WorldWideScience

Sample records for transcriptional activator proteins

  1. Adenovirus DNA binding protein inhibits SrCap-activated CBP and CREB-mediated transcription

    International Nuclear Information System (INIS)

    Xu Xiequn; Tarakanova, Vera; Chrivia, John; Yaciuk, Peter

    2003-01-01

    The SNF2-related CBP activator protein (SrCap) is a potent activator of transcription mediated by CBP and CREB. We have previously demonstrated that the Adenovirus 2 DNA Binding Protein (DBP) binds to SrCap and inhibits the transcription mediated by the carboxyl-terminal region of SrCap (amino acids 1275-2971). We report here that DBP inhibits the ability of full-length SrCap (1-2971) to activate transcription mediated by Gal-CREB and Gal-CBP. In addition, DBP also inhibits the ability of SrCap to enhance Protein Kinase A (PKA) activated transcription of the enkaphalin promoter. DBP was found to dramatically inhibit transcription of a mammalian two-hybrid system that was dependent on the interaction of SrCap and CBP binding domains. We also found that DBP has no effect on transcription mediated by a transcriptional activator that is not related to SrCap, indicating that our reported transcriptional inhibition is specific for SrCap and not due to nonspecific effects of DBP's DNA binding activity on the CAT reporter plasmid. Taken together, these results suggest a model in which DBP inhibits cellular transcription mediated by the interaction between SrCap and CBP

  2. Protein Inhibitors of Activated STAT (Pias1 and Piasy) Differentially Regulate Pituitary Homeobox 2 (PITX2) Transcriptional Activity*

    Science.gov (United States)

    Wang, Jianbo; Sun, Zhao; Zhang, Zichao; Saadi, Irfan; Wang, Jun; Li, Xiao; Gao, Shan; Engle, Jamison J.; Kuburas, Adisa; Fu, Xueyao; Yu, Wenjie; Klein, William H.; Russo, Andrew F.; Amendt, Brad A.

    2013-01-01

    Protein inhibitors of activated STAT (Pias) proteins can act independent of sumoylation to modulate the activity of transcription factors and Pias proteins interacting with transcription factors can either activate or repress their activity. Pias proteins are expressed in many tissues and cells during development and we asked if Pias proteins regulated the pituitary homeobox 2 (PITX2) homeodomain protein, which modulates developmental gene expression. Piasy and Pias1 proteins are expressed during craniofacial/tooth development and directly interact and differentially regulate PITX2 transcriptional activity. Piasy and Pias1 are co-expressed in craniofacial tissues with PITX2. Yeast two-hybrid, co-immunoprecipitation and pulldown experiments demonstrate Piasy and Pias1 interactions with the PITX2 protein. Piasy interacts with the PITX2 C-terminal tail to attenuate its transcriptional activity. In contrast, Pias1 interacts with the PITX2 C-terminal tail to increase PITX2 transcriptional activity. The E3 ligase activity associated with the RING domain in Piasy is not required for the attenuation of PITX2 activity, however, the RING domain of Pias1 is required for enhanced PITX2 transcriptional activity. Bimolecular fluorescence complementation assays reveal PITX2 interactions with Piasy and Pias1 in the nucleus. Piasy represses the synergistic activation of PITX2 with interacting co-factors and Piasy represses Pias1 activation of PITX2 transcriptional activity. In contrast, Pias1 did not affect the synergistic interaction of PITX2 with transcriptional co-factors. Last, we demonstrate that Pias proteins form a complex with PITX2 and Lef-1, and PITX2 and β-catenin. Lef-1, β-catenin, and Pias interactions with PITX2 provide new molecular mechanisms for the regulation of PITX2 transcriptional activity and the activity of Pias proteins. PMID:23515314

  3. Protein inhibitors of activated STAT (Pias1 and Piasy) differentially regulate pituitary homeobox 2 (PITX2) transcriptional activity.

    Science.gov (United States)

    Wang, Jianbo; Sun, Zhao; Zhang, Zichao; Saadi, Irfan; Wang, Jun; Li, Xiao; Gao, Shan; Engle, Jamison J; Kuburas, Adisa; Fu, Xueyao; Yu, Wenjie; Klein, William H; Russo, Andrew F; Amendt, Brad A

    2013-05-03

    Protein inhibitors of activated STAT (Pias) proteins can act independent of sumoylation to modulate the activity of transcription factors and Pias proteins interacting with transcription factors can either activate or repress their activity. Pias proteins are expressed in many tissues and cells during development and we asked if Pias proteins regulated the pituitary homeobox 2 (PITX2) homeodomain protein, which modulates developmental gene expression. Piasy and Pias1 proteins are expressed during craniofacial/tooth development and directly interact and differentially regulate PITX2 transcriptional activity. Piasy and Pias1 are co-expressed in craniofacial tissues with PITX2. Yeast two-hybrid, co-immunoprecipitation and pulldown experiments demonstrate Piasy and Pias1 interactions with the PITX2 protein. Piasy interacts with the PITX2 C-terminal tail to attenuate its transcriptional activity. In contrast, Pias1 interacts with the PITX2 C-terminal tail to increase PITX2 transcriptional activity. The E3 ligase activity associated with the RING domain in Piasy is not required for the attenuation of PITX2 activity, however, the RING domain of Pias1 is required for enhanced PITX2 transcriptional activity. Bimolecular fluorescence complementation assays reveal PITX2 interactions with Piasy and Pias1 in the nucleus. Piasy represses the synergistic activation of PITX2 with interacting co-factors and Piasy represses Pias1 activation of PITX2 transcriptional activity. In contrast, Pias1 did not affect the synergistic interaction of PITX2 with transcriptional co-factors. Last, we demonstrate that Pias proteins form a complex with PITX2 and Lef-1, and PITX2 and β-catenin. Lef-1, β-catenin, and Pias interactions with PITX2 provide new molecular mechanisms for the regulation of PITX2 transcriptional activity and the activity of Pias proteins.

  4. The Cellular Bromodomain Protein Brd4 has Multiple Functions in E2-Mediated Papillomavirus Transcription Activation

    Directory of Open Access Journals (Sweden)

    Christine M. Helfer

    2014-08-01

    Full Text Available The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb, a functional interaction partner of Brd4 in transcription activation, is important for E2’s transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2’s interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+, a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV life cycle.

  5. A novel transcription factor involved in plant defense endowed with protein phosphatase activity

    Science.gov (United States)

    Carrasco, José L.; Ancillo, Gema; Mayda, Esther; Vera, Pablo

    2003-01-01

    In plants, expression of a disease-resistance character following perception of a pathogen involves massive deployment of transcription-dependent defenses. Thus, if rapid and effective defense responses have to be achieved, it is crucial that the pathogenic signal is transduced and amplified through pre-existing signaling pathways. Reversible phosphorylation of specific transcription factors, by a concerted action of protein kinases and phosphatases, may represent a mechanism for rapid and flexible regulation of selective gene expression by environmental stimuli. Here we identified a novel DNA-binding protein from tobacco plants, designated DBP1, with protein phosphatase activity, which binds in a sequence-specific manner to a cis- acting element of a defense-related gene and participates in its transcriptional regulation. This finding helps delineate a terminal event in a signaling pathway for the selective activation of early transcription-dependent defense responses in plants, and suggests that stimulus-dependent reversible phosphorylation of regulatory proteins may occur directly in a transcription protein–DNA complex. PMID:12839999

  6. Transcriptional activation capacity of the novel PLAG family of zinc finger proteins.

    Science.gov (United States)

    Kas, K; Voz, M L; Hensen, K; Meyen, E; Van de Ven, W J

    1998-09-04

    We have isolated and characterized two novel cDNAs encoding C2H2 zinc finger proteins showing high sequence homology to PLAG1, a protein ectopically activated by promoter swapping or promoter substitution in pleomorphic adenomas with chromosomal abnormalities at chromosome 8q12. PLAG1 and the two new PLAG1 family members (PLAGL1 and PLAGL2) constitute a novel subfamily of zinc finger proteins that recognize DNA and/or RNA. To examine the potential of the three human proteins to modulate transcription, we constructed several PLAG/GAL4 DNA binding domain fusion proteins and measured their ability to activate transcription of a reporter gene construct in different mammalian cell lines and in yeast. Although the carboxyl-terminal part of PLAGL1 shows strong overall transcriptional activity in mesenchymal (COS-1) and epithelial cells (293), both PLAG1 and PLAGL2 transactivate in mesenchymal cells only if depleted from a repressing region. This effect is less profound in epithelial cells. These data suggest that the activation in pleomorphic adenomas of PLAG1 most likely results in uncontrolled activation of downstream target genes.

  7. PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein

    International Nuclear Information System (INIS)

    Matsuura, Tetsuo; Shimono, Yohei; Kawai, Kumi; Murakami, Hideki; Urano, Takeshi; Niwa, Yasumasa; Goto, Hidemi; Takahashi, Masahide

    2005-01-01

    Ret finger protein (RFP) is a nuclear protein that is highly expressed in testis and in various tumor cell lines. RFP functions as a transcriptional repressor and associates with Enhancer of Polycomb 1 (EPC1), a member of the Polycomb group proteins, and Mi-2β, a main component of the nucleosome remodeling and deacetylase (NuRD) complex. We show that RFP binds with PIAS (protein inhibitor of activated STAT) proteins, PIAS1, PIAS3, PIASxα and PIASy at their carboxyl-terminal region and is covalently modified by SUMO-1 (sumoylation). PIAS proteins enhance the sumoylation of RFP in a dose-dependent manner and induce the translocation of RFP into nuclear bodies reminiscent of the PML bodies. In addition, co-expression of PIAS proteins or SUMO-1 strengthened the transcriptional repressive activity of RFP. Finally, our immunohistochemical results show that RFP, SUMO-1 and PIASy localize in a characteristic nuclear structure juxtaposed with the inner nuclear membrane (XY body) of primary spermatocytes in mouse testis. These results demonstrate that the intracellular location and the transcriptional activity of RFP are modified by PIAS proteins which possess SUMO E3 ligase activities and suggest that they may play a co-operative role in spermatogenesis

  8. IQGAP1 Binds to Yes-associated Protein (YAP) and Modulates Its Transcriptional Activity *

    Science.gov (United States)

    Sayedyahossein, Samar; Li, Zhigang; Hedman, Andrew C.; Morgan, Chase J.

    2016-01-01

    During development, the Hippo signaling pathway regulates key physiological processes, such as control of organ size, regeneration, and stem cell biology. Yes-associated protein (YAP) is a major transcriptional co-activator of the Hippo pathway. The scaffold protein IQGAP1 interacts with more than 100 binding partners to integrate diverse signaling pathways. In this study, we report that IQGAP1 binds to YAP and modulates its activity. IQGAP1 and YAP co-immunoprecipitated from cells. In vitro analysis with pure proteins demonstrated a direct interaction between IQGAP1 and YAP. Analysis with multiple fragments of each protein showed that the interaction occurs via the IQ domain of IQGAP1 and the TEAD-binding domain of YAP. The interaction between IQGAP1 and YAP has functional effects. Knock-out of endogenous IQGAP1 significantly increased the formation of nuclear YAP-TEAD complexes. Transcription assays were performed with IQGAP1-null mouse embryonic fibroblasts and HEK293 cells with IQGAP1 knockdown by CRISPR/Cas9. Quantification demonstrated that YAP-TEAD-mediated transcription in cells lacking IQGAP1 was significantly greater than in control cells. These data reveal that IQGAP1 binds to YAP and modulates its co-transcriptional function, suggesting that IQGAP1 participates in Hippo signaling. PMID:27440047

  9. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob......, but present at a much lower level in preadipocytes, protects the same region between nucleotides -58 and -42 relative to the transcriptional start site. Electrophoretic mobility-shift analysis using nuclear extracts from adipose tissue or 3T3-L1 adipocytes and an oligonucleotide probe corresponding...... to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C...

  10. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  11. E2A proteins enhance the histone acetyltransferase activity of the transcriptional co-activators CBP and p300.

    Science.gov (United States)

    Hyndman, Brandy D; Thompson, Patrick; Bayly, Richard; Côté, Graham P; LeBrun, David P

    2012-05-01

    The E2A gene encodes the E-protein transcription factors E12 and E47 that play critical roles in B-lymphopoiesis. A somatic chromosomal translocation detectable in 5% of cases of acute lymphoblastic leukemia (ALL) involves E2A and results in expression of the oncogenic transcription factor E2A-PBX1. CREB binding protein (CBP) and its close paralog p300 are transcriptional co-activators with intrinsic histone acetyltransferase (HAT) activity. We and others have shown that direct binding of an N-terminal transcriptional activation domain present in E12/E47 and E2A-PBX1 to the KIX domain of CBP/p300 contributes to E2A protein function. In the current work we show for the first time that the catalytic HAT activity of CBP/p300 is increased in the presence of residues 1-483 of E2A (i.e., the portion present in E2A-PBX1). The addition of purified, recombinant E2A protein to in vitro assays results in a two-fold augmentation of CBP/p300 HAT activity, whereas in vivo assays show a ten-fold augmentation of HAT-dependent transcriptional induction and a five-fold augmentation of acetylation of reporter plasmid-associated histone by CBP in response to co-transfected E2A. Our results indicate that the HAT-enhancing effect is independent of the well-documented E2A-CBP interaction involving the KIX domain and suggest a role for direct, perhaps low affinity binding of E2A to a portion of CBP that includes the HAT domain and flanking elements. Our findings add to a growing body of literature indicating that interactions between CBP/p300 and transcription factors can function in a specific manner to modulate HAT catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6.

    Science.gov (United States)

    Chen, P L; Riley, D J; Chen-Kiang, S; Lee, W H

    1996-01-09

    The biological function of the retinoblastoma protein (RB) in the cell division cycle has been extensively documented, but its apparent role in differentiation remains largely unexplored. To investigate how RB is involved in differentiation, the U937 large-cell lymphoma line was induced to differentiate along a monocyte/macrophage lineage. During differentiation RB was found to interact directly through its simian virus 40 large tumor antigen (T antigen)-binding domain with NF-IL6, a member of the CAAT/enhancer-binding protein (C/EBP) family of transcription factors. NF-IL6 utilizes two distinct regions to bind to the hypophosphorylated form of RB in vitro and in cells. Wild-type but not mutant RB enhanced both binding activity of NF-IL6 to its cognate DNA sequences in vitro and promoter transactivation by NF-IL6 in cells. These findings indicate a novel biochemical function of RB: it activates, by an apparent chaperone-like activity, specific transcription factors important for differentiation. This contrasts with its sequestration and inactivation of other transcription factors, such as E2F-1, which promote progression of the cell cycle. Such disparate mechanisms may help to explain the dual role of RB in cell differentiation and the cell division cycle.

  13. A compendium of transcription factor and Transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.).

    Science.gov (United States)

    Misra, Vikram A; Wang, Yu; Timko, Michael P

    2017-11-22

    Cowpea (Vigna unguiculata (L.) Walp.) is the most important food and forage legume in the semi-arid tropics of sub-Saharan Africa where approximately 80% of worldwide production takes place primarily on low-input, subsistence farm sites. Among the major goals of cowpea breeding and improvement programs are the rapid manipulation of agronomic traits for seed size and quality and improved resistance to abiotic and biotic stresses to enhance productivity. Knowing the suite of transcription factors (TFs) and transcriptionally active proteins (TAPs) that control various critical plant cellular processes would contribute tremendously to these improvement aims. We used a computational approach that employed three different predictive pipelines to data mine the cowpea genome and identified over 4400 genes representing 136 different TF and TAP families. We compare the information content of cowpea to two evolutionarily close species common bean (Phaseolus vulgaris), and soybean (Glycine max) to gauge the relative informational content. Our data indicate that correcting for genome size cowpea has fewer TF and TAP genes than common bean (4408 / 5291) and soybean (4408/ 11,065). Members of the GROWTH-REGULATING FACTOR (GRF) and Auxin/indole-3-acetic acid (Aux/IAA) gene families appear to be over-represented in the genome relative to common bean and soybean, whereas members of the MADS (Minichromosome maintenance deficient 1 (MCM1), AGAMOUS, DEFICIENS, and serum response factor (SRF)) and C2C2-YABBY appear to be under-represented. Analysis of the AP2-EREBP APETALA2-Ethylene Responsive Element Binding Protein (AP2-EREBP), NAC (NAM (no apical meristem), ATAF1, 2 (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon)), and WRKY families, known to be important in defense signaling, revealed changes and phylogenetic rearrangements relative to common bean and soybean that suggest these groups may have evolved different functions. The availability of detailed

  14. AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Yen-Hsing Li

    2015-07-01

    Full Text Available The Hedgehog (Hh pathway regulates cell differentiation and proliferation during development by controlling the Gli transcription factors. Cell fate decisions and progression toward organ and tissue maturity must be coordinated, and how an energy sensor regulates the Hh pathway is not clear. AMP-activated protein kinase (AMPK is an important sensor of energy stores and controls protein synthesis and other energy-intensive processes. AMPK is directly responsive to intracellular AMP levels, inhibiting a wide range of cell activities if ATP is low and AMP is high. Thus, AMPK can affect development by influencing protein synthesis and other processes needed for growth and differentiation. Activation of AMPK reduces GLI1 protein levels and stability, thus blocking Sonic-hedgehog-induced transcriptional activity. AMPK phosphorylates GLI1 at serines 102 and 408 and threonine 1074. Mutation of these three sites into alanine prevents phosphorylation by AMPK. This leads to increased GLI1 protein stability, transcriptional activity, and oncogenic potency.

  15. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    International Nuclear Information System (INIS)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-01-01

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD + -dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  16. A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis.

    Science.gov (United States)

    Giuntoli, Beatrice; Lee, Seung Cho; Licausi, Francesco; Kosmacz, Monika; Oosumi, Teruko; van Dongen, Joost T; Bailey-Serres, Julia; Perata, Pierdomenico

    2014-09-01

    Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII) transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule-insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1), as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein-protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves) revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop regulating the oxygen

  17. A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Beatrice Giuntoli

    2014-09-01

    Full Text Available Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule-insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1, as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein-protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop

  18. Direct observation of transcription activator-like effector (TALE) protein dynamics

    Science.gov (United States)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2014-03-01

    In this work, we describe a single molecule assay to probe the site-search dynamics of transcription activator-like effector (TALE) proteins along DNA. In modern genetics, the ability to selectively edit the human genome is an unprecedented development, driven by recent advances in targeted nuclease proteins. Specific gene editing can be accomplished using TALE proteins, which are programmable DNA-binding proteins that can be fused to a nuclease domain. In this way, TALENs are a leading technology that has shown great success in the genomic editing of pluripotent stem cells. A major hurdle facing clinical implementation, however, is the potential for deleterious off-target binding events. For these reasons, a molecular-level understanding of TALE binding and target sequence search on DNA is essential. To this end, we developed a single-molecule fluorescence imaging assay that provides a first-of-its-kind view of the 1-D diffusion of TALE proteins along stretched DNA. Taken together with co-crystal structures of DNA-bound TALEs, our results suggest a rotationally-coupled, major groove tracking model for diffusion. We further report diffusion constants for TALE proteins as a function of salt concentration, consistent with previously described models of 1-D protein diffusion.

  19. The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization

    Science.gov (United States)

    Zheng, Xiangnan; Cheng, Minzhang; Xiang, Liang; Liang, Jian; Xie, Liping; Zhang, Rongqing

    2015-01-01

    Activator protein-1 (AP-1) is an important bZIP transcription factor that regulates a series of physiological processes by specifically activating transcription of several genes, and one of its well-chartered functions in mammals is participating in bone mineralization. We isolated and cloned the complete cDNA of a Jun/AP-1 homolog from Pinctada fucata and called it Pf-AP-1. Pf-AP-1 had a highly conserved bZIP region and phosphorylation sites compared with those from mammals. A tissue distribution analysis showed that Pf-AP-1 was ubiquitously expressed in P. fucata and the mRNA level of Pf-AP-1 is extremely high in mantle. Pf-AP-1 expression was positively associated with multiple biomineral proteins in the mantle. The luciferase reporter assay in a mammalian cell line showed that Pf-AP-1 significantly up-regulates the transcriptional activity of the promoters of KRMP, Pearlin, and Prisilkin39. Inhibiting the activity of Pf-AP-1 depressed the expression of multiple matrix proteins. Pf-AP-1 showed a unique expression pattern during shell regeneration and pearl sac development, which was similar to the pattern observed for biomineral proteins. These results suggest that the Pf-AP-1 AP-1 homolog is an important transcription factor that regulates transcription of several biomineral proteins simultaneously and plays a role in P. fucata biomineralization, particularly during pearl and shell formation. PMID:26404494

  20. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver.

    Science.gov (United States)

    Guinez, Céline; Filhoulaud, Gaëlle; Rayah-Benhamed, Fadila; Marmier, Solenne; Dubuquoy, Céline; Dentin, Renaud; Moldes, Marthe; Burnol, Anne-Françoise; Yang, Xiaoyong; Lefebvre, Tony; Girard, Jean; Postic, Catherine

    2011-05-01

    Carbohydrate-responsive element-binding protein (ChREBP) is a key transcription factor that mediates the effects of glucose on glycolytic and lipogenic genes in the liver. We have previously reported that liver-specific inhibition of ChREBP prevents hepatic steatosis in ob/ob mice by specifically decreasing lipogenic rates in vivo. To better understand the regulation of ChREBP activity in the liver, we investigated the implication of O-linked β-N-acetylglucosamine (O-GlcNAc or O-GlcNAcylation), an important glucose-dependent posttranslational modification playing multiple roles in transcription, protein stabilization, nuclear localization, and signal transduction. O-GlcNAcylation is highly dynamic through the action of two enzymes: the O-GlcNAc transferase (OGT), which transfers the monosaccharide to serine/threonine residues on a target protein, and the O-GlcNAcase (OGA), which hydrolyses the sugar. To modulate ChREBP(OG) in vitro and in vivo, the OGT and OGA enzymes were overexpressed or inhibited via adenoviral approaches in mouse hepatocytes and in the liver of C57BL/6J or obese db/db mice. Our study shows that ChREBP interacts with OGT and is subjected to O-GlcNAcylation in liver cells. O-GlcNAcylation stabilizes the ChREBP protein and increases its transcriptional activity toward its target glycolytic (L-PK) and lipogenic genes (ACC, FAS, and SCD1) when combined with an active glucose flux in vivo. Indeed, OGT overexpression significantly increased ChREBP(OG) in liver nuclear extracts from fed C57BL/6J mice, leading in turn to enhanced lipogenic gene expression and to excessive hepatic triglyceride deposition. In the livers of hyperglycemic obese db/db mice, ChREBP(OG) levels were elevated compared with controls. Interestingly, reducing ChREBP(OG) levels via OGA overexpression decreased lipogenic protein content (ACC, FAS), prevented hepatic steatosis, and improved the lipidic profile of OGA-treated db/db mice. Taken together, our results reveal that O

  1. Cleavage of the JunB Transcription Factor by Caspases Generates a Carboxyl-terminal Fragment That Inhibits Activator Protein-1 Transcriptional Activity*

    Science.gov (United States)

    Lee, Jason K. H.; Pearson, Joel D.; Maser, Brandon E.; Ingham, Robert J.

    2013-01-01

    The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription. PMID:23749999

  2. Cleavage of the JunB transcription factor by caspases generates a carboxyl-terminal fragment that inhibits activator protein-1 transcriptional activity.

    Science.gov (United States)

    Lee, Jason K H; Pearson, Joel D; Maser, Brandon E; Ingham, Robert J

    2013-07-26

    The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription.

  3. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    /EBP alpha expression vector into 3T3-L1 cells with a series of 5' truncated ob gene promoter constructs activated reporter gene expression with all constructs containing the proximal C/EBP binding site (nucleotides -55 to -47). Mutation of this site blocked transactivation by C/EBP alpha. Taken together......Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob...... gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes...

  4. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.

    Science.gov (United States)

    Zhong, Bo; Yang, Yan; Li, Shu; Wang, Yan-Yi; Li, Ying; Diao, Feici; Lei, Caoqi; He, Xiao; Zhang, Lu; Tien, Po; Shu, Hong-Bing

    2008-10-17

    Viral infection triggers activation of transcription factors such as NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. Here, we identified MITA as a critical mediator of virus-triggered type I IFN signaling by expression cloning. Overexpression of MITA activated IRF3, whereas knockdown of MITA inhibited virus-triggered activation of IRF3, expression of type I IFNs, and cellular antiviral response. MITA was found to localize to the outer membrane of mitochondria and to be associated with VISA, a mitochondrial protein that acts as an adaptor in virus-triggered signaling. MITA also interacted with IRF3 and recruited the kinase TBK1 to the VISA-associated complex. MITA was phosphorylated by TBK1, which is required for MITA-mediated activation of IRF3. Our results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.

  5. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription.

    Directory of Open Access Journals (Sweden)

    Kevin Tsai

    2011-11-01

    Full Text Available Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs, suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus.

  6. EBV Tegument Protein BNRF1 Disrupts DAXX-ATRX to Activate Viral Early Gene Transcription

    Science.gov (United States)

    Tsai, Kevin; Thikmyanova, Nadezhda; Wojcechowskyj, Jason A.; Delecluse, Henri-Jacques; Lieberman, Paul M.

    2011-01-01

    Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV) typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs) and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs), suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus. PMID:22102817

  7. The Intellectual Disability and Schizophrenia Associated Transcription Factor TCF4 Is Regulated by Neuronal Activity and Protein Kinase A.

    Science.gov (United States)

    Sepp, Mari; Vihma, Hanna; Nurm, Kaja; Urb, Mari; Page, Stephanie Cerceo; Roots, Kaisa; Hark, Anu; Maher, Brady J; Pruunsild, Priit; Timmusk, Tõnis

    2017-10-25

    Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders. SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders. Copyright © 2017 the authors 0270-6474/17/3710516-12$15.00/0.

  8. Transcriptional activation of peroxisome proliferator-activated receptor-γ requires activation of both protein kinase A and Akt during adipocyte differentiation

    International Nuclear Information System (INIS)

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-01-01

    Research highlights: → Elevated cAMP activates both PKA and Epac. → PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. → Akt modulates PPAR-γ transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-γ (PPAR-γ) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-γ is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-γ. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-γ was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-γ transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-γ transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-γ, suggesting post-translational activation of PPAR-γ might be critical step for adipogenic gene expression.

  9. Identification of target genes of transcription factor activator protein 2 gamma in breast cancer cells

    International Nuclear Information System (INIS)

    Ailan, He; Shuanglin, Xiang; Xiangwen, Xiao; Daolong, Ren; Lu, Gan; Xiaofeng, Ding; Xi, Qiao; Xingwang, Hu; Rushi, Liu; Jian, Zhang

    2009-01-01

    Activator protein 2 gamma (AP-2γ) is a member of the transcription factor activator protein-2 (AP-2) family, which is developmentally regulated and plays a role in human neoplasia. AP-2γ has been found to be overexpressed in most breast cancers, and have a dual role to inhibit tumor initiation and promote tumor progression afterwards during mammary tumorigensis. To identify the gene targets that mediate its effects, we performed chromatin immunoprecipitation (ChIP) to isolate AP-2γ binding sites on genomic DNA from human breast cancer cell line MDA-MB-453. 20 novel DNA fragments proximal to potential AP-2γ targets were obtained. They are categorized into functional groups of carcinogenesis, metabolism and others. A combination of sequence analysis, reporter gene assays, quantitative real-time PCR, electrophoretic gel mobility shift assays and immunoblot analysis further confirmed the four AP-2γ target genes in carcinogenesis group: ErbB2, CDH2, HPSE and IGSF11. Our results were consistent with the previous reports that ErbB2 was the target gene of AP-2γ. Decreased expression and overexpression of AP-2γ in human breast cancer cells significantly altered the expression of these four genes, indicating that AP-2γ directly regulates them. This suggested that AP-2γ can coordinate the expression of a network of genes, involving in carcinogenesis, especially in breast cancer. They could serve as therapeutic targets against breast cancers in the future

  10. The 42-kDa coat protein of Andean potato mottle virus acts as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Vidal M.S.

    2002-01-01

    Full Text Available Interactions of viral proteins play an important role in the virus life cycle, especially in capsid assembly. Andean potato mottle comovirus (APMoV is a plant RNA virus with a virion formed by two coat proteins (CP42 and CP22. Both APMoV coat protein open reading frames were cloned into pGBT9 and pGAD10, two-hybrid system vectors. HF7c yeast cells transformed with the p9CP42 construct grew on yeast dropout selection media lacking tryptophan and histidine. Clones also exhibited ß-galactosidase activity in both qualitative and quantitative assays. These results suggest that CP42 protein contains an amino acid motif able to activate transcription of His3 and lacZ reporter genes in Saccharomyces cerevisiae. Several deletions of the CP42 gene were cloned into the pGBT9 vector to locate the region involved in this activation. CP42 constructions lacking 12 residues from the C-terminal region and another one with 267 residues deleted from the N-terminus are still able to activate transcription of reporter genes. However, transcription activation was not observed with construction p9CP42deltaC57, which does not contain the last 57 amino acid residues. These results demonstrate that a transcription activation domain is present at the C-terminus of CP42 between residues 267 and 374.

  11. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    International Nuclear Information System (INIS)

    Gomez-Gonzalo, Marta; Benedicto, Ignacio; Carretero, Marta; Lara-Pezzi, Enrique; Maldonado-Rodriguez, Alejandra; Moreno-Otero, Ricardo; Lai, Michael M.C.; Lopez-Cabrera, Manuel

    2004-01-01

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH 2 -terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  12. Identification of domains mediating transcription activation, repression, and inhibition in the paired-related homeobox protein, Prx2 (S8).

    Science.gov (United States)

    Norris, R A; Kern, M J

    2001-02-01

    Despite the growing information concerning the developmental importance of the Prx2 protein, the structural determinants of Prx2 function are poorly understood. To gain insight into the transcription regulatory regions of the Prx2 protein, we generated a series of truncation mutants. Both the Prx2 response element (PRE) and a portion of the tenascin promoter, a downstream target of Prx2, were used as reporters in transient transfection assays. This analysis showed that a conserved domain (PRX), found in both Prx1 and Prx2, activated transcription in NIH 3T3 cells. This PRX domain, as well as other functional regions of Prx2, demonstrated both cell-specific and promoter-dependent transcriptional regulation. A second important region, the OAR (aristaless) domain, which is conserved among 35 Paired-type homeodomain proteins, was observed to inhibit transcription. Deletion of this element resulted in a 20-fold increase of transcription from the tenascin reporter in NIH 3T3 cells but not in C2C12 cells. The OAR domain did not function as a repressor in chimeric fusions with the Gal4 DNA binding domain in either cell type, characterizing it as an inhibitor instead of a repressor. These results give insight into the function of the Prx2 transcription factor while establishing the framework for comparison with the two isoforms of Prx1.

  13. Interconversion between active and inactive TATA-binding protein transcription complexes in the mouse genome.

    Science.gov (United States)

    Choukrallah, Mohamed-Amin; Kobi, Dominique; Martianov, Igor; Pijnappel, W W M Pim; Mischerikow, Nikolai; Ye, Tao; Heck, Albert J R; Timmers, H Th Marc; Davidson, Irwin

    2012-02-01

    The TATA binding protein (TBP) plays a pivotal role in RNA polymerase II (Pol II) transcription through incorporation into the TFIID and B-TFIID complexes. The role of mammalian B-TFIID composed of TBP and B-TAF1 is poorly understood. Using a complementation system in genetically modified mouse cells where endogenous TBP can be conditionally inactivated and replaced by exogenous mutant TBP coupled to tandem affinity purification and mass spectrometry, we identify two TBP mutations, R188E and K243E, that disrupt the TBP-BTAF1 interaction and B-TFIID complex formation. Transcriptome and ChIP-seq analyses show that loss of B-TFIID does not generally alter gene expression or genomic distribution of TBP, but positively or negatively affects TBP and/or Pol II recruitment to a subset of promoters. We identify promoters where wild-type TBP assembles a partial inactive preinitiation complex comprising B-TFIID, TFIIB and Mediator complex, but lacking TFIID, TFIIE and Pol II. Exchange of B-TFIID in wild-type cells for TFIID in R188E and K243E mutant cells at these primed promoters completes preinitiation complex formation and recruits Pol II to activate their expression. We propose a novel regulatory mechanism involving formation of a partial preinitiation complex comprising B-TFIID that primes the promoter for productive preinitiation complex formation in mammalian cells.

  14. ReTrOS: a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data.

    Science.gov (United States)

    Minas, Giorgos; Momiji, Hiroshi; Jenkins, Dafyd J; Costa, Maria J; Rand, David A; Finkenstädt, Bärbel

    2017-06-26

    Given the development of high-throughput experimental techniques, an increasing number of whole genome transcription profiling time series data sets, with good temporal resolution, are becoming available to researchers. The ReTrOS toolbox (Reconstructing Transcription Open Software) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA expression time series or protein reporter time series. The methods are based on fitting a differential equation model incorporating the processes of transcription, translation and degradation. The toolbox provides a framework for model fitting along with statistical analyses of the model with a graphical interface and model visualisation. We highlight several applications of the toolbox, including the reconstruction of the temporal cascade of transcriptional activity inferred from mRNA expression data and protein reporter data in the core circadian clock in Arabidopsis thaliana, and how such reconstructed transcription profiles can be used to study the effects of different cell lines and conditions. The ReTrOS toolbox allows users to analyse gene and/or protein expression time series where, with appropriate formulation of prior information about a minimum of kinetic parameters, in particular rates of degradation, users are able to infer timings of changes in transcriptional activity. Data from any organism and obtained from a range of technologies can be used as input due to the flexible and generic nature of the model and implementation. The output from this software provides a useful analysis of time series data and can be incorporated into further modelling approaches or in hypothesis generation.

  15. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    Science.gov (United States)

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. Copyright © 2015 Federation of European Biochemical Societies

  16. The nucleoid occlusion protein SlmA is a direct transcriptional activator of chitobiose utilization in Vibrio cholerae.

    Science.gov (United States)

    Klancher, Catherine A; Hayes, Chelsea A; Dalia, Ankur B

    2017-07-01

    Chitin utilization by the cholera pathogen Vibrio cholerae is required for its persistence and evolution via horizontal gene transfer in the marine environment. Genes involved in the uptake and catabolism of the chitin disaccharide chitobiose are encoded by the chb operon. The orphan sensor kinase ChiS is critical for regulation of this locus, however, the mechanisms downstream of ChiS activation that result in expression of the chb operon are poorly understood. Using an unbiased transposon mutant screen, we uncover that the nucleoid occlusion protein SlmA is a regulator of the chb operon. SlmA has not previously been implicated in gene regulation. Also, SlmA is a member of the TetR family of proteins, which are generally transcriptional repressors. In vitro, we find that SlmA binds directly to the chb operon promoter, and in vivo, we show that this interaction is required for transcriptional activation of this locus and for chitobiose utilization. Using point mutations that disrupt distinct functions of SlmA, we find that DNA-binding, but not nucleoid occlusion, is critical for transcriptional activation. This study identifies a novel role for SlmA as a transcriptional regulator in V. cholerae in addition to its established role as a cell division licensing factor.

  17. Transcription and activity of antioxidant proteins after ionization irradiation of radiation-resistant and radiation-sensitive mice

    International Nuclear Information System (INIS)

    Hardmeier, R.

    1998-03-01

    The involvernent of antioxidant proteins catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH px), and thioredoxin (TRX) in radiobiological processes has been described at the enzyme activity level. We were interested in examining the transcription of these proteins in a mammalian system following ionizing irradiation. In order to answer the question whether radiation effects in sensitive mice (Balb/c) (RS) showed differences at the transcriptional level from radiation effects in resistant mice (C3H) (RR). We exposed the whole body of these strains to X/rays doses of 2, 4, and 6 Gy and sacrificed the animals 5, 15, and 30 minutes after irradiation. The mRNA was isolated from liver and hybrized with probes for antioxidant enzymes and thioredoxin, β-actin was used as a housekeeping gene control. Antioxidant enzyme activities were determined by standard assays. Parameters for aromatic hydroxylation (o-Tyr) and lipid peroxidation (MDA) were determined by HPLC methods. Antioxidant transcription was unchanged in contrast to antioxidant activities. SOD and CAT activities were elevated within 15 minutes in RR animals but not in RS at all radiation doses. Glutathione peroxidase activity was not different between RR and RS mice, and was only moderately elevated after irradiation. No significant differences were found between RR and RS animals at the oxidation level, although a radiation dose-dependent increase of oxidation products was detected in both groups. Quantification of thioredoxin mRNA revealed that RR mice transcribed this protein at a significantly higher level at an earlier time point (5 minutes) than did RS mice. This delay may well be responsible for the radioresistance although no quantitative differences were found. As unchanged transcription of antioxidant enzymes could not have been responsible for the increased antioxidant enzyme activities, preformed antioxidant enzymes may have been released by irradiation. This would be in agreement

  18. Bromodomain Protein BRD4 Is Required for Estrogen Receptor-Dependent Enhancer Activation and Gene Transcription

    Directory of Open Access Journals (Sweden)

    Sankari Nagarajan

    2014-07-01

    Full Text Available The estrogen receptor α (ERα controls cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs to control gene transcription. A deeper understanding of these transcriptional mechanisms may uncover therapeutic targets for ERα-dependent cancers. We show that BRD4 regulates ERα-induced gene expression by affecting elongation-associated phosphorylation of RNA polymerase II (RNAPII and histone H2B monoubiquitination. Consistently, BRD4 activity is required for proliferation of ER+ breast and endometrial cancer cells and uterine growth in mice. Genome-wide studies revealed an enrichment of BRD4 on transcriptional start sites of active genes and a requirement of BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we demonstrate that BRD4 occupancy on distal EREs enriched for H3K27ac is required for recruitment and elongation of RNAPII on EREs and the production of ERα-dependent enhancer RNAs. These results uncover BRD4 as a central regulator of ERα function and potential therapeutic target.

  19. TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of ElK-1 and AP-1

    International Nuclear Information System (INIS)

    Wang Yuequn; Li Yongqing; Qi Xinzhu; Yuan Wuzhou; Ai Jianping; Zhu Chuanbing; Cao Lei; Yang Hong; Liu Fang; Wu Xiushan; Liu Mingyao

    2004-01-01

    The tripartite motif (TRIM) proteins play important roles in a variety of cellular functions including cell proliferation, differentiation, development, oncogenesis, and apoptosis. In this study, we report the identification and characterization of the human tripartite motif-containing protein 45 (TRIM45), a novel member of the TRIM family, from a human embryonic heart cDNA library. TRIM45 has a predicted 580 amino acid open reading frame, encoding a putative 64-kDa protein. The N-terminal region harbors a RING finger, two B-boxes, and a predicted α-helical coiled-coil domain, which together form the RBCC/TRIM motif found in a large family of proteins, whereas the C-terminal region contains a filamin-type immunoglobulin (IG-FLMN) domain. Northern blot analysis indicates that TRIM45 is expressed in a variety of human adult and embryonic tissues. In the cell, TRIM45 protein is expressed both in cytoplasm and in cell nucleus. Overexpression of TRIM45 in COS-7 cells inhibits the transcriptional activities of ElK-1 and AP-1. These results suggest that TRIM45 may act as a new transcriptional repressor in mitogen-activated protein kinase signaling pathway

  20. Regulation of hepatitis C virus replication by nuclear translocation of nonstructural 5A protein and transcriptional activation of host genes.

    Science.gov (United States)

    Maqbool, Muhammad Ahmad; Imache, Mohamed R; Higgs, Martin R; Carmouse, Sophie; Pawlotsky, Jean-Michel; Lerat, Hervé

    2013-05-01

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is involved in regulating viral replication through its direct interaction with the HCV RNA-dependent RNA polymerase. NS5A also alters infected cell metabolism through complex interactions with numerous host cell proteins. NS5A has furthermore been suggested to act as a transcriptional activator, although the impact on viral replication is unclear. To study this, HCV NS5A variants were amplified from hepatic tissue from an HCV-infected patient, and their abilities to activate gene transcription were analyzed in a single-hybrid yeast (Saccharomyces cerevisiae) model. Different variants isolated from the same patient displayed different transactivational activities. When these variants were inserted into the HCV subgenomic replicon system, they demonstrated various levels of RNA replication, which correlated with their transactivational activities. We showed that the C-terminal fragment of NS5A was localized to the nucleus and that a functional NS5A nuclear localization signal and cellular caspase activity were required for this process. Furthermore, nuclear localization of NS5A was necessary for viral replication. Finally, we demonstrate that nuclear NS5A binds to host cell promoters of several genes previously identified as important for efficient HCV RNA replication, inducing their transcription. Taken together, these results demonstrate a new mechanism by which HCV modulates its cellular environment, thereby enhancing viral replication.

  1. The transcriptional cofactor MIER1-beta negatively regulates histone acetyltransferase activity of the CREB-binding protein

    Directory of Open Access Journals (Sweden)

    Gillespie Laura L

    2008-08-01

    Full Text Available Abstract Background Mier1 encodes a novel transcriptional regulator and was originally isolated as a fibroblast growth factor early response gene. Two major protein isoforms have been identified, MIER1α and β, which differ in their C-terminal sequence. Previously, we demonstrated that both isoforms recruit histone deacetylase 1 (HDAC1 to repress transcription. To further explore the role of MIER1 in chromatin remodeling, we investigated the functional interaction of MIER1 with the histone acetyltransferase (HAT, Creb-binding protein (CBP. Findings Using GST pull-down assays, we demonstrate that MIER1 interacts with CBP and that this interaction involves the N-terminal half (amino acids 1–283 of MIER1, which includes the acidic activation and ELM2 domains and the C-terminal half (amino acids 1094–2441 of CBP, which includes the bromo-, HAT, C/H3 and glutamine-rich domains. Functional analysis, using HEK293 cells, shows that the CBP bound to MIER1 in vivo has no detectable HAT activity. Histone 4 peptide binding assays demonstrate that this inhibition of HAT activity is not the result of interference with histone binding. Conclusion Our data indicate that an additional mechanism by which MIER1 could repress transcription involves the inhibition of histone acetyltransferase activity.

  2. CREB Binding Protein Interacts with Nucleoporin-Specific FG Repeats That Activate Transcription and Mediate NUP98-HOXA9 Oncogenicity

    Science.gov (United States)

    Kasper, Lawryn H.; Brindle, Paul K.; Schnabel, Catherine A.; Pritchard, Colin E. J.; Cleary, Michael L.; van Deursen, Jan M. A.

    1999-01-01

    Genes encoding the Phe-Gly (FG) repeat-containing nucleoporins NUP98 and CAN/NUP214 are at the breakpoints of several chromosomal translocations associated with human acute myeloid leukemia (AML), but their role in oncogenesis is unclear. Here we demonstrate that the NUP98-HOXA9 fusion gene encodes two nuclear oncoproteins with either 19 or 37 NUP98 FG repeats fused to the DNA binding and PBX heterodimerization domains of the transcription factor HOXA9. Both NUP98-HOXA9 chimeras transformed NIH 3T3 fibroblasts, and this transformation required the HOXA9 domains for DNA binding and PBX interaction. Surprisingly, the FG repeats acted as very potent transactivators of gene transcription. This NUP98-derived activity is essential for transformation and can be replaced by the bona fide transactivation domain of VP16. Interestingly, FG repeat-containing segments derived from the nucleoporins NUP153 and CAN/NUP214 functioned similarly to those from NUP98. We further demonstrate that transactivation by FG repeat-rich segments of NUP98 correlates with their ability to interact functionally and physically with the transcriptional coactivators CREB binding protein (CBP) and p300. This finding shows, for the first time, that a translocation-generated fusion protein appears to recruit CBP/p300 as an important step of its oncogenic mechanism. Together, our results suggest that NUP98-HOXA9 chimeras are aberrant transcription factors that deregulate HOX-responsive genes through the transcriptional activation properties of nucleoporin-specific FG repeats that recruit CBP/p300. Indeed, FG repeat-mediated transactivation may be a shared pathogenic function of nucleoporins implicated human AML. PMID:9858599

  3. Designed transcription activator-like effector proteins efficiently induced the expression of latent HIV-1 in latently infected cells.

    Science.gov (United States)

    Wang, Xiaohui; Wang, Pengfei; Fu, Zheng; Ji, Haiyan; Qu, Xiying; Zeng, Hanxian; Zhu, Xiaoli; Deng, Junxiao; Lu, Panpan; Zha, Shijun; Song, Zhishuo; Zhu, Huanzhang

    2015-01-01

    HIV latency is the foremost barrier to clearing HIV infection from patients. Reactivation of latent HIV-1 represents a promising strategy to deplete these viral reservoirs. Here, we report a novel approach to reactivate latent HIV-1 provirus using artificially designed transcription activator-like effector (TALE) fusion proteins containing a DNA-binding domain specifically targeting the HIV-1 promoter and the herpes simplex virus-based transcriptional activator VP64 domain. We engineered four TALE genes (TALE1-4) encoding TALE proteins, each specifically targeting different 20-bp DNA sequences within the HIV-1 promoter, and we constructed four TALE-VP64 expression vectors corresponding to TALE1-4. We found that TALE1-VP64 effectively reactivated HIV-1 gene expression in latently infected C11 and A10.6 cells. We further confirmed that TALE1-VP64 reactivated latent HIV-1 via specific binding to the HIV-LTR promoter. Moreover, we also found that TALE1-VP64 did not affect cell proliferation or cell cycle distribution. Taken together, our data demonstrated that TALE1-VP64 can specifically and effectively reactivate latent HIV-1 transcription, suggesting that this strategy may provide a novel approach for anti-HIV-1 latency therapy in the future.

  4. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    Science.gov (United States)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  5. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells.

    Science.gov (United States)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  6. Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution.

    Science.gov (United States)

    Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2012-01-01

    Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity.

  7. Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution.

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    Full Text Available Zea mays (maize Opaque-2 (ZmO2 protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2 as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity.

  8. Post-Transcriptional Regulation Prevents Accumulation of Glutathione Reductase Protein and Activity in the Bundle Sheath Cells of Maize1

    Science.gov (United States)

    Pastori, Gabriela M.; Mullineaux, Philip M.; Foyer, Christine H.

    2000-01-01

    Glutathione reductase (GR; EC 1.6.4.2) activity was assayed in bundle sheath and mesophyll cells of maize (Zea mays L. var H99) from plants grown at 20°C, 18°C, and 15°C. The purity of each fraction was determined by measuring the associated activity of the compartment-specific marker enzymes, Rubisco and phosphoenolpyruvate carboxylase, respectively. GR activity and the abundance of GR protein and mRNA increased in plants grown at 15°C and 18°C compared with those grown at 20°C. In all cases GR activity was found only in mesophyll fractions of the leaves, with no GR activity being detectable in bundle sheath extracts. Immunogold labeling with GR-specific antibodies showed that the GR protein was exclusively localized in the mesophyll cells of leaves at all growth temperatures, whereas GR transcripts (as determined by in situ hybridization techniques) were observed in both cell types. These results indicate that post-transcriptional regulation prevents GR accumulation in the bundle sheath cells of maize leaves. The resulting limitation on the capacity for regeneration of reduced glutathione in this compartment may contribute to the extreme chilling sensitivity of maize leaves. PMID:10712529

  9. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF.

    Science.gov (United States)

    Niu, Xiaolei; Zhou, Meiliang; Henkel, Christiaan V; van Heusden, G Paul H; Hooykaas, Paul J J

    2015-12-01

    During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm.

    Science.gov (United States)

    Vassilev, A; Kaneko, K J; Shu, H; Zhao, Y; DePamphilis, M L

    2001-05-15

    Mammals express four highly conserved TEAD/TEF transcription factors that bind the same DNA sequence, but serve different functions during development. TEAD-2/TEF-4 protein purified from mouse cells was associated predominantly with a novel TEAD-binding domain at the amino terminus of YAP65, a powerful transcriptional coactivator. YAP65 interacted specifically with the carboxyl terminus of all four TEAD proteins. Both this interaction and sequence-specific DNA binding by TEAD were required for transcriptional activation in mouse cells. Expression of YAP in lymphocytic cells that normally do not support TEAD-dependent transcription (e.g., MPC11) resulted in up to 300-fold induction of TEAD activity. Conversely, TEAD overexpression squelched YAP activity. Therefore, the carboxy-terminal acidic activation domain in YAP is the transcriptional activation domain for TEAD transcription factors. However, whereas TEAD was concentrated in the nucleus, excess YAP65 accumulated in the cytoplasm as a complex with the cytoplasmic localization protein, 14-3-3. Because TEAD-dependent transcription was limited by YAP65, and YAP65 also binds Src/Yes protein tyrosine kinases, we propose that YAP65 regulates TEAD-dependent transcription in response to mitogenic signals.

  11. Cystatin D Locates in the Nucleus at Sites of Active Transcription and Modulates Gene and Protein Expression*

    Science.gov (United States)

    Ferrer-Mayorga, Gemma; Alvarez-Díaz, Silvia; Valle, Noelia; De Las Rivas, Javier; Mendes, Marta; Barderas, Rodrigo; Canals, Francesc; Tapia, Olga; Casal, J. Ignacio; Lafarga, Miguel; Muñoz, Alberto

    2015-01-01

    Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer. PMID:26364852

  12. Dual roles of p300 in chromatin assembly and transcriptional activation in cooperation with nucleosome assembly protein 1 in vitro.

    Science.gov (United States)

    Asahara, Hiroshi; Tartare-Deckert, Sophie; Nakagawa, Takeya; Ikehara, Tsuyoshi; Hirose, Fumiko; Hunter, Tony; Ito, Takashi; Montminy, Marc

    2002-05-01

    In a yeast two-hybrid screen to identify proteins that bind to the KIX domain of the coactivator p300, we obtained cDNAs encoding nucleosome assembly protein 1 (NAP-1), a 60-kDa histone H2A-H2B shuttling protein that promotes histone deposition. p300 associates preferentially with the H2A-H2B-bound form of NAP-1 rather than with the unbound form of NAP-1. Formation of NAP-1-p300 complexes was found to increase during S phase, suggesting a potential role for p300 in chromatin assembly. In micrococcal nuclease and supercoiling assays, addition of p300 promoted efficient chromatin assembly in vitro in conjunction with NAP-1 and ATP-utilizing chromatin assembly and remodeling factor; this effect was dependent in part on the intrinsic histone acetyltransferase activity of p300. Surprisingly, NAP-1 potently inhibited acetylation of core histones by p300, suggesting that efficient assembly requires acetylation of either NAP-1 or p300 itself. As p300 acted cooperatively with NAP-1 in stimulating transcription from a chromatin template in vitro, our results suggest a dual role of NAP-1-p300 complexes in promoting chromatin assembly and transcriptional activation.

  13. The Small Protein HemP Is a Transcriptional Activator for the Hemin Uptake Operon in Burkholderia multivorans ATCC 17616.

    Science.gov (United States)

    Sato, Takuya; Nonoyama, Shouta; Kimura, Akane; Nagata, Yuji; Ohtsubo, Yoshiyuki; Tsuda, Masataka

    2017-08-15

    Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferric uptake regulator (Fur) from Burkholderia multivorans ATCC 17616 is an iron-responsive global transcriptional regulator, and its fur deletant exhibits pleiotropic phenotypes. In this study, we found that the phenotypes of the fur deletant were suppressed by an additional mutation in hemP The transcription of hemP was negatively regulated by Fur under iron-replete conditions and was constitutive in the fur deletant. Growth of a hemP deletant was severely impaired in a medium containing hemin as the sole iron source, demonstrating the important role of HemP in hemin utilization. HemP was required as a transcriptional activator that specifically binds the promoter-containing region upstream of a Fur-repressive hmuRSTUV operon, which encodes the proteins for hemin uptake. A hmuR deletant was still able to grow using hemin as the sole iron source, albeit at a rate clearly lower than that of the wild-type strain. These results strongly suggested (i) the involvement of HmuR in hemin uptake and (ii) the presence in ATCC 17616 of at least part of other unknown hemin uptake systems whose expression depends on the HemP function. Our in vitro analysis also indicated high-affinity binding of HemP to hemin, and such a property might modulate transcriptional activation of the hmu operon. IMPORTANCE Although the hmuRSTUV genes for the utilization of hemin as a sole iron source have been identified in a few Burkholderia strains, the regulatory expression of these genes has remained unknown. Our analysis in this study using B. multivorans ATCC 17616 showed that its HemP protein is required for expression of the hmuRSTUV operon, and the

  14. The hTAF II 68-TEC fusion protein functions as a strong transcriptional activator.

    Science.gov (United States)

    Kim, Sol; Lee, Hye Jin; Jun, Hee Jung; Kim, Jungho

    2008-06-01

    Human extraskeletal myxoid chondrosarcoma (EMC) is caused by a chromosomal translocation that involves TEC (translocated in extraskeletal myxoid chondrosarcoma), and either EWS (Ewing's sarcoma) or hTAF(II)68 (human TATA-binding protein-associated factor II 68), which generates EWS-TEC or hTAF(II)68-TEC fusion proteins, respectively. Although there has been a great deal of progress in characterizing EWS-TEC, there is relatively little known about the biological function of hTAF(II)68-TEC. We have examined the functional consequences of the fusion of the amino terminal domain (NTD) of hTAF(II)68 to TEC in EMC. The chimeric gene encodes a nuclear protein that binds DNA with the same sequence specificity as parental TEC. Nuclear localization of hTAF(II)68-TEC was dependent on the DNA binding domain, and we identified a cluster of basic amino acids in the DNA binding domain, KRRR, that specifically mediate the nuclear localization of hTAF(II)68-TEC. The transactivation activity of hTAF(II)68-TEC was higher than TEC towards a known target promoter that contained several TEC binding sites. Finally, deletion analysis of hTAF(II)68-TEC indicated that the hTAF(II)68 NTD, and the AF1 and AF2 domains of hTAF(II)68-TEC are necessary for full transactivation potential. These results suggest that the oncogenic effect of the t(9;17) translocation may be due to the hTAF(II)68-TEC chimeric protein and that fusion of the hTAF(II)68 NTD to the TEC protein produces a gain of function chimeric product. (c) 2008 Wiley-Liss, Inc.

  15. Mutant Forms of the Azotobacter vinelandii Transcriptional Activator NifA Resistant to Inhibition by the NifL Regulatory Protein

    OpenAIRE

    Reyes-Ramirez, Francisca; Little, Richard; Dixon, Ray

    2002-01-01

    The Azotobacter vinelandii σ54-dependent transcriptional activator protein NifA is regulated by the NifL protein in response to redox, carbon, and nitrogen status. Under conditions inappropriate for nitrogen fixation, NifL inhibits transcription activation by NifA through the formation of the NifL-NifA protein complex. NifL inhibits the ATPase activity of the central AAA+ domain of NifA required to drive open complex formation by σ54-RNA polymerase and may also inhibit the activator-polymeras...

  16. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  17. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Stephan Niebler

    2015-01-01

    Full Text Available The transcription factor AP-2ε (activating enhancer-binding protein epsilon is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4 strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1, the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2′-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.

  18. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor.

    Science.gov (United States)

    Morita, Tsuyoshi; Hayashi, Ken'ichiro

    2013-08-02

    Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin-MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF-SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin-MRTFs interaction. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator.

    Science.gov (United States)

    Kitatsuji, Chihiro; Izumi, Kozue; Nambu, Shusuke; Kurogochi, Masaki; Uchida, Takeshi; Nishimura, Shin-ichiro; Iwai, Kazuhiro; O'Brian, Mark R; Ikeda-Saito, Masao; Ishimori, Koichiro

    2016-01-05

    The Bradyrhizobium japonicum transcriptional regulator Irr (iron response regulator) is a key regulator of the iron homeostasis, which is degraded in response to heme binding via a mechanism that involves oxidative modification of the protein. Here, we show that heme-bound Irr activates O2 to form highly reactive oxygen species (ROS) with the "active site conversion" from heme iron to non-heme iron to degrade itself. In the presence of heme and reductant, the ROS scavenging experiments show that Irr generates H2O2 from O2 as found for other hemoproteins, but H2O2 is less effective in oxidizing the peptide, and further activation of H2O2 is suggested. Interestingly, we find a time-dependent decrease of the intensity of the Soret band and appearance of the characteristic EPR signal at g = 4.3 during the oxidation, showing the heme degradation and the successive formation of a non-heme iron site. Together with the mutational studies, we here propose a novel "two-step self-oxidative modification" mechanism, during which O2 is activated to form H2O2 at the heme regulatory motif (HRM) site and the generated H2O2 is further converted into more reactive species such as ·OH at the non-heme iron site in the His-cluster region formed by the active site conversion.

  20. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor

    International Nuclear Information System (INIS)

    Morita, Tsuyoshi; Hayashi, Ken’ichiro

    2013-01-01

    Highlights: •Tβ4 competed with MRTF-A for G-actin binding. •Tβ4 activated the MRTF–SRF signaling pathway. •Tβ4 increased the endogenous expression of SRF-dependent genes. -- Abstract: Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin–MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF–SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin–MRTFs interaction

  1. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Tsuyoshi, E-mail: tsuyo@nbiochem.med.osaka-u.ac.jp; Hayashi, Ken’ichiro

    2013-08-02

    Highlights: •Tβ4 competed with MRTF-A for G-actin binding. •Tβ4 activated the MRTF–SRF signaling pathway. •Tβ4 increased the endogenous expression of SRF-dependent genes. -- Abstract: Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin–MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF–SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin–MRTFs interaction.

  2. A WRKY Transcription Factor Recruits the SYG1-Like Protein SHB1 to Activate Gene Expression and Seed Cavity Enlargement

    Science.gov (United States)

    Kang, Xiaojun; Li, Wei; Zhou, Yun; Ni, Min

    2013-01-01

    Seed development in Arabidopsis and in many dicots involves an early proliferation of the endosperm to form a large embryo sac or seed cavity close to the size of the mature seed, followed by a second phase during which the embryo grows and replaces the endosperm. SHORT HYPOCOTYL UNDER BLUE1 (SHB1) is a member of the SYG1 protein family in fungi, Caenorhabditis elegans, flies, and mammals. SHB1 gain-of-function enhances endosperm proliferation, increases seed size, and up-regulates the expression of the WRKY transcription factor gene MINISEED3 (MINI3) and the LRR receptor kinase gene HAIKU2 (IKU2). Mutations in either IKU2 or MINI3 retard endosperm proliferation and reduce seed size. However, the molecular mechanisms underlying the establishment of the seed cavity and hence the seed size remain largely unknown. Here, we show that the expression of MINI3 and IKU2 is repressed before fertilization and after 4 days after pollination (DAP), but is activated by SHB1 from 2 to 4 DAP prior to the formation of the seed cavity. SHB1 associates with their promoters but without a recognizable DNA binding motif, and this association is abolished in mini3 mutant. MINI3 binds to W-boxes in, and recruits SHB1 to, its own and IKU2 promoters. Interestingly, SHB1, but not MINI3, activates transcription of pMINI3::GUS or pIKU2::GUS. We reveal a critical developmental switch through the activation of MINI3 expression by SHB1. The recruitment of SHB1 by MINI3 to its own and IKU2 promoters represents a novel two-step amplification to counter the low expression level of IKU2, which is a trigger for endosperm proliferation and seed cavity enlargement. PMID:23505389

  3. Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6.

    OpenAIRE

    Chen, P L; Riley, D J; Chen-Kiang, S; Lee, W H

    1996-01-01

    The biological function of the retinoblastoma protein (RB) in the cell division cycle has been extensively documented, but its apparent role in differentiation remains largely unexplored. To investigate how RB is involved in differentiation, the U937 large-cell lymphoma line was induced to differentiate along a monocyte/macrophage lineage. During differentiation RB was found to interact directly through its simian virus 40 large tumor antigen (T antigen)-binding domain with NF-IL6, a member o...

  4. Transcriptional switching by the metalloregulatory MerR protein: Initial characterization of DNA and mercury(II) binding activities

    International Nuclear Information System (INIS)

    Shewchuk, L.M.; Verdine, G.L.; Walsh, C.T.

    1989-01-01

    The MerR protein from the Tn501 mercury resistance operon is a metalloregulatory transcriptional switch, converting from repressor to activator on binding of Hg(II). The authors have determined via binding studies with 203 Hg(II) that a single Hg(II) atom binds to the MerR dimer (32 kDa) with a half-saturation concentration of 10 -7 M in the presence of up to 10 -3 M exogenous thiols. This 10 4 selective binding is specific for the binding of Hg(II) and corresponds to concentrations of metal that induce mercury(II) resistance in vivo. Extensive footprinting studies by DNase I, methylation protection, and hydroxyl radicals indicate MerR stays bound to DS1 even on addition of Hg(II) and shares no interaction in vitro with a second dyad symmetry element, DS2, centered at -79/-80. Studies with DTNB and pHMB titration of protein thiols and alkylation studies with iodo[ 14 C]acetamide, in the presence and absence of stoichiometrically bound Hg(II), allow initial assessment of roles for Cys-82, -115, -117, and -126 as potential ligands for Hg(II). A tryptic fragment of 1-120 amino acids (or 1-121 aa) still dimerizes and binds specifically to mer DNA but has lost 203 Hg(II) binding capacity

  5. ZNF322, a novel human C2H2 Krueppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways

    International Nuclear Information System (INIS)

    Li Yongqing; Wang Yuequn; Zhang Caibo; Yuan Wuzhou; Wang Jun; Zhu Chuanbing; Chen Lei; Huang Wen; Zeng Weiqi; Wu Xiushan; Liu Mingyao

    2004-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporal-spatial manner. The C 2 H 2 zinc finger-containing transcription factors have been implicated as critical regulators of multiple cardiac-expressed genes and are important for human heart development and diseases. Here we have identified and characterized a novel zinc-finger gene named ZNF322 using degenerated primers from a human embryo heart cDNA library. The gene contains four exons and spans 23.2 kb in chromosome 6p22.1 region, and transcribes a 2.7 kb mRNA that encodes a protein with 402 amino acid residues. The predicted protein contains 9 tandem C 2 H 2 -type zinc-finger motifs. Northern blot analysis shows that ZNF322 is expressed in every human tissue examined at adult stage and during embryonic developmental stages from 80 days to 24 weeks. When overexpressed in COS-7 cells, ZNF322-EGFP fusion protein is detected in the nucleus and cytoplasm. Reporter gene assays show that ZNF322 is a transcriptional activator. Furthermore, overexpression of ZNF322 in COS-7 cells activates the transcriptional activity of SRE and AP-1. Together, these results suggest that ZNF322 is a member of the zinc-finger transcription factor family and may act as a positive regulator in gene transcription mediated by the MAPK signaling pathways

  6. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription

    Czech Academy of Sciences Publication Activity Database

    Wasternack, Claus; Song, S.

    2017-01-01

    Roč. 68, č. 6 (2017), s. 1303-1321 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Activators * Amino acid conjugates * Biosynthesis * Jasmonic acid * Metabolism * Perception * Repressors * SCFJAZ co-receptor complex COI1 * Signaling Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  7. The role of proteasome beta subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1.

    Directory of Open Access Journals (Sweden)

    Adrian O'Hara

    Full Text Available The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2 and regenerating protein 1 (Reg1. Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role.

  8. Regulation of transcription by the retinoblastoma protein.

    Science.gov (United States)

    Horowitz, J M

    1993-02-01

    The product of the retinoblastoma gene (RB1) is believed to function as a negative regulator of cell growth. Recent experimental results suggest that RB1 may exert its growth-suppressing activity by regulating the transcription of a variety of growth-related genes, including FOS, MYC, and TGFBI. A series of biochemical and molecular analyses suggest that RB1 indirectly affects gene expression via cell-cycle-regulated interactions with transcription factors, such as E2F and SPI. Determination of the mechanisms regulating such protein-protein interactions and the identification of additional targets of RB1 function will provide vital insights into the role of this tumor-suppressor gene in mammalian cell proliferation.

  9. cAMP response element binding protein (CREB activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene

    Directory of Open Access Journals (Sweden)

    Stefano Luisa

    2005-01-01

    Full Text Available Abstract Background The enzyme glucose-6-phosphatase catalyzes the dephosphorylation of glucose-6-phosphatase to glucose, the final step in the gluconeogenic and glycogenolytic pathways. Expression of the glucose-6-phosphatase gene is induced by glucocorticoids and elevated levels of intracellular cAMP. The effect of cAMP in regulating glucose-6-phosphatase gene transcription was corroborated by the identification of two genetic motifs CRE1 and CRE2 in the human and murine glucose-6-phosphatase gene promoter that resemble cAMP response elements (CRE. Results The cAMP response element is a point of convergence for many extracellular and intracellular signals, including cAMP, calcium, and neurotrophins. The major CRE binding protein CREB, a member of the basic region leucine zipper (bZIP family of transcription factors, requires phosphorylation to become a biologically active transcriptional activator. Since unphosphorylated CREB is transcriptionally silent simple overexpression studies cannot be performed to test the biological role of CRE-like sequences of the glucose-6-phosphatase gene. The use of a constitutively active CREB2/CREB fusion protein allowed us to uncouple the investigation of target genes of CREB from the variety of signaling pathways that lead to an activation of CREB. Here, we show that this constitutively active CREB2/CREB fusion protein strikingly enhanced reporter gene transcription mediated by either CRE1 or CRE2 derived from the glucose-6-phosphatase gene. Likewise, reporter gene transcription was enhanced following expression of the catalytic subunit of cAMP-dependent protein kinase (PKA in the nucleus of transfected cells. In contrast, activating transcription factor 2 (ATF2, known to compete with CREB for binding to the canonical CRE sequence 5'-TGACGTCA-3', did not transactivate reporter genes containing CRE1, CRE2, or both CREs derived from the glucose-6-phosphatase gene. Conclusions Using a constitutively active CREB2

  10. Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin.

    Science.gov (United States)

    Zhou, Hui-Ren; Islam, Zahidul; Pestka, James J

    2003-03-01

    Since proinflammatory cytokine mRNA expression is induced within lymphoid tissue in vivo by the trichothecene vomitoxin (VT) in a rapid (1-2 h) and transient (4-8 h) fashion, it was hypothesized that mitogen-activated protein kinases (MAPKs) and transcription factors associated upstream with gene transcription of these cytokines are activated prior to or within these time windows. To test this hypothesis, mice were first treated with a single oral dose of VT and then analyzed for MAPK phosphorylation in the spleen. As little as 1 mg/kg of VT induced JNK 1/2, ERK 1/2, and p38 phosphorylation with maximal effects being observed at 5 to 100 mg/kg of VT. VT transiently induced JNK and p38 phosphorylation over a 60-min time period with peak effects being observed at 15 and 30 min, respectively. In contrast, ERK remained phosphorylated from 15 to 120 min. Next, the binding of activating protein 1 (AP-1), CCAAT enhancer-binding protein (C/EBP), CRE-binding protein (CREB), and nuclear factor-kappaB (NF-kappaB) was measured by electrophoretic mobility shift assay (EMSA) using four different consensus transcriptional control motifs at 0, 0.5, 1.5, 4, and 8 h after oral exposure to 25 mg/kg of VT. AP-1 binding activity was differentially elevated from 0.5 h to 8 h, whereas C/EBP binding was elevated only at 0.5 h. CREB binding decreased slightly at 0.5 h but gradually increased, reaching a maximum at 4 h. NF-kappaB binding was increased only slightly at 4 and 8 h. The specificities of AP-1, C/EBP, CREB, and NF-kappaB for relevant DNA motifs were verified by competition assays, using an excess of unlabeled consensus and mutant oligonucleotides. Supershift EMSAs and Western blot analysis identified specific VT-inducible DNA binding proteins for AP-1 (cJun, phospho c-jun, JunB, and JunD), C/EBP (C/EBPbeta), CREB (CREB-1 and ATF-2), and NF-kappaB (p50 and cRel). Finally, when the effects of oral VT exposure on proinflammatory gene expression were assessed at 3, 6, and 9 h

  11. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor.

    Science.gov (United States)

    Christensen, Gitte L; Knudsen, Steen; Schneider, Mikael; Aplin, Mark; Gammeltoft, Steen; Sheikh, Søren P; Hansen, Jakob L

    2011-01-01

    The angiotensin II type 1 receptor (AT(1)R) is known to signal through heterotrimeric G proteins, and Gαq protein-independent signalling has only recently gained appreciation for profound impact on a diverse range of biological functions. β-Arrestins, among other central mediators of Gαq protein-independent signalling from the AT(1)R interact with transcriptional regulators and promote phosphorylation of nuclear proteins. However, the relative contribution of Gαq protein-independent signalling in AT(1)R mediated transcriptional regulation remains elusive. We here present a comprehensive comparative analysis of Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly potentiated β2-adrenergic receptor-stimulated gene expression. These novel findings indicate that the Gαq protein-independent signalling mainly modifies the transcriptional response governed by other signalling pathways, while direct induction of gene expression by the AT(1)R is dependent on classical Gαq protein activation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Transcriptional coregulation by the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4

    NARCIS (Netherlands)

    Baetz, K; Moffat, J; Haynes, J; Chang, M; Andrews, B

    2001-01-01

    In Saccharomyces cerevisiae, the heterodimeric transcription factor SBF (for SCB binding factor) is composed of Swi4 and Swi6 and activates gene expression at the G(1)/S-phase transition of the mitotic cell cycle. Cell cycle commitment is associated not only with major alterations in gene expression

  13. The Tax oncogene enhances ELL incorporation into p300 and P-TEFb containing protein complexes to activate transcription.

    Science.gov (United States)

    Fufa, Temesgen D; Byun, Jung S; Wakano, Clay; Fernandez, Alfonso G; Pise-Masison, Cynthia A; Gardner, Kevin

    2015-09-11

    The eleven-nineteen lysine-rich leukemia protein (ELL) is a key regulator of RNA polymerase II mediated transcription. ELL facilitates RNA polymerase II transcription pause site entry and release by dynamically interacting with p300 and the positive transcription elongation factor b (P-TEFb). In this study, we investigated the role of ELL during the HTLV-1 Tax oncogene induced transactivation. We show that ectopic expression of Tax enhances ELL incorporation into p300 and P-TEFb containing transcriptional complexes and the subsequent recruitment of these complexes to target genes in vivo. Depletion of ELL abrogates Tax induced transactivation of the immediate early genes Fos, Egr2 and NF-kB, suggesting that ELL is an essential cellular cofactor of the Tax oncogene. Thus, our study identifies a novel mechanism of ELL-dependent transactivation of immediate early genes by Tax and provides the rational for further defining the genome-wide targets of Tax and ELL. Published by Elsevier Inc.

  14. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.

    Science.gov (United States)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-17

    YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Down syndrome critical region 2 protein inhibits the transcriptional activity of peroxisome proliferator-activated receptor β in HEK293 cells

    International Nuclear Information System (INIS)

    Song, Hae Jin; Park, Joongkyu; Seo, Su Ryeon; Kim, Jongsun; Paik, Seung R.; Chung, Kwang Chul

    2008-01-01

    Down syndrome is mainly caused by a trisomy of chromosome 21. The Down syndrome critical region 2 (DSCR2) gene is located within a part of chromosome 21, the Down syndrome critical region (DSCR). To investigate the function of DSCR2, we sought to identify DSCR2-interacting proteins using yeast two-hybrid assays. A human fetal brain cDNA library was screened, and DSCR2 was found to interact with a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptor β, (PPARβ). A co-immunoprecipitation assay demonstrated that DSCR2 physically interacts with PPARβ in mammalian HEK293 cells. DSCR2 also inhibited the ligand-induced transcriptional activity of PPARβ. Furthermore, PPARβ also decreased the solubility of DSCR2, which increased levels of insoluble DSCR2

  16. Transcriptional activity and nuclear localization of Cabut, the Drosophila ortholog of vertebrate TGF-β-inducible early-response gene (TIEG proteins.

    Directory of Open Access Journals (Sweden)

    Yaiza Belacortu

    Full Text Available BACKGROUND: Cabut (Cbt is a C(2H(2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs, which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. METHODOLOGY/PRINCIPAL FINDINGS: To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. CONCLUSIONS/SIGNIFICANCE: Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the

  17. The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function.

    Directory of Open Access Journals (Sweden)

    Noëlle Guillon

    Full Text Available The fusion between EWS and ETS family members is a key oncogenic event in Ewing tumors and important EWS-FLI1 target genes have been identified. However, until now, the search for EWS-FLI1 targets has been limited to promoter regions and no genome-wide comprehensive analysis of in vivo EWS-FLI1 binding sites has been undertaken. Using a ChIP-Seq approach to investigate EWS-FLI1-bound DNA sequences in two Ewing cell lines, we show that this chimeric transcription factor preferentially binds two types of sequences including consensus ETS motifs and microsatellite sequences. Most bound sites are found outside promoter regions. Microsatellites containing more than 9 GGAA repeats are very significantly enriched in EWS-FLI1 immunoprecipitates. Moreover, in reporter gene experiments, the transcription activation is highly dependent upon the number of repeats that are included in the construct. Importantly, in vivo EWS-FLI1-bound microsatellites are significantly associated with EWS-FLI1-driven gene activation. Put together, these results point out the likely contribution of microsatellite elements to long-distance transcription regulation and to oncogenesis.

  18. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  19. Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response.

    Science.gov (United States)

    Ampofo, Emmanuel; Sokolowsky, Tasja; Götz, Claudia; Montenarh, Mathias

    2013-03-01

    Protein kinase CK2 is a pleiotropic enzyme, which is implicated in the regulation of numerous biological processes. It seems to regulate the various functions by binding to other proteins and by phosphorylation of many different substrates. Here, we identified the activating transcription factor 4 (ATF4), an essential component of the ER stress signaling, as a new binding partner and a new substrate of CK2 in vitro and in vivo. Bifluorescence complementation analysis (BiFC) revealed that CK2α and ATF4 associate in the nucleus. By using mutants of ATF4 we identified serine 215 as the main CK2 phosphorylation site. The ATF4 S215A mutant turned out to be more stable than the wild-type form. We further noticed that an inhibition of CK2 caused an increased transcription of the ATF4 gene. Analyses of the transcription factor activity revealed an impaired activity of the CK2 phosphorylation mutant of ATF4. Thus, we show that (i) ATF4 is a binding partner of CK2α (ii) ATF4 is a substrate of CK2, (iii) the phosphorylation of ATF4 by CK2 influences the stability of ATF4, (iv) the transcription of ATF4 is regulated by CK2 and (v) the transcription factor activity of ATF4 is regulated by the CK2 phosphorylation of ATF4. Thus, CK2 plays an essential role in the regulation of the ER-stress induced signaling pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Induction of the unfolded protein response by cigarette smoke is primarily an activating transcription factor 4-C/EBP homologous protein mediated process

    Directory of Open Access Journals (Sweden)

    Geraghty P

    2011-06-01

    Full Text Available Patrick Geraghty, Alison Wallace, Jeanine M D'ArmientoDepartment of Medicine, Divisions of Molecular and Pulmonary Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USAPurpose: Cigarette smoke is the major risk factor associated with the development of chronic obstructive pulmonary disease (COPD. Recent studies propose a link between endoplasmic reticulum (ER stress and emphysema, demonstrated by increased ER stress markers under smoking conditions. Here, we investigate whether cigarette smoke-induced ER stress is cell specific and correlates with acute and chronic cigarette smoke exposure.Methods: Gene and protein expression changes in human primary lung cell cultures following cigarette smoke extract (CSE exposure were monitored by qPCR and Western blot analysis. Mice and guinea pigs were exposed to cigarette smoke and ER stress markers examined in whole lung homogenates. Inflammatory cells from the bronchoalveolar lavage fluid of 10 days smoke exposed mice were also examined.Results: Cigarette smoke induced a trend increase in the ER stress response through an activating transcription factor 4 (ATF4 mediated induction of C/EBP homologous protein (CHOP in primary small airway epithelial cells. Bronchial epithelial cells and macrophages responded similarly to CSE. Wild-type mice and guinea pigs exposed to acute levels of cigarette smoke exhibited increased levels of CHOP but not at significant levels. However, after long-term chronic cigarette smoke exposure, CHOP expression was reduced. Interestingly, inflammatory cells from smoke exposed mice had a significant increase in CHOP/ATF4 expression.Conclusion: A trend increase in CHOP levels appear in multiple human lung cell types following acute cigarette smoke exposure in vitro. In vivo, inflammatory cells, predominately macrophages, demonstrate significant cigarette smoke-induced ER stress. Early induction of CHOP in cigarette smoke may play a pivotal role in early

  1. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    Science.gov (United States)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  2. Stimulated initiation of mitogen-activated protein kinase phosphatase-1 (MKP-1) gene transcription involves the synergistic action of multiple cis-acting elements in the proximal promoter.

    Science.gov (United States)

    Ryser, Stephan; Massiha, Abbas; Piuz, Isabelle; Schlegel, Werner

    2004-01-01

    Mitogen-activated protein kinases (MAPKs) are inactivated by a dual specificity phosphatase, MAPK phosphatase-1 (MKP-1). MKP-1 is transcribed as an immediate early response gene (IEG) following various stimuli. In the pituitary cell line GH4C1, MKP-1 gene transcription is strongly induced by thyrotropin-releasing hormone (TRH) as well as by epidermal growth factor (EGF) as a consequence of activated MAPK/extracellular-signal-regulated kinase (ERK) signalling. Intriguingly, reporter gene analysis with the MKP-1 promoter showed strong basal transcription, but only limited induction by TRH and EGF. Site-directed mutagenesis of the reporter construct combined with band-shift and in vivo studies revealed that part of the constitutive activity of the MKP-1 promoter resides in two GC boxes bound by Sp1 and Sp3 transcription factors in the minimal promoter. Basal transcription of transiently transfected luciferase reporter can be initiated by either of the two GC boxes or also by either of the two cAMP/Ca(2+) responsive elements or by the E-box present in the proximal promoter. On the other hand, when analysed by stable transfection, the five responsive elements are acting in synergy to transactivate the MKP-1 proximal promoter. We show in this study that the MKP-1 promoter can function as a constitutive promoter or as a rapid and transient sensor for the activation state of MAPKs/ERKs. This dual mode of transcription initiation may have different consequences for the control of a block to elongation situated in the first exon of the MKP-1 gene, as described previously [Ryser, Tortola, van Haasteren, Muda, Li and Schlegel (2001) J. Biol. Chem. 276, 33319-33327]. PMID:14609431

  3. Cloning, expression, and characterization of the TATA-binding protein (TBP) promoter binding factor, a transcription activator of the Acanthamoeba TBP gene.

    Science.gov (United States)

    Huang, W; Bateman, E

    1995-12-01

    TATA-binding protein (TBP) gene promoter binding factor (TPBF) is a transactivator which binds to the TBP promoter element (TPE) sequence of the Acanthamoeba TBP gene promoter and stimulates transcription in vitro. We have isolated a cDNA clone encoding TPBF. TPBF is a polypeptide of 327 amino acids with a calculated molecular mass of 37 kDa. The predicted amino acid sequence of TPBF shows no significant homology to other proteins. TPBF has two potential coiled-coil regions, a basic region, a proline-rich region, a histidine-rich N terminus, and a nuclear targeting sequence. The recombinant protein has an apparent molecular mass of 50 kDa, identical with that of TPBF purified from Acanthamoeba. Recombinant TPBF is able to bind DNA and activate transcription with the same specificity as natural Acanthamoeba TPBF, demonstrating the authenticity of the clone. Mobility shift assays of co-translated TPBF polypeptides and chemical cross-linking demonstrate that TPBF is tetrameric in solution and when bound to DNA. Analyses of TPBF mutants show that Coiled-coil II is essential for DNA binding, but Coiled-coil I and the basic region are also involved. TPBF is thus a novel DNA-binding protein with functional similarity to the tumor suppressor protein p53.

  4. PPAR{gamma} activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Mogilenko, Denis A., E-mail: denis@iem.sp.ru [Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, 197376 St. Petersburg (Russian Federation); Department of Embryology, St. Petersburg State University, 199034 St. Petersburg (Russian Federation); Shavva, Vladimir S. [Department of Embryology, St. Petersburg State University, 199034 St. Petersburg (Russian Federation); Dizhe, Ella B. [Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, 197376 St. Petersburg (Russian Federation); Orlov, Sergey V., E-mail: serge@iem.sp.ru [Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, 197376 St. Petersburg (Russian Federation); Department of Embryology, St. Petersburg State University, 199034 St. Petersburg (Russian Federation); Perevozchikov, Andrej P., E-mail: app@iem.sp.ru [Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, 197376 St. Petersburg (Russian Federation); Department of Embryology, St. Petersburg State University, 199034 St. Petersburg (Russian Federation)

    2010-11-19

    Research highlights: {yields} PPAR{gamma} activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. {yields} Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1-LXR{beta} complex. {yields} Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex. {yields} Activation of PPAR{gamma} leads to increasing of the level of LXR{beta} associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPAR{gamma} is known as activator of ABCA1 expression, but details of PPAR{gamma}-mediated regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPAR{gamma} activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXR{beta} binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1/LXR{beta} complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex, but does not block PPAR{gamma}-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPAR{gamma} may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPAR{gamma}, LXR{beta} and MEK1/2 in regulation of ABCA1 mRNA and protein expression.

  5. Transcriptional tools: Small molecules for modulating CBP KIX-dependent transcriptional activators.

    Science.gov (United States)

    Bates, Caleb A; Pomerantz, William C; Mapp, Anna K

    2011-01-01

    Previously it was demonstrated that amphipathic isoxazolidines are able to functionally replace the transcriptional activation domains of endogenous transcriptional activators. In addition, in vitro binding studies suggested that a key binding partner of these molecules is the CREB Binding Protein (CBP), more specifically the KIX domain within this protein. Here we show that CBP plays an essential role in the ability of isoxazolidine transcriptional activation domains to activate transcription in cells. Consistent with this model, isoxazolidines are able to function as competitive inhibitors of the activators MLL and Jun, both of which utilize a binding interaction with KIX to up-regulate transcription. Further, modification of the N2 side chain produced three analogs with enhanced potency against Jun-mediated transcription, although increased cytotoxicity was also observed. Collectively these small KIX-binding molecules will be useful tools for dissecting the role of the KIX domain in a variety of pathological processes. 2010 Wiley Periodicals, Inc.

  6. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    International Nuclear Information System (INIS)

    Holowachuk, Eugene W.

    2007-01-01

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3β inhibitors (Li + or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNFα-induced rates of lipolysis by 50%. Adipocytes preincubated with Li + or TZDZ-8 prior to CsA and/or TNFα, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPARγ, ACS and Adn), compared with control or TNFα-treatment, whereas Li + pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPARγ, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li + treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis

  7. The putA gene of Agrobacterium tumefaciens is transcriptionally activated in response to proline by an Lrp-like protein and is not autoregulated.

    Science.gov (United States)

    Cho, K; Winans, S C

    1996-12-01

    The Agrobacterium tumefaciens putA gene, which encodes proline dehydrogenase, is transcriptionally induced by exogenous proline. In contrast to the putA genes of enteric bacteria, the A. tumefaciens putA gene is not regulated by the PutA protein, as the putA promoter remained strongly proline inducible in strains lacking PutA. A putA null mutation increased the expression of the putA promoter under a variety of conditions. However, this mutation is predicted to increase the cytoplasmic concentration of proline, and this alone probably accounts for its effects on putA expression. The putA promoter was also strongly induced by valine, and the putA genotype did not affect expression by this gratuitous inducer. An open reading frame (ORF) encoding an Lrp-like protein was found transcribed divergently from putA. Disruption of this ORF, designated putR, abolished induction of the putA promoter by proline or valine. In addition to activating putA, PutR also repressed its own transcription, and this autorepression was only slightly affected by exogenous proline. The transcription start sites for the putA and putR genes are separated by 64 nucleotides, suggesting that PutR could regulate both promoters by binding to a single operator.

  8. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com [Whittemore Peterson Institute, University of Nevada-Reno, Reno (United States); Morzunov, Sergey P. [Department of Pathology and Nevada State Health Laboratory, University of Nevada-Reno, Reno (United States); Boichuk, Sergei V. [Kazan State Medical University, Kazan (Russian Federation); Palotás, András [Asklepios-Med (private medical practice and research center), Szeged (Hungary); Jeor, Stephen St. [Department of Microbiology and Immunology, University of Nevada-Reno, Reno (United States); Lombardi, Vincent C. [Whittemore Peterson Institute, University of Nevada-Reno, Reno (United States); Rizvanov, Albert A. [Department of Genetics, Kazan (Volga Region) Federal University, Kazan (Russian Federation)

    2013-09-01

    Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.

  9. Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting.

    OpenAIRE

    Beggah, S.; Vogne, C.; Zenaro, E.; Van Der Meer, J.R.

    2008-01-01

    Summary Mutants were produced in the A‐domain of HbpR, a protein belonging to the XylR family of σ54‐dependent transcription activators, with the purpose of changing its effector recognition specificity from 2‐hydroxybiphenyl (2‐HBP, the cognate effector) to 2‐chlorobiphenyl (2‐CBP). Mutations were introduced in the hbpR gene part for the A‐domain via error‐prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR‐dependent induction of th...

  10. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis

    Science.gov (United States)

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-01-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  11. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex.

    Science.gov (United States)

    Brzovic, Peter S; Heikaus, Clemens C; Kisselev, Leonid; Vernon, Robert; Herbig, Eric; Pacheco, Derek; Warfield, Linda; Littlefield, Peter; Baker, David; Klevit, Rachel E; Hahn, Steven

    2011-12-23

    The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Identification of the GTPase-activating protein DEP domain containing 1B (DEPDC1B) as a transcriptional target of Pitx2.

    Science.gov (United States)

    Wu, Di; Zhu, Xiaoxi; Jimenez-Cowell, Kevin; Mold, Alexander J; Sollecito, Christopher C; Lombana, Nicholas; Jiao, Meng; Wei, Qize

    2015-04-10

    Pitx2 is a bicoid-related homeobox transcription factor implicated in regulating left-right patterning and organogenesis. However, only a limited number of Pitx2 downstream target genes have been identified and characterized. Here we demonstrate that Pitx2 is a transcriptional repressor of DEP domain containing 1B (DEPDC1B). The first intron of the human and mouse DEP domain containing 1B genes contains multiple consensus DNA-binding sites for Pitx2. Chromatin immunoprecipitation assays revealed that Pitx2, along with histone deacetylase 1, was recruited to the first intron of Depdc1b. In contrast, RNAi-mediated depletion of Pitx2 not only enhanced the acetylation of histone H4 in the first intron of Depdc1b, but also increased the protein level of Depdc1b. Luciferase reporter assays also showed that Pitx2 could repress the transcriptional activity mediated by the first intron of human DEPDC1B. The GAP domain of DEPDC1B interacted with nucleotide-bound forms of RAC1 in vitro. In addition, exogenous expression of DEPDC1B suppressed RAC1 activation and interfered with actin polymerization induced by the guanine nucleotide exchange factor TRIO. Moreover, DEPDC1B interacted with various signaling molecules such as U2af2, Erh, and Salm. We propose that Pitx2-mediated repression of Depdc1b expression contributes to the regulation of multiple molecular pathways, such as Rho GTPase signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Jinbin; Liu, Zhijun; Zhang, Zhao; Lv, Yanting; Yang, Nan; Zhang, Guohua; Wu, Menyao; Lv, Shuo; Pan, Lixia; Joosten, Matthieu H A J; Wang, Guodong

    2016-05-01

    Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of suitable physiological screening conditions and the high degree of functional redundancy among AtRLP genes. To overcome the functional redundancy and further understand the role of AtRLP genes, we studied the evolution of AtRLP genes and compiled a comprehensive profile of the transcriptional regulation of AtRLP genes upon exposure to a range of environmental stresses and different hormones. These results indicate that the majority of AtRLP genes are differentially expressed under various conditions that were tested, an observation that will help to select certain AtRLP genes involved in a specific biological process for further experimental studies to eventually dissect their function. A large number of AtRLP genes were found to respond to more than one treatment, suggesting that one single AtRLP gene may be involved in multiple physiological processes. In addition, we performed a genome-wide cloning of the AtRLP genes, and generated and characterized transgenic Arabidopsis plants overexpressing the individual AtRLP genes, presenting new insight into the roles of AtRLP genes, as exemplified by AtRLP3, AtRLP11 and AtRLP28 Our study provides an overview of biological processes in which AtRLP genes may be involved, and presents valuable resources for future investigations into the function of these genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Transcriptional inhibition by the retinoblastoma protein

    DEFF Research Database (Denmark)

    Fattaey, A; Helin, K; Harlow, E

    1993-01-01

    The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M. The underphosphory......The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M......-mediated transcription would be lost by mutation in the retinoblastoma gene in human tumours, by pRB's interaction with DNA tumour virus oncoproteins, or by phosphorylation during the cell cycle....

  15. An upstream promoter element of the Acanthamoeba castellanii TBP gene binds a DNA sequence specific transcription activating protein, TPBF.

    Science.gov (United States)

    Liu, F; Bateman, E

    1993-01-01

    We have characterized a positive-acting element in the upstream portion of the Acanthamoeba TBP gene promoter. The 27 bp element (TPE), located within the promoter between -97 and -70, stimulates transcription in an orientation independent fashion and tolerates modest changes in its distance from the TATA box. The TPE does not, however, function synergistically nor when positioned 3000 bp 5' or 260 base pairs 3' of the transcription start site. The TPE binds a DNA sequence-dependent factor, TPBF, which we have partly purified. TPBF was characterized using in vitro transcription, DNase I footprinting, methylation interference and electrophoretic mobility shift assays. TPBF does not have a counterpart in HeLa cells, but nonetheless strongly stimulates transcription of the Acanthamoeba TBP gene in mammalian extracts. Our results also suggest that there are additional positively and negatively acting elements within the TBP gene promoter, for which a model is presented. Images PMID:8414988

  16. Spontaneous Glutamatergic Synaptic Activity Regulates Constitutive COX-2 Expression in Neurons: OPPOSING ROLES FOR THE TRANSCRIPTION FACTORS CREB (cAMP RESPONSE ELEMENT BINDING) PROTEIN AND Sp1 (STIMULATORY PROTEIN-1).

    Science.gov (United States)

    Hewett, Sandra J; Shi, Jingxue; Gong, Yifan; Dhandapani, Krishnan; Pilbeam, Carol; Hewett, James A

    2016-12-30

    Burgeoning evidence supports a role for cyclooxygenase metabolites in regulating membrane excitability in various forms of synaptic plasticity. Two cyclooxygenases, COX-1 and COX-2, catalyze the initial step in the metabolism of arachidonic acid to prostaglandins. COX-2 is generally considered inducible, but in glutamatergic neurons in some brain regions, including the cerebral cortex, it is constitutively expressed. However, the transcriptional mechanisms by which this occurs have not been elucidated. Here, we used quantitative PCR and also analyzed reporter gene expression in a mouse line carrying a construct consisting of a portion of the proximal promoter region of the mouse COX-2 gene upstream of luciferase cDNA to characterize COX-2 basal transcriptional regulation in cortical neurons. Extracts from the whole brain and from the cerebral cortex, hippocampus, and olfactory bulbs exhibited high luciferase activity. Moreover, constitutive COX-2 expression and luciferase activity were detected in cortical neurons, but not in cortical astrocytes, cultured from wild-type and transgenic mice, respectively. Constitutive COX-2 expression depended on spontaneous but not evoked excitatory synaptic activity and was shown to be N-methyl-d-aspartate receptor-dependent. Constitutive promoter activity was reduced in neurons transfected with a dominant-negative cAMP response element binding protein (CREB) and was eliminated by mutating the CRE-binding site on the COX-2 promoter. However, mutation of the stimulatory protein-1 (Sp1)-binding site resulted in an N-methyl-d-aspartate receptor-dependent enhancement of COX-2 promoter activity. Basal binding of the transcription factors CREB and Sp1 to the native neuronal COX-2 promoter was confirmed. In toto, our data suggest that spontaneous glutamatergic synaptic activity regulates constitutive neuronal COX-2 expression via Sp1 and CREB protein-dependent transcriptional mechanisms. © 2016 by The American Society for Biochemistry

  17. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm

    OpenAIRE

    Vassilev, Alex; Kaneko, Kotaro J.; Shu, Hongjun; Zhao, Yingming; DePamphilis, Melvin L.

    2001-01-01

    Mammals express four highly conserved TEAD/TEF transcription factors that bind the same DNA sequence, but serve different functions during development. TEAD-2/TEF-4 protein purified from mouse cells was associated predominantly with a novel TEAD-binding domain at the amino terminus of YAP65, a powerful transcriptional coactivator. YAP65 interacted specifically with the carboxyl terminus of all four TEAD proteins. Both this interaction and sequence-specific DNA binding by TEAD were required fo...

  18. Transcriptional Repression and Protein Degradation of the Ca2+-Activated K+ Channel KCa1.1 by Androgen Receptor Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Anowara Khatun

    2018-04-01

    Full Text Available The large-conductance Ca2+-activated K+ channel KCa1.1 plays an important role in the promotion of breast cancer cell proliferation and metastasis. The androgen receptor (AR is proposed as a therapeutic target for AR-positive advanced triple-negative breast cancer. We herein investigated the effects of a treatment with antiandrogens on the functional activity, activation kinetics, transcriptional expression, and protein degradation of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, voltage-sensitive dye imaging, and whole-cell patch clamp recording. A treatment with the antiandrogen bicalutamide or enzalutamide for 48 h significantly suppressed (1 depolarization responses induced by paxilline (PAX, a specific KCa1.1 blocker and (2 PAX-sensitive outward currents induced by the depolarizing voltage step. The expression levels of KCa1.1 transcripts and proteins were significantly decreased in MDA-MB-453 cells, and the protein degradation of KCa1.1 mainly contributed to reductions in KCa1.1 activity. Among the eight regulatory β and γ subunits, LRRC26 alone was expressed at high levels in MDA-MB-453 cells and primary and metastatic breast cancer tissues, whereas no significant changes were observed in the expression levels of LRRC26 and activation kinetics of PAX-sensitive outward currents in MDA-MB-453 cells by the treatment with antiandrogens. The treatment with antiandrogens up-regulated the expression of the ubiquitin E3 ligases, FBW7, MDM2, and MDM4 in MDA-MB-453 cells, and the protein degradation of KCa1.1 was significantly inhibited by the respective siRNA-mediated blockade of FBW7 and MDM2. Based on these results, we concluded that KCa1.1 is an androgen-responsive gene in AR-positive breast cancer cells, and its down-regulation through enhancements in its protein degradation by FBW7 and/or MDM2 may contribute, at least in part, to the antiproliferative and antimetastatic effects of antiandrogens in

  19. Human herpesvirus 6B U19 protein is a PML-regulated transcriptional activator that localizes to nuclear foci in a PML-independent manner

    DEFF Research Database (Denmark)

    Kofod-Olsen, Emil; Ross-Hansen, Katrine; Mikkelsen, Jacob Giehm

    2008-01-01

    Human herpesvirus 6B (HHV-6B) contains an IE-B domain spanning open reading frames U16/17-U19, based on homology with human cytomegalovirus. Here, the protein product, U19, of the HHV-6B U19 gene is identified as a 47 kDa transcriptional activator. HHV-6B infection or overexpression of U19...... transactivated the RANTES promoter. Mutational analysis of the promoter indicated that transactivation was not critically dependent on the promoter sites CRE, NF-kappaB, ISRE or NF-IL6. ND10 are nuclear substructures that are involved in several cellular regulatory pathways, including those controlling gene...... structure, U19 also localized to the centre of ND10. Knockdown of PML by small interfering RNA did not prevent U19 localization to ND10-like foci, but instead led to a fourfold increase in U19-induced transcription from the RANTES promoter. Generation of four truncated U19 proteins indicated that the N...

  20. Proteasome-dependent degradation of transcription factor activating enhancer-binding protein 4 (TFAP4) controls mitotic division

    NARCIS (Netherlands)

    D'Annibale, Sara; Kim, Jihoon; Magliozzi, Roberto; Low, Teck Yew; Mohammed, Shabaz; Heck, Albert J R; Guardavaccaro, Daniele

    2014-01-01

    TFAP4, a basic helix-loop-helix transcription factor that regulates the expression of a multitude of genes involved in the regulation of cellular proliferation, stemness, and epithelial-mesenchymal transition, is up-regulated in colorectal cancer and a number of other human malignancies. We have

  1. SIRT1 Protein, by Blocking the Activities of Transcription Factors FoxO1 and FoxO3, Inhibits Muscle Atrophy and Promotes Muscle Growth*

    Science.gov (United States)

    Lee, Donghoon; Goldberg, Alfred L.

    2013-01-01

    In several cell types, the protein deacetylase SIRT1 regulates the activities of FoxO transcription factors whose activation is critical in muscle atrophy. However, the possible effects of SIRT1 on the activity of FoxOs in skeletal muscle and on the regulation of muscle size have not been investigated. Here, we show that after food deprivation, SIRT1 levels fall dramatically in type II skeletal muscles (tibialis anterior), which show marked atrophy, unlike in the liver (where SIRT1 rises) or heart or the soleus, a type I muscle (where SIRT1 is unchanged). Maintenance of high SIRT1 levels by electroporation in mouse muscle inhibits markedly the muscle wasting induced by fasting as well as by denervation, and these protective effects require its deacetylase activity. SIRT1 overexpression reduces muscle wasting by blocking the activation of FoxO1 and 3. It thus prevents the induction of key atrogenes, including the muscle-specific ubiquitin ligases, atrogin1 and MuRF1, and multiple autophagy (Atg) genes and the increase in overall proteolysis. In normal muscle, SIRT1 overexpression by electroporation causes rapid fiber hypertrophy without, surprisingly, activation of the PI3K-AKT signaling pathway. Thus, SIRT1 activation favors postnatal muscle growth, and its fall appears to be critical for atrophy during fasting. Consequently, SIRT1 activation represents an attractive possible pharmacological approach to prevent muscle wasting and cachexia. PMID:24003218

  2. SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth.

    Science.gov (United States)

    Lee, Donghoon; Goldberg, Alfred L

    2013-10-18

    In several cell types, the protein deacetylase SIRT1 regulates the activities of FoxO transcription factors whose activation is critical in muscle atrophy. However, the possible effects of SIRT1 on the activity of FoxOs in skeletal muscle and on the regulation of muscle size have not been investigated. Here, we show that after food deprivation, SIRT1 levels fall dramatically in type II skeletal muscles (tibialis anterior), which show marked atrophy, unlike in the liver (where SIRT1 rises) or heart or the soleus, a type I muscle (where SIRT1 is unchanged). Maintenance of high SIRT1 levels by electroporation in mouse muscle inhibits markedly the muscle wasting induced by fasting as well as by denervation, and these protective effects require its deacetylase activity. SIRT1 overexpression reduces muscle wasting by blocking the activation of FoxO1 and 3. It thus prevents the induction of key atrogenes, including the muscle-specific ubiquitin ligases, atrogin1 and MuRF1, and multiple autophagy (Atg) genes and the increase in overall proteolysis. In normal muscle, SIRT1 overexpression by electroporation causes rapid fiber hypertrophy without, surprisingly, activation of the PI3K-AKT signaling pathway. Thus, SIRT1 activation favors postnatal muscle growth, and its fall appears to be critical for atrophy during fasting. Consequently, SIRT1 activation represents an attractive possible pharmacological approach to prevent muscle wasting and cachexia.

  3. The potency of STAT (signal transducers and activators of transcription) 3 protein as growth promoter for chicken

    Science.gov (United States)

    Ma'ruf, Anwar; Iswati, Sri; Hidajati, Nove; Damayanti, Ratna

    2017-09-01

    The long-term objective of this study was to produce STAT synthetic protein in chicken during growth period resulting from the increase of growth hormone (GH) as growth promoter. This study used ten male chicken Lohman from PT. Multibreeder Indonesia. The chicken were kept within batteried cage, with a capacity of one chicken in each cage. The chickens were fed twice a day, at 6 a.m. and 6 p.m. with the amount of feed 10% less than standard. On day 21 the chicken were slaughtered to obtain the samples, i.e., adipose, liver and muscles for the following examinations (1) isolation of STAT-3 signaling protein from adipose, liver and muscles of the chicken, (2) analysis of STAT-3 signaling protein using SDS-PAGE method, and (3) identification of STAT-3 signaling protein using Western blot method by means of protein detection using electrophoresis with polyacrylamide gels. Results of examination on protein in hepatic, muscle and adipose of chickens in growth period revealed that STAT protein was positively present in those tissues. This finding was followed-up with SDS-PAGE examination, from which we found the presence of protein band between the markers of 116 kDa and 14.4 kDa. The protein band was supposedly the STAT-3 protein. To prove that protein band formed was the STAT-3, Western blot examination was conducted using rabbit polyclonal antibody STAT-3. The result showed the formation of the protein band, indicating the presence of reaction between antigen (STAT-3 protein) and STAT-3 protein antibody. In conclusion, STAT-3 protein is present in hepatic, muscular, and adipose tissues, with molecular weight of 59.4 kDa.

  4. Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting.

    Science.gov (United States)

    Beggah, Siham; Vogne, Christelle; Zenaro, Elena; Van Der Meer, Jan Roelof

    2008-01-01

    Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.

  5. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity

    International Nuclear Information System (INIS)

    Liu Wenjin; Sun Maoyun; Jiang Jianhai; Shen Xiaoyun; Sun Qing; Liu Weicheng; Shen Hailian; Gu Jianxin

    2004-01-01

    The Cyclin D3 protein is a member of the D-type cyclins. Besides serving as cell cycle regulators, D-type cyclins have been reported to be able to interact with several transcription factors and modulate their transcriptional activations. Here we report that human activating transcription factor 5 (hATF5) is a new interacting partner of Cyclin D3. The interaction was confirmed by in vivo coimmunoprecipitation and in vitro binding analysis. Neither interaction between Cyclin D1 and hATF5 nor interaction between Cyclin D2 and hATF5 was observed. Confocal microscopy analysis showed that Cyclin D3 could colocalize with hATF5 in the nuclear region. Cyclin D3 could potentiate hATF5 transcriptional activity independently of its Cdk4 partner. But Cyclin D1 and Cyclin D2 had no effect on hATF5 transcriptional activity. These data provide a new clue to understand the new role of Cyclin D3 as a transcriptional regulator

  6. Hyperosmotic stress strongly potentiates serum response factor (SRF)-dependent transcriptional activity in ehrlich lettré ascites cells through a mechanism involving p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Gorbatenko, Andrej; Wiwel, Maria; Klingberg, Henrik

    2011-01-01

    ) and cAMP response element-binding protein (CREB) are differentially regulated in ELA cells. SRF Ser103 phosphorylation and SRF-dependent transcriptional activity were strongly augmented 5–30¿min and 24¿h, respectively, after hyperosmotic stress (50% increase in extracellular ionic strength), in a p38...... is transiently inhibited while p38 MAPK is activated, in turn impacting on cell survival (Pedersen et al., 2007, Cell Physiol Biochem 20: 735–750). Here, we show that downstream of these kinases, two transcription factors with major roles in control of cell proliferation and death, serum response factor (SRF......Long-term osmotic stress results in altered gene transcription, however, with the exception of the TonE/TonEBP system, the underlying mechanisms are poorly understood. We previously showed that upon osmotic shrinkage of Ehrlich Lettré Ascites (ELA) fibroblasts, the MEK1-ERK1/2 pathway...

  7. The histone-like protein H-NS acts as a transcriptional repressor for expression of the anaerobic and growth phase activator AppY of Escherichia coli

    DEFF Research Database (Denmark)

    Atlung, Tove; Sund, Susanne; Olesen, Kirsten

    1996-01-01

    The transcriptional activator AppY is required for anaerobic and stationary phase induction of the cyx-appA and hya operons of Escherichia coli, and the expression of the appY gene itself is induced by these environmental conditions. The sequence of the appY gene and its promoter region is unusua...... that purified H-NS protein bound with high affinity to two different segments of the appY promoter region. The role of H-NS in the AppY regulatory cascade is discussed and compared with its function in the regulatory cascades of the AppY homologs CfaD and VirF....

  8. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund; Knudsen, Steen; Schneider, Mikael

    2011-01-01

    signalling from the AT(1)R interact with transcriptional regulators and promote phosphorylation of nuclear proteins. However, the relative contribution of Gαq protein-independent signalling in AT(1)R mediated transcriptional regulation remains elusive. We here present a comprehensive comparative analysis...... of Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly......The angiotensin II type 1 receptor (AT(1)R) is known to signal through heterotrimeric G proteins, and Gαq protein-independent signalling has only recently gained appreciation for profound impact on a diverse range of biological functions. β-Arrestins, among other central mediators of Gαq protein-independent...

  9. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus.

    Science.gov (United States)

    Wang, Yafei; Peng, Wei; Zhou, Xu; Huang, Fei; Shao, Lingyun; Luo, Meizhong

    2014-09-01

    Agrobacterium exports at least five virulence proteins (VirE2, VirE3, VirF, VirD2, VirD5) into host cells and hijacks some host plant factors to facilitate its transformation process. Random DNA binding selection assays (RDSAs), electrophoretic mobility shift assays (EMSAs) and yeast one-hybrid systems were used to identify protein-bound DNA elements. Bimolecular fluorescence complementation, glutathione S-transferase pull-down and yeast two-hybrid assays were used to detect protein interactions. Protoplast transformation, coprecipitation, competitive binding and cell-free degradation assays were used to analyze the relationships among proteins. We found that Agrobacterium VirD5 exhibits transcriptional activation activity in yeast, is located in the plant cell nucleus, and forms homodimers. A specific VirD5-bound DNA element designated D5RE (VirD5 response element) was identified. VirD5 interacted directly with Arabidopsis VirE2 Interacting Protein 1 (AtVIP1). However, the ternary complex of VirD5-AtVIP1-VirE2 could be detected, whereas that of VirD5-AtVIP1-VBF (AtVIP1 Binding F-box protein) could not. We demonstrated that VirD5 competes with VBF for binding to AtVIP1 and stabilizes AtVIP1 and VirE2 in the cell-free degradation system. Our results indicated that VirD5 may act as both a transcriptional activator-like effector to regulate host gene expression and a protector preventing the coat proteins of the T-complex from being quickly degraded by the host's ubiquitin proteasome system (UPS). © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Differential Expression of the Activator Protein 1 Transcription Factor Regulates Interleukin-1ß Induction of Interleukin 6 in the Developing Enterocyte.

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    Full Text Available The innate immune response is characterized by activation of transcription factors, nuclear factor kappa B and activator protein-1 and their downstream targets, the pro-inflammatory cytokines including interleukin 1β and interleukin 6. Normal development of this response in the intestine is critical to survival of the human neonate and delays can cause the onset of devastating inflammatory diseases such as necrotizing enterocolitis. Previous studies have addressed the role of nuclear factor kappa B in the development of the innate immune response in the enterocyte, however despite its central role in the control of multiple pro-inflammatory cytokine genes, little is known on the role of Activator Protein 1 in this response in the enterocyte. Here we show that the canonical Activator Protein 1 members, cJun and cFos and their upstream kinases JNK and p38 play an essential role in the regulation of interleukin 6 in the immature enterocyte. Our data supports a model whereby the cFos/cJun heterodimer and the more potent cJun homodimer downstream of JNK are replaced by less efficient JunD containing dimers, contributing to the decreased responsiveness to interleukin 1β and decreased interleukin 6 secretion observed in the mature enterocyte. The tissue specific expression of JunB in colonocytes and colon derived tissues together with its ability to repress Interleukin-1β induction of an Interleukin-6 gene reporter in the NCM-460 colonocyte suggests that induction of JunB containing dimers may offer an attractive therapeutic strategy for the control of IL-6 secretion during inflammatory episodes in this area of the intestine.

  11. Examination of transcript amounts and activity of protein kinase CK2 in muscle lysates of different types of human muscle pathologies.

    Science.gov (United States)

    Heuss, Dieter; Klascinski, Janine; Schubert, Steffen W; Moriabadi, Tehmur; Lochmüller, Hanns; Hashemolhosseini, Said

    2008-09-01

    Motoneurons release the heparansulfate proteoglycan agrin and thereby activate the muscle-specific receptor tyrosine kinase (MuSK), which is the main organizer of subsynaptic specializations at the neuromuscular junction. Recently, we showed that (1) the protein kinase CK2 interacts with the intracellular region of MuSK; (2) the CK2 protein is enriched and co-localized with MuSK at postsynaptic specializations; (3) CK2-mediated phosphorylation of serine residues within a specific MuSK epitope, named the kinase insert, regulates acetylcholine receptor (AChR) clustering; (4) muscle-specific CK2beta knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function (see Genes Dev 20(13):1800-1816, 2006). Here, we investigated for the first time if CK2 is modulated in biopsies from human patients. To this end, we measured transcript amounts of the subunits CK2alpha and CK2beta and determined holoenzyme CK2 activity in 34 muscle biopsies of human patients with different muscle pathologies.

  12. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana

    NARCIS (Netherlands)

    Wu, Jinbin; Liu, Zhijun; Zhang, Zhao; Lv, Yanting; Yang, Nan; Zhang, Guohua; Wu, Menyao; Lv, Shuo; Pan, Lixia; Joosten, Matthieu H.A.J.; Wang, Guodong

    2016-01-01

    Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of

  13. Interference with Activator Protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation-sensitivity in breast cancer cells

    International Nuclear Information System (INIS)

    Thewes, Verena; Orso, Francesca; Jäger, Richard; Eckert, Dawid; Schäfer, Sabine; Kirfel, Gregor; Garbe, Stephan; Taverna, Daniela; Schorle, Hubert

    2010-01-01

    Activator Protein-2 (AP-2) transcription factors are critically involved in a variety of fundamental cellular processes such as proliferation, differentiation and apoptosis and have also been implicated in carcinogenesis. Expression of the family members AP-2α and AP-2γ is particularly well documented in malignancies of the female breast. Despite increasing evaluation of single AP-2 isoforms in mammary tumors the functional role of concerted expression of multiple AP-2 isoforms in breast cancer remains to be elucidated. AP-2 proteins can form homo- or heterodimers, and there is growing evidence that the net effect whether a cell will proliferate, undergo apoptosis or differentiate is partly dependent on the balance between different AP-2 isoforms. We simultaneously interfered with all AP-2 isoforms expressed in ErbB-2-positive murine N202.1A breast cancer cells by conditionally over-expressing a dominant-negative AP-2 mutant. We show that interference with AP-2 protein function lead to reduced cell number, induced apoptosis and increased chemo- and radiation-sensitivity. Analysis of global gene expression changes upon interference with AP-2 proteins identified 139 modulated genes (90 up-regulated, 49 down-regulated) compared with control cells. Gene Ontology (GO) investigations for these genes revealed Cell Death and Cell Adhesion and Migration as the main functional categories including 25 and 12 genes, respectively. By using information obtained from Ingenuity Pathway Analysis Systems we were able to present proven or potential connections between AP-2 regulated genes involved in cell death and response to chemo- and radiation therapy, (i.e. Ctgf, Nrp1, Tnfaip3, Gsta3) and AP-2 and other main apoptosis players and to create a unique network. Expression of AP-2 transcription factors in breast cancer cells supports proliferation and contributes to chemo- and radiation-resistance of tumor cells by impairing the ability to induce apoptosis. Therefore, interference

  14. Interference with Activator Protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation- sensitivity in breast cancer cells

    LENUS (Irish Health Repository)

    Thewes, Verena

    2010-05-11

    Abstract Background Activator Protein-2 (AP-2) transcription factors are critically involved in a variety of fundamental cellular processes such as proliferation, differentiation and apoptosis and have also been implicated in carcinogenesis. Expression of the family members AP-2α and AP-2γ is particularly well documented in malignancies of the female breast. Despite increasing evaluation of single AP-2 isoforms in mammary tumors the functional role of concerted expression of multiple AP-2 isoforms in breast cancer remains to be elucidated. AP-2 proteins can form homo- or heterodimers, and there is growing evidence that the net effect whether a cell will proliferate, undergo apoptosis or differentiate is partly dependent on the balance between different AP-2 isoforms. Methods We simultaneously interfered with all AP-2 isoforms expressed in ErbB-2-positive murine N202.1A breast cancer cells by conditionally over-expressing a dominant-negative AP-2 mutant. Results We show that interference with AP-2 protein function lead to reduced cell number, induced apoptosis and increased chemo- and radiation-sensitivity. Analysis of global gene expression changes upon interference with AP-2 proteins identified 139 modulated genes (90 up-regulated, 49 down-regulated) compared with control cells. Gene Ontology (GO) investigations for these genes revealed Cell Death and Cell Adhesion and Migration as the main functional categories including 25 and 12 genes, respectively. By using information obtained from Ingenuity Pathway Analysis Systems we were able to present proven or potential connections between AP-2 regulated genes involved in cell death and response to chemo- and radiation therapy, (i.e. Ctgf, Nrp1, Tnfaip3, Gsta3) and AP-2 and other main apoptosis players and to create a unique network. Conclusions Expression of AP-2 transcription factors in breast cancer cells supports proliferation and contributes to chemo- and radiation-resistance of tumor cells by impairing the

  15. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition

    International Nuclear Information System (INIS)

    Hackl, Christina; Stoeltzing, Oliver; Lang, Sven A; Moser, Christian; Mori, Akira; Fichtner-Feigl, Stefan; Hellerbrand, Claus; Dietmeier, Wolfgang; Schlitt, Hans J; Geissler, Edward K

    2010-01-01

    Activating transcription factor-3 (ATF3) is involved in the complex process of cellular stress response. However, its exact role in cancer is discussed controversially because both tumor suppressive and oncogenic effects have been described. Here we followed-up on our previous observation that inhibition of Hsp90 may increase ATF3 expression and sought to determine the role of ATF3 in colon cancer. Regulation of ATF3 was determined in cancer cells using signaling inhibitors and a heat-shock protein-90 (Hsp90) antagonist. Human HCT116 cancer cells were stably transfected with an ATF3-shRNA or a luciferase-shRNA expression plasmid and alterations in cell motility were assessed in migration assays. The impact of ATF3 down-regulation on cancer growth and metastasis were investigated in a subcutaneous tumor model, a model of hepatic tumor growth and in a model of peritoneal carcinomatosis. Human colon cancer tissues were analyzed for ATF3 expression. The results show that therapeutic Hsp90 inhibition substantially up-regulates the expression of ATF3 in various cancer cells, including colon, gastric and pancreatic cancer. This effect was evident both in vitro and in vivo. RNAi mediated knock-down of ATF3 in HCT116 colon cancer cells significantly increased cancer cell migration in vitro. Moreover, in xenogenic mouse models, ATF3 knock-down promoted subcutaneous tumor growth and hepatic metastasis, as well as peritoneal carcinomatosis. Importantly, ATF3 expression was lower in human colon cancer specimens, as compared to corresponding normal surrounding tissues, suggesting that ATF3 may represent a down-regulated tumor suppressor in colon cancer. In conclusion, ATF3 down-regulation in colon cancer promotes tumor growth and metastasis. Considering that blocking Hsp90 induces ATF3 expression, Hsp90 inhibition may represent a valid strategy to treat metastatic colon cancer by up-regulating this anti-metastatic transcription factor

  16. Transcription Factor Activating Protein-2β (TFAP-2β) genotype and symptoms of attention deficit hyperactivity disorder in relation to symptoms of depression in two independent samples.

    Science.gov (United States)

    Nilsson, Kent W; Sonnby, Karin; Nordquist, Niklas; Comasco, Erika; Leppert, Jerzy; Oreland, Lars; Sjöberg, Rickard L

    2014-04-01

    The Transcription Factor Activating Protein-2β (TFAP-2β) gene has been shown to influence monoaminergic neurotransmission, and several genes important for monoaminergic function have binding sites for TFAP-2β. Familial studies of attention deficit hyperactivity disorder (ADHD) suggest a hereditary-determined subtype of ADHD with comorbid depression. We examined a functional variation of the TFAP-2β gene in the context of co-occurring symptoms of ADHD and depression in two independent population-based samples of adolescents (Group A, n = 175 and Group B, n = 1,506) from Sweden. Results indicated 6.1 to 7.8% of adolescents screened positively for ADHD and depression symptoms. Symptoms of depression were more common among girls who screened positively for ADHD and did not carry the nine-repeat allele of the TFAP-2β intron 1 Variable Number Tandem Repeat (VNTR) polymorphism. The presence of the nine-repeat variant of the TFAP-2β intron 1 VNTR appears to protect girls with ADHD symptoms from the co-expression of symptoms of depression.

  17. The hTERT and hTERC Telomerase Gene Promoters Are Activated by the Second Exon of the Adenoviral Protein, E1 A, Identifying the Transcriptional Corepressor CtBP as a Potential Rearessor of Both Genes

    Directory of Open Access Journals (Sweden)

    Rosalind M. Glasspool

    2005-06-01

    Full Text Available Telomerase plays a role in the unlimited replicative capacity of the majority of cancer cells and provides a potential anticancer target. The regulation of telomerase is complex but transcriptional control of its two essential components, hTERC (RNA component and hTERT (reverse transcriptase component, is of major importance. To investigate this further, we have used the adenoviral protein, E1A, as a tool to probe potential pathways involved in the control of telomerase transcription. The second exon of the adenoviral protein E1A activates both telomerase gene promoters in transient transfections. The corepressor, C terminal binding protein, is one of only two proteins known to bind to this region, and we propose that E1A activates both promoters by sequestering CtBP, thereby relieving repression. Activation by exon 2 of E1A involves the SP1 sites in both promoters, and consistent with this, SP1 and CtBP interact in coimmunoprecipitation studies. Modulation of the chromatin environment has been implicated in the regulation of hTERT transcription and appears to involve the SP1 sites. CtBP can be found within a histone-modifying complex and it is possible that a CtBP complex, associating with the SP1 sites, represses transcription from the telomerase promoters by modifying chromatin structure.

  18. The Fos-Related Antigen 1–JUNB/Activator Protein 1 Transcription Complex, a Downstream Target of Signal Transducer and Activator of Transcription 3, Induces T Helper 17 Differentiation and Promotes Experimental Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Young-Mee Moon

    2017-12-01

    Full Text Available Dysfunction of T helper 17 (Th17 cells leads to chronic inflammatory disorders. Signal transducer and activator of transcription 3 (STAT3 orchestrates the expression of proinflammatory cytokines and pathogenic cell differentiation from interleukin (IL-17-producing Th17 cells. However, the pathways mediated by STAT3 signaling are not fully understood. Here, we observed that Fos-related antigen 1 (FRA1 and JUNB are directly involved in STAT3 binding to sites in the promoters of Fosl1 and Junb. Promoter binding increased expression of IL-17 and the development of Th17 cells. Overexpression of Fra1 and Junb in mice resulted in susceptibility to collagen-induced arthritis and an increase in Th17 cell numbers and inflammatory cytokine production. In patients with rheumatoid arthritis, FRA1 and JUNB were colocalized with STAT3 in the inflamed synovium. These observations suggest that FRA1 and JUNB are associated closely with STAT3 activation, and that this activation leads to Th17 cell differentiation in autoimmune diseases and inflammation.

  19. Autopalmitoylation of TEAD Proteins Regulates Transcriptional Output of Hippo Pathway

    Science.gov (United States)

    Chan, PuiYee; Han, Xiao; Zheng, Baohui; DeRan, Michael; Yu, Jianzhong; Jarugumilli, Gopala K.; Deng, Hua; Pan, Duojia; Luo, Xuelian; Wu, Xu

    2016-01-01

    TEA domain (TEAD) transcription factors bind to the co-activator YAP/TAZ, and regulate the transcriptional output of Hippo pathway, playing critical roles in organ size control and tumorigenesis. Protein S-palmitoylation attaches fatty acid (palmitate) to cysteine residues, and regulates protein trafficking, membrane localization and signaling activities. Using activity-based chemical probes, we discovered that human TEADs possess intrinsic palmitoylating enzyme-like activities, and undergo autopalmitoylation at evolutionarily conserved cysteine residues under physiological conditions. We determined the crystal structures of lipid-bound TEADs, and found that the lipid chain of palmitate inserts into a conserved deep hydrophobic pocket. Strikingly, palmitoylation is required for TEAD’s binding to YAP/TAZ, but dispensable for the binding to Vgll4 tumor suppressor. In addition, palmitoylation does not alter TEAD’s localization. Moreover, TEAD palmitoylation-deficient mutants impaired TAZ-mediated muscle differentiation in vitro, and Yorkie-mediated tissue overgrowth in Drosophila in vivo. Our study directly linked autopalmitoylation to the transcriptional regulation of Hippo pathway. PMID:26900866

  20. Activity of the upstream TATA-less promoter of the p21(Waf1/Cip1) gene depends on transcription factor IIA (TFIIA) in addition to TFIIA-reactive TBP-like protein.

    Science.gov (United States)

    Suzuki, Hidefumi; Maeda, Ryo; Nakadai, Tomoyoshi; Tamura, Taka-aki

    2014-07-01

    TATA-binding protein-like protein (TLP) binds to transcription factor IIA (TFIIA) with high affinity, although the significance of this binding is poorly understood. In this study, we investigated the role of TFIIA in transcriptional regulation of the p21(Waf1/Cip1) (p21) gene. It has been shown that TLP is indispensable for p53-activated transcription from an upstream TATA-less promoter of the p21 gene. We found that mutant TLPs having decreased TFIIA-binding ability exhibited weakened transcriptional activation function for the upstream promoter. Activity of the upstream promoter was enhanced considerably by an increased amount of TFIIA in a p53-dependent manner, whereas activity of the TATA-containing downstream promoter was enhanced only slightly. TFIIA potentiated the upstream promoter additively with TLP. Although TFIIA is recruited to both promoters, activity of the upstream promoter was much more dependent on TFIIA. Recruitment of TFIIA and TLP to the upstream promoter was augmented in etoposide-treated cells, in which the amount of TFIIA-TLP complex is increased, and TFIIA-reactive TLP was required for the recruitment of both factors. It was confirmed that etoposide-stimulated transcription depends on TLP. We also found that TFIIA-reactive TLP acts to decrease cell growth rate, which can be explained by interaction of the p21 promoter with the transcription factors that we examined. The results of the present study suggest that the upstream TATA-less promoter of p21 needs TFIIA and TFIIA-reactive TLP for p53-dependent transcriptional enhancement. © 2014 The Authors.FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  1. Potential Role of Activating Transcription Factor 5 during Osteogenesis

    Directory of Open Access Journals (Sweden)

    Luisa Vicari

    2016-01-01

    Full Text Available Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2, encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  2. Potential Role of Activating Transcription Factor 5 during Osteogenesis.

    Science.gov (United States)

    Vicari, Luisa; Calabrese, Giovanna; Forte, Stefano; Giuffrida, Raffaella; Colarossi, Cristina; Parrinello, Nunziatina Laura; Memeo, Lorenzo

    2016-01-01

    Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  3. The solution structure of DNA-free Pax-8 paired box domain accounts for redox regulation of transcriptional activity in the Pax protein family

    NARCIS (Netherlands)

    Codutti, L.; van Ingen, H.|info:eu-repo/dai/nl/297054651; Vascotto, C.; Fogolari, F.; Corazza, A.; Tell, G.; Quadrifoglio, F.; Viglino, P.; Boelens, R.|info:eu-repo/dai/nl/070151407; Esposito, G.

    2008-01-01

    Pax-8 is a transcription factor belonging to the PAX genes superfamily and its crucial role has been proven both in embryo and in the adult organism. Pax-8 activity is regulated via a redoxbased mechanism centered on the glutathionylation of specific cysteines in the N-terminal region (Cys45 and

  4. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  5. In Vitro Transcripts of Wild-Type and Fluorescent Protein-Tagged Triticum mosaic virus (Family Potyviridae) are Biologically Active in Wheat.

    Science.gov (United States)

    Tatineni, Satyanarayana; McMechan, Anthony J; Bartels, Melissa; Hein, Gary L; Graybosch, Robert A

    2015-11-01

    Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat. Wheat seedlings inoculated with in vitro transcripts elicited mosaic and mottling symptoms similar to the wild-type virus, and the progeny virus was efficiently transmitted by wheat curl mites, indicating that the cloned virus retained pathogenicity, movement, and wheat curl mite transmission characteristics. A series of TriMV-based expression vectors was constructed by engineering a green fluorescent protein (GFP) or red fluorescent protein (RFP) open reading frame with homologous NIa-Pro cleavage peptides between the P1 and HC-Pro cistrons. We found that GFP-tagged TriMV with seven or nine amino acid cleavage peptides efficiently processed GFP from HC-Pro. TriMV-GFP vectors were stable in wheat for more than 120 days and for six serial passages at 14-day intervals by mechanical inoculation and were transmitted by wheat curl mites similarly to the wild-type virus. Fluorescent protein-tagged TriMV was observed in wheat leaves, stems, and crowns. The availability of fluorescent protein-tagged TriMV will facilitate the examination of virus movement and distribution in cereal hosts and the mechanisms of cross protection and synergistic interactions between TriMV and Wheat streak mosaic virus.

  6. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases.

    Science.gov (United States)

    Luo, Yongquan; Liu, Chengyu; Cerbini, Trevor; San, Hong; Lin, Yongshun; Chen, Guokai; Rao, Mahendra S; Zou, Jizhong

    2014-07-01

    Human induced pluripotent stem (hiPS) cell lines with tissue-specific or ubiquitous reporter genes are extremely useful for optimizing in vitro differentiation conditions as well as for monitoring transplanted cells in vivo. The adeno-associated virus integration site 1 (AAVS1) locus has been used as a "safe harbor" locus for inserting transgenes because of its open chromatin structure, which permits transgene expression without insertional mutagenesis. However, it is not clear whether targeted transgene expression at the AAVS1 locus is always protected from silencing when driven by various promoters, especially after differentiation and transplantation from hiPS cells. In this paper, we describe a pair of transcription activator-like effector nucleases (TALENs) that enable more efficient genome editing than the commercially available zinc finger nuclease at the AAVS1 site. Using these TALENs for targeted gene addition, we find that the cytomegalovirus-immediate early enhancer/chicken β-actin/rabbit β-globin (CAG) promoter is better than cytomegalovirus 7 and elongation factor 1α short promoters in driving strong expression of the transgene. The two independent AAVS1, CAG, and enhanced green fluorescent protein (EGFP) hiPS cell reporter lines that we have developed do not show silencing of EGFP either in undifferentiated hiPS cells or in randomly and lineage-specifically differentiated cells or in teratomas. Transplanting cardiomyocytes from an engineered AAVS1-CAG-EGFP hiPS cell line in a myocardial infarcted mouse model showed persistent expression of the transgene for at least 7 weeks in vivo. Our results show that high-efficiency targeting can be obtained with open-source TALENs and that careful optimization of the reporter and transgene constructs results in stable and persistent expression in vitro and in vivo. ©AlphaMed Press.

  7. Prostaglandin E1 reduces the keratinocyte toxicity of sorafenib by maintaining signal transducer and activator of transcription 3 (STAT3) activity and enhancing the cAMP response element binding protein (CREB) activity.

    Science.gov (United States)

    Shichiri, Hiroaki; Yamamoto, Kazuhiro; Tokura, Maya; Ishida, Takahiro; Uda, Atsushi; Bito, Toshinori; Nishigori, Chikako; Nakagawa, Tsutomu; Hirano, Takeshi; Yano, Ikuko; Hirai, Midori

    2017-04-01

    Hand-foot skin reaction (HFSR) is a common side effect of multiple tyrosine kinase inhibitors (mTKIs). HFSR can necessitate dose reductions or interruption of therapy owing to its negative effect on the quality of life. Therefore, effective use of mTKIs requires measures to prevent HFSR. We evaluated the effect of prostaglandin E 1 (PGE 1 ) on HFSR, because PGE 1 is already used to treat bed sores and skin ulcers and has established angiogenic and antiproliferative effects in keratinocytes. We found that the pathogenesis of sorafenib-induced HFSR is characterized by a decrease in levels of a phosphorylated signal transducer and activator of transcription 3 (STAT3). We investigated the effect of PGE 1 on the sorafenib-mediated reduction in phosphorylated STAT3 levels in HaCaT human epidermal keratinocytes. In cells treated with sorafenib, phosphorylated STAT3 levels decreased in a concentration-dependent manner, and this effect was blocked in cells treated with sorafenib and PGE 1 . Furthermore, the expression of phosphorylated STAT3, the antiapoptotic proteins myeloid cell leukemia-1 (Mcl-1) and survivin decreased in cells pretreated with an inhibitor of cAMP response element binding protein (CREB). Cell viability increased in cells treated with sorafenib and PGE 1 compared with that in cells treated with sorafenib alone, and these effects were not observed in STAT3 knockdown HaCaT cells. Collectively, these findings indicate that PGE 1 blocks the inhibitory effects of sorafenib on cell growth by maintaining the activity of STAT3 and enhancing the CREB activity. Therefore, PGE 1 might represent an effective treatment for the prevention of sorafenib-induced HFSR. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro

    OpenAIRE

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-01-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulat...

  10. Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites

    DEFF Research Database (Denmark)

    Kjaerulff, S; Dooijes, D; Clevers, H

    1997-01-01

    The Schizosaccharomyces pombe mfm1 gene is expressed in an M cell-specific fashion. This regulation requires two HMG-box proteins: the ubiquitous Ste11 transcription factor and the M cell-controlling protein Mat1-Mc. Here we report that the mfm1 promoter contains a single, weak Stell-binding site...... of a complex containing both Ste11 and Mat1-Mc. A single copy of this fragment was sufficient to activate a heterologous promoter in an M-specific fashion, suggesting that these two boxes act in a synergistic manner....

  11. BASP1 is a transcriptional cosuppressor for the Wilms' tumor suppressor protein WT1

    DEFF Research Database (Denmark)

    Carpenter, Brian; Hill, Kathryn J; Charalambous, Marika

    2004-01-01

    The Wilms' tumor suppressor protein WT1 is a transcriptional regulator that plays a key role in the development of the kidneys. The transcriptional activation domain of WT1 is subject to regulation by a suppression region within the N terminus of WT1. Using a functional assay, we provide direct e...

  12. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work as transcri...

  13. Controlling transcription fidelity via TATA-binding protein dynamics

    NARCIS (Netherlands)

    Koster, M.J.E.

    2015-01-01

    Transcription underlies all cellular processes and responses to internal and external cues. Deregulation of transcription has implications for the fitness of the cell or organism. During my PhD I have investigated the importance of proper TATA-binding protein (TBP) regulation as a mechanism to

  14. cAMP-response Element-binding Protein (CREB) and NF-κB Transcription Factors Are Activated during Prolonged Hypoxia and Cooperatively Regulate the Induction of Matrix Metalloproteinase MMP1*

    Science.gov (United States)

    Nakayama, Koh

    2013-01-01

    Responses to low levels of oxygen (hypoxia) are essential to maintain homeostasis. During the hypoxic response, gene expression is altered by various transcription factors. The transcription factor, hypoxia-inducible factor (HIF), plays a central role in the hypoxic response. The α subunit of HIF, which is actively degraded during normoxia, becomes stabilized during hypoxia, which leads to HIF activation. A microarray analysis of HeLa cells showed that expression of matrix metalloproteinase 1 (MMP1) was markedly induced during prolonged hypoxia. CREB and NF-κB binding sites were identified in the MMP1 promoter region between 1945 and 1896 nucleotides upstream of the transcription start site. Assays with luciferase reporters demonstrated that HIF activity was induced during the early phase of hypoxia, whereas CREB and NF-κB were activated during the later (prolonged) phase. Depletion of CREB and/or NF-κB reduced MMP1 induction during prolonged hypoxia both at the mRNA and protein levels. A chromatin immunoprecipitation assay demonstrated binding of CREB and NF-κB to the MMP1 promoter. Finally, cell migration and invasion on a collagen matrix and pulmonary metastasis in nude mice were inhibited after depletion of CREB and NF-κB in MDA-MB-231 cells. Taken together, these results suggest that the cooperative action of CREB and NF-κB plays an important role to induce MMP1 expression during prolonged hypoxia and regulates cell migration and invasion in cancer cells. PMID:23775082

  15. Transcriptional Inhibition of Matrix Metal loproteinase 9 (MMP-9 Activity by a c-fos/Estrogen Receptor Fusion Protein is Mediated by the Proximal AP-1 Site of the MMP-9 Promoter and Correlates with Reduced Tumor Cell Invasion

    Directory of Open Access Journals (Sweden)

    David L. Crowe

    1999-10-01

    Full Text Available Tumor cell invasion of basement membranes is one of the hallmarks of malignant transformation. Tumor cells secrete proteolytic enzymes known as matrix metalloproteinases (MMPs which degrade extracellular matrix molecules. Increased expression of MMP-9 has been associated with acquisition of invasive phenotype in many tumors. However, multiple mechanisms for regulation of MMP-9 gene expression by tumor cell lines have been proposed. A number of transcription factor binding sites have been characterized in the upstream regulatory region of the MMP-9 gene, including those for AP-1. To determine how a specific AP-1 family member, c-fos, regulates MMP-9 promoter activity through these sites, we used an expression vector containing the c-fos coding region fused to the estrogen receptor (ER ligand binding domain. This construct is activated upon binding estradiol. Stable expression of this construct in ER negative squamous cell carcinoma (SCC lines produced an estradiol dependent decrease in the number of cells that migrated through a reconstituted basement membrane. This decreased invasiveness was accompanied by estradiol dependent downregulation of MMP-9 activity as determined by gelatin zymography. Estradiol also produced transcriptional downregulation of an MMP-9 promoter construct in cells transiently transfected with the c-fosER expression vector. This downregulation was mediated by the AP-1 site at —79 by in the MMP-9 promoter. We concluded that the proximal AP-1 site mediated the transcriptional downregulation of the MMP-9 promoter by a conditionally activated c-fos fusion protein.

  16. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    Science.gov (United States)

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  17. Nucleolar development and allocation of key nucleolar proteins require de novo transcription in bovine embryos

    DEFF Research Database (Denmark)

    Svarcova, Olga; Laurincik, Jozef; Avery, Birthe

    2007-01-01

    The goal of the present study was to investigate whether key nucleolar proteins involved in ribosomal RNA (rRNA) transcription and processing are transcribed de novo or from maternally inherited messenger RNAs (mRNA) in bovine embryos, and to which extent de novo transcription of these proteins m......RNA is required for the development of functional nucleoli during the major activation of the embryonic genome. Immunofluorescence for localization of key nucleolar proteins, autoradiography for detection of transcriptional activity, and transmission electron microscopy were applied to in vitro produc ed bovine...... embryos cultured from the 2-cell stage with or without (control groups) a-amanitin, which blocks the RNA plymerases II and III transcription and, thus the synthesis of mRNA. In the control groups, weak autoradiographic labelling was initially observed in the periphery of few nuclei at the 4-cell...

  18. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Exposure to static magnetic fields increases insulin secretion in rat INS-1 cells by activating the transcription of the insulin gene and up-regulating the expression of vesicle-secreted proteins.

    Science.gov (United States)

    Mao, Libin; Wang, Huiqin; Ma, Fenghui; Guo, Zhixia; He, Hongpeng; Zhou, Hao; Wang, Nan

    2017-08-01

    To evaluate the effect of static magnetic fields (SMFs) on insulin secretion and explore the mechanisms underlying exposure to SMF-induced insulin secretion in rat insulinoma INS-1 cells. INS-1 cells were exposed to a 400 mT SMF for 72 h, and the proliferation of INS-1 cells was detected by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The secretion of insulin was measured with an enzyme linked immunosorbent assays (ELISA), the expression of genes was detected by real-time PCR, and the expression of proteins was measured by Western blotting. Exposure to an SMF increased the expression and secretion of insulin by INS-1 cells but did not affect cell proliferation. Moreover, SMF exposure up-regulated the expression of several pancreas-specific transcriptional factors. Specifically, the activity of the rat insulin promoter was enhanced in INS-1 cells exposed to an SMF, and the expression levels of synaptosomal-associated protein 25 (SNAP-25) and syntaxin-1A were up-regulated after exposure to an SMF. SMF exposure can promote insulin secretion in rat INS-1 cells by activating the transcription of the insulin gene and up-regulating the expression of vesicle-secreted proteins.

  20. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sergi Portolés

    2010-11-01

    Full Text Available Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1. CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2 are essential for clock temperature compensation in Arabidopsis.

  1. The Staphylococcus aureus group II biotin protein ligase BirA is an effective regulator of biotin operon transcription and requires the DNA binding domain for full enzymatic activity.

    Science.gov (United States)

    Henke, Sarah K; Cronan, John E

    2016-11-01

    Group II biotin protein ligases (BPLs) are characterized by the presence of an N-terminal DNA binding domain that functions in transcriptional regulation of the genes of biotin biosynthesis and transport. The Staphylococcus aureus Group II BPL which is called BirA has been reported to bind an imperfect inverted repeat located upstream of the biotin synthesis operon. DNA binding by other Group II BPLs requires dimerization of the protein which is triggered by synthesis of biotinoyl-AMP (biotinoyl-adenylate), the intermediate in the ligation of biotin to its cognate target proteins. However, the S. aureus BirA was reported to dimerize and bind DNA in the absence of biotin or biotinoyl-AMP (Soares da Costa et al. (2014) Mol Microbiol 91: 110-120). These in vitro results argued that the protein would be unable to respond to the levels of biotin or acceptor proteins and thus would lack the regulatory properties of the other characterized BirA proteins. We tested the regulatory function of the protein using an in vivo model system and examined its DNA binding properties in vitro using electrophoretic mobility shift and fluorescence anisotropy analyses. We report that the S. aureus BirA is an effective regulator of biotin operon transcription and that the prior data can be attributed to artifacts of mobility shift analyses. We also report that deletion of the DNA binding domain of the S. aureus BirA results in loss of virtually all of its ligation activity. © 2016 John Wiley & Sons Ltd.

  2. Survivin enhances telomerase activity via up-regulation of specificity protein 1- and c-Myc-mediated human telomerase reverse transcriptase gene transcription

    International Nuclear Information System (INIS)

    Endoh, Teruo; Tsuji, Naoki; Asanuma, Koichi; Yagihashi, Atsuhito; Watanabe, Naoki

    2005-01-01

    Suppression of apoptosis is thought to contribute to carcinogenesis. Survivin, a member of the inhibitor-of-apoptosis family, blocks apoptotic signaling activated by various cellular stresses. Since elevated expression of survivin observed in human cancers of varied origin was associated with poor patient survival, survivin has attracted growing attention as a potential target for cancer treatment. Immortalization of cells also is required for carcinogenesis; telomere length maintenance by telomerase is required for cancer cells to proliferate indefinitely. Yet how cancer cells activate telomerase remains unclear. We therefore examined possible interrelationships between survivin expression and telomerase activity. Correlation between survivin and human telomerase reverse transcriptase (hTERT) expression was observed in colon cancer tissues, and overexpression of survivin enhanced telomerase activity by up-regulation of hTERT expression in LS180 human colon cancer cells. DNA-binding activities of specificity protein 1 (Sp1) and c-Myc to the hTERT core promoter were increased in survivin gene transfectant cells. Phosphorylation of Sp1 and c-Myc at serine and threonine residues was enhanced by survivin, while total amounts of these proteins were unchanged. Further, 'knockdown' of survivin by a small inhibitory RNA decreased Sp1 and c-Myc phosphorylation. Thus survivin participates not only in inhibition of apoptosis, but also in prolonging cellular lifespan

  3. The Extracts of Some Marine Invertebrates and Algae Collected off the Coast Waters of Vietnam Induce the Inhibitory Effects on the Activator Protein-1 Transcriptional Activity in JB6 Cl41 Cells

    Directory of Open Access Journals (Sweden)

    S. N. Fedorov

    2013-01-01

    Full Text Available It has previously been shown that inhibition of the transcriptional activity of the oncogenic nuclear factor AP-1 can result in cancer prevention. Marine invertebrates and alga are a rich source of natural compounds that possess various biological activities. The inhibitory effects of the extracts of Vietnamese marine organisms in relation to the AP-1 transcriptional activity were examined by the luciferase method using JB6 Cl41 cells stably expressing a luciferase reporter gene controlled by AP-1 DNA binding sequence. As was found, 71 species of marine sponges out of 148 species studied contain inhibitors of the AP-1 transcriptional activity. Therefore, marine organisms as a source of biologically active compounds have a great potential for isolation of the new cancer preventive compounds that inhibit the oncogenic AP-1 nuclear factor.

  4. MRTF potentiates TEAD-YAP transcriptional activity causing metastasis.

    Science.gov (United States)

    Kim, Tackhoon; Hwang, Daehee; Lee, Dahye; Kim, Jeong-Hwan; Kim, Seon-Young; Lim, Dae-Sik

    2017-02-15

    Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF) play similar roles and exhibit significant crosstalk in directing transcriptional responses to chemical and physical extracellular cues. The mechanism underlying this crosstalk, however, remains unclear. Here, we show MRTF family proteins bind YAP via a conserved PPXY motif that interacts with the YAP WW domain. This interaction allows MRTF to recruit NcoA3 to the TEAD-YAP transcriptional complex and potentiate its transcriptional activity. We show this interaction of MRTF and YAP is critical for LPA-induced cancer cell invasion in vitro and breast cancer metastasis to the lung in vivo We also demonstrate the significance of MRTF-YAP binding in regulation of YAP activity upon acute actin cytoskeletal damage. Acute actin disruption induces nucleo-cytoplasmic shuttling of MRTF, and this process underlies the LATS-independent regulation of YAP activity. Our results provide clear evidence of crosstalk between MRTF and YAP independent of the LATS kinases that normally act upstream of YAP signaling. Our results also suggest a mechanism by which extracellular stimuli can coordinate physiological events downstream of YAP. © 2016 The Authors.

  5. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    2009-10-01

    Full Text Available The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity.The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE.AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment.We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  6. The retinoblastoma protein as a transcriptional repressor

    DEFF Research Database (Denmark)

    Helin, K; Ed, H

    1993-01-01

    The retinoblastoma protein (pRB) is one of the best-studied tumour suppressor gene products. Its loss during the genesis of many human tumours, its inactivation by several DNA tumour virus oncoproteins, and its ability to inhibit cell growth when introduced into dividing cells all suggest that p...

  7. A bifunctional invertebrate-type lysozyme from the disk abalone, Haliotis discus discus: genome organization, transcriptional profiling and biological activities of recombinant protein.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Kasthuri, Saranya Revathy; Whang, Ilson; Lim, Bong-Soo; Nam, Bo-Hye; Lee, Jehee

    2013-10-01

    Lysozyme is an important enzyme in the innate immune system that plays a vital role in fighting microbial infections. In the current study, we identified, cloned, and characterized a gene that encodes an invertebrate-type lysozyme from the disk abalone, Haliotis discus discus (abLysI). The full-length cDNA of abLysI consisted of 545 bp with an open reading frame of 393 bp that encodes 131 amino acids. The theoretical molecular mass of mature abLysI was 12.3 kDa with an isoelectric point of 8.03. Conserved features in other homologs, such as catalytic sites for lytic activity (Glu(30) and Asp(41)), isopeptidase activity (His(107)), and ten cysteine residues were identified in abLysI. Genomic sequence analysis with respect to its cDNA showed that abLysI was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative promoter region. Homology and phylogeny analysis of abLysI depicted high identity and closer proximity, respectively, with an annelid i-type lysozyme from Hirudo medicinalis, and indicated that abLysI is a novel molluscan i-type lysozyme. Tissue-specific expressional studies revealed that abLysI is mainly transcribed in hepatopancreas followed by mantle. In addition, abLysI mRNA expression was induced following bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and viral (viral hemorrhagic septicemia virus) challenges. Recombinantly expressed abLysI [(r)abLysI] demonstrated strong lytic activity against Micrococcus lysodeikticus, isopeptidase activity, and antibacterial activity against several Gram-positive and Gram-negative bacteria. Moreover, (r)abLysI showed optimum lytic activity at pH 4.0 and 60 °C, while exhibiting optimum isopeptidase activity at pH 7.0. Taken together, these results indicate that abLysI is potentially involved in immune responses of the disk abalone to protect it from invaders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Transcription-dependent association of HDAC2 with active chromatin.

    Science.gov (United States)

    Jahan, Sanzida; Sun, Jian-Min; He, Shihua; Davie, James R

    2018-02-01

    Histone deacetylase 2 (HDAC2) catalyzes deacetylation of histones at the promoter and coding regions of transcribed genes and regulates chromatin structure and transcription. To explore the role of HDAC2 and phosphorylated HDAC2 in gene regulation, we studied the location along transcribed genes, the mode of recruitment and the associated proteins with HDAC2 and HDAC2S394ph in chicken polychromatic erythrocytes. We show that HDAC2 and HDAC2S394ph are associated with transcriptionally active chromatin and located in the interchromatin channels. HDAC2S394ph was present primarly at the upstream promoter region of the transcribed CA2 and GAS41 genes, while total HDAC2 was also found within the coding region of the CA2 gene. Recruitment of HDAC2 to these genes was partially dependent upon on-going transcription. Unmodified HDAC2 was associated with RNA binding proteins and interacted with RNA bound to the initiating and elongating forms of RNA polymerase II. HDAC2S394ph was not associated with RNA polymerase II. These results highlight the differential properties of unmodified and phosphorylated HDAC2 and the organization of acetylated transcriptionally active chromatin in the chicken polychromatic erythrocyte. © 2017 Wiley Periodicals, Inc.

  9. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes

    Science.gov (United States)

    Upadhyay, Sanjay K.; Sasidhar, Yellamraju U.

    2012-07-01

    The Gal4p mediated transcriptional activation of GAL genes requires the interaction between Gal3p bound with ATP and galactose and Gal80p. Though numerous studies suggest that galactose and ATP activate Gal3p/Gal1p interaction with Gal80p, neither the mechanism of activation nor the interacting surface that binds to Gal80p is well understood. In this study we investigated the dynamics of Gal3p and Gal1p in the presence and absence of ligands ATP and galactose to understand the role played by dynamics in the function of these proteins through molecular dynamics simulation and protein-protein docking studies. We performed simulations totaling to 510 ns on both Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose. We find that, while binding of ligands ATP and galactose to Gal3p/Gal1p do not affect the global conformation of proteins, some local conformational changes around upper-lip helix including insertion domain are observed. We observed that only in the presence of ATP and galactose, Gal3p displays opening and closing motion between the two domains. And because of this motion, a binding interface, which is largely hydrophobic, opens up on the surface of Gal3p and this surface can bind to Gal80p. From our simulation studies we infer probable docking sites for Gal80p on Gal3p/Gal1p, which were further ascertained by the docking of Gal80p on to ligand bound Gal1p and Gal3p proteins, and the residues at the interface between Gal3p and Gal80p are identified. Our results correlate quite well with the existing body of literature on functional and dynamical aspects of Gal1p and Gal3p proteins.

  10. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  11. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  12. Helicobacter pylori VacA enhances prostaglandin E2 production through induction of cyclooxygenase 2 expression via a p38 mitogen-activated protein kinase/activating transcription factor 2 cascade in AZ-521 cells

    DEFF Research Database (Denmark)

    Hisatsune, Junzo; Yamasaki, Eiki; Nakayama, Masaaki

    2007-01-01

    of a COX-2 promoter reporter gene and activated a COX-2 promoter containing mutated NF-kappaB or NF-interleukin-6 sites but not a mutated cis-acting replication element (CRE) site, suggesting direct involvement of the activating transcription factor 2 (ATF-2)/CREB-binding region in VacA-induced COX-2...... to activation of the CRE site in the COX-2 promoter....

  13. Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders.

    Science.gov (United States)

    Estruch, Sara B; Graham, Sarah A; Quevedo, Martí; Vino, Arianna; Dekkers, Dick H W; Deriziotis, Pelagia; Sollis, Elliot; Demmers, Jeroen; Poot, Raymond A; Fisher, Simon E

    2018-04-01

    FOXP transcription factors play important roles in neurodevelopment, but little is known about how their transcriptional activity is regulated. FOXP proteins cooperatively regulate gene expression by forming homo- and hetero-dimers with each other. Physical associations with other transcription factors might also modulate the functions of FOXP proteins. However, few FOXP-interacting transcription factors have been identified so far. Therefore, we sought to discover additional transcription factors that interact with the brain-expressed FOXP proteins, FOXP1, FOXP2 and FOXP4, through affinity-purifications of protein complexes followed by mass spectrometry. We identified seven novel FOXP-interacting transcription factors (NR2F1, NR2F2, SATB1, SATB2, SOX5, YY1 and ZMYM2), five of which have well-estabslished roles in cortical development. Accordingly, we found that these transcription factors are co-expressed with FoxP2 in the deep layers of the cerebral cortex and also in the Purkinje cells of the cerebellum, suggesting that they may cooperate with the FoxPs to regulate neural gene expression in vivo. Moreover, we demonstrated that etiological mutations of FOXP1 and FOXP2, known to cause neurodevelopmental disorders, severely disrupted the interactions with FOXP-interacting transcription factors. Additionally, we pinpointed specific regions within FOXP2 sequence involved in mediating these interactions. Thus, by expanding the FOXP interactome we have uncovered part of a broader neural transcription factor network involved in cortical development, providing novel molecular insights into the transcriptional architecture underlying brain development and neurodevelopmental disorders.

  14. Protein intrinsic disorder in Arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    O'Shea, Charlotte; Jensen, Mikael Kryger; Stender, Emil G.P.

    2015-01-01

    because of its simple MoRF pattern and its ability to interact with RCD1 (radical-induced cell death 1). Experiments in yeast and thermodynamic characterization suggest that its single MoRF region is sufficient for both transcriptional activation and interaction with RCD1. The remainder of the large......Protein ID (intrinsic disorder) plays a significant, yet relatively unexplored role in transcription factors (TFs). In the present paper, analysis of the transcription regulatory domains (TRDs) of six phylogenetically representative, plant-specific NAC [no apical meristem, ATAF (Arabidopsis...

  15. Mitogen-activated protein kinase 1 from disk abalone (Haliotis discus discus): Roles in early development and immunity-related transcriptional responses.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-12-01

    Mitogen-activated protein kinase (MAPK) is involved in the regulation of cellular events by mediating signal transduction pathways. MAPK1 is a member of the extracellular-signal regulated kinases (ERKs), playing roles in cell proliferation, differentiation, and development. This is mainly in response to growth factors, mitogens, and many environmental stresses. In the current study, we have characterized the structural features of a homolog of MAPK1 from disk abalone (AbMAPK1). Further, we have unraveled its expressional kinetics against different experimental pathogenic infections or related chemical stimulants. AbMAPK1 harbors a 5' untranslated region (UTR) of 23 bps, a coding sequence of 1104 bps, and a 3' UTR of 448 bp. The putative peptide comprises a predicted molecular mass of 42.2 kDa, with a theoretical pI of 6.28. Based on the in silico analysis, AbMAPK1 possesses two N-glycosylation sites, one S_TK catalytic domain, and a conserved His-Arg-Asp domain (HRD). In addition, a conservative glycine rich ATP-phosphate-binding loop and a threonine-x-tyrosine motif (TEY) important for the autophosphorylation were also identified in the protein. Homology assessment of AbMAPK1 showed several conserved regions, and ark clam (Aplysia californica) showed the highest sequence identity (87.9%). The phylogenetic analysis supported close evolutionary kinship with molluscan orthologs. Constitutive expression of AbMAPK1 was observed in six different tissues of disk abalone, with the highest expression in the digestive tract, followed by the gills and hemocytes. Highest AbMAPK1 mRNA expression level was detected at the trochophore developmental stage, suggesting its role in abalone cell differentiation and proliferation. Significant modulation of AbMAPK1 expression under pathogenic stress suggested its putative involvement in the immune defense mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Lai Meng-Jiun

    2010-08-01

    Full Text Available Abstract Enterovirus type 71 (EV71 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.

  17. An upstream activation element exerting differential transcriptional activation on an archaeal promoter

    DEFF Research Database (Denmark)

    Peng, Nan; Xia, Qiu; Chen, Zhengjun

    2009-01-01

    S gene encoding an arabinose binding protein was characterized using an Sulfolobus islandicus reporter gene system. The minimal active araS promoter (P(araS)) was found to be 59 nucleotides long and harboured four promoter elements: an ara-box, an upstream transcription factor B-responsive element (BRE......), a TATA-box and a proximal promoter element, each of which contained important nucleotides that either greatly decreased or completely abolished promoter activity upon mutagenesis. The basal araS promoter was virtually inactive due to intrinsically weak BRE element, and the upstream activating sequence...... (UAS) ara-box activated the basal promoter by recruiting transcription factor B to its BRE. While this UAS ensured a general expression from an inactive or weak basal promoter in the presence of other tested carbon resources, it exhibited a strong arabinose-responsive transcriptional activation. To our...

  18. Interferon-alpha signalling in bovine adrenal chromaffin cells: involvement of signal-transducer and activator of transcription 1 and 2, extracellular signal-regulated protein kinases 1/2 and serine 31 phosphorylation of tyrosine hydroxylase.

    Science.gov (United States)

    Douglas, S A; Bunn, S J

    2009-03-01

    Adrenal medullary chromaffin cells are an integral part of the neuroendocrine system, playing an important role in the physiological adaptation to stress. In response to a wide variety of stimuli, including acetylcholine released from the splanchnic nerve, hormones such as angiotensin II or paracrine signals such as prostaglandins, chromaffin cells synthesise and secrete catecholamines and a number of biologically active peptides. This adrenal medullary output mediates a complex and diverse stress response. We report that chromaffin cells also respond both acutely and chronically to interferon (IFN)-alpha, thus providing a mechanism of interaction between the immune system and the stress response. Incubation of isolated bovine chromaffin cells maintained in culture, with IFN-alpha resulted in a rapid, transient activation of the extracellular signal-regulated protein kinase (ERK)1/2, which was maximal after 5 min. IFN-alpha mediated activation of ERK1/2 appeared to be responsible for the increased phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. This tyrosine hydroxylase phosphorylation was exclusively on serine 31, with no change in the phosphorylation of serine 19 or 40. This increase in the serine 31 phosphorylation of tyrosine hydroxylase was prevented by inhibition of protein kinase C or ERK1/2 activation. Incubation with IFN-alpha also resulted in a time- and concentration-dependent phosphorylation and nuclear translocation of signal transducer and activator of transcription proteins (STAT)1 and 2. This response was maximal after approximately 60 min. Prolonged treatment with IFN-alpha (12-48 h) resulted in increased expression of STAT1 and, to a lesser extent, STAT2. Thus, these findings demonstrate that adrenal medullary chromaffin cells are responsive to IFN-alpha and provide a possible cellular mechanism by which this immune-derived signal can potentially influence and integrate with the stress response.

  19. The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor.

    Science.gov (United States)

    Yu, Yihe; Xu, Weirong; Wang, Jie; Wang, Lei; Yao, Wenkong; Yang, Yazhou; Xu, Yan; Ma, Fuli; Du, Yangjian; Wang, Yuejin

    2013-11-01

    Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4-type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W-box-dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome. © 2013 College of Horticulture. New Phytologist © 2013 New Phytologist Trust.

  20. Making Sense of Multifunctional Proteins: Human Immunodeficiency Virus Type 1 Accessory and Regulatory Proteins and Connections to Transcription.

    Science.gov (United States)

    Faust, Tyler B; Binning, Jennifer M; Gross, John D; Frankel, Alan D

    2017-09-29

    Viruses are completely dependent upon cellular machinery to support replication and have therefore developed strategies to co-opt cellular processes to optimize infection and counter host immune defenses. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode a relatively small number of genes. Viruses with limited genetic content often encode multifunctional proteins that function at multiple stages of the viral replication cycle. In this review, we discuss the functions of HIV-1 regulatory (Tat and Rev) and accessory (Vif, Vpr, Vpu, and Nef) proteins. Each of these proteins has a highly conserved primary activity; however, numerous additional activities have been attributed to these viral proteins. We explore the possibility that HIV-1 proteins leverage their multifunctional nature to alter host transcriptional networks to elicit a diverse set of cellular responses. Although these transcriptional effects appear to benefit the virus, it is not yet clear whether they are strongly selected for during viral evolution or are a ripple effect from the primary function. As our detailed knowledge of these viral proteins improves, we will undoubtedly uncover how the multifunctional nature of these HIV-1 regulatory and accessory proteins, and in particular their transcriptional functions, work to drive viral pathogenesis.

  1. Transcription elongation factor GreA has functional chaperone activity.

    Science.gov (United States)

    Li, Kun; Jiang, Tianyi; Yu, Bo; Wang, Limin; Gao, Chao; Ma, Cuiqing; Xu, Ping; Ma, Yanhe

    2012-01-01

    Bacterial GreA is an indispensable factor in the RNA polymerase elongation complex. It plays multiple roles in transcriptional elongation, and may be implicated in resistance to various stresses. In this study, we show that Escherichia coli GreA inhibits aggregation of several substrate proteins under heat shock condition. GreA can also effectively promote the refolding of denatured proteins. These facts reveal that GreA has chaperone activity. Distinct from many molecular chaperones, GreA does not form stable complexes with unfolded substrates. GreA overexpression confers the host cells with enhanced resistance to heat shock and oxidative stress. Moreover, GreA expression in the greA/greB double mutant could suppress the temperature-sensitive phenotype, and dramatically alleviate the in vivo protein aggregation. The results suggest that bacterial GreA may act as chaperone in vivo. These results suggest that GreA, in addition to its function as a transcription factor, is involved in protection of cellular proteins against aggregation.

  2. The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora

    Directory of Open Access Journals (Sweden)

    Cebula Patricia

    2005-11-01

    Full Text Available Abstract Background The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development, a gene encoding a putative lectin homolog. Results Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Δtap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. Conclusion The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora.

  3. Transcriptional regulation by protein kinase A in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Guanggan Hu

    2007-03-01

    Full Text Available A defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP-dependent protein kinase A (PKA is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between the pka1 and pkr1 mutants and a wild-type strain, and found that PKA influences transcript levels for genes involved in cell wall synthesis, transport functions such as iron uptake, the tricarboxylic acid cycle, and glycolysis. Among the myriad of transcriptional changes in the mutants, we also identified differential expression of ribosomal protein genes, genes encoding stress and chaperone functions, and genes for secretory pathway components and phospholipid synthesis. The transcriptional influence of PKA on these functions was reminiscent of the linkage between transcription, endoplasmic reticulum stress, and the unfolded protein response in Saccharomyces cerevisiae. Functional analyses confirmed that the PKA mutants have a differential response to temperature stress, caffeine, and lithium, and that secretion inhibitors block capsule production. Importantly, we also found that lithium treatment limits capsule size, thus reinforcing potential connections between this virulence trait and inositol and phospholipid metabolism. In addition, deletion of a PKA-regulated gene, OVA1, revealed an epistatic relationship with pka1 in the control of capsule size and melanin formation. OVA1 encodes a putative phosphatidylethanolamine-binding protein that appears to negatively influence capsule production and melanin accumulation. Overall, these findings support a role for PKA in regulating the delivery of virulence factors such as the capsular polysaccharide to the cell surface and serve to highlight the importance of secretion and phospholipid metabolism as potential

  4. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex

    International Nuclear Information System (INIS)

    Surapureddi, Sailesh; Viswakarma, Navin; Yu Songtao; Guo Dongsheng; Rao, M. Sambasiva; Reddy, Janardan K.

    2006-01-01

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor α (PPARα), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320 kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARα, CAR, ERα, and RXR, but only minimally with PPARγ. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARα and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARα-mediated transcription. We conclude that ciprofibrate, a PPARα ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator

  5. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  6. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA

    NARCIS (Netherlands)

    Luesink, Evert J.; Herpen, René E.M.A. van; Grossiord, Benoît P.; Kuipers, Oscar P.; Vos, Willem M. de

    1998-01-01

    The Lactococcus lactis ccpA gene, encoding the global regulatory protein CcpA, was identified and characterized. Northern blot and primer extension analyses showed that the L. lactis ccpA gene is constitutively transcribed from a promoter that does not contain a cre sequence. Inactivation of the

  7. Ketamine inhibits transcription factors activator protein 1 and nuclear factor-kappaB, interleukin-8 production, as well as CD11b and CD16 expression: studies in human leukocytes and leukocytic cell lines.

    NARCIS (Netherlands)

    Welters, I.D.; Hafer, G.; Menzebach, A.; Muhling, J.; Neuhauser, C.; Browning, P.; Goumon, Y.

    2010-01-01

    BACKGROUND: Recent data indicate that ketamine exerts antiinflammatory actions. However, little is known about the signaling mechanisms involved in ketamine-induced immune modulation. In this study, we investigated the effects of ketamine on lipopolysaccharide-induced activation of transcription

  8. Poly(C)-binding proteins as transcriptional regulators of gene expression

    International Nuclear Information System (INIS)

    Choi, Hack Sun; Hwang, Cheol Kyu; Song, Kyu Young; Law, P.-Y.; Wei, L.-N.; Loh, Horace H.

    2009-01-01

    Poly(C)-binding proteins (PCBPs) are generally known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). They can be divided into two groups: hnRNP K and PCBP1-4. These proteins are involved mainly in various posttranscriptional regulations (e.g., mRNA stabilization or translational activation/silencing). In this review, we summarize and discuss how PCBPs act as transcriptional regulators by binding to specific elements in gene promoters that interact with the RNA polymerase II transcription machinery. Transcriptional regulation of PCBPs might itself be regulated by their localization within the cell. For example, activation by p21-activated kinase 1 induces increased nuclear retention of PCBP1, as well as increased promoter activity. PCBPs can function as a signal-dependent and coordinated regulator of transcription in eukaryotic cells. We address the molecular mechanisms by which PCBPs binding to single- and double-stranded DNA mediates gene expression.

  9. Use of prokaryotic transcriptional activators as metabolite biosensors in eukaryotic cells

    DEFF Research Database (Denmark)

    2018-01-01

    The present invention relates to the use of transcriptional activators from prokaryotic organisms for use in eukaryotic cells, such as yeast as sensors of intracellular and extracellular accumulation of a ligand or metabolite specifically activating this transcriptional activator in a eukaryot......, such as yeast cell, such as a cell engineered to produce this ligand. The transcriptional activator controls a promoter upstream of one or more gene, which may include e.g. a reporter gene that may be a fluorescence marker, such as luciferase, green fluorescent protein or a gnee encoding antibiotic resistance....

  10. Oct-1 acts as a transcriptional repressor on the C-reactive protein promoter

    Science.gov (United States)

    Voleti, Bhavya; Hammond, David J.; Thirumalai, Avinash; Agrawal, Alok

    2012-01-01

    C-reactive protein (CRP), a plasma protein of the innate immune system, is produced by hepatocytes. A critical regulatory region (−42 to −57) on the CRP promoter contains binding site for the IL-6-activated transcription factor C/EBPβ. The IL-1β-activated transcription factor NF-κB binds to a κB site located nearby (−63 to −74). The κB site overlaps an octamer motif (−59 to −66) which is the binding site for the constitutively active transcription factor Oct-1. Oct-1 is known to function both as a transcriptional repressor and as an activator depending upon the promoter context. Also, Oct-1 can regulate gene expression either by binding directly to the promoter or by interacting with other transcription factors bound to the promoter. The aim of this study was to investigate the functions of Oct-1 in regulating CRP expression. In luciferase transactivation assays, overexpressed Oct-1 inhibited (IL-6+IL-1β)-induced CRP expression in Hep3B cells. Deletion of the Oct-1 site from the promoter drastically reduced the cytokine response because the κB site was altered as a consequence of deleting the Oct-1 site. Surprisingly, overexpressed Oct-1 inhibited the residual (IL-6+IL-1β)-induced CRP expression through the promoter lacking the Oct-1 site. Similarly, deletion of the Oct-1 site reduced the induction of CRP expression in response to overexpressed C/EBPβ, and overexpressed Oct-1 inhibited C/EBPβ-induced CRP expression through the promoter lacking the Oct-1 site. We conclude that Oct-1 acts as a transcriptional repressor of CRP expression and it does so by occupying its cognate site on the promoter and also via other transcription factors by an as yet undefined mechanism. PMID:22750226

  11. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor

    Science.gov (United States)

    Bates, Gaynor J; Nicol, Samantha M; Wilson, Brian J; Jacobs, Anne-Marie F; Bourdon, Jean-Christophe; Wardrop, Julie; Gregory, David J; Lane, David P; Perkins, Neil D; Fuller-Pace, Frances V

    2005-01-01

    The DEAD box RNA helicase, p68, has been implicated in various cellular processes and has been shown to possess transcriptional coactivator function. Here, we show that p68 potently synergises with the p53 tumour suppressor protein to stimulate transcription from p53-dependent promoters and that endogenous p68 and p53 co-immunoprecipitate from nuclear extracts. Strikingly, RNAi suppression of p68 inhibits p53 target gene expression in response to DNA damage, as well as p53-dependent apoptosis, but does not influence p53 stabilisation or expression of non-p53-responsive genes. We also show, by chromatin immunoprecipitation, that p68 is recruited to the p21 promoter in a p53-dependent manner, consistent with a role in promoting transcriptional initiation. Interestingly, p68 knock-down does not significantly affect NF-κB activation, suggesting that the stimulation of p53 transcriptional activity is not due to a general transcription effect. This study represents the first report of the involvement of an RNA helicase in the p53 response, and highlights a novel mechanism by which p68 may act as a tumour cosuppressor in governing p53 transcriptional activity. PMID:15660129

  12. Identification of the sequences recognized by phage phi 29 transcriptional activator: possible interaction between the activator and the RNA polymerase.

    Science.gov (United States)

    Nuez, B; Rojo, F; Barthelemy, I; Salas, M

    1991-05-11

    Expression of Bacillus subtilis phage phi 29 late genes requires the transcriptional activator protein p4. This activator binds to a region of the late A3 promoter spanning nucleotides -56 to -102 relative to the transcription start site, generating a strong bending Tin the DNA. In this work the target sequences recognized by protein p4 in the phage phi 29 late A3 promoter have been characterized. The binding of protein p4 to derivatives of the late A3 promoter harbouring deletions in the protein p4 binding site has been studied. When protein p4 recognition sequences were altered, the activator could only bind to the promoter in the presence of RNA polymerase. This strong cooperativity in the binding of protein p4 and RNA polymerase to the promoter suggests the presence of direct protein-protein contacts between them.

  13. A Novel Role for Interleukin-27 (IL-27) as Mediator of Intestinal Epithelial Barrier Protection Mediated via Differential Signal Transducer and Activator of Transcription (STAT) Protein Signaling and Induction of Antibacterial and Anti-inflammatory Proteins*

    Science.gov (United States)

    Diegelmann, Julia; Olszak, Torsten; Göke, Burkhard; Blumberg, Richard S.; Brand, Stephan

    2012-01-01

    The role of the Th17 cell inhibiting cytokine IL-27 in the pathogenesis of inflammatory bowel disease is contradictory. Its effects on the intestinal barrier have so far not been investigated, which was the aim of this study. We show that intestinal epithelial cells (IEC) express both IL-27 receptor subunits IL-27RA and gp130. The IL-27 receptor expression is up-regulated in intestinal inflammation and during bacterial infection. IL-27 activates ERK and p38 MAPKs as well as Akt, STAT1, STAT3, and STAT6 in IEC. IL-27 significantly enhances cell proliferation and IEC restitution. These functions of IL-27 are dependent on the activation of STAT3 and STAT6 signaling pathways. As analyzed by microarray, IL-27 modulates the expression of 428 target genes in IEC (316 up and 112 down; p < 0.05). IL-27 as well as its main target genes are up-regulated in colonic tissue and IEC isolated from mice with dextran sulfate sodium (DSS)-induced colitis. The IL-27-induced expression of the anti-bacterial gene deleted in malignant brain tumor 1 (DMBT1) is mediated by p38 and STAT3 signaling, whereas the activation of the anti-inflammatory and anti-bacterial gene indoleamine 2,3-dioxygenase (IDO1) is dependent on STAT1 signal transduction. IL-27-induced indoleamine 2,3-dioxygenase enzymatic activity leads to growth inhibition of intestinal bacteria by causing local tryptophan depletion. For the first time, we characterize IL-27 as a mediator of intestinal epithelial barrier protection mediated via transcriptional activation of anti-inflammatory and antibacterial target genes. PMID:22069308

  14. A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein.

    Directory of Open Access Journals (Sweden)

    Georgios Valianatos

    Full Text Available MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing Mdm

  15. Pokemon decreases the transcriptional activity of RARα in the absence of ligand.

    Science.gov (United States)

    Yang, Yutao; Li, Yueting; Di, Fei; Cui, Jiajun; Wang, Yue; David Xu, Zhi-Qing

    2016-12-20

    Pokemon is a transcriptional repressor that belongs to the POZ and Krüppel (POK) protein family. In this study, we investigated the potential interaction between Pokemon and retinoic acid receptor alpha (RARα) and determined the role of Pokemon in regulation of RARα transcriptional activity in the absence of ligand. We found that Pokemon could directly interact with RARα. Moreover, we demonstrated that Pokemon could decrease the transcriptional activity of RARα in the absence of ligand. Furthermore, we showed that Pokemon could repress the transcriptional activity of RARα by increasing the recruitment of nuclear receptor co-repressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) to the retinoic acid response element (RARE) element. Taken together, these data suggest that Pokemon is a novel partner of RARα that acts as a co-repressor to regulate RARα transcriptional activity in the absence of ligand.

  16. A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis.

    Science.gov (United States)

    Albert, Benjamin; Knight, Britta; Merwin, Jason; Martin, Victoria; Ottoz, Diana; Gloor, Yvonne; Bruzzone, Maria Jessica; Rudner, Adam; Shore, David

    2016-11-17

    Cell growth potential is determined by the rate of ribosome biogenesis, a complex process that requires massive and coordinated transcriptional output. In the yeast Saccharomyces cerevisiae, ribosome biogenesis is highly regulated at the transcriptional level. Although evidence for a system that coordinates ribosomal RNA (rRNA) and ribosomal protein gene (RPG) transcription has been described, the molecular mechanisms remain poorly understood. Here we show that an interaction between the RPG transcriptional activator Ifh1 and the rRNA processing factor Utp22 serves to coordinate RPG transcription with that of rRNA. We demonstrate that Ifh1 is rapidly released from RPG promoters by a Utp22-independent mechanism following growth inhibition, but that its long-term dissociation requires Utp22. We present evidence that RNA polymerase I activity inhibits the ability of Utp22 to titrate Ifh1 from RPG promoters and propose that a dynamic Ifh1-Utp22 interaction fine-tunes RPG expression to coordinate RPG and rRNA transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    International Nuclear Information System (INIS)

    Long, Cong; Wang, Jingchao; Guo, Wei; Wang, Huan; Wang, Chao; Liu, Yu; Sun, Xiaoping

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  18. E2F1-mediated transcriptional inhibition of the plasminogen activator inhibitor type 1 gene

    DEFF Research Database (Denmark)

    Koziczak, M; Müller, H; Helin, K

    2001-01-01

    -sensitive retinoblastoma protein (pRB), a shift to a permissive temperature induced PAI-1 mRNA expression. In U2OS cells stably expressing an E2F1-estrogen receptor chimeric protein that could be activated by tamoxifen, PAI-1 gene transcription was markedly reduced by tamoxifen even in the presence of cycloheximide...

  19. Altered association of transcriptionally active DNA with the nuclear-matrix after heat shock

    NARCIS (Netherlands)

    Sakkers, RJ; Brunsting, JF; Filon, AR; Kampinga, HH; Konings, AWT; Mullenders, LHF

    Purpose: Exposure of human cells to heat leads to denaturation and aggregation of proteins. Within the nucleus, it has been suggested that protein aggregation is linked to the: selective inhibition by hyperthermia of nucleotide excision repair in transcriptionally active genes. Tn this study it was

  20. NF-kappaB regulates the transcription of protein tyrosine kinase Tec.

    Science.gov (United States)

    Yu, Liang; Simonson, Oscar E; Mohamed, Abdalla J; Smith, C I Edvard

    2009-11-01

    The tyrosine kinase expressed in hepatocellular carcinoma (Tec) is a non-receptor protein tyrosine kinase (PTK) that is expressed in hematopoietic cells, such as B and T lymphocytes, myeloid lineage cells and neutrophils. Mutations in the human Btk gene cause X-linked agammaglobulinemia (XLA), but the corresponding mutation in mice results in a much milder defect. However, the combined inactivation of Btk and Tec genes in mice cause a severe phenotype resembling XLA. Tec is involved in the regulation of both B and T lymphocytes, fine-tuning of TCR/BCR signaling, and also activation of the nuclear factor of activated T cells. Previous work has shown that the transcription factors Sp1 and PU.1 can bind and regulate the Tec promoter. In this study, we demonstrate that NF-kappaB is an essential transcription factor for optimal expression of the Tec gene, and identify a unique functionally active NF-kappaB binding site in its promoter. The NF-kappaB subunit p65/RelA directly induced transcriptional activity of the Tec promoter. Moreover, we also found that proteasome inhibitors, including Bortezomib, repress Tec transcription through inactivation of the NF-kappaB signaling pathway. This study, together with our previous findings on the transcriptional regulation of Btk (Bruton's tyrosine kinase) by proteasome inhibitors, provides important insight into the molecular mechanism(s) underlying the role of NF-kappaB in Tec family kinase signaling and lymphocyte development.

  1. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock

    Science.gov (United States)

    Dang, Fabin; Sun, Xiujie; Ma, Xiang; Wu, Rong; Zhang, Deyi; Chen, Yaqiong; Xu, Qian; Wu, Yuting; Liu, Yi

    2016-01-01

    Although food availability is a potent synchronizer of the peripheral circadian clock in mammals, the underlying mechanisms are unclear. Here, we show that hepatic Bmal1, a core transcription activator of the molecular clock, is post-transcriptionally regulated by signals from insulin, an important hormone that is temporally controlled by feeding. Insulin promotes postprandial Akt-mediated Ser42-phosphorylation of Bmal1 to induce its dissociation from DNA, interaction with 14-3-3 protein and subsequently nuclear exclusion, which results in the suppression of Bmal1 transcriptional activity. Inverted feeding cycles not only shift the phase of daily insulin oscillation, but also elevate the amplitude due to food overconsumption. This enhanced and reversed insulin signalling initiates the reset of clock gene rhythms by altering Bmal1 nuclear accumulation in mouse liver. These results reveal the molecular mechanism of insulin signalling in regulating peripheral circadian rhythms. PMID:27576939

  2. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor

    NARCIS (Netherlands)

    Townsend, Philip D.; Dixon, Christopher H.; Slootweg, Erik J.; Sukarta, Octavina C.A.; Yang, Ally W.H.; Hughes, Timothy R.; Sharples, Gary J.; Palsson, Lars-Olof; Takken, Frank L.W.; Goverse, Aska; Cann, Martin J.

    2018-01-01

    Plant NLR proteins enable the immune system to recognise and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further

  3. CRTC1 mediates preferential transcription at neuronal activity-regulated CRE/TATA promoters.

    Science.gov (United States)

    Parra-Damas, Arnaldo; Rubió-Ferrarons, Laura; Shen, Jie; Saura, Carlos A

    2017-12-21

    Gene expression mediated by the transcription factor cAMP-responsive element-binding protein (CREB) is essential for a wide range of brain processes. The transcriptional coactivartor CREB-regulated transcription coactivator-1 (CRTC1) is required for efficient induction of CREB target genes during neuronal activity. However, the mechanisms regulating induction of specific CREB/CRTC1-dependent genes during neuronal activity remain largely unclear. Here, we investigated the molecular mechanisms regulating activity-dependent gene transcription upon activation of the CREB/CRTC1 signaling pathway in neurons. Depolarization and cAMP signals induce preferential transcription of activity-dependent genes containing promoters with proximal CRE/TATA sequences, such as c-fos, Dusp1, Nr4a1, Nr4a2 and Ptgs2, but not genes with proximal CRE/TATA-less promoters (e.g. Nr4a3, Presenilin-1 and Presenilin-2). Notably, biochemical and chromatin immunoprecipitation analyses reveal constitutive binding of CREB to target gene promoters in the absence of neuronal activity, whereas recruitment of CRTC1 to proximal CRE/TATA promoters depends on neuronal activity. Neuronal activity induces rapid CRTC1 dephosphorylation, nuclear translocation and binding to endogenous CREB. These results indicate that neuronal activity induces a preferential binding of CRTC1 to the transcriptional complex in CRE/TATA-containing promoters to engage activity-dependent transcription in neurons.

  4. Transcriptional robustness and protein interactions are associated in yeast

    Directory of Open Access Journals (Sweden)

    Conant Gavin C

    2011-05-01

    Full Text Available Abstract Background Robustness to insults, both external and internal, is a characteristic feature of life. One level of biological organization for which noise and robustness have been extensively studied is gene expression. Cells have a variety of mechanisms for buffering noise in gene expression, but it is not completely clear what rules govern whether or not a given gene uses such tools to maintain appropriate expression. Results Here, we show a general association between the degree to which yeast cells have evolved mechanisms to buffer changes in gene expression and whether they possess protein-protein interactions. We argue that this effect bears an affinity to epistasis, because yeast appears to have evolved regulatory mechanisms such that distant changes in gene copy number for a protein-protein interaction partner gene can alter a gene's expression. This association is not unexpected given recent work linking epistasis and the deleterious effects of changes in gene dosage (i.e., the dosage balance hypothesis. Using gene expression data from artificial aneuploid strains of bakers' yeast, we found that genes coding for proteins that physically interact with other proteins show less expression variation in response to aneuploidy than do other genes. This effect is even more pronounced for genes whose products interact with proteins encoded on aneuploid chromosomes. We further found that genes targeted by transcription factors encoded on aneuploid chromosomes were more likely to change in expression after aneuploidy. Conclusions We suggest that these observations can be best understood as resulting from the higher fitness cost of misexpression in epistatic genes and a commensurate greater regulatory control of them.

  5. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Brian Finley [Univ. of California, Berkeley, CA (United States)

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a "receiver domain" in the family of "two-component" regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  6. A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens.

    Science.gov (United States)

    Ghosh, Gairika; Reddy, Jayavardhana; Sambhare, Susmit; Sen, Ranjan

    2018-01-01

    Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis , Mycobacterium bovis , Mycobacterium tuberculosis , Xanthomonas campestris , Xanthomonas oryzae , Corynebacterium glutamicum , Vibrio cholerae , Salmonella enterica , and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis , M. bovis , X. campestris , and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions. IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription

  7. Repression of class I transcription by cadmium is mediated by the protein phosphatase 2A

    Science.gov (United States)

    Zhou, Lei; Le Roux, Gwenaëlle; Ducrot, Cécile; Chédin, Stéphane; Labarre, Jean; Riva, Michel; Carles, Christophe

    2013-01-01

    Toxic metals are part of our environment, and undue exposure to them leads to a variety of pathologies. In response, most organisms adapt their metabolism and have evolved systems to limit this toxicity and to acquire tolerance. Ribosome biosynthesis being central for protein synthesis, we analyzed in yeast the effects of a moderate concentration of cadmium (Cd2+) on Pol I transcription that represents >60% of the transcriptional activity of the cells. We show that Cd2+ rapidly and drastically shuts down the expression of the 35S rRNA. Repression does not result from a poisoning of any of the components of the class I transcriptional machinery by Cd2+, but rather involves a protein phosphatase 2A (PP2A)-dependent cellular signaling pathway that targets the formation/dissociation of the Pol I–Rrn3 complex. We also show that Pol I transcription is repressed by other toxic metals, such as Ag+ and Hg2+, which likewise perturb the Pol I–Rrn3 complex, but through PP2A-independent mechanisms. Taken together, our results point to a central role for the Pol I–Rrn3 complex as molecular switch for regulating Pol I transcription in response to toxic metals. PMID:23640330

  8. Structure of noncoding RNA is a determinant of function of RNA binding proteins in transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Oyoshi Takanori

    2012-01-01

    Full Text Available Abstract The majority of the noncoding regions of mammalian genomes have been found to be transcribed to generate noncoding RNAs (ncRNAs, resulting in intense interest in their biological roles. During the past decade, numerous ncRNAs and aptamers have been identified as regulators of transcription. 6S RNA, first described as a ncRNA in E. coli, mimics an open promoter structure, which has a large bulge with two hairpin/stalk structures that regulate transcription through interactions with RNA polymerase. B2 RNA, which has stem-loops and unstructured single-stranded regions, represses transcription of mRNA in response to various stresses, including heat shock in mouse cells. The interaction of TLS (translocated in liposarcoma with CBP/p300 was induced by ncRNAs that bind to TLS, and this in turn results in inhibition of CBP/p300 histone acetyltransferase (HAT activity in human cells. Transcription regulator EWS (Ewing's sarcoma, which is highly related to TLS, and TLS specifically bind to G-quadruplex structures in vitro. The carboxy terminus containing the Arg-Gly-Gly (RGG repeat domains in these proteins are necessary for cis-repression of transcription activation and HAT activity by the N-terminal glutamine-rich domain. Especially, the RGG domain in the carboxy terminus of EWS is important for the G-quadruplex specific binding. Together, these data suggest that functions of EWS and TLS are modulated by specific structures of ncRNAs.

  9. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    Science.gov (United States)

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Regulation of the CDP-choline pathway by sterol regulatory element binding proteins involves transcriptional and post-transcriptional mechanisms.

    Science.gov (United States)

    Ridgway, Neale D; Lagace, Thomas A

    2003-06-15

    The synthesis of phosphatidylcholine (PtdCho) by the CDP-choline pathway is under the control of the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CCT). Sterol regulatory element binding proteins (SREBPs) have been proposed to regulate CCT at the transcriptional level, or via the synthesis of lipid activators or substrates of the CDP-choline pathway. To assess the contributions of these two mechanisms, we examined CCTalpha expression and PtdCho synthesis by the CDP-choline pathway in cholesterol and fatty acid auxotrophic CHO M19 cells inducibly expressing constitutively active nuclear forms of SREBP1a or SREBP2. Induction of either SREBP resulted in increased expression of mRNAs for sterol-regulated genes, elevated fatty acid and cholesterol synthesis (>10-50-fold) and increased PtdCho synthesis (2-fold). CCTalpha mRNA was increased 2-fold by enforced expression of SREBP1a or SREBP2. The resultant increase in CCTalpha protein and activity (2-fold) was restricted primarily to the soluble fraction of cells, and increased CCTalpha activity in vivo was not detected. Inhibition of the synthesis of fatty acids or their CoA esters by cerulenin or triacsin C respectively following SREBP induction effectively blocked the accompanying elevation in PtdCho synthesis. Thus PtdCho synthesis was driven by increased synthesis of fatty acids or a product thereof. These data show that transcriptional activation of CCTalpha is modest relative to that of other SREBP-regulated genes, and that stimulation of PtdCho synthesis by SREBPs in CHO cells is due primarily to increased fatty acid synthesis.

  11. Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis.

    Science.gov (United States)

    Cheng, Ze; Otto, George Maxwell; Powers, Emily Nicole; Keskin, Abdurrahman; Mertins, Philipp; Carr, Steven Alfred; Jovanovic, Marko; Brar, Gloria Ann

    2018-02-22

    To better understand the gene regulatory mechanisms that program developmental processes, we carried out simultaneous genome-wide measurements of mRNA, translation, and protein through meiotic differentiation in budding yeast. Surprisingly, we observed that the levels of several hundred mRNAs are anti-correlated with their corresponding protein products. We show that rather than arising from canonical forms of gene regulatory control, the regulation of at least 380 such cases, or over 8% of all measured genes, involves temporally regulated switching between production of a canonical, translatable transcript and a 5' extended isoform that is not efficiently translated into protein. By this pervasive mechanism for the modulation of protein levels through a natural developmental program, a single transcription factor can coordinately activate and repress protein synthesis for distinct sets of genes. The distinction is not based on whether or not an mRNA is induced but rather on the type of transcript produced. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf

    2010-10-21

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  13. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    , which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites...

  14. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  15. Inhibition of the TEF/TEAD transcription factor activity by nuclear calcium and distinct kinase pathways.

    Science.gov (United States)

    Thompson, M; Andrade, V A; Andrade, S J; Pusl, T; Ortega, J M; Goes, A M; Leite, M F

    2003-02-07

    Transcription enhancer factor (TEF/TEAD) is a family of four transcription factors that share a common TEA-DNA binding domain and are involved in similar cellular functions, such as cell differentiation and proliferation. All adult tissues express at least one of the four TEAD genes, so this family of transcription factors may be of widespread importance, yet little is known about their regulation. Here we examine the factors that regulate TEAD activity in CHO cells. RT-PCR indicated the presence of TEAD-1, TEAD-3, and both isoforms of TEAD-4, but not TEAD-2. Quantitative measurements showed that TEAD-4 is most abundant, followed by TEAD-3, then TEAD-1. We examined the relative effects of nuclear and cytosolic Ca(2+) on TEAD activity, since TEAD proteins are localized to the nucleus and since free Ca(2+) within the nucleus selectively regulates transcription in some systems. Chelation of nuclear but not cytosolic Ca(2+) increased TEAD activity two times above control. Inhibition of mitogen-activated protein kinase (MAPK) also increased TEAD activity, while cAMP decreased TEAD activity, and protein kinase C had no effect. Together, these results show that nuclear Ca(2+), MAPK, and cAMP each negatively regulate the activity of the TEAD transcription factor.

  16. Transcriptional regulation of human dual specificity protein phosphatase 1 (DUSP1) gene by glucocorticoids.

    Science.gov (United States)

    Shipp, Lauren E; Lee, Joyce V; Yu, Chi-Yi; Pufall, Miles; Zhang, Pili; Scott, Donald K; Wang, Jen-Chywan

    2010-10-29

    Glucocorticoids are potent anti-inflammatory agents commonly used to treat inflammatory diseases. They convey signals through the intracellular glucocorticoid receptor (GR), which upon binding to ligands, associates with genomic glucocorticoid response elements (GREs) to regulate transcription of associated genes. One mechanism by which glucocorticoids inhibit inflammation is through induction of the dual specificity phosphatase-1 (DUSP1, a.k.a. mitogen-activated protein kinase phosphatase-1, MKP-1) gene. We found that glucocorticoids rapidly increased transcription of DUSP1 within 10 minutes in A549 human lung adenocarcinoma cells. Using chromatin immunoprecipitation (ChIP) scanning, we located a GR binding region between -1421 and -1118 upstream of the DUSP1 transcription start site. This region is active in a reporter system, and mutagenesis analyses identified a functional GRE located between -1337 and -1323. We found that glucocorticoids increased DNase I hypersensitivity, reduced nucleosome density, and increased histone H3 and H4 acetylation within genomic regions surrounding the GRE. ChIP experiments showed that p300 was recruited to the DUSP1 GRE, and RNA interference experiments demonstrated that reduction of p300 decreased glucocorticoid-stimulated DUSP1 gene expression and histone H3 hyperacetylation. Furthermore, overexpression of p300 potentiated glucocorticoid-stimulated activity of a reporter gene containing the DUSP1 GRE, and this coactivation effect was compromised when the histone acetyltransferase domain was mutated. ChIP-reChIP experiments using GR followed by p300 antibodies showed significant enrichment of the DUSP1 GRE upon glucocorticoid treatment, suggesting that GR and p300 are in the same protein complex recruited to the DUSP1 GRE. Our studies identified a functional GRE for the DUSP1 gene. Moreover, the transcriptional activation of DUSP1 by glucocorticoids requires p300 and a rapid modification of the chromatin structure surrounding

  17. DMPD: Post-transcriptional regulation of proinflammatory proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075353 Post-transcriptional regulation of proinflammatory proteins. Anderson P, P...l) (.csml) Show Post-transcriptional regulation of proinflammatory proteins. PubmedID 15075353 Title Post-tr...anscriptional regulation of proinflammatory proteins. Authors Anderson P, Phillip

  18. Human mediator subunit MED15 promotes transcriptional activation.

    Science.gov (United States)

    Nakatsubo, Takuya; Nishitani, Saori; Kikuchi, Yuko; Iida, Satoshi; Yamada, Kana; Tanaka, Aki; Ohkuma, Yoshiaki

    2014-10-01

    In eukaryotes, the Mediator complex is an essential transcriptional cofactor of RNA polymerase II (Pol II). In humans, it contains up to 30 subunits and consists of four modules: head, middle, tail, and CDK/Cyclin. One of the subunits, MED15, is located in the tail module, and was initially identified as Gal11 in budding yeast, where it plays an essential role in the transcriptional regulation of galactose metabolism with the potent transcriptional activator Gal4. For this reason, we investigated the function of the human MED15 subunit (hMED15) in transcriptional activation. First, we measured the effect of hMED15 knockdown on cell growth in HeLa cells. The growth rate was greatly reduced. By immunostaining, we observed the colocalization of hMED15 with the general transcription factors TFIIE and TFIIH in the nucleus. We measured the effects of siRNA-mediated knockdown of hMED15 on transcriptional activation using two different transcriptional activators, VP16 and SREBP1a. Treatment with siRNAs reduced transcriptional activation, and this reduction could be rescued by overexpression of HA/Flag-tagged, wild-type hMED15. To investigate hMED15 localization, we treated human MCF-7 cells with the MDM2 inhibitor Nutlin-3, thus inducing p21 transcription. We found that hMED15 localized to both the p53 binding site and the p21 promoter region, along with TFIIE and TFIIH. These results indicate that hMED15 promotes transcriptional activation.

  19. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp; Yamada, Yoshiji

    2016-05-13

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.

  20. RNA-guided Transcriptional Regulation in Plants via dCas9 Chimeric Proteins

    KAUST Repository

    Baazim, Hatoon

    2014-05-01

    Developing targeted genome regulation approaches holds much promise for accelerating trait discovery and development in agricultural biotechnology. Clustered Regularly Interspaced Palindromic Repeats (CRISPRs)/CRISPR associated (Cas) system provides bacteria and archaea with an adaptive molecular immunity mechanism against invading nucleic acids through phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing purposes across a variety of cell types and organisms. Recently, the catalytically inactive Cas9 (dCas9) protein combined with guide RNAs (gRNAs) were used as a DNA-targeting platform to modulate the expression patterns in bacterial, yeast and human cells. Here, we employed this DNA-targeting system for targeted transcriptional regulation in planta by developing chimeric dCas9-based activators and repressors. For example, we fused to the C-terminus of dCas9 with the activation domains of EDLL and TAL effectors, respectively, to generate transcriptional activators, and the SRDX repression domain to generate transcriptional repressor. Our data demonstrate that the dCas9:EDLL and dCas9:TAD activators, guided by gRNAs complementary to promoter elements, induce strong transcriptional activation on episomal targets in plant cells. Moreover, our data suggest that the dCas9:SRDX repressor and the dCas9:EDLL and dCas9:TAD activators are capable of markedly repressing or activating, respectively, the transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9:TFs DNA targeting system can be used in plants as a functional genomic tool and for biotechnological applications.

  1. Modifiers of notch transcriptional activity identified by genome-wide RNAi

    Directory of Open Access Journals (Sweden)

    Firnhaber Christopher B

    2010-10-01

    Full Text Available Abstract Background The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. Results Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. Conclusions The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

  2. A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis

    KAUST Repository

    Law, Julie A.

    2010-05-01

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM) [1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts [3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) [4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) [5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 [3] and DMS3 [7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. © 2010 Elsevier Ltd. All rights reserved.

  3. Cellular Inhibitor of Apoptosis Protein-1 (cIAP1) Can Regulate E2F1 Transcription Factor-mediated Control of Cyclin Transcription*

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-01-01

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity. PMID:21653699

  4. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.

  5. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation.

    Science.gov (United States)

    Cicchillitti, Lucia; Manni, Isabella; Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Dell'Anna, Maria Lucia; Dell'Omo, Giulia; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Rizzo, Maria Giulia; Gurtner, Aymone; Piaggio, Giulia

    2017-01-10

    Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y-dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.

  6. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway.

    Science.gov (United States)

    Chan, PuiYee; Han, Xiao; Zheng, Baohui; DeRan, Michael; Yu, Jianzhong; Jarugumilli, Gopala K; Deng, Hua; Pan, Duojia; Luo, Xuelian; Wu, Xu

    2016-04-01

    TEA domain (TEAD) transcription factors bind to the coactivators YAP and TAZ and regulate the transcriptional output of the Hippo pathway, playing critical roles in organ size control and tumorigenesis. Protein S-palmitoylation attaches a fatty acid, palmitate, to cysteine residues and regulates protein trafficking, membrane localization and signaling activities. Using activity-based chemical probes, we discovered that human TEADs possess intrinsic palmitoylating enzyme-like activities and undergo autopalmitoylation at evolutionarily conserved cysteine residues under physiological conditions. We determined the crystal structures of lipid-bound TEADs and found that the lipid chain of palmitate inserts into a conserved deep hydrophobic pocket. Strikingly, palmitoylation did not alter TEAD's localization, but it was required for TEAD's binding to YAP and TAZ and was dispensable for its binding to the Vgll4 tumor suppressor. Moreover, palmitoylation-deficient TEAD mutants impaired TAZ-mediated muscle differentiation in vitro and tissue overgrowth mediated by the Drosophila YAP homolog Yorkie in vivo. Our study directly links autopalmitoylation to the transcriptional regulation of the Hippo pathway.

  7. Suppression of estrogen receptor transcriptional activity by connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Long Cheng

    Full Text Available Secreted growth factors have been shown to stimulate the transcriptional activity of estrogen receptors (ER that are responsible for many biological processes. However, whether these growth factors physically interact with ER remains unclear. Here, we show for the first time that connective tissue growth factor (CTGF physically and functionally associates with ER. CTGF interacted with ER both in vitro and in vivo. CTGF interacted with ER DNA-binding domain. ER interaction region in CTGF was mapped to the thrombospondin type I repeat, a cell attachment motif. Overexpression of CTGF inhibited ER transcriptional activity as well as the expression of estrogen-responsive genes, including pS2 and cathepsin D. Reduction of endogenous CTGF with CTGF small interfering RNA enhanced ER transcriptional activity. The interaction between CTGF and ER is required for the repression of estrogen-responsive transcription by CTGF. Moreover, CTGF reduced ER protein expression, whereas the CTGF mutant that did not repress ER transcriptional activity also did not alter ER protein levels. The results suggested the transcriptional regulation of estrogen signaling through interaction between CTGF and ER, and thus may provide a novel mechanism by which cross-talk between secreted growth factor and ER signaling pathways occurs.

  8. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro

    Science.gov (United States)

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-01-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44–61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties. PMID:18442994

  9. Identification of active transcriptional regulatory elements with GRO-seq

    OpenAIRE

    Danko, Charles G.; Hyland, Stephanie L.; Core, Leighton J.; Martins, Andre L.; Waters, Colin T; Lee, Hyung Won; Cheung, Vivian G.; Kraus, W. Lee; Lis, John T.; Siepel, Adam

    2015-01-01

    Transcriptional regulatory elements (TREs), including enhancers and promoters, determine the transcription levels of associated genes. We have recently shown that global run-on and sequencing (GRO-seq) with enrichment for 5'-capped RNAs reveals active TREs with high accuracy. Here, we demonstrate that active TREs can be identified by applying sensitive machine-learning methods to standard GRO-seq data. This approach allows TREs to be assayed together with gene expression levels and other tran...

  10. Physical and functional interactions between hematopoietic cell-specific ETS transcription factors and homeodomain proteins.

    Science.gov (United States)

    Yamada, Toshiyuki; Shimizu, Takeshi; Sakurai, Takuya; Nanashima, Naoki; Kihara-Negishi, Fumiko; Suzuki, Mitsuhiro; Fan, Yang; Akita, Miki; Oikawa, Tsuneyuki; Tsuchida, Shigeki

    2009-03-01

    To examine the possibility that ETS family transcription factors, PU.1, SPI-B, ELF-1, ERG-3, ETS-1 and TEL, and homeodomain proteins, HOXA10, HOXC13, MEIS1 and PBX1B, function cooperatively, we investigated their interactions. In luciferase assays, HOXA10 and HOXC13 augmented the activity of PU.1 and SPI-B while diminishing that of ELF-1 and ERG-3. MEIS1 diminished the activity of ETS-1. No clear effects were observed for other combinations. Immunoprecipitation assays showed protein-protein interactions among the combinations exhibiting functional interactions. A mutation of HOXC13, which abolished binding to ELF-1, also abolished the diminishing effect on ELF-1. The results suggest functional interaction through physical interactions.

  11. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    International Nuclear Information System (INIS)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-01

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection

  12. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  13. NprR, a moonlighting quorum sensor shifting from a phosphatase activity to a transcriptional activator

    Directory of Open Access Journals (Sweden)

    Stéphane Perchat

    2016-11-01

    Full Text Available Regulation of biological functions requires factors (proteins, peptides or chemicals able to sense and translate environmental conditions or any circumstances in order to modulate the transcription of a gene, the stability of a transcript or the activity of a protein. Quorum sensing is a regulation mechanism connecting cell density to the physiological state of a single cell. In bacteria, quorum sensing coordinates virulence, cell fate and commitment to sporulation and other adaptation properties. The critical role of such regulatory systems was demonstrated in pathogenicity and adaptation of bacteria from the Bacillus cereus group (i.e. B. cereus and Bacillus thuringiensis. Furthermore, using insects as a model of infection, it was shown that sequential activation of several quorum sensing systems allowed bacteria to switch from a virulence state to a necrotrophic lifestyle, allowing their survival in the host cadaver, and ultimately to the commitment into sporulation. The chronological development of these physiological states is directed by quorum sensors forming the RNPP family. Among them, NprR combines two distinct functions connecting sporulation to necrotrophism in B. thuringiensis. In the absence of its cognate signaling peptide (NprX, NprR negatively controls sporulation by acting as a phosphatase. In the presence of NprX, it acts as a transcription factor regulating a set of genes involved in the survival of the bacteria in the insect cadaver.

  14. Dataset of transcriptional landscape of B cell early activation

    Directory of Open Access Journals (Sweden)

    Alexander S. Garruss

    2015-09-01

    Full Text Available Signaling via B cell receptors (BCR and Toll-like receptors (TLRs result in activation of B cells with distinct physiological outcomes, but transcriptional regulatory mechanisms that drive activation and distinguish these pathways remain unknown. At early time points after BCR and TLR ligand exposure, 0.5 and 2 h, RNA-seq was performed allowing observations on rapid transcriptional changes. At 2 h, ChIP-seq was performed to allow observations on important regulatory mechanisms potentially driving transcriptional change. The dataset includes RNA-seq, ChIP-seq of control (Input, RNA Pol II, H3K4me3, H3K27me3, and a separate RNA-seq for miRNA expression, which can be found at Gene Expression Omnibus Dataset GSE61608. Here, we provide details on the experimental and analysis methods used to obtain and analyze this dataset and to examine the transcriptional landscape of B cell early activation.

  15. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Miclaus, Teodora; Engelmann, Péter

    2016-01-01

    the corona composition, the extent to which nanoparticles influence the cells’ protein secretion profile is of remarkable interest that has rarely acquired attention. Here, we have probed transcriptional responses of E. fetida coelomocytes to the representative nanosilver NM-300K (15 nm) in a time......-like receptor (TLR) signaling. This offers an intriguing perspective of the nanosilver pathophysiology in earthworms, in which the conserved pattern recognition receptor TLRs may play an effector role....

  16. SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression.

    Science.gov (United States)

    Tokizawa, Mutsutomo; Kobayashi, Yuriko; Saito, Tatsunori; Kobayashi, Masatomo; Iuchi, Satoshi; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki

    2015-03-01

    In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5' truncated promoters of different lengths showed that the promoter region between -540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around -297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5' untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms.

    Science.gov (United States)

    Jauch, Eike; Wecklein, Heike; Stark, Felix; Jauch, Mandy; Raabe, Thomas

    2006-06-07

    Genes encoding for the two evolutionary highly conserved subunits of a heterotetrameric protein kinase CK2 holoenzyme are present in all examined eukaryotic genomes. Depending on the organism, multiple transcription units encoding for a catalytically active CK2alpha subunit and/or a regulatory CK2beta subunit may exist. The phosphotransferase activity of members of the protein kinase CK2alpha family is thought to be independent of second messengers but is modulated by interaction with CK2beta-like proteins. In the genome of Drosophila melanogaster, one gene encoding for a CK2alpha subunit and three genes encoding for CK2beta-like proteins are present. The X-linked DmCK2beta transcription unit encodes for several CK2beta protein isoforms due to alternative splicing of its primary transcript. We addressed the question whether CK2beta-like proteins are redundant in function. Our in vivo experiments show that variations of the very C-terminal tail of CK2beta isoforms encoded by the X-linked DmCK2beta transcription unit influence their functional properties. In addition, we find that CK2beta-like proteins encoded by the autosomal D. melanogaster genes CK2betates and CK2beta' cannot fully substitute for a loss of CK2beta isoforms encoded by DmCK2beta.

  18. Duplicated RGS (Regulator of G-protein signaling) proteins exhibit conserved biochemical but differential transcriptional regulation of heterotrimeric G-protein signaling in Brassica species.

    Science.gov (United States)

    Kumar, Roshan; Bisht, Naveen C

    2018-02-01

    G-alpha (Gα) and 'Regulator of G-protein Signaling (RGS)' proteins are the two key components primarily involved in regulation of heterotrimeric G-proteins signaling across phyla. Unlike Arabidopsis thaliana, our knowledge about G-protein regulation in polyploid Brassica species is sparse. In this study, we identified one Gα and two RGS genes each from three species of Brassica 'U' triangle and assessed the effects of whole genome triplication on the divergence of gene sequence and structure, protein-protein interaction, biochemical activities, and gene expression. Sequence and phylogenetic analysis revealed that the deduced Gα and RGS proteins are evolutionarily conserved across Brassica species. The duplicated RGS proteins of each Brassica species interacted with their cognate Gα but displayed varying levels of interaction strength. The Gα and the duplicated RGS proteins of Brassica species exhibited highly conserved G-protein activities when tested under in-vitro conditions. Expression analysis of the B. rapa RGS genes revealed a high degree of transcriptional differentiation across the tested tissue types and in response to various elicitors, particularly under D-glucose, salt and phytohormone treatments. Taken together, our results suggest that the RGS-mediated regulation of G-protein signaling in Brassica species is predominantly governed by stage and condition-specific expression differentiation of the duplicated RGS genes.

  19. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling.

    Science.gov (United States)

    Ota, Mitsunori; Sasaki, Hiroshi

    2008-12-01

    Regulation of organ size is important for development and tissue homeostasis. In Drosophila, Hippo signaling controls organ size by regulating the activity of a TEAD transcription factor, Scalloped, through modulation of its co-activator protein Yki. Here, we show that mouse Tead proteins regulate cell proliferation by mediating Hippo signaling. In NIH3T3 cells, cell density and Hippo signaling regulated the activity of endogenous Tead proteins by modulating nuclear localization of a Yki homolog, Yap1, and the resulting change in Tead activity altered cell proliferation. Tead2-VP16 mimicked Yap1 overexpression, including increased cell proliferation, reduced cell death, promotion of EMT, lack of cell contact inhibition and promotion of tumor formation. Growth-promoting activities of various Yap1 mutants correlated with their Tead-co-activator activities. Tead2-VP16 and Yap1 regulated largely overlapping sets of genes. However, only a few of the Tead/Yap1-regulated genes in NIH3T3 cells were affected in Tead1(-/-);Tead2(-/-) or Yap1(-/-) embryos. Most of the previously identified Yap1-regulated genes were not affected in NIH3T3 cells or mutant mice. In embryos, levels of nuclear Yap1 and Tead1 varied depending on cell type. Strong nuclear accumulation of Yap1 and Tead1 were seen in myocardium, correlating with requirements of Tead1 for proliferation. However, their distribution did not always correlate with proliferation. Taken together, mammalian Tead proteins regulate cell proliferation and contact inhibition as a transcriptional mediator of Hippo signaling, but the mechanisms by which Tead/Yap1 regulate cell proliferation differ depending on the cell type, and Tead, Yap1 and Hippo signaling may play multiple roles in mouse embryos.

  20. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  1. c-Myb protein interacts with Rcd-1, a component of the CCR4 transcription mediator complex.

    Science.gov (United States)

    Haas, Martin; Siegert, Michaela; Schürmann, André; Sodeik, Beate; Wolfes, Heiner

    2004-06-29

    Transcriptional initiation of eukaryotic genes depends on the cooperative interaction of various transcription factors. Using the yeast two-hybrid assay, we have identified the murine Rcd-1 protein as a cofactor of the c-myb proto-oncogene product. Rcd-1 is evolutionarily conserved among many species, and moreover the yeast homologue CAF40 is part of the carbon catabolite repressor protein transcriptional mediator thought to be involved in the negative regulation of genes transcribed by RNA polymerase II. Rcd-1 is located mainly in the nucleus, and it interacts with c-Myb both in vitro and in vivo. The activation of the myeloid c-myb-specific mim-1 promoter is repressed by Rcd-1. Interestingly, rcd-1 is an erythropoietin regulated gene, which also represses the action of the AP-1 transcription factor on its target genes.

  2. Centromeric Transcription Regulates Aurora-B Localization and Activation

    Directory of Open Access Journals (Sweden)

    Michael D. Blower

    2016-05-01

    Full Text Available Centromeric transcription is widely conserved; however, it is not clear what role centromere transcription plays during mitosis. Here, I find that centromeres are transcribed in Xenopus egg extracts into a long noncoding RNA (lncRNA; cen-RNA that localizes to mitotic centromeres, chromatin, and spindles. cen-RNAs bind to the chromosomal passenger complex (CPC in vitro and in vivo. Blocking transcription or antisense inhibition of cen-RNA leads to a reduction of CPC localization to the inner centromere and misregulation of CPC component Aurora-B activation independently of known centromere recruitment pathways. Additionally, transcription is required for normal bipolar attachment of kinetochores to the mitotic spindle, consistent with a role for cen-RNA in CPC regulation. This work demonstrates that cen-RNAs promote normal kinetochore function through regulation of the localization and activation of the CPC and confirm that lncRNAs are components of the centromere.

  3. Can you hear me now? Regulating transcriptional activators by phosphorylation.

    Science.gov (United States)

    Gardner, Kevin H; Montminy, Marc

    2005-09-13

    Extracellular signals often modulate the expression of specific genetic programs by triggering the phosphorylation of relevant transcription factors (TFs). Phosphorylation in turn regulates such TFs by altering their cellular localization, DNA binding affinity, or transcriptional activity. Structural approaches have revealed how phosphorylation turns some TFs on or off; but less is known about how phosphorylation regulates other transcription factors in a graded manner that depends on signal intensity. A recent paper by Graves and colleagues reveals how a group of phosphorylation sites in Ets-1 regulates its DNA binding activity. Their studies provide new insight into the importance of multisite phosphorylation for the graded regulation of transcription and highlight the involvement of allosteric mechanisms in this process.

  4. Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription.

    Science.gov (United States)

    Rajani, Karishma R; Pettit Kneller, Elizabeth L; McKenzie, Margie O; Horita, David A; Chou, Jeff W; Lyles, Douglas S

    2012-09-01

    Vesicular stomatitis virus (VSV) suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M) protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription.

  5. Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription.

    Directory of Open Access Journals (Sweden)

    Karishma R Rajani

    2012-09-01

    Full Text Available Vesicular stomatitis virus (VSV suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription.

  6. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Hepatitis C virus core protein inhibits interferon production by a human plasmacytoid dendritic cell line and dysregulates interferon regulatory factor-7 and signal transducer and activator of transcription (STAT) 1 protein expression.

    Science.gov (United States)

    Stone, Amy E L; Mitchell, Angela; Brownell, Jessica; Miklin, Daniel J; Golden-Mason, Lucy; Polyak, Stephen J; Gale, Michael J; Rosen, Hugo R

    2014-01-01

    Plasmacytoid Dendritic Cells (pDCs) represent a key immune cell population in the defense against viruses. pDCs detect viral pathogen associated molecular patterns (PAMPs) through pattern recognition receptors (PRR). PRR/PAMP interactions trigger signaling events that induce interferon (IFN) production to initiate local and systemic responses. pDCs produce Type I and Type III (IFNL) IFNs in response to HCV RNA. Extracellular HCV core protein (Core) is found in the circulation in chronic infection. This study defined how Core modulates PRR signaling in pDCs. Type I and III IFN expression and production following exposure to recombinant Core or β-galactosiade was assessed in human GEN2.2 cells, a pDC cell line. Core suppressed type I and III IFN production in response to TLR agonists and the HCV PAMP agonist of RIG-I. Core suppression of IFN induction was linked with decreased IRF-7 protein levels and increased non-phosphorylated STAT1 protein. Circulating Core protein interferes with PRR signaling by pDCs to suppress IFN production. Strategies to define and target Core effects on pDCs may serve to enhance IFN production and antiviral actions against HCV.

  8. A Function for the hnRNP A1/A2 Proteins in Transcription Elongation.

    Directory of Open Access Journals (Sweden)

    Bruno Lemieux

    Full Text Available The hnRNP A1 and A2 proteins regulate processes such as alternative pre-mRNA splicing and mRNA stability. Here, we report that a reduction in the levels of hnRNP A1 and A2 by RNA interference or their cytoplasmic retention by osmotic stress drastically increases the transcription of a reporter gene. Based on previous work, we propose that this effect may be linked to a decrease in the activity of the transcription elongation factor P-TEFb. Consistent with this hypothesis, the transcription of the reporter gene was stimulated when the catalytic component of P-TEFb, CDK9, was inhibited with DRB. While low levels of A1/A2 stimulated the association of RNA polymerase II with the reporter gene, they also increased the association of CDK9 with the repressor 7SK RNA, and compromised the recovery of promoter-distal transcription on the Kitlg gene after the release of pausing. Transcriptome analysis revealed that more than 50% of the genes whose expression was affected by the siRNA-mediated depletion of A1/A2 were also affected by DRB. RNA polymerase II-chromatin immunoprecipitation assays on DRB-treated and A1/A2-depleted cells identified a common set of repressed genes displaying increased occupancy of polymerases at promoter-proximal locations, consistent with pausing. Overall, our results suggest that lowering the levels of hnRNP A1/A2 elicits defective transcription elongation on a fraction of P-TEFb-dependent genes, hence favoring the transcription of P-TEFb-independent genes.

  9. Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein.

    Directory of Open Access Journals (Sweden)

    Dorothea Droll

    Full Text Available In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70 synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3'-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures.

  10. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    Science.gov (United States)

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  11. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fabian Machens

    2017-10-01

    Full Text Available Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.

  12. Stimulation of TRPV1 channels activates the AP-1 transcription factor.

    Science.gov (United States)

    Backes, Tobias M; Rössler, Oliver G; Hui, Xin; Grötzinger, Carsten; Lipp, Peter; Thiel, Gerald

    2018-02-13

    Transient receptor potential vanilloid 1 (TRPV1) channels were originally described as the receptors of capsaicin, the main constituent of hot chili pepper. The biological functions of TRPV1 channels include pain sensation and inflammatory thermal hyperalgesia. Here, we show that stimulation of HEK293 cells expressing TRPV1 channels (H2C1 cells) with capsaicin or the TRPV1 ligand resiniferatoxin activated transcription mediated by the transcription factor AP-1. No cell death was occurring under these experimental conditions. The AP-1 activity was not altered in capsaicin or resiniferatoxin-stimulated HEK293 cells lacking TRPV1. We identified the AP-1 DNA binding site as the capsaicin/resiniferatoxin-responsive element. Stimulation with the TRPV1 ligand N-arachidonoyldopamine increased AP-1 activity in a TRPV1-dependent and TRPV1-independent manner. Stimulation of TRPV1 channels induced an influx of Ca 2+ into the cells and this rise in intracellular Ca 2+ was essential for activating AP-1 in capsaicin or resiniferatoxin-stimulated cells. N-arachidonoyldopamine stimulation induced a rise in intracellular Ca 2+ in a TRPV-1 dependent and independent manner. AP-1 is a dimeric transcription factor, composed of proteins of the c-Jun, c-Fos and ATF families. Stimulation of TRPV1 channels with capsaicin increased c-Jun and c-Fos biosynthesis in H2C1 cells. The signal transduction of capsaicin, leading to enhanced AP-1-mediated transcription, required extracellular signal-regulated protein kinase ERK1/2 as a signal transducer and the activation of the transcription factors c-Jun and ternary complex factor. Together, these data suggest that the intracellular functions of TRPV1 stimulation may rely on the activation of a stimulus-regulated protein kinase and stimulus-responsive transcription factors. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  14. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Anamitra

    2007-06-01

    Full Text Available Abstract Background It has become evident that host cells react to recombinant protein production with a variety of metabolic and intrinsic stresses such as the unfolded protein response (UPR pathway. Additionally, environmental conditions such as growth temperature may have a strong impact on cell physiology and specific productivity. However, there is little information about the molecular reactions of the host cells on a genomic level, especially in context to recombinant protein secretion. For the first time, we monitored transcriptional regulation of a subset of marker genes in the common production host Pichia pastoris to gain insights into the general physiological status of the cells under protein production conditions, with the main focus on secretion stress related genes. Results Overexpression of the UPR activating transcription factor Hac1p was employed to identify UPR target genes in P. pastoris and the responses were compared to those known for Saccharomyces cerevisiae. Most of the folding/secretion related genes showed similar regulation patterns in both yeasts, whereas genes associated with the general stress response were differentially regulated. Secretion of an antibody Fab fragment led to induction of UPR target genes in P. pastoris, however not to the same magnitude as Hac1p overproduction. Overexpression of S. cerevisiae protein disulfide isomerase (PDI1 enhances Fab secretion rates 1.9 fold, but did not relief UPR stress. Reduction of cultivation temperature from 25°C to 20°C led to a 1.4-fold increase of specific product secretion rate in chemostat cultivations, although the transcriptional levels of the product genes (Fab light and heavy chain were significantly reduced at the lower temperature. A subset of folding related genes appeared to be down-regulated at the reduced temperature, whereas transcription of components of the ER associated degradation and the secretory transport was enhanced. Conclusion Monitoring of

  15. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    International Nuclear Information System (INIS)

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel

    2007-01-01

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment

  16. Expression of sterol regulatory element-binding transcription factor (SREBF 2 and SREBF cleavage-activating protein (SCAP in human atheroma and the association of their allelic variants with sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Kytömäki Leena

    2008-12-01

    Full Text Available Abstract Background Disturbed cellular cholesterol homeostasis may lead to accumulation of cholesterol in human atheroma plaques. Cellular cholesterol homeostasis is controlled by the sterol regulatory element-binding transcription factor 2 (SREBF-2 and the SREBF cleavage-activating protein (SCAP. We investigated whole genome expression in a series of human atherosclerotic samples from different vascular territories and studied whether the non-synonymous coding variants in the interacting domains of two genes, SREBF-2 1784G>C (rs2228314 and SCAP 2386A>G, are related to the progression of coronary atherosclerosis and the risk of pre-hospital sudden cardiac death (SCD. Methods Whole genome expression profiling was completed in twenty vascular samples from carotid, aortic and femoral atherosclerotic plaques and six control samples from internal mammary arteries. Three hundred sudden pre-hospital deaths of middle-aged (33–69 years Caucasian Finnish men were subjected to detailed autopsy in the Helsinki Sudden Death Study. Coronary narrowing and areas of coronary wall covered with fatty streaks or fibrotic, calcified or complicated lesions were measured and related to the SREBF-2 and SCAP genotypes. Results Whole genome expression profiling showed a significant (p = 0.02 down-regulation of SREBF-2 in atherosclerotic carotid plaques (types IV-V, but not in the aorta or femoral arteries (p = NS for both, as compared with the histologically confirmed non-atherosclerotic tissues. In logistic regression analysis, a significant interaction between the SREBF-2 1784G>C and the SCAP 2386A>G genotype was observed on the risk of SCD (p = 0.046. Men with the SREBF-2 C allele and the SCAP G allele had a significantly increased risk of SCD (OR 2.68, 95% CI 1.07–6.71, compared to SCAP AA homologous subjects carrying the SREBF-2 C allele. Furthermore, similar trends for having complicated lesions and for the occurrence of thrombosis were found, although the

  17. Mutational analysis of the activator of late transcription, Alt , in the lactococcal bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Pedersen, Margit; Hammer, Karin

    2007-01-01

    An activator protein, Alt, synthesized during the early state of lytic infection is required for transcription of the late operon in the lactococcal phage TP901-1. In order to identify amino acid residues in the Alt protein required for activation of the TP901-1 late promoter, Plate, hydroxylamin...

  18. The DNA damage- and transcription-associated protein Paxip1 controls thymocyte development and emigration

    DEFF Research Database (Denmark)

    Callen, E.; Faryabi, R.B.; Daniel, Jeremy Austin

    2012-01-01

    -mediated cleavage and repair during V(D)J recombination in CD4 CD8 DP thymocytes. Loss of PAXIP1 in developing thymocytes diminished Jα H3K4me3 and germline transcription, suppressed double strand break formation at 3' Jα segments, but resulted in accumulation of unresolved T cell receptor α-chain gene (Tcra......Histone 3 lysine 4 trimethylation (H3K4me3) is associated with promoters of active genes and found at hot spots for DNA recombination. Here we have shown that PAXIP1 (also known as PTIP), a protein associated with MLL3 and MLL4 methyltransferase and the DNA damage response, regulates RAG...

  19. Engineering zinc finger protein transcription factors : The therapeutic relevance of switching endogenous gene expression on or off at command

    NARCIS (Netherlands)

    Gommans, WM; Haisma, HJ; Rots, MG

    2005-01-01

    Modulating gene expression directly at the DNA level represents a novel approach to control cellular processes. In this respect, zinc finger protein DNA-binding domains can be engineered to target virtually any gene. Coupling of a transcription activation or repression domain to these zinc fingers

  20. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Ryu, Kook Hui; Kang, Yeon Hee; Park, Young-hwan; Hwang, Ildoo; Schiefelbein, John; Lee, Myeong Min

    2005-11-01

    The Arabidopsis root epidermis is composed of two types of cells, hair cells and non-hair cells, and their fate is determined in a position-dependent manner. WEREWOLF (WER), a R2R3 MYB protein, has been shown genetically to function as a master regulator to control both of the epidermal cell fates. To directly test the proposed role of WER in this system, we examined its subcellular localization and defined its transcriptional activation properties. We show that a WER-GFP fusion protein is functional and accumulates in the nucleus of the N-position cells in the Arabidopsis root epidermis, as expected for a transcriptional regulator. We also find that a modified WER protein with a strong activation domain (WER-VP16) promotes the formation of both epidermal cell types, supporting the view that WER specifies both cell fates. In addition, we used the glucocorticoid receptor (GR) inducible system to show that CPC transcription is regulated directly by WER. Using EMSA, we found two WER-binding sites (WBSs; WBSI and WBSII) in the CPC promoter. WER-WBSI binding was confirmed in vivo using the yeast one-hybrid assay. Binding between the WER protein and both WBSs (WBSI and WBSII), and the importance of the two WBSs in CPC promoter activity were confirmed in Arabidopsis. These results provide experimental support for the proposed role of WER as an activator of gene transcription during the specification of both epidermal cell fates.

  1. Global SUMOylation on active chromatin is an acute heat stress response restricting transcription.

    Science.gov (United States)

    Niskanen, Einari A; Malinen, Marjo; Sutinen, Päivi; Toropainen, Sari; Paakinaho, Ville; Vihervaara, Anniina; Joutsen, Jenny; Kaikkonen, Minna U; Sistonen, Lea; Palvimo, Jorma J

    2015-07-28

    Cells have developed many ways to cope with external stress. One distinctive feature in acute proteotoxic stresses, such as heat shock (HS), is rapid post-translational modification of proteins by SUMOs (small ubiquitin-like modifier proteins; SUMOylation). While many of the SUMO targets are chromatin proteins, there is scarce information on chromatin binding of SUMOylated proteins in HS and the role of chromatin SUMOylation in the regulation of transcription. We mapped HS-induced genome-wide changes in chromatin occupancy of SUMO-2/3-modified proteins in K562 and VCaP cells using ChIP-seq. Chromatin SUMOylation was further correlated with HS-induced global changes in transcription using GRO-seq and RNA polymerase II (Pol2) ChIP-seq along with ENCODE data for K562 cells. HS induced a rapid and massive rearrangement of chromatin SUMOylation pattern: SUMOylation was gained at active promoters and enhancers associated with multiple transcription factors, including heat shock factor 1. Concomitant loss of SUMOylation occurred at inactive intergenic chromatin regions that were associated with CTCF-cohesin complex and SETDB1 methyltransferase complex. In addition, HS triggered a dynamic chromatin binding of SUMO ligase PIAS1, especially onto promoters. The HS-induced SUMOylation on chromatin was most notable at promoters of transcribed genes where it positively correlated with active transcription and Pol2 promoter-proximal pausing. Furthermore, silencing of SUMOylation machinery either by depletion of UBC9 or PIAS1 enhanced expression of HS-induced genes. HS-triggered SUMOylation targets promoters and enhancers of actively transcribed genes where it restricts the transcriptional activity of the HS-induced genes. PIAS1-mediated promoter SUMOylation is likely to regulate Pol2-associated factors in HS.

  2. Identification of active transcriptional regulatory elements with GRO-seq

    Science.gov (United States)

    Danko, Charles G.; Hyland, Stephanie L.; Core, Leighton J.; Martins, Andre L.; Waters, Colin T; Lee, Hyung Won; Cheung, Vivian G.; Kraus, W. Lee; Lis, John T.; Siepel, Adam

    2015-01-01

    Transcriptional regulatory elements (TREs), including enhancers and promoters, determine the transcription levels of associated genes. We have recently shown that global run-on and sequencing (GRO-seq) with enrichment for 5'-capped RNAs reveals active TREs with high accuracy. Here, we demonstrate that active TREs can be identified by applying sensitive machine-learning methods to standard GRO-seq data. This approach allows TREs to be assayed together with gene expression levels and other transcriptional features in a single experiment. Our prediction method, called discriminative Regulatory Element detection from GRO-seq (dREG), summarizes GRO-seq read counts at multiple scales and uses support vector regression to identify active TREs. The predicted TREs are more strongly enriched for several marks of transcriptional activation, including eQTL, GWAS-associated SNPs, H3K27ac, and transcription factor binding than those identified by alternative functional assays. Using dREG, we survey TREs in eight human cell types and provide new insights into global patterns of TRE function. PMID:25799441

  3. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  4. Transcriptional activation of Mina by Sp1/3 factors.

    Science.gov (United States)

    Lian, Shangli; Potula, Hari Hara S K; Pillai, Meenu R; Van Stry, Melanie; Koyanagi, Madoka; Chung, Linda; Watanabe, Makiko; Bix, Mark

    2013-01-01

    Mina is an epigenetic gene regulatory protein known to function in multiple physiological and pathological contexts, including pulmonary inflammation, cell proliferation, cancer and immunity. We showed previously that the level of Mina gene expression is subject to natural genetic variation linked to 21 SNPs occurring in the Mina 5' region. In order to explore the mechanisms regulating Mina gene expression, we set out to molecularly characterize the Mina promoter in the region encompassing these SNPs. We used three kinds of assays--reporter, gel shift and chromatin immunoprecipitation--to analyze a 2 kb genomic fragment spanning the upstream and intron 1 regions flanking exon 1. Here we discovered a pair of Mina promoters (P1 and P2) and a P1-specific enhancer element (E1). Pharmacologic inhibition and siRNA knockdown experiments suggested that Sp1/3 transcription factors trigger Mina expression through additive activity targeted to a cluster of four Sp1/3 binding sites forming the P1 promoter. These results set the stage for comprehensive analysis of Mina gene regulation from the context of tissue specificity, the impact of inherited genetic variation and the nature of upstream signaling pathways.

  5. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.; Tamás, Markus J.

    2015-12-28

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.

  6. Neuromodulatory effect of Gαs- or Gαq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons.

    Science.gov (United States)

    Fukuchi, Mamoru; Tabuchi, Akiko; Kuwana, Yuki; Watanabe, Shinjiro; Inoue, Minami; Takasaki, Ichiro; Izumi, Hironori; Tanaka, Ayumi; Inoue, Ran; Mori, Hisashi; Komatsu, Hidetoshi; Takemori, Hiroshi; Okuno, Hiroyuki; Bito, Haruhiko; Tsuda, Masaaki

    2015-04-08

    Although coordinated molecular signaling through excitatory and modulatory neurotransmissions is critical for the induction of immediate early genes (IEGs), which lead to effective changes in synaptic plasticity, the intracellular mechanisms responsible remain obscure. Here we measured the expression of IEGs and used bioluminescence imaging to visualize the expression of Bdnf when GPCRs, major neuromodulator receptors, were stimulated. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor (PAC1), a Gαs/q-protein-coupled GPCR, with PACAP selectively activated the calcineurin (CN) pathway that is controlled by calcium signals evoked via NMDAR. This signaling pathway then induced the expression of Bdnf and CN-dependent IEGs through the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Intracerebroventricular injection of PACAP and intraperitoneal administration of MK801 in mice demonstrated that functional interactions between PAC1 and NMDAR induced the expression of Bdnf in the brain. Coactivation of NMDAR and PAC1 synergistically induced the expression of Bdnf attributable to selective activation of the CN pathway. This CN pathway-controlled expression of Bdnf was also induced by stimulating other Gαs- or Gαq-coupled GPCRs, such as dopamine D1, adrenaline β, CRF, and neurotensin receptors, either with their cognate agonists or by direct stimulation of the protein kinase A (PKA)/PKC pathway with chemical activators. Thus, the GPCR-induced expression of IEGs in coordination with NMDAR might occur via the selective activation of the CN/CRTC1/CREB pathway under simultaneous excitatory and modulatory synaptic transmissions in neurons if either the Gαs/adenylate cyclase/PKA or Gαq/PLC/PKC-mediated pathway is activated. Copyright © 2015 the authors 0270-6474/15/355606-19$15.00/0.

  7. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki, E-mail: sueyoshi@ag.kagawa-u.ac.jp

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  8. Transcriptional regulation of human dual specificity protein phosphatase 1 (DUSP1 gene by glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Lauren E Shipp

    2010-10-01

    Full Text Available Glucocorticoids are potent anti-inflammatory agents commonly used to treat inflammatory diseases. They convey signals through the intracellular glucocorticoid receptor (GR, which upon binding to ligands, associates with genomic glucocorticoid response elements (GREs to regulate transcription of associated genes. One mechanism by which glucocorticoids inhibit inflammation is through induction of the dual specificity phosphatase-1 (DUSP1, a.k.a. mitogen-activated protein kinase phosphatase-1, MKP-1 gene.We found that glucocorticoids rapidly increased transcription of DUSP1 within 10 minutes in A549 human lung adenocarcinoma cells. Using chromatin immunoprecipitation (ChIP scanning, we located a GR binding region between -1421 and -1118 upstream of the DUSP1 transcription start site. This region is active in a reporter system, and mutagenesis analyses identified a functional GRE located between -1337 and -1323. We found that glucocorticoids increased DNase I hypersensitivity, reduced nucleosome density, and increased histone H3 and H4 acetylation within genomic regions surrounding the GRE. ChIP experiments showed that p300 was recruited to the DUSP1 GRE, and RNA interference experiments demonstrated that reduction of p300 decreased glucocorticoid-stimulated DUSP1 gene expression and histone H3 hyperacetylation. Furthermore, overexpression of p300 potentiated glucocorticoid-stimulated activity of a reporter gene containing the DUSP1 GRE, and this coactivation effect was compromised when the histone acetyltransferase domain was mutated. ChIP-reChIP experiments using GR followed by p300 antibodies showed significant enrichment of the DUSP1 GRE upon glucocorticoid treatment, suggesting that GR and p300 are in the same protein complex recruited to the DUSP1 GRE.Our studies identified a functional GRE for the DUSP1 gene. Moreover, the transcriptional activation of DUSP1 by glucocorticoids requires p300 and a rapid modification of the chromatin structure

  9. Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function.

    Directory of Open Access Journals (Sweden)

    Irene Guendel

    Full Text Available BACKGROUND: Approximately half of hereditary breast cancers have mutations in either BRCA1 or BRCA2. BRCA1 is a multifaceted tumor suppressor protein that has implications in processes such as cell cycle, transcription, DNA damage response and chromatin remodeling. This multifunctional nature of BRCA1 is achieved by exerting its many effects through modulation of transcription. Many cellular events are dictated by covalent modification of proteins, an important mechanism in regulating protein and genome function; of which protein methylation is an important posttranslational modification with activating or repressive effects. METHODS/PRINCIPAL FINDINGS: Here we demonstrate for the first time that BRCA1 is methylated both in breast cancer cell lines and breast cancer tumor samples at arginine and lysine residues through immunoprecipitation and western blot analysis. Arginine methylation by PRMT1 was observed in vitro and the region of BRCA1 504-802 shown to be highly methylated. PRMT1 was detected in complex with BRCA1 504-802 through in vitro binding assays and co-immunoprecipitated with BRCA1. Inhibition of methylation resulted in decreased BRCA1 methylation and alteration of BRCA1 binding to promoters in vivo as shown through chromatin immunoprecipitation assays. Knockdown of PRMT1 also resulted in increased BRCA1 binding to particular promoters in vivo. Finally, following methylation inhibition, Sp1 was found to preferentially associate with hypo-methylated BRCA1 and STAT1 was found to preferentially associate with hyper-methylated BRCA1. CONCLUSIONS/SIGNIFICANCE: These results suggest that methylation may influence either the ability of BRCA1 to bind to specific promoters or protein-protein interactions which alters the recruitment of BRCA1 to these promoters. Thus, given the importance of BRCA1 to genomic stability, methylation of BRCA1 may ultimately affect the tumor suppressor ability of BRCA1.

  10. Protein interactions of heat stress transcription factors from Lycopersicon peruvianum

    OpenAIRE

    Calligaris, Raffaella

    2006-01-01

    The heat stress response is characterized by the presence of heat stress transcription factors (Hsfs) which mediate transcription of heat stress genes. In tomato (Lycopersicon peruvianum) cell cultures the simultaneous expression of four Hsfs, which are either constitutively (HsfA1 and HsfA3) or heat-stress inducible (HsfA2 and HsfB1) expressed, results in a complex network with dynamically changing cellular levels, intracellular localization and functional interactions. In order to examine t...

  11. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    KAUST Repository

    Roy, S.

    2015-06-27

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation.

  12. Heterodimerization of the transcription factors E2F-1 and DP-1 is required for binding to the adenovirus E4 (ORF6/7) protein

    DEFF Research Database (Denmark)

    Helin, K; Harlow, E

    1994-01-01

    Adenovirus infection leads to E1A-dependent activation of the transcription factor E2F. E2F has recently been identified in complexes with cellular proteins such as the retinoblastoma protein (pRB) and the two pRB family members p107 and p130. E1A dissociates E2F from these cellular proteins...

  13. A transcription unit at the ken and barbie gene locus encodes a novel Drosophila zinc finger protein.

    Science.gov (United States)

    Kühnlein, R P; Chen, C K; Schuh, R

    1998-12-01

    We describe a novel Drosophila transcription unit, located in chromosome region 60A. It encodes a zinc finger protein that is expressed in distinct spatial and temporal patterns during embryogenesis. Its initial expression occurs in a stripe at the anterior and the posterior trunk boundary, respectively. The two stripes are activated and spatially controlled by gap-gene activities. The P-element of the enhancer trap line l(2)02970 is inserted in the 5'-region of the transcript and causes a ken and barbie (ken) phenotype, associated with malformation of male genital structures.

  14. Aerobic glycolysis tunes YAP/TAZ transcriptional activity.

    Science.gov (United States)

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-05-12

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ. © 2015 The Authors.

  15. A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity.

    Science.gov (United States)

    Nakabeppu, Y; Nathans, D

    1991-02-22

    Fos and Jun transcription factors are induced by a variety of extracellular signaling agents. We describe here an unusual member of the Fos family that is also induced, namely, a truncated form of FosB (delta FosB) missing the C-terminal 101 amino acids of FosB. delta FosB retains the dimerization and DNA-binding activities of FosB but has lost the ability in transfection assays to activate a promoter with an AP-1 site and to repress the c-fos promoter. Rather, delta FosB inhibits gene activation by Jun or Jun + Fos and inhibits repression of the c-fos promoter by FosB or c-Fos, presumably by competing with full-length Fos proteins at the steps of dimerization with Jun and binding to DNA. In stimulated cells delta FosB may act to limit the transcriptional effects of Fos and Jun proteins.

  16. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  17. NF-{kappa}B p65 represses {beta}-catenin-activated transcription of cyclin D1

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Injoo; Choi, Yong Seok; Jeon, Mi-Ya [National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology and Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701 (Korea, Republic of); Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr [National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology and Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701 (Korea, Republic of)

    2010-12-03

    Research highlights: {yields} Cyclin D1 transcription is directly activated by {beta}-catenin; however, {beta}-catenin-induced cyclin D1 transcription is reduced by NF-{kappa}B p65. {yields} Protein-protein interaction between NF-{kappa}B p65 and {beta}-catenin might be responsible for p65-mediated repression of cyclin D1. {yields} One of five putative binding sites, located further upstream of other sites, is the major {beta}-catenin binding site in the cyclin D1 promoter. {yields} NF-{kappa}B binding site in cyclin D1 is occupied not only by p65 but also by {beta}-catenin, which is dynamically regulated by the signal. -- Abstract: Signaling crosstalk between the {beta}-catenin and NF-{kappa}B pathways represents a functional network. To test whether the crosstalk also occurs on their common target genes, the cyclin D1 promoter was used as a model because it contains binding sites for both proteins. {beta}-catenin activated transcription from the cyclin D1 promoter, while co-expression of NF-{kappa}B p65 reduced {beta}-catenin-induced transcription. Chromatin immunoprecipitation revealed lithium chloride-induced binding of {beta}-catenin on one of the T-cell activating factor binding sites. More interestingly, {beta}-catenin binding was greatly reduced by NF-{kappa}B p65, possibly by the protein-protein interaction between the two proteins. Such a dynamic and complex binding of {beta}-catenin and NF-{kappa}B on promoters might contribute to the regulated expression of their target genes.

  18. Elk3 from hamster-a ternary complex factor with strong transcriptional repressor activity

    DEFF Research Database (Denmark)

    Hjortoe, G.M.; Weilguny, D.; Willumsen, Berthe Marie

    2005-01-01

    the transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c......-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3...

  19. A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tsai Chueh-Jen

    2010-01-01

    Full Text Available Abstract There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α and nuclear factor-kappa B (NF-κB were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors.

  20. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    DEFF Research Database (Denmark)

    Fang, Xin; Sastry, Anand; Mih, Nathan

    2017-01-01

    gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions...... algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose...... definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems...

  1. Individual transcriptional activity of estrogen receptors in primary breast cancer and its clinical significance

    International Nuclear Information System (INIS)

    Gohno, Tatsuyuki; Seino, Yuko; Hanamura, Toru; Niwa, Toshifumi; Matsumoto, Mitsuyo; Yaegashi, Nobuo; Oba, Hanako; Kurosumi, Masafumi; Takei, Hiroyuki; Yamaguchi, Yuri; Hayashi, Shin-ichi

    2012-01-01

    To predict the efficacy of hormonal therapy at the individual-level, immunohistochemical methods are used to analyze expression of classical molecular biomarkers such as estrogen receptor (ER), progesterone receptor (PgR), and HER2. However, the current diagnostic standard is not perfect for the individualization of diverse cases. Therefore, establishment of more accurate diagnostics is required. Previously, we established a novel method that enables analysis of ER transcriptional activation potential in clinical specimens using an adenovirus estrogen response element–green fluorescence protein (ERE-GFP) assay system. Using this assay, we assessed the ERE transcriptional activity of 62 primary breast cancer samples. In 40% of samples, we observed that ER protein expression was not consistent with ERE activity. Comparison of ERE activity with clinicopathological information revealed that ERE activity was significantly correlated with the ER target gene, PgR, rather than ER in terms of both protein and mRNA expression. Moreover, subgrouping of Luminal A-type breast cancer samples according to ERE activity revealed that ERα mRNA expression correlated with ER target gene mRNA expression in the high-, but not the low-, ERE-activity group. On the other hand, the low-ERE-activity group showed significantly higher mRNA expression of the malignancy biomarker Ki67 in association with disease recurrence in 5% of patients. Thus, these data suggest that ER expression does not always correlate with ER transcriptional activity. Therefore, in addition to ER protein expression, determination of ERE activity as an ER functional marker will be helpful for analysis of a variety of diverse breast cancer cases and the subsequent course of treatment

  2. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation.

    Science.gov (United States)

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease.

  3. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    TGFβ-induced expression of the NADPH oxidase Nox4 is essential for fibroblast-myofibroblast transition. Rho has been implicated in Nox4 regulation, but the underlying mechanisms are largely unknown. Myocardin-related transcription factor (MRTF), a Rho/actin polymerization-controlled coactivator o...

  4. Zinc finger protein 521 overexpression increased transcript levels of ...

    Indian Academy of Sciences (India)

    2016-02-12

    Feb 12, 2016 ... Zfp521 enhanced transcription levels of both EGFP and endogenous Fndc5. This result was confirmed by overexpression the aforementioned vectors in HEK cells and indicated that Zfp521 functions upstream of Fndc5 expression. It is most likely that Zfp521 may act through the binding to its response ...

  5. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    Directory of Open Access Journals (Sweden)

    Groscurth Peter

    2007-06-01

    Full Text Available Abstract Background Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522 were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. Results In this study we investigated generation of granulysin in lymphokine activated killer (LAK cells and antigen (Listeria specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation. Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. Conclusion This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing.

  6. Changing MADS-Box Transcription Factor Protein-Protein Interactions as a Mechanism for Generating Floral Morphological Diversity.

    Science.gov (United States)

    Bartlett, Madelaine E

    2017-12-01

    Flowers display fantastic morphological diversity. Despite extreme variability in form, floral organ identity is specified by a core set of deeply conserved proteins-the floral MADS-box transcription factors. This indicates that while core gene function has been maintained, MADS-box transcription factors have evolved to regulate different downstream genes. Thus, the evolution of gene regulation downstream of the MADS-box transcription factors is likely central to the evolution of floral form. Gene regulation is determined by the combination of transcriptional regulators present at a particular cis-regulatory element at a particular time. Therefore, the interactions between transcription factors can be of profound importance in determining patterns of gene regulation. Here, after a short primer on flowers and floral morphology, I discuss the centrality of protein-protein interactions to MADS-box transcription factor function, and review the evidence that the evolution of MADS-box protein-protein interactions is a key driver in the evolution of gene regulation downstream of the MADS-box genes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Light induced changes in protein expression and uniform regulation of transcription in the thylakoid lumen of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Irene Granlund

    Full Text Available In plants oxygenic photosynthesis is performed by large protein complexes found in the thylakoid membranes of chloroplasts. The soluble thylakoid lumen space is a narrow and compressed region within the thylakoid membrane which contains 80-200 proteins. Because the thylakoid lumen proteins are in close proximity to the protein complexes of photosynthesis, it is reasonable to assume that the lumen proteins are highly influenced by the presence of light. To identify light regulated proteins in the thylakoid lumen of Arabidopsis thaliana we developed a faster thylakoid preparation and combined this with difference gel electrophoresis (DIGE of dark-adapted and light-adapted lumen proteomes. The DIGE experiments revealed that 19 lumen proteins exhibit increased relative protein levels after eight hour light exposure. Among the proteins showing increased abundance were the PsbP and PsbQ subunits of Photosystem II, major plastocyanin and several other proteins of known or unknown function. In addition, co-expression analysis of publicly available transcriptomic data showed that the co-regulation of lumen protein expression is not limited to light but rather that lumen protein genes exhibit a high uniformity of expression. The large proportion of thylakoid lumen proteins displaying increased abundance in light-adapted plants, taken together with the observed uniform regulation of transcription, implies that the majority of thylakoid lumen proteins have functions that are related to photosynthetic activity. This is the first time that an analysis of the differences in protein level during a normal day/night cycle has been performed and it shows that even a normal cycle of light significantly influences the thylakoid lumen proteome. In this study we also show for the first time, using co-expression analysis, that the prevalent lumenal chloroplast proteins are very similarly regulated at the level of transcription.

  8. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation.

    Science.gov (United States)

    Zhao, Rui; Nakamura, Tetsuya; Fu, Yu; Lazar, Zsolt; Spector, David L

    2011-10-09

    Although transmission of the gene expression program from mother to daughter cells has been suggested to be mediated by gene bookmarking, the precise mechanism by which bookmarking mediates post-mitotic transcriptional re-activation has been unclear. Here, we used a real-time gene expression system to quantitatively demonstrate that transcriptional activation of the same genetic locus occurs with a significantly more rapid kinetics in post-mitotic cells versus interphase cells. RNA polymerase II large subunit (Pol II) and bromodomain protein 4 (BRD4) were recruited to the locus in a different sequential order on interphase initiation versus post-mitotic re-activation resulting from the recognition by BRD4 of increased levels of histone H4 Lys 5 acetylation (H4K5ac) on the previously activated locus. BRD4 accelerated the dynamics of messenger RNA synthesis by de-compacting chromatin and hence facilitating transcriptional re-activation. Using a real-time quantitative approach, we identified differences in the kinetics of transcriptional activation between interphase and post-mitotic cells that are mediated by a chromatin-based epigenetic mechanism.

  9. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    Science.gov (United States)

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  10. Dissection of the interaction between the intrinsically disordered YAP protein and the transcription factor TEAD.

    Science.gov (United States)

    Mesrouze, Yannick; Bokhovchuk, Fedir; Meyerhofer, Marco; Fontana, Patrizia; Zimmermann, Catherine; Martin, Typhaine; Delaunay, Clara; Erdmann, Dirk; Schmelzle, Tobias; Chène, Patrick

    2017-04-21

    TEAD ( TEA /ATTS d omain) transcription factors are the most distal effectors of the Hippo pathway. YAP ( Y es- a ssociated p rotein) is a coactivator protein which, upon binding to TEAD proteins, stimulates their transcriptional activity. Since the Hippo pathway is deregulated in various cancers, designing inhibitors of the YAP:TEAD interaction is an attractive therapeutic strategy for oncology. Understanding the molecular events that take place at the YAP:TEAD interface is therefore important not only to devise drug discovery approaches, but also to gain knowledge on TEAD regulation. In this report, combining single site-directed mutagenesis and double mutant analyses, we conduct a detailed analysis on the role of several residues located at the YAP:TEAD interface. Our results provide quantitative understanding of the interactions taking place at the YAP:TEAD interface and give insights into the formation of the YAP:TEAD complex and more particularly on the interaction between TEAD and the Ω-loop found in YAP.

  11. Isolated HIV-1 core is active for reverse transcription

    Directory of Open Access Journals (Sweden)

    Harrich David

    2007-10-01

    Full Text Available Abstract Whether purified HIV-1 virion cores are capable of reverse transcription or require uncoating to be activated is currently controversial. To address this question we purified cores from a virus culture and tested for the ability to generate authentic reverse transcription products. A dense fraction (approximately 1.28 g/ml prepared without detergent, possibly derived from disrupted virions, was found to naturally occur as a minor sub-fraction in our preparations. Core-like particles were identified in this active fraction by electron microscopy. We are the first to report the detection of authentic strong-stop, first-strand transfer and full-length minus strand products in this core fraction without requirement for an uncoating activity.

  12. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations

    Science.gov (United States)

    Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens

    2017-01-01

    Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators. PMID:28301511

  13. Fem1b promotes ubiquitylation and suppresses transcriptional activity of Gli1.

    Science.gov (United States)

    Gilder, Andrew S; Chen, Yong-Bin; Jackson, Ramon J; Jiang, Jin; Maher, Joseph F

    2013-10-25

    The mammalian Fem1b gene encodes a homolog of FEM-1, a protein in the sex-determination pathway of the nematode Caenorhabditis elegans. Fem1b and FEM-1 proteins each contain a VHL-box motif that mediates their interaction with certain E3 ubiquitin ligase complexes. In C. elegans, FEM-1 negatively regulates the transcription factor TRA-1, and functions as an E3 ubiquitin ligase substrate recognition subunit to target TRA-1 for ubiquitylation. TRA-1 is homologous to the mammalian Gli1 protein, a transcription factor that mediates Hedgehog signaling as well as having Hedgehog-independent functions. Whether the interaction between nematode FEM-1 and TRA-1 proteins is conserved, between corresponding mammalian homologs, has not been reported. Herein, we show that Fem1b interacts with Gli1 within cells, and directly binds Gli1. Fem1b also promotes ubiquitylation of Gli1, suppresses transcriptional activation by Gli1, and attenuates an oncogenic Gli1 autoregulatory loop in cancer cells, all dependent on the VHL-box of Fem1b. These findings have implications for understanding the cellular functions of Fem1b, and the regulation of Gli1 oncoprotein activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Carson, Andrew R.; Scherer, Stephen W.

    2006-01-01

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNA is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions

  15. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.

    Science.gov (United States)

    Shapiro-Reznik, Mika; Jilg, Anje; Lerner, Hadas; Earnest, David J; Zisapel, Nava

    2012-01-01

    The neurexin genes (NRXN1/2/3) encode two families (α and β) of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4). Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN) act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively) were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic scaffolding proteins

  16. RAGE and S100 protein transcription levels are highly variable in human melanoma tumors and cells.

    Science.gov (United States)

    Leclerc, Estelle; Heizmann, Claus W; Vetter, Stefan W

    2009-01-01

    The Receptor for Advanced Glycation Endproducts (RAGE) has been suggested to play an important role in melanoma. Animal studies with anti-RAGE antibodies have shown that RAGE blockade leads to reduced melanoma tumor growth and metastasis formation. RAGE is a multiligand receptor and among its ligands are the Ca-binding S100 proteins. Certain S100 proteins are differentially expressed in melanoma. For example, S100B is currently used as a reliable prognostic biomarker in patients with malignant melanoma. We have surveyed 40 human melanoma tumor samples for the transcription of RAGE and five of its known S100 protein ligands. Compared to normal skin tissue, we found highly significant (p no significant difference in transcription of S100A6 and S100A10 was observed. RAGE showed slightly increased transcription in stage IV. Between individual tumor samples tremendous differences in transcription of the S100 proteins were observed, whereas RAGE expression showed relatively little variance. We also analyzed three well-characterized melanoma cell lines for S100 and RAGE expression. The S100 protein transcription profile showed clear differences between cultured melanoma cells and melanoma tumor tissue. Detailed profiling of S100 and RAGE transcription in melanoma tumors in combination with imunohisto-chemical and clinical data may lead to improved molecular diagnostic of melanoma and subsequently may facilitate improved treatment in the future.

  17. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5.

    Science.gov (United States)

    Nezich, Catherine L; Wang, Chunxin; Fogel, Adam I; Youle, Richard J

    2015-08-03

    The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats-generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy.

  18. Abnormal Ergosterol Biosynthesis Activates Transcriptional Responses to Antifungal Azoles.

    Science.gov (United States)

    Hu, Chengcheng; Zhou, Mi; Wang, Wenzhao; Sun, Xianyun; Yarden, Oded; Li, Shaojie

    2018-01-01

    Fungi transcriptionally upregulate expression of azole efflux pumps and ergosterol biosynthesis pathway genes when exposed to antifungal agents that target ergosterol biosynthesis. To date, these transcriptional responses have been shown to be dependent on the presence of the azoles and/or depletion of ergosterol. Using an inducible promoter to regulate Neurospora crassa erg11 , which encodes the major azole target, sterol 14α-demethylase, we were able to demonstrate that the CDR4 azole efflux pump can be transcriptionally activated by ergosterol biosynthesis inhibition even in the absence of azoles. By analyzing ergosterol deficient mutants, we demonstrate that the transcriptional responses by cdr4 and, unexpectedly, genes encoding ergosterol biosynthesis enzymes ( erg genes) that are responsive to azoles, are not dependent on ergosterol depletion. Nonetheless, deletion of erg2 , which encodes C-8 sterol isomerase, also induced expression of cdr4 . Deletion of erg2 also induced the expression of erg24 , the gene encoding C-14 sterol reductase, but not other tested erg genes which were responsive to erg11 inactivation. This indicates that inhibition of specific steps of ergosterol biosynthesis can result in different transcriptional responses, which is further supported by our results obtained using different ergosterol biosynthesis inhibitors. Together with the sterol profiles, these results suggest that the transcriptional responses by cdr4 and erg genes are associated with accumulation of specific sterol intermediate(s). This was further supported by the fact that when the erg2 mutant was treated with ketoconazole, upstream inhibition overrode the effects by downstream inhibition on ergosterol biosynthesis pathway. Even though cdr4 expression is associated with the accumulation of sterol intermediates, intra- and extracellular sterol analysis by HPLC-MS indicated that the transcriptional induction of cdr4 did not result in efflux of the accumulated intermediate

  19. The transcriptional regulator Aire binds to and activates super-enhancers.

    Science.gov (United States)

    Bansal, Kushagra; Yoshida, Hideyuki; Benoist, Christophe; Mathis, Diane

    2017-03-01

    Aire is a transcription factor that controls T cell tolerance by inducing the expression of a large repertoire of genes specifically in thymic stromal cells. It interacts with scores of protein partners of diverse functional classes. We found that Aire and some of its partners, notably those implicated in the DNA-damage response, preferentially localized to and activated long chromatin stretches that were overloaded with transcriptional regulators, known as super-enhancers. We also identified topoisomerase 1 as a cardinal Aire partner that colocalized on super-enhancers and was required for the interaction of Aire with all of its other associates. We propose a model that entails looping of super-enhancers to efficiently deliver Aire-containing complexes to local and distal transcriptional start sites.

  20. Comparison of E1A CR3-dependent transcriptional activation across six different human adenovirus subgroups.

    Science.gov (United States)

    Ablack, Jailal N G; Pelka, Peter; Yousef, Ahmed F; Turnell, Andrew S; Grand, Roger J A; Mymryk, Joe S

    2010-12-01

    The largest E1A isoform of human adenovirus (Ad) includes a C-4 zinc finger domain within conserved region 3 (CR3) that is largely responsible for activating transcription of the early viral genes. CR3 interacts with multiple cellular factors, but its mechanism of action is modeled primarily on the basis of the mechanism for the prototype E1A protein of human Ad type 5. We expanded this model to include a representative member from each of the six human Ad subgroups. All CR3 domains tested were capable of transactivation. However, there were dramatic differences in their levels of transcriptional activation. Despite these functional variations, the interactions of these representative CR3s with known cellular transcriptional regulators revealed only modest differences. Four common cellular targets of all representative CR3s were identified: the proteasome component human Sug1 (hSug1)/S8, the acetyltransferases p300/CREB binding protein (CBP), the mediator component mediator complex subunit 23 (MED23) protein, and TATA binding protein (TBP). The first three factors appear to be critical for CR3 function. RNA interference against human TBP showed no significant reduction in transactivation by any CR3 tested. These results indicate that the cellular factors previously shown to be important for transactivation by Ad5 CR3 are similarly bound by the E1A proteins of other types. This was confirmed experimentally using a transcriptional squelching assay, which demonstrated that the CR3 regions of each Ad type could compete with Ad5 CR3 for limiting factors. Interestingly, a mutant of Ad5 CR3 (V147L) was capable of squelching wild-type Ad5 CR3, despite its failure to bind TBP, MED23, p300/CBP-associated factor (pCAF), or p300/CBP, suggestive of the possibility that an additional as yet unidentified cellular factor is required for transactivation by E1A CR3.

  1. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise; Snoek, Tim; Kildegaard, Kanchana Rueksomtawin

    2016-01-01

    Whole-cell biocatalysts have proven a tractable path toward sustainable production of bulk and fine chemicals. Yet the screening of libraries of cellular designs to identify best-performing biocatalysts is most often a low-throughput endeavor. For this reason, the development of biosensors enabling...... real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily...... of LysR-type transcriptional regulators (LTTRs). We identified a design supporting LTTR-dependent activation of reporter gene expression in the presence of cognate small-molecule inducers. As proof of principle, we applied the biosensors for in vivo screening of cells producing naringenin or cis...

  2. Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation.

    Science.gov (United States)

    Ngo, Huu B; Lovely, Geoffrey A; Phillips, Rob; Chan, David C

    2014-01-01

    TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)--the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.

  3. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  4. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    Science.gov (United States)

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Dynamics and rRNA transcriptional activity of lactococci and lactobacilli during Cheddar cheese ripening.

    Science.gov (United States)

    Desfossés-Foucault, Émilie; LaPointe, Gisèle; Roy, Denis

    2013-08-16

    Cheddar cheese is a complex ecosystem where both the bacterial population and the cheese making process contribute to flavor and texture development. The aim of this study was to use molecular methods to evaluate the impact of milk heat treatment and ripening temperature on starter lactococci and non-starter lactic acid bacteria (NSLAB) throughout ripening of Cheddar cheese. Eight Cheddar cheese batches were manufactured (four with thermized and four with pasteurized milk) and ripened at 4, 7 and 12°C to analyze the bacterial composition and rRNA transcriptional activity reflecting the ability of lactococci and lactobacilli to synthesize proteins. Abundance and rRNA transcription of lactococci and lactobacilli were quantified after DNA and RNA extraction by using quantitative PCR (qPCR) and reverse transcription-quantitative PCR (RT-qPCR) targeting the 16S rRNA gene, respectively. Results showed that lactococci remained dominant throughout ripening, although 16S rRNA genome and cDNA copies/g of cheese decreased by four and two log copy numbers, respectively. Abundance and rRNA transcription of Lactobacillus paracasei, Lactobacillus buchneri/parabuchneri, Lactobacillus rhamnosus, Lactobacillus brevis, and Lactobacillus coryniformis as well as total lactobacilli were also estimated using specific 16S rRNA primers. L. paracasei and L. buchneri/parabuchneri concomitantly grew in cheese made from thermized milk at 7 and 12°C, although L. paracasei displayed the most rRNA transcription among Lactobacillus species. This work showed that rRNA transcriptional activity of lactococci decreased throughout ripening and supports the usefulness of RNA analysis to assess which bacterial species have the ability to synthesize proteins during ripening, and could thereby contribute to cheese quality. © 2013.

  6. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis

    Science.gov (United States)

    Suh, Jin Sook; Lee, Jue Yeon; Choi, Yoon Jung; You, Hyung Keun; Hong, Seong-Doo; Chung, Chong Pyoung; Park, Yoon Jeong

    2014-01-01

    Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP), and a transcriptional coactivator with a PDZ-binding motif (TAZ) protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC) differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in alginate gel for the purpose of localization and controlled release. The LMWP-TAZ fusion protein-loaded alginate gel matrix significantly increased bone formation in rabbit calvarial defects compared with alginate gel matrix mixed with free TAZ protein. The protein transduction of TAZ fused with cell-penetrating LMWP peptide was able selectively to stimulate osteogenesis in vitro and in vivo. Taken together, this fusion protein-transduction technology for osteogenic protein can thus be applied in combination with biomaterials for tissue regeneration and controlled release for tissue

  7. Transcriptional stimulation of the retina-specific QR1 gene upon growth arrest involves a Maf-related protein.

    Science.gov (United States)

    Pouponnot, C; Nishizawa, M; Calothy, G; Pierani, A

    1995-10-01

    The avian neural retina (NR) is derived from proliferating neuroectodermal precursors which differentiate after terminal mitosis and become organized in cell strata. Proliferation of postmitotic NR cells can be induced by infection with Rous sarcoma virus (RSV) and requires the expression of a functional v-Src protein. QR1 is a retina-specific gene expressed exclusively at the stage of growth arrest and differentiation during retinal development. In NR cells infected with tsPA101, an RSV mutant conditionally defective in pp60v-src mitogenic capacity, QR1 expression is downregulated in proliferating cells at 37 degrees C and is fully restored when the cells become quiescent as a result of pp60v-src inactivation at 41 degrees C. We were able to arrest proliferation of tsPA101-infected quail NR cells expressing an active v-Src protein by serum starvation at 37 degrees C. This allowed us to investigate the role of cell growth in regulating QR1 transcription. We report that QR1 transcription is stimulated in growth-arrested cells at 37 degrees C compared with that in proliferating cells maintained at the same temperature. Growth arrest-dependent stimulation of QR1 transcription requires the integrity of the A box, a previously characterized cis-acting element responsible for QR1 transcriptional stimulation upon v-Src inactivation and during retinal differentiation. We also show that formation of the C1 complex on the A box is increased upon growth arrest by serum starvation in the presence of an active v-Src oncoprotein. Thus, the C1 complex represents an important link between cell cycle and developmental control of QR1 gene transcription during NR differentiation and RSV infection. By using antibodies directed against different Maf proteins of the leucine zipper family and competition with Maf consensus site-containing oligonucleotides in a gel shift assay, we show that the C1 complex is likely to contain a Maf-related protein. We also show that a purified bacterially

  8. P53 and p73 differ in their ability to inhibit glucocorticoid receptor (GR transcriptional activity

    Directory of Open Access Journals (Sweden)

    Nie Linghu

    2006-12-01

    Full Text Available Abstract Background p53 is a tumor suppressor and potent inhibitor of cell growth. P73 is highly similar to p53 at both the amino acid sequence and structural levels. Given their similarities, it is important to determine whether p53 and p73 function in similar or distinct pathways. There is abundant evidence for negative cross-talk between glucocorticoid receptor (GR and p53. Neither physical nor functional interactions between GR and p73 have been reported. In this study, we examined the ability of p53 and p73 to interact with and inhibit GR transcriptional activity. Results We show that both p53 and p73 can bind GR, and that p53 and p73-mediated transcriptional activity is inhibited by GR co-expression. Wild-type p53 efficiently inhibited GR transcriptional activity in cells expressing both proteins. Surprisingly, however, p73 was either unable to efficiently inhibit GR, or increased GR activity slightly. To examine the basis for this difference, a series of p53:p73 chimeric proteins were generated in which corresponding regions of either protein have been swapped. Replacing N- and C-terminal sequences in p53 with the corresponding sequences from p73 prevented it from inhibiting GR. In contrast, replacing p73 N- and C-terminal sequences with the corresponding sequences from p53 allowed it to efficiently inhibit GR. Differences in GR inhibition were not related to differences in transcriptional activity of the p53:p73 chimeras or their ability to bind GR. Conclusion Our results indicate that both N- and C-terminal regions of p53 and p73 contribute to their regulation of GR. The differential ability of p53 and p73 to inhibit GR is due, in part, to differences in their N-terminal and C-terminal sequences.

  9. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  10. Signal transducer and activator of transcription 5 activation is sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat pancreatic beta-cells

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Richter, Henrijette E; Hansen, Johnny A

    2003-01-01

    in a time-dependent manner by hGH in INS-1 cells. Inhibition of protein synthesis by coincubation with cycloheximide did not affect the hGH-induced increase of cyclin D2 mRNA levels at 4 h. Expression of a dominant negative STAT5 mutant, STAT5aDelta749, partially inhibited cyclin D2 protein levels. INS-1...... cells transiently transfected with a cyclin D2 promoter-reporter construct revealed a 3- to 5-fold increase of transcriptional activity in response to hGH stimulation. Furthermore, coexpression of a constitutive active STAT5 mutant (either CA-STAT5a or CA-STAT5b) was sufficient to drive transactivation...

  11. Bacterial Genome Editing Strategy for Control of Transcription and Protein Stability

    DEFF Research Database (Denmark)

    Lauritsen, Ida; Martinez, Virginia; Ronda, Carlotta

    2018-01-01

    In molecular biology and cell factory engineering, tools that enable control of protein production and stability are highly important. Here, we describe protocols for tagging genes in Escherichia coli allowing for inducible degradation and transcriptional control of any soluble protein of interes...

  12. IscR regulates RNase LS activity by repressing rnlA transcription.

    Science.gov (United States)

    Otsuka, Yuichi; Miki, Kumiko; Koga, Mitsunori; Katayama, Natsu; Morimoto, Wakako; Takahashi, Yasuhiro; Yonesaki, Tetsuro

    2010-07-01

    The Escherichia coli endoribonuclease LS was originally identified as a potential antagonist of bacteriophage T4. When the T4 dmd gene is defective, RNase LS cleaves T4 mRNAs and antagonizes T4 reproduction. This RNase also plays an important role in RNA metabolisms in E. coli. rnlA is an essential gene for RNase LS activity, but the transcriptional regulation of this gene remains to be elucidated. An Fe-S cluster protein, IscR, acts as a transcription factor and controls the expression of genes that are necessary for Fe-S cluster biogenesis. Here, we report that overexpression of IscR suppressed RNase LS activity, causing the loss of antagonist activity against phage T4. This suppressive effect did not require the ligation of Fe-S cluster into IscR. beta-Galactosidase reporter assays showed that transcription from an rnlA promoter increased in iscR-deleted cells compared to wild-type cells, and gel-mobility shift assays revealed specific binding of IscR to the rnlA promoter region. RT-PCR analysis demonstrated that endogenous rnlA mRNA was reduced by overexpression of IscR and increased by deletion of iscR. From these results, we conclude that IscR negatively regulates transcription of rnlA and represses RNase LS activity.

  13. Tumor necrosis factor-α regulates human follicular dendritic cell-secreted protein gene transcription in gingival epithelial cells.

    Science.gov (United States)

    Iwai, Yasunobu; Noda, Keisuke; Yamazaki, Mizuho; Kato, Ayako; Mezawa, Masaru; Takai, Hideki; Nakayama, Yohei; Ogata, Yorimasa

    2018-01-22

    Follicular dendritic cell-secreted protein (FDC-SP) is a secreted protein expressed in follicular dendritic cells, periodontal ligament and junctional epithelium. To elucidate the transcriptional regulation of the human FDC-SP gene by tumor necrosis factor-α (TNF-α), we conducted real-time PCR, Western blotting, transient transfection analyses with chimeric constructs of the FDC-SP gene promoter linked to a luciferase reporter gene, gel mobility shift and chromatin immunoprecipitation assays using Ca9-22 gingival epithelial cells. TNF-α (10 ng/ml) induced FDC-SP mRNA and protein levels at 3 hr and reached maximum at 12 hr. In transient transfection assays, TNF-α (12 hr) increased the LUC activities of constructs between -116FDCSP and -948FDCSP including the human FDC-SP gene promoter. Transcriptional stimulations by TNF-α were partially inhibited in the -345FDCSP constructs that included 3-bp mutations in the YY1, GATA, CCAAT enhancer-binding protein 2 (C/EBP2) and C/EBP3. Transcriptional activities induced by TNF-α were inhibited by tyrosine kinase, MEK1/2 and phosphoinositide 3-kinase inhibitors. The results of ChIP assays showed that YY1, GATA and C/EBPβ transcription factors interacted with the YY1, GATA, C/EBP2 and C/EBP3 elements that were increased by TNF-α. These studies show that TNF-α stimulates human FDC-SP gene transcription by targeting YY1, GATA, C/EBP2 and C/EBP3 in the FDC-SP gene promoter. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  14. Zinc coordination is required for and regulates transcription activation by Epstein-Barr nuclear antigen 1.

    Directory of Open Access Journals (Sweden)

    Siddhesh Aras

    2009-06-01

    Full Text Available Epstein-Barr Nuclear Antigen 1 (EBNA1 is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO(2. Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO(2 and redox potential.

  15. Transcript and protein expression profile of PF11_0394, a Plasmodium falciparum protein expressed in salivary gland sporozoites

    Directory of Open Access Journals (Sweden)

    Schlarman Maggie S

    2012-03-01

    Full Text Available Abstract Background Plasmodium falciparum malaria is a significant problem around the world today, thus there is still a need for new control methods to be developed. Because the sporozoite displays dual infectivity for both the mosquito salivary glands and vertebrate host tissue, it is a good target for vaccine development. Methods The P. falciparum gene, PF11_0394, was chosen as a candidate for study due to its potential role in the invasion of host tissues. This gene, which was selected using a data mining approach from PlasmoDB, is expressed both at the transcriptional and protein levels in sporozoites and likely encodes a putative surface protein. Using reverse transcription-polymerase chain reaction (RT-PCR and green fluorescent protein (GFP-trafficking studies, a transcript and protein expression profile of PF11_0394 was determined. Results The PF11_0394 protein has orthologs in other Plasmodium species and Apicomplexans, but none outside of the group Apicomplexa. PF11_0394 transcript was found to be present during both the sporozoite and erythrocytic stages of the parasite life cycle, but no transcript was detected during axenic exoerythrocytic stages. Despite the presence of transcript throughout several life cycle stages, the PF11_0394 protein was only detected in salivary gland sporozoites. Conclusions PF11_0394 appears to be a protein uniquely detected in salivary gland sporozoites. Even though a specific function of PF11_0394 has not been determined in P. falciparum biology, it could be another candidate for a new vaccine.

  16. Enhancer transcripts mark active estrogen receptor binding sites.

    Science.gov (United States)

    Hah, Nasun; Murakami, Shino; Nagari, Anusha; Danko, Charles G; Kraus, W Lee

    2013-08-01

    We have integrated and analyzed a large number of data sets from a variety of genomic assays using a novel computational pipeline to provide a global view of estrogen receptor 1 (ESR1; a.k.a. ERα) enhancers in MCF-7 human breast cancer cells. Using this approach, we have defined a class of primary transcripts (eRNAs) that are transcribed uni- or bidirectionally from estrogen receptor binding sites (ERBSs) with an average transcription unit length of ∼3-5 kb. The majority are up-regulated by short treatments with estradiol (i.e., 10, 25, or 40 min) with kinetics that precede or match the induction of the target genes. The production of eRNAs at ERBSs is strongly correlated with the enrichment of a number of genomic features that are associated with enhancers (e.g., H3K4me1, H3K27ac, EP300/CREBBP, RNA polymerase II, open chromatin architecture), as well as enhancer looping to target gene promoters. In the absence of eRNA production, strong enrichment of these features is not observed, even though ESR1 binding is evident. We find that flavopiridol, a CDK9 inhibitor that blocks transcription elongation, inhibits eRNA production but does not affect other molecular indicators of enhancer activity, suggesting that eRNA production occurs after the assembly of active enhancers. Finally, we show that an enhancer transcription "signature" based on GRO-seq data can be used for de novo enhancer prediction across cell types. Together, our studies shed new light on the activity of ESR1 at its enhancer sites and provide new insights about enhancer function.

  17. Extended region of nodulation genes in Rhizobium meliloti 1021. II. Nucleotide sequence, transcription start sites and protein products

    International Nuclear Information System (INIS)

    Fisher, R.F.; Swanson, J.A.; Mulligan, J.T.; Long, S.R.

    1987-01-01

    The authors have established the DNA sequence and analyzed the transcription and translation products of a series of putative nodulation (nod) genes in Rhizobium meliloti strain 1021. Four loci have been designated nodF, nodE, nodG and nodH. The correlation of transposon insertion positions with phenotypes and open reading frames was confirmed by sequencing the insertion junctions of the transposons. The protein products of these nod genes were visualized by in vitro expression of cloned DNA segments in a R. meliloti transcription-translation system. In addition, the sequence for nodG was substantiated by creating translational fusions in all three reading frames at several points in the sequence; the resulting fusions were expressed in vitro in both E. coli and R. meliloti transcription-translation systems. A DNA segment bearing several open reading frames downstream of nodG corresponds to the putative nod gene mutated in strain nod-216. The transcription start sites of nodF and nodH were mapped by primer extension of RNA from cells induced with the plant flavone, luteolin. Initiation of transcription occurs approximately 25 bp downstream from the conserved sequence designated the nod box, suggesting that this conserved sequence acts as an upstream regulator of inducible nod gene expression. Its distance from the transcription start site is more suggestive of an activator binding site rather than an RNA polymerase binding site

  18. [Identification of proteins associated with transcription factors HOXA9 and E2A-PBX1 by tandem affinity purification].

    Science.gov (United States)

    Shestakova, E A; Boutin, M; Bourassa, S; Bonneil, E; Bijl, J J

    2017-01-01

    Chimeric transcription factor E2A-PBX1 induces the development of acute lymphoblastic B-cell leukemia in children. Using a transgenic mouse model, we previously demonstrated that homeobox (HOX) gene HOXA9 genetically interact with E2A-PBX1 gene in the development of B-cell leukemia in mice. HOXA9 itself is a potent oncogene resulting in myeloid leukemia when overexpressed, which is strongly accelerated by its collaborator Meis1. HOX, PBX1 and MEIS1 proteins have been shown to form hetero dimeric or trimeric complexes in different combinations. Cooperative interaction between PBX1 and HOX proteins enhances their DNA binding specificity, essential for HOX dependent developmental programs. PBX1 is retained in E2A-PBX1, and thus the strong transcriptional activator properties of E2A-PBX1 may lead to aberrant activation of normally repressed targets of HOX-PBX complexes. However, although there is evidence that E2A-PBX1 could bind to HOX and MEIS1 proteins it is still unclear whether such complexes are actually required for leukemic transformation or whether E2A-PBX1 and HOXA9 are each part of larger protein complexes acting in independent complementing oncogenic pathways. In this study we aim to search for other HOXA9 and E2A-PBX1 interacting proteins. To identify novel proteins interacting with human E2A-PBX1 or HOXA9 we used tandem affinity purification (TAP) of protein complexes from 697 pre-B leukemic and HeLa cell lines transduced to express E2A-PBX1 or HOXA9, respectively, with covalently attached FLAG/HA peptides. The protein composition of each complex was determined using tandem mass-spectrometry. In the E2A-PBX1 containing complex we identified lymphoid transcription factor IKAROS, chromatin remodeling factors of SWI/SNF family while multiple subunits of translation initiation factor eIF3, E3 ubiquitin ligase UBR5 emerged from the HOXA9 complex as potential critical protein partners. This is the first time the protein partners of either E2A-PBX1 or HOXA9

  19. Phosphorylation of the von Hippel-Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1alpha mediated transcription.

    Science.gov (United States)

    Ampofo, Emmanuel; Kietzmann, Thomas; Zimmer, Andreas; Jakupovic, Mirza; Montenarh, Mathias; Götz, Claudia

    2010-10-01

    The von Hippel-Lindau tumour suppressor gene encodes a protein with 213 amino acids, which is known to be part of an E3-ubiquitin ligase targeting the HIF-1alpha transcription factor as well as to form a complex with p53. The VHL protein can be phosphorylated by protein kinase CK2 at serines 33, 38 and 43. However, the role of VHL phosphorylation in the context of p53 and HIF-1alpha regulation remained so far unknown. In the present study we investigated whether phosphorylation of VHL by CK2 might affect the function of p53 and HIF-1alpha. By using 4,5,6,7-tetrabromobenzotriazole (TBB), a CK2-specific inhibitor, as well as a mutant VHL where serines 33, 38 and 43 were replaced by alanines we found that CK2 phosphorylation affected the VHL protein half-life and increased VHL protein stability. Further, we found that inhibition of VHL phosphorylation by CK2 reduced p53 function. In addition, the enhanced levels of VHL due to CK2 inhibition contributed to the down-regulation of HIF-activity and degradation of HIF-1alpha. Thus, these results demonstrate that phosphorylation of VHL by CK2 plays an important role in the regulation of VHL protein stability and may contribute to the survival of tumour cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    International Nuclear Information System (INIS)

    Zhang, Yingyi; Zhao, Yu; Li, Leilei; Shen, Yu; Cai, Xiaoli; Zhang, Xiaodong; Ye, Lihong

    2013-01-01

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells

  1. Newly developed quantitative transactivation system shows difference in activation by Vitis CBF transcription factors on DRE/CRT elements.

    Science.gov (United States)

    Nassuth, Annette; Siddiqua, Mahbuba; Xiao, Huogen; Moody, Michelle A; Carlow, Chevonne E

    2014-01-01

    Agroinfiltration-based transactivation systems can determine if a protein functions as a transcription factor, and via which promoter element. However, this activation is not always a yes or no proposition. Normalization for variation in plasmid delivery into plant cells, sample collection and protein extraction is desired to allow for a quantitative comparison between transcription factors or promoter elements. We developed new effector and reporter plasmids which carry additional reporter genes, as well as a procedure to assay all three reporter enzymes from a single extract. The applicability of these plasmids was demonstrated with the analysis of CBF transcription factors and their target promoter sequence, DRE/CRT. Changes in the core DRE/CRT sequence abolished activation by Vitis CBF1 or Vitis CBF4, whereas changes in the surrounding sequence lowered activation by Vitis CBF1 but much less so for Vitis CBF4. The system also detected a reduction in activation due to one amino acid change in Vitis CBF1. The newly developed effector and reporter plasmids improve the ability to quantitatively compare the activation on two different promoter elements by the same transcription factor, or between two different transcription factors on the same promoter element. The quantitative difference in activation by VrCBF1 and VrCBF4 on various DRE/CRT elements support the hypothesis that these transcription factors have unique roles in the cold acclimation process.

  2. Transcriptional upregulation of hepatic GH receptor and GH-binding protein expression during pregnancy in the mouse.

    Science.gov (United States)

    Ilkbahar, Y N; Southard, J N; Talamantes, F

    1999-08-01

    In the mouse, GH-binding protein (GHBP) and GH receptor (GHR) are encoded by a single gene via alternative splicing. We previously demonstrated that the steady-state levels of the GHR and GHBP mRNAs are significantly elevated in mouse liver during pregnancy. Hepatic GHR and GHBP mRNAs are associated primarily with one of two different 5' untranslated regions (5' UTRs), designated 5' UTR Liver1 (L1) and Liver2 (L2). Distinct promoters associated with each of these 5' UTRs have recently been characterized. In the present study, we have investigated the role of transcriptional activation in the pregnancy-induced upregulation of GHR and GHBP mRNAs in liver. We also report on the relative contribution of the 5' UTR L1 and 5' UTR L2 promoters to the hepatic expression of the GHR/GHBP gene in the liver. Our approach was to compare, by ribonuclease protection assay (RPA), GHR/GHBP transcript levels in hepatic nuclear and total cellular RNA samples from virgin and late-pregnant mice. In these RPAs we utilized riboprobes that were complementary to the coding region of GHR/GHBP transcripts, as well as to the two noncoding, alternative first exons 5' UTR L1 and L2. When employing the coding region probe, RPAs revealed that the gestational increase in the levels of nuclear GHR/GHBP transcripts were statistically comparable with the increase in GHR/GHBP transcript levels in total cellular RNA. This finding suggests that enhanced transcriptional activity, rather than increased cytoplasmic half-life, is responsible for the upregulation of GHR/GHBP RNA in the pregnant liver. In RPAs utilizing the noncoding region probes, both nuclear and total cellular GHR/GHBP transcripts associated with 5' UTR L1 were significantly upregulated in late-pregnant as compared with virgin mice. In contrast, the levels of both nuclear and total GHR/GHBP transcripts associated with 5' UTR L2 were comparable between nonpregnant and pregnant animals. Moreover, 5' UTR L2-containing transcripts were present

  3. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2008-08-01

    Full Text Available Raj Kumar1, William J Calhoun21Division of Gastroenterology; 2Division of Allergy, Pulmonary, Immunology, Critical Care, and Sleep (APICS, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USAAbstract: Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade

  4. Transcriptionally Active Heterochromatin in Rye B Chromosomes[W

    Science.gov (United States)

    Carchilan, Mariana; Delgado, Margarida; Ribeiro, Teresa; Costa-Nunes, Pedro; Caperta, Ana; Morais-Cecílio, Leonor; Jones, R. Neil; Viegas, Wanda; Houben, Andreas

    2007-01-01

    B chromosomes (Bs) are dispensable components of the genomes of numerous species. Thus far, there is a lack of evidence for any transcripts of Bs in plants, with the exception of some rDNA sequences. Here, we show that the Giemsa banding-positive heterochromatic subterminal domain of rye (Secale cereale) Bs undergoes decondensation during interphase. Contrary to the heterochromatic regions of A chromosomes, this domain is simultaneously marked by trimethylated H3K4 and by trimethylated H3K27, an unusual combination of apparently conflicting histone modifications. Notably, both types of B-specific high copy repeat families (E3900 and D1100) of the subterminal domain are transcriptionally active, although with different tissue type–dependent activity. No small RNAs were detected specifically for the presence of Bs. The lack of any significant open reading frame and the highly heterogeneous size of mainly polyadenylated transcripts indicate that the noncoding RNA may function as structural or catalytic RNA. PMID:17586652

  5. HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inae; Hur, Jung; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2015-01-30

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells.

  6. HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin

    International Nuclear Information System (INIS)

    Kim, Inae; Hur, Jung; Jeong, Sunjoo

    2015-01-01

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells

  7. Evolution and tinkering: what do a protein kinase, a transcriptional regulator and chromosome segregation/cell division proteins have in common?

    Science.gov (United States)

    Derouiche, Abderahmane; Shi, Lei; Kalantari, Aida; Mijakovic, Ivan

    2016-02-01

    In this study, we focus on functional interactions among multi-domain proteins which share a common evolutionary origin. The examples we develop are four Bacillus subtilis proteins, which all possess an ATP-binding Walker motif: the bacterial tyrosine kinase (BY-kinase) PtkA, the chromosome segregation protein Soj (ParA), the cell division protein MinD and a transcription regulator SalA. These proteins have arisen via duplication of the ancestral ATP-binding domain, which has undergone fusions with other functional domains in the process of divergent evolution. We point out that these four proteins, despite having very different physiological roles, engage in an unusually high number of binary functional interactions. Namely, MinD attracts Soj and PtkA to the cell pole, and in addition, activates the kinase function of PtkA. SalA also activates the kinase function of PtkA, and it gets phosphorylated by PtkA as well. The consequence of this phosphorylation is the activation of SalA as a transcriptional repressor. We hypothesize that these functional interactions remain preserved during divergent evolution and represent a constraint on the process of evolutionary "tinkering", brought about by fusions of different functional domains.

  8. Transcriptional regulation of the S-layer protein type I secretion system in Caulobacter crescentus.

    Science.gov (United States)

    Toporowski, Michael C; Nomellini, John F; Awram, Peter; Levi, Assaf; Smit, John

    2005-10-01

    The Gram-negative Caulobacter crescentus exports RsaA, the crystalline S-layer subunit protein using a dedicated type I secretion system. The protein and two transporter genes (rsaADE) are located together, comparable to the Escherichia coli type I hemolysin hlyCABD operon, where read through of a stem loop following hlyCA results in reduced transcription of the hlyBD. Using two genetic approaches and a direct assessment of transcription from regions 5' to the genes we learned that rsaD and rsaE were transcribed together as a separate transcript from rsaA. These results are contrary to previous assumptions about the rsaADE type I secretion gene control and add another theme to the area of type I secretion transcription regulation. It may be that to accommodate the high levels of RsaA secretion, the type I transporters must be transcribed independently from rsaA.

  9. Plant viral intergenic DNA sequence repeats with transcription enhancing activity

    Directory of Open Access Journals (Sweden)

    Cazzonelli Christopher I

    2005-02-01

    Full Text Available Abstract Background The geminivirus and nanovirus families of DNA plant viruses have proved to be a fertile source of viral genomic sequences, clearly demonstrated by the large number of sequence entries within public DNA sequence databases. Due to considerable conservation in genome organization, these viruses contain easily identifiable intergenic regions that have been found to contain multiple DNA sequence elements important to viral replication and gene regulation. As a first step in a broad screen of geminivirus and nanovirus intergenic sequences for DNA segments important in controlling viral gene expression, we have 'mined' a large set of viral intergenic regions for transcriptional enhancers. Viral sequences that are found to act as enhancers of transcription in plants are likely to contribute to viral gene activity during infection. Results DNA sequences from the intergenic regions of 29 geminiviruses or nanoviruses were scanned for repeated sequence elements to be tested for transcription enhancing activity. 105 elements were identified and placed immediately upstream from a minimal plant-functional promoter fused to an intron-containing luciferase reporter gene. Transient luciferase activity was measured within Agrobacteria-infused Nicotiana tobacum leaf tissue. Of the 105 elements tested, 14 were found to reproducibly elevate reporter gene activity (>25% increase over that from the minimal promoter-reporter construct, p Conclusion Biological significance for the active DNA elements identified is supported by repeated isolation of a previously defined viral element (CLE, and the finding that two of three viral enhancer elements examined were markedly enriched within both geminivirus sequences and within Arabidopsis promoter regions. These data provide a useful starting point for virologists interested in undertaking more detailed analysis of geminiviral promoter function.

  10. Antisense RNA controls LRP1 Sense transcript expression through interaction with a chromatin-associated protein, HMGB2.

    Science.gov (United States)

    Yamanaka, Yasunari; Faghihi, Mohammad Ali; Magistri, Marco; Alvarez-Garcia, Oscar; Lotz, Martin; Wahlestedt, Claes

    2015-05-12

    Long non-coding RNAs (lncRNAs), including natural antisense transcripts (NATs), are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1), referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2) and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer's disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Antisense RNA Controls LRP1 Sense Transcript Expression through Interaction with a Chromatin-Associated Protein, HMGB2

    Directory of Open Access Journals (Sweden)

    Yasunari Yamanaka

    2015-05-01

    Full Text Available Long non-coding RNAs (lncRNAs, including natural antisense transcripts (NATs, are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1, referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2 and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer’s disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.

  12. Transcriptional regulation of human FE65, a ligand of Alzheimer's disease amyloid precursor protein, by Sp1.

    LENUS (Irish Health Repository)

    Yu, Hoi-Tin

    2010-03-01

    FE65 is a neuronal-enriched adaptor protein that binds to the Alzheimer\\'s disease amyloid precursor protein (APP). FE65 forms a transcriptionally active complex with the APP intracellular domain (AICD). The precise gene targets for this complex are unclear but several Alzheimer\\'s disease-linked genes have been proposed. Additionally, evidence suggests that FE65 influences APP metabolism. The mechanism by which FE65 expression is regulated is as yet unknown. To gain insight into the regulatory mechanism, we cloned a 1.6 kb fragment upstream of the human FE65 gene and found that it possesses particularly strong promoter activity in neurones. To delineate essential regions in the human FE65 promoter, a series of deletion mutants were generated. The minimal FE65 promoter was located between -100 and +5, which contains a functional Sp1 site. Overexpression of the transcription factor Sp1 potentiates the FE65 promoter activity. Conversely, suppression of the FE65 promoter was observed in cells either treated with an Sp1 inhibitor or in which Sp1 was knocked down. Furthermore, reduced levels of Sp1 resulted in downregulation of endogenous FE65 mRNA and protein. These findings reveal that Sp1 plays a crucial role in transcriptional control of the human FE65 gene.

  13. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

    Directory of Open Access Journals (Sweden)

    Mariana Serpeloni

    Full Text Available In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei -except the fibrillar center of nucleolus- and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II, but not RNA polymerase I (RNA pol I or Spliced Leader (SL transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and

  14. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Directory of Open Access Journals (Sweden)

    Miranda Lo

    Full Text Available BACKGROUND: Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. METHODOLOGY/PRINCIPAL FINDINGS: To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS. We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. CONCLUSIONS/SIGNIFICANCE: This is the first study to compare transcriptional and translational responses to temperature

  15. Mutations in human immunodeficiency virus type 1 nucleocapsid protein zinc fingers cause premature reverse transcription.

    Science.gov (United States)

    Thomas, James A; Bosche, William J; Shatzer, Teresa L; Johnson, Donald G; Gorelick, Robert J

    2008-10-01

    Human immunodeficiency virus type 1 (HIV-1) requires that its genome be reverse transcribed into double-stranded DNA for productive infection of cells. This process requires not only reverse transcriptase but also the nucleocapsid protein (NC), which functions as a nucleic acid chaperone. Reverse transcription generally begins once the core of the virion enters the cytoplasm of a newly infected cell. However, some groups have reported the presence of low levels of viral DNA (vDNA) within particles prior to infection, the significance and function of which is controversial. We report here that several HIV-1 NC mutants, which we previously identified as being replication defective, contain abnormally high levels of intravirion DNA. These findings were further reinforced by the inability of these NC mutants to perform endogenous reverse transcription (ERT), in contrast to the readily measurable ERT activity in wild-type HIV-1. When either of the NC mutations is combined with a mutation that inactivates the viral protease, we observed a significant reduction in the amount of intravirion DNA. Interestingly, we also observed high levels of intravirion DNA in the context of wild-type NC when we delayed budding by means of a PTAP((-)) (Pro-Thr-Ala-Pro) mutation. Premature reverse transcription is most probably occurring before these mutant virions bud from producer cells, but we fail to see any evidence that the NC mutations alter the timing of Pr55(Gag) processing. Critically, our results also suggest that the presence of intravirion vDNA could serve as a diagnostic for identifying replication-defective HIV-1.

  16. A calcineurin inhibitory protein overexpressed in Down's syndrome interacts with the product of a ubiquitously expressed transcript

    Directory of Open Access Journals (Sweden)

    H.C.S. Silveira

    2004-06-01

    Full Text Available The Down's syndrome candidate region 1 (DSCR1 protein, encoded by a gene located in the human chromosome 21, interacts with calcineurin and is overexpressed in Down's syndrome patients. As an approach to clarifying a putative function for this protein, in the present study we used the yeast two-hybrid system to identify DSCR1 partners. The two-hybrid system is a method that allows the identification of protein-protein interactions through reconstitution of the activity of the yeast GAL 4 transcriptional activator. The gene DSCR1 fused to the GAL 4 binding domain (BD was used to screen a human fetal brain cDNA library cloned in fusion with the GAL 4 activation domain (AD. Three positive clones were found and sequence analysis revealed that all the plasmids coded for the ubiquitously expressed transcript (UXT. UXT, which is encoded in human Xp11, is a 157-amino acid protein present in both cytosol and nucleus of the cells. This positive interaction of DSCR1 and UXT was confirmed in vivo by mating the yeast strain AH109 (MATaexpressing AD-UXT with the strain Y187 (MATalpha expressing BD-DSCR1, and in vitro by co-immunoprecipitation experiments. These results may help elucidate a new function for DSCR1 and its participation in Down's syndrome pathogenesis.

  17. High-Mobility Group Box-1 Protein Mediates the Regulation of Signal Transducer and Activator of Transcription-3 in the Diabetic Retina and in Human Retinal Müller Cells.

    Science.gov (United States)

    Mohammad, Ghulam; Jomar, Deema; Siddiquei, Mohammad Mairaj; Alam, Kaiser; Abu El-Asrar, Ahmed M

    2017-01-01

    The expression of high-mobility group box-1 (HMGB1) and signal transducer and activator of transcription-3 (STAT-3) is upregulated in the diabetic retina. We hypothesized that the activation of STAT-3 is under the control of HMGB1. Retinas from 1-month-old diabetic rats and from normal rats intravitreally injected with HMGB1 and human retinal Müller glial cells (MIO-M1) stimulated with HMGB1 or high glucose were studied by Western blot analysis and immunofluorescence. We also studied the effect of the HMGB1 inhibitor glycyrrhizin (GA) on high-glucose-induced pSTAT-3 nuclear translocation and upregulation in Müller cells and on pSTAT-3 expression in the retinas of diabetic rats (n = 7-10 in each group). In addition, we studied the effect of STAT-3 inhibitor on the HMGB1-induced induction of vascular endothelial growth factor (VEGF) by Müller cells and human retinal microvascular endothelial cell (HRMEC) migration. Treatment of retinal Müller cells with recombinant HMGB1 induced nuclear translocation of pSTAT-3 but did not alter pSTAT-3 expression. High glucose induced a significant upregulation of HMGB1 and pSTAT-3 upregulation and nuclear translocation in retinal Müller cells. GA co-treatment normalized the high-glucose-induced upregulation of HMGB1 and pSTAT-3 upregulation and nuclear translocation in Müller cells. Intravitreal administration of HMGB1 in normal and diabetic rats upregulated pSTAT-3 expression in the retina. GA attenuated the diabetes-induced upregulation of pSTAT-3 in the retina. The STAT-3 inhibitor attenuated HMGB1-induced VEGF upregulation by Müller cells and HRMEC migration. The results suggest a role for HMGB1 in the modulation of STAT-3 expression in the diabetic retina. © 2016 S. Karger AG, Basel.

  18. The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxic stress

    International Nuclear Information System (INIS)

    Murphy, Brian J.; Sato, Barbara G.; Dalton, Timothy P.; Laderoute, Keith R.

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1), the major transcriptional regulator of the mammalian cellular response to low oxygen (hypoxia), is embedded within a complex network of signaling pathways. We have been investigating the importance of another stress-responsive transcription factor, MTF-1, for the adaptation of cells to hypoxia. This article reports that MTF-1 plays a central role in hypoxic cells by contributing to HIF-1 activity. Loss of MTF-1 in transformed Mtf1 null mouse embryonic fibroblasts (MEFs) results in an attenuation of nuclear HIF-1α protein accumulation, HIF-1 transcriptional activity, and expression of an established HIF-1 target gene, glucose transporter-1 (Glut1). Mtf1 null (Mtf1 KO) MEFs also have constitutively higher levels of both glutathione (GSH) and the rate-limiting enzyme involved in GSH synthesis-glutamate cysteine ligase catalytic subunit-than wild type cells. The altered cellular redox state arising from increased GSH may perturb oxygen-sensing mechanisms in hypoxic Mtf1 KO cells and decrease the accumulation of HIF-1α protein. Together, these novel findings define a role for MTF-1 in the regulation of HIF-1 activity

  19. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways and transcription factors

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Murgia, Marta; Nagaraja, Nagarjuna

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging due to highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art mass...... spectrometric (MS) workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins...

  20. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Directory of Open Access Journals (Sweden)

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  1. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes.

    Science.gov (United States)

    Chymkowitch, Pierre; Nguéa, Aurélie P; Aanes, Håvard; Koehler, Christian J; Thiede, Bernd; Lorenz, Susanne; Meza-Zepeda, Leonardo A; Klungland, Arne; Enserink, Jorrit M

    2015-06-01

    Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs. © 2015 Chymkowitch et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Aurora-A interacts with AP-2α and down regulates its transcription activity.

    Directory of Open Access Journals (Sweden)

    Lihui Zou

    Full Text Available Aurora-A is a serine/threonine protein kinase and plays an important role in the control of mitotic progression. Dysregulated expression of Aurora-A impairs centrosome separation and maturation, which lead to disrupted cell cycle progression and tumorigenesis. However, the molecular mechanism by which Aurora-A causes cell malignant transformation remains to be further defined. In this report, using transcription factors array and mRNA expression profiling array, we found that overexpression of Aurora-A suppressed transcription activity of AP-2α, a tumor suppressor that is often downregulated in variety of tumors, and inhibited expression of AP-2α-regulated downstream genes. These array-based observations were further confirmed by microwell colorimetric TF assay and luciferase reporter assay. Downregulated transcription activity of AP-2α by Aurora-A was found to be associated with reduced AP-2α protein stability, which appeared to be mediated by Aurora-A enhanced ubiquitin-dependent proteasomal degradation of AP-2α protein. Interestingly, Aurora-A-mediated AP-2α degradation was likely dependent Aurora-A kinase activity since inhibition of Aurora-A kinase activity was able to rescue Aurora-A-induced degradation of AP-2α. Moreover, we defined a physical interaction between Aurora-A and AP-2α, and such interaction might bridge the suppressive effect of Aurora-A on AP-2α protein stability. These findings provide new insights into molecular mechanism by which Aurora-A acts as an oncogenic molecule in tumor occurrence and malignant development.

  3. Multiple steps in the regulation of transcription-factor level and activity

    NARCIS (Netherlands)

    Calkhoven, CF; Ab, G

    1996-01-01

    This review focuses on the regulation of transcription factors, many of which are DNA-binding proteins that recognize cis-regulatory elements of target genes and are the most direct regulators of gene transcription. Transcription factors serve as integration centres of the different

  4. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis

    Directory of Open Access Journals (Sweden)

    Suh JS

    2014-03-01

    Full Text Available Jin Sook Suh,1,* Jue Yeon Lee,2,* Yoon Jung Choi,1 Hyung Keun You,3 Seong-Doo Hong,4 Chong Pyoung Chung,2 Yoon Jeong Park1,2 1Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 2Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC, Seoul, 3Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, 4Department of Oral Pathology, School of Dentistry, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP, and a transcriptional coactivator with a PDZ-binding motif (TAZ protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in

  5. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    International Nuclear Information System (INIS)

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  6. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... to be an allosteric mechanism. Furthermore, we demonstrate that anisomycin- and tumor necrosis factor-alpha-induced phosphorylation of p53 at Ser-392, which is important for the transcriptional activity of this growth suppressor protein, requires p38 MAP kinase and CK2 activities....

  7. High resolution analysis of the human transcriptome: detection of extensive alternative splicing independent of transcriptional activity

    Directory of Open Access Journals (Sweden)

    Rouet Fabien

    2009-10-01

    Full Text Available Abstract Background Commercially available microarrays have been used in many settings to generate expression profiles for a variety of applications, including target selection for disease detection, classification, profiling for pharmacogenomic response to therapeutics, and potential disease staging. However, many commercially available microarray platforms fail to capture transcript diversity produced by alternative splicing, a major mechanism for driving proteomic diversity through transcript heterogeneity. Results The human Genome-Wide SpliceArray™ (GWSA, a novel microarray platform, utilizes an existing probe design concept to monitor such transcript diversity on a genome scale. The human GWSA allows the detection of alternatively spliced events within the human genome through the use of exon body and exon junction probes to provide a direct measure of each transcript, through simple calculations derived from expression data. This report focuses on the performance and validation of the array when measured against standards recently published by the Microarray Quality Control (MAQC Project. The array was shown to be highly quantitative, and displayed greater than 85% correlation with the HG-U133 Plus 2.0 array at the gene level while providing more extensive coverage of each gene. Almost 60% of splice events among genes demonstrating differential expression of greater than 3 fold also contained extensive splicing alterations. Importantly, almost 10% of splice events within the gene set displaying constant overall expression values had evidence of transcript diversity. Two examples illustrate the types of events identified: LIM domain 7 showed no differential expression at the gene level, but demonstrated deregulation of an exon skip event, while erythrocyte membrane protein band 4.1 -like 3 was differentially expressed and also displayed deregulation of a skipped exon isoform. Conclusion Significant changes were detected independent of

  8. Interaction of maize Opaque-2 and the transcriptional co-activators GCN5 and ADA2, in the modulation of transcriptional activity.

    NARCIS (Netherlands)

    Bhat, R.A.; Borst, J.W.; Riehl, M.; Thompson, R.D.

    2004-01-01

    Maize Opaque-2 (ZmO2), a bZip class transcription factor has been shown to activate the transcription of a series of genes expressed in the maturation phase of endosperm development. Activation requires the presence of one or more enhancer binding sites, which confer the propensity for activation by

  9. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    Energy Technology Data Exchange (ETDEWEB)

    Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States); Edelman, Jeffrey L.; Brooks, Patricia A. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. Black-Right-Pointing-Pointer siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. Black-Right-Pointing-Pointer Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (-325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.

  10. Novel glutamate dehydrogenase genes show increased transcript and protein abundances in mature tomato fruits.

    Science.gov (United States)

    Ferraro, Gisela; Bortolotti, Santiago; Mortera, Pablo; Schlereth, Armin; Stitt, Mark; Carrari, Fernando; Kamenetzky, Laura; Valle, Estela M

    2012-06-15

    NAD(P)H-glutamate dehydrogenase (GDH, EC 1.4.1.3) contributes to the control of glutamate homeostasis in all living organisms. In bacteria and animals, GDH is a homohexamer allosterically regulated, whereas in plants NADH-GDH (EC 1.4.1.2) is also found as heterohexamer of α- and β-subunits, but its regulation remains undefined. In tomato (Solanum lycopersicum), GDH activity increases during the fruit ripening along with the content of free glutamate, the most abundant amino acid of ripe fruit involved in conferring the genuine tomato flavour. In this work, novel Slgdh-NAD genes were identified in the recently deciphered tomato genome: three encoding the α-subunit (Slgdh-NAD;A1-3) and one additional gene encoding the β-subunit of GDH (Slgdh-NAD;B1) isolated from a genomic library. These genes are located in different chromosomes. Slgdh-NAD;A1-3 show conserved structures, whereas Slgdh-NAD;B1 includes a novel 5'-untranslated exon. Slgdh-NAD;A1-3 transcripts were detected in all tomato tissues examined, showing the highest levels in mature green fruits, contrasting with Slgdh-NAD;B1 transcripts which were detected mainly in roots or in mature fruits when treated with glutamate, NaCl or salicylic acid. Analyses of GDH activity and protein distribution in different tissues of the Micro-Tom cultivar showed that only the active homohexamer of GDH β-subunits was detected in roots while heterohexamers of GDH α- and β-subunits were found in fruits. These results indicate that GDH β-subunit could modulate the heteromeric isoforms of GDH in response to the environment and physiology of the tomato fruit. This information is relevant to manipulate glutamate contents in tomato fruits genetically. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Rat tenascin-R gene: structure, chromosome location and transcriptional activity of promoter and exon 1.

    Science.gov (United States)

    Leprini, A; Gherzi, R; Vecchi, E; Borsi, L; Zardi, L; Siri, A

    1998-01-01

    Tenascin-R is an extracellular matrix protein expressed exclusively in the central nervous system where it is thought to play a relevant role in regulating neurite outgrowth. We have i) cloned the cDNA of the rat tenascin-R 5' region; ii) defined its genomic organization, obtaining the sequence of two novel untranslated exons; iii) mapped the gene to rat chromosome 13q23 and suggested a previously unreported synteny between rat chromosome 13q23, human chromosome 1q24, and mouse chromosome 4E; and iv) sequenced and characterized the elements responsible for its neural cell-restricted transcription. We found that two discrete regions of the rat gene (the first in the proximal promoter, the second in the first exon) are independently able to activate to a high degree the transcription of a reporter gene in either human or rat neuroblastoma cell lines but not in other cell lines. Based on this observation, we re-evaluated the arrangement of transcriptionally active regions in the human tenascin-R gene we recently cloned and found that the human gene also contains an exon sequence able to initiate and sustain transcription independently of promoter sequences.

  13. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  14. Transcriptional activation of REST by Sp1 in Huntington's disease models.

    Directory of Open Access Journals (Sweden)

    Myriam Ravache

    2010-12-01

    Full Text Available In Huntington's disease (HD, mutant huntingtin (mHtt disrupts the normal transcriptional program of disease neurons by altering the function of several gene expression regulators such as Sp1. REST (Repressor Element-1 Silencing Transcription Factor, a key regulator of neuronal differentiation, is also aberrantly activated in HD by a mechanism that remains unclear. Here, we show that the level of REST mRNA is increased in HD mice and in NG108 cells differentiated into neuronal-like cells and expressing a toxic mHtt fragment. Using luciferase reporter gene assay, we delimited the REST promoter regions essential for mHtt-mediated REST upregulation and found that they contain Sp factor binding sites. We provide evidence that Sp1 and Sp3 bind REST promoter and interplay to fine-tune REST transcription. In undifferentiated NG108 cells, Sp1 and Sp3 have antagonistic effect, Sp1 acting as an activator and Sp3 as a repressor. Upon neuronal differentiation, we show that the amount and ratio of Sp1/Sp3 proteins decline, as does REST expression, and that the transcriptional role of Sp3 shifts toward a weak activator. Therefore, our results provide new molecular information to the transcriptional regulation of REST during neuronal differentiation. Importantly, specific knockdown of Sp1 abolishes REST upregulation in NG108 neuronal-like cells expressing mHtt. Our data together with earlier reports suggest that mHtt triggers a pathogenic cascade involving Sp1 activation, which leads to REST upregulation and repression of neuronal genes.

  15. CMYB1 Encoding a MYB Transcriptional Activator Is Involved in Abiotic Stress and Circadian Rhythm in Rice

    Directory of Open Access Journals (Sweden)

    Min Duan

    2014-01-01

    Full Text Available Through analysis of cold-induced transcriptome, a novel gene encoding a putative MYB transcription factor was isolated and designated Cold induced MYB 1 (CMYB1. Tissue-specific gene expression analysis revealed that CMYB1 was highly expressed in rice stems and nodes. qRT-PCR assay indicated that CMYB1 was dramatically induced by cold stress (>100-folds and induced by exogenous ABA and osmotic stress. Interestingly, CMYB1 showed rhythmic expression profile in rice leaves at different developmental stages. Subcellular localization assay suggested that CMYB1-GFP (green fluorescent protein fusion protein was localized in the nuclei. Moreover, CMYB1 exhibited the transcriptional activation activity when transiently expressed in rice protoplast cells. Taken together, CMYB1 probably functions as a transcriptional activator in mediating stress and rhythm responsive gene expression in rice.

  16. A transcriptional coregulator, SPIN·DOC, attenuates the coactivator activity of Spindlin1.

    Science.gov (United States)

    Bae, Narkhyun; Gao, Min; Li, Xu; Premkumar, Tolkappiyan; Sbardella, Gianluca; Chen, Junjie; Bedford, Mark T

    2017-12-22

    Spindlin1 (SPIN1) is a transcriptional coactivator with critical functions in embryonic development and emerging roles in cancer. SPIN1 harbors three Tudor domains, two of which engage the tail of histone H3 by reading the H3-Lys-4 trimethylation and H3-Arg-8 asymmetric dimethylation marks. To gain mechanistic insight into how SPIN1 functions as a transcriptional coactivator, here we purified its interacting proteins. We identified an uncharacterized protein (C11orf84), which we renamed SPIN1 docking protein (SPIN·DOC), that directly binds SPIN1 and strongly disrupts its histone methylation reading ability, causing it to disassociate from chromatin. The Spindlin family of coactivators has five related members (SPIN1, 2A, 2B, 3, and 4), and we found that all of them bind SPIN·DOC. It has been reported previously that SPIN1 regulates gene expression in the Wnt signaling pathway by directly interacting with transcription factor 4 (TCF4). We observed here that SPIN·DOC associates with TCF4 in a SPIN1-dependent manner and dampens SPIN1 coactivator activity in TOPflash reporter assays. Furthermore, knockdown and overexpression experiments indicated that SPIN·DOC represses the expression of a number of SPIN1-regulated genes, including those encoding ribosomal RNA and the cytokine IL1B. In conclusion, we have identified SPIN·DOC as a transcriptional repressor that binds SPIN1 and masks its ability to engage the H3-Lys-4 trimethylation activation mark. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development.

    Science.gov (United States)

    Yan, Qin; Gong, Lili; Deng, Mi; Zhang, Lan; Sun, Shuming; Liu, Jiao; Ma, Haili; Yuan, Dan; Chen, Pei-Chao; Hu, Xiaohui; Liu, Jinping; Qin, Jichao; Xiao, Ling; Huang, Xiao-Qin; Zhang, Jian; Li, David Wan-Cheng

    2010-12-07

    Pax-6 is an evolutionarily conserved transcription factor regulating brain and eye development. Four Pax-6 isoforms have been reported previously. Although the longer Pax-6 isoforms (p46 and p48) bear two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), the shorter Pax-6 isoform p32 contains only the HD for DNA binding. Although a third domain, the proline-, serine- and threonine-enriched activation (PST) domain, in the C termini of all Pax-6 isoforms mediates their transcriptional modulation via phosphorylation, how p32 Pax-6 could regulate target genes remains to be elucidated. In the present study, we show that sumoylation at K91 is required for p32 Pax-6 to bind to a HD-specific site and regulate expression of target genes. First, in vitro-synthesized p32 Pax-6 alone cannot bind the P3 sequence, which contains the HD recognition site, unless it is preincubated with nuclear extracts precleared by anti-Pax-6 but not by anti-small ubiquitin-related modifier 1 (anti-SUMO1) antibody. Second, in vitro-synthesized p32 Pax-6 can be sumoylated by SUMO1, and the sumoylated p32 Pax-6 then can bind to the P3 sequence. Third, Pax-6 and SUMO1 are colocalized in the embryonic optic and lens vesicles and can be coimmunoprecipitated. Finally, SUMO1-conjugated p32 Pax-6 exists in both the nucleus and cytoplasm, and sumoylation significantly enhances the DNA-binding ability of p32 Pax-6 and positively regulates gene expression. Together, our results demonstrate that sumoylation activates p32 Pax-6 in both DNA-binding and transcriptional activities. In addition, our studies demonstrate that p32 and p46 Pax-6 possess differential DNA-binding and regulatory activities.

  18. Fanconi anemia core complex-dependent HES1 mono-ubiquitination regulates its transcriptional activity.

    Science.gov (United States)

    Tremblay, Cédric S; Huang, Feng Fei; Lévesque, Georges; Carreau, Madeleine

    2018-02-20

    The Hairy Enhancer of Split 1 (HES1) is a transcriptional repressor that regulates cellular proliferation and differentiation during development. We previously found an interaction between HES1 and Fanconi anemia (FA) proteins. FA is a hematological and developmental disorder caused by mutations in more than 20 different genes. Eight FA gene products form a nuclear core complex containing E3 ligase activity required for mono-ubiquitination of FANCD2 and FANCI, both of which are FA proteins. Given that HES1 interacts with members of the FA core complex, the aim of this study was to determine whether HES1 is mono-ubiquitinated via the FA core complex. We show that HES1 is mono-ubiquitinated on a highly-conserved lysine residue that is located within a FA-like recognition motif. HES1 modification is dependent on a functional FA complex. Absence of HES1 mono-ubiquitination affects transcriptional repression of its own promoter. This study uncovers a novel post-translational modification of HES1 that regulates its transcriptional activity and suggests that ubiquitination of HES1 occurs in a FA core complex-dependent manner.

  19. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1.

    Science.gov (United States)

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A; Gierisch, Maria E; Schäfer, Beat W; Niggli, Felix K

    2015-10-06

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ~50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (-2239/+67) using various deletion constructs identified two 14 bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition.

  20. Activation of mitogen-activated protein kinase by heat shock treatment in Drosophila.

    OpenAIRE

    Chen, F; Torres, M; Duncan, R F

    1995-01-01

    Heat shock treatment of Drosophila melanogaster tissue culture cells causes increased tyrosine phosphorylation of several 44 kDa proteins, which are identified as Drosophila mitogen-activated protein (MAP) kinases. Tyrosine phosphorylation occurs within 5 min, and is maintained at high levels during heat shock. It decreases to basal levels during recovery, concurrent with the repression of heat shock transcription and heat-shock-protein synthesis. The increased MAP kinase tyrosine phosphoryla...

  1. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis

    DEFF Research Database (Denmark)

    Iankova, Irena; Petersen, Rasmus K; Annicotte, Jean-Sébastien

    2006-01-01

    Positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of RNA polymerase II, facilitating transcriptional elongation. In addition to its participation in general transcription, P-TEFb is recruited to specific promoters by some transcription factors such as c-Myc...

  2. Impacts of a new transcription factor family: mammalian GCM proteins in health and disease.

    Science.gov (United States)

    Hashemolhosseini, Said; Wegner, Michael

    2004-09-13

    GCM proteins constitute a small transcription factor family with a DNA-binding domain exhibiting a novel fold composed of two subdomains rigidly held together by coordination of one of two structural zinc cations. In all known cases, GCM proteins exert the role of master regulators: the prototypical family member determines gliogenesis in Drosophila melanogaster, whereas mammalian GCM proteins orchestrate divergent aspects of development and physiology in placenta, kidney, thymus, and parathyroid gland. Recent data point to an involvement of GCM proteins in different pathological contexts, such as preeclampsia, hyper- or hypoparathyroidism, and parathyroid gland tumors.

  3. The role of Rel/NF-kappa B proteins in viral oncogenesis and the regulation of viral transcription.

    Science.gov (United States)

    Mosialos, G

    1997-04-01

    Rel/NF-kappa B is a ubiquitous transcription factor that consists of multiple polypeptide subunits, and is subject to complex regulatory mechanisms that involve protein-protein interactions, phosphorylation, ubiquitination, proteolytic degradation, and nucleocytoplasmic translocation. The sophisticated control of Rel/NF-kappa B activity is not surprising since this transcription factor is involved in a wide array of cellular responses to extracellular cues, associated with growth, development, apoptosis, and pathogen invasion. Thus, it is not unexpected that this versatile cellular homeostatic switch would be affected by a variety of viral pathogens, which have evolved mechanisms to utilize various aspects of Rel/NF-kappa B activity to facilitate their replication, cell survival and possibly evasion of immune responses. This review will cover the molecular mechanisms that are utilized by mammalian oncogenic viruses to affect the activity of Rel/NF-kappa B transcription factors and the role of Rel/NF-kappa B in the regulation of viral gene expression and replication.

  4. Transcription of human resistin gene involves an interaction of Sp1 with peroxisome proliferator-activating receptor gamma (PPARgamma.

    Directory of Open Access Journals (Sweden)

    Anil K Singh

    2010-03-01

    Full Text Available Resistin is a cysteine rich protein, mainly expressed and secreted by circulating human mononuclear cells. While several factors responsible for transcription of mouse resistin gene have been identified, not much is known about the factors responsible for the differential expression of human resistin.We show that the minimal promoter of human resistin lies within approximately 80 bp sequence upstream of the transcriptional start site (-240 whereas binding sites for cRel, CCAAT enhancer binding protein alpha (C/EBP-alpha, activating transcription factor 2 (ATF-2 and activator protein 1 (AP-1 transcription factors, important for induced expression, are present within sequences up to -619. Specificity Protein 1(Sp1 binding site (-276 to -295 is also present and an interaction of Sp1 with peroxisome proliferator activating receptor gamma (PPARgamma is necessary for constitutive expression in U937 cells. Indeed co-immunoprecipitation assay demonstrated a direct physical interaction of Sp1 with PPARgamma in whole cell extracts of U937 cells. Phorbol myristate acetate (PMA upregulated the expression of resistin mRNA in U937 cells by increasing the recruitment of Sp1, ATF-2 and PPARgamma on the resistin gene promoter. Furthermore, PMA stimulation of U937 cells resulted in the disruption of Sp1 and PPARgamma interaction. Chromatin immunoprecipitation (ChIP assay confirmed the recruitment of transcription factors phospho ATF-2, Sp1, Sp3, PPARgamma, chromatin modifier histone deacetylase 1 (HDAC1 and the acetylated form of histone H3 but not cRel, C/EBP-alpha and phospho c-Jun during resistin gene transcription.Our findings suggest a complex interplay of Sp1 and PPARgamma along with other transcription factors that drives the expression of resistin in human monocytic U937 cells.

  5. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    Science.gov (United States)

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  6. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jong-Jin Park

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and the CRISPR associated protein 9 (Cas9 system allows effective gene modification through RNA-guided DNA targeting. The Cas9 has undergone a series of functional alterations from the original active endonuclease to partially or completely deactivated Cas9. The catalytically deactivated Cas9 (dCas9 offers a platform to regulate transcriptional expression with the addition of activator or repressor domains. We redesigned a CRISPR/Cas9 activation system by adding the p65 transactivating subunit of NF-kappa B and a heat-shock factor 1 (HSF activation domain to dCas9 bound with the VP64 (tetramer of VP16 activation domain for application in plants. The redesigned CRISPR/Cas9 activation system was tested in Arabidopsis to increase endogenous transcriptional levels of production of anthocyanin pigment 1 (PAP1 and Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1. The expression of PAP1 was increased two- to three-fold and the activated plants exhibited purple leaves similar to that of PAP1 overexpressors. The AVP1 gene expression was increased two- to five-fold in transgenic plants. In comparison to the wild type, AVP1 activated plants had increased leaf numbers, larger single-leaf areas and improved tolerance to drought stress. The AVP1 activated plants showed similar phenotypes to AVP1 overexpressors. Therefore, the redesigned CRISPR/Cas9 activation system containing modified p65-HSF provides a simple approach for producing activated plants by upregulating endogenous transcriptional levels.

  7. SUMOylation regulates the transcriptional repression activity of FOG-2 and its association with GATA-4.

    Directory of Open Access Journals (Sweden)

    José Perdomo

    Full Text Available Friend of GATA 2 (FOG-2, a co-factor of several GATA transcription factors (GATA-4, -5 and 6, is a critical regulator of coronary vessel formation and heart morphogenesis. Here we demonstrate that FOG-2 is SUMOylated and that this modification modulates its transcriptional activity. FOG-2 SUMOylation occurs at four lysine residues (K324, 471, 915, 955 [corrected]. Three of these residues are part of the characteristic SUMO consensus site (ψKXE, while K955 is found in the less frequent TKXE motif. Absence of SUMOylation did not affect FOG-2's nuclear localization. However, mutation of the FOG-2 SUMOylation sites, or de-SUMOylation, with SENP-1 or SENP-8 resulted in stronger transcriptional repression activity in both heterologous cells and cardiomyocytes. Conversely, increased FOG-2 SUMOylation by overexpression of SUMO-1 or expression of a SUMO-1-FOG-2 fusion protein rendered FOG-2 incapable of repressing GATA-4-mediated activation of the B-type natriuretic peptide (BNP promoter. Moreover, we demonstrate both increased interaction between a FOG-2 SUMO mutant and GATA-4 and enhanced SUMOylation of wild-type FOG-2 by co-expression of GATA-4. These data suggest a new dynamics in which GATA-4 may alter the activity of FOG-2 by influencing its SUMOylation status.

  8. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    International Nuclear Information System (INIS)

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit; Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar; Mitra, Debashis; Chattopadhyay, Samit

    2010-01-01

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFα leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  9. Nitrogen regulation of protein-protein interactions and transcript levels of GlnK PII regulator and AmtB ammonium transporter homologs in Archaea.

    Science.gov (United States)

    Pedro-Roig, Laia; Lange, Christian; Bonete, María José; Soppa, Jörg; Maupin-Furlow, Julie

    2013-10-01

    Gene homologs of GlnK PII regulators and AmtB-type ammonium transporters are often paired on prokaryotic genomes, suggesting these proteins share an ancient functional relationship. Here, we demonstrate for the first time in Archaea that GlnK associates with AmtB in membrane fractions after ammonium shock, thus, providing a further insight into GlnK-AmtB as an ancient nitrogen sensor pair. For this work, Haloferax mediterranei was advanced for study through the generation of a pyrE2-based counterselection system that was used for targeted gene deletion and expression of Flag-tagged proteins from their native promoters. AmtB1-Flag was detected in membrane fractions of cells grown on nitrate and was found to coimmunoprecipitate with GlnK after ammonium shock. Thus, in analogy to bacteria, the archaeal GlnK PII may block the AmtB1 ammonium transporter under nitrogen-rich conditions. In addition to this regulated protein-protein interaction, the archaeal amtB-glnK gene pairs were found to be highly regulated by nitrogen availability with transcript levels high under conditions of nitrogen limitation and low during nitrogen excess. While transcript levels of glnK-amtB are similarly regulated by nitrogen availability in bacteria, transcriptional regulators of the bacterial glnK promoter including activation by the two-component signal transduction proteins NtrC (GlnG, NRI) and NtrB (GlnL, NRII) and sigma factor σ(N) (σ(54) ) are not conserved in archaea suggesting a novel mechanism of transcriptional control. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Autotaxin Expression Is Regulated at the Post-transcriptional Level by the RNA-binding Proteins HuR and AUF1*

    OpenAIRE

    Sun, Shuhong; Zhang, Xiaotian; Lyu, Lin; Li, Xixi; Yao, Siliang; Zhang, Junjie

    2016-01-01

    Autotaxin (ATX) is a key enzyme that converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a lysophospholipid mediator that regulates cellular activities through its specific G protein-coupled receptors. The ATX-LPA axis plays an important role in various physiological and pathological processes, especially in inflammation and cancer development. Although the transcriptional regulation of ATX has been widely studied, the post-transcriptional regulation of ATX is largely unk...

  11. PH4 of petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop-Helix transcription factors of the anthocyanin pathway.

    NARCIS (Netherlands)

    Quattrocchio, F.M.; Verweij, C.W.; Spelt, C.E.; Mol, J.N.M.; Koes, R.E.

    2007-01-01

    The Petunia hybrids genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color,

  12. PH4 of petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop transcription factors of the anthocyanin pathway.

    NARCIS (Netherlands)

    Quattrocchio, F.M.; Verweij, C.W.; Kroon, A.R.; Spelt, C.E.; Mol, J.N.M.; Koes, R.E.

    2006-01-01

    The Petunia hybrids genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color,

  13. Loss of Angelman Syndrome Protein E6AP Disrupts a Novel Antagonistic Estrogen-Retinoic Acid Transcriptional Crosstalk in Neurons.

    Science.gov (United States)

    El Hokayem, Jimmy; Weeber, Edwin; Nawaz, Zafar

    2018-01-31

    Angelman syndrome (AS) is a complex genetic disorder that affects the nervous system. AS affects an estimated 1 in 12,000 to 20,000 individuals. Characteristic features of AS includes developmental delay or intellectual disability, severe speech impairment, seizures, small head size (microcephaly), and problems with movement and balance (ataxia). AS individuals usually have microdeletion of the maternal copy of 15q11.2-15q13 region of chromosome 15. The E6-associated protein (E6AP, an E3 ubiquitin protein ligase enzyme) is encoded by the gene UBE3A, which is located in this region, and it has been shown that deregulation of E6AP gives rise to AS and neuropathology of autism spectrum disorders (ASDs) (e.g., autism and Rett syndromes). We have shown that E6AP also acts as a coactivator of the estrogen receptor (ER). ER is a ligand-induced transcription factor that exerts potent and wide-ranging effects on the developing brain. Furthermore, the expression pattern of ER in the brain overlaps with that of E6AP. Up till now, all the published studies have examined the role of the ubiquitin-protein ligase activity of E6AP in the development of AS, and it is not known what role the newly discovered coactivation functions of E6AP and ER plays in the pathology of AS. Here, we demonstrate that E6AP and ER co-immunoprecipitate and are in the same protein complex in neuronal cells (Neuro2a). In addition, both colocalize in nuclear and cytoplasmic compartments of the mouse hippocampal neurons and Neuro2a cells. Moreover, we identified a novel E6AP and ER direct transcriptional regulation of a gene Cyp26b1 known to be involved in learning and memory processes. This transcriptional regulation involves recruitment of E6AP and ER to a newly discovered functional estrogen response element (ERE) located at the Cyp26b1 gene promoter and is associated with transcription permissive epigenetic events leading to increase of active transcription of the gene in neurons upon estrogen

  14. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Ludmila R.P. Ferreira

    2008-03-01

    Full Text Available The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas’ disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast - an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.A diferenciação de formas epimastigotas (proliferativas do Trypanosoma cruzi, parasita protozoário causador da doença de Chagas, em formas metacíclicas tripomastigotas (infectivas e não proliferativas, pode ser reproduzida em laborat

  15. ZNF143 protein is an important regulator of the myeloid transcription factor C/EBP

    Czech Academy of Sciences Publication Activity Database

    Gonzalez, D.; Luyten, A.; Bartholdy, B.; Zhou, Q.; Kardošová, Miroslava; Ebralidze, A.; Swanson, K.D.; Radomska, H.S.; Zhang, P.; Kobayashi, S.S.; Welner, R.S.; Levantini, E.; Steidl, U.; Chong, G.; Collombet, S.; Choi, M.H.; Friedman, A.D.; Scott, L.M.; Alberich-Jorda, Meritxell; Tenen, D.G.

    2017-01-01

    Roč. 292, č. 46 (2017), s. 18924-18936 ISSN 0021-9258 Institutional support: RVO:68378050 Keywords : CCAAT-enhancer-binding protein * gene regulation * hematopoiesis * promoter * transcription factor * EBPalpha * ZNF143 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 4.125, year: 2016

  16. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    International Nuclear Information System (INIS)

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-01-01

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX

  17. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Toyoda, Maki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Kato, Kohsuke [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Yoshikawa, Hiroyuki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan)

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  18. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    2010-12-01

    Full Text Available Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol.Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and apoptosis, and inhibition of cyclin D1 by

  19. Lipid-activated transcription factors control bile acid glucuronidation.

    Science.gov (United States)

    Barbier, Olivier; Trottier, Jocelyn; Kaeding, Jenny; Caron, Patrick; Verreault, Mélanie

    2009-06-01

    Bile acids subserve important physiological functions in the control of cholesterol homeostasis. Indeed, hepatic bile acid synthesis and biliary excretion constitute the main route for cholesterol removal from the human body. On the other hand, bile acids serve as natural detergents for the intestinal absorption of dietary cholesterol. However, due to their detergent properties, bile acids are inherently cytotoxic, and their cellular level may be tightly controlled to avoid pathological situations such as cholestasis. Recent investigations have illustrated the crucial roles that a series of ligand-activated transcription factors has in the control of hepatic bile acids synthesis, transport and metabolism. Thus, the lipid-activated nuclear receptors, farnesoid X-receptor (FXR), liver X-receptor (LXR), pregnane X-receptor (PXR) and peroxisome proliferator-activated receptor alpha (PPAR alpha), modulate the expression and activity of genes controlling bile acid homeostasis in the liver. Several members of the UDP-glucuronosyltransferase (UGT) enzymes family are among the bile acid metabolizing enzymes regulated by these receptors. UGTs catalyze glucuronidation, a major phase II metabolic reaction, which converts hydrophobic bile acids into polar and urinary excretable metabolites. This article summarizes our recent observations on the regulation of bile acid conjugating UGTs upon pharmacological activation of lipid-activated receptors, with a particular interest for the role of PPAR alpha and LXRalpha in controlling human UGT1A3 expression.

  20. Suppression of intragenic transcription requires the MOT1 and NC2 regulators of TATA-binding protein.

    Science.gov (United States)

    Koster, Maria J E; Yildirim, Asli D; Weil, P Anthony; Holstege, Frank C P; Timmers, H Th Marc

    2014-04-01

    Chromatin structure in transcribed regions poses a barrier for intragenic transcription. In a comprehensive study of the yeast chromatin remodelers and the Mot1p-NC2 regulators of TATA-binding protein (TBP), we detected synthetic genetic interactions indicative of suppression of intragenic transcription. Conditional depletion of Mot1p or NC2 in absence of the ISW1 remodeler, but not in the absence of other chromatin remodelers, activated the cryptic FLO8 promoter. Likewise, conditional depletion of Mot1p or NC2 in deletion backgrounds of the H3K36 methyltransferase Set2p or the Asf1p-Rtt106p histone H3-H4 chaperones, important factors involved in maintaining a repressive chromatin environment, resulted in increased intragenic FLO8 transcripts. Activity of the cryptic FLO8 promoter is associated with reduced H3 levels, increased TBP binding and tri-methylation of H3K4 and is independent of Spt-Ada-Gcn5-acetyltransferase function. These data reveal cooperation of negative regulation of TBP with specific chromatin regulators to inhibit intragenic transcription.

  1. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation.

    Science.gov (United States)

    Iurlaro, Mario; Ficz, Gabriella; Oxley, David; Raiber, Eun-Ang; Bachman, Martin; Booth, Michael J; Andrews, Simon; Balasubramanian, Shankar; Reik, Wolf

    2013-01-01

    DNA methylation (5mC) plays important roles in epigenetic regulation of genome function. Recently, TET hydroxylases have been found to oxidise 5mC to hydroxymethylcytosine (5hmC), formylcytosine (5fC) and carboxylcytosine (5caC) in DNA. These derivatives have a role in demethylation of DNA but in addition may have epigenetic signaling functions in their own right. A recent study identified proteins which showed preferential binding to 5-methylcytosine (5mC) and its oxidised forms, where readers for 5mC and 5hmC showed little overlap, and proteins bound to further oxidation forms were enriched for repair proteins and transcription regulators. We extend this study by using promoter sequences as baits and compare protein binding patterns to unmodified or modified cytosine using DNA from mouse embryonic stem cell extracts. We compared protein enrichments from two DNA probes with different CpG composition and show that, whereas some of the enriched proteins show specificity to cytosine modifications, others are selective for both modification and target sequences. Only a few proteins were identified with a preference for 5hmC (such as RPL26, PRP8 and the DNA mismatch repair protein MHS6), but proteins with a strong preference for 5fC were more numerous, including transcriptional regulators (FOXK1, FOXK2, FOXP1, FOXP4 and FOXI3), DNA repair factors (TDG and MPG) and chromatin regulators (EHMT1, L3MBTL2 and all components of the NuRD complex). Our screen has identified novel proteins that bind to 5fC in genomic sequences with different CpG composition and suggests they regulate transcription and chromatin, hence opening up functional investigations of 5fC readers.

  2. Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast.

    Science.gov (United States)

    Shim, Y H; Bonner, J J; Blumenthal, T

    1995-11-10

    The GATA motif (WGATAR) is found in the promoter regions of numerous Caenorhabditis elegans genes, including two intestine-specific genes, vit-2 and ges-1, in which it has been shown to be required for promoter function. The protein ELT-1, encoded by a single-copy gene homologous to the GATA family of vertebrate transcription factors, is potentially capable of interacting with this element. In order to determine whether ELT-1 is a transcriptional activator that recognizes this sequence, we have expressed it under the control of the GAL1 promoter in yeast. lacZ driven by the CYC1 promoter lacking an upstream activation sequence (UAS) but containing GATA sequences was used as a reporter. beta-Galactosidase was expressed upon induction only when GATA sequences were present, and expression was increased dramatically by additional binding sites. Deletion analysis demonstrated that the C terminus, containing only one of the two zinc fingers, is sufficient for activation. In addition, the DNA-binding domain and two transactivation regions were identified by fusing these isolated domains to previously defined domains of heterologous transcription factors. While most single base alterations in the GATA core sequence eliminated activity, an A to C change in position four, creating a GATC core, was found to increase activity significantly. The deleted ELT-1 protein containing only the C-terminal Zn finger was sufficient for activation in response to GATA, but both fingers were required for activation at GATC. A variety of sites with non-optimal sequences surrounding the GATA core also were found to be excluded better by the protein containing both Zn fingers. Furthermore, a fusion protein containing the entire ELT-1 DNA binding domain fused to the VP16 activation domain was found to have an even greater preference for the GATC core, as well as the optimal flanking bases. We conclude that, although ELT-1 having only its C-terminal finger is capable of activation in response to

  3. Krebs cycle function is required for activation of the Spo0A transcription factor in Bacillus subtilis.

    OpenAIRE

    Ireton, K; Jin, S; Grossman, A D; Sonenshein, A L

    1995-01-01

    Expression of genes early during sporulation in Bacillus subtilis requires the activity of the transcription factor encoded by spo0A. The active, phosphorylated form of Spo0A is produced through the action of a multicomponent pathway, the phosphorelay. A mutant defective in the first three enzymes of the Krebs citric acid cycle was unable to express early sporulation genes, apparently because of a failure to activate the phosphorelay. Cells that produce an altered Spo0A protein that can be ph...

  4. Risk for Alzheimer's disease correlates with transcriptional activity of the APOE gene.

    Science.gov (United States)

    Artiga, M J; Bullido, M J; Frank, A; Sastre, I; Recuero, M; García, M A; Lendon, C L; Han, S W; Morris, J C; Vázquez, J; Goate, A; Valdivieso, F

    1998-11-01

    While the straightepsilon4 allele of apolipoprotein E ( APOE, gene; ApoE, protein) is widely accepted as a major genetic risk factor for the late onset form of Alzheimer's disease (AD), recent evidence points to variations in ApoE levels as another important factor. We have previously reported that a common variant in the regulatory region of APOE (-491A) is associated with risk for late onset AD. In this report we analyze the association of another APOE promoter polymorphism (-427T/C) with AD in two case-control clinical samples and demonstrate a correlation between APOE promoter transcriptional activity and risk for AD. The association studies show that the allelic variant (-427C) and the haplotype [-491A-427C] of the APOE promoter are associated with increased risk for AD. Study of the transcriptional activity of the common haplotypes defined by combination of the -491 and -427 alleles indicated that the risk for late onset AD positively correlates with transcriptional activity of the APOE gene, suggesting that increases in the local expression of ApoE could be responsible for the association of APOE promoter polymorphism with AD.

  5. Three gene products of a begomovirus-betasatellite complex restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana.

    Science.gov (United States)

    Saeed, Muhammad; Krczal, Gabi; Wassenegger, Michael

    2015-04-01

    Single-stranded DNA geminiviruses replicate via double-stranded DNA intermediates forming mini-chromosomes that are targets for transcriptional gene silencing (TGS) in plants. The ability of the cotton leaf curl Kokhran virus (CLCuKoV)-cotton leaf curl Multan betasatellite (CLCuMuB) proteins, replication-associated protein (Rep), transcriptional activator protein (TrAP), C4, V2 and βC1, to suppress TGS was investigated by using the Nicotiana benthamiana line 16-TGS (16-TGS) harbouring a transcriptionally silenced green fluorescent protein (GFP) transgene. Inoculation of 16-TGS plants with a recombinant potato virus X vector carrying Rep, TrAP or βC1 resulted in re-expression of GFP. Northern blot analysis confirmed that the observed GFP fluorescence was associated with GFP mRNA accumulation. These results indicated that Rep, TrAP and βC1 proteins of CLCuKoV-CLCuMuB can re-activate the expression of a transcriptionally silenced GFP transgene in N. benthamiana. Although Rep, TrAP, or βC1 proteins have, for other begomoviruses or begomoviruses-betasatellites, been previously shown to have TGS suppressor activity, this is the first report demonstrating that a single begomovirus-betasatellite complex encodes three suppressors of TGS.

  6. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    International Nuclear Information System (INIS)

    Shlomai, Amir; Shaul, Yosef

    2009-01-01

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1α coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1α coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4α and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1α coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1α, implying that FOXO1 is a target for PGC-1α coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  7. Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev

    Science.gov (United States)

    Cooper, Christopher D. O.; Newman, Joseph A.; Aitkenhead, Hazel; Allerston, Charles K.; Gileadi, Opher

    2015-01-01

    Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40–200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors. PMID:25866208

  8. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis.

    Science.gov (United States)

    Koshino-Kimura, Yoshihiro; Wada, Takuji; Tachibana, Tatsuhiko; Tsugeki, Ryuji; Ishiguro, Sumie; Okada, Kiyotaka

    2005-06-01

    Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells. We analyzed the regulatory mechanism of CPC transcription. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis. This region includes two MYB-binding sites, and the epidermis-specific transcription of CPC was abolished when base substitutions were introduced in these sites. We showed by gel mobility shift experiments and by yeast one-hybrid assay that WEREWOLF (WER), which is an R2R3-type MYB protein, directly binds to this region. We showed that WER also binds to the GL2 promoter region, indicating that WER directly regulates CPC and GL2 transcription by binding to their promoter regions.

  9. Identification of Two Protein-Signaling States Delineating Transcriptionally Heterogeneous Human Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Walderik W. Zomerman

    2018-03-01

    Full Text Available Summary: The brain cancer medulloblastoma consists of different transcriptional subgroups. To characterize medulloblastoma at the phosphoprotein-signaling level, we performed high-throughput peptide phosphorylation profiling on a large cohort of SHH (Sonic Hedgehog, group 3, and group 4 medulloblastomas. We identified two major protein-signaling profiles. One profile was associated with rapid death post-recurrence and resembled MYC-like signaling for which MYC lesions are sufficient but not necessary. The second profile showed enrichment for DNA damage, as well as apoptotic and neuronal signaling. Integrative analysis demonstrated that heterogeneous transcriptional input converges on these protein-signaling profiles: all SHH and a subset of group 3 patients exhibited the MYC-like protein-signaling profile; the majority of the other group 3 subset and group 4 patients displayed the DNA damage/apoptotic/neuronal signaling profile. Functional analysis of enriched pathways highlighted cell-cycle progression and protein synthesis as therapeutic targets for MYC-like medulloblastoma. : Using peptide phosphorylation profiling, Zomerman et al. identify two medulloblastoma phosphoprotein-signaling profiles that have prognostic value and are potentially targetable. They find that these profiles extend across transcriptome-based subgroup borders. This suggests that diverse genetic information converges on common protein-signaling pathways and highlights protein-signaling as a unique information layer. Keywords: medulloblastoma, protein-signaling, protein synthesis, MYC, TP53, proteome, phosphoproteome

  10. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution.

    Directory of Open Access Journals (Sweden)

    Sarah L Maguire

    2014-01-01

    Full Text Available In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs, which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1 and C. albicans (Cph2 have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1 and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.

  11. Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development.

    Science.gov (United States)

    Creemers, Esther E; Sutherland, Lillian B; McAnally, John; Richardson, James A; Olson, Eric N

    2006-11-01

    Myocardin is a transcriptional co-activator of serum response factor (Srf), which is a key regulator of the expression of smooth and cardiac muscle genes. Consistent with its role in regulating cardiovascular development, myocardin is the earliest known marker specific to both the cardiac and smooth muscle lineages during embryogenesis. To understand how the expression of this early transcriptional regulator is initiated and maintained, we scanned 90 kb of genomic DNA encompassing the myocardin gene for cis-regulatory elements capable of directing myocardin transcription in cardiac and smooth muscle lineages in vivo. Here, we describe an enhancer that controls cardiovascular expression of the mouse myocardin gene during mouse embryogenesis and adulthood. Activity of this enhancer in the heart and vascular system requires the combined actions of the Mef2 and Foxo transcription factors. In addition, the Tead transcription factor is required specifically for enhancer activation in neural-crest-derived smooth muscle cells and dorsal aorta. Notably, myocardin also regulates its own enhancer, but in contrast to the majority of myocardin target genes, which are dependent on Srf, myocardin acts through Mef2 to control its enhancer. These findings reveal an Srf-independent mechanism for smooth and cardiac muscle-restricted transcription and provide insight into the regulatory mechanisms responsible for establishing the smooth and cardiac muscle phenotypes during development.

  12. Cocaine activates Homer1 immediate early gene transcription in the mesocorticolimbic circuit: differential regulation by dopamine and glutamate signaling.

    Science.gov (United States)

    Ghasemzadeh, M Behnam; Windham, Lindsay K; Lake, Russell W; Acker, Christopher J; Kalivas, Peter W

    2009-01-01

    Homer proteins are intracellular scaffolding proteins that, among glutamate receptors, selectively bind to group1 metabotropic glutamate receptors and regulate their trafficking and intracellular signaling. Homer proteins have been implicated in synaptic and behavioral plasticity, including drug-seeking behavior after cocaine treatment. Homer1 gene activation leads to transcription of a variant mRNA (Homer1a), which functions as an immediate early gene. Homer1a competes with the constitutive Homer proteins (Homer1b/c/d, Homer2a/b, Homer3) for binding to group1 metabotropic glutamate and IP3 receptors. Binding of Homer1a to these proteins disrupts their association with the intracellular signaling scaffold and modulates receptor function. In this study, using RT-PCR, activation of Homer1a mRNA transcription in response to acute and repeated administration of cocaine was characterized in prefrontal cortex, nucleus accumbens, and ventral tegmental area, three mesocorticolimbic nuclei of the rat brain. Moreover, the dopaminergic and glutamatergic regulation of Homer1 gene activation by cocaine was investigated. Acute cocaine rapidly and transiently activated transcription of Homer1a mRNA in all three nuclei. However, repeated administration of cocaine was not effective in inducing the Homer1a mRNA transcription after various withdrawal times ranging from 2 h to 3 weeks. The acute cocaine-mediated activation of Homer1 gene was regulated by D1 but not D2 dopamine receptors. The blockade of AMPA or NMDA glutamate receptors did not prevent cocaine-mediated activation of Homer1 gene in the three mesocorticolimbic nuclei. These data indicate that acute administration of cocaine transiently activates Homer1 gene producing the immediate early gene Homer1a mRNA in the three mesocorticolimbic nuclei of the rat brain. Activation of Homer1 gene may contribute to the cocaine-mediated synaptic and behavioral plasticity.

  13. Alternative mRNA splicing creates transcripts encoding soluble proteins from most LILR genes.

    Science.gov (United States)

    Jones, Des C; Roghanian, Ali; Brown, Damien P; Chang, Chiwen; Allen, Rachel L; Trowsdale, John; Young, Neil T

    2009-11-01

    Leucocyte Ig-like receptors (LILR) are a family of innate immune receptors expressed on myeloid and lymphoid cells that influence adaptive immune responses. We identified a common mechanism of alternative mRNA splicing, which generates transcripts that encode soluble protein isoforms of the majority of human LILR. These alternative splice variants lack transmembrane and cytoplasmic encoding regions, due to the transcription of a cryptic stop codon present in an intron 5' of the transmembrane encoding exon. The alternative LILR transcripts were detected in cell types that express their membrane-associated isoforms. Expression of the alternative LILRB1 transcript in transfected cells resulted in the release of a soluble approximately 65 Kd LILRB1 protein into culture supernatants. Soluble LILRB1 protein was also detected in the culture supernatants of monocyte-derived DC. In vitro assays suggested that soluble LILRB1 could block the interaction between membrane-associated LILRB1 and HLA-class I. Soluble LILRB1 may act as a dominant negative regulator of HLA-class I-mediated LILRB1 inhibition. Soluble isoforms of the other LILR may function in a comparable way.

  14. Ribosomal RNA and protein transcripts persist in the cysts of Entamoeba invadens.

    Science.gov (United States)

    Ojha, Sandeep; Ahamad, Jamaluddin; Bhattacharya, Alok; Bhattacharya, Sudha

    2014-06-01

    In most organisms rDNA transcription ceases under conditions of growth stress. However, we have earlier shown that pre-rRNA accumulates during encystation in Entamoeba invadens. We labeled newly-synthesized rRNA during encystation, with [methyl-(3)H] methionine in the presence of chitinase to enable uptake of isotope. Incorporation rate reduced after 24h, and then increased to reach levels comparable with normal cells. The label was rapidly chased to the ribosomal pellet in dividing cells, while at late stages of encystation the ratio of counts going to the pellet dropped 3-fold. The transcript levels of selected ribosomal protein genes also went down initially but went up again at later stages of encystation. This suggested that rRNA and ribosomal protein transcription may be coordinately regulated. Our data shows that encysting E. invadens cells accumulate transcripts of both the RNA and protein components of the ribosome, which may ensure rapid synthesis of new ribosomes when growth resumes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics.

    Directory of Open Access Journals (Sweden)

    Katie Porter

    Full Text Available The primary role of Actin-Depolymerizing Factors (ADFs is to sever filamentous actin, generating pointed ends, which in turn are incorporated into newly formed filaments, thus supporting stochastic actin dynamics. Arabidopsis ADF4 was recently shown to be required for the activation of resistance in Arabidopsis following infection with the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst expressing the effector protein AvrPphB. Herein, we demonstrate that the expression of RPS5, the cognate resistance protein of AvrPphB, was dramatically reduced in the adf4 mutant, suggesting a link between actin cytoskeletal dynamics and the transcriptional regulation of R-protein activation. By examining the PTI (PAMP Triggered Immunity response in the adf4 mutant when challenged with Pst expressing AvrPphB, we observed a significant reduction in the expression of the PTI-specific target gene FRK1 (Flg22-Induced Receptor Kinase 1. These data are in agreement with recent observations demonstrating a requirement for RPS5 in PTI-signaling in the presence of AvrPphB. Furthermore, MAPK (Mitogen-Activated Protein Kinase-signaling was significantly reduced in the adf4 mutant, while no such reduction was observed in the rps5-1 point mutation under similar conditions. Isoelectric focusing confirmed phosphorylation of ADF4 at serine-6, and additional in planta analyses of ADF4's role in immune signaling demonstrates that nuclear localization is phosphorylation independent, while localization to the actin cytoskeleton is linked to ADF4 phosphorylation. Taken together, these data suggest a novel role for ADF4 in controlling gene-for-gene resistance activation, as well as MAPK-signaling, via the coordinated regulation of actin cytoskeletal dynamics and R-gene transcription.

  16. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  17. Tip60-mediated acetylation activates transcription independent apoptotic activity of Abl

    Directory of Open Access Journals (Sweden)

    Pandita Tej K

    2011-07-01

    Full Text Available Abstract Background The proto-oncogene, c-Abl encodes a ubiquitously expressed tyrosine kinase that critically governs the cell death response induced by genotoxic agents such as ionizing radiation and cisplatin. The catalytic function of Abl, which is essential for executing DNA damage response (DDR, is normally tightly regulated but upregulated several folds upon IR exposure due to ATM-mediated phosphorylation on S465. However, the mechanism/s leading to activation of Abl's apoptotic activity is currently unknown. Results We investigated the role of acetyl modification in regulating apoptotic activity of Abl and the results showed that DNA strand break-inducing agents, ionizing radiation and bleomycin induced Abl acetylation. Using mass spectrophotometry and site-specific acetyl antibody, we identified Abl K921, located in the DNA binding domain, and conforming to one of the lysine residue in the consensus acetylation motif (KXXK--X3-5--SGS is acetylated following DNA damage. We further observed that the S465 phosphorylated Abl is acetyl modified during DNA damage. Signifying the modification, cells expressing the non acetylatable K921R mutant displayed attenuated apoptosis compared to wild-type in response to IR or bleomycin treatment. WT-Abl induced apoptosis irrespective of new protein synthesis. Furthermore, upon γ-irradiation K921R-Abl displayed reduced chromatin binding compared to wild type. Finally, loss of Abl K921 acetylation in Tip60-knocked down cells and co-precipitation of Abl with Tip60 in DNA damaged cells identified Tip60 as an Abl acetylase. Conclusion Collective data showed that DNA damage-induced K921 Abl acetylation, mediated by Tip60, stimulates transcriptional-independent apoptotic activity and chromatin-associative property thereby defining a new regulatory mechanism governing Abl's DDR function.

  18. Eccentric exercise activates novel transcriptional regulation of hypertrophic signaling pathways not affected by hormone changes.

    Directory of Open Access Journals (Sweden)

    Lauren G MacNeil

    Full Text Available Unaccustomed eccentric exercise damages skeletal muscle tissue, activating mechanisms of recovery and remodeling that may be influenced by the female sex hormone 17beta-estradiol (E2. Using high density oligonucleotide based microarrays, we screened for differences in mRNA expression caused by E2 and eccentric exercise. After random assignment to 8 days of either placebo (CON or E2 (EXP, eighteen men performed 150 single-leg eccentric contractions. Muscle biopsies were collected at baseline (BL, following supplementation (PS, +3 hours (3H and +48 hours (48H after exercise. Serum E2 concentrations increased significantly with supplementation (P<0.001 but did not affect microarray results. Exercise led to early transcriptional changes in striated muscle activator of Rho signaling (STARS, Rho family GTPase 3 (RND3, mitogen activated protein kinase (MAPK regulation and the downstream transcription factor FOS. Targeted RT-PCR analysis identified concurrent induction of negative regulators of calcineurin signaling RCAN (P<0.001 and HMOX1 (P = 0.009. Protein contents were elevated for RND3 at 3H (P = 0.02 and FOS at 48H (P<0.05. These findings indicate that early RhoA and NFAT signaling and regulation are altered following exercise for muscle remodeling and repair, but are not affected by E2.

  19. Self-assembled FUS binds active chromatin and regulates gene transcription

    Science.gov (United States)

    Yang, Liuqing; Gal, Jozsef; Chen, Jing; Zhu, Haining

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Fused in sarcoma (FUS) is a DNA/RNA binding protein and mutations in FUS cause a subset of familial ALS. Most ALS mutations are clustered in the C-terminal nuclear localization sequence of FUS and consequently lead to the accumulation of protein inclusions in the cytoplasm. It remains debatable whether loss of FUS normal function in the nucleus or gain of toxic function in the cytoplasm plays a more critical role in the ALS etiology. Moreover, the physiological function of FUS in the nucleus remains to be fully understood. In this study, we found that a significant portion of nuclear FUS was bound to active chromatin and that the ALS mutations dramatically decreased FUS chromatin binding ability. Functionally, the chromatin binding is required for FUS transcription activation, but not for alternative splicing regulation. The N-terminal QGSY (glutamine-glycine-serine-tyrosine)-rich region (amino acids 1–164) mediates FUS self-assembly in the nucleus of mammalian cells and the self-assembly is essential for its chromatin binding and transcription activation. In addition, RNA binding is also required for FUS self-assembly and chromatin binding. Together, our results suggest a functional assembly of FUS in the nucleus under physiological conditions, which is different from the cytoplasmic inclusions. The ALS mutations can cause loss of function in the nucleus by disrupting this assembly and chromatin binding. PMID:25453086

  20. Eccentric Exercise Activates Novel Transcriptional Regulation of Hypertrophic Signaling Pathways Not Affected by Hormone Changes

    Science.gov (United States)

    MacNeil, Lauren G.; Melov, Simon; Hubbard, Alan E.; Baker, Steven K.; Tarnopolsky, Mark A.

    2010-01-01

    Unaccustomed eccentric exercise damages skeletal muscle tissue, activating mechanisms of recovery and remodeling that may be influenced by the female sex hormone 17β-estradiol (E2). Using high density oligonucleotide based microarrays, we screened for differences in mRNA expression caused by E2 and eccentric exercise. After random assignment to 8 days of either placebo (CON) or E2 (EXP), eighteen men performed 150 single-leg eccentric contractions. Muscle biopsies were collected at baseline (BL), following supplementation (PS), +3 hours (3H) and +48 hours (48H) after exercise. Serum E2 concentrations increased significantly with supplementation (P<0.001) but did not affect microarray results. Exercise led to early transcriptional changes in striated muscle activator of Rho signaling (STARS), Rho family GTPase 3 (RND3), mitogen activated protein kinase (MAPK) regulation and the downstream transcription factor FOS. Targeted RT-PCR analysis identified concurrent induction of negative regulators of calcineurin signaling RCAN (P<0.001) and HMOX1 (P = 0.009). Protein contents were elevated for RND3 at 3H (P = 0.02) and FOS at 48H (P<0.05). These findings indicate that early RhoA and NFAT signaling and regulation are altered following exercise for muscle remodeling and repair, but are not affected by E2. PMID:20502695

  1. Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor VIVIPAROUS 1.

    Science.gov (United States)

    Jones, H D; Kurup, S; Peters, N C; Holdsworth, M J

    2000-01-01

    The Avena fatua (wild oat) homologue of VIVIPAROUS 1 (AfVP1) has been implicated in controlling the maintenance of embryo dormancy in mature imbibed seeds, but the detailed mechanisms by which this transcription factor family activates embryo maturation pathways and simultaneously represses germination are not known. A two-hybrid screen in yeast identified three proteins that interacted specifically with AfVP1 (AfVP1 interacting proteins; AfVIPs). AfVIPs 2 and 3 interacted with the C-terminus of AfVP1, which contains the B2 + B3 domains, previously shown to bind DNA, whereas AfVIP1 interacted with the isolated B3 domain. Using purified proteins in in vitro experiments, all three AfVIPs were shown also to interact with the Arabidopsis homologue ABSCISIC ACID INSENSITIVE 3 (ABI3). The three AfVIPs were expressed in both dormant and non-dormant embryos, but the abundance of AfVIP1 and 3 transcripts was greater in germinated than dormant seeds, whereas transcripts of AfVIP2 (and AfVP1) were more highly expressed in dormant embryos. The AfVIP3 protein has homology to a human cell-crisis gene with a predicted role in the cell cycle; AfVIP2 contains a ring-type zinc finger motif. These homologies, together with analysis of expression studies, suggest that these proteins may play specific roles in AfVP1-mediated regulation of the dormancy to germination transition in A. fatua seeds.

  2. The silkworm Bombyx mori cuticular protein CPR55 gene is regulated by the transcription factor βFTZ-F1

    Directory of Open Access Journals (Sweden)

    Md. Saheb Ali

    2016-01-01

    Full Text Available The insect cuticle is composed of various proteins and formed during the moult under a complex biological process that depends on the cross talk between hormone levels and gene expression. In the present study, we aimed to clarify the ecdysone-dependent temporal regulation mechanisms of cuticular proteins expression and the underlying control of Bombyx mori metamorphosis. The expression of CPR55 was observed from the W3 early stage and peaked at pupation when the ecdysteroid titre declined. CPR55 was induced by the ecdysone pulse, and their expression peaked at 24 h after transfer to a hormone free medium. Transcripts of CPR55 were neither observed after the 20E pulse treatment in the presence of cycloheximide nor after the addition of 20E in V4 wing discs. We analysed the upstream region of the CPR55 gene using a transient reporter assay with a gene gun system which identified only one βFTZ-F1 binding site important for cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of this element in the context of the 589-bp promoter fragment drastically decreased the reporter activity. The nuclear protein bound to βFTZ-F1 sites was identified by an electrophoretic mobility shift assay suggesting that CPR55 expression was regulated by βFTZ-F1 through the ecdysone pulse. The results confirmed that transcription factor, BmβFTZ-F1, binds to the cis-regulatory elements in the promoter of the gene coding for cuticle protein, CPR55, and regulates its expression during B. mori metamorphosis.

  3. Transcriptional activity of Pax3 is co-activated by TAZ

    International Nuclear Information System (INIS)

    Murakami, Masao; Tominaga, Junji; Makita, Ryosuke; Uchijima, Yasunobu; Kurihara, Yukiko; Nakagawa, Osamu; Asano, Tomoichiro; Kurihara, Hiroki

    2006-01-01

    Pax3 is a transcription factor which functions in embryonic development and human diseases. In a yeast two-hybrid screen with full-length Pax3 as bait, we isolated a clone encoding transcriptional co-activator with PDZ-binding motif (TAZ) from an E10.5 mouse embryo cDNA library. Co-immunoprecipitation and nuclear co-localization of TAZ with Pax3 suggest that their association is functionally relevant. In situ hybridization revealed TAZ and Pax3 expression to partially overlap in the paraxial mesoderm, limb buds, and the neural tube. In C2C12 myoblast cells and NIH3T3 cells, TAZ enhanced the transcriptional activity of Pax3 on artificial and microphthalmia-associated transcription factor promoter-luciferase constructs, suggesting that TAZ can function as a co-activator of Pax3. Functional interaction between Pax3 and TAZ may provide a clue to clarifying the mechanism by which Pax3 serves as a transcriptional activator during embryogenesis

  4. Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Courtney M. [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Hu, Jianxin [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Thomas, Reuben [Univ. of California, San Francisco, CA (United States). Gladstone Inst.; Gainous, T. Blair [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Celona, Barbara [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Sinha, Tanvi [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Dickel, Diane E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Genomics Division; Heidt, Analeah B. [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Xu, Shan-Mei [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Bruneau, Benoit G. [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Univ. of California, San Francisco, CA (United States). Gladstone Inst.; Pollard, Katherine S. [Univ. of California, San Francisco, CA (United States). Gladstone Inst.; Pennacchio, Len A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Genomics Division; Black, Brian L. [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Univ. of California, San Francisco, CA (United States). Dept. of

    2017-03-28

    Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here in this paper, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by the SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo. Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.

  5. System wide analyses have underestimated protein abundances and the importance of transcription in mammals

    Directory of Open Access Journals (Sweden)

    Jingyi Jessica Li

    2014-02-01

    Full Text Available Large scale surveys in mammalian tissue culture cells suggest that the protein expressed at the median abundance is present at 8,000–16,000 molecules per cell and that differences in mRNA expression between genes explain only 10–40% of the differences in protein levels. We find, however, that these surveys have significantly underestimated protein abundances and the relative importance of transcription. Using individual measurements for 61 housekeeping proteins to rescale whole proteome data from Schwanhausser et al. (2011, we find that the median protein detected is expressed at 170,000 molecules per cell and that our corrected protein abundance estimates show a higher correlation with mRNA abundances than do the uncorrected protein data. In addition, we estimated the impact of further errors in mRNA and protein abundances using direct experimental measurements of these errors. The resulting analysis suggests that mRNA levels explain at least 56% of the differences in protein abundance for the 4,212 genes detected by Schwanhausser et al. (2011, though because one major source of error could not be estimated the true percent contribution should be higher. We also employed a second, independent strategy to determine the contribution of mRNA levels to protein expression. We show that the variance in translation rates directly measured by ribosome profiling is only 9% of that inferred by Schwanhausser et al. (2011, and that the measured and inferred translation rates correlate poorly (R2 = 0.14. Based on this, our second strategy suggests that mRNA levels explain ∼84% of the variance in protein levels. We also determined the percent contributions of transcription, RNA degradation, translation and protein degradation to the variance in protein abundances using both of our strategies. While the magnitudes of the two estimates vary, they both suggest that transcription plays a more important role than the earlier studies implied and translation

  6. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway.

    Science.gov (United States)

    Wu, Shian; Liu, Yi; Zheng, Yonggang; Dong, Jixin; Pan, Duojia

    2008-03-01

    The Hippo (Hpo) kinase cascade restricts tissue growth by inactivating the transcriptional coactivator Yorkie (Yki), which regulates the expression of target genes such as the cell death inhibitor diap1 by unknown mechanisms. Here we identify the TEAD/TEF family protein Scalloped (Sd) as a DNA-binding transcription factor that partners with Yki to mediate the transcriptional output of the Hpo growth-regulatory pathway. The diap1 (th) locus harbors a minimal Sd-binding Hpo Responsive Element (HRE) that mediates transcriptional regulation by the Hpo pathway. Sd binds directly to Yki, and a Yki missense mutation that abrogates Sd-Yki binding also inactivates Yki function in vivo. We further demonstrate that sd is required for yki-induced tissue overgrowth and target gene expression, and that sd activity is conserved in its mammalian homolog. Our results uncover a heretofore missing link in the Hpo signaling pathway and provide a glimpse of the molecular events on a Hpo-responsive enhancer element.

  7. In Vitro Anticancer Activity of Phlorofucofuroeckol A via Upregulation of Activating Transcription Factor 3 against Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hyun Ji Eo

    2016-03-01

    Full Text Available Phlorofucofuroeckol A (PFF-A, one of the phlorotannins found in brown algae, has been reported to exert anti-cancer property. However, the molecular mechanism for the anti-cancer effect of PFF-A has not been known. Activating transcription factor 3 (ATF3 has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which PFF-A stimulates ATF3 expression and apoptosis in human colorectal cancer cells. PFF-A decreased cell viability through apoptosis of human colorectal cancer cells. PFF-A increased ATF3 expression through regulating transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by PFF-A was cAMP response element binding protein (CREB, located between positions −147 and −85 of the ATF3 promoter. Inhibition of p38, c-Jun N-terminal kinases (JNK, glycogen synthase kinase (GSK 3β, and IκB kinase (IKK-α blocked PFF-A-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of poly (ADP-ribose polymerase (PARP by PFF-A, while ATF3 overexpression increased PFF-A-mediated cleaved PARP. These results suggest that PFF-A may exert anti-cancer property through inducing apoptosis via the ATF3-mediated pathway in human colorectal cancer cells.

  8. HDAC6 Inhibition Promotes Transcription Factor EB Activation and Is Protective in Experimental Kidney Disease

    Directory of Open Access Journals (Sweden)

    Angela S. Brijmohan

    2018-02-01

    Full Text Available To contend with the deleterious effects of accumulating misfolded protein aggregates or damaged organelles cells rely on a system of quality control processes, among them the autophagy-lysosome pathway. This pathway is itself controlled by a master regulator transcription factor termed transcription factor EB (TFEB. When TFEB localizes to the cell nucleus it promotes the expression of a number of genes involved in protein clearance. Here, we set out to determine (1 whether TFEB expression is altered in chronic kidney disease (CKD; (2 whether inhibition of the cytosolic deacetylase histone deacetylase 6 (HDAC6 affects TFEB acetylation and nuclear localization; and (3 whether HDAC6 inhibition, in turn, alters the natural history of experimental CKD. TFEB mRNA and protein levels were observed to be diminished in the kidneys of humans with diabetic kidney disease, accompanied by accumulation of the protein aggregate adaptor protein p62 in tubule epithelial cells. In cultured NRK-52E cells, HDAC6 inhibition with the small molecule inhibitor Tubastatin A acetylated TFEB, increasing TFEB localization to the nucleus and attenuating cell death. In a rat model of CKD, Tubastatin A prevented the accumulation of misfolded protein aggregates in tubule epithelial cells, attenuated proteinuria progression, limited tubule cell death and diminished tubulointerstitial collagenous matrix deposition. These findings point to the common occurrence of dysregulated quality control processes in CKD and they suggest that TFEB downregulation may contribute to tubule injury in CKD. They also identify a regulatory relationship between HDAC6 and TFEB. HDAC6 inhibitors and TFEB activators both warrant further investigation as treatments for CKD.

  9. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity.

    Directory of Open Access Journals (Sweden)

    Guillaume Dalmasso

    Full Text Available BACKGROUND: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. RESULTS: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1 promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by approximately 2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles. CONCLUSIONS: Collectively, our results demonstrate that butyrate increases PepT1 expression and activity in colonic epithelial cells, which provides a new understanding of PepT1 regulation during chronic inflammation.

  10. Phosphorylation of transcriptional regulators in the retinoblastoma protein pathway by UL97, the viral cyclin-dependent kinase encoded by human cytomegalovirus.

    Science.gov (United States)

    Iwahori, Satoko; Kalejta, Robert F

    2017-12-01

    Human cytomegalovirus (HCMV) encodes a viral cyclin-dependent kinase (v-CDK), the UL97 protein. UL97 phosphorylates Rb, p107 and p130, thereby inactivating all three retinoblastoma (Rb) family members. Rb proteins function through regulating the activity of transcription factors to which they bind. Therefore, we examined whether the UL97-mediated regulation of the Rb tumor suppressors also extended to their binding partners. We observed that UL97 phosphorylates LIN52, a component of p107- and p130-assembled transcriptionally repressive DREAM complexes that control transcription during the G0/G1 phases, and the Rb-associated E2F3 protein that activates transcription through G1 and S phases. Intriguingly, we also identified FoxM1B, a transcriptional regulator during the S and G2 phases, as a UL97 substrate. This survey extends the influence of UL97 beyond simply the Rb proteins themselves to their binding partners, as well as past the G1/S transition into later stages of the cell cycle. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Counteraction by MutT protein of transcriptional errors caused by oxidative damage.

    Science.gov (United States)

    Taddei, F; Hayakawa, H; Bouton, M; Cirinesi, A; Matic, I; Sekiguchi, M; Radman, M

    1997-10-03

    Oxidized guanine (8-oxo-7,8-dihydroguanine; 8-oxo-G) is a potent mutagen because of its ambiguous pairing with cytosine and adenine. The Escherichia coli MutT protein specifically hydrolyzes both 8-oxo-deoxyguanosine triphosphate (8-oxo-dGTP) and 8-oxo-guanosine triphosphate (8-oxo-rGTP), which are otherwise incorporated in DNA and RNA opposite template A. In vivo, this cleaning of the nucleotide pools decreases both DNA replication and transcription errors. The effect of mutT mutation on transcription fidelity was shown to depend on oxidative metabolism. Such control of transcriptional fidelity by the ubiquitous MutT function has implications for evolution of RNA-based life, phenotypic expression, adaptive mutagenesis, and functional maintenance of nondividing cells.

  12. 14-3-3 mediates transcriptional regulation by modulating nucleocytoplasmic shuttling of tobacco DNA-binding protein phosphatase-1.

    Science.gov (United States)

    Carrasco, José L; Castelló, María José; Vera, Pablo

    2006-08-11

    Tobacco DBP1 is the founding member of a novel class of plant transcription factors featuring sequence-specific DNA binding and protein phosphatase activity. To understand the mechanisms underlying the function of this family of transcriptional regulators, we have identified the tobacco 14-3-3 isoform G as the first protein interacting with a DBP factor. 14-3-3 recognition involves the N-terminal region of DBP1, which also supports the DNA binding activity attributed to DBP1. The relevance of this interaction is reinforced by its conservation in Arabidopsis plants, where the closest relative of DBP1 in this species also interacts with a homologous 14-3-3 protein through its N-terminal region. Furthermore, we show that in planta 14-3-3 G is directly involved in regulating DBP1 function by promoting nuclear export and subsequent cytoplasmic retention of DBP1 under conditions that in turn alleviate DBP1-mediated repression of target gene expression.

  13. The host factor polyhedrin promoter binding protein (PPBP) is involved in transcription from the baculovirus polyhedrin gene promoter.

    Science.gov (United States)

    Ghosh, S; Jain, A; Mukherjee, B; Habib, S; Hasnain, S E

    1998-09-01

    Hypertranscription and temporal expression from the Autographa californica nuclear polyhedrosis (AcNPV) baculovirus polyhedrin promoter involves an alpha-amanitin-resistant RNA polymerase and requires a trans-acting viral factor(s). We previously reported that a 30-kDa host factor, polyhedrin promoter binding protein (PPBP), binds with unusual affinity, specificity, and stability to the transcriptionally important motif AATAAATAAGTATT within the polyhedrin (polh) initiator promoter and also displays coding strand-specific single-stranded DNA (ssDNA)-binding activity (S. Burma, B. Mukherjee, A. Jain, S. Habib, and S. E. Hasnain, J. Biol. Chem. 269:2750-2757, 1994; B. Mukherjee, S. Burma, and S. E. Hasnain, J. Biol. Chem. 270:4405-4411, 1995). We now present evidence which indicates that an additional factor(s) is involved in stabilizing PPBP-duplex promoter and PPBP-ssDNA interactions. TBP (TATA box binding protein) present in Spodoptera frugiperda (Sf9) cells is characteristically distinct from PPBP and does not interact directly with the polh promoter. Replacement of PPBP cognate sequences within the polh promoter with random nucleotides abolished PPBP binding in vitro and also failed to express the luciferase reporter gene in vivo. Phosphocellulose fractions of total nuclear extract from virus-infected cells which support in vitro transcription from the polh promoter contain PPBP activity. When PPBP was sequestered by the presence of oligonucleotides containing PPBP cognate sequence motifs, in vitro transcription of a C-free reporter cassette was affected but was restored by the exogenous addition of nuclear extract containing PPBP. When PPBP was mopped out in vivo by a plasmid carrying PPBP cognate sequence present in trans, polh promoter-driven expression of the luciferase reporter was abolished, demonstrating that binding of PPBP to the polh promoter is essential for transcription.

  14. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse

    Directory of Open Access Journals (Sweden)

    Béringue Vincent

    2010-07-01

    Full Text Available Abstract Background The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. Results Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. Conclusions These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.

  15. Inhibition of estrogen receptor β-mediated human telomerase reverse transcriptase gene transcription via the suppression of mitogen-activated protein kinase signaling plays an important role in 15-deoxy-Δ12,14-prostaglandin J2-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Kondoh, Kei; Tsuji, Naoki; Asanuma, Koichi; Kobayashi, Daisuke; Watanabe, Naoki

    2007-01-01

    The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR)-γ plays a role in cancer development in addition to its role in glucose metabolism. The natural ligand of PPAR-γ, namely, 15-deoxy-Δ 12,14 -prostaglandin J 2 (15d-PGJ 2 ), has been shown to possess antineoplastic activity in cancer cells. However, the mechanism underlying its antineoplastic activity remains to be elucidated. Inhibition of the expression of human telomerase reverse transcriptase (hTERT), a major determinant of telomerase activity, reportedly induces rapid apoptosis in cancer cells. In this study, we investigated the effect of 15d-PGJ 2 on hTERT expression. We found that 15d-PGJ 2 induced apoptosis in the MIAPaCa-2 pancreatic cancer cells and dose-dependently decreased hTERT mRNA and protein expression. Down-regulation of hTERT expression by hTERT-specific small inhibitory RNA also induced apoptosis. Furthermore, 15d-PGJ 2 attenuated the DNA binding of estrogen receptor (ER). MIAPaCa-2 expressed only ERβ, and although its expression did not decrease due to 15d-PGJ 2 , its phosphorylation was suppressed. Additionally, a mitogen-activated protein kinase (MAPK) kinase inhibitor decreased ERβ phosphorylation, and 15d-PGJ 2 attenuated MAPK activity. We conclude that hTERT down-regulation by 15d-PGJ 2 plays an important role in the proapoptotic property of the latter. Furthermore, 15d-PGJ 2 inhibits ERβ-mediated hTERT gene transcription by suppressing ERβ phosphorylation via the inhibition of MAP kinase signaling

  16. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Wada, Takeyoshi; Asahi, Toru; Sawamura, Naoya

    2016-01-01

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.

  17. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Takeyoshi [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Asahi, Toru [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Sawamura, Naoya, E-mail: naoya.sawamura@gmail.com [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan)

    2016-08-26

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.

  18. In vitro assay for the Bacillus subtilis signal peptidase SipS : systems for efficient in vitro transcription-translation and processing of precursors of secreted proteins

    NARCIS (Netherlands)

    VEHMAANPERA, J; GORNER, A; VENEMA, G; BRON, S; van Dijl, Jan Maarten

    1993-01-01

    The signal peptidase (SPase) SipS of Bacillus subtilis is responsible for the processing of precursors of secreted proteins. It differs from the SPases of Gram-negative bacteria in structure and specificity. To assay the activity of SipS in vitro, two efficient transcription-translation systems for

  19. Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions.

    Directory of Open Access Journals (Sweden)

    Natalie S Scholes

    2016-05-01

    Full Text Available Transcriptional activation domains (ADs are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators.

  20. Acetylation Increases EWS-FLI1 DNA Binding and Transcriptional Activity

    International Nuclear Information System (INIS)

    Schlottmann, Silke; Erkizan, Hayriye V.; Barber-Rotenberg, Julie S.; Knights, Chad; Cheema, Amrita; Üren, Aykut; Avantaggiati, Maria L.; Toretsky, Jeffrey A.

    2012-01-01

    Ewing Sarcoma (ES) is associated with a balanced chromosomal translocation that in most cases leads to the expression of the oncogenic fusion protein and transcription factor EWS-FLI1. EWS-FLI1 has been shown to be crucial for ES cell survival and tumor growth. However, its regulation is still enigmatic. To date, no functionally significant post-translational modifications of EWS-FLI1 have been shown. Since ES are sensitive to histone deacetylase inhibitors (HDI), and these inhibitors are advancing in clinical trials, we sought to identify if EWS-FLI1 is directly acetylated. We convincingly show acetylation of the C-terminal FLI1 (FLI1-CTD) domain, which is the DNA binding domain of EWS-FLI1. In vitro acetylation studies showed that acetylated FLI1-CTD has higher DNA binding activity than the non-acetylated protein. Over-expression of PCAF or treatment with HDI increased the transcriptional activity of EWS-FLI1, when co-expressed in Cos7 cells. However, our data that evaluates the acetylation of full-length EWS-FLI1 in ES cells remains unclear, despite creating acetylation specific antibodies to four potential acetylation sites. We conclude that EWS-FLI1 may either gain access to chromatin as a result of histone acetylation or undergo regulation by direct acetylation. These data should be considered when patients are treated with HDAC inhibitors. Further investigation of this phenomenon will reveal if this potential acetylation has an impact on tumor response.

  1. Transcriptionally Silenced Transgenes in Maize Are Activated by Three Mutations Defective in Paramutation

    Science.gov (United States)

    McGinnis, Karen M.; Springer, Catherine; Lin, Yan; Carey, Charles C.; Chandler, Vicki

    2006-01-01

    Plants with mutations in one of three maize genes, mop1, rmr1, and rmr2, are defective in paramutation, an allele-specific interaction that leads to meiotically heritable chromatin changes. Experiments reported here demonstrate that these genes are required to maintain the transcriptional silencing of two different transgenes, suggesting that paramutation and transcriptional silencing of transgenes share mechanisms. We hypothesize that the transgenes are silenced through an RNA-directed chromatin mechanism, because mop1 encodes an RNA-dependent RNA polymerase. In all the mutants, DNA methylation was reduced in the active transgenes relative to the silent transgenes at all of the CNG sites monitored within the transgene promoter. However, asymmetrical methylation persisted at one site within the reactivated transgene in the rmr1-1 mutant. With that one mutant, rmr1-1, the transgene was efficiently resilenced upon outcrossing to reintroduce the wild-type protein. In contrast, with the mop1-1 and rmr2-1 mutants, the transgene remained active in a subset of progeny even after the wild-type proteins were reintroduced by outcrossing. Interestingly, this immunity to silencing increased as the generations progressed, consistent with a heritable chromatin state being formed at the transgene in plants carrying the mop1-1 and rmr2-1 mutations that becomes more resistant to silencing in subsequent generations. PMID:16702420

  2. Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Pal, Shaifali; Yadav, Akhilesh Kumar; Singh, Anup Kumar; Rastogi, Shubhra; Gupta, Madan Mohan; Verma, Rajesh Kumar; Nagegowda, Dinesh A; Pal, Anirban; Shasany, Ajit Kumar

    2017-01-01

    The medicinal plant Withania somnifera is researched extensively to increase the quantity of withanolides and specifically withaferin A, which finds implications in many pharmacological activities. Due to insufficient knowledge on biosynthesis and unacceptability of transgenic approach, it is preferred to follow alternative physiological methods to increase the yield of withanolides. Prior use of elicitors like salicylic acid, methyl jasmonate, fungal extracts, and even mechanical wounding have shown to increase the withanolide biosynthesis with limited success; however, the commercial viability and logistics of application are debatable. In this investigation, we tested the simple nitrogeneous fertilizers pertaining to the enhancement of withaferin A biosynthesis. Application of ammonium sulfate improved the sterol contents required for the withanolide biosynthesis and correlated to higher expression of pathway genes like FPPS, SMT1, SMT2, SMO1, SMO2, and ODM. Increased expression of a gene homologous to allene oxide cyclase, crucial in jasmonic acid biosynthetic pathway, suggested the involvement of jasmonate signaling. High levels of WRKY gene transcripts indicated transcriptional regulation of the pathway genes. Increase in transcript level could be correlated with a corresponding increase in the protein levels for WsSMT1 and WsWRKY1. The withaferin A increase was also demonstrated in the potted plants growing in the glasshouse and in the open field. These results implicated simple physiological management of nitrogen fertilizer signal to improve the yield of secondary metabolite through probable involvement of jasmonate signal and WRKY transcription factor for the first time, in W. somnifera besides improving the foliage.

  3. Human-Phosphate-Binding-Protein inhibits HIV-1 gene transcription and replication

    Directory of Open Access Journals (Sweden)

    Candolfi Ermanno

    2011-07-01

    Full Text Available Abstract The Human Phosphate-Binding protein (HPBP is a serendipitously discovered lipoprotein that binds phosphate with high affinity. HPBP belongs to the DING protein family, involved in various biological processes like cell cycle regulation. We report that HPBP inhibits HIV-1 gene transcription and replication in T cell line, primary peripherical blood lymphocytes and primary macrophages. We show that HPBP is efficient in naïve and HIV-1 AZT-resistant strains. Our results revealed HPBP as a new and potent anti HIV molecule that inhibits transcription of the virus, which has not yet been targeted by HAART and therefore opens new strategies in the treatment of HIV infection.

  4. Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family.

    OpenAIRE

    Babiychuk, Elena; Vandepoele, Klaas; Wissing, Josef; Garcia-Diaz, Miguel; De Rycke, Riet; Akbari, Hana; Joubès, Jérôme; Beeckman, Tom; Jänsch, Lothar; Frentzen, Margrit; Van Montagu, Marc C E; Kushnir, Sergei

    2011-01-01

    Plastids are DNA-containing organelles unique to plant cells. In Arabidopsis, one-third of the genes required for embryo development encode plastid-localized proteins. To help understand the role of plastids in embryogenesis and postembryonic development, we characterized proteins of the mitochondrial transcription termination factor (mTERF) family, which in animal models, comprises DNA-binding regulators of mitochondrial transcription. Of 35 Arabidopsis mTERF proteins, 11 are plastid-localiz...

  5. The effects of Ankaferd® Blood Stopper on transcription factors in HUVEC and the erythrocyte protein profile

    Directory of Open Access Journals (Sweden)

    Erkan Yılmaz

    2011-12-01

    Full Text Available Objective: Ankaferd® Blood Stopper (ABS is an herbal extract that has historically been used as a hemostatic agent in traditional Turkish medicine. ABS is comprised of a standardized herbal mixture of T. vulgaris, G. glabra, V. vinifera, A. officinarum, and U. dioica. ABS’s basic mechanism of action is the formation of an encapsulated protein web, which represents the focal point for vital erythrocyte masses. The hemostatic effects of ABS have been observed in vitro and in vivo. ABS was registered as a hemostatic agent for external hemorrhages and dental bleeding following phase I randomized, double-blind crossover placebo-controlled clinical research, and safety and efficacy reports. In terms of the potential use of ABS, transcription factors may be novel factors that play a role in the hemostatic and other pleiotropic effects of ABS. Materials and Methods: Hence, the present study aimed to investigate the effects of ABS on endothelium, and possible transcription factor changes in HUVEC (human umbilical vein endothelial cells and the erythrocyte membrane profile. ABS (5 μL and 50 μL was administered to HUVEC (in 75 cm2; ~75% fullness for 5 min and 15 min. Results: ABS caused significant increases in the level of activation of the following transcription factors; AP2, AR, CRE/ATF1, CREB, E2F1-5, E2F6, EGR, GATA, HNF-1, ISRE, Myc-Max, NF-1, NFkB, p53, PPAR, SMAD 2/3, SP1, TRE/AP1, and YY1. Following erythrocyte membrane isolation, protein complexes were undissolved, but denatured. The protein complex formed was resistant to heat and detergent. Trypsin and sonication were used in order to break this complex; the complex dissolved and erythrocyte membrane proteins were released in SDS-PAGE.Conclusion: ABS established a very fast and solid protein web, and increased the level of transcription factor activation. Therefore the cellular effects of ABS could be related to different intracellular biological pathways.

  6. Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity

    International Nuclear Information System (INIS)

    Kim, Jongchan; Roh, Meejeon; Abdulkadir, Sarki A

    2010-01-01

    The serine/threonine kinase PIM1 has been implicated as an oncogene in various human cancers including lymphomas, gastric, colorectal and prostate carcinomas. In mouse models, Pim1 is known to cooperate with c-Myc to promote tumorigenicity. However, there has been limited analysis of the tumorigenic potential of Pim1 overexpression in benign and malignant human prostate cancer cells in vivo. We overexpressed Pim1 in three human prostate cell lines representing different disease stages including benign (RWPE1), androgen-dependent cancer (LNCaP) and androgen-independent cancer (DU145). We then analyzed in vitro and in vivo tumorigenicity as well as the effect of Pim1 overexpression on c-MYC transcriptional activity by reporter assays and gene expression profiling using an inducible MYC-ER system. To validate that Pim1 induces tumorigenicity and target gene expression by modulating c-MYC transcriptional activity, we inhibited c-MYC using a small molecule inhibitor (10058-F4) or RNA interference. Overexpression of Pim1 alone was not sufficient to convert the benign RWPE1 cell to malignancy although it enhanced their proliferation rates when grown as xenografts in vivo. However, Pim1 expression enhanced the in vitro and in vivo tumorigenic potentials of the human prostate cancer cell lines LNCaP and DU145. Reporter assays revealed increased c-MYC transcriptional activity in Pim1-expressing cells and mRNA expression profiling demonstrated that a large fraction of c-MYC target genes were also regulated by Pim1 expression. The c-MYC inhibitor 10058-F4 suppressed the tumorigenicity of Pim1-expressing prostate cancer cells. Interestingly, 10058-F4 treatment also led to a reduction of Pim1 protein but not mRNA. Knocking-down c-MYC using short hairpin RNA reversed the effects of Pim1 on Pim1/MYC target genes. Our results suggest an in vivo role of Pim1 in promoting prostate tumorigenesis although it displayed distinct oncogenic activities depending on the disease stage of the

  7. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity

    Directory of Open Access Journals (Sweden)

    Afsar U. Ahmed

    2015-11-01

    Full Text Available Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.

  8. Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus).

    Science.gov (United States)

    Trifonov, Vladimir A; Dementyeva, Polina V; Larkin, Denis M; O'Brien, Patricia C M; Perelman, Polina L; Yang, Fengtang; Ferguson-Smith, Malcolm A; Graphodatsky, Alexander S

    2013-08-06

    Most eukaryotic species represent stable karyotypes with a particular diploid number. B chromosomes are additional to standard karyotypes and may vary in size, number and morphology even between cells of the same individual. For many years it was generally believed that B chromosomes found in some plant, animal and fungi species lacked active genes. Recently, molecular cytogenetic studies showed the presence of additional copies of protein-coding genes on B chromosomes. However, the transcriptional activity of these genes remained elusive. We studied karyotypes of the Siberian roe deer (Capreolus pygargus) that possess up to 14 B chromosomes to investigate the presence and expression of genes on supernumerary chromosomes. Here, we describe a 2 Mbp region homologous to cattle chromosome 3 and containing TNNI3K (partial), FPGT, LRRIQ3 and a large gene-sparse segment on B chromosomes of the Siberian roe deer. The presence of the copy of the autosomal region was demonstrated by B-specific cDNA analysis, PCR assisted mapping, cattle bacterial artificial chromosome (BAC) clone localization and quantitative polymerase chain reaction (qPCR). By comparative analysis of B-specific and non-B chromosomal sequences we discovered some B chromosome-specific mutations in protein-coding genes, which further enabled the detection of a FPGT-TNNI3K transcript expressed from duplicated genes located on B chromosomes in roe deer fibroblasts. Discovery of a large autosomal segment in all B chromosomes of the Siberian roe deer further corroborates the view of an autosomal origin for these elements. Detection of a B-derived transcript in fibroblasts implies that the protein coding sequences located on Bs are not fully inactivated. The origin, evolution and effect on host of B chromosomal genes seem to be similar to autosomal segmental duplications, which reinforces the view that supernumerary chromosomal elements might play an important role in genome evolution.

  9. Localizing potentially active post-transcriptional regulations in the Ewing's sarcoma gene regulatory network

    Directory of Open Access Journals (Sweden)

    Delyon Bernard

    2010-11-01

    Full Text Available Abstract Background A wide range of techniques is now available for analyzing regulatory networks. Nonetheless, most of these techniques fail to interpret large-scale transcriptional data at the post-translational level. Results We address the question of using large-scale transcriptomic observation of a system perturbation to analyze a regulatory network which contained several types of interactions - transcriptional and post-translational. Our method consisted of post-processing the outputs of an open-source tool named BioQuali - an automatic constraint-based analysis mimicking biologist's local reasoning on a large scale. The post-processing relied on differences in the behavior of the transcriptional and post-translational levels in the network. As a case study, we analyzed a network representation of the genes and proteins controlled by an oncogene in the context of Ewing's sarcoma. The analysis allowed us to pinpoint active interactions specific to this cancer. We also identified the parts of the network which were incomplete and should be submitted for further investigation. Conclusions The proposed approach is effective for the qualitative analysis of cancer networks. It allows the integrative use of experimental data of various types in order to identify the specific information that should be considered a priority in the initial - and possibly very large - experimental dataset. Iteratively, new dataset can be introduced into the analysis to improve the network representation and make it more specific.

  10. Leishmania donovani activates nuclear transcription factor-κB in macrophages through reactive oxygen intermediates

    International Nuclear Information System (INIS)

    Km Singh, Vandana; Balaraman, Sridevi; Tewary, Poonam; Madhubala, Rentala

    2004-01-01

    Interaction of Leishmania donovani with macrophages antagonizes host defense mechanisms by interfering with a cascade of cell signaling processes in the macrophages. An early intracellular signaling event that follows receptor engagement is the activation of transcription factor NF-κB. It has been reported earlier that NF-κB-dependent signaling pathway regulates proinflammatory cytokine release. We therefore investigated the effect of L. donovani infectivity on this nuclear transcription factor in macrophage cell line J774A.1. Both L. donovani and its surface molecule lipophosphoglycan (LPG) resulted in a dose- and time-dependent activation of NF-κB-DNA binding activity in an electrophoretic mobility shift assay. We also report the involvement of IκB-α and IκB-β in the persistent activation of NF-κB by L. donovani. We demonstrate that the NF-κB activation was independent of viability of the parasite. Electrophoretic mobility supershift assay indicated that the NF-κB complex consists of p65 and c-rel subunits. The interaction of parasite with the macrophages and not the cellular uptake was important for NF-κB activation. Both p38 and ERK mitogen activated protein kinase (MAP) activation appears to be necessary for NF-κB activation by LPG. Preincubation of cells with antioxidants resulted in inhibition of L. donovani induced NF-κB activation, thereby suggesting a potential role of reactive oxygen species in L. donovani induced intracellular signaling. The present data indicate that antioxidants could play an important role in working out various therapeutic modalities to control leishmaniasis

  11. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A

    2010-01-01

    Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we...... show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1......), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease...

  12. Shutdown of HIV-1 Transcription in T Cells by Nullbasic, a Mutant Tat Protein

    OpenAIRE

    Jin, Hongping; Li, Dongsheng; Sivakumaran, Haran; Lor, Mary; Rustanti, Lina; Cloonan, Nicole; Wani, Shivangi; Harrich, David

    2016-01-01

    ABSTRACT Nullbasic is a derivative of the HIV-1 transactivator of transcription (Tat) protein that strongly inhibits HIV-1 replication in lymphocytes. Here we show that lentiviral vectors that constitutively express a Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein by the eEF1? promoter led to robust long-term inhibition of HIV-1 replication in Jurkat cells. Although Jurkat-NB-ZSG1 cells were infected by HIV-1, no virus production could be detected and addition of phorbol ester 12-myristate 13-ac...

  13. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  14. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Ren, He; Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming; Hao, Jihui

    2010-01-01

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  15. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, He, E-mail: herenrh@yahoo.com.cn [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Hao, Jihui, E-mail: jihuihao@yahoo.com [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China)

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  16. Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain

    Science.gov (United States)

    Bailus, Barbara J; Pyles, Benjamin; McAlister, Michelle M; O'Geen, Henriette; Lockwood, Sarah H; Adams, Alexa N; Nguyen, Jennifer Trang T; Yu, Abigail; Berman, Robert F; Segal, David J

    2016-01-01

    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood–brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders. PMID:26727042

  17. Transcriptional profiling of protein expression related genes of Pichia pastoris under simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Feng Qi

    Full Text Available The physiological responses and transcription profiling of Pichia pastoris GS115 to simulated microgravity (SMG were substantially changed compared with normal gravity (NG control. We previously reported that the recombinant P. pastoris grew faster under SMG than NG during methanol induction phase and the efficiencies of recombinant enzyme production and secretion were enhanced under SMG, which was considered as the consequence of changed transcriptional levels of some key genes. In this work, transcriptiome profiling of P. pastoris cultured under SMG and NG conditions at exponential and stationary phases were determined using next-generation sequencing (NGS technologies. Four categories of 141 genes function as methanol utilization, protein chaperone, RNA polymerase and protein transportation or secretion classified according to Gene Ontology (GO were chosen to be analyzed on the basis of NGS results. And 80 significantly changed genes were weighted and estimated by Cluster 3.0. It was found that most genes of methanol metabolism (85% of 20 genes and protein transportation or secretion (82.2% of 45 genes were significantly up-regulated under SMG. Furthermore the quantity and fold change of up-regulated genes in exponential phase of each category were higher than those of stationary phase. The results indicate that the up-regulated genes of methanol metabolism and protein transportation or secretion mainly contribute to enhanced production and secretion of the recombinant protein under SMG.

  18. Karyopherin alpha2 is essential for rRNA transcription and protein synthesis in proliferative keratinocytes.

    Directory of Open Access Journals (Sweden)

    Noriko Umegaki-Arao

    Full Text Available Karyopherin proteins mediate nucleocytoplasmic trafficking and are critical for protein and RNA subcellular localization. Recent studies suggest KPNA2 expression is induced in tumor cells and is strongly associated with prognosis, although the precise roles and mechanisms of KPNA2 overexpression in proliferative disorders have not been defined. We found that KPNA2 expression is induced in various proliferative disorders of the skin such as psoriasis, Bowen's disease, actinic keratosis, squamous cell carcinoma, Paget's disease, Merkel cell carcinoma, and mycosis fungoides. siRNA-mediated KPNA suppression revealed that KPNA2 is essential for significant suppression of HaCaT proliferation under starvation conditions. Ribosomal RNA transcription and protein synthesis were suppressed by starvation combined with knockdown of KPNA (including KPNA2 expression. KPNA2 localized to the nucleolus and interacted with proteins associated with mRNA processing, ribonucleoprotein complex biogenesis, chromatin modification, and transcription, as demonstrated by tandem affinity purification and mass spectrometry. KPNA2 may be an important promoter of ribosomal RNA and protein synthesis in tumor cells.

  19. A conserved TATA-less proximal promoter drives basal transcription from the urokinase-type plasminogen activator receptor gene

    DEFF Research Database (Denmark)

    Soravia, E; Grebe, A; De Luca, P

    1995-01-01

    have cloned an uPAR DNA segment containing upstream regulatory sequences from both the human and murine genomes. We report that a proximal promoter, contained within 180 bp from the major transcription start sites of the human uPAR gene, drives basal transcription. This region lacks TATA and CAAT boxes...... and contains relatively GC-rich proximal sequences. A subregion of this sequence, highly conserved between human and murine genes, contains most of the promoter activity and is specifically bound by HeLa nuclear proteins, one of which belongs to the SP1 class....

  20. Transcriptional Regulation of the HMGA1 Gene by Octamer-Binding Proteins Oct-1 and Oct-2

    Science.gov (United States)

    Possidente, Katiuscia; Iiritano, Stefania; Ventura, Valeria; Pandolfo, Rosantony; Brunetti, Francesco Saverio; Greco, Manfredi; Foti, Daniela; Brunetti, Antonio

    2013-01-01

    The High-Mobility Group AT-Hook 1 (HMGA1) protein is an architectural transcription factor that binds to AT-rich sequences in the promoter region of DNA and functions as a specific cofactor for gene activation. Previously, we demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR) gene and an important downstream target of the INSR signaling cascade. Moreover, from a pathogenic point of view, overexpression of HMGA1 has been associated with human cancer, whereas functional variants of the HMGA1 gene have been recently linked to type 2 diabetes mellitus and metabolic syndrome. However, despite of this biological and pathological relevance, the mechanisms that control HMGA1 gene expression remain unknown. In this study, to define the molecular mechanism(s) that regulate HMGA1 gene expression, the HMGA1 gene promoter was investigated by transient transfection of different cell lines, either before or after DNA and siRNA cotransfections. An octamer motif was identified as an important element of transcriptional regulation of this gene, the interaction of which with the octamer transcription factors Oct-1 and Oct-2 is crucial in modulating HMGA1 gene and protein expression. Additionally, we demonstrate that HMGA1 binds its own promoter and contributes to its transactivation by Oct-2 (but not Oct-1), supporting its role in an auto-regulatory circuit. Overall, our results provide insight into the transcriptional regulation of the HMGA1 gene, revealing a differential control exerted by both Oct-1 and Oct-2. Furthermore, they consistently support the hypothesis that a putative defect in Oct-1 and/or Oct-2, by affecting HMGA1 expression, may cause INSR dysfunction, leading to defects of the INSR signaling pathway. PMID:24367622

  1. Transcriptional regulation of the HMGA1 gene by octamer-binding proteins Oct-1 and Oct-2.

    Directory of Open Access Journals (Sweden)

    Eusebio Chiefari

    Full Text Available The High-Mobility Group AT-Hook 1 (HMGA1 protein is an architectural transcription factor that binds to AT-rich sequences in the promoter region of DNA and functions as a specific cofactor for gene activation. Previously, we demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR gene and an important downstream target of the INSR signaling cascade. Moreover, from a pathogenic point of view, overexpression of HMGA1 has been associated with human cancer, whereas functional variants of the HMGA1 gene have been recently linked to type 2 diabetes mellitus and metabolic syndrome. However, despite of this biological and pathological relevance, the mechanisms that control HMGA1 gene expression remain unknown. In this study, to define the molecular mechanism(s that regulate HMGA1 gene expression, the HMGA1 gene promoter was investigated by transient transfection of different cell lines, either before or after DNA and siRNA cotransfections. An octamer motif was identified as an important element of transcriptional regulation of this gene, the interaction of which with the octamer transcription factors Oct-1 and Oct-2 is crucial in modulating HMGA1 gene and protein expression. Additionally, we demonstrate that HMGA1 binds its own promoter and contributes to its transactivation by Oct-2 (but not Oct-1, supporting its role in an auto-regulatory circuit. Overall, our results provide insight into the transcriptional regulation of the HMGA1 gene, revealing a differential control exerted by both Oct-1 and Oct-2. Furthermore, they consistently support the hypothesis that a putative defect in Oct-1 and/or Oct-2, by affecting HMGA1 expression, may cause INSR dysfunction, leading to defects of the INSR signaling pathway.

  2. Transcription factor PIF4 controls the thermosensory activation of flowering

    KAUST Repository

    Kumar, S. Vinod

    2012-03-21

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved.

  3. RAI1 transcription factor activity is impaired in mutants associated with Smith-Magenis Syndrome.

    Directory of Open Access Journals (Sweden)

    Paulina Carmona-Mora

    Full Text Available Smith-Magenis Syndrome (SMS is a complex genomic disorder mostly caused by the haploinsufficiency of the Retinoic Acid Induced 1 gene (RAI1, located in the chromosomal region 17p11.2. In a subset of SMS patients, heterozygous mutations in RAI1 are found. Here we investigate the molecular properties of these mutated forms and their relationship with the resulting phenotype. We compared the clinical phenotype of SMS patients carrying a mutation in RAI1 coding region either in the N-terminal or the C-terminal half of the protein and no significant differences were found. In order to study the molecular mechanism related to these two groups of RAI1 mutations first we analyzed those mutations that result in the truncated protein corresponding to the N-terminal half of RAI1 finding that they have cytoplasmic localization (in contrast to full length RAI1 and no ability to activate the transcription through an endogenous target: the BDNF enhancer. Similar results were found in lymphoblastoid cells derived from a SMS patient carrying RAI1 c.3103insC, where both mutant and wild type products of RAI1 were detected. The wild type form of RAI1 was found in the chromatin bound and nuclear matrix subcellular fractions while the mutant product was mainly cytoplasmic. In addition, missense mutations at the C-terminal half of RAI1 presented a correct nuclear localization but no activation of the endogenous target. Our results showed for the first time a correlation between RAI1 mutations and abnormal protein function plus they suggest that a reduction of total RAI1 transcription factor activity is at the heart of the SMS clinical presentation.

  4. RAI1 transcription factor activity is impaired in mutants associated with Smith-Magenis Syndrome.

    Science.gov (United States)

    Carmona-Mora, Paulina; Canales, Cesar P; Cao, Lei; Perez, Irene C; Srivastava, Anand K; Young, Juan I; Walz, Katherina

    2012-01-01

    Smith-Magenis Syndrome (SMS) is a complex genomic disorder mostly caused by the haploinsufficiency of the Retinoic Acid Induced 1 gene (RAI1), located in the chromosomal region 17p11.2. In a subset of SMS patients, heterozygous mutations in RAI1 are found. Here we investigate the molecular properties of these mutated forms and their relationship with the resulting phenotype. We compared the clinical phenotype of SMS patients carrying a mutation in RAI1 coding region either in the N-terminal or the C-terminal half of the protein and no significant differences were found. In order to study the molecular mechanism related to these two groups of RAI1 mutations first we analyzed those mutations that result in the truncated protein corresponding to the N-terminal half of RAI1 finding that they have cytoplasmic localization (in contrast to full length RAI1) and no ability to activate the transcription through an endogenous target: the BDNF enhancer. Similar results were found in lymphoblastoid cells derived from a SMS patient carrying RAI1 c.3103insC, where both mutant and wild type products of RAI1 were detected. The wild type form of RAI1 was found in the chromatin bound and nuclear matrix subcellular fractions while the mutant product was mainly cytoplasmic. In addition, missense mutations at the C-terminal half of RAI1 presented a correct nuclear localization but no activation of the endogenous target. Our results showed for the first time a correlation between RAI1 mutations and abnormal protein function plus they suggest that a reduction of total RAI1 transcription factor activity is at the heart of the SMS clinical presentation.

  5. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins.

    Science.gov (United States)

    Takeda, Akiko; Sarma, Nayan J; Abdul-Nabi, Anmaar M; Yaseen, Nabeel R

    2010-05-21

    NUP98 is a nucleoporin that plays complex roles in the nucleocytoplasmic trafficking of macromolecules. Rearrangements of the NUP98 gene in human leukemia result in the expression of numerous fusion oncoproteins whose effect on nucleocytoplasmic trafficking is poorly understood. The present study was undertaken to determine the effects of leukemogenic NUP98 fusion proteins on CRM1-mediated nuclear export. NUP98-HOXA9, a prototypic NUP98 fusion, inhibited the nuclear export of two known CRM1 substrates: mutated cytoplasmic nucleophosmin and HIV-1 Rev. In vitro binding assays revealed that NUP98-HOXA9 binds CRM1 through the FG repeat motif in a Ran-GTP-dependent manner similar to but stronger than the interaction between CRM1 and its export substrates. Two NUP98 fusions, NUP98-HOXA9 and NUP98-DDX10, whose fusion partners are structurally and functionally unrelated, interacted with endogenous CRM1 in myeloid cells as shown by co-immunoprecipitation. These leukemogenic NUP98 fusion proteins interacted with CRM1, Ran, and the nucleoporin NUP214 in a manner fundamentally different from that of wild-type NUP98. NUP98-HOXA9 and NUP98-DDX10 formed characteristic aggregates within the nuclei of a myeloid cell line and primary human CD34+ cells and caused aberrant localization of CRM1 to these aggregates. These NUP98 fusions caused nuclear accumulation of two transcription factors, NFAT and NFkappaB, that are regulated by CRM1-mediated export. The nuclear entrapment of NFAT and NFkappaB correlated with enhanced transcription from promoters responsive to these transcription factors. Taken together, the results suggest a new mechanism by which NUP98 fusions dysregulate transcription and cause leukemia, namely, inhibition of CRM1-mediated nuclear export with aberrant nuclear retention of transcriptional regulators.

  6. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2.

    OpenAIRE

    Buettner, R; Kannan, P; Imhof, A; Bauer, R; Yim, S O; Glockshuber, R; Van Dyke, M W; Tainsky, M A

    1993-01-01

    AP-2 is a retinoic acid-inducible and developmentally regulated activator of transcription. We have cloned an alternative AP-2 transcript (AP-2B) from the human teratocarcinoma cell line PA-1, which encodes a protein differing in the C terminus from the previously isolated AP-2 protein (AP-2A). This protein contains the activation domain of AP-2 and part of the DNA binding domain but lacks the dimerization domain which is necessary for DNA binding. Analysis of overlapping genomic clones spann...

  7. Characterization of a CREB Gain-of-Function Mutant with Constitutive Transcriptional Activity In Vivo

    Science.gov (United States)

    Du, Keyong; Asahara, Hiroshi; Jhala, Ulupi S.; Wagner, Brandee L.; Montminy, Marc

    2000-01-01

    The cyclic AMP (cAMP)-responsive factor CREB promotes cellular gene expression, following its phosphorylation at Ser133, via recruitment of the coactivator paralogs CREB-binding protein (CBP) and p300. CBP and p300, in turn, appear to mediate target gene induction via their association with RNA polymerase II complexes and via intrinsic histone acetyltransferase activities that mobilize promoter-bound nucleosomes. In addition to cAMP, a wide variety of stimuli, including hypoxia, UV irradiation, and growth factor addition, induce Ser133 phosphorylation with stoichiometry and kinetics comparable to those induced by cAMP. Yet a number of these signals are incapable of promoting target gene activation via CREB phosphorylation per se, suggesting the presence of additional regulatory events either at the level of CREB-CBP complex formation or in the subsequent recruitment of the transcriptional apparatus. Here we characterize a Tyr134Phe CREB mutant that behaves as a constitutive activator in vivo. Like protein kinase A (PKA)-stimulated wild-type CREB, the Tyr134Phe polypeptide was found to stimulate target gene expression via the Ser133-dependent recruitment of CBP and p300. Biochemical studies reveal that mutation of Tyr134 to Phe lowers the Km for PKA phosphorylation and thereby induces high levels of constitutive Ser133 phosphorylation in vivo. Consistent with its constitutive activity, Tyr134Phe CREB strongly promoted differentiation of PC12 cells in concert with suboptimal doses of nerve growth factor. Taken together, these results demonstrate that Ser133 phosphorylation is sufficient for cellular gene activation and that additional signal-dependent modifications of CBP or p300 are not required for recruitment of the transcriptional apparatus to the promoter. PMID:10825195

  8. Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development

    NARCIS (Netherlands)

    Creemers, Esther E.; Sutherland, Lillian B.; McAnally, John; Richardson, James A.; Olson, Eric N.

    2006-01-01

    Myocardin is a transcriptional co-activator of serum response factor (Srf), which is a key regulator of the expression of smooth and cardiac muscle genes. Consistent with its role in regulating cardiovascular development, myocardin is the earliest known marker specific to both the cardiac and smooth

  9. Promoter polymorphisms in genes involved in porcine myogenesis influence their transcriptional activity.

    Science.gov (United States)

    Bongiorni, Silvia; Tilesi, Francesca; Bicorgna, Silvia; Iacoponi, Francesca; Willems, Daniela; Gargani, Maria; D'Andrea, MariaSilvia; Pilla, Fabio; Valentini, Alessio

    2014-11-07

    Success of meat production and selection for improvement of meat quality is among the primary aims in animal production. Meat quality traits are economically important in swine; however, the underlying genetic nature is very complex. Therefore, an improved pork production strongly depends on identifying and studying how genetic variations contribute to modulate gene expression. Promoters are key regions in gene modulation as they harbour several binding motifs to transcription regulatory factors. Therefore, polymorphisms in these regions are likely to deeply affect RNA levels and consequently protein synthesis. In this study, we report the identification of single nucleotide polymorphisms (SNPs) in promoter regions of candidate genes involved in development, cellular differentiation and muscle growth in Sus scrofa. We identified SNPs in the promoter regions of genes belonging to the Myogenic Regulatory Factors (MRF) gene family (the Myogenic Differentiation gene, MYOD1) and to Growth and Differentiation Factors (GDF) gene family (Myostatin gene, MSTN, GDF8), in Casertana and Large White breeds. The purpose of this study was to investigate if polymorphisms in the promoters could affect the transcriptional activity of these genes. With this aim, we evaluated in vitro the functional activity of the luciferase reporter gene luc2 activity, driven by two constructs carrying different promoter haplotypes. We tested the effects of the G302A (U12574) transition on the promoter efficiency in MYOD1 gene. We ascertained a difference in transcription efficiency for the two variants. A stronger activity of the A-carrying construct is more evident in C2C12. The luciferase expression driven by the MYOD1-A allelic variant displayed a 3.8-fold increased transcriptional activity. We investigated the activity of two haplotype variants (AY527152) in the promoter of GDF8 gene. The haploptype-1 (A435-A447-A879) up-regulated the expression of the reporter gene by a two-fold increase, and

  10. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription.

    Directory of Open Access Journals (Sweden)

    Aamna Kaul

    2014-08-01

    Full Text Available Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling, and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase. We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in "active" chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone

  11. Transcriptional activation of nuclear-related factor 2 by FK506 in Jurkat T cells.

    Science.gov (United States)

    Chung, Y W; Jeong, Y M; Chung, M W; Choi, S K; Choi, S J N; Chung, S Y

    2015-04-01

    We investigated the effect of FK506 in transcriptional activation of nuclear factor (erythroid-derived 2)-like2 (Nrf2) in human Jurkat T cells. FK506 treatment increased the generation of reactive oxygen species and reactive nitrogen species in Jurkat cells in a dose-dependent manner. Generation of nitric oxide was also increased after treatment with FK506 in Jurkat cells. Peak levels of endothelial nitricoxide synthase expression occurred at 24 hours and then decreased after 48 hours. We found that a marked dissociation of Nrf 2 from Kelch-like ECH-associated protein-1 and subsequently Nrf 2 nuclear translocation occurred in Jurkat cells treated with FK506 during 48 hours. Immunohistochemistry and Western blot analysis data revealed that the FK506 treatment increased expression of heme oxygenase-1 (HO-1) in Jurkat cells in a dose-dependent manner. HO-1 expression was induced after 6 hours of treatment of FK506 to Jurkat cells, peaked at 24 hours, and then decreased after 48 hours. These results suggest that FK506 induces Nrf 2-driven transcriptional activation of the antioxidant response element by activating HO-1 and free radicals such as reactive oxygen species and nitric oxide. Copyright © 2015. Published by Elsevier Inc.

  12. Methionine oxidation activates a transcription factor in response to oxidative stress.

    Science.gov (United States)

    Drazic, Adrian; Miura, Haruko; Peschek, Jirka; Le, Yan; Bach, Nina C; Kriehuber, Thomas; Winter, Jeannette

    2013-06-04

    Oxidant-mediated antibacterial response systems are broadly used to control bacterial proliferation. Hypochlorite (HOCl) is an important component of the innate immune system produced in neutrophils and specific epithelia. Its antimicrobial activity is due to damaging cellular macromolecules. Little is known about how bacteria escape HOCl-inflicted damage. Recently, the transcription factor YjiE was identified that specifically protects Escherichia coli from HOCl killing. According to its function, YjiE is now renamed HypT (hypochlorite-responsive transcription factor). Here we unravel that HypT is activated by methionine oxidation to methionine sulfoxide. Interestingly, so far only inactivation of cellular proteins by methionine oxidation has been reported. Mutational analysis revealed three methionines that are essential to confer HOCl resistance. Their simultaneous substitution by glutamine, mimicking the methionine sulfoxide state, increased the viability of E. coli cells upon HOCl stress. Triple glutamine substitution generates a constitutively active HypT that regulates target genes independently of HOCl stress and permanently down-regulates intracellular iron levels. Inactivation of HypT depends on the methionine sulfoxide reductases A/B. Thus, microbial protection mechanisms have evolved along the evolution of antimicrobial control systems, allowing bacteria to survive within the host environment.

  13. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    NARCIS (Netherlands)

    Marciniak, Bogumila C.; Trip, Hein; van-der Veek, Patricia J.; Kuipers, Oscar P.; Marciniak, Bogumiła C.

    2012-01-01

    Background: Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe) status, its genetic accessibility and its capacity to grow in large

  14. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor.

    Science.gov (United States)

    Dupuy, Bruno; Mani, Nagraj; Katayama, Seiichi; Sonenshein, Abraham L

    2005-02-01

    Expression of the plasmid-encoded Clostridium perfringens gene for bacteriocin BCN5 was shown to depend in vivo and in vitro on the activity of UviA protein. UviA, also plasmid-encoded, proved to be an RNA polymerase sigma factor and was also partly autoregulatory. The uviA gene has two promoters; one provided a UviA-independent, basal level of gene expression while the stronger, UviA-dependent promoter was only utilized after the cell experienced DNA damage. As a result, BCN5 synthesis is induced by treatment with UV light or mitomycin C. UviA is related to a special class of sigma factors found to date only in Clostridium species and responsible for activating transcription of toxin genes in Clostridium difficile, Clostridium tetani, and Clostridium botulinum.

  15. Identification of mechanism that couples multisite phosphorylation of Yes-associated protein (YAP) with transcriptional coactivation and regulation of apoptosis.

    Science.gov (United States)

    Lee, Kyung-Kwon; Yonehara, Shin

    2012-03-16

    The transcriptional coactivator Yes-associated protein (YAP) has been implicated in tumorigenesis by regulating cell proliferation and apoptosis. YAP interacts with the transcription factor TEAD and is essential in mediating TEAD-dependent gene expression. Here we show that YAP is hyperphosphorylated and activated in response to genotoxic stress such as UV irradiation and cisplatin treatment. Using high resolution mobility shift assay for phosphorylated proteins, we identified multiple sites of phosphorylation induced by UV irradiation. Pretreatment with p38 and JNK inhibitors completely suppressed the mobility retardation of phosphorylated YAP in UV-irradiated cells. Co-immunoprecipitation experiments showed that the physical interaction of YAP with TEAD was markedly enhanced by UV irradiation or CDDP treatment but suppressed by pretreatment with p38 and JNK inhibitors. Similarly, pretreatment with p38 and JNK inhibitors suppressed the expression of YAP/TEAD target genes, which were elevated on exposure to genotoxic stress. Using phosphomimetic and phosphorylation-deficient YAP mutants, we showed that the coactivator activity of YAP correlated with its state of phosphorylation and sensitivity to cisplatin-induced apoptosis. Our results demonstrate that multisite phosphorylation of YAP induces YAP/TEAD-dependent gene expression and provides a mechanism by which YAP regulates apoptosis differently depending on cellular context.

  16. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1

    Directory of Open Access Journals (Sweden)

    Tarasov Valery

    2010-05-01

    Full Text Available Abstract Background Archaea combine bacterial-as well as eukaryotic-like features to regulate cellular processes. Halobacterium salinarum R1 encodes eight leucine-responsive regulatory protein (Lrp-homologues. The function of two of them, Irp (OE3923F and lrpA1 (OE2621R, were analyzed by gene deletion and overexpression, including genome scale impacts using microarrays. Results It was shown that Lrp affects the transcription of multiple target genes, including those encoding enzymes involved in amino acid synthesis, central metabolism, transport processes and other regulators of transcrip