcriptional regulation at mechanistic level. Computational methods have an important role in predicting transcription factor target gene genomewide. Multiple data fusion provides a natural way to improve transcription factor target gene predictions because sequence specificities alone are not sufficient to accurately predict transcription factor binding sites. Methods. Here we develop a new data fusion method to combine multiple genome-level data sources and study the extent to which DNA duplex stability and nucleosome positioning information, either alone or in combination with other data sources, can improve the prediction of transcription factor target gene. Results. Results on a carefully constructed test set of verified binding sites in mouse genome demonstrate that our new multiple data fusion method can reduce false positive rates, and that DNA duplex stability and nucleosome occupation data can improve the accuracy of transcription factor target gene predictions, especially when combined with other genome-level data sources. Cross-validation and other randomization tests confirm the predictive performance of our method. Our results also show that nonredundant data sources provide the most efficient data fusion.

  19. Differential expression of transcription factors Snail, Slug, SIP1, and Twist in ameloblastoma.

    Science.gov (United States)

    Siar, Chong Huat; Ng, Kok Han

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) via the mechanism of transcription repression is a crucial process for the induction of invasiveness in many human tumors. Ameloblastoma is a benign odontogenic epithelial neoplasm with a locally infiltrative behavior. Twist, an EMT promoter, has been implicated in its invasiveness. The roles of the other transcription factors remain unclarified. Four transcription factors, namely Snail, Slug, SIP1, and Twist, were examined immunohistochemically in 64 ameloblastoma [18 unicystic (UA), 20 solid/multicystic (SA), 4 desmoplastic (DA), and 22 recurrent (RA)]. All four transcription factors were differentially expressed in ameloblastoma [Snail: n = 60/64 (94%); Slug: n = 21/64 (33%); SIP: n = 18/64 (28%); Twist: n = 26/64 (41%)] (P 0.05). Intracellular protein localization was predominantly nuclear for Snail, cytoplasmic>nuclear for Slug and SIP1, and cytoplasmic/nuclear for Twist. Overexpression of Snail in most subsets (UA = 18/18; SMA = 19/20; DA = 4/4; RA = 19/22) compared with the other transcription factors (P ameloblastoma. Overexpression of Snail in most subsets suggests that this molecule is most likely the prototype transcription factor involved in inducing EMT in the ameloblastoma. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  20. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  1. Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining

    OpenAIRE

    Morgan, Xochitl C; Ni, Shulin; Miranker, Daniel P; Iyer, Vishwanath R

    2007-01-01

    Abstract Background Cis-acting transcriptional regulatory elements in mammalian genomes typically contain specific combinations of binding sites for various transcription factors. Although some cis-regulatory elements have been well studied, the combinations of transcription factors that regulate normal expression levels for the vast majority of the 20,000 genes in the human genome are unknown. We hypothesized that it should be possible to discover transcription factor combinations that regul...

  2. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  3. Transcriptome - Scale characterization of salt responsive bean TCP transcription factors.

    Science.gov (United States)

    İlhan, Emre; Büyük, İlker; İnal, Behcet

    2018-02-05

    TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) proteins are important regulators of growth and developmental processes including branching, floral organ morphogenesis and leaf growth as well as stress response. This study identified 27 TCP genes of Phaseolus vulgaris (common bean), which were divided into three clusters based on phylogenetic relationship. In addition, this study showed that some of TCP genes such as Pvul-TCP-4 and Pvul-TCP-15 located on chromosomes 3 and 7, Pvul-TCP-7 and Pvul-TCP-20 located on chromosome 7 and 9, were segmentally duplicated. On the other hand, a total of 20 Pvul-TCP genes have predicted to be targeted by microRNAs (miRNA). Most of the miRNA-target genes were Pvul-TCP-1, -11, -13 and -27, which were targeted by 13, 17, 22 and 13 plant miRNAs, respectively. miR319 was one of the highly represented regulatory miRNAs to target TCP transcripts. Promoter region analysis of TCP genes resulted that the GT-1 motif, which was related to salt stress, was found in 14 different Pvul-TCP genes. Expression profiling of 10 Pvul-TCP genes based on RNA-sequencing data further confirmed with quantitative real-time RT-PCR measurements identified that Pvul-TCP genes under salt stress are expressed in a cultivar- and tissue-specific manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors

    National Research Council Canada - National Science Library

    Lyer, Vishwanath R

    2006-01-01

    .... Our work over the past year has successfully identified targets of c-Myc, E2F4 and Stat1, all factors important in breast cancer, and our data supports the idea that it is possible to comprehensively...

  5. A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum.

    Science.gov (United States)

    Zhao, Min; Song, Aiping; Li, Peiling; Chen, Sumei; Jiang, Jiafu; Chen, Fadi

    2014-10-24

    Iron (Fe) deficiency can represent a serious constraint on crop growth and productivity. A number of members of the bHLH transcription factor family are known to be involved in the plant Fe deficiency response. Plants have evolved two distinct uptake strategies when challenged by Fe deficiency: dicotyledonous and non-graminaceous species rely mostly on a reduction strategy regulated by bHLH transcription factors, whereas rice relies on a chelation strategy, also regulated by bHLH transcription factors. CmbHLH1, a bHLH transcription factor which is localized within the nucleus, was isolated from chrysanthemum. Its transcription was up-regulated both by Fe deficiency and by the exogenous application of abscisic acid. The roots of transgenic chrysanthemum plants in which CmbHLH1 was up-regulated were better able than those of the wild type chrysanthemum cultivar to acidify their immediate external environment by enhancing the transcription of the H(+)-ATPase encoding gene CmHA. However, there was no effect of the transgene on the efficiency of uptake of either manganese or zinc. Here, Chrysanthemum CmbHLH1 contributed to Fe uptake via H(+)-ATPase mediated acidification of the rhizosphere. ABA may be positively involved in the process.

  6. Suppression of estrogen receptor transcriptional activity by connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Long Cheng

    Full Text Available Secreted growth factors have been shown to stimulate the transcriptional activity of estrogen receptors (ER that are responsible for many biological processes. However, whether these growth factors physically interact with ER remains unclear. Here, we show for the first time that connective tissue growth factor (CTGF physically and functionally associates with ER. CTGF interacted with ER both in vitro and in vivo. CTGF interacted with ER DNA-binding domain. ER interaction region in CTGF was mapped to the thrombospondin type I repeat, a cell attachment motif. Overexpression of CTGF inhibited ER transcriptional activity as well as the expression of estrogen-responsive genes, including pS2 and cathepsin D. Reduction of endogenous CTGF with CTGF small interfering RNA enhanced ER transcriptional activity. The interaction between CTGF and ER is required for the repression of estrogen-responsive transcription by CTGF. Moreover, CTGF reduced ER protein expression, whereas the CTGF mutant that did not repress ER transcriptional activity also did not alter ER protein levels. The results suggested the transcriptional regulation of estrogen signaling through interaction between CTGF and ER, and thus may provide a novel mechanism by which cross-talk between secreted growth factor and ER signaling pathways occurs.

  7. ER stress and cancer: The FOXO forkhead transcription factor link.

    Science.gov (United States)

    Alasiri, Glowi; Fan, Lavender Yuen-Nam; Zona, Stefania; Goldsbrough, Isabella Galeno; Ke, Hui-Ling; Auner, Holger Werner; Lam, Eric Wing-Fai

    2018-02-15

    The endoplasmic reticulum (ER) is a cellular organelle with central roles in maintaining proteostasis due to its involvement in protein synthesis, folding, quality control, distribution and degradation. The accumulation of misfolded proteins in the ER lumen causes 'ER stress' and threatens overall cellular proteostasis. To restore ER homeostasis, cells evoke an evolutionarily conserved adaptive signalling and gene expression network collectively called the 'unfolded protein response (UPR)', a complex biological process which aims to restore proteostasis. When ER stress is overwhelming and beyond rectification, the normally pro-survival UPR can shift to induce cell termination. Emerging evidence from mammalian, fly and nematode worm systems reveals that the FOXO Forkhead proteins integrate upstream ER stress and UPR signals with the transcriptional machinery to decrease translation, promote cell survival/termination and increase the levels of ER-resident chaperones and of ER-associated degradation (ERAD) components to restore ER homeostasis. The high rates of protein synthesis/translation associated with cancer cell proliferation and metabolism, as well as mutations resulting in aberrant proteins, also induce ER stress and the UPR. While the pro-survival side of the UPR underlies its ability to sustain and promote cancers, its apoptotic functions can be exploited for cancer therapies by offering the chance to 'flick the proteostatic switch'. To this end, further studies are required to fully reevaluate the roles and regulation of these UPR signalling molecules, including FOXO proteins and their targets, in cancer initiation and progression as well as the effects on inhibiting their functions in cancer cells. This information will help to establish these UPR signalling molecules as possible therapeutic targets and putative biomarkers in cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Strategies for recruiting Hispanic women into a prospective cohort study of modifiable risk factors for gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hastings Valerie

    2009-12-01

    Full Text Available Abstract Background The purpose of this article was to describe effective strategies for recruitment of Hispanic women into a prospective cohort study of modifiable risk factors for gestational diabetes mellitus (GDM. Although Hispanic women have two to four times the risk of developing GDM compared with non-Hispanic white women, few GDM prevention studies have included Hispanic women. Methods The study was conducted in the ambulatory obstetrical practices of Baystate Medical Center located in a socioeconomically and ethnically diverse city in Massachusetts. The study employed a range of strategies to recruit Hispanic women based on a review of the literature as well as prior experience with the study population. Results Over a period of 32 months, a total of 851 Hispanic prenatal care patients were recruited. Among eligible women, 52.4% agreed to participate. Participants were young (70% Conclusions Findings suggest that investigators can successfully recruit pregnant women from ethnic minority groups of low socioeconomic status into observational studies. The study provides culturally appropriate recruitment strategies useful for practice-based settings recruiting Hispanic research participation.

  9. Snail transcription factor negatively regulates maspin tumor suppressor in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Neal Corey L

    2012-08-01

    Full Text Available Abstract Background Maspin, a putative tumor suppressor that is down-regulated in breast and prostate cancer, has been associated with decreased cell motility. Snail transcription factor is a zinc finger protein that is increased in breast cancer and is associated with increased tumor motility and invasion by induction of epithelial-mesenchymal transition (EMT. We investigated the molecular mechanisms by which Snail increases tumor motility and invasion utilizing prostate cancer cells. Methods Expression levels were analyzed by RT-PCR and western blot analyses. Cell motility and invasion assays were performed, while Snail regulation and binding to maspin promoter was analyzed by luciferase reporter and chromatin immunoprecipitation (ChIP assays. Results Snail protein expression was higher in different prostate cancer cells lines as compared to normal prostate epithelial cells, which correlated inversely with maspin expression. Snail overexpression in 22Rv1 prostate cancer cells inhibited maspin expression and led to increased migration and invasion. Knockdown of Snail in DU145 and C4-2 cancer cells resulted in up-regulation of maspin expression, concomitant with decreased migration. Transfection of Snail into 22Rv1 or LNCaP cells inhibited maspin promoter activity, while stable knockdown of Snail in C4-2 cells increased promoter activity. ChIP analysis showed that Snail is recruited to the maspin promoter in 22Rv1 cells. Conclusions Overall, this is the first report showing that Snail can negatively regulate maspin expression by directly repressing maspin promoter activity, leading to increased cell migration and invasion. Therefore, therapeutic targeting of Snail may be useful to re-induce expression of maspin tumor suppressor and prevent prostate cancer tumor progression.

  10. What Factors Drive Job Seekers Attitude in Using E-Recruitment?

    Directory of Open Access Journals (Sweden)

    Ritzky Karina Brahmana

    2013-10-01

    Full Text Available In a digital world, job seekers prefer to use e-recruitment for a vacancy searching. Thus, the expla- nation of the determinants of their attitude in using this technology is left unobserved. This article reports the result of a survey study on how users utilize e-recruitment to search for works. Three hundred eighty-five just-graduated undergraduate students answered questions regarding their intention of using the e-recruitment under Theory of Acceptance Model. We propose Perceived Use- fulness, Perceived Ease of Use, and Perceived of Enjoyment as the determinants of the job seekers intention. Results showed that those three variables influence the decision making of job seekers. We found also Perceived Usefulness is the mediating effect for jobs seekers in easy-to-use and enjoy feeling. This article provides evidence that e-recruitment has to be friendly user and fun to use to attract job seekers intention.

  11. Protein intrinsic disorder in Arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    O'Shea, Charlotte; Jensen, Mikael Kryger; Stender, Emil G.P.

    2015-01-01

    because of its simple MoRF pattern and its ability to interact with RCD1 (radical-induced cell death 1). Experiments in yeast and thermodynamic characterization suggest that its single MoRF region is sufficient for both transcriptional activation and interaction with RCD1. The remainder of the large......Protein ID (intrinsic disorder) plays a significant, yet relatively unexplored role in transcription factors (TFs). In the present paper, analysis of the transcription regulatory domains (TRDs) of six phylogenetically representative, plant-specific NAC [no apical meristem, ATAF (Arabidopsis...

  12. A P1 Transcription Factors in Epidermal Differentiation and Skin Cancer

    International Nuclear Information System (INIS)

    Eckert, R. L.; Adhikary, G.; Young, C. A.; Jans, R.; Xu, W.; Eckert, R. L.; Eckert, R. L.; Crish, J. F.; Rorke, E.L.

    2013-01-01

    A P1 (jun/fos) transcription factors (c-jun, jun B, jun D, c-fos, Fos B, Fr a-1, and Fr a-2) are key regulators of epidermal keratinocyte survival and differentiation and important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each protein is expressed, at different levels, in multiple cells layers in differentiating epidermis, and because A P1 transcription factors regulate competing processes (i.e., proliferation, apoptosis, and differentiation). Various in vivo genetic approaches have been used to study these proteins including targeted and conditional knockdown, overexpression, and expression of dominant-negative inactivating A P1 transcription factors in epidermis. Taken together, these studies suggest that individual A P1 transcription factors have different functions in the epidermis and in cancer development and that altering A P1 transcription factor function in the basal versus supra basal layers differentially influences the epidermal differentiation response and disease and cancer development.

  13. The transcription factor KLF2 restrains CD4⁺ T follicular helper cell differentiation.

    Science.gov (United States)

    Lee, June-Yong; Skon, Cara N; Lee, You Jeong; Oh, Soohwan; Taylor, Justin J; Malhotra, Deepali; Jenkins, Marc K; Rosenfeld, M Geoffrey; Hogquist, Kristin A; Jameson, Stephen C

    2015-02-17

    T follicular helper (Tfh) cells are essential for efficient B cell responses, yet the factors that regulate differentiation of this CD4(+) T cell subset are incompletely understood. Here we found that the KLF2 transcription factor serves to restrain Tfh cell generation. Induced KLF2 deficiency in activated CD4(+) T cells led to increased Tfh cell generation and B cell priming, whereas KLF2 overexpression prevented Tfh cell production. KLF2 promotes expression of the trafficking receptor S1PR1, and S1PR1 downregulation is essential for efficient Tfh cell production. However, KLF2 also induced expression of the transcription factor Blimp-1, which repressed transcription factor Bcl-6 and thereby impaired Tfh cell differentiation. Furthermore, KLF2 induced expression of the transcription factors T-bet and GATA3 and enhanced Th1 differentiation. Hence, our data indicate KLF2 is pivotal for coordinating CD4(+) T cell differentiation through two distinct and complementary mechanisms: via control of T cell localization and by regulation of lineage-defining transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Environmental factors affecting recruitment of northern shrimp (Pandalus borealis) in West Greenland waters

    DEFF Research Database (Denmark)

    Wieland, Kai; Siegstad, H.

    2012-01-01

    Survey estimates of biomass of Northern shrimp (Pandalus borealis) in West Greenland waters increased from about 178000 tons in 1998 to about 598000 tons in 2003. The increase in stock size was preceded by several consecutive years in which recruitment was substantially above average. Recruitment...... of the fitted model, possibly due to a mismatch between the timing of larval hatch and the timing of the phytoplankton bloom, which could not adequately be addressed due to data limitations...

  15. The transcription factor Myt3 acts as a pro-survival factor in β-cells.

    Directory of Open Access Journals (Sweden)

    Bryan R Tennant

    Full Text Available We previously identified the transcription factor Myt3 as specifically expressed in pancreatic islets. Here, we sought to determine the expression and regulation of Myt3 in islets and to determine its significance in regulating islet function and survival.Myt3 expression was determined in embryonic pancreas and adult islets by qPCR and immunohistochemistry. ChIP-seq, ChIP-qPCR and luciferase assays were used to evaluate regulation of Myt3 expression. Suppression of Myt3 was used to evaluate gene expression, insulin secretion and apoptosis in islets.We show that Myt3 is the most abundant MYT family member in adult islets and that it is expressed in all the major endocrine cell types in the pancreas after E18.5. We demonstrate that Myt3 expression is directly regulated by Foxa2, Pdx1, and Neurod1, which are critical to normal β-cell development and function, and that Ngn3 induces Myt3 expression through alterations in the Myt3 promoter chromatin state. Further, we show that Myt3 expression is sensitive to both glucose and cytokine exposure. Of specific interest, suppressing Myt3 expression reduces insulin content and increases β-cell apoptosis, at least in part, due to reduced Pdx1, Mafa, Il-6, Bcl-xl, c-Iap2 and Igfr1 levels, while over-expression of Myt3 protects islets from cytokine induced apoptosis.We have identified Myt3 as a novel transcriptional regulator with a critical role in β-cell survival. These data are an important step in clarifying the regulatory networks responsible for β-cell survival, and point to Myt3 as a potential therapeutic target for improving functional β-cell mass.

  16. Comparative Analysis of Transcription Factors Families across Fungal Tree of Life

    Energy Technology Data Exchange (ETDEWEB)

    Salamov, Asaf; Grigoriev, Igor

    2015-03-19

    Transcription factors (TFs) are proteins that regulate the transcription of genes, by binding to specific DNA sequences. Based on literature (Shelest, 2008; Weirauch and Hughes,2011) collected and manually curated list of DBD Pfam domains (in total 62 DBD domains) We looked for distribution of TFs in 395 fungal genomes plus additionally in plant genomes (Phytozome), prokaryotes(IMG), some animals/metazoans and protists genomes

  17. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    OpenAIRE

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovere...

  18. Activating transcription factor 3 regulates immune and metabolic homeostasis

    Czech Academy of Sciences Publication Activity Database

    Ryneš, J.; Donohoe, C. D.; Frommolt, P.; Brodesser, S.; Jindra, Marek; Uhlířová, M.

    2012-01-01

    Roč. 32, č. 19 (2012), s. 3949-3962 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GD204/09/H058 Institutional support: RVO:60077344 Keywords : metabolic homeostasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.372, year: 2012

  19. Mouse Incisor Stem Cell Niche and Myb Transcription Factors

    Czech Academy of Sciences Publication Activity Database

    Švandová, Eva; Veselá, Barbora; Šmarda, J.; Hampl, A.; Radlanski, R.J.; Matalová, Eva

    2015-01-01

    Roč. 44, č. 5 (2015), s. 338-344 ISSN 0340-2096 R&D Projects: GA ČR GAP304/11/1418; GA ČR GCP302/12/J059 Institutional support: RVO:67985904 Keywords : c-Myb * stem cell niches Subject RIV: EA - Cell Biology Impact factor: 0.615, year: 2015

  20. Osteogenic Potential of the Transcription Factor c-MYB

    Czech Academy of Sciences Publication Activity Database

    Oralová, Veronika; Matalová, Eva; Killinger, Michael; Knopfová, L.; Šmarda, J.; Buchtová, Marcela

    2017-01-01

    Roč. 100, č. 3 (2017), s. 311-322 ISSN 0171-967X R&D Projects: GA ČR(CZ) GB14-37368G Institutional support: RVO:67985904 Keywords : mineralised matrix * micromass cultures * mouse limbs Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 3.124, year: 2016

  1. Salvia miltiorrhiza inhibits the expressions of transcription factor T ...

    African Journals Online (AJOL)

    SM powder for injection repressed the expressions of T-bet and TNFα in the experimental colitis in mice, which could relieve the inflamed colonic lesions and elevate the survival of mice. Keywords: Salvia miltiorrhiza, T-bet, tumor necrosis factor α, colitis, mice, inflammatory bowel disease, Crohn's disease, ulcerative colitis ...

  2. Identification of a novel and unique transcription factor in the intraerythrocytic stage of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Kanako Komaki-Yasuda

    Full Text Available The mechanisms of stage-specific gene regulation in the malaria parasite Plasmodium falciparum are largely unclear, with only a small number of specific regulatory transcription factors (AP2 family having been identified. In particular, the transcription factors that function in the intraerythrocytic stage remain to be elucidated. Previously, as a model case for stage-specific transcription in the P. falciparum intraerythrocytic stage, we analyzed the transcriptional regulation of pf1-cys-prx, a trophozoite/schizont-specific gene, and suggested that some nuclear factors bind specifically to the cis-element of pf1-cys-prx and enhance transcription. In the present study, we purified nuclear factors from parasite nuclear extract by 5 steps of chromatography, and identified a factor termed PREBP. PREBP is not included in the AP2 family, and is a novel protein with four K-homology (KH domains. The KH domain is known to be found in RNA-binding or single-stranded DNA-binding proteins. PREBP is well conserved in Plasmodium species and partially conserved in phylum Apicomplexa. To evaluate the effects of PREBP overexpression, we used a transient overexpression and luciferase assay combined approach. Overexpression of PREBP markedly enhanced luciferase expression under the control of the pf1-cys-prx cis-element. These results provide the first evidence of a novel transcription factor that activates the gene expression in the malaria parasite intraerythrocytic stage. These findings enhance our understanding of the evolution of specific transcription machinery in Plasmodium and other eukaryotes.

  3. Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus.

    Science.gov (United States)

    Rojo, Rocio; Pridans, Clare; Langlais, David; Hume, David A

    2017-08-15

    The proliferation, differentiation, and survival of cells of the macrophage lineage depends upon signals from the macrophage colony-stimulating factor (CSF) receptor (CSF1R). CSF1R is expressed by embryonic macrophages and induced early in adult hematopoiesis, upon commitment of multipotent progenitors to the myeloid lineage. Transcriptional activation of CSF1R requires interaction between members of the E26 transformation-specific family of transcription factors (Ets) (notably PU.1), C/EBP, RUNX, AP-1/ATF, interferon regulatory factor (IRF), STAT, KLF, REL, FUS/TLS (fused in sarcoma/ranslocated in liposarcoma) families, and conserved regulatory elements within the mouse and human CSF1R locus. One element, the Fms-intronic regulatory element (FIRE), within intron 2, is conserved functionally across all the amniotes. Lineage commitment in multipotent progenitors also requires down-regulation of specific transcription factors such as MYB, FLI1, basic leucine zipper transcriptional factor ATF-like (BATF3), GATA-1, and PAX5 that contribute to differentiation of alternative lineages and repress CSF1R transcription. Many of these transcription factors regulate each other, interact at the protein level, and are themselves downstream targets of CSF1R signaling. Control of CSF1R transcription involves feed-forward and feedback signaling in which CSF1R is both a target and a participant; and dysregulation of CSF1R expression and/or function is associated with numerous pathological conditions. In this review, we describe the regulatory network behind CSF1R expression during differentiation and development of cells of the mononuclear phagocyte system. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Factors Affecting Recruitment and Attrition in Randomised Controlled Trials of Complementary and Alternative Medicine for Pregnancy-Related Issues.

    Science.gov (United States)

    Close, Ciara; Sinclair, Marlene; McCullough, Julie E M; Liddle, Sarah Dianne; Hughes, Ciara M

    2016-01-01

    Background . Randomised controlled trials (RCTs) investigating Complementary and Alternative Medicine (CAM) for pregnancy-related issues have encountered issues with recruitment and attrition. Little is known about the cause of these issues. Methods . Data was gathered from an antenatal CAM randomised controlled trial. During foetal anomaly appointments, women meeting inclusion criteria were invited to participate in the trial. Numbers of women invited and eligible were recorded. Reasons for noninterest were noted and analysed. Focus groups exploring trial experience of participants were also conducted. Findings . Of the 428 women invited to participate, 376 were eligible and just under a quarter participated. Reasons for nonparticipation included concerns about CAM and lack of interest in participation in research. Other factors negatively affecting recruitment included recruitment timing, competition for participants, limited support from staff, and inadequate trial promotion. Factors encouraging recruitment included being interested in research and seeking pain relief. Reasons for dropping out were time constraints, travel issues, work commitments, and pregnancy issues. Several women in the sham and usual care group dropped out due to dissatisfaction with treatment allocation. Conclusion . CAM researchers must explore problems encountered with recruitment and attrition so that evidence-based implementation strategies to address the issues can be developed.

  5. Environmental factors regulating the recruitment of walleye Sander vitreus and white bass Morone chrysops in irrigation reservoirs

    Science.gov (United States)

    DeBoer, Jason A.; Pope, Kevin L.; Koupal, Keith D.

    2013-01-01

    Understanding the environmental factors that regulate fish recruitment is essential for effective management of fisheries. Generally, first-year survival, and therefore recruitment, is inherently less consistent in systems with high intra- and interannual variability. Irrigation reservoirs display sporadic patterns of annual drawdown, which can pose a substantial challenge to recruitment of fishes. We developed species-specific models using an 18-year data set compiled from state and federal agencies to investigate variables that regulate the recruitment of walleye Sander vitreus and white bass Morone chrysops in irrigation reservoirs in south-west Nebraska, USA. The candidate model set for walleye included only abiotic variables (water-level elevation, minimum daily air temperature during winter prior to hatching, annual precipitation, spring warming rate and May reservoir discharge), and the candidate model set for white bass included primarily biotic variables (catch per unit effort (CPUE) of black crappie Pomoxis nigromaculatus, CPUE of age-0 walleye, CPUE of bluegill Lepomis macrochirus and CPUE of age-3 and older white bass), each of which had a greater relative importance than the single abiotic variable (minimum daily air temperature during winter after hatching). Our findings improve the understanding of the recruitment of fishes in irrigation reservoirs and the relative roles of abiotic and biotic factors.

  6. A survey of factors affecting the recruitment and retention of Medical Laboratory Scientific Officers in Pathology.

    Science.gov (United States)

    Johnston, P W; Milne, G D

    1999-11-01

    To survey the perceptions and attitudes of Medical Laboratory Scientific Officer (MLSO) staff in Pathology to explain difficulties in recruitment and retention and inform attempts to solve the difficulties. Questionnaire to a defined group of MLSOs. The Laboratory Medicine Directorate, Aberdeen Royal Infirmary. MLSO1 and MLSO2 staff currently or recently working in Pathology (histopathology) in Aberdeen. The survey return rate was 100%. Opportunities for career development in Pathology are poor, this being the worst feature of working in Pathology. Remuneration is poor and is a disincentive to remaining in the speciality. MLSOs feel undervalued in relation to other health care workers. Many have concerns about laboratory organisation, but find a sociable and supportive environment that provides job satisfaction. Staff seek work in other laboratories because of opportunities for promotion, learning new skills and increased pay, although pay in specialities other that Pathology is greater only because of shift working in these disciplines. There is a need to increase public awareness of MLSOs' central role in providing and maintaining excellence in Pathology services. MLSO staff have concerns about their career structure and salary scales. The responsibility of MSLOs in Pathology for quality assurance and managing MLAs is not recognised. These factors form a disincentive to working in Pathology laboratories and threaten our ability to staff the service and to maintain the turnover and quality of Pathology services. These issues require to be addressed nationally and rapidly to prevent the continuing decline in MLSO numbers. Matters of local organisation might be addressed by trusts and departments, but recognition of the need to resource changes would require reflection in budgets.

  7. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity

    Directory of Open Access Journals (Sweden)

    Alon Kalo

    2015-04-01

    Full Text Available The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.

  8. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    Science.gov (United States)

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  9. Role of Transcription Factor Modifications in the Pathogenesis of Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mi-Young Kim

    2012-01-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is characterized by fat accumulation in the liver not due to alcohol abuse. NAFLD is accompanied by variety of symptoms related to metabolic syndrome. Although the metabolic link between NAFLD and insulin resistance is not fully understood, it is clear that NAFLD is one of the main cause of insulin resistance. NAFLD is shown to affect the functions of other organs, including pancreas, adipose tissue, muscle and inflammatory systems. Currently efforts are being made to understand molecular mechanism of interrelationship between NAFLD and insulin resistance at the transcriptional level with specific focus on post-translational modification (PTM of transcription factors. PTM of transcription factors plays a key role in controlling numerous biological events, including cellular energy metabolism, cell-cycle progression, and organ development. Cell type- and tissue-specific reversible modifications include lysine acetylation, methylation, ubiquitination, and SUMOylation. Moreover, phosphorylation and O-GlcNAcylation on serine and threonine residues have been shown to affect protein stability, subcellular distribution, DNA-binding affinity, and transcriptional activity. PTMs of transcription factors involved in insulin-sensitive tissues confer specific adaptive mechanisms in response to internal or external stimuli. Our understanding of the interplay between these modifications and their effects on transcriptional regulation is growing. Here, we summarize the diverse roles of PTMs in insulin-sensitive tissues and their involvement in the pathogenesis of insulin resistance.

  10. A transcript cleavage factor of Mycobacterium tuberculosis important for its survival.

    Directory of Open Access Journals (Sweden)

    Arnab China

    Full Text Available After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP. Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.

  11. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Pedro Perdigão

    Full Text Available The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  12. A compendium of transcription factor and Transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.).

    Science.gov (United States)

    Misra, Vikram A; Wang, Yu; Timko, Michael P

    2017-11-22

    Cowpea (Vigna unguiculata (L.) Walp.) is the most important food and forage legume in the semi-arid tropics of sub-Saharan Africa where approximately 80% of worldwide production takes place primarily on low-input, subsistence farm sites. Among the major goals of cowpea breeding and improvement programs are the rapid manipulation of agronomic traits for seed size and quality and improved resistance to abiotic and biotic stresses to enhance productivity. Knowing the suite of transcription factors (TFs) and transcriptionally active proteins (TAPs) that control various critical plant cellular processes would contribute tremendously to these improvement aims. We used a computational approach that employed three different predictive pipelines to data mine the cowpea genome and identified over 4400 genes representing 136 different TF and TAP families. We compare the information content of cowpea to two evolutionarily close species common bean (Phaseolus vulgaris), and soybean (Glycine max) to gauge the relative informational content. Our data indicate that correcting for genome size cowpea has fewer TF and TAP genes than common bean (4408 / 5291) and soybean (4408/ 11,065). Members of the GROWTH-REGULATING FACTOR (GRF) and Auxin/indole-3-acetic acid (Aux/IAA) gene families appear to be over-represented in the genome relative to common bean and soybean, whereas members of the MADS (Minichromosome maintenance deficient 1 (MCM1), AGAMOUS, DEFICIENS, and serum response factor (SRF)) and C2C2-YABBY appear to be under-represented. Analysis of the AP2-EREBP APETALA2-Ethylene Responsive Element Binding Protein (AP2-EREBP), NAC (NAM (no apical meristem), ATAF1, 2 (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon)), and WRKY families, known to be important in defense signaling, revealed changes and phylogenetic rearrangements relative to common bean and soybean that suggest these groups may have evolved different functions. The availability of detailed

  13. Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors.

    Science.gov (United States)

    Warren, Kylie; Wei, Ting; Li, Dongsheng; Qin, Fangyun; Warrilow, David; Lin, Min-Hsuan; Sivakumaran, Haran; Apolloni, Ann; Abbott, Catherine M; Jones, Alun; Anderson, Jenny L; Harrich, David

    2012-06-12

    Cellular proteins have been implicated as important for HIV-1 reverse transcription, but whether any are reverse transcription complex (RTC) cofactors or affect reverse transcription indirectly is unclear. Here we used protein fractionation combined with an endogenous reverse transcription assay to identify cellular proteins that stimulated late steps of reverse transcription in vitro. We identified 25 cellular proteins in an active protein fraction, and here we show that the eEF1A and eEF1G subunits of eukaryotic elongation factor 1 (eEF1) are important components of the HIV-1 RTC. eEF1A and eEF1G were identified in fractionated human T-cell lysates as reverse transcription cofactors, as their removal ablated the ability of active protein fractions to stimulate late reverse transcription in vitro. We observed that the p51 subunit of reverse transcriptase and integrase, two subunits of the RTC, coimmunoprecipitated with eEF1A and eEF1G. Moreover eEF1A and eEF1G associated with purified RTCs and colocalized with reverse transcriptase following infection of cells. Reverse transcription in cells was sharply down-regulated when eEF1A or eEF1G levels were reduced by siRNA treatment as a result of reduced levels of RTCs in treated cells. The combined evidence indicates that these eEF1 subunits are critical RTC stability cofactors required for efficient completion of reverse transcription. The identification of eEF1 subunits as unique RTC components provides a basis for further investigations of reverse transcription and trafficking of the RTC to the nucleus.

  14. The Drosophila Transcription Factors Tinman and Pannier Activate and Collaborate with Myocyte Enhancer Factor-2 to Promote Heart Cell Fate.

    Directory of Open Access Journals (Sweden)

    TyAnna L Lovato

    Full Text Available Expression of the MADS domain transcription factor Myocyte Enhancer Factor 2 (MEF2 is regulated by numerous and overlapping enhancers which tightly control its transcription in the mesoderm. To understand how Mef2 expression is controlled in the heart, we identified a late stage Mef2 cardiac enhancer that is active in all heart cells beginning at stage 14 of embryonic development. This enhancer is regulated by the NK-homeodomain transcription factor Tinman, and the GATA transcription factor Pannier through both direct and indirect interactions with the enhancer. Since Tinman, Pannier and MEF2 are evolutionarily conserved from Drosophila to vertebrates, and since their vertebrate homologs can convert mouse fibroblast cells to cardiomyocytes in different activator cocktails, we tested whether over-expression of these three factors in vivo could ectopically activate known cardiac marker genes. We found that mesodermal over-expression of Tinman and Pannier resulted in approximately 20% of embryos with ectopic Hand and Sulphonylurea receptor (Sur expression. By adding MEF2 alongside Tinman and Pannier, a dramatic expansion in the expression of Hand and Sur was observed in almost all embryos analyzed. Two additional cardiac markers were also expanded in their expression. Our results demonstrate the ability to initiate ectopic cardiac fate in vivo by the combination of only three members of the conserved Drosophila cardiac transcription network, and provide an opportunity for this genetic model system to be used to dissect the mechanisms of cardiac specification.

  15. Inhibition of the TEF/TEAD transcription factor activity by nuclear calcium and distinct kinase pathways.

    Science.gov (United States)

    Thompson, M; Andrade, V A; Andrade, S J; Pusl, T; Ortega, J M; Goes, A M; Leite, M F

    2003-02-07

    Transcription enhancer factor (TEF/TEAD) is a family of four transcription factors that share a common TEA-DNA binding domain and are involved in similar cellular functions, such as cell differentiation and proliferation. All adult tissues express at least one of the four TEAD genes, so this family of transcription factors may be of widespread importance, yet little is known about their regulation. Here we examine the factors that regulate TEAD activity in CHO cells. RT-PCR indicated the presence of TEAD-1, TEAD-3, and both isoforms of TEAD-4, but not TEAD-2. Quantitative measurements showed that TEAD-4 is most abundant, followed by TEAD-3, then TEAD-1. We examined the relative effects of nuclear and cytosolic Ca(2+) on TEAD activity, since TEAD proteins are localized to the nucleus and since free Ca(2+) within the nucleus selectively regulates transcription in some systems. Chelation of nuclear but not cytosolic Ca(2+) increased TEAD activity two times above control. Inhibition of mitogen-activated protein kinase (MAPK) also increased TEAD activity, while cAMP decreased TEAD activity, and protein kinase C had no effect. Together, these results show that nuclear Ca(2+), MAPK, and cAMP each negatively regulate the activity of the TEAD transcription factor.

  16. Probing transcription factor binding activity and downstream gene silencing in living cells with a DNA nanoswitch.

    Science.gov (United States)

    Bertucci, Alessandro; Guo, Junling; Oppmann, Nicolas; Glab, Agata; Ricci, Francesco; Caruso, Frank; Cavalieri, Francesca

    2018-01-25

    Transcription factor DNA binding activity is of pivotal importance in living systems because of its primary involvement in the regulation of genetic machinery. The analysis of transient expression levels of transcription factors in response to a certain cell status is a powerful means for investigating cellular dynamics at the biomolecular level. Herein, a DNA-based molecular switch that enables probing of transcription factor DNA binding activity is directly used in living cells. We demonstrate that the DNA nanoswitch allows for dynamic fluorescence imaging of NF-κB and quantification of downstream gene silencing in real time. The present strategy is based on a functional DNA nanodevice that transduces, through a binding-induced conformational change, the recognition of a specific transcription factor into a fluorescent signal. In addition, stochastic optical resolution microscopy, a super-resolution microscopy technique, is used to track the internalization and intracellular trafficking of the DNA nanodevice with high spatial resolution. Overall, it has been shown that a rationally designed DNA nanodevice can be used to achieve rapid, simple, and cost-effective real-time determination of transcription factor binding activity and downstream gene silencing.

  17. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing.

    NARCIS (Netherlands)

    Heyd, F.; Dam, G.B. ten; Moroy, T.

    2006-01-01

    By alternative splicing, different isoforms of the transmembrane tyrosine phosphatase CD45 are generated that either enhance or limit T cell receptor signaling. We report here that CD45 alternative splicing is regulated by cooperative action of the splice factor U2AF26 and the transcription factor

  18. Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development.

    Science.gov (United States)

    Yan, Qin; Gong, Lili; Deng, Mi; Zhang, Lan; Sun, Shuming; Liu, Jiao; Ma, Haili; Yuan, Dan; Chen, Pei-Chao; Hu, Xiaohui; Liu, Jinping; Qin, Jichao; Xiao, Ling; Huang, Xiao-Qin; Zhang, Jian; Li, David Wan-Cheng

    2010-12-07

    Pax-6 is an evolutionarily conserved transcription factor regulating brain and eye development. Four Pax-6 isoforms have been reported previously. Although the longer Pax-6 isoforms (p46 and p48) bear two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), the shorter Pax-6 isoform p32 contains only the HD for DNA binding. Although a third domain, the proline-, serine- and threonine-enriched activation (PST) domain, in the C termini of all Pax-6 isoforms mediates their transcriptional modulation via phosphorylation, how p32 Pax-6 could regulate target genes remains to be elucidated. In the present study, we show that sumoylation at K91 is required for p32 Pax-6 to bind to a HD-specific site and regulate expression of target genes. First, in vitro-synthesized p32 Pax-6 alone cannot bind the P3 sequence, which contains the HD recognition site, unless it is preincubated with nuclear extracts precleared by anti-Pax-6 but not by anti-small ubiquitin-related modifier 1 (anti-SUMO1) antibody. Second, in vitro-synthesized p32 Pax-6 can be sumoylated by SUMO1, and the sumoylated p32 Pax-6 then can bind to the P3 sequence. Third, Pax-6 and SUMO1 are colocalized in the embryonic optic and lens vesicles and can be coimmunoprecipitated. Finally, SUMO1-conjugated p32 Pax-6 exists in both the nucleus and cytoplasm, and sumoylation significantly enhances the DNA-binding ability of p32 Pax-6 and positively regulates gene expression. Together, our results demonstrate that sumoylation activates p32 Pax-6 in both DNA-binding and transcriptional activities. In addition, our studies demonstrate that p32 and p46 Pax-6 possess differential DNA-binding and regulatory activities.

  19. Mitochondrial biogenesis in brown adipose tissue is associated with differential expression of transcription regulatory factors

    Czech Academy of Sciences Publication Activity Database

    Villena, J. A.; Carmona, M. C.; Rodriguez de la Concepción, M.; Rossmeisl, Martin; Vinas, O.; Mampel, T.; Iglesias, R.; Giralt, M.; Villarroya, F.

    2002-01-01

    Roč. 59, č. 11 (2002), s. 1934-1944 ISSN 1420-682X Grant - others:Ministerio de Ciencia y Tecnología (ES) PM98.0188 Institutional research plan: CEZ:AV0Z5011922 Keywords : brown adipose tissue * mitochondria * transcription factors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.259, year: 2002

  20. ZNF143 protein is an important regulator of the myeloid transcription factor C/EBP

    Czech Academy of Sciences Publication Activity Database

    Gonzalez, D.; Luyten, A.; Bartholdy, B.; Zhou, Q.; Kardošová, Miroslava; Ebralidze, A.; Swanson, K.D.; Radomska, H.S.; Zhang, P.; Kobayashi, S.S.; Welner, R.S.; Levantini, E.; Steidl, U.; Chong, G.; Collombet, S.; Choi, M.H.; Friedman, A.D.; Scott, L.M.; Alberich-Jorda, Meritxell; Tenen, D.G.

    2017-01-01

    Roč. 292, č. 46 (2017), s. 18924-18936 ISSN 0021-9258 Institutional support: RVO:68378050 Keywords : CCAAT-enhancer-binding protein * gene regulation * hematopoiesis * promoter * transcription factor * EBPalpha * ZNF143 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 4.125, year: 2016

  1. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D

    NARCIS (Netherlands)

    Schmidt, M.; Fernandez de Mattos, S.; Horst, Armando van der; Klompmaker, R.; Kops, G.J.P.L.; Lam, E.W.-F.; Burgering, B.M.T.; Medema, R.H.

    2002-01-01

    The FoxO forkhead transcription factors FoxO4 (AFX), FoxO3a (FKHR.L1), and FoxO1a (FKHR) represent important physiological targets of phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB) signaling. Overexpression or conditional activation of FoxO factors is able to antagonize many responses

  2. Mechanism of transcription activation at the comG promoter by the competence transcription factor ComK of Bacillus subtilis

    NARCIS (Netherlands)

    Susanna, KA; van der Werff, AF; den Hengst, CD; Calles, B; Salas, M; Venema, G; Hamoen, LW; Kuipers, OP

    The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding

  3. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

    Science.gov (United States)

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-10-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. © The Author(s).

  4. Functional characterization of poplar wood-associated NAC domain transcription factors.

    Science.gov (United States)

    Zhong, Ruiqin; Lee, Chanhui; Ye, Zheng-Hua

    2010-02-01

    Wood is the most abundant biomass produced by land plants. Dissection of the molecular mechanisms underlying the transcriptional regulation of wood formation is a fundamental issue in plant biology and has important implications in tree biotechnology. Although a number of transcription factors in tree species have been shown to be associated with wood formation and some of them are implicated in lignin biosynthesis, none of them have been demonstrated to be key regulators of the biosynthesis of all three major components of wood. In this report, we have identified a group of NAC domain transcription factors, PtrWNDs, that are preferentially expressed in developing wood of poplar (Populus trichocarpa). Expression of PtrWNDs in the Arabidopsis (Arabidopsis thaliana) snd1 nst1 double mutant effectively complemented the secondary wall defects in fibers, indicating that PtrWNDs are capable of activating the entire secondary wall biosynthetic program. Overexpression of PtrWND2B and PtrWND6B in Arabidopsis induced the expression of secondary wall-associated transcription factors and secondary wall biosynthetic genes and, concomitantly, the ectopic deposition of cellulose, xylan, and lignin. Furthermore, PtrWND2B and PtrWND6B were able to activate the promoter activities of a number of poplar wood-associated transcription factors and wood biosynthetic genes. Together, these results demonstrate that PtrWNDs are functional orthologs of SND1 and suggest that PtrWNDs together with their downstream transcription factors form a transcriptional network involved in the regulation of wood formation in poplar.

  5. High-Resolution Mapping and Dynamics of the Transcriptome, Transcription Factors, and Transcription Co-Factor Networks in Classically and Alternatively Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Amitabh Das

    2018-01-01

    Full Text Available Macrophages are the prime innate immune cells of the inflammatory response, and the combination of multiple signaling inputs derived from the recognition of host factors [e.g., interferon-g (IFN-γ] and invading pathogen products (e.g., toll-like receptors (TLRs agonists are required to maintain essential macrophage function. The profound effects on biological outcomes of inflammation associated with IFN-γ pretreatment (“priming” and TLR4 ligand bacterial lipopolysaccharide (LPS-induced macrophage activation (M1 or classical activation have long been recognized, but the underlying mechanisms are not well defined. Therefore, we analyzed gene expression profiles of macrophages and identified genes, transcription factors (TFs, and transcription co-factors (TcoFs that are uniquely or highly expressed in IFN-γ-mediated TLR4 ligand LPS-inducible versus only TLR4 ligand LPS-inducible primary macrophages. This macrophage gene expression has not been observed in macrophage cell lines. We also showed that interleukin (IL-4 and IL-13 (M2 or alternative activation elicited the induction of a distinct subset of genes related to M2 macrophage polarization. Importantly, this macrophage gene expression was also associated with promoter conservation. In particular, our approach revealed novel roles for the TFs and TcoFs in response to inflammation. We believe that the systematic approach presented herein is an important framework to better understand the transcriptional machinery of different macrophage subtypes.

  6. Transcription factor regulation of CD8+ T-cell memory and exhaustion.

    Science.gov (United States)

    Angelosanto, Jill M; Wherry, E John

    2010-07-01

    During an infection, antigen-specific CD8+ T cells undergo numerous cellular and transcriptional changes as they develop from naive T cells into effector and memory cells. However, when the antigen persists in a chronic infection, the cellular programs governing effector and memory development are influenced by chronic stimulation, and dysfunctional or exhausted CD8+ T cells are generated. Recently, exhausted CD8+ T cells were found to differ dramatically from naive and functional memory CD8+ T cells on a transcriptional level, demonstrating that exposure to chronic antigen can impact T cells at a fundamental level. While transcriptional changes in CD8+ T cells during memory development is currently a topic of particular interest, the transcriptional changes related to exhaustion and other forms of T-cell dysfunction have received less attention. New computational methods are not only uncovering important transcription factors in these developmental processes but are also going further to define and connect these transcription factors into transcriptional modules that work in parallel to control cell fate and state. Understanding the molecular processes behind the development of CD8+ T-cell memory and exhaustion should not only increase our understanding of the immune system but also could reveal therapeutic targets and treatments for infectious and immunological diseases. Here, we provide a basic overview of acute and chronic viral infections and the transcription factors known to influence the development of virus-specific T cells in both settings. We also discuss recent innovations in genomic and computational tools that could be used to enhance the way we understand the development of T-cell responses to infectious disease.

  7. Transcription Factor Ets-2 Acts as a Preinduction Repressor of Interleukin-2 (IL-2) Transcription in Naive T Helper Lymphocytes.

    Science.gov (United States)

    Panagoulias, Ioannis; Georgakopoulos, Tassos; Aggeletopoulou, Ioanna; Agelopoulos, Marios; Thanos, Dimitris; Mouzaki, Athanasia

    2016-12-23

    IL-2 is the first cytokine produced when naive T helper (Th) cells are activated and differentiate into dividing pre-Th0 proliferating precursors. IL-2 expression is blocked in naive, but not activated or memory, Th cells by the transcription factor Ets-2 that binds to the antigen receptor response element (ARRE)-2 of the proximal IL-2 promoter. Ets-2 acts as an independent preinduction repressor in naive Th cells and does not interact physically with the transcription factor NFAT (nuclear factor of activated T-cells) that binds to the ARRE-2 in activated Th cells. In naive Th cells, Ets-2 mRNA expression, Ets-2 protein levels, and Ets-2 binding to ARRE-2 decrease upon cell activation followed by the concomitant expression of IL-2. Cyclosporine A stabilizes Ets-2 mRNA and protein when the cells are activated. Ets-2 silences directly constitutive or induced IL-2 expression through the ARRE-2. Conversely, Ets-2 silencing allows for constitutive IL-2 expression in unstimulated cells. Ets-2 binding to ARRE-2 in chromatin is stronger in naive compared with activated or memory Th cells; in the latter, Ets-2 participates in a change of the IL-2 promoter architecture, possibly to facilitate a quick response when the cells re-encounter antigen. We propose that Ets-2 expression and protein binding to the ARRE-2 of the IL-2 promoter are part of a strictly regulated process that results in a physiological transition of naive Th cells to Th0 cells upon antigenic stimulation. Malfunction of such a repression mechanism at the molecular level could lead to a disturbance of later events in Th cell plasticity, leading to autoimmune diseases or other pathological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Leveraging cross-species transcription factor binding site patterns

    DEFF Research Database (Denmark)

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward

    2014-01-01

    Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central...... diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele...

  9. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    KAUST Repository

    Kim, Hyungsae

    2010-10-05

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  10. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp; Yamada, Yoshiji

    2016-05-13

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.

  11. TF Target Mapper: A BLAST search tool for the identification of Transcription Factor target genes

    Directory of Open Access Journals (Sweden)

    van der Spek Peter

    2006-03-01

    Full Text Available Abstract Background In the current era of high throughput genomics a major challenge is the genome-wide identification of target genes for specific transcription factors. Chromatin immunoprecipitation (ChIP allows the isolation of in vivo binding sites of transcription factors and provides a powerful tool for examining gene regulation. Crosslinked chromatin is immunoprecipitated with antibodies against specific transcription factors, thus enriching for sequences bound in vivo by these factors in the immunoprecipitated DNA. Cloning and sequencing the immunoprecipitated sequences allows identification of transcription factor target genes. Routinely, thousands of such sequenced clones are used in BLAST searches to map their exact location in the genome and the genes located in the vicinity. These genes represent potential targets of the transcription factor of interest. Such bioinformatics analysis is very laborious if performed manually and for this reason there is a need for developing bioinformatic tools to automate and facilitate it. Results In order to facilitate this analysis we generated TF Target Mapper (Transcription Factor Target Mapper. TF Target Mapper is a BLAST search tool allowing rapid extraction of annotated information on genes around each hit. It combines sequence cleaning/filtering, pattern searching and BLAST searches with extraction of information on genes located around each BLAST hit and comparisons of the output list of genes or gene ontology IDs with user-implemented lists. We successfully applied and tested TF Target Mapper to analyse sequences bound in vivo by the transcription factor GATA-1. We show that TF Target Mapper efficiently extracted information on genes around ChIPed sequences, thus identifying known (e.g. α-globin and ζ-globin and potentially novel GATA-1 gene targets. Conclusion TF Target Mapper is a very efficient BLAST search tool that allows the rapid extraction of annotated information on the genes

  12. Oxidative stress & FoxO transcription factors in cardiovascular aging.

    Science.gov (United States)

    Kim, Juewon; Cho, Si Young; Cho, Donghyun; Kim, Su Hwan; Seo, Dae Bang; Shin, Song Seok

    2016-12-12

    Aging is a phenomenon in which the functions, adaptability and resistance of an organism decrease over time. With the global population aging at an accelerating pace, delaying the negative aspects of aging is vital for advancing the human life span and quality of life. The aging of multiple organs can lead to many diseases, and the cardiovascular system is no exception. Indeed, one of the primary risk factors for cardiovascular diseases is aging because of altered cardiovascular metabolism resulting in metabolic disorders and inflammation. We attempted an organized search of bibliographic databases for peer-reviewed research papers by searching featured reviews using inclusion/exclusion criteria. The collected papers were assessed by standard tools for quality control. Forty-six papers were admitted to the review, and most papers featured recent research results (44) and reviewed the research field (8). We discuss these papers along with the recent progress of our work. In this review, we examine the relationship of oxidative stress with aging and the FoxO proteins, which are essential anti-aging factors in the cardiovascular system. The observations of this review suggest that anti-aging signaling mediated by FoxO proteins is important for understanding cardiovascular aging and the design of medicinal approaches.

  13. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors.

    Science.gov (United States)

    Motohashi, Hozumi; O'Connor, Tania; Katsuoka, Fumiki; Engel, James Douglas; Yamamoto, Masayuki

    2002-07-10

    Recent progress in the analysis of transcriptional regulation has revealed the presence of an exquisite functional network comprising the Maf and Cap 'n' collar (CNC) families of regulatory proteins, many of which have been isolated. Among Maf factors, large Maf proteins are important in the regulation of embryonic development and cell differentiation, whereas small Maf proteins serve as obligatory heterodimeric partner molecules for members of the CNC family. Both Maf homodimers and CNC-small Maf heterodimers bind to the Maf recognition element (MARE). Since the MARE contains a consensus TRE sequence recognized by AP-1, Jun and Fos family members may act to compete or interfere with the function of CNC-small Maf heterodimers. Overall then, the quantitative balance of transcription factors interacting with the MARE determines its transcriptional activity. Many putative MARE-dependent target genes such as those induced by antioxidants and oxidative stress are under concerted regulation by the CNC family member Nrf2, as clearly proven by mouse germline mutagenesis. Since these genes represent a vital aspect of the cellular defense mechanism against oxidative stress, Nrf2-null mutant mice are highly sensitive to xenobiotic and oxidative insults. Deciphering the molecular basis of the regulatory network composed of Maf and CNC families of transcription factors will undoubtedly lead to a new paradigm for the cooperative function of transcription factors.

  14. Transcription Factor Antagonism Controls Enteroendocrine Cell Specification from Intestinal Stem Cells.

    Science.gov (United States)

    Li, Yumei; Pang, Zhimin; Huang, Huanwei; Wang, Chenhui; Cai, Tao; Xi, Rongwen

    2017-04-20

    The balanced maintenance and differentiation of local stem cells is required for Homeostatic renewal of tissues. In the Drosophila midgut, the transcription factor Escargot (Esg) maintains undifferentiated states in intestinal stem cells, whereas the transcription factors Scute (Sc) and Prospero (Pros) promote enteroendocrine cell specification. However, the mechanism through which Esg and Sc/Pros coordinately regulate stem cell differentiation is unknown. Here, by combining chromatin immunoprecipitation analysis with genetic studies, we show that both Esg and Sc bind to a common promoter region of pros. Moreover, antagonistic activity between Esg and Sc controls the expression status of Pros in stem cells, thereby, specifying whether stem cells remain undifferentiated or commit to enteroendocrine cell differentiation. Our study therefore reveals transcription factor antagonism between Esg and Sc as a novel mechanism that underlies fate specification from intestinal stem cells in Drosophila.

  15. Chromatin-remodelling factors and the maintenance of transcriptional states through DNA replication.

    Science.gov (United States)

    Aligianni, Sofia; Varga-Weisz, Patrick

    2006-01-01

    At the replication fork, nucleosomes, transcription factors and RNA polymerases are stripped off the DNA, the DNA double strands are unzipped and DNA methylation marks may be erased. Therefore DNA replication is both a 'curse' and 'bliss' for the epigenome, as it disrupts its stability by causing chromatin perturbations, yet it offers an opportunity to initiate changes in chromatin architecture and gene expression patterns, especially during development. Thus the DNA replication site is a critical point for regulation. It has become apparent that there is a close functional relationship between those factors that regulate transcriptional competence and the DNA replication programme. In this review we discuss novel insights into how chromatin-remodelling factors at replication sites are involved in both the maintenance and regulation of transcriptional states.

  16. Asap: a framework for over-representation statistics for transcription factor binding sites

    DEFF Research Database (Denmark)

    Marstrand, Troels T; Frellsen, Jes; Moltke, Ida

    2008-01-01

    -founded choice. METHODOLOGY: We introduce a software package, Asap, for fast searching with position weight matrices that include several standard methods for assessing over-representation. We have compared the ability of these methods to detect over-represented transcription factor binding sites in artificial......BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory...... regime based on the occurrence of the modelled transcription factor binding sites. However there is little or no information available for guiding the end users choice of method. Furthermore it would be necessary to obtain several different software programs from various sources to make a well...

  17. Transcriptional regulators of legume-rhizobia symbiosis: nuclear factors Ys and GRAS are two for tango.

    Science.gov (United States)

    Rípodas, Carolina; Clúa, Joaquín; Battaglia, Marina; Baudin, Maël; Niebel, Andreas; Zanetti, María Eugenia; Blanco, Flavio

    2014-01-01

    Transcription factors are DNA binding proteins that regulate gene expression. The nitrogen fixing symbiosis established between legume plants and soil bacteria is a complex interaction, in which plants need to integrate signals derived from the symbiont and the surrounding environment to initiate the developmental program of nodule organogenesis and the infection process. Several transcription factors that play critical roles in these processes have been reported in the past decade, including proteins of the GRAS and NF-Y families. Recently, we reported the characterization of a new GRAS domain containing-protein that interacts with a member of the C subunit of the NF-Y family, which plays an important role in nodule development and the progression of bacterial infection during the symbiotic interaction. The connection between transcription factors of these families highlights the significance of multimeric complexes in the fabulous capacity of plants to integrate and respond to multiple environmental stimuli.

  18. NAC Transcription Factors of Barley (Hordeum vulgare L.) and their Involvement in Leaf Senescence

    DEFF Research Database (Denmark)

    Wagner, Michael

    yielding cereal crops are generated. In cereals, the process of leaf senescence is of utmost relevance when discussing yield. It is during the senescence process that all nutrients are transported from the withering leaf to the developing grains. Furthermore, the timing of senescence determines...... the photosynthetically productive period of the crop plant. Improving the process of senescence by genetic means rather than by increasing the amount of fertiliser is one potential approach towards a higher sustainable productivity. In several species of plants, the NAC transcription factors have been shown to regulate...... parts of the senescence process. The specific aims of this study were therefore (1) to establish and characterise the NAC transcription factors of the model cereal crop barley (Hordeum vulgare L.) (2) to identify and study putative barley NAC transcription factors involved in the regulation of leaf...

  19. Role of Forkhead Transcription Factors in Diabetes-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Bhaskar Ponugoti

    2012-01-01

    Full Text Available Diabetes is a chronic metabolic disorder, characterized by hyperglycemia resulting from insulin deficiency and/or insulin resistance. Recent evidence suggests that high levels of reactive oxygen species (ROS and subsequent oxidative stress are key contributors in the development of diabetic complications. The FOXO family of forkhead transcription factors including FOXO1, FOXO3, FOXO4, and FOXO6 play important roles in the regulation of many cellular and biological processes and are critical regulators of cellular oxidative stress response pathways. FOXO1 transcription factors can affect a number of different tissues including liver, retina, bone, and cell types ranging from hepatocytes to microvascular endothelial cells and pericytes to osteoblasts. They are induced by oxidative stress and contribute to ROS-induced cell damage and apoptosis. In this paper, we discuss the role of FOXO transcription factors in mediating oxidative stress-induced cellular response.

  20. Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast.

    Directory of Open Access Journals (Sweden)

    Chun Ye

    2009-03-01

    Full Text Available Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request.

  1. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  2. AP-1 Transcription Factors Mediate BDNF-Positive Feedback Loop in Cortical Neurons.

    Science.gov (United States)

    Tuvikene, Jürgen; Pruunsild, Priit; Orav, Ester; Esvald, Eli-Eelika; Timmusk, Tõnis

    2016-01-27

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF. Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis-elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression. Here, we show for the first time that in rat primary cortical neurons the expression of all major BDNF transcripts (exon I, II, III, IV, VI, and IXa transcripts) is upregulated in response to TrkB signaling, and that AP-1 transcription factors participate in the induction of exon I, III, and VI transcripts. Moreover, we have described two novel functional AP-1 cis-elements in BDNF promoter I, responsible for the activation of the promoter in response to TrkB signaling. Our results indicate the existence of a positive feedback loop for

  3. Two independent transcription initiation codes overlap on vertebrate core promoters

    NARCIS (Netherlands)

    V. Haberle (Vanja); N. Li (Nan); Y. Hadzhiev (Yavor); C. Plessy (Charles); C. Previti (Christopher); C. Nepal (Chirag); P.A. Gehrig (Paola A.); X. Dong (Xianjun); A. Akalin (Altuna); A.M. Suzuki (Ana Maria); W.F.J. van IJcken (Wilfred); O. Armant (Olivier); M. Ferg (Marco); U. Strähle (Uwe); P. Carninci (Piero); F. Müller (Ferenc); B. Lenhard (Boris)

    2014-01-01

    textabstractA core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the

  4. Oleanane triterpenoids with inhibitory activity against NFAT transcription factor from Liquidambar formosana.

    Science.gov (United States)

    Dat, Nguyen Tien; Lee, Im Seon; Cai, Xing Fu; Shen, Guanghai; Kim, Young Ho

    2004-03-01

    In a search for inhibitory components from natural products against NFAT transcription factor, this study investigated the ethyl acetate extract of the fruits of Liquidambar formosana. Four oleanane triterpenoids were isolated and identified to be liquidambaric acid, oleanolic acid, 3alpha-acetoxy-25-hydroxy-olean-12-en-28-oic acid and lantanolic acid. Of these compounds, 3alpha-acetoxy-25-hydroxy-olean-12-en-28-oic acid (IC50: 4.63 microM) and lantanolic acid (IC50: 12.62 microM) exhibited strong inhibitory activity against the NFAT transcription factor.

  5. B Lymphocyte Lineage Specification, Commitment and Epigenetic Control of Transcription by Early B Cell Factor 1

    OpenAIRE

    Hagman, James; Ramírez, Julita; Lukin, Kara

    2012-01-01

    Early B cell factor 1 (EBF1) is a transcription factor that is critical for both B lymphopoiesis and B cell function. EBF1 is a requisite component of the B lymphocyte transcriptional network and is essential for B lineage specification. Recent studies revealed roles for EBF1 in B cell commitment. EBF1 binds its target genes via a DNA-binding domain including a unique ‘zinc knuckle’, which mediates a novel mode of DNA recognition. Chromatin immunoprecipitation of EBF1 in pro-B cells defined h...

  6. Prediction of transcription factor bindings sites affected by SNPs located at the osteopontin promoter.

    Science.gov (United States)

    Briones-Orta, Marco Antonio; Avendaño-Vázquez, S Eréndira; Ivette Aparicio-Bautista, Diana; Coombes, Jason D; Weber, Georg F; Syn, Wing-Kin

    2017-10-01

    This data contains information related to the research article entitled "Osteopontin splice variants and polymorphisms in Cancer Progression and Prognosis" [1]. Here, we describe an in silico analysis of transcription factors that could have altered binding to their DNA target sequence as a result of SNPs in the osteopontin gene promoter. We concentrated on SNPs associated with cancer risk and development. The analysis was performed with PROMO v3.0.2 software which incorporates TRANSFACT v6.4 of. We also present a figure depicting the putative transcription factor binding according to genotype.

  7. Assessing Factors That Influence the Recruitment of Majors from Introductory Geology Classes at Northern Arizona University

    Science.gov (United States)

    Hoisch, Thomas D.; Bowie, James I.

    2010-01-01

    In order to guide the formulation of strategies for recruiting undergraduates into the geology program at Northern Arizona University, we surveyed 783 students in introductory geology classes and 23 geology majors in their junior and senior years. Our analysis shows that ~7% of students in the introductory classes are possible candidates for…

  8. Non-meritocratic Factors and the Recruitment Process in Oyo State ...

    African Journals Online (AJOL)

    Results show that the dynamics of the recruitment and selection processes in Oyo State civil service are driven more by nonmeritocratic influences such as ethnicity, religion, statism, politicization etc. which have become embedded into the socio-economic and political organization/structure of Nigeria. Merit is undermined ...

  9. Non-meritocratic Factors and the Recruitment Process in Oyo State ...

    African Journals Online (AJOL)

    Results show that the dynamics of the recruitment and selection processes in Oyo State civil service are driven more by non- meritocratic influences such as ethnicity, religion, statism, politicization etc. which have become embedded into the socio-economic and political organization/structure of Nigeria. Merit is undermined ...

  10. Development of DNA affinity techniques for the functional characterization of purified RNA polymerase II transcription factors

    International Nuclear Information System (INIS)

    Garfinkel, S.; Thompson, J.A.; Cohen, R.B.; Brendler, T.; Safer, B.

    1987-01-01

    Affinity adsorption, precipitation, and partitioning techniques have been developed to purify and characterize RNA Pol II transcription components from whole cell extracts (WCE) (HeLa) and nuclear extracts (K562). The titration of these extracts with multicopy constructs of the Ad2 MLP but not pUC8, inhibits transcriptional activity. DNA-binding factors precipitated by this technique are greatly enriched by centrifugation. Using this approach, factors binding to the upstream promoter sequence (UPS) of the Ad2 MLP have been rapidly isolated by Mono Q, Mono S, and DNA affinity chromatography. By U.V. crosslinking to nucleotides containing specific 32 P-phosphodiester bonds within the recognition sequence, this factor is identified as a M/sub r/ = 45,000 polypeptide. To generate an assay system for the functional evaluation of single transcription components, a similar approach using synthetic oligonucleotide sequences spanning single promoter binding sites has been developed. The addition of a synthetic 63-mer containing the UPS element of the Ad2 MLP to HeLa WCE inhibited transcription by 60%. The addition of partially purified UPS binding protein, but not RNA Pol II, restored transcriptional activity. The addition of synthetic oligonucleotides containing other regulatory sequences not present in the Ad2 MLP was without effect

  11. The Transcription Factor Sp3 Cooperates with HDAC2 to Regulate Synaptic Function and Plasticity in Neurons.

    Science.gov (United States)

    Yamakawa, Hidekuni; Cheng, Jemmie; Penney, Jay; Gao, Fan; Rueda, Richard; Wang, Jun; Yamakawa, Satoko; Kritskiy, Oleg; Gjoneska, Elizabeta; Tsai, Li-Huei

    2017-08-08

    The histone deacetylase HDAC2, which negatively regulates synaptic gene expression and neuronal plasticity, is upregulated in Alzheimer's disease (AD) patients and mouse models. Therapeutics targeting HDAC2 hold promise for ameliorating AD-related cognitive impairment; however, attempts to generate HDAC2-specific inhibitors have failed. Here, we take an integrative genomics approach to identify proteins that mediate HDAC2 recruitment to synaptic plasticity genes. Functional screening revealed that knockdown of the transcription factor Sp3 phenocopied HDAC2 knockdown and that Sp3 facilitated recruitment of HDAC2 to synaptic genes. Importantly, like HDAC2, Sp3 expression was elevated in AD patients and mouse models, where Sp3 knockdown ameliorated synaptic dysfunction. Furthermore, exogenous expression of an HDAC2 fragment containing the Sp3-binding domain restored synaptic plasticity and memory in a mouse model with severe neurodegeneration. Our findings indicate that targeting the HDAC2-Sp3 complex could enhance cognitive function without affecting HDAC2 function in other processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Stimulation of TRPV1 channels activates the AP-1 transcription factor.

    Science.gov (United States)

    Backes, Tobias M; Rössler, Oliver G; Hui, Xin; Grötzinger, Carsten; Lipp, Peter; Thiel, Gerald

    2018-02-13

    Transient receptor potential vanilloid 1 (TRPV1) channels were originally described as the receptors of capsaicin, the main constituent of hot chili pepper. The biological functions of TRPV1 channels include pain sensation and inflammatory thermal hyperalgesia. Here, we show that stimulation of HEK293 cells expressing TRPV1 channels (H2C1 cells) with capsaicin or the TRPV1 ligand resiniferatoxin activated transcription mediated by the transcription factor AP-1. No cell death was occurring under these experimental conditions. The AP-1 activity was not altered in capsaicin or resiniferatoxin-stimulated HEK293 cells lacking TRPV1. We identified the AP-1 DNA binding site as the capsaicin/resiniferatoxin-responsive element. Stimulation with the TRPV1 ligand N-arachidonoyldopamine increased AP-1 activity in a TRPV1-dependent and TRPV1-independent manner. Stimulation of TRPV1 channels induced an influx of Ca 2+ into the cells and this rise in intracellular Ca 2+ was essential for activating AP-1 in capsaicin or resiniferatoxin-stimulated cells. N-arachidonoyldopamine stimulation induced a rise in intracellular Ca 2+ in a TRPV-1 dependent and independent manner. AP-1 is a dimeric transcription factor, composed of proteins of the c-Jun, c-Fos and ATF families. Stimulation of TRPV1 channels with capsaicin increased c-Jun and c-Fos biosynthesis in H2C1 cells. The signal transduction of capsaicin, leading to enhanced AP-1-mediated transcription, required extracellular signal-regulated protein kinase ERK1/2 as a signal transducer and the activation of the transcription factors c-Jun and ternary complex factor. Together, these data suggest that the intracellular functions of TRPV1 stimulation may rely on the activation of a stimulus-regulated protein kinase and stimulus-responsive transcription factors. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Overexpression of the transcription factor Sp1 activates the OAS-RNAse L-RIG-I pathway.

    Directory of Open Access Journals (Sweden)

    Valéryane Dupuis-Maurin

    Full Text Available Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1 is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen.

  14. Regulation of c-MYC transcriptional activity by transforming growth factor-beta 1-stimulated clone 22.

    Science.gov (United States)

    Zheng, Ling; Suzuki, Hiroyuki; Nakajo, Yuka; Nakano, Akinobu; Kato, Mitsuyasu

    2018-02-01

    c-MYC stimulates cell proliferation through the suppression of cyclin-dependent kinase (CDK) inhibitors including P15 (CDKN2B) and P21 (CDKN1A). It also activates E-box-mediated transcription of various target genes including telomerase reverse transcriptase (TERT) that is involved in cellular immortality and tumorigenesis. Transforming growth factor-beta 1 (TGF-β1)-stimulated clone 22 (TSC-22/TSC22D1) encodes a highly conserved leucine zipper protein that is induced by various stimuli, including TGF-β. TSC-22 inhibits cell growth in mammalian cells and in Xenopus embryos. However, underlying mechanisms of growth inhibition by TSC-22 remain unclear. Here, we show that TSC-22 physically interacts with c-MYC to inhibit the recruitment of c-MYC on the P15 (CDKN2B) and P21 (CDKN1A) promoters, effectively inhibiting c-MYC-mediated suppression of P15 (CDKN2B) and also P21 (CDKN1A) promoter activities. In contrast, TSC-22 enhances c-MYC-mediated activation of the TERT promoter. Additionally, the expression of TSC-22 in embryonic stem cells inhibits cell growth without affecting its pluripotency-related gene expression. These results indicate that TSC-22 differentially regulates c-MYC-mediated transcriptional activity to regulate cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  15. Induced myelomonocytic differentiation in leukemia cells is accompanied by noncanonical transcription factor expression.

    Science.gov (United States)

    Jensen, Holly A; Yourish, Harmony B; Bunaciu, Rodica P; Varner, Jeffrey D; Yen, Andrew

    2015-01-01

    Transcription factors that drive non-neoplastic myelomonocytic differentiation are well characterized but have not been systematically analyzed in the leukemic context. We investigated widely used, patient-derived myeloid leukemia cell lines with proclivity for differentiation into granulocytes by retinoic acid (RA) and/or monocytes by 1,25-dihyrdroxyvitamin D3 (D3). Using K562 (FAB M1), HL60 (FAB M2), RA-resistant HL60 sublines, NB4 (FAB M3), and U937 (FAB M5), we correlated nuclear transcription factor expression to immunophenotype, G1/G0 cell cycle arrest and functional inducible oxidative metabolism. We found that myelomonocytic transcription factors are aberrantly expressed in these cell lines. Monocytic-lineage factor EGR1 was not induced by D3 (the monocytic inducer) but instead by RA (the granulocytic inducer) in lineage bipotent myeloblastic HL60. In promyelocytic NB4 cells, EGR1 levels were increased by D3, while Gfi-1 expression (which promotes the granulocytic lineage) was upregulated during D3-induced monocytic differentiation in HL60, and by RA treatment in monocytic U937 cells. Furthermore, RARα and VDR expression were not strongly correlated to differentiation. In response to different differentiation inducers, U937 exhibited the most distinct transcription factor expression profile, while similarly mature NB4 and HL60 were better coupled. Overall, the differentiation induction agents RA and D3 elicited cell-specific responses across these common FAB M1-M5 cell lines.

  16. Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.

    Science.gov (United States)

    Xue, Gongda; Hemmings, Brian A

    2012-02-01

    The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.

  17. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DEFF Research Database (Denmark)

    Dossani, Zain Y.; Apel, Amanda Reider; Szmidt-Middleton, Heather

    2018-01-01

    . Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes...... regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein...... levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain....

  18. Phosphorylation of the parsley bZIP transcription factor CPRF2 is regulated by light.

    Science.gov (United States)

    Wellmer, F; Kircher, S; Rügner, A; Frohnmeyer, H; Schäfer, E; Harter, K

    1999-10-08

    The analysis of the complex network of signal transduction chains has demonstrated the importance of transcription factor activities for the control of gene expression. To understand how transcription factor activities in plants are regulated in response to light, we analyzed the common plant regulatory factor 2 (CPRF2) from parsley (Petroselinum crispum L.) that interacts with promoter elements of light-regulated genes. Here, we demonstrate that CPRF2 is a phosphoprotein in vivo and that its phosphorylation state is rapidly increased in response to light. Phosphorylation in vitro as well as in vivo occurs primarily within the C-terminal half of the factor, and is caused by a cytosolic 40-kDa protein serine kinase. In contrast to other plant basic leucine-zipper motif factors, phosphorylation of CPRF2 does not alter its DNA binding activity. Therefore, we discuss alternative functions of the light-dependent phosphorylation of CPRF2 including the regulation of its nucleocytoplasmic partitioning.

  19. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors.

    Science.gov (United States)

    Landin-Malt, André; Benhaddou, Ataaillah; Zider, Alain; Flagiello, Domenico

    2016-10-10

    TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The SLC6A4 VNTR genotype determines transcription factor binding and epigenetic variation of this gene in response to cocaine in vitro.

    Science.gov (United States)

    Vasiliou, Sylvia A; Ali, Fahad R; Haddley, Kate; Cardoso, M Cristina; Bubb, Vivien J; Quinn, John P

    2012-01-01

    We demonstrated that the genotype of the variable number tandem repeats (VNTRs) in the linked polymorphic region (LPR) of the 5' promoter and in the intron 2 (Stin2) transcriptional regulatory domains of the serotonin transporter SLC6A4 gene determined its promoter interactions with transcription factors and co-activators in response to cocaine in the JAr cell line. The LPR variants contain 14 (short, s) or 16 (long, l) copies of a 22-23 bp repeat element, whereas the Stin2 VNTR exists as three variants containing 9, 10 or 12 copies of a 16-17 bp repeat. We observed a differential effect of cocaine on the association of the promoter with the transcription factor CTCF, which bound to both LPR alleles prior to cocaine exposure but only to the l-allele following exposure. Significantly, this differential effect of cocaine was correlated with the binding of the transcriptional regulator MeCP2 specifically to the s-allele and recruiting the histone deacetylase complex (HDAC). Concurrently, cocaine increased the association of positive histone marks over the SLC6A4 gene locus. At the Stin2 domain, we lost binding of the transcription factor YB-1, while CTCF remained bound. Our biochemical data are consistent with differential reporter gene activity directed by the individual or dual domains in response to cocaine in an Epstein-Barr virus-based episome model of stable transfections. These observations suggest that exposure of JAr cells to cocaine may result in differential binding of transcription factors and activators based on a specific genotype that might alter epigenetic parameters affecting gene expression after the initial challenge. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  1. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  2. A network of paralogous stress response transcription factors in the human pathogen Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Jawad eMerhej

    2016-05-01

    Full Text Available The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq, transcriptome analyses and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1 transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption and iron metabolism.

  3. The transcription fidelity factor GreA impedes DNA break repair.

    Science.gov (United States)

    Sivaramakrishnan, Priya; Sepúlveda, Leonardo A; Halliday, Jennifer A; Liu, Jingjing; Núñez, María Angélica Bravo; Golding, Ido; Rosenberg, Susan M; Herman, Christophe

    2017-10-12

    Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. However, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase and hence promotes transcription fidelity. We report that removal of GreA results in markedly enhanced break repair via the classic RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation, we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNA polymerase backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNA polymerase can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor that compromises genomic integrity.

  4. A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo.

    Science.gov (United States)

    Blitz, Ira L; Paraiso, Kitt D; Patrushev, Ilya; Chiu, William T Y; Cho, Ken W Y; Gilchrist, Michael J

    2017-06-15

    Gene regulatory networks (GRNs) involve highly combinatorial interactions between transcription factors and short sequence motifs in cis-regulatory modules of target genes to control cellular phenotypes. The GRNs specifying most cell types are largely unknown and are the subject of wide interest. A catalog of transcription factors is a valuable tool toward obtaining a deeper understanding of the role of these critical effectors in any biological setting. Here we present a comprehensive catalog of the transcription factors for the diploid frog Xenopus tropicalis. We identify 1235 genes encoding DNA-binding transcription factors, comparable to the numbers found in typical mammalian species. In detail, the repertoire of X. tropicalis transcription factor genes is nearly identical to human and mouse, with the exception of zinc finger family members, and a small number of species/lineage-specific gene duplications and losses relative to the mammalian repertoires. We applied this resource to the identification of transcription factors differentially expressed in the early gastrula stage embryo. We find transcription factor enrichment in Spemann's organizer, the ventral mesoderm, ectoderm and endoderm, and report 218 TFs that show regionalized expression patterns at this stage. Many of these have not been previously reported as expressed in the early embryo, suggesting thus far unappreciated roles for many transcription factors in the GRNs regulating early development. We expect our transcription factor catalog will facilitate myriad studies using Xenopus as a model system to understand basic biology and human disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  6. MADS evolution : insights into evolutionary changes in transcription factors and their binding sites

    NARCIS (Netherlands)

    Bruijn, de Suze-Annigje

    2017-01-01

    Although most flowers follow a conserved 'bauplan' consisting of sepals, petals, stamens and carpels, there is a remarkable amount of morphological diversity. Interestingly, all flowers are specified by the conserved (A)BCE-model. Most of the transcription factors in this model belong to the

  7. AthaMap: from in silico data to real transcription factor binding sites.

    Science.gov (United States)

    Bülow, Lorenz; Steffens, Nils Ole; Galuschka, Claudia; Schindler, Martin; Hehl, Reinhard

    2006-01-01

    AthaMap generates a map for cis-regulatory sequences for the whole Arabidopsis thaliana genome. AthaMap was initially developed by matrix-based detection of putative transcription factor binding sites (TFBS) mostly determined from random binding site selection experiments. Now, also experimentally verified TFBS have been included for 48 different Arabidopsis thaliana transcription factors (TF). Based on these sequences, 89,416 very similar putative TFBS were determined within the genome of A. thaliana and annotated to AthaMap. Matrix- and single sequence-based binding sites can be included in colocalization analysis for the identification of combinatorial cis-regulatory elements. As an example, putative target genes of the WRKY18 transcription factor that is involved in plant-pathogen interaction were determined. New functions of AthaMap include descriptions for all annotated Arabidopsis thaliana genes and direct links to TAIR, TIGR and MIPS. Transcription factors used in the binding site determination are linked to TAIR and TRANSFAC databases. AthaMap is freely available at http://www.athamap.de.

  8. Autophagy and the hematopoietic niche: a regulatory role for the Forkhead-box transcription factors

    NARCIS (Netherlands)

    Gomez Puerto, MC

    2016-01-01

    Two main components of the hematopoietic niche are hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). FOXO transcription factors play a fundamental role in the maintenance of these cells through the regulation of cell cycle and oxidative stress. Other gene expression programs

  9. Homeobox transcription factor Pitx2: The rise of an asymmetry gene in cardiogenesis and arrhythmogenesis

    NARCIS (Netherlands)

    Franco, Diego; Christoffels, Vincent M.; Campione, Marina

    2014-01-01

    The homeobox transcription factor Pitx2 displays a highly specific expression pattern during embryogenesis. Gain and loss of function experiments have unraveled its pivotal role in left-right signaling. Conditional deletion in mice has demonstrated a complex and intricate role for Pitx2 in distinct

  10. Sparse Non-negative Matrix Factor 2-D Deconvolution for Automatic Transcription of Polyphonic Music

    DEFF Research Database (Denmark)

    Schmidt, Mikkel N.; Mørup, Morten

    2006-01-01

    We present a novel method for automatic transcription of polyphonic music based on a recently published algorithm for non-negative matrix factor 2-D deconvolution. The method works by simultaneously estimating a time-frequency model for an instrument and a pattern corresponding to the notes which...

  11. MPN patients harbor recurrent truncating mutations in transcription factor NF-E2

    NARCIS (Netherlands)

    Jutzi, J.S.; Bogeska, R.; Nikoloski, G.; Schmid, C.A.; Seeger, T.S.; Stegelmann, F.; Schwemmers, S.; Grunder, A.; Peeken, J.C.; Gothwal, M.; Wehrle, J.; Aumann, K.; Hamdi, K.; Dierks, C.; Wang, W.; Dohner, K.; Jansen, J.H.; Pahl, H.L.

    2013-01-01

    The molecular etiology of myeloproliferative neoplasms (MPNs) remains incompletely understood, despite recent advances incurred through the discovery of several different mutations in MPN patients. We have recently described overexpression of the transcription factor NF-E2 in MPN patients and shown

  12. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    DEFF Research Database (Denmark)

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  13. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES

  14. Functional analysis of jasmonate-responsive transcription factors in Arabidopsis thaliana

    NARCIS (Netherlands)

    Zarei, Adel

    2007-01-01

    The aim of the studies described in this thesis was the functional analysis of JA-responsive transcription factors in Arabidopsis with an emphasis on the interaction with the promoters of their target genes. In short, the following new results were obtained. The promoter of the PDF1.2 gene contains

  15. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    International Nuclear Information System (INIS)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-01-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal α-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  16. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants.

    Science.gov (United States)

    Kobayashi, Takanori; Ogo, Yuko; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Takahashi, Michiko; Mori, Satoshi; Nishizawa, Naoko K

    2007-11-27

    Iron is essential for most living organisms and is often the major limiting nutrient for normal growth. Plants induce iron utilization systems under conditions of low iron availability, but the molecular mechanisms of gene regulation under iron deficiency remain largely unknown. We identified the rice transcription factor IDEF1, which specifically binds the iron deficiency-responsive cis-acting element IDE1. IDEF1 belongs to an uncharacterized branch of the plant-specific transcription factor family ABI3/VP1 and exhibits the sequence recognition property of efficiently binding to the CATGC sequence within IDE1. IDEF1 transcripts are constitutively present in rice roots and leaves. Transgenic tobacco plants expressing IDEF1 under the control of the constitutive cauliflower mosaic virus 35S promoter transactivate IDE1-mediated expression only in iron-deficient roots. Transgenic rice plants expressing an introduced IDEF1 exhibit substantial tolerance to iron deficiency in both hydroponic culture and calcareous soil. IDEF1 overexpression leads to the enhanced expression of the iron deficiency-induced transcription factor gene OsIRO2, suggesting the presence of a sequential gene regulatory network. These findings reveal cis element/trans factor interactions that are functionally linked to the iron deficiency response. Manipulation of IDEF1 also provides another approach for producing crops tolerant of iron deficiency to enhance food and biomass production in calcareous soils.

  17. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne

    NARCIS (Netherlands)

    Ciannamea, S.; Kaufmann, K.; Frau, M.; Nougalli Tonaco, I.A.; Petersen, K.; Nielsen, K.K.; Angenent, G.C.; Immink, G.H.

    2006-01-01

    Regulation of flowering time is best understood in the dicot model species Arabidopsis thaliana. Molecular analyses revealed that genes belonging to the MADS box transcription factor family play pivotal regulatory roles in both the vernalization- and photoperiod-regulated flowering pathways. Here

  18. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis

    DEFF Research Database (Denmark)

    Luda, Katarzyna M.; Joeris, Thorsten; Persson, Emma K.

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence...... dependent DCs in the maintenance of intestinal T cell homeostasis....

  19. Heat shock transcription factors regulate heat induced cell death in a ...

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-29

    Mar 29, 2007 ... We are reporting for the first time that HSF2 is heat inducible and functions in heat shock induced autophagic cell death in BC-8 tumor cells. [Prasad K V, Taiyab A, Jyothi D, Srinivas U K and Sreedhar A S 2007 Heat shock transcription factors regulate heat induced cell death in a rat histiocytoma; J. Biosci.

  20. GATA Transcription Factor Required for Immunity to Bacterial and Fungal Pathogens

    Science.gov (United States)

    Gaddis, Nathan C.; Aballay, Alejandro

    2006-01-01

    In the past decade, Caenorhabditis elegans has been used to dissect several genetic pathways involved in immunity; however, little is known about transcription factors that regulate the expression of immune effectors. C. elegans does not appear to have a functional homolog of the key immune transcription factor NF-κB. Here we show that that the intestinal GATA transcription factor ELT-2 is required for both immunity to Salmonella enterica and expression of a C-type lectin gene, clec-67, which is expressed in the intestinal cells and is a good marker of S. enterica infection. We also found that ELT-2 is required for immunity to Pseudomonas aeruginosa, Enterococcus faecalis, and Cryptococcus neoformans. Lack of immune inhibition by DAF-2, which negatively regulates the FOXO transcription factor DAF-16, rescues the hypersusceptibility to pathogens phenotype of elt-2(RNAi) animals. Our results indicate that ELT-2 is part of a multi-pathogen defense pathway that regulates innate immunity independently of the DAF-2/DAF-16 signaling pathway. PMID:17183709

  1. Sequence-specific DNA recognition through peptide conjugates: Towards transcription factor models

    Czech Academy of Sciences Publication Activity Database

    García, Y. R.; Iyer, A.; Kraus, Tomáš; Madder, A.

    2014-01-01

    Roč. 20, Suppl S1 (2014), S34-S35 ISSN 1075-2617. [European Peptide Symposium /33./. 31.08.2014-05.09.2014, Sofia ] Institutional support: RVO:61388963 Keywords : peptidomimetics * DNA binding * transcription factor * click chemistry Subject RIV: CC - Organic Chemistry

  2. Regulation of cell proliferation by the E2F transcription factors

    DEFF Research Database (Denmark)

    Helin, K

    1998-01-01

    Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice has...

  3. Aluminum resistance transcription factor 1 (ART1) contributes to natural variation in rice aluminum resistance

    Science.gov (United States)

    Transcription factors (TFs) mediate stress resistance indirectly via physiological mechanisms driven by the array of genes they regulate. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with different genetic backgrounds. Here, we fine-mapped th...

  4. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells

    DEFF Research Database (Denmark)

    Twine, Natalie A.; Harkness, Linda; Kassem, Moustapha

    2016-01-01

    Background The differentiation of human bone marrow derived skeletal stem cells (known as human bone marrow stromal or mesenchymal stem cells, hMSCs) into osteoblasts involves the activation of a small number of well-described transcription factors. To identify additional osteoblastic transcripti...

  5. DNA binding by the plant-specific NAC transcription factors in crystal and solution

    DEFF Research Database (Denmark)

    Welner, Ditte Hededam; Lindemose, Søren; Grossmann, J. Günter

    2012-01-01

    NAC (NAM/ATAF/CUC) plant transcription factors regulate essential processes in development, stress responses and nutrient distribution in important crop and model plants (rice, Populus, Arabidopsis), which makes them highly relevant in the context of crop optimization and bioenergy production...

  6. DREB1/CBF transcription factors: their structure, function and role in ...

    Indian Academy of Sciences (India)

    2012-12-10

    Dec 10, 2012 ... growth due to decline in photosynthesis and nonavailability of nutrients as soil dries. Similarly, salinity leads to phys- iological dryness. Chilling and freezing temperatures can ... and stress-responsive gene expres-. Keywords. abiotic stress; transcription factors; DREB1/CBF. Journal of Genetics, Vol. 91, No.

  7. NF-κB transcription factor role in consolidation and reconsolidation of persistent memories

    Science.gov (United States)

    de la Fuente, Verónica; Federman, Noel; Zalcman, Gisela; Salles, Angeles; Freudenthal, Ramiro; Romano, Arturo

    2015-01-01

    Transcriptional regulation is an important molecular process required for long-term neural plasticity and long-term memory (LTM) formation. Thus, one main interest in molecular neuroscience in the last decades has been the identification of transcription factors that are involved in memory processes. Among them, the nuclear factor κB (NF-κB) family of transcription factors has gained interest due to a significant body of evidence that supports a key role of these proteins in synaptic plasticity and memory. In recent years, the interest was particularly reinforced because NF-κB was characterized as an important regulator of synaptogenesis. This function may be explained by its participation in synapse to nucleus communication, as well as a possible local role at the synapse. This review provides an overview of experimental work obtained in the last years, showing the essential role of this transcription factor in memory processes in different learning tasks in mammals. We focus the review on the consolidation and reconsolidation memory phases as well as on the regulation of immediate-early and late genes by epigenetic mechanisms that determine enduring forms of memories. PMID:26441513

  8. Reprogramming of metabolism by the Arabidopsis thaliana bZIP11 transcription factor

    NARCIS (Netherlands)

    Ma, J.

    2012-01-01

    The Arabidopsis bZIP11 transcription factor is known to regulate amino acid metabolism, and transcriptomic analysis suggests that bZIP11 has a broader regulatory effects in metabolism. Moreover, sucrose controls its translation via its uORF and all the available evidences point to the fact that

  9. Transcription factors as targets for improving Aspergillus niger as cell factory

    DEFF Research Database (Denmark)

    Poulsen, Lars; Bruno, K.S.; Thykær, Jette

    ). In the present study the effect of modulation of transcription factors in Aspergillus niger, which is an industrially important micro-organism used in various processes including organic acid and enzyme production, was investigated. The strategy described in this work focuses on regulation connected to p...

  10. Identification of a Transcription Factor Controlling pH-Dependent Organic Acid Response in Aspergillus niger

    DEFF Research Database (Denmark)

    Poulsen, Lars; Andersen, Mikael Rørdam; Lantz, Anna Eliasson

    2012-01-01

    Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants...

  11. Forkhead-box transcription factors and their role in the immune system

    NARCIS (Netherlands)

    Coffer, PJ; Burgering, BMT

    2004-01-01

    It is more than a decade since the discovery of the first forkhead-box (FOX) transcription factor in the fruit fly Drosophila melanogaster. In the intervening time, there has been an explosion in the identification and characterization of members of this family of proteins. Importantly, in the past

  12. The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons

    NARCIS (Netherlands)

    K. Tsarovina (Konstantina); T. Reiff (Tobias); J. Stubbusch (Jutta); D. Kurek (Dorota); F.G. Grosveld (Frank); R. Parlato (Rosanna); G. Schütz (Günther); H. Rohrer (Hermann)

    2010-01-01

    textabstractThe transcription factor Gata3 is essential for the development of sympathetic neurons and adrenal chromaffin cells. As Gata3 expression is maintained up to the adult stage, we addressed its function in differentiated sympathoadrenal cells at embryonic and adult stages by conditional

  13. What Factors Drive Job Seekers Attitude in Using E-Recruitment?

    Directory of Open Access Journals (Sweden)

    Ritzky Karina Brahmana

    2013-11-01

    Full Text Available In a digital world, job seekers prefer to use e-recruitment for a vacancy searching. Thus, the explanation of the determinants of their attitude in using this technology is left unobserved. This article reports the result of a survey study on how users utilize e-recruitment to search for works. Three hundred eighty-five just-graduated undergraduate students answered questions regarding their intention of using the e-recruitment under Theory of Acceptance Model. We propose Perceived Usefulness, Perceived Ease of Use, and Perceived of Enjoyment as the determinants of the job seekers intention. Results showed that those three variables influence the decision making of job seekers. We found also Perceived Usefulness is the mediating effect for jobs seekers in easy-to-use and enjoy feeling. This article provides evidence that e-recruitment has to be friendly user and fun to use to attract job seekers intention.   Keywords: E-recruitment, perceived usefulness, perceived ease of use, perceived of enjoyment, job seekers. Normal 0 false false false IN X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  14. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis.

    Directory of Open Access Journals (Sweden)

    Sylvain Aubry

    2014-06-01

    Full Text Available With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors

  15. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis.

    Science.gov (United States)

    Aubry, Sylvain; Kelly, Steven; Kümpers, Britta M C; Smith-Unna, Richard D; Hibberd, Julian M

    2014-06-01

    With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by

  16. Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two Independent Origins of C4 Photosynthesis

    Science.gov (United States)

    Kümpers, Britta M. C.; Smith-Unna, Richard D.; Hibberd, Julian M.

    2014-01-01

    With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by

  17. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors.

    Science.gov (United States)

    Ge, Ying; Li, Yong; Lv, De-Kang; Bai, Xi; Ji, Wei; Cai, Hua; Wang, Ao-Xue; Zhu, Yan-Ming

    2011-06-01

    Transcriptome of Glycine soja leaf tissue during a detailed time course formed a foundation for examining transcriptional processes during NaHCO(3) stress treatment. Of a total of 2,310 detected differentially expressed genes, 1,664 genes were upregulated and 1,704 genes were downregulated at various time points. The number of stress-regulated genes increased dramatically after a 6-h stress treatment. GO category gene enrichment analysis revealed that most of the differentially expressed genes were involved in cell structure, protein synthesis, energy, and secondary metabolism. Another enrichment test revealed that the response of G. soja to NaHCO(3) highlights specific transcription factors, such as the C2C2-CO-like, MYB-related, WRKY, GARP-G2-like, and ZIM families. Co-expressed genes were clustered into ten classes (P < 0.001). Intriguingly, one cluster of 188 genes displayed a unique expression pattern that increases at an early stage (0.5 and 3 h), followed by a decrease from 6 to 12 h. This group was enriched in regulation of transcription components, including AP2-EREBP, bHLH, MYB/MYB-related, C2C2-CO-like, C2C2-DOF, C2C2, C3H, and GARP-G2-like transcription factors. Analysis of the 1-kb upstream regions of transcripts displaying similar changes in abundance identified 19 conserved motifs, potential binding sites for transcription factors. The appearance of ABA-responsive elements in the upstream of co-expression genes reveals that ABA-mediated signaling participates in the signal transduction in alkaline response.

  18. Regulation of neural stem cell differentiation by transcription factors HNF4-1 and MAZ-1.

    Science.gov (United States)

    Wang, Jiao; Cheng, Hua; Li, Xiao; Lu, Wei; Wang, Kai; Wen, Tieqiao

    2013-02-01

    Neural stem cells (NSCs) are promising candidates for a variety of neurological diseases due to their ability to differentiate into neurons, astrocytes, and oligodentrocytes. During this process, Rho GTPases are heavily involved in neuritogenesis, axon formation and dendritic development, due to their effects on the cytoskeleton through downstream effectors. The activities of Rho GTPases are controlled by Rho-GDP dissociation inhibitors (Rho-GDIs). As shown in our previous study, these are also involved in the differentiation of NSCs; however, little is known about the underlying regulatory mechanism. Here, we describe how the transcription factors hepatic nuclear factor (HNF4-1) and myc-associated zinc finger protein (MAZ-1) regulate the expression of Rho-GDIγ in the stimulation of NSC differentiation. Using a transfection of cis-element double-stranded oligodeoxynucleotides (ODNs) strategy, referred to as "decoy" ODNs, we examined the effects of HNF4-1 and MAZ-1 on NSC differentiation in the NSC line C17.2. Our results show that HNF4-1 and MAZ-1 decoy ODNs significantly knock down Rho-GDIγ gene transcription, leading to NSC differentiation towards neurons. We observed that HNF4-1 and MAZ-1 decoy ODNs are able enter to the cell nucleolus and specifically bind to their target transcription factors. Furthermore, the expression of Rho-GDIγ-mediated genes was identified, suggesting that the regulatory mechanism for the differentiation of NSCs is triggered by the transcription factors MAZ-1 and HNF4-1. These findings indicate that HNF4-1 and MAZ-1 regulate the expression of Rho-GDIγ and contribute to the differentiation of NSCs. Our findings provide a new perspective within regulatory mechanism research during differentiation of NSCs, especially the clinical application of transcription factor decoys in vivo, suggesting potential therapeutic strategies for neurodegenerative disease.

  19. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks.

    Science.gov (United States)

    Huber, René; Pietsch, Daniel; Günther, Johannes; Welz, Bastian; Vogt, Nico; Brand, Korbinian

    2014-01-01

    Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.

  20. Elk3 from hamster-a ternary complex factor with strong transcriptional repressor activity

    DEFF Research Database (Denmark)

    Hjortoe, G.M.; Weilguny, D.; Willumsen, Berthe Marie

    2005-01-01

    the transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c......-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3...

  1. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy

    OpenAIRE

    Pobbati, Ajaybabu V.; Han, Xiao; Hung, Alvin W.; Weiguang, Seetoh; Huda, Nur; Chen, Guo-Ying; Kang, CongBao; Chia, Cheng San Brian; Luo, Xuelian; Hong, Wanjin; Poulsen, Anders

    2015-01-01

    The human TEAD family of transcription factors (TEAD1-4) is required for YAP-mediated transcription in the Hippo pathway. Hyperactivation of TEAD’s co-activator YAP contributes to tissue overgrowth and human cancers, suggesting that pharmacological interference of TEAD-YAP activity may be an effective strategy for anticancer therapy. Here we report the discovery of a central pocket in the YAP-binding domain (YBD) of TEAD that is targetable by small molecule inhibitors. Our X-ray crystallograp...

  2. Temporal regulation of Drosophila salivary gland degeneration by the Broad-Complex transcription factors

    Czech Academy of Sciences Publication Activity Database

    Kuchárová-Mahmood, S.; Raška, Ivan; Mechler, B. M.; Farkaš, R.

    2002-01-01

    Roč. 140, - (2002), s. 67-78 ISSN 1047-8477 R&D Projects: GA ČR GA304/02/0342 Grant - others:GA-(SK) VEGA:2/7194/20 Institutional research plan: CEZ:AV0Z5039906; CEZ:MSM 111100003 Keywords : programmed cell death * BR-C transcription factors * drosophila Subject RIV: EA - Cell Biology Impact factor: 4.194, year: 2002

  3. NF-κB Transcription Factor Role in Consolidation and Reconsolidation of Persistent Memories

    Directory of Open Access Journals (Sweden)

    Verónica ede la Fuente

    2015-09-01

    Full Text Available Transcriptional regulation is an important molecular process required for long-term neural plasticity and long-term memory formation. Thus, one main interest in molecular neuroscience in the last decades has been the identification of transcription factors that are involved in memory processes. Among them, the NF-κB family of transcription factors has gained interest due to a significant body of evidence that supports a key role of these proteins in synaptic plasticity and memory. In recent years, the interest was particularly reinforced because NF-κB was characterized as an important regulator of synaptogenesis. This function may be explained by its participation in synapse to nucleus communication, as well as a possible local role at the synapse. This review provides an overview of experimental work obtained in the last years, showing the essential role of this transcription factor in memory processes in different learning tasks in mammals. We focus the review on the consolidation and reconsolidation memory phases as well as on the regulation of immediate-early and late genes by epigenetic mechanisms that determine enduring forms of memories.

  4. DNA recognition mechanism of the ONECUT homeodomain of transcription factor HNF-6.

    Science.gov (United States)

    Iyaguchi, Daisuke; Yao, Min; Watanabe, Nobuhisa; Nishihira, Jun; Tanaka, Isao

    2007-01-01

    Hepatocyte nuclear factor-6 (HNF-6), a liver-enriched transcription factor, controls the development of various tissues, such as the pancreas and liver, and regulates the expression of several hepatic genes. This protein belongs to the ONECUT class of homeodomain proteins and contains a bipartite DNA-binding domain composed of a single cut domain and a characteristic homeodomain. This transcription factor has two distinct modes of DNA binding and transcriptional activation that use different coactivators depending on the target gene. The crystal structure of the bipartite DNA-binding domain of HNF-6alpha complexed with the HNF-6-binding site of the TTR promoter revealed the DNA recognition mechanism of this protein. Comparing our structure with the DNA-free structure of HNF-6 or the structure of Oct-1, we discuss characteristic features associated with DNA binding and the structural basis for the dual mode of action of this protein, and we suggest a strategy for variability of transcriptional activation of the target gene.

  5. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5.

    Science.gov (United States)

    Nezich, Catherine L; Wang, Chunxin; Fogel, Adam I; Youle, Richard J

    2015-08-03

    The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats-generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy.

  6. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis.

    Directory of Open Access Journals (Sweden)

    David G Ransom

    2004-08-01

    Full Text Available Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1gamma (TIF1gamma (or TRIM33, a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1gamma mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1gamma mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1gamma functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1gamma protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.

  7. A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity

    Directory of Open Access Journals (Sweden)

    Ana C. D’Alessio

    2015-11-01

    Full Text Available Hundreds of transcription factors (TFs are expressed in each cell type, but cell identity can be induced through the activity of just a small number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting point for studying transcriptional control of cell identity and reprogramming in many human cell types.

  8. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition.

    Science.gov (United States)

    Zhang, Heng; Liu, Chen-Ying; Zha, Zheng-Yu; Zhao, Bin; Yao, Jun; Zhao, Shimin; Xiong, Yue; Lei, Qun-Ying; Guan, Kun-Liang

    2009-05-15

    The TAZ transcription co-activator has been shown to promote cell proliferation and to induce epithelial-mesenchymal transition. Recently we have demonstrated that TAZ is phosphorylated and inhibited by the Hippo tumor suppressor pathway, which is altered in human cancer. The mechanism of TAZ-mediated transcription is unclear. We demonstrate here that TEAD is a key downstream transcription factor mediating the function of TAZ. Disruption of TEAD-TAZ binding or silencing of TEAD expression blocked the function of TAZ to promote cell proliferation and to induce epithelial-mesenchymal transition, demonstrating TEAD as a key downstream effector of TAZ. We also identified CTGF, a gene that regulates cell adhesion, proliferation, and migration, as a direct target of TAZ and TEAD. Our study establishes a functional partnership between TAZ and TEAD under negative regulation by the Hippo signaling pathway.

  9. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  10. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  11. Regulation of Carotenoid Biosynthesis by Shade Relies on Specific Subsets of Antagonistic Transcription Factors and Cofactors.

    Science.gov (United States)

    Bou-Torrent, Jordi; Toledo-Ortiz, Gabriela; Ortiz-Alcaide, Miriam; Cifuentes-Esquivel, Nicolas; Halliday, Karen J; Martinez-García, Jaime F; Rodriguez-Concepcion, Manuel

    2015-11-01

    Carotenoids are photosynthetic pigments essential for the protection against excess light. During deetiolation, their production is regulated by a dynamic repression-activation module formed by PHYTOCHROME-INTERACTING FACTOR1 (PIF1) and LONG HYPOCOTYL5 (HY5). These transcription factors directly and oppositely control the expression of the gene encoding PHYTOENE SYNTHASE (PSY), the first and main rate-determining enzyme of the carotenoid pathway. Antagonistic modules also regulate the responses of deetiolated plants to vegetation proximity and shade (i.e. to the perception of far-red light-enriched light filtered through or reflected from neighboring plants). These responses, aimed to adapt to eventual shading from plant competitors, include a reduced accumulation of carotenoids. Here, we show that PIF1 and related photolabile PIFs (but not photostable PIF7) promote the shade-triggered decrease in carotenoid accumulation. While HY5 does not appear to be required for this process, other known PIF antagonists were found to modulate the expression of the Arabidopsis (Arabidopsis thaliana) PSY gene and the biosynthesis of carotenoids early after exposure to shade. In particular, PHYTOCHROME-RAPIDLY REGULATED1, a transcriptional cofactor that prevents the binding of true transcription factors to their target promoters, was found to interact with PIF1 and hence directly induce PSY expression. By contrast, a change in the levels of the transcriptional cofactor LONG HYPOCOTYL IN FAR RED1, which also binds to PIF1 and other PIFs to regulate shade-related elongation responses, did not impact PSY expression or carotenoid accumulation. Our data suggest that the fine-regulation of carotenoid biosynthesis in response to shade relies on specific modules of antagonistic transcriptional factors and cofactors. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Lars Poulsen

    Full Text Available Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0. Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis.

  13. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor.

    Science.gov (United States)

    Florez, Sergio L; Erwin, Rachel L; Maximova, Siela N; Guiltinan, Mark J; Curtis, Wayne R

    2015-05-16

    Theobroma cacao, the chocolate tree, is an important economic crop in East Africa, South East Asia, and South and Central America. Propagation of elite varieties has been achieved through somatic embryogenesis (SE) but low efficiencies and genotype dependence still presents a significant limitation for its propagation at commercial scales. Manipulation of transcription factors has been used to enhance the formation of SEs in several other plant species. This work describes the use of the transcription factor Baby Boom (BBM) to promote the transition of somatic cacao cells from the vegetative to embryonic state. An ortholog of the Arabidopsis thaliana BBM gene (AtBBM) was characterized in T. cacao (TcBBM). TcBBM expression was observed throughout embryo development and was expressed at higher levels during SE as compared to zygotic embryogenesis (ZE). TcBBM overexpression in A. thaliana and T. cacao led to phenotypes associated with SE that did not require exogenous hormones. While transient ectopic expression of TcBBM provided only moderate enhancements in embryogenic potential, constitutive overexpression dramatically increased SE proliferation but also appeared to inhibit subsequent development. Our work provides validation that TcBBM is an ortholog to AtBBM and has a specific role in both somatic and zygotic embryogenesis. Furthermore, our studies revealed that TcBBM transcript levels could serve as a biomarker for embryogenesis in cacao tissue. Results from transient expression of TcBBM provide confirmation that transcription factors can be used to enhance SE without compromising plant development and avoiding GMO plant production. This strategy could compliment a hormone-based method of reprogramming somatic cells and lead to more precise manipulation of SE at the regulatory level of transcription factors. The technology would benefit the propagation of elite varieties with low regeneration potential as well as the production of transgenic plants, which

  14. A novel transcription factor involved in plant defense endowed with protein phosphatase activity

    Science.gov (United States)

    Carrasco, José L.; Ancillo, Gema; Mayda, Esther; Vera, Pablo

    2003-01-01

    In plants, expression of a disease-resistance character following perception of a pathogen involves massive deployment of transcription-dependent defenses. Thus, if rapid and effective defense responses have to be achieved, it is crucial that the pathogenic signal is transduced and amplified through pre-existing signaling pathways. Reversible phosphorylation of specific transcription factors, by a concerted action of protein kinases and phosphatases, may represent a mechanism for rapid and flexible regulation of selective gene expression by environmental stimuli. Here we identified a novel DNA-binding protein from tobacco plants, designated DBP1, with protein phosphatase activity, which binds in a sequence-specific manner to a cis- acting element of a defense-related gene and participates in its transcriptional regulation. This finding helps delineate a terminal event in a signaling pathway for the selective activation of early transcription-dependent defense responses in plants, and suggests that stimulus-dependent reversible phosphorylation of regulatory proteins may occur directly in a transcription protein–DNA complex. PMID:12839999

  15. Complex SUMO-1 regulation of cardiac transcription factor Nkx2-5.

    Directory of Open Access Journals (Sweden)

    Mauro W Costa

    Full Text Available Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51 of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a "shifting" site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity.

  16. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.; Tamás, Markus J.

    2015-12-28

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.

  17. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth

    DEFF Research Database (Denmark)

    Zhao, Jian; Yuan, Xuejun; Frödin, Morten

    2003-01-01

    Phosphorylation of transcription factors by mitogen-activated protein kinase (MAPK) cascades links cell signaling with the control of gene expression. Here we show that growth factors induce rRNA synthesis by activating MAPK-dependent signaling cascades that target the RNA polymerase I......-specific transcription initiation factor TIF-IA. Activation of TIF-IA and ribosomal gene transcription is sensitive to PD98059, indicating that TIF-IA is targeted by MAPK in vivo. Phosphopeptide mapping and mutational analysis reveals two serine residues (S633 and S649) that are phosphorylated by ERK and RSK kinases....... Replacement of S649 by alanine inactivates TIF-IA, inhibits pre-rRNA synthesis, and retards cell growth. The results provide a link between growth factor signaling, ribosome production, and cell growth, and may have a major impact on the mechanism of cell transformation....

  18. A prospective investigation of injury incidence and injury risk factors among Army recruits in military police training.

    Science.gov (United States)

    Knapik, Joseph J; Graham, Bria; Cobbs, Jacketta; Thompson, Diane; Steelman, Ryan; Jones, Bruce H

    2013-01-17

    United States Army military police (MP) training is a 19-week course designed to introduce new recruits to basic soldiering skills, Army values and lifestyle, and law enforcement skills and knowledge. The present investigation examined injury rates and injury risk factors in MP training. At the start of training, 1,838 male and 553 female MP recruits were administered a questionnaire containing items on date of birth, height, weight, tobacco use, prior physical activity, injury history, and menstrual history. Injuries during training were obtained from electronic medical records and the training units provided data on student graduation and attrition. Successfully graduating from the course were 94.3% of the men and 83.7% of the women. Experiencing at least one injury during training were 34.2% of the men and 66.7% of the women (risk ratio (women/men) = 1.95, 95% confidence interval = 1.79-2.13). Recruits were at higher injury risk if they reported that they were older, had smoked in the past, or had performed less frequent exercise or sports prior to MP training. Men were at higher injury risk if they reported a prior injury and women were at higher risk if they reported missing at least six menstrual cycles in the last year or had previously been pregnant. The present investigation was the first to identify injury rates and identify specific factors increasing injury risk during MP training.

  19. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis.

    Science.gov (United States)

    Zhao, Hongtao; Li, Xia; Ma, Ligeng

    2012-12-01

    Cell fate determination is an important process in multicellular organisms. Plant epidermis is a readily-accessible, well-used model for the study of cell fate determination. Our knowledge of cell fate determination is growing steadily due to genetic and molecular analyses of root hairs, trichomes, and stomata, which are derived from the epidermal cells of roots and aerial tissues. Studies have shown that a large number of factors are involved in the establishment of these cell types, especially members of the basic helix-loop-helix (bHLH) superfamily, which is an important family of transcription factors. In this mini-review, we focus on the role of bHLH transcription factors in cell fate determination in Arabidopsis.

  20. A novel bipartite nuclear localization signal with an atypically long linker in DOF transcription factors.

    Science.gov (United States)

    Krebs, Jonas; Mueller-Roeber, Bernd; Ruzicic, Slobodan

    2010-05-01

    Large molecules require a nuclear localization signal (NLS) for translocation into the nucleus. Classical NLSs are rich in basic amino acids and they represent three groups, based on their structural features: SV40 T-antigen-type, yeast mating factor Matalpha-2-type, and bipartite NLSs. DNA-binding-with-one-finger (DOF) transcription factors play important roles in plants, and although their nuclear localization has been demonstrated in several cases, public protein localization prediction tools fail to detect NLS motifs in these proteins. Here, we demonstrate that an atypical bipartite NLS with a 17 amino acid long linker between its flanking basic regions directs Arabidopsis thaliana DOF proteins to the cell nucleus. The novel bipartite NLS is highly conserved in plant DOF transcription factors, including the single DOF protein in the green alga Chlamydomonas reinhardtii. Copyright 2010 Elsevier GmbH. All rights reserved.

  1. Occupancy classification of position weight matrix-inferred transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Hollis Wright

    Full Text Available BACKGROUND: Computational prediction of Transcription Factor Binding Sites (TFBS from sequence data alone is difficult and error-prone. Machine learning techniques utilizing additional environmental information about a predicted binding site (such as distances from the site to particular chromatin features to determine its occupancy/functionality class show promise as methods to achieve more accurate prediction of true TFBS in silico. We evaluate the Bayesian Network (BN and Support Vector Machine (SVM machine learning techniques on four distinct TFBS data sets and analyze their performance. We describe the features that are most useful for classification and contrast and compare these feature sets between the factors. RESULTS: Our results demonstrate good performance of classifiers both on TFBS for transcription factors used for initial training and for TFBS for other factors in cross-classification experiments. We find that distances to chromatin modifications (specifically, histone modification islands as well as distances between such modifications to be effective predictors of TFBS occupancy, though the impact of individual predictors is largely TF specific. In our experiments, Bayesian network classifiers outperform SVM classifiers. CONCLUSIONS: Our results demonstrate good performance of machine learning techniques on the problem of occupancy classification, and demonstrate that effective classification can be achieved using distances to chromatin features. We additionally demonstrate that cross-classification of TFBS is possible, suggesting the possibility of constructing a generalizable occupancy classifier capable of handling TFBS for many different transcription factors.

  2. Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining

    Directory of Open Access Journals (Sweden)

    Iyer Vishwanath R

    2007-11-01

    Full Text Available Abstract Background Cis-acting transcriptional regulatory elements in mammalian genomes typically contain specific combinations of binding sites for various transcription factors. Although some cis-regulatory elements have been well studied, the combinations of transcription factors that regulate normal expression levels for the vast majority of the 20,000 genes in the human genome are unknown. We hypothesized that it should be possible to discover transcription factor combinations that regulate gene expression in concert by identifying over-represented combinations of sequence motifs that occur together in the genome. In order to detect combinations of transcription factor binding motifs, we developed a data mining approach based on the use of association rules, which are typically used in market basket analysis. We scored each segment of the genome for the presence or absence of each of 83 transcription factor binding motifs, then used association rule mining algorithms to mine this dataset, thus identifying frequently occurring pairs of distinct motifs within a segment. Results Support for most pairs of transcription factor binding motifs was highly correlated across different chromosomes although pair significance varied. Known true positive motif pairs showed higher association rule support, confidence, and significance than background. Our subsets of high-confidence, high-significance mined pairs of transcription factors showed enrichment for co-citation in PubMed abstracts relative to all pairs, and the predicted associations were often readily verifiable in the literature. Conclusion Functional elements in the genome where transcription factors bind to regulate expression in a combinatorial manner are more likely to be predicted by identifying statistically and biologically significant combinations of transcription factor binding motifs than by simply scanning the genome for the occurrence of binding sites for a single transcription

  3. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  4. Activity of the upstream TATA-less promoter of the p21(Waf1/Cip1) gene depends on transcription factor IIA (TFIIA) in addition to TFIIA-reactive TBP-like protein.

    Science.gov (United States)

    Suzuki, Hidefumi; Maeda, Ryo; Nakadai, Tomoyoshi; Tamura, Taka-aki

    2014-07-01

    TATA-binding protein-like protein (TLP) binds to transcription factor IIA (TFIIA) with high affinity, although the significance of this binding is poorly understood. In this study, we investigated the role of TFIIA in transcriptional regulation of the p21(Waf1/Cip1) (p21) gene. It has been shown that TLP is indispensable for p53-activated transcription from an upstream TATA-less promoter of the p21 gene. We found that mutant TLPs having decreased TFIIA-binding ability exhibited weakened transcriptional activation function for the upstream promoter. Activity of the upstream promoter was enhanced considerably by an increased amount of TFIIA in a p53-dependent manner, whereas activity of the TATA-containing downstream promoter was enhanced only slightly. TFIIA potentiated the upstream promoter additively with TLP. Although TFIIA is recruited to both promoters, activity of the upstream promoter was much more dependent on TFIIA. Recruitment of TFIIA and TLP to the upstream promoter was augmented in etoposide-treated cells, in which the amount of TFIIA-TLP complex is increased, and TFIIA-reactive TLP was required for the recruitment of both factors. It was confirmed that etoposide-stimulated transcription depends on TLP. We also found that TFIIA-reactive TLP acts to decrease cell growth rate, which can be explained by interaction of the p21 promoter with the transcription factors that we examined. The results of the present study suggest that the upstream TATA-less promoter of p21 needs TFIIA and TFIIA-reactive TLP for p53-dependent transcriptional enhancement. © 2014 The Authors.FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  5. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun; Roh, Kyung-Hee

    2008-06-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches.

  6. Structural and functional insight into TAF1-TAF7, a subcomplex of transcription factor II D

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Suparna; Lou, Xiaohua; Hwang, Peter; Rajashankar, Kanagalaghatta R.; Wang, Xiaoping; Gustafsson, Jan-Åke; Fletterick, Robert J.; Jacobson, Raymond H.; Webb, Paul [MDACC; (HMRI); (Cornell); (UCSF); (Houston)

    2014-07-01

    Transcription factor II D (TFIID) is a multiprotein complex that nucleates formation of the basal transcription machinery. TATA binding protein-associated factors 1 and 7 (TAF1 and TAF7), two subunits of TFIID, are integral to the regulation of eukaryotic transcription initiation and play key roles in preinitiation complex (PIC) assembly. Current models suggest that TAF7 acts as a dissociable inhibitor of TAF1 histone acetyltransferase activity and that this event ensures appropriate assembly of the RNA polymerase II-mediated PIC before transcriptional initiation. Here, we report the 3D structure of a complex of yeast TAF1 with TAF7 at 2.9 Å resolution. The structure displays novel architecture and is characterized by a large predominantly hydrophobic heterodimer interface and extensive cofolding of TAF subunits. There are no obvious similarities between TAF1 and known histone acetyltransferases. Instead, the surface of the TAF1–TAF7 complex contains two prominent conserved surface pockets, one of which binds selectively to an inhibitory trimethylated histone H3 mark on Lys27 in a manner that is also regulated by phosphorylation at the neighboring H3 serine. Our findings could point toward novel roles for the TAF1–TAF7 complex in regulation of PIC assembly via reading epigenetic histone marks.

  7. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fabian Machens

    2017-10-01

    Full Text Available Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.

  8. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  9. Microphthalmia-associated transcription factor (MITF – from Waardenburg syndrome genetics to melanoma therapy

    Directory of Open Access Journals (Sweden)

    Ivan Šamija

    2010-11-01

    Full Text Available Microphthalmia-associated transcription factor (MITF was first discovered as protein coded by gene whose mutations are associated with Waardenburg syndrome. Later, MITF was shown to be key transcription factor regulating melanogenesis. Further studies have shown that in addition to regulating melanogenesis MITF also plays central role in regulation of melanocyte development and survival. MITF gene is amplified in a proportion of melanomas and ectopic MITF expression can transform melanocytes so MITF can function as melanoma “lineage survival” oncogene. Different studies have further revealed MITF’s important but complex role in tumorigenesis and progression of melanoma. As expected from its important role in melanocytes and melanoma MITF is intricately regulated on all the levels from transcription to post-translational modifications. Although complex mechanisms of MITF functioning are still being revealed, MITF already has a valuable role in managing melanoma patients. Immunohistochemical analysis of MITF has shown both diagnostic and prognostic value in patients with melanoma. MITF is also a valuable specific marker for detection of circulating melanoma cells by reverse-transcription – polymerase chain reaction. MITF has recently been investigated as a potential target for melanoma therapy.

  10. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    2007-08-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  11. A putative transcription factor MYT2 regulates perithecium size in the ascomycete Gibberella zeae.

    Directory of Open Access Journals (Sweden)

    Yang Lin

    Full Text Available The homothallic ascomycete fungus Gibberella zeae is a plant pathogen that is found worldwide, causing Fusarium head blight (FHB in cereal crops and ear rot of maize. Ascospores formed in fruiting bodies (i.e., perithecia are hypothesized to be the primary inocula for FHB disease. Perithecium development is a complex cellular differentiation process controlled by many developmentally regulated genes. In this study, we selected a previously reported putative transcription factor containing the Myb DNA-binding domain MYT2 for an in-depth study on sexual development. The deletion of MYT2 resulted in a larger perithecium, while its overexpression resulted in a smaller perithecium when compared to the wild-type strain. These data suggest that MYT2 regulates perithecium size differentiation. MYT2 overexpression affected pleiotropic phenotypes including vegetative growth, conidia production, virulence, and mycotoxin production. Nuclear localization of the MYT2 protein supports its role as a transcriptional regulator. Transcriptional analyses of trichothecene synthetic genes suggest that MYT2 additionally functions as a suppressor for trichothecene production. This is the first study characterizing a transcription factor required for perithecium size differentiation in G. zeae, and it provides a novel angle for understanding sexual development in filamentous fungi.

  12. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy.

    Science.gov (United States)

    Pobbati, Ajaybabu V; Han, Xiao; Hung, Alvin W; Weiguang, Seetoh; Huda, Nur; Chen, Guo-Ying; Kang, CongBao; Chia, Cheng San Brian; Luo, Xuelian; Hong, Wanjin; Poulsen, Anders

    2015-11-03

    The human TEAD family of transcription factors (TEAD1-4) is required for YAP-mediated transcription in the Hippo pathway. Hyperactivation of TEAD's co-activator YAP contributes to tissue overgrowth and human cancers, suggesting that pharmacological interference of TEAD-YAP activity may be an effective strategy for anticancer therapy. Here we report the discovery of a central pocket in the YAP-binding domain (YBD) of TEAD that is targetable by small-molecule inhibitors. Our X-ray crystallography studies reveal that flufenamic acid, a non-steroidal anti-inflammatory drug (NSAID), binds to the central pocket of TEAD2 YBD. Our biochemical and functional analyses further demonstrate that binding of NSAIDs to TEAD inhibits TEAD-YAP-dependent transcription, cell migration, and proliferation, indicating that the central pocket is important for TEAD function. Therefore, our studies discover a novel way of targeting TEAD transcription factors and set the stage for therapeutic development of specific TEAD-YAP inhibitors against human cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress.

    Science.gov (United States)

    Koskas, Sivan; Decottignies, Anabelle; Dufour, Solenne; Pezet, Mylène; Verdel, André; Vourc'h, Claire; Faure, Virginie

    2017-06-20

    In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased