WorldWideScience

Sample records for transcription factor-1 ttf-1

  1. Role of thyroid transcription factor-1 in the diagnosis of feline lung-digit syndrome.

    Science.gov (United States)

    Finotello, Riccardo; Masserdotti, Carlo; Baroni, Gianna; Ressel, Lorenzo

    2017-04-01

    Objectives The aim of this study was to investigate the role of thyroid transcription factor-1 (TTF-1) in the diagnosis of feline lung-digit syndrome (FLDS) and to investigate the associations between the morphological features of FLDS and TTF-1 expression. We also compared the reliability of TTF-1 and transmission electron microscopy (TEM) in establishing the diagnosis of FLDS. Methods Histology records of feline digit tumours were retrieved, including patients from 2008-2015. If formalin-fixed, paraffin-embedded tissues were available for review, patients were included in the study. As a control group we included 12 feline primary tumours of the digits. All the histological slides of the study group were blindly reviewed by the same veterinary pathologist. Representative sections of the lesions were selected for immunohistochemistry (IHC) analysis. To confirm the respiratory origin of the neoplastic tissue, TEM was used as a gold standard in all cases. Results Five cases of FLDS were included. TTF-1 was weakly to moderately positive in 60% of the cases, showing no correlation with the microscopic presence of ciliated epithelium. When IHC results were combined with the presence of cilia, 80% of the cases from the study group could be identified as FLDS. TEM confirmed the presence of ciliated epithelium in all five cases, confirming the respiratory origin of the neoplastic tissue and therefore the diagnosis of FLDS. Conclusions and relevance TTF-1 expression is maintained in FLDS. While the combination of TTF-1 and identification of cilia confirms FLDS, TEM should be considered in those cases where diagnosis is uncertain and FLDS is suspected.

  2. Surfactant Protein A and Napsin A in the Immunohistochemical Characterization of Canine Pulmonary Carcinomas: Comparison With Thyroid Transcription Factor-1.

    Science.gov (United States)

    Beck, Jessica; Miller, Margaret A; Frank, Chad; DuSold, Dee; Ramos-Vara, José Antonio

    2017-09-01

    Thyroid transcription factor-1 (TTF-1) is a specific and sensitive marker for canine pulmonary tumors but is also expressed in thyroid carcinomas, which commonly metastasize to lung. Napsin A and surfactant protein A (SP-A) are used in the histologic diagnosis of non-small-cell lung cancer in humans but have not been thoroughly evaluated in neoplasms of dogs. The objective of this study was to compare the efficacy of immunohistochemistry for SP-A, napsin A, and TTF-1 in the diagnosis of canine pulmonary carcinomas. TTF-1, napsin A, and SP-A antibodies were applied to 67 formalin-fixed, paraffin-embedded canine pulmonary tumors. Although each marker had good sensitivity, only 3% (2/67) of lung tumors were negative for SP-A compared with 7% (5/67) and 9% (6/67) for napsin A and TTF-1, respectively. Each antigen was detected in a greater percentage of cells of tumors with acinar or papillary patterns compared with those with squamous differentiation. SP-A immunoreactivity was absent in all 113 nonpulmonary tumors tested. Of 108 normal tissues, SP-A was detected only in lung and in 1 of 6 adrenal, 1 of 3 endometrial, and 1 of 4 hepatic sections. Based on these findings, SP-A and napsin A are useful markers of canine lung epithelial neoplasia. Of these, SP-A is the most sensitive and specific (a possible pitfall is the need to distinguish entrapped normal pulmonary epithelial cells or alveolar macrophages from neoplastic cells) and can be used in combination with TTF-1 or napsin A to improve detection and differentiation of pulmonary carcinomas from metastatic tumors in the canine lung.

  3. Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect

    Directory of Open Access Journals (Sweden)

    Carnielli Virgilio P

    2011-08-01

    Full Text Available Abstract Background Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1 - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. Methods The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH. Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Results Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human

  4. Peptide receptor radionuclide therapy with {sup 177}Lu-DOTATATE in advanced bronchial carcinoids: prognostic role of thyroid transcription factor 1 and {sup 18}F-FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Ianniello, Annarita; Sansovini, Maddalena; Severi, Stefano; Nicolini, Silvia; Caroli, Paola; Paganelli, Giovanni [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Nuclear Medicine and Radiometabolic Unit, Meldola (Italy); Grana, Chiara Maria [European Institute of Oncology Milan (IEO), Division of Nuclear Medicine, Milan (Italy); Massri, Katrin [Ospedale San Luca, Nuclear Medicine, Department of Radiology, Lucca (Italy); Bongiovanni, Alberto [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Osteoncology and Rare Tumors Center, Meldola (Italy); Antonuzzo, Lorenzo [AOU Careggi, SC Oncologia Medica 1, Firenze (Italy); Di Iorio, Valentina [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Oncology Pharmacy Laboratory, Meldola (Italy); Sarnelli, Anna [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Medical Physics Unit, Meldola (Italy); Monti, Manuela; Scarpi, Emanuela [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Unit of Biostatistics and Clinical Trials, Meldola (Italy)

    2016-06-15

    Typical and atypical carcinoids (TC and AC) represent 20 - 25 % of all neuroendocrine tumours. No standard therapeutic approach is available for patients with advanced disease. The aim of this phase II study was to investigate the efficacy and safety of peptide receptor radionuclide therapy with {sup 177}Lu-DOTATATE (Lu-PRRT) and the role of thyroid transcription factor 1 (TTF-1) and {sup 18}F-FDG PET as prognostic factors in patients with advanced TC or AC. A total of 34 consecutive patients with radiologically documented progressive disease were treated with Lu-PRRT at a therapeutic cumulative activity of 18.5 or 27.8 GBq in four or five cycles according to the patient's kidney function and bone marrow reserve. Information on TTF-1 was available in all patients. FDG PET studies prior to Lu-PRRT were available in 29 patients. The median follow-up was 29 months (range 7 - 69 months). The disease control rate (DCR) in patients with TC was 80 %: 6 % complete response, 27 % partial response and 47 % stable disease. The median progression-free survival (mPFS) was 20.1 months (95 % CI 11.8 - 26.8 months). Stable disease was achieved in 47 % of patients with AC with a mPFS of 15.7 months (95 % CI 10.6 - 25.9 months). No major acute or delayed toxicity occurred in either group or with either cumulative activity. mPFS in patients with TTF-1-negative TC was 26.3 months (95 % CI 12.9 - 45.2 months), but in patients with TTF-1-positive TC mPFS was 7.2 months (4.2 - 14.0 months; p = 0.0009). FDG PET was negative in 13 patients (10 TC and 3 AC) and positive in 16 patients (4 TC and 12 AC). The mPFS in the FDG PET-negative group was 26.4 months (95 % CI 14.2 - 48.9 months) and 15.3 months (11.7 - 31.1 months) in the FDG PET-positive group. Lu-PRRT showed antitumour activity in terms of DCR and PFS and proved safe, even in patients with a higher risk of side effects. TTF-1 would appear to be a prognostic factor. FDG PET positivity in bronchial carcinoids is a hallmark of

  5. Immunoexpression of TTF-1 and Ki-67 in a coexistent anaplastic and follicular thyroid cancer with rare long-life surviving.

    Directory of Open Access Journals (Sweden)

    Jerzy Sowinski

    2009-01-01

    Full Text Available We report the immunohistochemical diagnosis, including TTF-1 (thyroid transcription factor 1 and Ki-67, of a rare mixed thyroid neoplasm composed of minimally invasive well differentiated follicular areas and highly aggressive undifferentiated anaplastic areas. A 75 old female presented to our clinic with a rapidly growing neck mass. Considering the dynamics of the disease and the multiple challenges presented by the patient: advanced age, tumor size, history of a longstanding goiter we decided to transfer her to the department of surgery. The intraoperative findings were an enlarged right lobe with tracheal and surrounding tissues infiltration. Total thyroidectomy, radical neck lymph nodes dissection and tracheostomy were performed. The histopathological and immunohistochemical examination revealed a coexistent anaplastic and follicular thyroid carcinoma. The proliferation index Ki-67, a cell proliferation marker, was found to be significantly higher in the anaplastic areas (30 +/- 5% in the comparison with the follicular areas (2 +/- 1%. The evaluation of the thyroid transcription factor 1 (TTF-1 expression revealed a correlation with the tumor cells aggressiveness accordingly to the cancer areas. After a radical surgery an external adjuvant radiation was applied. The patient is alive and more than five years after diagnosis she presented an increase of the serum thyroglobulin level suggesting, probably, a recurrence of the follicular form of the cancer. According to our survey we suggest that in thyroid cancers TTF-1 and Ki-67 could provides useful information on the differentiation activities of thyroid tumor cells and may be helpful to distinguish well differentiated and undifferentiated areas in a mixed thyroid cancer.

  6. Immunohistochemical and Biochemical Expression Patterns of TTF-1, RAGE, GLUT-1 and SOX2 in HCV-Associated Hepatocellular Carcinomas

    Science.gov (United States)

    Aboushousha, Tarek; Mamdouh, Samah; Hamdy, Hussam; Helal, Noha; Khorshed, Fatma; Safwat, Gehan; Seleem, Mohamed

    2018-01-27

    Objective: To investigate the expression of TTF-1, RAGE, GLUT1 and SOX2 in HCV-associated HCCs and in surrounding non-tumorous liver tissue. Material and Methods: Tissue material from partial hepatectomy cases for HCC along with corresponding serum samples and 30 control serum samples from healthy volunteers were studied. Biopsies were classified into: non-tumor hepatic tissue (36 sections); HCC (33 sections) and liver cell dysplasia (LCD) (15 sections). All cases were positive for HCV. Immunohistochemistry (IHC), gene extraction and quantitative real-time reverse-transcription assays (qRT-PCR) were applied. Results: By IHC, LCD and HCC showed significantly high percentages of positive cases with all markers. SOX2 showed significant increase with higher HCC grades, while RAGE demonstrated an inverse relation and GLUT-1 and TTF-1 lacked any correlation. In nontumorous-HCV tissue, we found significantly high TTF-1, low RAGE and negative SOX2 expression. RAGE, GLUT-1 and SOX2 show non-significant elevation positivity in high grade HCV compared to low grade lesions. TTF-1, RAGE and SOX2 exhibited low expression in cirrhosis compared to fibrosis. Biochemical studies on serum and tissue extracts revealed significant down-regulation of RAGE, GLUT-1 and SOX2 genes, as well as significant up-regulation of the TTF-1 gene in HCC cases compared to controls. All studied genes show significant correlation with HCC grade. In non-tumor tissue, only TTF-1 gene expression had a significant correlation with the fibrosis score. Conclusion: Higher expression of TTF-1, RAGE, GLUT-1 and SOX2 in HCC and dysplasia compared to non-tumor tissues indicates up-regulation of these markers as early events during the development of HCV-associated HCC. Creative Commons Attribution License

  7. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES

  8. B Lymphocyte Lineage Specification, Commitment and Epigenetic Control of Transcription by Early B Cell Factor 1

    OpenAIRE

    Hagman, James; Ramírez, Julita; Lukin, Kara

    2012-01-01

    Early B cell factor 1 (EBF1) is a transcription factor that is critical for both B lymphopoiesis and B cell function. EBF1 is a requisite component of the B lymphocyte transcriptional network and is essential for B lineage specification. Recent studies revealed roles for EBF1 in B cell commitment. EBF1 binds its target genes via a DNA-binding domain including a unique ‘zinc knuckle’, which mediates a novel mode of DNA recognition. Chromatin immunoprecipitation of EBF1 in pro-B cells defined h...

  9. Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors.

    Science.gov (United States)

    Warren, Kylie; Wei, Ting; Li, Dongsheng; Qin, Fangyun; Warrilow, David; Lin, Min-Hsuan; Sivakumaran, Haran; Apolloni, Ann; Abbott, Catherine M; Jones, Alun; Anderson, Jenny L; Harrich, David

    2012-06-12

    Cellular proteins have been implicated as important for HIV-1 reverse transcription, but whether any are reverse transcription complex (RTC) cofactors or affect reverse transcription indirectly is unclear. Here we used protein fractionation combined with an endogenous reverse transcription assay to identify cellular proteins that stimulated late steps of reverse transcription in vitro. We identified 25 cellular proteins in an active protein fraction, and here we show that the eEF1A and eEF1G subunits of eukaryotic elongation factor 1 (eEF1) are important components of the HIV-1 RTC. eEF1A and eEF1G were identified in fractionated human T-cell lysates as reverse transcription cofactors, as their removal ablated the ability of active protein fractions to stimulate late reverse transcription in vitro. We observed that the p51 subunit of reverse transcriptase and integrase, two subunits of the RTC, coimmunoprecipitated with eEF1A and eEF1G. Moreover eEF1A and eEF1G associated with purified RTCs and colocalized with reverse transcriptase following infection of cells. Reverse transcription in cells was sharply down-regulated when eEF1A or eEF1G levels were reduced by siRNA treatment as a result of reduced levels of RTCs in treated cells. The combined evidence indicates that these eEF1 subunits are critical RTC stability cofactors required for efficient completion of reverse transcription. The identification of eEF1 subunits as unique RTC components provides a basis for further investigations of reverse transcription and trafficking of the RTC to the nucleus.

  10. B lymphocyte lineage specification, commitment and epigenetic control of transcription by early B cell factor 1.

    Science.gov (United States)

    Hagman, James; Ramírez, Julita; Lukin, Kara

    2012-01-01

    Early B cell factor 1 (EBF1) is a transcription factor that is critical for both B lymphopoiesis and B cell function. EBF1 is a requisite component of the B lymphocyte transcriptional network and is essential for B lineage specification. Recent studies revealed roles for EBF1 in B cell commitment. EBF1 binds its target genes via a DNA-binding domain including a unique 'zinc knuckle', which mediates a novel mode of DNA recognition. Chromatin immunoprecipitation of EBF1 in pro-B cells defined hundreds of new, as well as previously identified, target genes. Notably, expression of the pre-B cell receptor (pre-BCR), BCR and PI3K/Akt/mTOR signaling pathways is controlled by EBF1. In this review, we highlight these current developments and explore how EBF1 functions as a tissue-specific regulator of chromatin structure at B cell-specific genes.

  11. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress.

    Science.gov (United States)

    Koskas, Sivan; Decottignies, Anabelle; Dufour, Solenne; Pezet, Mylène; Verdel, André; Vourc'h, Claire; Faure, Virginie

    2017-06-20

    In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis.

    Directory of Open Access Journals (Sweden)

    David G Ransom

    2004-08-01

    Full Text Available Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1gamma (TIF1gamma (or TRIM33, a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1gamma mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1gamma mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1gamma functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1gamma protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.

  13. The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxic stress

    International Nuclear Information System (INIS)

    Murphy, Brian J.; Sato, Barbara G.; Dalton, Timothy P.; Laderoute, Keith R.

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1), the major transcriptional regulator of the mammalian cellular response to low oxygen (hypoxia), is embedded within a complex network of signaling pathways. We have been investigating the importance of another stress-responsive transcription factor, MTF-1, for the adaptation of cells to hypoxia. This article reports that MTF-1 plays a central role in hypoxic cells by contributing to HIF-1 activity. Loss of MTF-1 in transformed Mtf1 null mouse embryonic fibroblasts (MEFs) results in an attenuation of nuclear HIF-1α protein accumulation, HIF-1 transcriptional activity, and expression of an established HIF-1 target gene, glucose transporter-1 (Glut1). Mtf1 null (Mtf1 KO) MEFs also have constitutively higher levels of both glutathione (GSH) and the rate-limiting enzyme involved in GSH synthesis-glutamate cysteine ligase catalytic subunit-than wild type cells. The altered cellular redox state arising from increased GSH may perturb oxygen-sensing mechanisms in hypoxic Mtf1 KO cells and decrease the accumulation of HIF-1α protein. Together, these novel findings define a role for MTF-1 in the regulation of HIF-1 activity

  14. Early B cell factor 1 is an essential transcription factor for postnatal glomerular maturation

    Science.gov (United States)

    Fretz, Jackie A.; Nelson, Tracy; Velazquez, Heino; Xi, Yougen; Moeckel, Gilbert; Horowitz, Mark C.

    2013-01-01

    The coordination of multiple cytokines and transcription factors with their downstream signaling pathways have been shown to be integral to nephron maturation. Here we present a completely novel role for the helix-loop-helix transcription factor Early B cell Factor 1 (Ebf1), originally identified for B cell maturation, for the proper maturation of glomerular cells from mesenchymal progenitors. The expression of Ebf1 was both spatially and temporally regulated within the developing cortex and glomeruli. Using Ebf1-null mice we then identified biochemical, metabolic, and histological abnormalities in renal development that arose in the absence of this transcription factor. In the Ebf1 knockout mice the developed kidneys show thinned cortices and reduced glomerular maturation. The glomeruli showed abnormal vascularization and severely effaced podocytes. The mice exhibited early albuminuria and elevated blood urea nitrogen levels. Moreover, the GFR was reduced over 66 percent and the expression of podocyte-derived VEGF-A was decreased compared to wild type control mice. Thus, Ebf1 has a significant and novel role in glomerular development, podocyte maturation, and the maintenance of kidney integrity and function. PMID:24172684

  15. Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation.

    Science.gov (United States)

    Fretz, Jackie A; Nelson, Tracy; Velazquez, Heino; Xi, Yougen; Moeckel, Gilbert W; Horowitz, Mark C

    2014-05-01

    The coordination of multiple cytokines and transcription factors with their downstream signaling pathways has been shown to be integral to nephron maturation. Here we present a completely novel role for the helix-loop-helix transcription factor Early B-cell factor 1 (Ebf1), originally identified for B-cell maturation, for the proper maturation of glomerular cells from mesenchymal progenitors. The expression of Ebf1 was both spatially and temporally regulated within the developing cortex and glomeruli. Using Ebf1-null mice, we then identified biochemical, metabolic, and histological abnormalities in renal development that arose in the absence of this transcription factor. In the Ebf1 knockout mice, the developed kidneys show thinned cortices and reduced glomerular maturation. The glomeruli showed abnormal vascularization and severely effaced podocytes. The mice exhibited early albuminuria and elevated blood urea nitrogen levels. Moreover, the glomerular filtration rate was reduced >66% and the expression of podocyte-derived vascular endothelial growth factor A was decreased compared with wild-type control mice. Thus, Ebf1 has a significant and novel role in glomerular development, podocyte maturation, and the maintenance of kidney integrity and function.

  16. Re-evaluating TTF-1 immunohistochemistry in diffuse gliomas: Expression is clone-dependent and associated with tumor location.

    Science.gov (United States)

    Pratt, Drew; Afsar, Nina; Allgauer, Michael; Fetsch, Patricia; Palisoc, Maryknoll; Pittaluga, Stefania; Quezado, Martha

    TTF-1 is widely used as a marker in routine surgical pathology in the work-up of malignancy. Aberrant expression of TTF-1 in extrapulmonary and extrathyroidal malignancies is a frequently reported phenomenon. In addition to the recently characterized pituicyte-derived tumors of the sella, immunoreactivity has been reported in diffuse gliomas with the SPT24 clone. Here, we sought to evaluate TTF-1 expression with three commercially available clones in a large series of gliomas. Expression was compared across the newly defined diagnostic entities in the 2016 WHO Classification of CNS Tumors. Using tissue microarrays (TMA), 212 diffuse gliomas (WHO grades II - IV) were systematically evaluated with TTF-1 immunohistochemistry using three clones: SPT24, 8G7G3/1, and SP141, and results correlated with clinicopathologic features. 14 high-grade diffuse gliomas demonstrated nuclear staining with the SP141 and SPT24 clones. Two tumors showed weak positivity with the 8G7G3/1 clone. All tumors were high grade by histology (WHO grades III and IV). 86% (12/14) of TTF-1-positive gliomas involved the frontal lobes at diagnosis. No relationship with IDH R132H, ATRX, p53, H3K27M, or EGFR immunohistochemistry was identified. TTF-1 expression in gliomas was not independently prognostic of overall survival. TTF-1 expression in diffuse gliomas is a rare but potentially misleading occurrence. In our cohort, staining occurred with both the SPT24 and SP141 clones at equal intensity and frequency. Clustering of TTF-1-positive tumors in the frontal lobe(s) suggests lineage-specific expression. Due to clone-specific expression in diffuse gliomas, caution must be exercised in the work-up of intracranial tumors with TTF-1.
.

  17. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  18. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  19. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency

    Science.gov (United States)

    Mukhopadhyay, C. K.; Mazumder, B.; Fox, P. L.

    2000-01-01

    A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these

  20. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1.

    Science.gov (United States)

    Kim, Hee-Jung; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jaeho; Park, A Young; Kang, Wonmo; Lee, Kong-Joo

    2017-08-04

    When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys 132 disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys 132 was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys 132 in hnRNP K is critical for this inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Koya

    Full Text Available Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1, and up-regulate heat shock proteins (HSPs in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (p<0.05. Significant up-regulations of interleukin (IL-1β and tumor necrosis factor mRNAs were observed in HSF1-null, but not in wild-type, mice following 2 weeks of overloading. Overloading-related increases of IL-6 and AFT3 mRNA expressions seen after 2 weeks of overloading tended to decrease after 4 weeks in both types of mice. In HSF1-null mice, however, the significant overloading-related increase in the expression of IL-6, not ATF3, mRNA was noted even at 4th week. Inhibition of muscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  2. Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast.

    Directory of Open Access Journals (Sweden)

    Liliana Batista-Nascimento

    2011-01-01

    Full Text Available Heat shock transcription factor 1 (HSF1 plays an important role in the cellular response to proteotoxic stresses. Under normal growth conditions HSF1 is repressed as an inactive monomer in part through post-translation modifications that include protein acetylation, sumoylation and phosphorylation. Upon exposure to stress HSF1 homotrimerizes, accumulates in nucleus, binds DNA, becomes hyper-phosphorylated and activates the expression of stress response genes. While HSF1 and the mechanisms that regulate its activity have been studied for over two decades, our understanding of HSF1 regulation remains incomplete. As previous studies have shown that HSF1 and the heat shock response promoter element (HSE are generally structurally conserved from yeast to metazoans, we have made use of the genetically tractable budding yeast as a facile assay system to further understand the mechanisms that regulate human HSF1 through phosphorylation of serine 303. We show that when human HSF1 is expressed in yeast its phosphorylation at S303 is promoted by the MAP-kinase Slt2 independent of a priming event at S307 previously believed to be a prerequisite. Furthermore, we show that phosphorylation at S303 in yeast and mammalian cells occurs independent of GSK3, the kinase primarily thought to be responsible for S303 phosphorylation. Lastly, while previous studies have suggested that S303 phosphorylation represses HSF1-dependent transactivation, we now show that S303 phosphorylation also represses HSF1 multimerization in both yeast and mammalian cells. Taken together, these studies suggest that yeast cells will be a powerful experimental tool for deciphering aspects of human HSF1 regulation by post-translational modifications.

  3. Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast.

    Science.gov (United States)

    Batista-Nascimento, Liliana; Neef, Daniel W; Liu, Phillip C C; Rodrigues-Pousada, Claudina; Thiele, Dennis J

    2011-01-06

    Heat shock transcription factor 1 (HSF1) plays an important role in the cellular response to proteotoxic stresses. Under normal growth conditions HSF1 is repressed as an inactive monomer in part through post-translation modifications that include protein acetylation, sumoylation and phosphorylation. Upon exposure to stress HSF1 homotrimerizes, accumulates in nucleus, binds DNA, becomes hyper-phosphorylated and activates the expression of stress response genes. While HSF1 and the mechanisms that regulate its activity have been studied for over two decades, our understanding of HSF1 regulation remains incomplete. As previous studies have shown that HSF1 and the heat shock response promoter element (HSE) are generally structurally conserved from yeast to metazoans, we have made use of the genetically tractable budding yeast as a facile assay system to further understand the mechanisms that regulate human HSF1 through phosphorylation of serine 303. We show that when human HSF1 is expressed in yeast its phosphorylation at S303 is promoted by the MAP-kinase Slt2 independent of a priming event at S307 previously believed to be a prerequisite. Furthermore, we show that phosphorylation at S303 in yeast and mammalian cells occurs independent of GSK3, the kinase primarily thought to be responsible for S303 phosphorylation. Lastly, while previous studies have suggested that S303 phosphorylation represses HSF1-dependent transactivation, we now show that S303 phosphorylation also represses HSF1 multimerization in both yeast and mammalian cells. Taken together, these studies suggest that yeast cells will be a powerful experimental tool for deciphering aspects of human HSF1 regulation by post-translational modifications.

  4. Aluminum resistance transcription factor 1 (ART1) contributes to natural variation in rice aluminum resistance

    Science.gov (United States)

    Transcription factors (TFs) mediate stress resistance indirectly via physiological mechanisms driven by the array of genes they regulate. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with different genetic backgrounds. Here, we fine-mapped th...

  5. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, Kathleen A.; Klinge, Carolyn M. [University of Louisville School of Medicine, Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, Louisville, KY (United States)

    2012-04-15

    Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17{beta}-estradiol (E{sub 2}), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E{sub 2}, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E{sub 2} increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. (orig.)

  6. The transcription factor early B-cell factor 1 regulates bone formation in an osteoblast-nonautonomous manner

    OpenAIRE

    Zee, Tiffany; Boller, Sören; Györy, Ildiko; Makinistoglu, Munevver P.; Tuckermann, Jan P.; Grosschedl, Rudolf; Karsenty, Gerard

    2013-01-01

    Early B-cell factor 1 (Ebf1) is a transcription factor whose inactivation in all cells results in high bone mass because of an increase in bone formation. This observation suggests Ebf1 may be an inhibitor of osteoblast differentiation. To test this contention, we analyzed Ebf1 pattern of expression and function in osteoblasts ex vivo and in vivo through osteoblast-specific inactivation in the mouse. We show here that in vivo deletion of Ebf1 in osteoblast progenitors does not affect osteobla...

  7. Transcriptional intermediary factor 1γ binds to the anaphase-promoting complex/cyclosome and promotes mitosis

    DEFF Research Database (Denmark)

    Sedgwick, G.G.; Townsend, K.; Martin, A.

    2013-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is an ubiquitin ligase that functions during mitosis. Here we identify the transcriptional regulator, transcriptional intermediary factor 1γ, TIF1γ, as an APC/C-interacting protein that regulates APC/C function. TIF1γ is not a substrate for APC....../C-dependent ubiquitylation but instead, associates specifically with the APC/C holoenzyme and Cdc20 to affect APC/C activity and progression through mitosis. RNA interference studies indicate that TIF1γ knockdown results in a specific reduction in APC/C ubiquitin ligase activity, the stabilization of APC/C substrates......, and an increase in the time taken for cells to progress through mitosis from nuclear envelope breakdown to anaphase. TIF1γ knockdown cells are also characterized by the inappropriate presence of cyclin A at metaphase, and an increase in the number of cells that fail to undergo metaphase-to-anaphase transition...

  8. In Vivo and In Vitro Dynamics of Undifferentiated Embryonic Cell Transcription Factor 1

    Directory of Open Access Journals (Sweden)

    Christina Galonska

    2014-03-01

    Full Text Available Pluripotent stem cells retain the ability to differentiate into the three germ layers and germline. As a result, there is a major interest in characterizing regulators that establish and maintain pluripotency. The network of transcription factors continues to expand in complexity, and one factor, undifferentiated embryonic cell transcription factor 1 (UTF1, has recently moved more into the limelight. To facilitate the study of UTF1, we report the generation and characterization of two reporter lines that enable efficient tracking, mapping, and purification of endogenous UTF1. In particular, we include a built-in biotinylation system in our targeted locus that allows efficient and reliable pulldown. We also use this reporter to show the dynamic regulation of Utf1 in distinct stem cell conditions and demonstrate its utility for reprogramming studies. The multipurpose design of the reporter lines enables many directions of future study and should lead to a better understanding of UTF1’s diverse roles.

  9. The transcription factor lymphoid enhancer factor 1 controls invariant natural killer T cell expansion and Th2-type effector differentiation.

    Science.gov (United States)

    Carr, Tiffany; Krishnamoorthy, Veena; Yu, Shuyang; Xue, Hai-Hui; Kee, Barbara L; Verykokakis, Mihalis

    2015-05-04

    Invariant natural killer T cells (iNKT cells) are innate-like T cells that rapidly produce cytokines that impact antimicrobial immune responses, asthma, and autoimmunity. These cells acquire multiple effector fates during their thymic development that parallel those of CD4(+) T helper cells. The number of Th2-type effector iNKT cells is variable in different strains of mice, and their number impacts CD8 T, dendritic, and B cell function. Here we demonstrate a unique function for the transcription factor lymphoid enhancer factor 1 (LEF1) in the postselection expansion of iNKT cells through a direct induction of the CD127 component of the receptor for interleukin-7 (IL-7) and the transcription factor c-myc. LEF1 also directly augments expression of the effector fate-specifying transcription factor GATA3, thus promoting the development of Th2-like effector iNKT cells that produce IL-4, including those that also produce interferon-γ. Our data reveal LEF1 as a central regulator of iNKT cell number and Th2-type effector differentiation. © 2015 Carr et al.

  10. Interactome analysis of transcriptional coactivator multiprotein bridging factor 1 unveils a yeast AP-1-like transcription factor involved in oxidation tolerance of mycopathogen Beauveria bassiana.

    Science.gov (United States)

    Chu, Xin-Ling; Dong, Wei-Xia; Ding, Jin-Li; Feng, Ming-Guang; Ying, Sheng-Hua

    2018-02-01

    Oxidation tolerance is an important determinant to predict the virulence and biocontrol potential of Beauveria bassiana, a well-known entomopathogenic fungus. As a transcriptional coactivator, multiprotein bridging factor 1 mediates the activity of transcription factor in diverse physiological processes, and its homolog in B. bassiana (BbMBF1) contributes to fungal oxidation tolerance. In this study, the BbMBF1-interactomes under oxidative stress and normal growth condition were deciphered by mass spectrometry integrated with the immunoprecipitation. BbMBF1p factor has a broad interaction with proteins that are involved in various cellular processes, and this interaction is dynamically regulated by oxidative stress. Importantly, a B. bassiana homolog of yeast AP-1-like transcription factor (BbAP-1) was specifically associated with the BbMBF1-interactome under oxidation and significantly contributed to fungal oxidation tolerance. In addition, qPCR analysis revealed that several antioxidant genes are jointly controlled by BbAP-1 and BbMBF1. Conclusively, it is proposed that BbMBF1p protein mediates BbAP-1p factor to transcribe the downstream antioxidant genes in B. bassiana under oxidative stress. This study demonstrates for the first time a proteomic view of the MBF1-interactome in fungi, and presents an initial framework to probe the transcriptional mechanism involved in fungal response to oxidation, which will provide a new strategy to improve the biocontrol efficacy of B. bassiana.

  11. The transcription factor early B-cell factor 1 regulates bone formation in an osteoblast-nonautonomous manner.

    Science.gov (United States)

    Zee, Tiffany; Boller, Sören; Györy, Ildiko; Makinistoglu, Munevver P; Tuckermann, Jan P; Grosschedl, Rudolf; Karsenty, Gerard

    2013-03-18

    Early B-cell factor 1 (Ebf1) is a transcription factor whose inactivation in all cells results in high bone mass because of an increase in bone formation. This observation suggests Ebf1 may be an inhibitor of osteoblast differentiation. To test this contention, we analyzed Ebf1 pattern of expression and function in osteoblasts ex vivo and in vivo through osteoblast-specific inactivation in the mouse. We show here that in vivo deletion of Ebf1 in osteoblast progenitors does not affect osteoblast differentiation or bone formation accrual post-natally. These observations indicate that the phenotype described in Ebf1(-/)(-) mice is not osteoblast-autonomous. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Molecular cloning of metal-responsive transcription factor-1 (MTF-1 and transcriptional responses to metal and heat stresses in Pacific abalone, Haliotis discus hannai

    Directory of Open Access Journals (Sweden)

    Sang Yoon Lee

    2017-07-01

    Full Text Available Abstract Background Metal-responsive transcription factor-1 (MTF-1 is a key transcriptional regulator playing crucial roles in metal homeostasis and cellular adaptation to diverse oxidative stresses. In order to understand cellular pathways associated with metal regulation and stress responses in Pacific abalone (Haliotis discus hannai, this study was aimed to isolate the genetic determinant of abalone MTF-1 and to examine its expression characteristics under basal and experimentally stimulated conditions. Results The abalone MTF-1 shared conserved features in zinc-finger DNA binding domain with its orthologs; however, it represented a non-conservative shape in presumed transactivation domain region with the lack of typical motifs for nuclear export signal (NES and Cys-cluster. Abalone MTF-1 promoter exhibited various transcription factor binding motifs that would be potentially related with metal regulation, stress responses, and development. The highest messenger RNA (mRNA expression level of MTF-1 was observed in the testes, and MTF-1 transcripts were detected during the entire period of embryonic and early ontogenic developments. Abalone MTF-1 was found to be Cd inducible and highly modulated by heat shock treatment. Conclusion Abalone MTF-1 possesses a non-consensus structure of activation domains and represents distinct features for its activation mechanism in response to metal overload and heat stress. The activation mechanism of abalone MTF-1 might include both indirect zinc sensing and direct de novo synthesis of transcripts. Taken together, results from this study could be a useful basis for future researches on stress physiology of this abalone species, particularly with regard to heavy metal detoxification and thermal adaptation.

  13. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Stephan Niebler

    2015-01-01

    Full Text Available The transcription factor AP-2ε (activating enhancer-binding protein epsilon is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4 strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1, the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2′-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.

  14. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin.

    Science.gov (United States)

    Treiber, Thomas; Mandel, Elizabeth M; Pott, Sebastian; Györy, Ildiko; Firner, Sonja; Liu, Edison T; Grosschedl, Rudolf

    2010-05-28

    The transcription factor early B cell factor-1 (Ebf1) is a key determinant of B lineage specification and differentiation. To gain insight into the molecular basis of Ebf1 function in early-stage B cells, we combined a genome-wide ChIP sequencing analysis with gain- and loss-of-function transcriptome analyses. Among 565 genes that are occupied and transcriptionally regulated by Ebf1, we identified large sets involved in (pre)-B cell receptor and Akt signaling, cell adhesion, and migration. Interestingly, a third of previously described Pax5 targets was found to be occupied by Ebf1. In addition to Ebf1-activated and -repressed genes, we identified targets at which Ebf1 induces chromatin changes that poise the genes for expression at subsequent stages of differentiation. Poised chromatin states on specific targets could also be established by Ebf1 expression in T cells but not in NIH 3T3 cells, suggesting that Ebf1 acts as a "pioneer" factor in a hematopoietic chromatin context. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Allograft inflammatory factor-1 in disk abalone (Haliotis discus discus): molecular cloning, transcriptional regulation against immune challenge and tissue injury.

    Science.gov (United States)

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Kim, Yucheol; Oh, Chulhong; Kang, Do-Hyung; Whang, Ilson; Kim, Se-Jae; Lee, Jae-Seong; Choi, Cheol Young; Lee, Jehee

    2010-08-01

    Here, we report the identification and characterization of allograft inflammatory factor-1 (AIF-1) from disk abalone Haliotis discus discus that was denoted as AbAIF-1. The full-length cDNA of AbAIF-1 consists of a coding region (453 bp) for 151 amino acids with a 17 kDa molecular mass. Analysis of AbAIF-1 sequence showed that it shares characteristic two EF hand Ca(+2)-binding motifs. Results from phylogenetic analysis further confirm that AbAIF-1 is a member of the AIF-1 family similar to invertebrate and vertebrate counterparts suggesting it has high evolutional conservation. Tissue-specific expression and transcriptional regulation of AbAIF-1 were analyzed after bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes), viral hemorrhagic septicemia virus (VHSV) immune challenge and during tissue injury by quantitative real-time PCR. It is shown that the expression of AbAIF-1 mRNA was expressed ubiquitously in all selected tissues in constitutive manner showing the highest level in hemocytes. Upon bacteria and VHSV challenge, AbAIF-1 showed the significant up-regulation in hemocytes than gills. After the tissue injury in shell and mantle, AbAIF-1 and antioxidant selenium-dependant glutathione peroxidase (SeGPx) transcripts were significantly upregulated in abalone hemocytes. Taken together, these findings suggest that AIF-1 could response against the pathogenic challenge or tissue injury in abalone like mollusks. Also, AbAIF-1 may involve in wound healing and shell repair after the tissue injury of abalone. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis.

    Science.gov (United States)

    Goralogia, Greg S; Liu, Tong-Kun; Zhao, Lin; Panipinto, Paul M; Groover, Evan D; Bains, Yashkarn S; Imaizumi, Takato

    2017-10-01

    CYCLING DOF FACTOR 1 (CDF1) and its homologs play an important role in the floral transition by repressing the expression of floral activator genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) in Arabidopsis. The day-length-specific removal of CDF1-dependent repression is a critical mechanism in photoperiodic flowering. However, the mechanism by which CDF1 represses CO and FT transcription remained elusive. Here we demonstrate that Arabidopsis CDF proteins contain non-EAR motif-like conserved domains required for interaction with the TOPLESS (TPL) co-repressor protein. This TPL interaction confers a repressive function on CDF1, as mutations of the N-terminal TPL binding domain largely impair the ability of CDF1 protein to repress its targets. TPL proteins are present on specific regions of the CO and FT promoters where CDF1 binds during the morning. In addition, TPL binding increases when CDF1 expression is elevated, suggesting that TPL is recruited to these promoters in a time-dependent fashion by CDFs. Moreover, reduction of TPL activity induced by expressing a dominant negative version of TPL (tpl-1) in phloem companion cells results in early flowering and a decreased sensitivity to photoperiod in a manner similar to a cdf loss-of-function mutant. Our results indicate that the mechanism of CDF1 repression is through the formation of a CDF-TPL transcriptional complex, which reduces the expression levels of CO and FT during the morning for seasonal flowering. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Reconstitution of glucotoxic HIT-T15 cells with somatostatin transcription factor-1 partially restores insulin promoter activity.

    Science.gov (United States)

    Harmon, J S; Tanaka, Y; Olson, L K; Robertson, R P

    1998-06-01

    We have reported that chronic culture of HIT-T15 cells in medium containing supraphysiologic glucose concentrations (11.1 mmol/l) causes a decrease in insulin mRNA levels, insulin content, and insulin release. Furthermore, decreases in insulin gene transcription and binding activity of two essential beta-cell transcription factors, somatostatin transcription factor-1 (STF-1; also known as GSTF, IDX-1, IPF-1, PDX-1, and GSF) and RIPE-3b1 activator, are associated with this glucotoxic effect. In this study, we observed that the loss of RIPE-3b1 occurs much earlier (79% decrease at passage [p]81) than the loss of STF-1 (65% decrease at p104), with abolishment of both factors by p122. Since the STF-1, but not the RIPE-3b1 activator, gene has been cloned, we examined its restorative effects on insulin gene promoter activity after reconstitution with STF-1 cDNA. Basal insulin promoter activities normalized to early (p71-74) passage cells (1.000 +/- 0.069) were 0.4066 +/- 0.093 and 0.142 +/- 0.034 for intermediate (p102-106) and late (p118-122) passage cells, respectively. Early, intermediate, and late passage cells, all chronically cultured in medium containing 11.1 mmol/l glucose, were transfected with STF-1 alone or cotransfected with E2-5, an E-box factor known to be synergistically associated with STF-1. Compared with basal levels, we observed a trend toward an increase in insulin promoter activity in intermediate passage cells with STF-1 transfection (1.43-fold) that became a significant increase when E2-5 was cotransfected (1.78-fold). In late passage cells, transfection of STF-1 alone significantly stimulated a 2.2-fold increase in the insulin promoter activity. Cotransfection of STF-1 and E2-5 in late passage cells stimulated insulin promoter activity 2.8-fold, which was 40% of the activity observed in early passage cells. Control studies in glucotoxic betaTC-6 cells deficient in RIPE-3b1 activator but not STF-1 did not demonstrate an increase in insulin promoter

  18. Increased accumulation of hypoxia-inducible factor-1α with reduced transcriptional activity mediates the antitumor effect of triptolide

    Directory of Open Access Journals (Sweden)

    Li Zheng

    2010-10-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1α (HIF-1α, a critical transcription factor to reduced O2 availability, has been demonstrated to be extensively involved in tumor survival, aggressive progression, drug resistance and angiogenesis. Thus it has been considered as a potential anticancer target. Triptolide is the main principle responsible for the biological activities of the Traditional Chinese Medicine tripterygium wilfordii Hook F. Triptolide possesses great chemotherapy potential for cancer with its broad-spectrum anticancer, antiangiogenesis, and drug-resistance circumvention activities. Numerous biological molecules inhibited by triptolide have been viewed as its possible targets. However, the anticancer action mechanisms of triptolide remains to be further investigated. Here we used human ovarian SKOV-3 cancer cells as a model to probe the effect of triptolide on HIF-1α. Results Triptolide was observed to inhibit the proliferation of SKOV-3 cells, and meanwhile, to enhance the accumulation of HIF-1α protein in SKOV-3, A549 and DU145 cells under different conditions. Triptolide did not change the kinetics or nuclear localization of HIF-1α protein or the 26 S proteasome activity in SKOV-3 cells. However, triptolide was found to increase the levels of HIF-1α mRNA. Unexpectedly, the HIF-1α protein induced by triptolide appeared to lose its transcriptional activity, as evidenced by the decreased mRNA levels of its target genes including VEGF, BNIP3 and CAIX. The results were further strengthened by the lowered secretion of VEGF protein, the reduced sprout outgrowth from the rat aorta rings and the inhibitory expression of the hypoxia responsive element-driven luciferase reporter gene. Moreover, the silencing of HIF-1α partially prevented the cytotoxicity and apoptosis triggered by triptolide. Conclusions The potent induction of HIF-1α protein involved in its cytotoxicity, together with the suppression of HIF-1 transcriptional

  19. The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis.

    Science.gov (United States)

    Foyer, Christine H; Karpinska, Barbara; Krupinska, Karin

    2014-04-19

    Chloroplasts are important sensors of environment change, fulfilling key roles in the regulation of plant growth and development in relation to environmental cues. Photosynthesis produces a repertoire of reductive and oxidative (redox) signals that provide information to the nucleus facilitating appropriate acclimation to a changing light environment. Redox signals are also recognized by the cellular innate immune system allowing activation of non-specific, stress-responsive pathways that underpin cross tolerance to biotic-abiotic stresses. While these pathways have been intensively studied in recent years, little is known about the different components that mediate chloroplast-to-nucleus signalling and facilitate cross tolerance phenomena. Here, we consider the properties of the WHIRLY family of proteins and the REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) in relation to chloroplast redox signals that facilitate the synergistic co-activation of gene expression pathways and confer cross tolerance to abiotic and biotic stresses. We propose a new hypothesis for the role of WHIRLY1 as a redox sensor in chloroplast-to-nucleus retrograde signalling leading to cross tolerance, including acclimation and immunity responses. By virtue of its association with chloroplast nucleoids and with nuclear DNA, WHIRLY1 is an attractive candidate coordinator of the expression of photosynthetic genes in the nucleus and chloroplasts. We propose that the redox state of the photosynthetic electron transport chain triggers the movement of WHIRLY1 from the chloroplasts to the nucleus, and draw parallels with the regulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1).

  20. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    International Nuclear Information System (INIS)

    Adams, Scott V.; Barrick, Brian; Christopher, Emily P.; Shafer, Martin M.; Makar, Karen W.; Song, Xiaoling; Lampe, Johanna W.; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.

    2015-01-01

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  1. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots.

    Science.gov (United States)

    Matsuo, Mitsuhiro; Johnson, Joy Michal; Hieno, Ayaka; Tokizawa, Mutsutomo; Nomoto, Mika; Tada, Yasuomi; Godfrey, Rinesh; Obokata, Junichi; Sherameti, Irena; Yamamoto, Yoshiharu Y; Böhmer, Frank-D; Oelmüller, Ralf

    2015-08-01

    Redox Responsive Transcription Factor1 (RRTF1) in Arabidopsis is rapidly and transiently upregulated by H2O2, as well as biotic- and abiotic-induced redox signals. RRTF1 is highly conserved in angiosperms, but its physiological role remains elusive. Here we show that inactivation of RRTF1 restricts and overexpression promotes reactive oxygen species (ROS) accumulation in response to stress. Transgenic lines overexpressing RRTF1 are impaired in root and shoot development, light sensitive, and susceptible to Alternaria brassicae infection. These symptoms are diminished by the beneficial root endophyte Piriformospora indica, which reduces ROS accumulation locally in roots and systemically in shoots, and by antioxidants and ROS inhibitors that scavenge ROS. More than 800 genes were detected in mature leaves and seedlings of transgenic lines overexpressing RRTF1; ∼ 40% of them have stress-, redox-, ROS-regulated-, ROS-scavenging-, defense-, cell death- and senescence-related functions. Bioinformatic analyses and in vitro DNA binding assays demonstrate that RRTF1 binds to GCC-box-like sequences in the promoter of RRTF1-responsive genes. Upregulation of RRTF1 by stress stimuli and H2O2 requires WRKY18/40/60. RRTF1 is co-regulated with the phylogenetically related RAP2.6, which contains a GCC-box-like sequence in its promoter, but transgenic lines overexpressing RAP2.6 do not accumulate higher ROS levels. RRTF1 also stimulates systemic ROS accumulation in distal non-stressed leaves. We conclude that the elevated levels of the highly conserved RRTF1 induce ROS accumulation in response to ROS and ROS-producing abiotic and biotic stress signals. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  2. Effect of Geranylgeranylacetone on Ultraviolet Radiation Type B-Induced Cataract in Heat-Shock Transcription Factor 1 Heterozygous Mouse.

    Science.gov (United States)

    Ogasawara, Satoshi; Hashizume, Kouhei; Okuno, Takashi; Imaizumi, Toshiyasu; Inomata, Yui; Tezuka, Yu; Sanbe, Atushi; Kurosaka, Daijiro

    2017-05-01

    We investigated whether heat-shock transcription factor 1 (HSF1) was involved in ultraviolet radiation type B (UVR-B)-induced lens opacity (cataract) using HSF1 heterozygous mice. We also examined the effects of geranylgeranylacetone (GGA), an inducer of heat-shock proteins via activation of HSF, on the UVR-B-induced cataract. Male HSF1 +/- and WT mice were unilaterally exposed to UVR-B (total: 1200mJ) at 16 weeks of age. At 48 h after the last UVR-B irradiation, the lens was isolated and the induction of the cataract was quantified as the cataract area ratio (opacity area/anterior capsule). GGA was orally administered at a dosage of 500 mg/kg once a day for two days before the first UVR-B exposure until the end of the experiment (21days in total). The HSF1 expression was more greatly decreased in the lens from HSF1 +/- mice than in that from WT mice (p B exposure could mainly induce cataracts in the anterior capsule in both HSF1 +/- and WT mice, while the opacity of the lens was markedly enhanced in HSF 1+/- mice compared to that in WT mice(p (0.01). GGA treatment could prevent the induction of lens opacity by UVR-B exposure in both WT and HSF1 +/- mice as compared with the non-administration group (p B radiation was seen in lens protein levels of αA-crystallin, αB-crystallin, or γ-crystallin with or without GGA administration among all groups of mice. In contrast to the crystallins, the lens protein level of HSP25 was decreased by UVR-B exposure in both HSF1 +/- and WT mice, and was significantly recovered in WT mice by the GGA treatment (p B-induced cataracts, possibly via regulation of HSPs such as HSP25.

  3. Hepatocyte nuclear factor 1alpha is an accessory factor required for activation of glucose-6-phosphatase gene transcription by glucocorticoids.

    Science.gov (United States)

    Lin, B; Morris, D W; Chou, J Y

    1998-11-01

    Deficiency of glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis, causes glycogen storage disease type 1a (GSD-1a), also know as von Gierke disease. Expression of the G6Pase gene is regulated by multiple hormones, including glucocorticoids. The synthetic glucocorticoid dexamethasone increased G6Pase mRNA abundance and gene transcription in H4-IIE hepatoma cells. Transient transfection assays demonstrated that the G6Pase promoter was active in H4-IIE cells only in the presence of dexamethasone. The minimal G6Pase promoter was contained within nucleotides -234/+3, which has two putative glucocorticoid response elements (GREs) at nucleotides -178/-164 (site 1) and -154/-140 (site 2). Electromobility shift and transient transfection assays showed that only GRE site 1 was required for glucocorticoid-activated transcription from the G6Pase promoter. Deletion analysis demonstrated that the DNA elements absolutely essential for glucocorticoid-stimulated transcription from the G6Pase promoter were contained within nucleotides -234/-212, encompassing binding motifs for hepatocyte nuclear factors (HNFs) 1 (-226/-212) and 4 (-231/-220). Electromobility shift and cotransfection assays showed that HNF1alpha bound to its cognate site and mediated transcription activation of the G6Pase gene by glucocorticoids.

  4. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  5. Copper Sensing Function of Drosophila Metal-Responsive Transcription Factor-1 Is Mediated By a Tetranuclear Cu(I) Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Hua, H.; Balamurugan, K.; Kong, X.; Zhang, L.; George, G.N.; Georgiev, O.; Schaffner, W.; Giedroc, D.P.

    2009-05-12

    Drosophila melanogaster MTF-1 (dMTF-1) is a copper-responsive transcriptional activator that mediates resistance to Cu, as well as Zn and Cd. Here, we characterize a novel cysteine-rich domain which is crucial for sensing excess intracellular copper by dMTF-1. Transgenic flies expressing mutant dMTF-1 containing alanine substitutions of two, four or six cysteine residues within the sequence {sup 547}CNCTNCKCDQTKSCHGGDC{sup 565} are significantly or completely impaired in their ability to protect flies from copper toxicity and fail to up-regulate MtnA (metallothionein) expression in response to excess Cu. In contrast, these flies exhibit wild-type survival in response to copper deprivation thus revealing that the cysteine cluster domain is required only for sensing Cu load by dMTF-1. Parallel studies show that the isolated cysteine cluster domain is required to protect a copper-sensitive S. cerevisiae ace1 strain from copper toxicity. Cu(I) ligation by a Cys-rich domain peptide fragment drives the cooperative assembly of a polydentate [Cu{sub 4}-S{sub 6}] cage structure, characterized by a core of trigonally S{sub 3} coordinated Cu(I) ions bound by bridging thiolate ligands. While reminiscent of Cu{sub 4}-L{sub 6} (L = ligand) tetranuclear clusters in copper regulatory transcription factors of yeast, the absence of significant sequence homology is consistent with convergent evolution of a sensing strategy particularly well suited for Cu(I).

  6. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiuyi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 (China); Giroux-Leprieur, Etienne [ER2 GRC UPMC04 Theranoscan, Pierre et Marie Curie University, Tenon Hospital, 4 Rue de La Chine, 75020, Paris (France); Respiratory Diseases and Thoracic Oncology Department, Ambroise Pare Hospital – APHP, Versailles Saint Quentin en Yvelines University, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt (France); Wislez, Marie [ER2 GRC UPMC04 Theranoscan, Pierre et Marie Curie University, Tenon Hospital, 4 Rue de La Chine, 75020, Paris (France); Hu, Mu; Zhang, Yi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 (China); Shi, Huaiyin [Department of Pathology, Chinese PLA General Hospital, Fu-xing Road #28, Beijing, 100853 (China); Du, Kaiqi, E-mail: kaiqidu_zhejiang@163.com [Department of Cardiothoracic Surgery, Chinese People' s Armed Police Force, Zhejiang Corps Hospital, Jiaxing, Zhejiang Province (China); Wang, Lei, E-mail: leiwang_hebei@163.com [Department of Human Anatomy, Hebei Medical University, Hebei Province (China)

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  7. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Wislez, Marie; Hu, Mu; Zhang, Yi; Shi, Huaiyin; Du, Kaiqi; Wang, Lei

    2015-01-01

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  8. Nuclear Wiskott–Aldrich syndrome protein co-regulates T cell factor 1-mediated transcription in T cells

    Directory of Open Access Journals (Sweden)

    Nikolai V. Kuznetsov

    2017-10-01

    Full Text Available Abstract Background The Wiskott–Aldrich syndrome protein (WASp family of actin-nucleating factors are present in the cytoplasm and in the nucleus. The role of nuclear WASp for T cell development remains incompletely defined. Methods We performed WASp chromatin immunoprecipitation and deep sequencing (ChIP-seq in thymocytes and spleen CD4+ T cells. Results WASp was enriched at genic and intergenic regions and associated with the transcription start sites of protein-coding genes. Thymocytes and spleen CD4+ T cells showed 15 common WASp-interacting genes, including the gene encoding T cell factor (TCF12. WASp KO thymocytes had reduced nuclear TCF12 whereas thymocytes expressing constitutively active WASpL272P and WASpI296T had increased nuclear TCF12, suggesting that regulated WASp activity controlled nuclear TCF12. We identify a putative DNA element enriched in WASp ChIP-seq samples identical to a TCF1-binding site and we show that WASp directly interacted with TCF1 in the nucleus. Conclusions These data place nuclear WASp in proximity with TCF1 and TCF12, essential factors for T cell development.

  9. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease.

    Directory of Open Access Journals (Sweden)

    Daniel W Neef

    2010-01-01

    Full Text Available Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.

  10. Coniferyl Aldehyde Reduces Radiation Damage Through Increased Protein Stability of Heat Shock Transcriptional Factor 1 by Phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo-Young [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of); Lee, Hae-June [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Nam, Joo-Won; Seo, Eun-Kyoung [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of); Lee, Yun-Sil, E-mail: yslee0425@ewha.ac.kr [Graduate School of Pharmaceutical Sciences, Ewha Women' s University, Seoul (Korea, Republic of)

    2015-03-15

    Purpose: We previously screened natural compounds and found that coniferyl aldehyde (CA) was identified as an inducer of HSF1. In this study, we further examined the protective effects of CA against ionizing radiation (IR) in normal cell system. Methods and Materials: Western blotting and reverse transcription-polymerase chain reaction tests were performed to evaluate expression of HSF1, HSP27, and HSP70 in response to CA. Cell death and cleavage of PARP and caspase-3 were analyzed to determine the protective effects of CA in the presence of IR or taxol. The protective effects of CA were also evaluated using animal models. Results: CA increased stability of the HSF1 protein by phosphorylation at Ser326, which was accompanied by increased expression of HSP27 and HSP70. HSF1 phosphorylation at Ser326 by CA was mediated by EKR1/2 activation. Cotreatment of CA with IR or taxol in normal cells induced protective effects with phosphorylation- dependent patterns at Ser326 of HSF1. The decrease in bone marrow (BM) cellularity and increase of terminal deoxynucleotidyl transferase dUTP nick end labeling–positive BM cells by IR were also significantly inhibited by CA in mice (30.6% and 56.0%, respectively). A549 lung orthotopic lung tumor model indicated that CA did not affect the IR-mediated reduction of lung tumor nodules, whereas CA protected normal lung tissues from the therapeutic irradiation. Conclusions: These results suggest that CA may be useful for inducing HSF1 to protect against normal cell damage after IR or chemotherapeutic agents.

  11. Lack of germline A339V mutation in thyroid transcription factor-1 (TITF-1/NKX2.1 gene in familial papillary thyroid cancer

    Directory of Open Access Journals (Sweden)

    Cantara Silvia

    2010-08-01

    Full Text Available Abstract Thyroid cancer may have a familial predisposition but a specific germline alteration responsible for the disease has not been discovered yet. We have shown that familial papillary thyroid cancer (FPTC patients have an imbalance in telomere-telomerase complex with short telomeres and increased telomerase activity. A germline mutation (A339V in thyroid transcription factor-1 has been described in patients with multinodular goiter and papillary thyroid cancer. In this report, the presence of the A339V mutation and the telomere length has been studied in FPTC patients and unaffected family members. All samples analyzed displayed a pattern typical of the homozygous wild type revealing the absence of the A339V mutation. Shortening of telomeres was confirmed in all patients. We concluded that the A339V mutation in thyroid transcription factor-1 (TITF-1/NKX2.1 is not correlated with the familial form of PTC, even when the tumor was in the context of multinodular goiter.

  12. Overexpression of octamer transcription factors 1 or 2 alone has no effect on HIV-1 transcription in primary human CD4 T cells

    International Nuclear Information System (INIS)

    Zhang Mingce; Genin, Anna; Cron, Randy Q.

    2004-01-01

    We explored the binding of octamer (Oct) transcription factors to the HIV-1 long terminal repeat (LTR) by gel shift assays and showed none of the previously identified four potential Oct binding sites bound Oct-1 or Oct-2. Overexpression of Oct-1 or Oct-2 had no effect on HIV-1 LTR activity in transiently transfected primary human CD4 T cells. Next, primary human CD4 T cells were co-transfected with a green fluorescent protein (GFP)-expression vector and an Oct-1 or Oct-2 expression plasmid. The transfected cells were stimulated for 2 days and then infected with the NL4-3 strain of HIV-1. After 3 days of infection, there were no differences in HIV-1 p24 supernatant levels. Apoptosis of infected or bystander cells overexpressing Oct-1 or Oct-2 compared to control was also unaffected. Our studies demonstrate that Oct-1 and Oct-2 fail to bind to the HIV-1 LTR and have no effect on HIV-1 transcription in primary human CD4 T cells

  13. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  14. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells.

    Science.gov (United States)

    Schwartz, Anton M; Putlyaeva, Lidia V; Covich, Milica; Klepikova, Anna V; Akulich, Kseniya A; Vorontsov, Ilya E; Korneev, Kirill V; Dmitriev, Sergey E; Polanovsky, Oleg L; Sidorenko, Svetlana P; Kulakovskiy, Ivan V; Kuprash, Dmitry V

    2016-10-01

    Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. TMPRSS2-ERG fusion protein regulates insulin-like growth factor-1 receptor (IGF1R) gene expression in prostate cancer: involvement of transcription factor Sp1.

    Science.gov (United States)

    Meisel Sharon, Shilhav; Pozniak, Yair; Geiger, Tamar; Werner, Haim

    2016-08-09

    Prostate cancer is a major health issue in the Western world. The most common gene rearrangement in prostate cancer is the TMPRSS2-ERG fusion, which results in aberrant expression of the transcription factor ERG. The insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and tumorigenesis, and is overexpressed in most malignancies, including prostate cancer. In this study we show that TMPRSS2-ERG mediates its tumorigenic effects through regulation of IGF1R gene expression. Silencing of T-ERG in VCaP cells resulted in downregulation of both IGF1R and Sp1, a critical IGF1R regulator. Co-immunoprecipitation assays revealed a physical interaction between transcription factors ERG and Sp1, with potential relevance in IGF1R gene regulation. In addition, transactivation of the IGF1R gene by ERG was mediated at the level of transcription, as indicated by results of promoter assays. To identify new co-activators of the TMPRSS2-ERG fusion protein we performed mass spectrometry-based proteomic analyses. Among other interactors, we identified AP-2 complex subunit mu (AP2M1) and caveolin-1 (CAV1) in association with ERG in cell nuclei. These proteins play a mechanistic role in IGF1R internalization. Our analyses are consistent with a potential novel function of TMPRSS2-ERG as a major regulator of IGF1R gene expression. Results may impinge upon ongoing efforts to target the IGF1R in the clinics.

  16. Viral-mediated overexpression of the Myelin Transcription Factor 1 (MyT1) in the dentate gyrus attenuates anxiety- and ethanol-related behaviors in rats.

    Science.gov (United States)

    Bahi, Amine; Dreyer, Jean-Luc

    2017-06-01

    Myelin Transcription Factor 1 (MyT1), a member of the Zinc Finger gene family, plays a fundamental role in the nervous system. Recent research has suggested that this transcription factor is associated with the pathophysiology of psychiatric disorders including addiction, schizophrenia, and depression. However, the role of MyT1 in anxiety- and ethanol-related behaviors is still unknown. We evaluated the effects of lentiviral-mediated overexpression of MyT1 in the dentate gyrus (DG) on anxiety- and ethanol-related behaviors in rats. We used the elevated plus maze (EPM) and the open field (OF) tests to assess anxiety-like behavior and a two-bottle choice procedure to measure the effects of MyT1 on ethanol intake and preference. MyT1 overexpression produced anxiolytic-like effects in the EPM test and decreased the number of fecal boli in the OF test, without affecting locomotor activity in both behavioral tests. Next, we demonstrated that ethanol intake and preference were decreased in the MyT1-overexpressing rats with no effect on saccharin and quinine, used to assess taste discrimination, and no effect on ethanol clearance suggesting specific alterations in the rewarding effects of ethanol. Most importantly, ectopic MyT1 overexpression increased both MyT1 and BDNF mRNA levels in the DG. Using Pearson's correlation, results showed a strong negative relationship between MyT1 mRNA and anxiety parameters and ethanol consumption and a positive correlation between MyT1 and BDNF mRNAs. Taken together, MyT1 along with being a key component in anxiety may be a suitable candidate in the search of the molecular underpinnings of alcoholism.

  17. Asymmetric dimethyl arginine induces pulmonary vascular dysfunction via activation of signal transducer and activator of transcription 3 and stabilization of hypoxia-inducible factor 1-alpha.

    Science.gov (United States)

    Pekarova, Michaela; Koudelka, Adolf; Kolarova, Hana; Ambrozova, Gabriela; Klinke, Anna; Cerna, Anna; Kadlec, Jaroslav; Trundova, Maria; Sindlerova Svihalkova, Lenka; Kuchta, Radek; Kuchtova, Zdenka; Lojek, Antonin; Kubala, Lukas

    2015-10-01

    Pulmonary hypertension (PH), associated with imbalance in vasoactive mediators and massive remodeling of pulmonary vasculature, represents a serious health complication. Despite the progress in treatment, PH patients typically have poor prognoses with severely affected quality of life. Asymmetric dimethyl arginine (ADMA), endogenous inhibitor of endothelial nitric oxide synthase (eNOS), also represents one of the critical regulators of pulmonary vascular functions. The present study describes a novel mechanism of ADMA-induced dysfunction in human pulmonary endothelial and smooth muscle cells. The effect of ADMA was compared with well-established model of hypoxia-induced pulmonary vascular dysfunction. It was discovered for the first time that ADMA induced the activation of signal transducer and activator of transcription 3 (STAT3) and stabilization of hypoxia inducible factor 1α (HIF-1α) in both types of cells, associated with drastic alternations in normal cellular functions (e.g., nitric oxide production, cell proliferation/Ca(2+) concentration, production of pro-inflammatory mediators, and expression of eNOS, DDAH1, and ICAM-1). Additionally, ADMA significantly enhanced the hypoxia-mediated increase in the signaling cascades. In summary, increased ADMA may lead to manifestation of PH phenotype in human endothelial and smooth muscle cells via the STAT3/HIF-1α cascade. Therefore this signaling pathway represents the potential pathway for future clinical interventions in PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y., E-mail: jchan@uci.edu

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  19. Enhanced gene expression in insect cells and silkworm larva by modified polyhedrin promoter using repeated Burst sequence and very late transcriptional factor-1.

    Science.gov (United States)

    Manohar, Suganthi Lavender; Kanamasa, Shin; Nishina, Takuya; Kato, Tatsuya; Park, Enoch Y

    2010-12-15

    The Burst of expression from polyhedrin (polh) promoter during very late phase of baculovirus infection requires a sequence located between TAAG and the translation initiation site, typically referred to as burst sequence (BS). The expression of polh promoter is stimulated by specifically binding of very late transcriptional factor 1 (VLF-1) to BS. In order to enhance the production of recombinant proteins the polh promoter was modified via a multiple BS bacmid system in which the number of BSs was increased. Compared to an expression from a normal polh promoter, β-glucuronidase (GUS) activity in High Five insect cells was three times higher with a modified polh promoter containing two BSs. Using a modified polh promoter that contains nine BSs in silkworm expression system, β1-3-N-acetylglucosaminyltransferase 2 (β3GnT2) activity per larva was 6.8-fold higher than control. Furthermore, the co-expression of modified promoters along with VLF-1-enhanced β3GnT activity. Thus, an increased optimal number of BS and its co-expression with VLF-1 leads to the production of higher level of gene expression in insect cells and silkworm larvae. This new modified promoter engineered in the current study is the strongest promoter for overexpressing foreign proteins in an eukaryotic cell and system, thus leading a progress in baculovirus-insect cell and silkworm biotechnology. © 2010 Wiley Periodicals, Inc.

  20. Epithelium-Specific Ets-Like Transcription Factor 1, ESE-1, Regulates ICAM-1 Expression in Cultured Lung Epithelial Cell Lines

    Directory of Open Access Journals (Sweden)

    Zhiqi Yu

    2015-01-01

    Full Text Available Cystic fibrosis (CF patients suffer from chronic airway inflammation with excessive neutrophil infiltration. Migration of neutrophils to the lung requires chemokine and cytokine signaling as well as cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1, which plays an important role in mediating adhesive interactions between effector and target cells in the immune system. In this study, we investigated the relationship between ICAM-1 and epithelium-specific ETS-like transcription factor 1 (ESE-1 and found that ICAM-1 expression is upregulated in cell lines of CF (IB3-1 as well as non-CF (BEAS-2B and A549 epithelial origin in response to inflammatory cytokine stimulation. Since ESE-1 is highly expressed in A549 cells without stimulation, we examined the effect of ESE-1 knockdown on ICAM-1 expression in these cells. We found that ICAM-1 expression was downregulated when ESE-1 was knocked down in A549 cells. We also tested the effect of ESE-1 knockdown on cell-cell interactions and demonstrate that the knocking down ESE-1 in A549 cells reduce their interactions with HL-60 cells (human promyelocytic leukemia cell line. These results suggest that ESE-1 may play a role in regulating airway inflammation by regulating ICAM-1 expression.

  1. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV infection via targeting runt-related transcription factor 1 (RUNX1

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhao

    2016-02-01

    Full Text Available Transmissible gastroenteritis virus (TGEV, belonging to the coronaviridae family, is the key cause of the fatal diarrhea of piglets and results in many pathological processes. microRNAs (miRNAs play a key role in the regulation of virus-induced apoptosis. During the process of apoptosis induced by TGEV infection in PK-15 cells, the miR-27b is notably down-regulated. Thus, we speculate that miR-27b is involved in regulating the process of apoptosis in PK-15 cells. In this study we demonstrated that the over-expression of miR-27b led to the inhibition of TGEV-induced apoptosis, reduction of Bax protein level, and decrease of caspase-3 and −9 activities. Conversely, silencing of miR-27b by miR-27b inhibitors enhanced apoptosis via up-regulating Bax expression and promoting the activities of caspase-3 and −9 in TGEV-infected cells. Subsequently, the runt-related transcription factor 1 (RUNX1 is a candidate target of miR-27b predicted by bioinformatics search. We further identified that the miR-27b directly bound to the 3′ UTR of RUNX1 mRNA and suppressed RUNX1 expression, which indicates RUNX1 is the direct target gene of miR-27b. The over-expression of RUNX1 increased apoptosis and knockdown RUNX1blocked apoptosis of viral-infected cells via regulating Bax expression and the activities of caspase-3 and −9. Our data reveal that miR-27b may repress the mitochondrial pathway of apoptosis by targeting RUNX1, indicating that TGEV may induce apoptosis via down-regulating miR-27b and that miR-27b may act as a target for therapeutic intervention.

  2. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV) infection via targeting runt-related transcription factor 1 (RUNX1).

    Science.gov (United States)

    Zhao, Xiaomin; Song, Xiangjun; Bai, Xiaoyuan; Fei, Naijiao; Huang, Yong; Zhao, Zhimin; Du, Qian; Zhang, Hongling; Zhang, Liang; Tong, Dewen

    2016-01-01

    Transmissible gastroenteritis virus (TGEV), belonging to the coronaviridae family, is the key cause of the fatal diarrhea of piglets and results in many pathological processes. microRNAs (miRNAs) play a key role in the regulation of virus-induced apoptosis. During the process of apoptosis induced by TGEV infection in PK-15 cells, the miR-27b is notably down-regulated. Thus, we speculate that miR-27b is involved in regulating the process of apoptosis in PK-15 cells. In this study we demonstrated that the over-expression of miR-27b led to the inhibition of TGEV-induced apoptosis, reduction of Bax protein level, and decrease of caspase-3 and -9 activities. Conversely, silencing of miR-27b by miR-27b inhibitors enhanced apoptosis via up-regulating Bax expression and promoting the activities of caspase-3 and -9 in TGEV-infected cells. Subsequently, the runt-related transcription factor 1 (RUNX1) is a candidate target of miR-27b predicted by bioinformatics search. We further identified that the miR-27b directly bound to the 3' UTR of RUNX1 mRNA and suppressed RUNX1 expression, which indicates RUNX1 is the direct target gene of miR-27b. The over-expression of RUNX1 increased apoptosis and knockdown RUNX1blocked apoptosis of viral-infected cells via regulating Bax expression and the activities of caspase-3 and -9. Our data reveal that miR-27b may repress the mitochondrial pathway of apoptosis by targeting RUNX1, indicating that TGEV may induce apoptosis via down-regulating miR-27b and that miR-27b may act as a target for therapeutic intervention.

  3. Effects of green tea epigallocatechin-3-gallate on the proteolipid protein and oligodendrocyte transcription factor 1 messenger RNA gene expression in a mouse model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Mohammadreza Semnani

    2017-09-01

    Full Text Available The cuprizone multiple sclerosis (MS animal model is characteristic for toxic demyelination and represents a reversible demyelination and remyelination system. It has been shown that green tea epigallocatechin-3-gallate (EGCG might be effective in improving the symptoms and pathological conditions associated with autoimmune inflammatory diseases in several animal models. In this study the effects of EGCG on proteolipid protein (PLP and oligodendrocyte transcription factor 1 (Olig1 expression in the cerebral cortex of a murine model of cuprizone-induced demyelination was investigated. C57BL/6 mice were treated with cuprizone for six weeks in order to induce demyelination. Immediately after the cessation of cuprizone the animals were divided into 6 groups (n = 10 for each group. The first two groups were injected intraperitoneally (IP with EGCG in the amount of 50 mg/kg/daily body weight for 2 and 4 weeks. The second two groups (SHAM were injected IP with phosphate-buffered saline (PBS for 2 and 4 weeks, and the third two groups were left without injection as controls. After two and four weeks the mice were killed and the cerebral cortex was collected and the expression of Plp and Olig1 was studied by real-time PCR. The results showed significant increases in PLP and Olig1 expression in the EGCG-treated groups as compared to the SHAM and control groups (p < 0.0001. It is concluded that EGCG increases PLP and Olig1 expression in the cerebral cortex of a mouse model of MS induced by cuprizone.

  4. Enzyme-linked immunosorbent assays for detection of anti-transcriptional intermediary factor-1 gamma and anti-Mi-2 autoantibodies in dermatomyositis.

    Science.gov (United States)

    Fujimoto, Manabu; Murakami, Akihiro; Kurei, Shunsuke; Okiyama, Naoko; Kawakami, Atsushi; Mishima, Michiaki; Sato, Shinji; Seishima, Mariko; Suda, Takafumi; Mimori, Tsuneyo; Takehara, Kazuhiko; Kuwana, Masataka

    2016-12-01

    Autoantibodies against transcriptional intermediary factor 1 (TIF1) and Mi-2 are selectively detected in patients with dermatomyositis (DM). To measure these antibodies readily, the development of reliable ELISA systems has been needed. This study aimed to establish enzyme-linked immunosorbent assays (ELISAs) for anti-TIF1γ and anti-Mi-2β antibodies (Abs) and to assess their utility. Serum samples were obtained from 104 patients with classic DM, 68 with clinically amyopathic DM (CADM) and 70 with polymyositis, who were followed up at 8 medical centers across Japan. Serum samples from 190 patients with other connective tissue diseases (CTDs) and 123 healthy individuals were also assessed. Serum antibody levels were examined by ELISAs coated with full-length TIF1γ or Mi-2β proteins produced by a baculovirus expression system. To assess the cross-reactivity, partial-length Mi-2β proteins with or without mutations were produced and examined for reactivity. When compared with immunoprecipitation assay, anti-TIF1γ Ab ELISA showed 100% sensitivity and 100% specificity, while anti-Mi-2β Ab ELISA showed 100% sensitivity and 99.6% specificity. Anti-TIF1γ Ab was positive in 30 (28.8%) with classic DM and 4 (5.9%) with CADM, whereas 14 (13.5%) with classic DM, but none with CADM, were positive for anti-Mi-2β Ab. Of 30 anti-TIF1γ Ab-positive DM patients, 23 (67.6%) had malignancy. Anti-Mi-2β Ab-positive serum samples exhibited modest cross-reactivity with the TIF1γ protein due to the homologous amino acid sequence containing cysteines in their plant homeodomains. The current study demonstrates the utility of newly established ELISAs for anti-TIF1γ and anti-Mi-2β Abs, which can serve as easier detection systems for routine testing. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Hypoxia-inducible transcription factor-1α promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway

    International Nuclear Information System (INIS)

    Luo, FengMing; Liu, XiaoJing; Yan, NaiHong; Li, ShuangQing; Cao, GuiQun; Cheng, QingYing; Xia, QingJie; Wang, HongJing

    2006-01-01

    Hypoxia-inducible transcription factor-1α (HIF-1α), which plays an important role in controlling the hypoxia-induced glycolysis pathway, is a 'master' gene in the tissue hypoxia response during tumor development. However, its role in the apoptosis of non-small cell lung cancer remains unknown. Here, we have studied the effects of HIF-1α on apoptosis by modulating HIF-1α gene expression in A549 cells through both siRNA knock-down and over-expression. A549 cells were transfected with a HIF-1α siRNA plasmid or a HIF-1α expression vector. Transfected cells were exposed to a normoxic or hypoxic environment in the presence or absence of 25 mM HEPES and 2-deoxyglucose (2-DG) (5 mM). The expression of three key genes of the glycolysis pathway, glucose transporter type 1(GLUT1), phosphoglycerate kinase 1(PGK1), and hexokinase 1(HK1), were measured using real-time RT-PCR. Glycolysis was monitored by measuring changes of pH and lactate concentration in the culture medium. Apoptosis was detected by TUNEL assay and flow cytometry. Knocking down expression of HIF-1α inhibited the glycolysis pathway, increased the pH of the culture medium, and protected the cells from hypoxia-induced apoptosis. In contrast, over-expression of HIF-1α accelerated glycolysis in A549 cells, decreased the pH of the culture medium, and enhanced hypoxia-induced apoptosis. These effects of HIF-1α on glycolysis, pH of the medium, and apoptosis were reversed by treatment with the glycolytic inhibitor, 2-DG. Apoptosis induced by HIF-1α over-expression was partially inhibited by increasing the buffering capacity of the culture medium by adding HEPES. During hypoxia in A549 cells, HIF-1α promotes activity of the glycolysis pathway and decreases the pH of the culture medium, resulting in increased cellular apoptosis

  6. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  7. Hepatocyte Nuclear Factor 1A Is a Cell-Intrinsic Transcription Factor Required for B Cell Differentiation and Development in Mice.

    Science.gov (United States)

    von Wnuck Lipinski, Karin; Sattler, Katherine; Peters, Susann; Weske, Sarah; Keul, Petra; Klump, Hannes; Heusch, Gerd; Göthert, Joachim R; Levkau, Bodo

    2016-02-15

    The hepatocyte NF (HNF) family of transcription factors regulates the complex gene networks involved in lipid, carbohydrate, and protein metabolism. In humans, HNF1A mutations cause maturity onset of diabetes in the young type 3, whereas murine HNF6 participates in fetal liver B lymphopoiesis. In this study, we have identified a crucial role for the prototypical member of the family HNF1A in adult bone marrow B lymphopoiesis. HNF1A(-/-) mice exhibited a clear reduction in total blood and splenic B cells and a further pronounced one in transitional B cells. In HNF1A(-/-) bone marrow, all B cell progenitors-from pre-pro-/early pro-B cells to immature B cells-were dramatically reduced and their proliferation rate suppressed. IL-7 administration in vivo failed to boost B cell development in HNF1A(-/-) mice, whereas IL-7 stimulation of HNF1A(-/-) B cell progenitors in vitro revealed a marked impairment in STAT5 phosphorylation. The B cell differentiation potential of HNF1A(-/-) common lymphoid progenitors was severely impaired in vitro, and the expression of the B lymphopoiesis-promoting transcription factors E2A, EBF1, Pax5, and Bach2 was reduced in B cell progenitors in vivo. HNF1A(-/-) bone marrow chimera featured a dramatic defect in B lymphopoiesis recapitulating that of global HNF1A deficiency. The HNF1A(-/-) lymphopoiesis defect was confined to B cells as T lymphopoiesis was unaffected, and bone marrow common lymphoid progenitors and hematopoietic stem cells were even increased. Our data demonstrate that HNF1A is an important cell-intrinsic transcription factor in adult B lymphopoiesis and suggest the IL-7R/STAT5 module to be causally involved in mediating its function. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. The Submergence Tolerance Regulator Sub1A Mediates Stress-Responsive Expression of AP2/ERF Transcription Factors1[C][W][OA

    Science.gov (United States)

    Jung, Ki-Hong; Seo, Young-Su; Walia, Harkamal; Cao, Peijian; Fukao, Takeshi; Canlas, Patrick E.; Amonpant, Fawn; Bailey-Serres, Julia; Ronald, Pamela C.

    2010-01-01

    We previously characterized the rice (Oryza sativa) Submergence1 (Sub1) locus encoding three ethylene-responsive factor (ERF) transcriptional regulators. Genotypes carrying the Sub1A-1 allele are tolerant of prolonged submergence. To elucidate the mechanism of Sub1A-1-mediated tolerance, we performed transcriptome analyses comparing the temporal submergence response of Sub1A-1-containing tolerant M202(Sub1) with the intolerant isoline M202 lacking this gene. We identified 898 genes displaying Sub1A-1-dependent regulation. Integration of the expression data with publicly available metabolic pathway data identified submergence tolerance-associated pathways governing anaerobic respiration, hormone responses, and antioxidant systems. Of particular interest were a set of APETALA2 (AP2)/ERF family transcriptional regulators that are associated with the Sub1A-1-mediated response upon submergence. Visualization of expression patterns of the AP2/ERF superfamily members in a phylogenetic context resolved 12 submergence-regulated AP2/ERFs into three putative functional groups: (1) anaerobic respiration and cytokinin-mediated delay in senescence via ethylene accumulation during submergence (three ERFs); (2) negative regulation of ethylene-dependent gene expression (five ERFs); and (3) negative regulation of gibberellin-mediated shoot elongation (four ERFs). These results confirm that the presence of Sub1A-1 impacts multiple pathways of response to submergence. PMID:20107022

  9. Transcriptional coupling of synaptic transmission and energy metabolism: role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons.

    Science.gov (United States)

    Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T

    2009-10-01

    Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.

  10. The Translation Initiation Factor 1A (TheIF1A) fromTamarix hispidaIs Regulated by a Dof Transcription Factor and Increased Abiotic Stress Tolerance.

    Science.gov (United States)

    Yang, Guiyan; Yu, Lili; Wang, Yucheng; Wang, Chao; Gao, Caiqiu

    2017-01-01

    Eukaryotic translation initiation factor 1A ( eIF1A ) functions as an mRNA scanner and AUG initiation codon locator. However, few studies have clarified the role of eIF1A in abiotic stress. In this study, we cloned eIF1A ( TheIF1A ) from Tamarix hispida and found its expression to be induced by NaCl and polyethylene glycol (PEG) in roots, stems, and leaves. Compared to control, TheIF1A root expression was increased 187.63-fold when exposed to NaCl for 6 h, suggesting a potential abiotic stress response for this gene. Furthermore, transgenic tobacco plants overexpressing TheIF1A exhibited enhanced seed germination and a higher total chlorophyll content under salt and mannitol stresses. Increased superoxide dismutase, peroxidase, glutathione transferase and glutathione peroxidase activities, as well as decreased electrolyte leakage rates and malondialdehyde contents, were observed in TheIF1A -transgenic tobacco and T. hispida seedlings under salt and mannitol stresses. Histochemical staining suggested that TheIF1A improves reactive oxygen species (ROS) scavenging in plants. Moreover, TheIF1A may regulate expression of stress-related genes, including TOBLTP , GST , MnSOD , NtMPK9 , poxN1 , and CDPK15 . Moreover, a 1352-bp promoter fragment of TheIF1A was isolated, and cis -elements were identified. Yeast one-hybrid assays showed that ThDof can specifically bind to the Dof motif present in the promoter. In addition, ThDof showed expression patterns similar to those of TheIF1A under NaCl and PEG stresses. These findings suggest the potential mechanism and physiological roles of TheIF1A . ThDof may be an upstream regulator of TheIF1A , and TheIF1A may function as a stress response regulator to improve plant salt and osmotic stress tolerance via regulation of associated enzymes and ROS scavenging, thereby reducing cell damage under stress conditions.

  11. siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in Toxoplasma gondii-Infected Cells.

    Science.gov (United States)

    Menendez, Matthew T; Teygong, Crystal; Wade, Kristin; Florimond, Celia; Blader, Ira J

    2015-06-23

    Although it is established that oxygen availability regulates cellular metabolism and growth, little is known regarding how intracellular pathogens use host factors to grow at physiological oxygen levels. Therefore, large-scale human small interfering RNA screening was performed to identify host genes important for growth of the intracellular protozoan parasite Toxoplasma gondii at tissue oxygen tensions. Among the genes identified by this screen, we focused on the hexokinase 2 (HK2) gene because its expression is regulated by hypoxia-inducible transcription factor 1 (HIF-1), which is important for Toxoplasma growth. Toxoplasma increases host HK2 transcript and protein levels in a HIF-1-dependent manner. In addition, parasite growth at 3% oxygen is restored in HIF-1-deficient cells transfected with HK2 expression plasmids. Both HIF-1 activation and HK2 expression were accompanied by increases in host glycolytic flux, suggesting that enhanced HK2 expression in parasite-infected cells is functionally significant. Parasite dependence on host HK2 and HIF-1 expression is not restricted to transformed cell lines, as both are required for parasite growth in nontransformed C2C12 myoblasts and HK2 is upregulated in vivo following infection. While HK2 is normally associated with the cytoplasmic face of the outer mitochondrial membrane at physiological O2 levels, HK2 relocalizes to the host cytoplasm following infection, a process that is required for parasite growth at 3% oxygen. Taken together, our findings show that HIF-1-dependent expression and relocalization of HK2 represent a novel mechanism by which Toxoplasma establishes its replicative niche at tissue oxygen tensions. Little is known regarding how the host cell contributes to the survival of the intracellular parasite Toxoplasma gondii at oxygen levels that mimic those found in tissues. Our previous work showed that Toxoplasma activates the expression of an oxygen-regulated transcription factor that is required for

  12. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα).

    Science.gov (United States)

    Shi, Li-juan; Shi, Lei; Song, Guang-yao; Zhang, He-fang; Hu, Zhi-juan; Wang, Chao; Zhang, Dong-hui

    2013-08-15

    The aim of this study was to examine the therapeutic effect of oxymatrine, a monomer isolated from the medicinal plant Sophora flavescens Ait, on the hepatic lipid metabolism in non-alcoholic fatty liver (NAFLD) rats and to explore the potential mechanism. Rats were fed with high fructose diet for 8 weeks to establish the NAFLD model, then were given oxymatrine treatment (40, 80, and 160 mg/kg, respectively) for another 8 weeks. Body weight gain, liver index, serum and liver lipids, and histopathological evaluation were measured. Enzymatic activity and gene expression of the key enzymes involved in the lipogenesis and fatty acid oxidation were assayed. The results showed that oxymatrine treatment reduced body weight gain, liver weight, liver index, dyslipidemia, and liver triglyceride level in a dose dependant manner. Importantly, the histopathological examination of liver confirmed that oxymatrine could decrease the liver lipid accumulation. The treatment also decreased the fatty acid synthase (FAS) enzymatic activity and increased the carnitine palmitoyltransferase 1A (CPT1A) enzymatic activity. Besides, oxymatrine treatment decreased the mRNA expression of sterol regulatory element binding transcription factor 1(Srebf1), fatty acid synthase (Fasn), and acetyl CoA carboxylase (Acc), and increased the mRNA expression of peroxisome proliferator activated receptor alpha (Pparα), carnitine palmitoyltransferase 1A (Cpt1a), and acyl CoA oxidase (Acox1) in high fructose diet induced NAFLD rats. These results suggested that the therapeutic effect of oxymatrine on the hepatic steatosis in high fructose diet induced fatty liver rats is partly due to down-regulating Srebf1 and up-regulating Pparα mediated metabolic pathways simultaneously. © 2013 Elsevier B.V. All rights reserved.

  13. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  14. In vivo evidence suggesting reciprocal renal hypoxia-inducible factor-1 upregulation and signal transducer and activator of transcription 3 activation in response to hypoxic and non-hypoxic stimuli.

    Science.gov (United States)

    Nechemia-Arbely, Yael; Khamaisi, Mogher; Rosenberger, Christian; Koesters, Robert; Shina, Ahuva; Geva, Carmit; Shriki, Anat; Klaus, Stephen; Rosen, Seymour; Rose-John, Stefan; Galun, Eithan; Axelrod, Jonathan H; Heyman, Samuel N

    2013-04-01

    In vitro studies suggest that combined activation of hypoxia-inducible factor (HIF) and signal transducer and activator of transcription 3 (STAT3) promotes the hypoxia response. However, their interrelationship in vivo remains poorly defined. The present study investigated the possible relationship between HIF-1 upregulation and STAT3 activation in the rodent kidney in vivo. Activation of HIF-1 and STAT3 was analysed by immunohistochemical staining and western blot analysis in: (i) models of hypoxia-associated kidney injury induced by radiocontrast media or rhabdomyolysis; (ii) following activation of STAT3 by the interleukin (IL)-6-soluble IL-6 receptor complex; or (iii) following HIF-1α stabilization using hypoxic and non-hypoxic stimuli (mimosine, FG-4497, CO, CoCl(2)) and in targeted von Hippel-Lindau-knockout mice. Western blot analysis and immunostaining revealed marked induction of both transcription factors under all conditions tested, suggesting that in vivo STAT3 can trigger HIF and vice versa. Colocalization of HIF-1α and phosphorylated STAT3 was detected in some, but not all, renal cell types, suggesting that in some cells a paracrine mechanism may be responsible for the reciprocal activation of the two transcription factors. Nevertheless, in several cell types spatial concordance was observed under the majority of conditions tested, suggesting that HIF-1 and STAT3 may act as cotranscription factors. These in vivo studies suggest that, in response to renal hypoxic-stress, upregulation of HIF-1 and activation of STAT3 may be both reciprocal and cell type dependent. © 2013 The Authors Clinical and Experimental Pharmacology and Physiology © 2013 Wiley Publishing Asia Pty Ltd.

  15. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier.

    Science.gov (United States)

    Sharma, Mukut; Zhou, Jianping; Gauchat, Jean-François; Sharma, Ram; McCarthy, Ellen T; Srivastava, Tarak; Savin, Virginia J

    2015-10-01

    Recurrence of idiopathic focal segmental glomerulosclerosis (FSGS) after renal transplantation is believed to be caused by a circulating factor(s). We detected cardiotrophin-like cytokine factor 1 (CLCF1), a member of the interleukin 6 family, in the plasma from patients with recurrent FSGS. We hypothesized that CLCF1 contributes to the effect of FSGS serum on the glomerular filtration barrier in vitro. Presently, we studied the effect of CLCF1 on isolated rat glomeruli using an in vitro assay of albumin permeability (P(alb)). CLCF1 (0.05-100 ng/mL) increased P(alb) and caused maximal effect at 5-10 ng/mL (P glomerular filtration barrier. We speculate that albuminuria in FSGS is related to qualitative or quantitative changes in the CLCF1-CRLF1 complex, and that JAK2 or STAT3 inhibitors may be novel therapeutic agents to treat FSGS. Published by Elsevier Inc.

  16. Hypoxia inducible factor-1 is activated by transcriptional co-activator with PDZ-binding motif (TAZ) versus WWdomain-containing oxidoreductase (WWOX) in hypoxic microenvironment of bone metastasis from breast cancer.

    Science.gov (United States)

    Bendinelli, Paola; Maroni, Paola; Matteucci, Emanuela; Luzzati, Alessandro; Perrucchini, Giuseppe; Desiderio, Maria Alfonsina

    2013-07-01

    The hypoxic microenvironment of bone marrow favours the bone metastasis process. Hypoxia inducible factor (HIF)-1α is hallmark for hypoxia, correlating with poor prognosis and radio/chemotherapy resistance of primary-breast carcinoma. For bone metastasis, the molecular mechanisms involved in HIF-1α expression and HIF-1 (α/β heterodimer)-transcription factor activity are scarcely known. We studied the role played by HIF-1 in the cross-talk between neoplastic and supportive-microenvironmental cells. Also, WWdomain-containing oxidoreductase (Wwox) and transcriptional co-activator with PDZ-binding motif (TAZ) were taken into consideration evaluating whether these Hippo-pathway effectors affect bone-metastatic phenotype through HIF-1 activity. Considering bone-metastasis specimens, nuclear HIF-1α-TAZ co-localisation occurred in neoplastic and supportive cells, such as fibroblasts and endotheliocytes. Based on these data, the functional importance was verified using 1833-bone metastatic clone under hypoxia: nuclear HIF-1α and TAZ expression increased and co-immunoprecipitated, activating HIF-1-DNA binding and transactivation. In contrast, Wwox localised at perinuclear level in neoplastic cells of bone metastasis, being almost absent in supportive cells, and Wwox-protein expression diminished in hypoxic-1833 cells. Thus, TAZ regulation of HIF-1 activity might be important for bone-secondary growth, participating in metastasis-stroma cross-talk. Further, TAZ and HIF-1α-protein levels seemed correlated. In fact, blocking cyclooxygenase-2 with NS398 in hypoxic-1833 cells, not only HIF-1α decreased but also molecular-mechanism(s) upstream of the Hippo pathway were triggered: LATS-dependent TAZ phosphorylation seemed responsible for TAZ nucleus/cytoplasm translocation and degradation. In the 1833-xenograft model, NS398 largely prevented the outgrowth of bone-metastatic cells, probably related to remarkable-extracellular matrix assembly. We gained clinical insight into

  17. Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet.

    Science.gov (United States)

    Agamia, N F; Abdallah, D M; Sorour, O; Mourad, B; Younan, D N

    2016-06-01

    Acne vulgaris is a multifactorial disorder of the pilosebaceous units. Several studies have reported that insulin-like growth factor (IGF)-1, forkhead box transcription factor (Fox)O1 and mammalian target of rapamycin (mTOR) interactions may be the key to understanding the links between genetic and environmental factors in acne vulgaris. To evaluate the immunohistochemical detection of mTOR and FoxO1 in the skin, and the serum level of IGF-1 in patients with acne vulgaris. This study was carried out on 60 participants, including 40 patients with acne and 20 controls. A diet questionnaire was administered to the patients and controls. Serum levels of IGF-1 were measured using enzyme-linked immunosorbent assay, and skin biopsies were taken from lesions on the backs of the patients and controls. FoxO1 and mTOR expression was detected using immunohistochemistry. A significantly higher serum IGF-1 level was found in the patients with acne than in the controls. The cytoplasmic expression of FoxO1 was found to be significantly greater in the acne group, whereas in the control subjects this expression was likely to be nuclear. Both the cytoplasmic expression and the nuclear expression of mTOR were significantly more intense in the patients with acne than in the controls. Excess consumption of a high-glycaemic-load diet was significantly associated with higher serum levels of IGF-1 and cytoplasmic expression of FoxO1 and mTOR. These results suggest that FoxO1, mTOR, serum IGF-1 and a high-glycaemic-load diet may play a role in acne pathogenesis. © 2016 British Association of Dermatologists.

  18. Monascus-fermented red mold dioscorea protects mice against alcohol-induced liver injury, whereas its metabolites ankaflavin and monascin regulate ethanol-induced peroxisome proliferator-activated receptor-γ and sterol regulatory element-binding transcription factor-1 expression in HepG2 cells.

    Science.gov (United States)

    Cheng, Chih-Fu; Pan, Tzu-Ming

    2018-03-01

    Alcoholic hepatitis is a necroinflammatory process that is associated with fibrosis and leads to cirrhosis in 40% of cases. The hepatoprotective effects of red mold dioscorea (RMD) from Monascus purpureus NTU 568 were evaluated in vivo using a mouse model of chronic alcohol-induced liver disease (ALD). ALD mice were orally administered vehicle (ALD group) or vehicle plus 307.5, 615.0 or 1537.5 mg kg -1 (1 ×, 2 × and 5 ×) RMD for 5 weeks. RMD lowered serum leptin, hepatic total cholesterol, free fatty acid and hepatic triglyceride levels and increased serum adiponectin, hepatic alcohol dehydrogenase and antioxidant enzyme levels. Furthermore, ankaflavin (AK) and monascin (MS), metabolites of RMD fermented with M. purpureus 568, induced peroxisome proliferator-activated receptor-γ expression and the concomitant suppression of ethanol-induced elevation of sterol regulatory element-binding transcription factor-1 and TG in HepG2 cells. These results indicate the hepatoprotective effect of Monascus-fermented RMD. Moreover, AK and MS were identified as the active constituents of RMD for the first time and were shown to protect against ethanol-induced liver damage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. NKX2-1 mutations in brain-lung-thyroid syndrome: a case series of four patients

    NARCIS (Netherlands)

    Shetty, Vinutha B.; Kiraly-Borri, Cathy; Lamont, Phillipa; Bikker, Hennie; Choong, Catherine S. Y.

    2014-01-01

    Brain-lung-thyroid syndrome (BLTS) characterized by congenital hypothyroidism, respiratory distress syndrome, and benign hereditary chorea is caused by thyroid transcription factor 1 (NKX2-1/TTF1) mutations. We report the clinical and molecular characteristics of four cases presenting with primary

  20. Undifferentiated salivary gland carcinomas

    DEFF Research Database (Denmark)

    Herbst, H.; Hamilton-Dutoit, S.; Jakel, K.T.

    2004-01-01

    Undifferentiated salivary gland carcinomas may be divided into small cell and large cell types. Among large cell undifferentiated carcinomas, lymphoepithelial carcinomas have to be distinguished, the latter of which are endemic in the Arctic regions and southern China where virtually all cases of...... at other primary sites, particularly when expressing the thyroid transcription factor-1 (TTF-1) Udgivelsesdato: 2004...

  1. The prevalence of ALK rearrangement in pulmonary adenocarcinomas in an unselected Caucasian population from a defined catchment area

    DEFF Research Database (Denmark)

    Skov, Birgit G; Clementsen, Paul; Larsen, Klaus R

    2017-01-01

    AIMS: To assess the prevalence of EML4-ALK rearrangement gene measured by immunohistochemistry in an unselected population-based consecutive cohort of patients with adenocarcinoma of the lung (ACL), and the correlation with smoking history, thyroid transcription factor 1 (TTF1), gender and age...

  2. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    Science.gov (United States)

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  3. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor*

    Science.gov (United States)

    Valencia-Sama, Ivette; Zhao, Yulei; Lai, Dulcie; Janse van Rensburg, Helena J.; Hao, Yawei; Yang, Xiaolong

    2015-01-01

    Transcriptional co-activator with a PDZ binding domain (TAZ) is a WW domain-containing transcriptional co-activator and a core component of an emerging Hippo signaling pathway that regulates organ size, tumorigenesis, metastasis, and drug resistance. TAZ regulates these biological functions by up-regulating downstream cellular genes through transactivation of transcription factors such as TEAD and TTF1. To understand the molecular mechanisms underlying TAZ-induced tumorigenesis, we have recently performed a gene expression profile analysis by overexpressing TAZ in mammary cells. In addition to the TAZ-up-regulated genes that were confirmed in our previous studies, we identified a large number of cellular genes that were down-regulated by TAZ. In this study, we have confirmed these down-regulated genes (including cytokines, chemokines, and p53 gene family members) as bona fide downstream transcriptional targets of TAZ. By using human breast and lung epithelial cells, we have further characterized ΔNp63, a p53 gene family member, and shown that TAZ suppresses ΔNp63 mRNA, protein expression, and promoter activity through interaction with the transcription factor TEAD. We also show that TEAD can inhibit ΔNp63 promoter activity and that TAZ can directly interact with ΔNp63 promoter-containing TEAD binding sites. Finally, we provide functional evidence that down-regulation of ΔNp63 by TAZ may play a role in regulating cell migration. Altogether, this study provides novel evidence that the Hippo component TAZ can function as a co-repressor and regulate biological functions by negatively regulating downstream cellular genes. PMID:25995450

  4. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor.

    Science.gov (United States)

    Valencia-Sama, Ivette; Zhao, Yulei; Lai, Dulcie; Janse van Rensburg, Helena J; Hao, Yawei; Yang, Xiaolong

    2015-07-03

    Transcriptional co-activator with a PDZ binding domain (TAZ) is a WW domain-containing transcriptional co-activator and a core component of an emerging Hippo signaling pathway that regulates organ size, tumorigenesis, metastasis, and drug resistance. TAZ regulates these biological functions by up-regulating downstream cellular genes through transactivation of transcription factors such as TEAD and TTF1. To understand the molecular mechanisms underlying TAZ-induced tumorigenesis, we have recently performed a gene expression profile analysis by overexpressing TAZ in mammary cells. In addition to the TAZ-up-regulated genes that were confirmed in our previous studies, we identified a large number of cellular genes that were down-regulated by TAZ. In this study, we have confirmed these down-regulated genes (including cytokines, chemokines, and p53 gene family members) as bona fide downstream transcriptional targets of TAZ. By using human breast and lung epithelial cells, we have further characterized ΔNp63, a p53 gene family member, and shown that TAZ suppresses ΔNp63 mRNA, protein expression, and promoter activity through interaction with the transcription factor TEAD. We also show that TEAD can inhibit ΔNp63 promoter activity and that TAZ can directly interact with ΔNp63 promoter-containing TEAD binding sites. Finally, we provide functional evidence that down-regulation of ΔNp63 by TAZ may play a role in regulating cell migration. Altogether, this study provides novel evidence that the Hippo component TAZ can function as a co-repressor and regulate biological functions by negatively regulating downstream cellular genes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mahendran Botlagunta

    2011-03-01

    Full Text Available DEAD box protein, DDX3, is aberrantly expressed in breast cancer cells ranging from weakly invasive to aggressive phenotypes and functions as an important regulator of cancer cell growth and survival. Here, we demonstrate that hypoxia inducible factor-1α is a transcriptional activator of DDX3 in breast cancer cells. Within the promoter region of the human DDX3 gene, we identified three putative hypoxia inducible factor-1 responsive elements. By luciferase reporter assays in combination with mutated hypoxia inducible factor-1 responsive elements, we determined that the hypoxia inducible factor-1 responsive element at position -153 relative to the translation start site is essential for transcriptional activation of DDX3 under hypoxic conditions. We also demonstrated that hypoxia inducible factor-1 binds to the DDX3 promoter and that the binding is specific, as revealed by siRNA against hypoxia inducible factor-1 and chromatin immunoprecipitation assays. Thus, the activation of DDX3 expression during hypoxia is due to the direct binding of hypoxia inducible factor-1 to hypoxia responsive elements in the DDX3 promoter. In addition, we observed a significant overlap in the protein expression pattern of hypoxia inducible factor-1α and DDX3 in MDA-MB-231 xenograft tumors. Taken together, our results demonstrate, for the first time, the role of DDX3 as a hypoxia-inducible gene that exhibits enhanced expression through the interaction of hypoxia inducible factor-1 with hypoxia inducible factor-1 responsive elements in its promoter region.

  6. Dual surrogate markers for rapid prediction of epidermal growth factor receptor mutation status in advanced adenocarcinoma of the lung: A novel approach in resource-limited setting.

    Science.gov (United States)

    Udupa, K S; Rajendranath, R; Sagar, T G; Sundersingh, S; Joseph, T

    2015-01-01

    Tyrosine kinase inhibitors have revolutionized the treatment of metastatic lung cancer in patients with epidermal growth factor receptor (EGFR) mutations. Amplified refractory mutation system (ARMS)-reverse transcription-polymerase chain reaction (RT-PCR), the current standard for detecting EGFR mutation status is time-consuming and highly expensive. Consequently any surrogate test which are cheaper, faster and as accurate as the PCR method will help in early diagnosis and management of patients with lung cancer, especially in resource-limited settings. Eighty-five patients, all of South Indian origin, with adenocarcinoma of lung, registered between October 2009 and January 2013, were evaluated for EGFR mutation status by using scorpion probe based ARMS RT-PCR method. Immunohistochemical (IHC) was performed using the phosphorylated AKT (P-AKT) and thyroid transcription factor-1 (TTF-1) on above patient's sample, and the results were compared with EGFR mutation tests. EGFR mutation was positive in 34 of 85 patients (40%). P-AKT and TTF-1 were positive in 50 (58.8%) and 68 (80%) patients respectively. Both P-AKT and TTF-1 had statistically significant correlation with EGFR mutation status. Positive and negative predictive value of P-AKT in diagnosing EGFR mutation was 58% and 85.5% and that for TTF-1 was 48.5% and 94.1%, respectively. The problem of low positive predictive value can partly be overcome by testing P-AKT and TTF-1 simultaneously. P-AKT and TTF-1 using IHC had statistically significant correlation with EGFR mutation with high negative predictive value. In the case of urgency of starting treatment, EGFR mutation testing may be avoided in those patients who are negative for these IHC markers and can be started on chemotherapy.

  7. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  8. Transcriptional regulation of CD4 gene expression by T cell factor-1/beta-catenin pathway.

    NARCIS (Netherlands)

    Huang, Z.; Xie, H.; Ioannidis, V.; Held, W.; Clevers, J.C.; Sadim, M.S.; Sun, Z.

    2006-01-01

    By interacting with MHC class II molecules, CD4 facilitates lineage development as well as activation of Th cells. Expression of physiological levels of CD4 requires a proximal CD4 enhancer to stimulate basic CD4 promoter activity. T cell factor (TCF)-1/beta-catenin pathway has previously been shown

  9. Association of usf1s2 variant in the upstream stimulatory factor 1 gene with premature coronary artery disease in southern population of Iran

    Directory of Open Access Journals (Sweden)

    Najmeh Jouyan

    2015-03-01

    Conclusion: It appears that the usf1s2 variant in upstream transcription factor 1 gene is an independent predictor of premature coronary artery disease in our population and applies its effects without affecting blood sugar and lipid levels.

  10. Deletion of hepatocyte nuclear factor-1-beta in an infant with prune belly syndrome.

    Science.gov (United States)

    Haeri, Sina; Devers, Patricia L; Kaiser-Rogers, Kathleen A; Moylan, Vincent J; Torchia, Beth S; Horton, Amanda L; Wolfe, Honor M; Aylsworth, Arthur S

    2010-08-01

    Prune belly syndrome is a rare congenital disorder characterized by deficiency of abdominal wall muscles, cryptorchidism, and urinary tract anomalies. We have had the opportunity to study a baby with prune belly syndrome associated with an apparently de novo 1.3-megabase interstitial 17q12 microdeletion that includes the hepatocyte nuclear factor-1-beta gene at 17q12. One previous patient, an adult, has been reported with prune belly syndrome and a hepatocyte nuclear factor-1-beta microdeletion. Hepatocyte nuclear factor-1-beta is a widely expressed transcription factor that regulates tissue-specific gene expression and is expressed in numerous tissues including mesonephric duct derivatives, the renal tubule of the metanephros, and the developing prostate of the mouse. Mutations in hepatocyte nuclear factor-1-beta cause the "renal cysts and diabetes syndrome," isolated renal cystic dysplasia, and a variety of other malformations. Based on its expression pattern and the observation of two affected cases, we propose that haploinsufficiency of hepatocyte nuclear factor-1-beta may be causally related to the production of the prune belly syndrome phenotype through a mechanism of prostatic and ureteral hypoplasia that results in severe obstructive uropathy with urinary tract and abdominal distension. Copyright Thieme Medical Publishers.

  11. Heat Shock Factor 1 Mediates Latent HIV Reactivation

    OpenAIRE

    Xiao-Yan Pan; Wei Zhao; Xiao-Yun Zeng; Jian Lin; Min-Min Li; Xin-Tian Shen; Shu-Wen Liu

    2016-01-01

    HSF1, a conserved heat shock factor, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. To our knowledge, it is not known whether HSF1 regulates viral transcription, particularly HIV-1 and its latent form. Here we reveal that HSF1 extensively participates in HIV transcription and is critical for HIV latent reactivation. Mode of action studies demonstrated that HSF1 binds to the HIV 5?-LTR to reactivate viral transcription and recruit...

  12. Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1alpha

    NARCIS (Netherlands)

    Compernolle, Veerle; Brusselmans, Koen; Franco, Diego; Moorman, Antoon; Dewerchin, Mieke; Collen, Désiré; Carmeliet, Peter

    2003-01-01

    OBJECTIVES: Previous studies have revealed the essential role of hypoxia-inducible factor-1alpha (HIF-1alpha), a basic helix-loop-helix transcription factor, in cardiovascular development. We attempted to further characterize the underlying mechanisms resulting in abnormal cardiogenesis and

  13. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis

    DEFF Research Database (Denmark)

    Pedersen, Annemarie Aarup; Pedersen, Tanja X; Junker, Nanna

    2016-01-01

    OBJECTIVE: Atherosclerotic lesions contain hypoxic areas, but the pathophysiological importance of hypoxia is unknown. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor in cellular responses to hypoxia. We investigated the hypothesis that HIF-1α has effects on macrophage biology...... that promotes atherogenesis in mice. APPROACH AND RESULTS: Studies with molecular probes, immunostaining, and laser microdissection of aortas revealed abundant hypoxic, HIF-1α-expressing macrophages in murine atherosclerotic lesions. To investigate the significance of macrophage HIF-1α, Ldlr(-/-) mice were...

  14. Hypoxia-inducible factor-1alpha DNA induced angiogenesis in a rat cerebral ischemia model.

    Science.gov (United States)

    Matsuda, Takeshi; Abe, Tatsuya; Wu, Jian Liang; Fujiki, Minoru; Kobayashi, Hidenori

    2005-07-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that regulates the adaptive response to hypoxia in mammalian cells. It consists of a regulatory subunit HIF-1alpha, which accumulates under hypoxic conditions, and a constitutively expressed subunit, HIF-1beta. In this study, we investigated HIF-1alpha naked DNA-induced angiogenesis in a cerebral ischemic model in vivo. We utilized a rat encephalo-myo-synangiosis (EMS) model and inoculated HIF-1alpha DNA into the brain surface or the temporal muscle. We analysed whether HIF-1alpha induced angiogenic factors and collateral circulation. A histological section treated with HIF-1alpha DNA showed an increased expression of HIF1 a and VEGF with collateral circulation, in comparison with control DNA (p angiogenesis development. These results suggest the feasibility of a novel approach for therapeutic collateral circulation of cerebral ischemia in which neovascularization may be achieved indirectly using a transcriptional regulatory strategy.

  15. Semi-Nested Real-Time Reverse Transcription Polymerase Chain Reaction Methods for the Successful Quantitation of Cytokeratin mRNA Expression Levels for the Subtyping of Non-Small-Cell Lung Carcinoma Using Paraffin-Embedded and Microdissected Lung Biopsy Specimens

    International Nuclear Information System (INIS)

    Nakanishi, Yoko; Shimizu, Tetsuo; Tsujino, Ichiro; Obana, Yukari; Seki, Toshimi; Fuchinoue, Fumi; Ohni, Sumie; Oinuma, Toshinori; Kusumi, Yoshiaki; Yamada, Tsutomu; Takahashi, Noriaki; Hashimoto, Shu; Nemoto, Norimichi

    2013-01-01

    In patients with inoperable advanced non-small cell lung carcinomas (NSCLCs), histological subtyping using small-mount biopsy specimens was often required to decide the indications for drug treatment. The aim of this study was to assess the utility of highly sensitive mRNA quantitation for the subtyping of advanced NSCLC using small formalin fixing and paraffin embedding (FFPE) biopsy samples. Cytokeratin (CK) 6, CK7, CK14, CK18, and thyroid transcription factor (TTF)-1 mRNA expression levels were measured using semi-nested real-time quantitative (snq) reverse-transcribed polymerase chain reaction (RT-PCR) in microdissected tumor cells collected from 52 lung biopsies. Our results using the present snqRT-PCR method showed an improvement in mRNA quantitation from small FFPE samples, and the mRNA expression level using snqRT-PCR was correlated with the immunohistochemical protein expression level. CK7, CK18, and TTF-1 mRNA were expressed at significantly higher levels (P<0.05) in adenocarcinoma (AD) than in squamous cell carcinoma (SQ), while CK6 and CK14 mRNA expression was significantly higher (P<0.05) in SQ than in AD. Each histology-specific CK, particularly CK18 in AD and CK6 in SQ, were shown to be correlated with a poor prognosis (P=0.02, 0.02, respectively). Our results demonstrated that a quantitative CK subtype mRNA analysis from lung biopsy samples can be useful for predicting the histology subtype and prognosis of advanced NSCLC

  16. Heat Shock Factor 1 Mediates Latent HIV Reactivation.

    Science.gov (United States)

    Pan, Xiao-Yan; Zhao, Wei; Zeng, Xiao-Yun; Lin, Jian; Li, Min-Min; Shen, Xin-Tian; Liu, Shu-Wen

    2016-05-18

    HSF1, a conserved heat shock factor, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. To our knowledge, it is not known whether HSF1 regulates viral transcription, particularly HIV-1 and its latent form. Here we reveal that HSF1 extensively participates in HIV transcription and is critical for HIV latent reactivation. Mode of action studies demonstrated that HSF1 binds to the HIV 5'-LTR to reactivate viral transcription and recruits a family of closely related multi-subunit complexes, including p300 and p-TEFb. And HSF1 recruits p300 for self-acetylation is also a committed step. The knockout of HSF1 impaired HIV transcription, whereas the conditional over-expression of HSF1 improved that. These findings demonstrate that HSF1 positively regulates the transcription of latent HIV, suggesting that it might be an important target for different therapeutic strategies aimed at a cure for HIV/AIDS.

  17. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies

    Science.gov (United States)

    Zimna, Agnieszka; Kurpisz, Maciej

    2015-01-01

    The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy. PMID:26146622

  18. ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant DefenseW⃞

    Science.gov (United States)

    Lorenzo, Oscar; Piqueras, Raquel; Sánchez-Serrano, Jose J.; Solano, Roberto

    2003-01-01

    Cross-talk between ethylene and jasmonate signaling pathways determines the activation of a set of defense responses against pathogens and herbivores. However, the molecular mechanisms that underlie this cross-talk are poorly understood. Here, we show that ethylene and jasmonate pathways converge in the transcriptional activation of ETHYLENE RESPONSE FACTOR1 (ERF1), which encodes a transcription factor that regulates the expression of pathogen response genes that prevent disease progression. The expression of ERF1 can be activated rapidly by ethylene or jasmonate and can be activated synergistically by both hormones. In addition, both signaling pathways are required simultaneously to activate ERF1, because mutations that block any of them prevent ERF1 induction by any of these hormones either alone or in combination. Furthermore, 35S:ERF1 expression can rescue the defense response defects of coi1 (coronative insensitive1) and ein2 (ethylene insensitive2); therefore, it is a likely downstream component of both ethylene and jasmonate signaling pathways. Transcriptome analysis in Col;35S:ERF1 transgenic plants and ethylene/jasmonate-treated wild-type plants further supports the notion that ERF1 regulates in vivo the expression of a large number of genes responsive to both ethylene and jasmonate. These results suggest that ERF1 acts downstream of the intersection between ethylene and jasmonate pathways and suggest that this transcription factor is a key element in the integration of both signals for the regulation of defense response genes. PMID:12509529

  19. Association of hypoxia inducible factor 1 (HIF-1 and paraoxonase enzyme in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Nedim Karagenç

    2015-09-01

    Full Text Available Objective: In this study, it was aimed to investigate that PON2, in hypoxia and normoxia in relation to HIF-1α transcription factor that has a role in tumour angiogenesis. Hypoxia inducible factor 1 alpha (HIF-1α is a transcription factor which is sensitive to hypoxia, causes initiation of angiogenesis and metastasis by providing transcription of numerous genes. As well as hypoxia several inflammatory agents such as lipopolysaccharide (LPS can regulate the expression of HIF-1α as well as PON2. Oxidative stress is known to have role in cancer. Paraoxonase 2 which is one of the members of paraoxonase family serves as intracellular anti-oxidant. Methods: H1299, A549 ve PC14 non-small cell lung carcinoma cell lines used in this study. Cells were cultured under hypoxia and normoxia conditions with LPS stimulation. HIF-1α and PON2 mRNA expression levels measured by real-time PCR. Western blot studies were performed for protein expression. Results: In this study, it was observed that LPS treatment stimulates HIF-1α expression which increases PON2 expression in NSCLC cell line in under hxpoxia conditions. Conclusion: This study shows that PON2 is regulated by HIF-1α in hypoxia and inflammation. The relationship between hypoxia and inflammation and oxidative status of cells requires further studies.

  20. IκB kinase ε targets interferon regulatory factor 1 in activated T lymphocytes.

    Science.gov (United States)

    Sgarbanti, Marco; Marsili, Giulia; Remoli, Anna Lisa; Stellacci, Emilia; Mai, Antonello; Rotili, Dante; Perrotti, Edvige; Acchioni, Chiara; Orsatti, Roberto; Iraci, Nunzio; Ferrari, Mathieu; Borsetti, Alessandra; Hiscott, John; Battistini, Angela

    2014-03-01

    IκB kinase ε (IKK-ε) has an essential role as a regulator of innate immunity, functioning downstream of pattern recognition receptors to modulate NF-κB and interferon (IFN) signaling. In the present study, we investigated IKK-ε activation following T cell receptor (TCR)/CD28 stimulation of primary CD4(+) T cells and its role in the stimulation of a type I IFN response. IKK-ε was activated following TCR/CD28 stimulation of primary CD4(+) T cells; however, in T cells treated with poly(I·C), TCR/CD28 costimulation blocked induction of IFN-β transcription. We demonstrated that IKK-ε phosphorylated the transcription factor IFN regulatory factor 1 (IRF-1) at amino acid (aa) 215/219/221 in primary CD4(+) T cells and blocked its transcriptional activity. At the mechanistic level, IRF-1 phosphorylation impaired the physical interaction between IRF-1 and the NF-κB RelA subunit and interfered with PCAF-mediated acetylation of NF-κB RelA. These results demonstrate that TCR/CD28 stimulation of primary T cells stimulates IKK-ε activation, which in turn contributes to suppression of IFN-β production.

  1. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation☆

    OpenAIRE

    Cui, Hong; Han, Weijuan; Yang, Lijun; Chang, Yanzhong

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxy...

  2. Differential utilization of TATA box-binding protein (TBP) and TBP-related factor 1 (TRF1) at different classes of RNA polymerase III promoters.

    Science.gov (United States)

    Verma, Neha; Hung, Ko-Hsuan; Kang, Jin Joo; Barakat, Nermeen H; Stumph, William E

    2013-09-20

    In the fruit fly Drosophila melanogaster, RNA polymerase III transcription was found to be dependent not upon the canonical TATA box-binding protein (TBP) but instead upon the TBP-related factor 1 (TRF1) (Takada, S., Lis, J. T., Zhou, S., and Tjian, R. (2000) Cell 101, 459-469). Here we confirm that transcription of fly tRNA genes requires TRF1. However, we unexpectedly find that U6 snRNA gene promoters are occupied primarily by TBP in cells and that knockdown of TBP, but not TRF1, inhibits U6 transcription in cells. Moreover, U6 transcription in vitro effectively utilizes TBP, whereas TBP cannot substitute for TRF1 to promote tRNA transcription in vitro. Thus, in fruit flies, different classes of RNA polymerase III promoters differentially utilize TBP and TRF1 for the initiation of transcription.

  3. Hypoxia-inducible factor 1-α in chronic gastrointestinal ischemia

    NARCIS (Netherlands)

    J. Harki (Jihan); A. Sana (Aria); D. van Noord (Désirée); P.J. van Diest (Paul); P. van der Groep (Petra); E.J. Kuipers (Ernst); L.M.G. Moons (Leon); K. Biermann (Katharina); E.T.T.L. Tjwa (Eric)

    2014-01-01

    textabstractChronic gastrointestinal ischemia (CGI) is the result of decreased mucosal perfusion. Typical histological characteristics are lacking which hamper its early diagnosis. Hypoxia-inducible factor-1α (HIF-1α) is expressed under acute hypoxia. We investigated HIF-1α expression in chronic

  4. A novel missense mutation of bovine lipase maturation factor 1 ...

    African Journals Online (AJOL)

    Lipase maturation factor 1 (LMF1) gene is a novel candidate gene in severe hypertriglyceridemia. To detect the polymorphism in LMF1 gene in 804 Chinese cattle, we firstly described the polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), DNA sequence and PCR-RFLP methods for ...

  5. Association between Insulin Like Growth Factor-1 (IGF-1) gene ...

    African Journals Online (AJOL)

    The insulin-like growth factor-1 (IGF1) is a key regulator of muscle development and metabolism in birds and other vertebrate. Our objective was to determine the association between IGF1 gene polymorphism and carcass traits in FUNAAB Alpha chicken. Genomic DNA was extracted from the blood of 50 normal feathered ...

  6. The effect of vascular endothelial growth factor-1 expression on ...

    African Journals Online (AJOL)

    Riyad Bendardaf

    2017-02-28

    Feb 28, 2017 ... The effect of vascular endothelial growth factor-1 expression on survival of advanced colorectal cancer patients. Riyad Bendardafa,b, Ahmed El-Serafib,c, Kari Syrjänend, Yrjö Colland and Seppo Pyrhönend. aDepartment of Medical Oncology, University Sharjah Hospital, Sharjah, United Arab Emirates; ...

  7. Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning.

    Science.gov (United States)

    Taie, Satoshi; Ono, Junichiro; Iwanaga, Yasuyuki; Tomita, Shuhei; Asaga, Takehiko; Chujo, Kosuke; Ueki, Masaaki

    2009-08-01

    Sublethal hypoxia induces tolerance to subsequent hypoxic insults in a process known as hypoxic preconditioning (HP). Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a key transcription protein involved in the mechanism of HP. In this study, we investigated the effects of HP on tissue oxygenation and expression of HIF-1 alpha gene targets in the brain using neural cell-specific HIF-1 alpha-deficient mice. The animals were exposed to 8% oxygen for 3 hours. Twenty-four hours later, the oxygen partial pressure (pO(2)) of brain tissue and gene expression were measured during hypoxia. HP improved the pO(2) of brain tissue during subsequent hypoxia with upregulated inducible nitric oxide synthase in wild-type mice, whereas HP had no detectable effect in the mutant mice. Our results indicate that the protective effects of HP may be partially mediated by improving tissue oxygenation via HIF-1 alpha and inducible nitric oxide synthase.

  8. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.

    Science.gov (United States)

    Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan

    2014-09-01

    Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.

  9. FTZ-Factor1 and Fushi tarazu interact via conserved nuclear receptor and coactivator motifs

    Science.gov (United States)

    Schwartz, Carol J.E.; Sampson, Heidi M.; Hlousek, Daniela; Percival-Smith, Anthony; Copeland, John W.R.; Simmonds, Andrew J.; Krause, Henry M.

    2001-01-01

    To activate transcription, most nuclear receptor proteins require coactivators that bind to their ligand-binding domains (LBDs). The Drosophila FTZ-Factor1 (FTZ-F1) protein is a conserved member of the nuclear receptor superfamily, but was previously thought to lack an AF2 motif, a motif that is required for ligand and coactivator binding. Here we show that FTZ-F1 does have an AF2 motif and that it is required to bind a coactivator, the homeodomain-containing protein Fushi tarazu (FTZ). We also show that FTZ contains an AF2-interacting nuclear receptor box, the first to be found in a homeodomain protein. Both interaction motifs are shown to be necessary for physical interactions in vitro and for functional interactions in developing embryos. These unexpected findings have important implications for the conserved homologs of the two proteins. PMID:11157757

  10. Cytotoxic Necrotizing Factor 1 Contributes to Escherichia coli Meningitis

    OpenAIRE

    Ming-Hsien Wang; Kwang Sik Kim

    2013-01-01

    E. coli is the most common Gram-negative bacteria causing neonatal meningitis, and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Recent reports of E. coli meningitis caused by antimicrobial resistant strains are a particular concern. These findings indicate that a novel strategy is needed to identify new targets for prevention and therapy of E. coli meningitis. Cytotoxic necrotizing factor 1 (CNF1) is a bacterial virulence factor associ...

  11. Hypoxia-inducible factor-1α expression requires PI 3-kinase activity and correlates with Akt1 phosphorylation in invasive breast carcinomas

    NARCIS (Netherlands)

    Gort, E.H.; Groot, A.J.; Derks van de Ven, T.L.P.; Groep, P. van der; Verlaan, I.; Laar, T. van; Diest, P.J. van; Wall, E. van der; Shvarts, A.

    2006-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1a) is the regulatory subunit of the heterodimeric transcription factor HIF-1 and the key factor in cellular response to low oxygen tension. Expression of HIF-1a protein is associated with poor patient survival and therapy resistance in many types of solid

  12. Activation of Baculovirus Very Late Promoters by Interaction with Very Late Factor 1

    Science.gov (United States)

    Yang, Song; Miller, Lois K.

    1999-01-01

    Very late factor 1 (VLF-1) of Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV) activates the transcription of two genes, polyhedrin (polh) and p10, during the final, occlusion-specific phase of infection. Using transient expression assays responsive to VLF-1, we identified linker scan mutations in the polh and p10 promoters which abolished or weakened the ability of the promoters to respond to stimulation by VLF-1. These mutations were located between the transcriptional and translational initiation sites, a region previously shown to be essential for the burst of expression during the very late phase. Addition of partially purified, epitope-tagged VLF-1 to DNA encompassing this “burst sequence” resulted in a shift in the gel electrophoretic mobility of the DNA, indicating that VLF-1 forms a complex with DNA. Addition of an antibody specific for the epitope tag of VLF-1 decreased the mobility of the DNA further, confirming the presence of VLF-1 in the complex. DNase I footprint assays revealed that VLF-1 partially purified from either insect cells or bacterial cells interacted with the burst sequences of both the polh and p10 very-late promoters. Linker scan mutations within the burst sequences severely impaired interaction between VLF-1 and the promoters. We propose that VLF-1 transactivates the polh and p10 promoters by interacting with the burst sequences. PMID:10074194

  13. T Cell factor 1 represses CD8+ effector T cell formation and function.

    Science.gov (United States)

    Tiemessen, Machteld M; Baert, Miranda R M; Kok, Lianne; van Eggermond, Marja C J A; van den Elsen, Peter J; Arens, Ramon; Staal, Frank J T

    2014-12-01

    The Wnt-responsive transcription factor T cell factor 1 (Tcf1) is well known for its role in thymic T cell development and the formation of memory CD8(+) T cells. However, its role in the initial phases of CD8(+) T effector cell formation has remained unexplored. We report that high levels of Wnt signaling and Tcf1 are operational in naive and memory CD8(+) T cells, whereas Wnt signaling and Tcf1 were low in effector CD8(+) T cells. CD8(+) T cells deficient in Tcf1 produce IFN-γ more rapidly, coinciding with increased demethylation of the IFN-γ enhancer and higher expression of the transcription factors Tbet and Blimp1. Moreover, virus-specific Tcf1(-/-) CD8(+) T cells show accelerated expansion in acute infection, which is associated with increased IFN-γ and TNF production and lower viral load. Genetic complementation experiments with various Tcf1 isoforms indicate that Tcf1 dosage and protein stability are critical in suppressing IFN-γ production. Isoforms lacking the β-catenin binding domain are equally effective in inhibiting CD8(+) effector T cell formation. Thus, Tcf1 functions as a repressor of CD8(+) effector T cell formation in a β-catenin/Wnt-independent manner. Copyright © 2014 by The American Association of Immunologists, Inc.

  14. Quality Assurance After a Natural Disaster: Lessons from Hurricane Sandy.

    Science.gov (United States)

    Dickerson, Collin; Hsu, Yanshen; Mendoza, Sandra; Osman, Iman; Ogilvie, Jennifer; Patel, Kepal; Moreira, Andre L

    2018-04-01

    Biospecimen quality can vary depending on many pre- and post-collection variables. In this study, we consider a natural disaster as a post-collection variable that may have compromised the quality of frozen tissue specimens. To investigate this possible link, we compared the quality of nucleic acids, the level of antigenicity, and the preservation of histology from frozen specimens collected before and after the power outage caused by Hurricane Sandy. To analyze nucleic acid quality, we extracted both DNA and RNA and performed capillary electrophoresis to compare the quality and concentrations of the nucleic acids. To compare antigenicity, frozen sections were cut and immunostained for thyroid transcription factor 1 (TTF-1), a nuclear transcription protein commonly used as a diagnostic biomarker for multiple cancer types, including thyroid and lung cancers. Positive expression of TTF-1, as noted by homogenous nuclear staining, would demonstrate that the TTF-1 proteins could still bind antibodies and, therefore, that these proteins were not significantly degraded. Furthermore, representative frozen sections stained with hematoxylin and eosin were also assessed qualitatively by a trained pathologist to examine any possible histologic aberrations. Due to the similar quality of the tissue samples collected before and after the storm, Hurricane Sandy had no discernable effect on the quality of frozen specimens, and these specimens exposed to the natural disaster are still valuable research tools.

  15. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  16. HIV-1 reverse transcription.

    Science.gov (United States)

    Hu, Wei-Shau; Hughes, Stephen H

    2012-10-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.

  17. [Research progress of mechanism of hypoxia-inducible factor-1α signaling pathway in condylar cartilage growth and remodeling].

    Science.gov (United States)

    Gaoli, Xu; Lili, Wu; Zhiwu, Wu; Zhiyuan, Gu

    2016-12-01

    The condylar cartilage was adapted to hypoxic conditions in vivo. However, condylar cartilage cells exposed in normoxia in vitro affect the chondrocyte phenotype and cartilage matrix formation. This condition also resulted in great difficulty in chondrocyte research. Culturing chondrocyte should be simulated in in vivo hypoxia environment as much as possible. The hypoxia-inducible factor-1α (HIF-1α) demonstrates an important transcription factor of adaptive response to hypoxic conditions. HIF-1α also plays an active role in maintaining homeostasis and function of chondrocytes. This review summarized current knowledge of the HIF-1α structure, signaling pathway, and mechanism of HIF-1α in the condylar cartilage repair.

  18. Stromal cell-derived factor 1α (SDF-1α)

    DEFF Research Database (Denmark)

    Li, Dana; Bjørnager, Louise; Langkilde, Anne

    2016-01-01

    OBJECTIVES: Stromal cell-derived factor 1a (SDF-1α), is a chemokine and is able to home hematopoietic progenitor cells to injured areas of heart tissue for structural repair. Previous studies have found increased levels of SDF-1α in several cardiac diseases, but only few studies have investigated...... SDF-1α in patients with atrial fibrillation (AF). We aimed to test SDF-1α in a large cohort of patients with AF and its role as a prognostic marker. DESIGN: Between January 1st 2008 to December 1st 2012, 290 patients with ECG documented AF were enrolled from the in- and outpatient clinics...... at the Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark. Plasma levels of SDF-1α were measured using ELISA technique. Clinical data were registered and patient follow-up was conducted. RESULTS: Patients with permanent AF had significantly higher SDF-1α levels (2199.5 pg...

  19. Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong; Choi, Mihwa; Cavey, Greg; Daugherty, Jennifer; Suino, Kelly; Kovach, Amanda; Bingham, Nathan C.; Kliewer, Steven A.; Xu, H.Eric (Van Andel); (U. of Texas-SMED)

    2010-11-10

    The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 {angstrom} crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket ({approx}1600 {angstrom}{sup 3}), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed to reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.

  20. Copper-dependent and -independent hypoxia-inducible factor-1 regulation of gene expression.

    Science.gov (United States)

    Zhang, Zhen; Qiu, Liying; Lin, Chen; Yang, Hong; Fu, Haiying; Li, Rui; Kang, Y James

    2014-10-01

    Hypoxia-inducible factor-1 (HIF-1) regulates the expression of the vascular endothelial growth factor (VEGF), a process requiring copper (Cu) participation. HIF-1 is also involved in the expression of more than a hundred of genes, but it is unknown how HIF-1 differentially controls the expression of these genes timely and spatially. The present study was undertaken to test the hypothesis that Cu is not required for the expression of all HIF-1-regulated genes, thus exploring mechanistic insights into the differential control of multiple gene expression by one transcription factor. Human umbilical vein endothelial cells (HUVECs) were treated with siRNA targeting HIF-1α to define the essential role of HIF-1 in the regulation of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and insulin-like growth factor 2 (IGF-2) expression. A Cu chelator, tetraethylenepentamine (TEPA), was used to reduce intracellular availability of Cu. In comparison, a zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), was used to reduce intracellular zinc concentration. The expression of both BNIP3 and IGF-2 was completely suppressed in the HIF-1α deficient cells. The removal of Cu suppressed the expression of BNIP3, but did not affect that of IGF-2. The reduction of intracellular zinc did not cause the same effect. Further screening identified a group of genes whose expression required Cu and the others did not need Cu. The present study thus demonstrates Cu-dependent and -independent HIF-1 regulation of gene expression, indicating a mechanism for differential control of multiple gene expression by one transcription factor.

  1. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  2. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S. [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Rouchka, Eric C. [Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292 (United States); Hill, Bradford G. [Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Klinge, Carolyn M., E-mail: carolyn.klinge@louisville.edu [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States)

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  3. Insulin-Like Growth Factor-1 Deficiency and Cirrhosis Establishment

    Science.gov (United States)

    de la Garza, Rocio G.; Morales-Garza, Luis Alonso; Martin-Estal, Irene; Castilla-Cortazar, Inma

    2017-01-01

    Cirrhosis represents the final stage of chronic liver damage, which can be due to different factors such as alcohol, metabolic syndrome with liver steatosis, autoimmune diseases, drugs, toxins, and viral infection, among others. Nowadays, cirrhosis is an important health problem and it is an increasing cause of morbidity and mortality, being the 14th most common cause of death worldwide. The physiopathological pathways that lead to fibrosis and finally cirrhosis partly depend on the etiology. Nevertheless, some common features are shared in this complex mechanism. Recently, it has been demonstrated that cirrhosis is a dynamic process that can be altered in order to delay or revert fibrosis. In addition, when cirrhosis has been established, insulin-like growth factor-1 (IGF-1) deficiency or reduced availability is a common condition, independently of the etiology of chronic liver damage that leads to cirrhosis. IGF-1 deprivation seriously contributes to the progressive malnutrition of cirrhotic patient, increasing the vulnerability of the liver to establish an inflammatory and oxidative microenvironment with mitochondrial dysfunction. In this context, IGF-1 deficiency in cirrhotic patients can justify some of the common characteristics of these individuals. Several studies in animals and humans have been done in order to test the replacement of IGF-1 as a possible therapeutic option, with promising results. PMID:28270882

  4. HIV-1 Reverse Transcription

    OpenAIRE

    Hu, Wei-Shau; Hughes, Stephen H.

    2012-01-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name “retrovirus” derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral fact...

  5. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 3. Genomewide ... Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are ... To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family.

  6. Interleukin-17 limits hypoxia-inducible factor 1α and development of hypoxic granulomas during tuberculosis.

    Science.gov (United States)

    Domingo-Gonzalez, Racquel; Das, Shibali; Griffiths, Kristin L; Ahmed, Mushtaq; Bambouskova, Monika; Gopal, Radha; Gondi, Suhas; Muñoz-Torrico, Marcela; Salazar-Lezama, Miguel A; Cruz-Lagunas, Alfredo; Jiménez-Álvarez, Luis; Ramirez-Martinez, Gustavo; Espinosa-Soto, Ramón; Sultana, Tamanna; Lyons-Weiler, James; Reinhart, Todd A; Arcos, Jesus; de la Luz Garcia-Hernandez, Maria; Mastrangelo, Michael A; Al-Hammadi, Noor; Townsend, Reid; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B; Kaplan, Gilla; Horne, William; Kolls, Jay K; Artyomov, Maxim N; Rangel-Moreno, Javier; Zúñiga, Joaquín; Khader, Shabaana A

    2017-10-05

    Mycobacterium tuberculosis (Mtb) is a global health threat, compounded by the emergence of drug-resistant strains. A hallmark of pulmonary tuberculosis (TB) is the formation of hypoxic necrotic granulomas, which upon disintegration, release infectious Mtb. Furthermore, hypoxic necrotic granulomas are associated with increased disease severity and provide a niche for drug-resistant Mtb. However, the host immune responses that promote the development of hypoxic TB granulomas are not well described. Using a necrotic Mtb mouse model, we show that loss of Mtb virulence factors, such as phenolic glycolipids, decreases the production of the proinflammatory cytokine IL-17 (also referred to as IL-17A). IL-17 production negatively regulates the development of hypoxic TB granulomas by limiting the expression of the transcription factor hypoxia-inducible factor 1α (HIF1α). In human TB patients, HIF1α mRNA expression is increased. Through genotyping and association analyses in human samples, we identified a link between the single nucleotide polymorphism rs2275913 in the IL-17 promoter (-197G/G), which is associated with decreased IL-17 production upon stimulation with Mtb cell wall. Together, our data highlight a potentially novel role for IL-17 in limiting the development of hypoxic necrotic granulomas and reducing disease severity in TB.

  7. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells.

    Science.gov (United States)

    Eskandani, Morteza; Vandghanooni, Somayeh; Barar, Jaleh; Nazemiyeh, Hossein; Omidi, Yadollah

    2017-06-01

    Any dysfunctionality in maintaining the oxygen homeostasis by mammalian cells may elicit hypoxia/anoxia, which results in inescapable oxidative stress and possible subsequent detrimental impacts on certain cells/tissues with high demands to oxygen molecules. The ischemic damage in turn can trigger initiation of a number of diseases including organs ischemia, metabolic disorders, inflammatory diseases, different types of malignancies, and alteration in wound healing process. Thus, full comprehension of molecular mechanism(s) and cellular physiology of the oxygen homeostasis is the cornerstone of the mammalian cells metabolism, energetic pathways and health and disease conditions. An imbalance in oxygen content within the cellular microenvironment activates a cascade of molecular events that are often compensated, otherwise pathologic condition occurs through a complexed network of biomolecules. Hypoxia inducible factor-1 (HIF-1) plays a key transcriptional role in the adaptation of cell physiology in relation with the oxygen content within a cell. In this current study, we provide a comprehensive review on the molecular mechanisms of oxygen sensing and homeostasis and the impacts of HIF-1 in hypoxic/anoxic conditions. Moreover, different molecular and biochemical responses of the cells to the surrounding environment are discussed in details. Finally, modern technological approaches for targeting the hypoxia related proteins are articulated. Copyright © 2017. Published by Elsevier B.V.

  8. Radiolabeled Probes Targeting Hypoxia-Inducible Factor-1-Active Tumor Microenvironments

    Directory of Open Access Journals (Sweden)

    Masashi Ueda

    2014-01-01

    Full Text Available Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1 expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α, which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of 18F-FDG or 18F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.

  9. Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance

    International Nuclear Information System (INIS)

    Harada, Hiroshi

    2016-01-01

    Tumor hypoxia has been attracting increasing attention in the fields of radiation biology and oncology since Thomlinson and Gray detected hypoxic cells in malignant solid tumors and showed that they exert a negative impact on the outcome of radiation therapy. This unfavorable influence has, at least partly, been attributed to cancer cells acquiring a radioresistant phenotype through the activation of the transcription factor, hypoxia-inducible factor 1 (HIF-1). On the other hand, accumulating evidence has recently revealed that, even though HIF-1 is recognized as an important regulator of cellular adaptive responses to hypoxia, it may not become active and induce tumor radioresistance under hypoxic conditions only. The mechanisms by which HIF-1 is activated in cancer cells not only under hypoxic conditions, but also under normoxic conditions, through cancer-specific genetic alterations and the resultant imbalance in intermediate metabolites have been summarized herein. The relevance of the HIF-1–mediated characteristic features of cancer cells, such as the production of antioxidants through reprogramming of the glucose metabolic pathway and cell cycle regulation, for tumor radioresistance has also been reviewed

  10. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth factor...... the expression of HIF-1alpha mRNA. In vitro, in human prostate (15PC3, PC3, and DU145) and glioblastoma (U373) cells, EZN-2968 induced a potent, selective, and durable antagonism of HIF-1 mRNA and protein expression (IC(50), 1-5 nmol/L) under normoxic and hypoxic conditions associated with inhibition of tumor......-regulation of endogenous HIF-1alpha and vascular endothelial growth factor in the liver. The effect can last for days after administration of single dose of EZN-2968 and is associated with long residence time of locked nucleic acid in certain tissues. In efficacy studies, tumor reduction was found in nude mice implanted...

  11. Diacetoxyscirpenol as a new anticancer agent to target hypoxia-inducible factor 1

    Science.gov (United States)

    Choi, Yong-Joon; Shin, Hyun-Woo; Chun, Yang-Sook; Leutou, Alain Simplice; Son, Byeng Wha; Park, Jong-Wan

    2016-01-01

    Hypoxia activates hypoxia-inducible factor 1, which promotes the progression of malignancy by stimulating angiogenesis and by augmenting the ability of tumors to survive. Thus, HIF-1 is one of the most compelling targets for treating cancers. The aim of this study was to find a small molecule that inhibits HIF-1 under hypoxia in cancer cells. 7,280 compounds in a chemical library were tested in a cancer cell line expressing luciferase HIF-dependently. Through three rounds of screening, we finally picked up a compound that originates from a marine bacterium parasitizing red alga. The antibiotic potently inhibited HIF-1 expression and its transcriptional activity in cancer cells exposed to hypoxia. Through two-step fractionation, diacetoxyscirpenol was purified and identified as a HIF-inhibiting ingredient. Mechanistically, diacetoxyscirpenol inhibits the synthesis of HIF-1α protein and also interferes with the dimerization of HIF-1α and ARNT. It attenuates HIF-mediated gene expression in cancer cells exposed to hypoxia, and by doing so reduces tumorigenic and angiogenic potentials of cancer cells. More importantly, diacetoxyscirpenol retarded tumor growth in mice, and reduced HIF-1α expression and vascular formation in the tumors. Overall, diacetoxyscirpenol is considered a potential drug deregulating the HIF-1 signaling pathway, and it could be beneficially employed for treating malignant tumors with hypoxic microenvironment. PMID:27613833

  12. Role of early B-cell factor 1 (EBF1) in Hodgkin lymphoma.

    Science.gov (United States)

    Bohle, V; Döring, C; Hansmann, M-L; Küppers, R

    2013-03-01

    A hallmark of classical Hodgkin lymphoma (cHL) is that the B-cell-derived Hodgkin and Reed-Sternberg (HRS) tumor cells have largely lost the B-cell-typical gene expression program. The factors causing this 'reprogramming' of HRS cells are only partly understood. As early B-cell factor 1 (EBF1), a major B-cell transcription factor, is downregulated in HRS cells, we analyzed whether this downregulation contributes to the lost B-cell phenotype and tested the consequences of EBF1 re-expression in cHL cell lines. EBF1 re-expression caused an upregulation of B-cell genes, such as CD19, CD79A and CD79B, although the B-cell genes FOXO1 and PAX5 remained lowly expressed. The re-expression of CD19, CD79A and CD79B occurred largely without demethylation of promoter CpG motifs of these genes. In the cHL cell line L-1236 fitness decreased after EBF1 re-expression. These data show that EBF1 has the ability to reintroduce part of the B-cell signature in cHL cell lines. Loss of EBF1 expression in HRS cells therefore contributes to their lost B-cell phenotype. Notably, in the cHL cell line KM-H2 destructive mutations were found in one allele of EBF1, indicating that genetic lesions may sometimes have a role in impairing EBF1 expression.

  13. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer.

    Directory of Open Access Journals (Sweden)

    H Hans Salamanca

    Full Text Available Heat shock factor 1 (HSF1 is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities in cancer therapy. For this purpose, we had identified an avid RNA aptamer for HSF1 that is portable among different model organisms. Extending our previous work in yeast and Drosophila, here we report the activity of this aptamer in human cancer cell lines. When delivered into cells using a synthetic gene and strong promoter, this aptamer was able to prevent HSF1 from binding to its DNA regulation elements. At the cellular level, expression of this aptamer induced apoptosis and abolished the colony-forming capability of cancer cells. At the molecular level, it reduced chaperones and attenuated the activation of the MAPK signaling pathway. Collectively, these data demonstrate the advantage of aptamers in drug target validation and support the hypothesis that HSF1 DNA binding activity is a potential target for controlling oncogenic transformation and neoplastic growth.

  14. Antiviral Activity of Porcine Interferon Regulatory Factor 1 against Swine Viruses in Cell Culture.

    Science.gov (United States)

    Li, Yongtao; Chang, Hongtao; Yang, Xia; Zhao, Yongxiang; Chen, Lu; Wang, Xinwei; Liu, Hongying; Wang, Chuanqing; Zhao, Jun

    2015-11-17

    Interferon regulatory factor 1 (IRF1), as an important transcription factor, is abundantly induced upon virus infections and participates in host antiviral immune responses. However, the roles of porcine IRF1 (poIRF1) in host antiviral defense remain poorly understood. In this study, we determined that poIRF1 was upregulated upon infection with viruses and distributed in nucleus in porcine PK-15 cells. Subsequently, we tested the antiviral activities of poIRF1 against several swine viruses in cells. Overexpression of poIRF1 can efficiently suppress the replication of viruses, and knockdown of poIRF1 promotes moderately viral replication. Interestingly, overexpression of poIRF1 enhances dsRNA-induced IFN-β and IFN-stimulated response element (ISRE) promoter activation, whereas knockdown of poIRF1 cannot significantly affect the activation of IFN-β promoter induced by RNA viruses. This study suggests that poIRF1 plays a significant role in cellular antiviral response against swine viruses, but might be dispensable for IFN-β induction triggered by RNA viruses in PK-15 cells. Given these results, poIRF1 plays potential roles in cellular antiviral responses against swine viruses.

  15. The Transcription Factor Encyclopedia

    NARCIS (Netherlands)

    Yusuf, Dimas; Butland, Stefanie L.; Swanson, Magdalena I.; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A.; Zhang, Xiao Yu Cindy; Dickman, Christopher T. D.; Fulton, Debra L.; Lim, Jonathan S.; Schnabl, Jake M.; Ramos, Oscar H. P.; Vasseur-Cognet, Mireille; de Leeuw, Charles N.; Simpson, Elizabeth M.; Ryffel, Gerhart U.; Lam, Eric W.-F.; Kist, Ralf; Wilson, Miranda S. C.; Marco-Ferreres, Raquel; Brosens, Jan J.; Beccari, Leonardo L.; Bovolenta, Paola; Benayoun, Bérénice A.; Monteiro, Lara J.; Schwenen, Helma D. C.; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A.; Chakravarthy, Harini; Hoodless, Pamela A.; Mancarelli, M. Michela; Torbett, Bruce E.; Banham, Alison H.; Reddy, Sekhar P.; Cullum, Rebecca L.; Liedtke, Michaela; Tschan, Mario P.; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J.; Eijkelenboom, Astrid; Brown, Philip J.; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L.; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H.; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J.; van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W. Z.; Breslin, Mary B.; Lan, Michael S.; Nanan, Kyster K.; Wegner, Michael; Hou, Juan; Mullen, Rachel D.; Colvin, Stephanie C.; Noy, Peter John; Webb, Carol F.; Witek, Matthew E.; Ferrell, Scott; Daniel, Juliet M.; Park, Jason; Waldman, Scott A.; Peet, Daniel J.; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J.; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M.; Woodcroft, Mark W.; Hough, Margaret R.; Chen, Edwin; Europe-Finner, G. Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; Lebrun, David P.; Biswal, Shyam; Harvey, Christopher J.; Debruyne, Jason P.; Hogenesch, John B.; Hevner, Robert F.; Héligon, Christophe; Luo, Xin M.; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S.; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M.; Bradley, Philip H.; Wasserman, Wyeth W.

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review

  16. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein codi...

  17. Mechanical Properties of Transcription

    Science.gov (United States)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  18. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    RNA); and ii) translation, in which the mRNA is translated into a protein. This thesis focus on the ¿rst of these steps, transcription, and speci¿cally the initiation of this. Simpli¿ed, initiation is preceded by the binding of several proteins, known as transcription factors (TFs), to DNA. This takes place...... published providing an unbiased overview of the transcription start site (TSS) usage in a tissue. We have paired this method with high-throughput sequencing technology to produce a library of unprecedented depth (DeepCAGE) for the mouse hippocampus. We investigated this in detail and focused particularly...... control spanning the range from completely muted to cranked up to maximum. The volume, in this case, is the production rate of proteins. This production is the result of a two step procedure: i) transcription, in which a small part of DNA from the genome (a gene) is transcribed into an RNA molecule (an m...

  19. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  20. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  1. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K; van Wijk, Albert C; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C; van Gulik, Thomas M; Storm, Gert; Heger, Michal

    2016-01-19

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of HIF-1-associated proteins in human perihilar cholangiocarcinomas, (2) investigate the role of HIF-1 in PDT-treated human perihilar cholangiocarcinoma cells, and (3) determine whether HIF-1 inhibition reduces survival signaling and enhances PDT efficacy. Increased expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was confirmed in human perihilar cholangiocarcinomas. PDT with liposome-delivered zinc phthalocyanine caused HIF-1α stabilization in SK-ChA-1 cells and increased transcription of HIF-1α downstream genes. Acriflavine was taken up by SK-ChA-1 cells and translocated to the nucleus under hypoxic conditions. Importantly, pretreatment of SK-ChA-1 cells with acriflavine enhanced PDT efficacy via inhibition of HIF-1 and topoisomerases I and II. The expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was determined by immunohistochemistry in human perihilar cholangiocarcinomas. In addition, the response of human perihilar cholangiocarcinoma (SK-ChA-1) cells to PDT with liposome-delivered zinc phthalocyanine was investigated under both normoxic and hypoxic conditions. Acriflavine, a HIF-1α/HIF-1β dimerization inhibitor and a potential dual topoisomerase I/II inhibitor, was evaluated for its adjuvant effect on PDT efficacy. HIF-1, which is activated in human hilar cholangiocarcinomas, contributes to tumor cell survival following PDT in vitro. Combining PDT with acriflavine pretreatment improves PDT efficacy in cultured cells and therefore warrants further preclinical validation for therapy-recalcitrant perihilar cholangiocarcinomas.

  2. Diversification of the insulin-like growth factor 1 gene in mammals.

    Directory of Open Access Journals (Sweden)

    Peter Rotwein

    Full Text Available Insulin-like growth factor 1 (IGF1, a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.

  3. Differentiation-inducing factor-1 and -2 function also as modulators for Dictyostelium chemotaxis.

    Directory of Open Access Journals (Sweden)

    Hidekazu Kuwayama

    Full Text Available BACKGROUND: In the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2 were originally identified as the factors (chlorinated alkylphenones that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions. METHODOLOGY/PRINCIPAL FINDINGS: To further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase and a decrease in the intracellular cGMP concentration ([cGMP](i. DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase and an increase in [cGMP](i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules for chemotaxis having differentiation-inducing activity.

  4. Antisense transcription-dependent chromatin signature modulates sense transcript dynamics.

    Science.gov (United States)

    Brown, Thomas; Howe, Françoise S; Murray, Struan C; Wouters, Meredith; Lorenz, Philipp; Seward, Emily; Rata, Scott; Angel, Andrew; Mellor, Jane

    2018-02-12

    Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1 , high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Molecular cloning and expression analysis of fushi tarazu factor 1 in the brain of air-breathing catfish, Clarias gariepinus.

    Directory of Open Access Journals (Sweden)

    Parikipandla Sridevi

    Full Text Available BACKGROUND: Fushi tarazu factor 1 (FTZ-F1 encodes an orphan nuclear receptor belonging to the nuclear receptor family 5A (NR5A which includes adrenal 4-binding protein or steroidogenic factor-1 (Ad4BP/SF-1 and liver receptor homologue 1 (LRH-1 and plays a pivotal role in the regulation of aromatases. METHODOLOGY/PRINCIPAL FINDINGS: Present study was aimed to understand the importance of FTZ-F1 in relation to brain aromatase (cyp19a1b during development, recrudescence and after human chorionic gonadotropin (hCG induction. Initially, we cloned FTZ-F1 from the brain of air-breathing catfish, Clarias gariepinus through degenerate primer RT-PCR and RACE. Its sequence analysis revealed high homology with other NR5A1 group members Ad4BP/SF-1 and LRH-1, and also analogous to the spatial expression pattern of the latter. In order to draw functional correlation of cyp19a1b and FTZ-F1, we analyzed the expression pattern of the latter in brain during gonadal ontogeny, which revealed early expression during gonadal differentiation. The tissue distribution both at transcript and protein levels revealed its prominent expression in brain along with liver, kidney and testis. The expression pattern of brain FTZ-F1 during reproductive cycle and after hCG induction, in vivo was analogous to that of cyp19a1b shown in our earlier study indicating its involvement in recrudescence. CONCLUSIONS/SIGNIFICANCE: Based on our previous results on cyp19a1b and the present data, it is plausible to implicate potential roles for brain FTZ-F1 in ovarian differentiation and recrudescence process probably through regulation of cyp19a1b in teleosts. Nevertheless, these interactions would require primary coordinated response from ovarian aromatase and its related transcription factors.

  6. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...... and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe....

  7. The transcription factor encyclopedia.

    Science.gov (United States)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  8. IBMX protects human proximal tubular epithelial cells from hypoxic stress through suppressing hypoxia-inducible factor-1α expression.

    Science.gov (United States)

    Hasan, Arif Ul; Kittikulsuth, Wararat; Yamaguchi, Fuminori; Musarrat Ansary, Tuba; Rahman, Asadur; Shibayama, Yuki; Nakano, Daisuke; Hitomi, Hirofumi; Tokuda, Masaaki; Nishiyama, Akira

    2017-09-15

    Hypoxia predisposes renal fibrosis. This study was conducted to identify novel approaches to ameliorate the pathogenic effect of hypoxia. Using human proximal tubular epithelial cells we showed that a pan-phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX) dose and time dependently downregulated hypoxia-inducible factor 1α (HIF-1α) mRNA expression, which was further augmented by addition of a transcriptional inhibitor, actinomycin D. IBMX also increased the cellular cyclic adenosine monophosphate (cAMP) level. Luciferase assay showed that blocking of protein kinase A (PKA) using H89 reduced, while 8-Br-cAMP agonized the repression of HIF-1α promoter activity in hypoxic condition. Deletion of cAMP response element binding sites from the HIF-1α promoter abrogated the effect of IBMX. Western blot and immunofluorescent study confirmed that the CoCl 2 induced increased HIF-1α protein in whole cell lysate and in nucleus was reduced by the IBMX. Through this process, IBMX attenuated both CoCl 2 and hypoxia induced mRNA expressions of two pro-fibrogenic factors, platelet-derived growth factor B and lysyl oxidase. Moreover, IBMX reduced production of a mesenchymal transformation factor, β-catenin; as well as protected against hypoxia induced cell-death. Taken together, our study showed novel evidence that the PDE inhibitor IBMX can downregulate the transcription of HIF-1α, and thus may attenuate hypoxia induced renal fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection

    Science.gov (United States)

    Lin, Ann E.; Beasley, Federico C.; Olson, Joshua; Keller, Nadia; Shalwitz, Robert A.; Hannan, Thomas J.; Hultgren, Scott J.; Nizet, Victor

    2015-01-01

    Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI. The effects of AKB-4924, a HIF-1α stabilizing agent, were studied using human uroepithelial cells (5637) and a murine UTI model. UPEC adherence and invasion were significantly reduced in 5637 cells when HIF-1α protein was allowed to accumulate. Uroepithelial cells treated with AKB-4924 also experienced reduced cell death and exfoliation upon UPEC challenge. In vivo, fewer UPEC were recovered from the urine, bladders and kidneys of mice treated transurethrally with AKB-4924, whereas increased bacteria were recovered from bladders of mice with a HIF-1α deletion. Bladders and kidneys of AKB-4924 treated mice developed less inflammation as evidenced by decreased pro-inflammatory cytokine release and neutrophil activity. AKB-4924 impairs infection in uroepithelial cells and bladders, and could be correlated with enhanced production of nitric oxide and antimicrobial peptides cathelicidin and β-defensin-2. We conclude that HIF-1α transcriptional regulation plays a key role in defense of the urinary tract against UPEC infection, and that pharmacological HIF-1α boosting could be explored further as an adjunctive therapy strategy for serious or recurrent UTI. PMID:25927232

  10. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  11. Machine Dictation and Transcription.

    Science.gov (United States)

    Harvey, Evelyn; And Others

    This instructional package contains both an instructor's manual and a student's manual for a course in machine dictation and transcription. The instructor's manual contains an overview with tips on teaching the course, letters for dictation, and a key to the letters. The student's manual contains an overview of the course and of the skills needed…

  12. Automatic Music Transcription

    Science.gov (United States)

    Klapuri, Anssi; Virtanen, Tuomas

    Written musical notation describes music in a symbolic form that is suitable for performing a piece using the available musical instruments. Traditionally, musical notation indicates the pitch, target instrument, timing, and duration of each sound to be played. The aim of music transcription either by humans or by a machine is to infer these musical parameters, given only the acoustic recording of a performance.

  13. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any

  14. Regulation of hypoxia-inducible factor-1α and related genes in equine digital lamellae and in cultured keratinocytes.

    Science.gov (United States)

    Pawlak, E A; Geor, R J; Watts, M R; Black, S J; Johnson, P J; Belknap, J K

    2014-03-01

    Hypoxia-inducible factor-1α (HIF-1A) is an important protein in the regulation/induction of many genes in the cellular and tissue response to hypoxia and a central mediator in inflammatory signalling. As both hypoxia and inflammatory events are purported to occur in the lamellar epidermis in sepsis-related laminitis in the equid, HIF-1A may play a central role in this disease process. To assess the regulation of HIF-1A and HIF-1A-related genes in the equine keratinocyte in vitro and in the lamellar tissue of horses with sepsis-related laminitis. In vivo and in vitro experiments. Real-time quantitative PCR (RT-qPCR) and immunoblotting were performed to assess the mRNA and protein concentrations of HIF-1A and the mRNA concentrations of HIF-1A-related genes in cultured equine keratinocytes and in lamellar samples from black walnut extract (BWE)- and carbohydrate overload (CHO)-induced laminitis. Hypoxia-inducible factor-1α was further localised via indirect immunofluorescence in frozen lamellar tissue sections. Hypoxia-inducible factor-1α appears to be regulated primarily at the post transcriptional level in the cultured equine keratinocyte, resulting in increased HIF-1A in response to hypoxia but not to lipopolysaccharide exposure. Hypoxia-inducible factor-1α is present at high concentrations in the normal equine lamina, and is increased in Obel grade 1 (OG1) stage laminitis in the CHO model of laminitis. Equine lamellar mRNA concentrations of cyclo-oxygenase-2 and inducible nitric oxide synthase, but not glucose transporter 1, are increased in the BWE and CHO models of laminitis. These data indicate that the normal equine lamellae are profoundly hypoxic in comparison with other tissues. The increased mRNA concentrations of cyclo-oxygenase-2 and inducible nitric oxide synthase 2 in equine keratinocytes exposed to hypoxia and lipopolysaccharide, and in lamellar tissue from BWE and CHO models of sepsis-related laminitis, suggest that the marked lamellar

  15. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    International Nuclear Information System (INIS)

    Yan, You-e; Liu, Lian; Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan; Wang, Hui

    2014-01-01

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  16. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, You-e [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000 (China); Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2014-06-15

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  17. Isolation and Characterization of Three Cassava Elongation Factor 1 Alpha (MeEF1A) Promoters

    Science.gov (United States)

    Suhandono, Sony; Apriyanto, Ardha; Ihsani, Nisa

    2014-01-01

    In plant genetic engineering, the identification of gene promoters leading to particular expression patterns is crucial for the development of new genetically modified plant generations. This research was conducted in order to isolate and characterize several new promoters from cassava (Manihot esculenta Crantz) elongation factor 1 alpha (EF1A) gene family. Three promoters MeEF1A3, MeEF1A4 and MeEF1A5 were successfully isolated. Sequence analyses showed that all of the promoters contain three conserved putative cis-acting elements which are located upstream of the transcription start site. These elements are included a TEF1, a TELO and TATA boxes. In addition, all of the promoters also have the 5′UTR intron but with a different lengths. These promoters were constructed translationally with gusA reporter gene (promoter::gusA fusion) in pBI-121 binary vector to build a new binary vector using Overlap Extension PCR Cloning (OEPC) technique. Transient expression assay that was done by using agroinfiltration method was used to show functionality of these promoters. Qualitative and quantitative analysis from GUS assay showed that these promoters were functional and conferred a specific activity in tobacco seedlings (Nicotiana tabacum), tomato fruits (Solanum lycopersicum) and banana fruits (Musa acuminata). We hypothesized that MeEF1A6 could be categorized as a constitutive promoter because it was able to drive the gene expression in all transformed tissue described in here and also comparable to CaMV35S. On the other hand, MeEF1A3 drove specific expression in the aerial parts of seedlings such as hypocotyl and cotyledon thus MeEF1A5 drove specific expression in fruit tissue. The results obtained from transient analysis showed that these promoters had a distinct activity although they came from same gene family. The DNA sequences identified here are new promoters potentially use for genetic engineering in cassava or other plants. PMID:24404183

  18. Isolation and characterization of three cassava elongation factor 1 alpha (MeEF1A promoters.

    Directory of Open Access Journals (Sweden)

    Sony Suhandono

    Full Text Available In plant genetic engineering, the identification of gene promoters leading to particular expression patterns is crucial for the development of new genetically modified plant generations. This research was conducted in order to isolate and characterize several new promoters from cassava (Manihot esculenta Crantz elongation factor 1 alpha (EF1A gene family.Three promoters MeEF1A3, MeEF1A5 and MeEF1A6 were successfully isolated [corrected]. Sequence analyses showed that all of the promoters contain three conserved putative cis-acting elements which are located upstream of the transcription start site. These elements are included a TEF1, a TELO and TATA boxes. In addition, all of the promoters also have the 5'UTR intron but with a different lengths. These promoters were constructed translationally with gusA reporter gene (promoter::gusA fusion in pBI-121 binary vector to build a new binary vector using Overlap Extension PCR Cloning (OEPC technique. Transient expression assay that was done by using agroinfiltration method was used to show functionality of these promoters. Qualitative and quantitative analysis from GUS assay showed that these promoters were functional and conferred a specific activity in tobacco seedlings (Nicotiana tabacum, tomato fruits (Solanum lycopersicum and banana fruits (Musa acuminata. We hypothesized that MeEF1A6 could be categorized as a constitutive promoter because it was able to drive the gene expression in all transformed tissue described in here and also comparable to CaMV35S. On the other hand, MeEF1A3 drove specific expression in the aerial parts of seedlings such as hypocotyl and cotyledon thus MeEF1A5 drove specific expression in fruit tissue. The results obtained from transient analysis showed that these promoters had a distinct activity although they came from same gene family. The DNA sequences identified here are new promoters potentially use for genetic engineering in cassava or other plants.

  19. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  20. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions...

  1. Spanish dialects: phonetic transcription

    OpenAIRE

    Moreno Bilbao, M. Asunción; Mariño Acebal, José Bernardo

    1998-01-01

    It is well known that canonical Spanish, the dialectal variant `central' of Spain, so called Castilian, can be transcribed by rules. This paper deals with the automatic grapheme to phoneme transcription rules in several Spanish dialects from Latin America. Spanish is a language spoken by more than 300 million people, has an important geographical dispersion compared among other languages and has been historically influenced by many native languages. In this paper authors expand the Castilian ...

  2. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-12-01

    Full Text Available Tieshan Yang,1 Qian Yao,1 Fei Cao,1 Qianqian Liu,1 Binlei Liu,2 Xiu-Hong Wang1 1Laboratory for Biomedical Photonics, Institute of Laser Engineering, Beijing University of Technology, 2Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Abstract: Hypoxia-inducible factor-1 (HIF-1 is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs, which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis. Keywords: silver nanoparticles (AgNPs, hypoxia-inducible factor, transcriptional activity, vascular endothelial growth factor-A, angiogenesis

  3. Role of Heat Shock Factor 1 in Conserving Cholesterol Transportation in Leydig Cell Steroidogenesis via Steroidogenic Acute Regulatory Protein.

    Science.gov (United States)

    Oka, Shintaro; Shiraishi, Koji; Fujimoto, Mitsuaki; Katiyar, Arpit; Takii, Ryosuke; Nakai, Akira; Matsuyama, Hideyasu

    2017-08-01

    Testicular testosterone synthesis begins with cholesterol transport into mitochondria via steroidogenic acute regulatory (StAR) protein in Leydig cells. Acute heat stress is known to obstruct testicular steroidogenesis by transcriptional repression of StAR. In contrast, chronic heat stress such as cryptorchidism or varicocele generally does not affect testicular steroidogenesis, suggesting that Leydig cells adapt to heat stress and retain their steroid synthesis ability. However, the mechanisms of the stress response in steroid-producing cells are unclear. We examined the relationship between the heat stress response and heat shock factor 1 (HSF1), which protects cells from proteotoxic stress by inducing heat shock protein as a molecular chaperone. The influences of HSF1 deficiency on cholesterol transport by StAR and the expression of steroidogenic enzymes under chronic heat stress were studied in testes of HSF1-knockout (HSF1KO) mice with experimental cryptorchidism. StAR protein in wild-type-cryptorchid mice was transiently decreased after induction of cryptorchidism and then gradually returned to basal levels. In contrast, StAR protein in HSF1KO mice continued to decrease and failed to recover, resulting in impaired serum testosterone. StAR messenger RNA was not decreased with cryptorchidism, indicating that posttranslational modification of StAR, not its transcription, was obstructed in cryptorchidism. Other steroidogenic enzymes, including CYP11A1, 3β-HSD, and CYP17A1, were not decreased. Lipid droplets were increased in the cytosol of HSF1KO-cryptorchid mice, suggesting dysfunctional cholesterol transportation. These findings provide insight into the role of HSF1 in Leydig cell steroidogenesis, suggesting that it maintains cholesterol transport by recovering StAR under chronic heat stress. Copyright © 2017 Endocrine Society.

  4. Pivotal role of early B-cell factor 1 in development of striatonigral medium spiny neurons in the matrix compartment.

    Science.gov (United States)

    Lobo, Mary Kay; Yeh, Christopher; Yang, X William

    2008-08-01

    The mammalian striatum plays a critical function in motor control, motor and reward learning, and cognition. Dysfunction and degeneration of the striatal neurons are implicated in major neurological and psychiatric disorders. The vast majority of striatal neurons are medium spiny neurons (MSNs). MSNs can be further subdivided into distinct subtypes based on their physical localization in the striatal patch vs. matrix compartments and based on their axonal projections and marker gene expression (i.e., striatonigral MSNs vs. striatopallidal MSNs). Despite our extensive knowledge on the striatal cytoarchitecture and circuitry, little is known about the molecular mechanisms controlling the development of the MSN subtypes in the striatum. Early B-cell factor 1 (Ebf1) is a critical transcription factor implicated in striatal MSN development. One study shows that Ebf1 is critical for the differentiation of MSNs in the matrix, and our separate study demonstrates that Ebf1 is selectively expressed in the striatonigral MSNs and is essential for their postnatal differentiation. In the present study, we further validate the striatonigral MSN deficits in Ebf1(-/-) mice using multiple striatonigral MSN reporter mice. Moreover, we demonstrate that the striatonigral MSN deficits in these mice are restricted to those in the matrix, with relative sparing of those in the patch. Finally, we demonstrate that Ebf1 deficiency also results in reduced expression of another striatonigral-specific transcription factor, zinc finger binding protein 521 (Zfp521), which is a known Ebf1 functional partner. Overall, our study reveals that Ebf1 may play an essential role in controlling the differentiation of the striatonigral MSNs in the matrix compartment.

  5. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression.

    Science.gov (United States)

    Fallone, F; Britton, S; Nieto, L; Salles, B; Muller, C

    2013-09-12

    Tumor cells adaptation to severe oxygen deprivation (hypoxia) plays a major role in tumor progression. The transcription factor HIF-1 (hypoxia-inducible factor 1), whose α-subunit is stabilized under hypoxic conditions is a key component of this process. Recent studies showed that two members of the phosphoinositide 3-kinase-related kinases (PIKKs) family, ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase), regulate the hypoxic-dependent accumulation of HIF-1. These proteins initiate cellular stress responses when DNA damage occurs. In addition, it has been demonstrated that extreme hypoxia induces a replicative stress resulting in regions of single-stranded DNA at stalled replication forks and the activation of ATR (ataxia telangiectasia and Rad3 related protein), another member of the PIKKs family. Here, we show that even less severe hypoxia (0.1% O2) also induces activation of ATR through replicative stress. Importantly, in using either transiently silenced ATR cells, cells expressing an inactive form of ATR or cells exposed to an ATR inhibitor (CGK733), we demonstrate that hypoxic ATR activation positively regulates the key transcription factor HIF-1 independently of the checkpoint kinase Chk1. We show that ATR kinase activity regulates HIF-1α at the translational level and we find that the elements necessary for the regulation of HIF-1α translation are located within the coding region of HIF-1α mRNA. Finally, by using three independent cellular models, we clearly show that the loss of ATR expression and/or kinase activity results in the decrease of HIF-1 DNA binding under hypoxia and consequently affects protein expression levels of two HIF-1 target genes, GLUT-1 and CAIX. Taken together, our data show a new function for ATR in cellular adaptation to hypoxia through regulation of HIF-1α translation. Our work offers new prospect for cancer therapy using ATR inhibitors with the potential to decrease cellular adaptation in hypoxic

  6. A mitotic transcriptional switch in polycystic kidney disease

    Science.gov (United States)

    Verdeguer, Francisco; Corre, Stephanie Le; Fischer, Evelyne; Callens, Celine; Garbay, Serge; Doyen, Antonia; Igarashi, Peter; Terzi, Fabiola; Pontoglio, Marco

    2011-01-01

    Hepatocyte nuclear factor-1β(HNF-1β) is a transcription factor required for the expression of several renal cystic genes and whose prenatal deletion leads to polycystic kidney disease (PKD)1. We show here that inactivation of Hnf1b from postnatal day 10 onward does not elicit cystic dilations in tubules after their proliferative morphogenetic elongation is over. Cystogenic resistance is intrinsically linked to the quiescent state of cells. In fact, when Hnf1b deficient quiescent cells are forced to proliferate by an ischemiareperfusion injury, they give rise to cysts, owing to loss of oriented cell division. Remarkably, in quiescent cells, the transcription of crucial cystogenic target genes is maintained even in the absence of HNF-1β. However, their expression is lost as soon as cells proliferate and the chromatin of target genes acquires heterochromatin marks. These results unveil a previously undescribed aspect of gene regulation. It is well established that transcription is shut off during the mitotic condensation of chromatin2,3. We propose that transcription factors such as HNF-1β might be involved in reprogramming gene expression after transcriptional silencing is induced by mitotic chromatin condensation. Notably, HNF-1β remains associated with the mitotically condensed chromosomal barrels. This association suggests that HNF-1β is a bookmarking factor that is necessary for reopening the chromatin of target genes after mitotic silencing. PMID:19966811

  7. Transcriptional Regulation in Haematopoiesis:

    DEFF Research Database (Denmark)

    Lauridsen, Felicia K B

    Haematopoietic stem cells (HSCs) are responsible for the formation of all of the distinct mature cell types found in the blood. HSCs can – as the only cells of the haematopoietic system – regenerate all of the blood cells when transplanted into a irradiated host, because they are endowed...... of distinct lineage affiliated genes in the otherwise highly purified HSCs. Taken together, these studies demonstrate the use of our model as a tool for isolating superior HSCs, and show that low-level expression of mature lineage markers is inherent in the highly purified stem cell compartment. In the second...... in transplantation studies. Consistent with this, transcriptome profiling revealed very low expression of cell cycle genes in these reporter-dim HSCs. Sequencing of >1200 single HSCs confirmed that the main source of transcriptional heterogeneity was the cell cycle. It also revealed a low-level expression...

  8. Hypoxic Stress Upregulates the Expression of Slc38a1 in Brown Adipocytes via Hypoxia-Inducible Factor-1α.

    Science.gov (United States)

    Horie, Tetsuhiro; Fukasawa, Kazuya; Iezaki, Takashi; Park, Gyujin; Onishi, Yuki; Ozaki, Kakeru; Kanayama, Takashi; Hiraiwa, Manami; Kitaguchi, Yuka; Kaneda, Katsuyuki; Hinoi, Eiichi

    2018-01-01

    The availability of amino acid in the brown adipose tissue (BAT) has been shown to be altered under various conditions; however, little is known about the possible expression and pivotal role of amino acid transporters in BAT under physiological and pathological conditions. The present study comprehensively investigated whether amino acid transporters are regulated by obesogenic conditions in BAT in vivo. Moreover, we investigated the mechanism underlying the regulation of the expression of amino acid transporters by various stressors in brown adipocytes in vitro. The expression of solute carrier family 38 member 1 (Slc38a1; gene encoding sodium-coupled neutral amino acid transporter 1) was preferentially upregulated in the BAT of both genetic and acquired obesity mice in vivo. Moreover, the expression of Slc38a1 was induced by hypoxic stress through hypoxia-inducible factor-1α, which is a master transcription factor of the adaptive response to hypoxic stress, in brown adipocytes in vitro. These results indicate that Slc38a1 is an obesity-associated gene in BAT and a hypoxia-responsive gene in brown adipocytes. © 2017 S. Karger AG, Basel.

  9. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis.

    Science.gov (United States)

    Yang, Tieshan; Yao, Qian; Cao, Fei; Liu, Qianqian; Liu, Binlei; Wang, Xiu-Hong

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs), which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis.

  11. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification.

    Science.gov (United States)

    Mokas, Sophie; Larivière, Richard; Lamalice, Laurent; Gobeil, Stéphane; Cornfield, David N; Agharazii, Mohsen; Richard, Darren E

    2016-09-01

    Medial vascular calcification is a common complication of chronic kidney disease (CKD). Although elevated inorganic phosphate stimulates vascular smooth muscle cell (VSMC) osteogenic transdifferentiation and calcification, the mechanisms involved in their calcification during CKD are not fully defined. Because hypoxic gene activation is linked to CKD and stimulates bone cell osteogenic differentiation, we used in vivo and in vitro rodent models to define the role of hypoxic signaling during elevated inorganic phosphate-induced VSMC calcification. Cell mineralization studies showed that elevated inorganic phosphate rapidly induced VSMC calcification. Hypoxia strongly enhanced elevated inorganic phosphate-induced VSMC calcification and osteogenic transdifferentiation, as seen by osteogenic marker expression. Hypoxia-inducible factor-1 (HIF-1), the key hypoxic transcription factor, was essential for enhanced VSMC calcification. Targeting HIF-1 expression in murine VSMC blocked calcification in hypoxia with elevated inorganic phosphate while HIF-1 activators, including clinically used FG-4592/Roxadustat, recreated a procalcifying environment. Elevated inorganic phosphate rapidly activated HIF-1, even in normal oxygenation; an effect mediated by HIF-1α subunit stabilization. Thus, hypoxia synergizes with elevated inorganic phosphate to enhance VSMC osteogenic transdifferentiation. Our work identifies HIF-1 as an early CKD-related pathological event, prospective marker, and potential target against vascular calcification in CKD-relevant conditions. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Chen, ChengShi; Liu, Rong; Wang, JianHua; Yan, ZhiPing; Qian, Sheng; Zhang, Wei

    2015-04-01

    The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.

  13. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Directory of Open Access Journals (Sweden)

    Li J

    2015-02-01

    Full Text Available Jie Li,1 Chao Zhang,1 Hongchuan Jiang,1 Jiao Cheng21Department of General Surgery, 2Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Beijing, People’s Republic of ChinaAbstract: Hypoxia-inducible factor-1 (HIF-1 is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10-7 mol/L, by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future.Keywords: Andrographolide (Andro, HIF-1α, inhibit, breast cancer, hypoxia, PI3k/AKT/mTOR pathway

  14. Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Directory of Open Access Journals (Sweden)

    Irene Mavelli

    2012-02-01

    Full Text Available Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis or “negative” (silencing mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1. Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.

  15. Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha

    International Nuclear Information System (INIS)

    McFarlane, Steven; Nicholl, Mary Jane; Sutherland, Jane S.; Preston, Chris M.

    2011-01-01

    The cellular protein hypoxia-inducible factor 1 alpha (HIF-1α) was induced after infection of human fibroblasts with human cytomegalovirus (HCMV). HCMV irradiated with ultraviolet light (uv-HCMV) also elicited the effect, demonstrating that the response was provoked by interaction of the infecting virion with the cell and that viral gene expression was not required. Although induction of HIF-1α was initiated by an early event, accumulation of the protein was not detected until 9 hours post infection, with levels increasing thereafter. Infection with uv-HCMV resulted in increased abundance of HIF-1α-specific RNA, indicating stimulation of transcription. In addition, greater phosphorylation of the protein kinase Akt was observed, and the activity of this enzyme was required for induction of HIF-1α to occur. HIF-1α controls the expression of many cellular gene products; therefore the findings reveal new ways in which interaction of the HCMV particle with the host cell may cause significant alterations to cellular physiology.

  16. Euglena Transcript Processing.

    Science.gov (United States)

    McWatters, David C; Russell, Anthony G

    2017-01-01

    RNA transcript processing is an important stage in the gene expression pathway of all organisms and is subject to various mechanisms of control that influence the final levels of gene products. RNA processing involves events such as nuclease-mediated cleavage, removal of intervening sequences referred to as introns and modifications to RNA structure (nucleoside modification and editing). In Euglena, RNA transcript processing was initially examined in chloroplasts because of historical interest in the secondary endosymbiotic origin of this organelle in this organism. More recent efforts to examine mitochondrial genome structure and RNA maturation have been stimulated by the discovery of unusual processing pathways in other Euglenozoans such as kinetoplastids and diplonemids. Eukaryotes containing large genomes are now known to typically contain large collections of introns and regulatory RNAs involved in RNA processing events, and Euglena gracilis in particular has a relatively large genome for a protist. Studies examining the structure of nuclear genes and the mechanisms involved in nuclear RNA processing have revealed that indeed Euglena contains large numbers of introns in the limited set of genes so far examined and also possesses large numbers of specific classes of regulatory and processing RNAs, such as small nucleolar RNAs (snoRNAs). Most interestingly, these studies have also revealed that Euglena possesses novel processing pathways generating highly fragmented cytosolic ribosomal RNAs and subunits and non-conventional intron classes removed by unknown splicing mechanisms. This unexpected diversity in RNA processing pathways emphasizes the importance of identifying the components involved in these processing mechanisms and their evolutionary emergence in Euglena species.

  17. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors.

    Science.gov (United States)

    Ibarra, Cristian; Vicencio, Jose M; Estrada, Manuel; Lin, Yingbo; Rocco, Paola; Rebellato, Paola; Munoz, Juan P; Garcia-Prieto, Jaime; Quest, Andrew F G; Chiong, Mario; Davidson, Sean M; Bulatovic, Ivana; Grinnemo, Karl-Henrik; Larsson, Olle; Szabadkai, Gyorgy; Uhlén, Per; Jaimovich, Enrique; Lavandero, Sergio

    2013-01-18

    The ability of a cell to independently regulate nuclear and cytosolic Ca(2+) signaling is currently attributed to the differential distribution of inositol 1,4,5-trisphosphate receptor channel isoforms in the nucleoplasmic versus the endoplasmic reticulum. In cardiac myocytes, T-tubules confer the necessary compartmentation of Ca(2+) signals, which allows sarcomere contraction in response to plasma membrane depolarization, but whether there is a similar structure tunneling extracellular stimulation to control nuclear Ca(2+) signals locally has not been explored. To study the role of perinuclear sarcolemma in selective nuclear Ca(2+) signaling. We report here that insulin-like growth factor 1 triggers a fast and independent nuclear Ca(2+) signal in neonatal rat cardiac myocytes, human embryonic cardiac myocytes, and adult rat cardiac myocytes. This fast and localized response is achieved by activation of insulin-like growth factor 1 receptor signaling complexes present in perinuclear invaginations of the plasma membrane. The perinuclear insulin-like growth factor 1 receptor pool connects extracellular stimulation to local activation of nuclear Ca(2+) signaling and transcriptional upregulation through the perinuclear hydrolysis of phosphatidylinositol 4,5-biphosphate inositol 1,4,5-trisphosphate production, nuclear Ca(2+) release, and activation of the transcription factor myocyte-enhancing factor 2C. Genetically engineered Ca(2+) buffers--parvalbumin--with cytosolic or nuclear localization demonstrated that the nuclear Ca(2+) handling system is physically and functionally segregated from the cytosolic Ca(2+) signaling machinery. These data reveal the existence of an inositol 1,4,5-trisphosphate-dependent nuclear Ca(2+) toolkit located in direct apposition to the cell surface, which allows the local control of rapid and independent activation of nuclear Ca(2+) signaling in response to an extracellular ligand.

  18. Initiation of HIV Reverse Transcription

    Directory of Open Access Journals (Sweden)

    Roland Marquet

    2010-01-01

    Full Text Available Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.

  19. Correlation of Serum Insulin-like Growth Factor 1 with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Mohsen Ayati

    2012-10-01

    Full Text Available Background: Insulin-like growth factor-1 can act in both an autocrine and paracrine manner to promote normal growth and malignant cellular proliferation. The importance of this factor as a major regulatory peptide has been established for cells, in vitro and in vivo. However, the role of serum insulin-like growth factor-1 levels in the etiology of benign prostatic hyperplasia and prostate cancer has not received sufficient attention. The aim of this study was to determine the relationship between benign prostatic hyperplasia, prostate cancer, and serum insulin-like growth factor-1 levels.Methods: We collected blood samples from 68 individuals with prostate cancer (cases and 68 individuals with benign prostatic hyperplasia (controls who were patients at Imam Khomeini Hospital in Tehran, Iran. Those with benign prostatic hyperplasia had normal prostatic specific antigen levels 0.05. Mean serum insulin-like growth factor-1 levels were 219 ng/ml for the case group and 133 ng/ml for the control group, which was significant (P=0.0009. We did not observe any correlation between age and insulin-like growth factor-1 in the case group (P=0.83, r= -0.47, however there was a significant correlation in the control group (P=0.007, r=0.549. Although correlation between prostate volume and serum insulin-like growth factor-1 levels was not statistically significant in the case group (P=0.38, r=0.213, therewas a positive correlation observed in the control group (P<0.008, r=0.537.Conclusion: Our findings suggest that insulin-like growth factor-1 may have an etiologic role in prostate cancer. This interpretation is strengthened by the significant difference observed between serum insulin-like growth factor-1 levels in benign prostatic hyperplasia and prostate cancer patients. These results also offer additional opportunities for evaluating patients who have abnormal digital rectal exams or prostate specific antigen levels, yet their biopsies are normal. Under

  20. Host Cell Factor-1 Recruitment to E2F-Bound and Cell-Cycle-Control Genes Is Mediated by THAP11 and ZNF143

    Directory of Open Access Journals (Sweden)

    J. Brandon Parker

    2014-11-01

    Full Text Available Host cell factor-1 (HCF-1 is a metazoan transcriptional coregulator essential for cell-cycle progression and cell proliferation. Current models suggest a mechanism whereby HCF-1 functions as a direct coregulator of E2F proteins, facilitating the expression of genes necessary for cell proliferation. In this report, we show that HCF-1 recruitment to numerous E2F-bound promoters is mediated by the concerted action of zinc finger transcription factors THAP11 and ZNF143, rather than E2F proteins directly. THAP11, ZNF143, and HCF-1 form a mutually dependent complex on chromatin, which is independent of E2F occupancy. Disruption of the THAP11/ZNF143/HCF-1 complex results in altered expression of cell-cycle control genes and leads to reduced cell proliferation, cell-cycle progression, and cell viability. These data establish a model in which a THAP11/ZNF143/HCF-1 complex is a critical component of the transcriptional regulatory network governing cell proliferation.

  1. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    Science.gov (United States)

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  2. Mitotic bookmarking by transcription factors.

    Science.gov (United States)

    Kadauke, Stephan; Blobel, Gerd A

    2013-04-02

    Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed "mitotic bookmarking." Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors.

  3. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K.; van Wijk, Albert C.; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C.; van Gulik, Thomas M.; Storm, Gert; Heger, Michal

    2016-01-01

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of

  4. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, R.; Broekgaarden, M.; Krekorian, M.; Alles, L.K.; van Wijk, A.C; Mackaaij, C.; Verheij, J.; van der Wal, A.C.; van Gullik, T.M.; Storm, Gerrit; Heger, M.

    2016-01-01

    Background: Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression

  5. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    DEFF Research Database (Denmark)

    Jinquan, T; Jacobi, H H; Jing, C

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function...... of SDF-1alpha in basophils are unknown....

  6. Targeting cleavage and polyadenylation specific factor 1 via shRNA ...

    Indian Academy of Sciences (India)

    Cleavage and polyadenylation specificity factor 1 (CPSF1), a member of CPSF complex, has been reported to play a keyrole in pre-mRNA 30-end formation, but its possible role in ovarian cancer remains unclear. In the present study, we foundthe mRNA level of CPSF1 was overexpressed in ovarian cancer tissues using ...

  7. Leptin, insulin like growth factor-1 and thyroid profile in a studied ...

    African Journals Online (AJOL)

    Howida Hosny El Gebali

    2014-02-26

    Feb 26, 2014 ... Leptin, insulin like growth factor-1 and thyroid profile in a studied sample of Egyptian children with Down syndrome. Howida Hosny El Gebali a. , Eman Ahmed ... Subjects and methods: A prospective case control study was conducted on 80 children, classified ...... syndrome and Prader–Willi syndrome.

  8. Expression of steroidogenic factor 1 in canine cortisol-secreting adrenocortical tumors and normal adrenals

    NARCIS (Netherlands)

    Galac, S; Kool, M M J; van den Berg, M F; Mol, J A; Kooistra, H S

    2014-01-01

    We report on a screening for the relative messenger RNA (mRNA) and protein expression of steroidogenic factor 1 (SF-1) in normal canine adrenals (n = 10) and cortisol-secreting adrenocortical tumors (11 adenomas and 26 carcinomas). The relative mRNA expression of SF-1 was determined by quantitative

  9. Circulating concentrations of insulin-like growth factor-1 in dogs with naturally occurring mitral regurgitation

    DEFF Research Database (Denmark)

    Pedersen, Henrik Duelund; Falk, Bo Torkel; Häggström, Jens

    2005-01-01

    Insulin-like growth factor-1 (IGF-1), which mediates most effects of growth hormone, has effects on cardiac mass and function, and plays an important role in the regulation of vascular tone. In humans, an inverse relationship between degree of heart failure (HF) and circulating IGF-1 concentratio...

  10. A novel missense mutation of bovine lipase maturation factor 1 (LMF1)

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... Lipase maturation factor 1 (LMF1) gene is a novel candidate gene in severe hypertriglyceridemia. To detect the polymorphism in LMF1 gene in 804 Chinese cattle, we firstly described the polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), DNA sequence and PCR-RFLP.

  11. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... in innate immunity and produce reactive oxygen species and reduce the severity and duration of parasitic infection and autoimmune disease. NCF1 also has a role in T cell activation. Key words: Neutrophil cytosol factor 1 (NCF1) gene, exons, T cell activation. INTRODUCTION. An immune system is a ...

  12. Preadipocyte factor-1 is associated with metabolic profile in severe obesity.

    LENUS (Irish Health Repository)

    O'Connell, J

    2011-04-01

    Dysfunctional adipose tissue has been proposed as a key pathological process linking obesity and metabolic disease. Preadipocyte factor-1 (Pref-1) has been shown to inhibit differentiation in adipocyte precursor cells and could thereby play a role in determining adipocyte size, adipose tissue functioning, and metabolic profile in obese individuals.

  13. 21 CFR 12.98 - Official transcript.

    Science.gov (United States)

    2010-04-01

    ..., participants, and counsel have 30 days from the time the transcript becomes available to propose corrections in the transcript of oral testimony. Corrections are permitted only for transcription errors. The... a verbatim stenographic transcript of oral testimony and for necessary copies of the transcript. (b...

  14. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  15. Interaction between TATA-Binding Protein (TBP and Multiprotein Bridging Factor-1 (MBF1 from the Filamentous Insect Pathogenic Fungus Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Chi Song

    Full Text Available TATA-binding protein (TBP is a ubiquitous component of eukaryotic transcription factors that acts to nucleate assembly and position pre-initiation complexes. Multiprotein bridging factor 1 (MBF1 is thought to interconnect TBP with gene specific transcriptional activators, modulating transcriptional networks in response to specific signal and developmental programs. The insect pathogen, Beauveria bassiana, is a cosmopolitan fungus found in most ecosystems where it acts as an important regulator of insect populations and can form intimate associations with certain plants. In order to gain a better understanding of the function of MBF1 in filamentous fungi, its interaction with TBP was demonstrated. The MBF1 and TBP homologs in B. bassiana were cloned and purified from a heterologous E. coli expression system. Whereas purified BbTBP was shown to be able to bind oligonucleotide sequences containing the TATA-motif (Kd ≈ 1.3 nM including sequences derived from the promoters of the B. bassiana chitinase and protease genes. In contrast, BbMBF1 was unable to bind to these same target sequences. However, the formation of a ternary complex between BbMBF1, BbTBP, and a TATA-containing target DNA sequence was seen in agarose gel electrophoretic mobility shift assays (EMSA. These data indicate that BbMBF1 forms direct interactions with BbTBP, and that the complex is capable of binding to DNA sequences containing TATA-motifs, confirming that BbTBP can link BbMBF1 to target sequences as part of the RNA transcriptional machinery in fungi.

  16. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1).

    Science.gov (United States)

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Fernández, Pablo; Pozner, Roberto G; Lang, Roland; Balboa, Luciana; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-03-01

    Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4 + T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection. © Society for Leukocyte Biology.

  17. Interaction between TATA-Binding Protein (TBP) and Multiprotein Bridging Factor-1 (MBF1) from the Filamentous Insect Pathogenic Fungus Beauveria bassiana.

    Science.gov (United States)

    Song, Chi; Ortiz-Urquiza, Almudena; Ying, Sheng-Hua; Zhang, Jin-Xia; Keyhani, Nemat O

    2015-01-01

    TATA-binding protein (TBP) is a ubiquitous component of eukaryotic transcription factors that acts to nucleate assembly and position pre-initiation complexes. Multiprotein bridging factor 1 (MBF1) is thought to interconnect TBP with gene specific transcriptional activators, modulating transcriptional networks in response to specific signal and developmental programs. The insect pathogen, Beauveria bassiana, is a cosmopolitan fungus found in most ecosystems where it acts as an important regulator of insect populations and can form intimate associations with certain plants. In order to gain a better understanding of the function of MBF1 in filamentous fungi, its interaction with TBP was demonstrated. The MBF1 and TBP homologs in B. bassiana were cloned and purified from a heterologous E. coli expression system. Whereas purified BbTBP was shown to be able to bind oligonucleotide sequences containing the TATA-motif (Kd ≈ 1.3 nM) including sequences derived from the promoters of the B. bassiana chitinase and protease genes. In contrast, BbMBF1 was unable to bind to these same target sequences. However, the formation of a ternary complex between BbMBF1, BbTBP, and a TATA-containing target DNA sequence was seen in agarose gel electrophoretic mobility shift assays (EMSA). These data indicate that BbMBF1 forms direct interactions with BbTBP, and that the complex is capable of binding to DNA sequences containing TATA-motifs, confirming that BbTBP can link BbMBF1 to target sequences as part of the RNA transcriptional machinery in fungi.

  18. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Park, Jong-Wan, E-mail: parkjw@snu.ac.kr [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer HIF-1{alpha} is expressed PRMT5-dependently in hypoxic cancer cells. Black-Right-Pointing-Pointer The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. Black-Right-Pointing-Pointer The de novo synthesis of HIF-1{alpha} depends on PRMT5. Black-Right-Pointing-Pointer PRMT5 is involved in the HIF-1{alpha} translation initiated by 5 Prime UTR of HIF-1{alpha} mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1-8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1{alpha} in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1{alpha} protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1{alpha} transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1{alpha} translation initiated by the 5 Prime UTR of HIF-1{alpha} mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  19. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    International Nuclear Information System (INIS)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun; Park, Jong-Wan

    2012-01-01

    Highlights: ► HIF-1α is expressed PRMT5-dependently in hypoxic cancer cells. ► The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. ► The de novo synthesis of HIF-1α depends on PRMT5. ► PRMT5 is involved in the HIF-1α translation initiated by 5′ UTR of HIF-1α mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1–8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1α in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1α protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1α transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1α translation initiated by the 5′ UTR of HIF-1α mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  20. Sumoylation of hypoxia-inducible factor-1α ameliorates failure of brain stem cardiovascular regulation in experimental brain death.

    Directory of Open Access Journals (Sweden)

    Julie Y H Chan

    2011-03-01

    Full Text Available One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM. RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1, Ubc9 (the only known conjugating enzyme for the sumoylation pathway or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem

  1. Hypoxia inducible factor 1α gene (HIF-1α splice variants: potential prognostic biomarkers in breast cancer

    Directory of Open Access Journals (Sweden)

    Bonnier Pascal

    2010-07-01

    Full Text Available Abstract Background Hypoxia-inducible factor 1 (HIF-1 is a master transcriptional regulator of genes regulating oxygen homeostasis. The HIF-1 protein is composed of two HIF-1α and HIF-1β/aryl hydrocarbon receptor nuclear translocator (ARNT subunits. The prognostic relevance of HIF-1α protein overexpression has been shown in breast cancer. The impact of HIF-1α alternative splice variant expression on breast cancer prognosis in terms of metastasis risk is not well known. Methods Using real-time quantitative reverse transcription PCR assays, we measured mRNA concentrations of total HIF-1α and 4 variants in breast tissue specimens in a series of 29 normal tissues or benign lesions (normal/benign and 53 primary carcinomas. In breast cancers HIF-1α splice variant levels were compared to clinicopathological parameters including tumour microvessel density and metastasis-free survival. Results HIF-1α isoforms containing a three base pairs TAG insertion between exon 1 and exon 2 (designated HIF-1αTAG and HIF-1α736 mRNAs were found expressed at higher levels in oestrogen receptor (OR-negative carcinomas compared to normal/benign tissues (P = 0.009 and P = 0.004 respectively. In breast carcinoma specimens, lymph node status was significantly associated with HIF-1αTAG mRNA levels (P = 0.037. Significant statistical association was found between tumour grade and HIF-1αTAG (P = 0.048, and total HIF-1α (P = 0.048 mRNA levels. HIF-1αTAG mRNA levels were also inversely correlated with both oestrogen and progesterone receptor status (P = 0.005 and P = 0.033 respectively. Univariate analysis showed that high HIF-1αTAG mRNA levels correlated with shortened metastasis free survival (P = 0.01. Conclusions Our results show for the first time that mRNA expression of a HIF-1αTAG splice variant reflects a stage of breast cancer progression and is associated with a worse prognosis. See commentary: http://www.biomedcentral.com/1741-7015/8/45

  2. Brain-Thyroid-Lung syndrome: a patient with a severe multi-system disorder due to a de novo mutation in the thyroid transcription factor 1 gene.

    NARCIS (Netherlands)

    Willemsen, M.A.A.P.; Breedveld, G.J.; Wouda, S.; Otten, B.J.; Yntema, J.L.; Lammens, M.M.Y.; Vries, L.B.A. de

    2005-01-01

    A 23-year-old man was diagnosed with pulmonary alveolar proteinosis at the age of 11 months, and primary hypothyroidism gradually developed during infancy. He had delayed developmental milestones and severe hypotonia that evolved into non-progressive chorea during childhood. He died from large cell

  3. Asymmetric dimethyl arginine induces pulmonary vascular dysfunction via activation of signal transducer and activator of transcription 3 and stabilization of hypoxia-inducible factor 1-alpha

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Koudelka, Adolf; Kolářová, Hana; Ambrožová, Gabriela; Klinke, A.; Černá, A.; Kadlec, J.; Trundová, Mária; Šindlerová, Lenka; Kuchta, R.; Kuchtová, Z.; Lojek, Antonín; Kubala, Lukáš

    2015-01-01

    Roč. 73, OCT 2015 (2015), s. 138-148 ISSN 1537-1891 R&D Projects: GA ČR(CZ) GP13-40882P; GA MŠk(CZ) EE2.3.30.0030 Grant - others:GAAV(CZ) M200041208 Institutional support: RVO:68081707 Keywords : NITRIC-OXIDE PRODUCTION * SMOOTH-MUSCLE-CELLS * ARTERIAL-HYPERTENSION Subject RIV: BO - Biophysics; EI - Biotechnology ; Bionics (BTO-N) Impact factor: 2.500, year: 2015

  4. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim, E-mail: ykpak@khu.ac.kr

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  5. Chromosomal contact permits transcription between coregulated genes

    CSIR Research Space (South Africa)

    Fanucchi, Stephanie

    2013-10-01

    Full Text Available Transcription of coregulated genes occurs in the context of long-range chromosomal contacts that form multigene complexes. Such contacts and transcription are lost in knockout studies of transcription factors and structural chromatin proteins...

  6. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ragnum, Harald Bull [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Røe, Kathrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Holm, Ruth; Vlatkovic, Ljiljana [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Nesland, Jahn Marthin [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Aarnes, Eva-Katrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Ree, Anne Hansen [Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Flatmark, Kjersti [Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Department of Gastrointestinal Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Seierstad, Therese [Department of Radiology and Nuclear Medicine, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Faculty of Health Sciences, Buskerud University College, Drammen (Norway); Lilleby, Wolfgang [Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Lyng, Heidi, E-mail: heidi.lyng@rr-research.no [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway)

    2013-11-15

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  7. The Dictyostelium prestalk inducer differentiation-inducing factor-1 (DIF-1) triggers unexpectedly complex global phosphorylation changes.

    Science.gov (United States)

    Sugden, Chris; Urbaniak, Michael D; Araki, Tsuyoshi; Williams, Jeffrey G

    2015-02-15

    Differentiation-inducing factor-1 (DIF-1) is a polyketide that induces Dictyostelium amoebae to differentiate as prestalk cells. We performed a global quantitative screen for phosphorylation changes that occur within the first minutes after addition of DIF-1, using a triple-label SILAC approach. This revealed a new world of DIF-1-controlled signaling, with changes in components of the MAPK and protein kinase B signaling pathways, components of the actinomyosin cytoskeletal signaling networks, and a broad range of small GTPases and their regulators. The results also provide evidence that the Ca(2+)/calmodulin-dependent phosphatase calcineurin plays a role in DIF-1 signaling to the DimB prestalk transcription factor. At the global level, DIF-1 causes a major shift in the phosphorylation/dephosphorylation equilibrium toward net dephosphorylation. Of interest, many of the sites that are dephosphorylated in response to DIF-1 are phosphorylated in response to extracellular cAMP signaling. This accords with studies that suggest an antagonism between the two inducers and also with the rapid dephosphorylation of the cAMP receptor that we observe in response to DIF-1 and with the known inhibitory effect of DIF-1 on chemotaxis to cAMP. All MS data are available via ProteomeXchange with identifier PXD001555. © 2015 Sugden et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    International Nuclear Information System (INIS)

    Ragnum, Harald Bull; Røe, Kathrine; Holm, Ruth; Vlatkovic, Ljiljana; Nesland, Jahn Marthin; Aarnes, Eva-Katrine; Ree, Anne Hansen; Flatmark, Kjersti; Seierstad, Therese; Lilleby, Wolfgang; Lyng, Heidi

    2013-01-01

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  9. Role of interferon regulatory factor-1 in lipopolysaccharide-induced mitochondrial damage and oxidative stress responses in macrophages.

    Science.gov (United States)

    Deng, Song-Yun; Zhang, Le-Meng; Ai, Yu-Hang; Pan, Pin-Hua; Zhao, Shuang-Ping; Su, Xiao-Li; Wu, Dong-Dong; Tan, Hong-Yi; Zhang, Li-Na; Tsung, Allan

    2017-10-01

    Sepsis causes many early deaths; both macrophage mitochondrial damage and oxidative stress responses are key factors in its pathogenesis. Although the exact mechanisms responsible for sepsis-induced mitochondrial damage are unknown, the nuclear transcription factor, interferon regulatory factor-1 (IRF-1) has been reported to cause mitochondrial damage in several diseases. Previously, we reported that in addition to promoting systemic inflammation, IRF-1 promoted the apoptosis of and inhibited autophagy in macrophages. In the present study, we hypothesized that lipopolysaccharide (LPS)-induced IRF-1 activation in macrophages may promote mitochondrial damage and oxidative stress. In vitro, LPS was found to promote IRF-1 activation, reactive oxygen species (ROS) production, adenosine triphosphate (ATP) depletion, superoxide dismutase (SOD) consumption, malondialdehyde (MDA) accumulation and mitochondrial depolarization in macrophages in a time- and dose-dependent manner. These effects were abrogated in cells in which IRF-1 was knocked down. Furthermore, IRF-1 overexpression increased LPS-induced oxidative stress responses and mitochondrial damage. In vivo, peritoneal macrophages obtained from IRF-1 knockout (KO) mice produced less ROS and had less mitochondrial depolarization and damage following the administration of LPS, when compared to their wild-type (WT) counterparts. In addition, IRF-1 KO mice exhibited a decreased release of mitochondrial DNA (mtDNA) following the administration of LPS. Thus, IRF-1 may be a critical factor in augmenting LPS-induced oxidative stress and mitochondrial damage in macrophages.

  10. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  11. Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Kristy Zera

    Full Text Available Thiamine is an essential enzyme cofactor required for proper metabolic function and maintenance of metabolism and energy production in the brain. In developed countries, thiamine deficiency (TD is most often manifested following chronic alcohol consumption leading to impaired mitochondrial function, oxidative stress, inflammation and excitotoxicity. These biochemical lesions result in apoptotic cell death in both neurons and astrocytes. Comparable histological injuries in patients with hypoxia/ischemia and TD have been described in the thalamus and mammillary bodies, suggesting a congruency between the cellular responses to these stresses. Consistent with hypoxia/ischemia, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α under physiological oxygen levels. However, the role of TD-induced HIF-1α in neurological injury is currently unknown. Using Western blot analysis and RT-PCR, we have demonstrated that TD induces HIF-1α expression and activity in primary mouse astrocytes. We observed a time-dependent increase in mRNA and protein expression of the pro-apoptotic and pro-inflammatory HIF-1α target genes MCP1, BNIP3, Nix and Noxa during TD. We also observed apoptotic cell death in TD as demonstrated by PI/Annexin V staining, TUNEL assay, and Cell Death ELISA. Pharmacological inhibition of HIF-1α activity using YC1 and thiamine repletion both reduced expression of pro-apoptotic HIF-1α target genes and apoptotic cell death in TD. These results demonstrate that induction of HIF-1α mediated transcriptional up-regulation of pro-apoptotic/inflammatory signaling contributes to astrocyte cell death during thiamine deficiency.

  12. The anti-inflammatory role of extranuclear apurinic/apyrimidinic endonuclease 1/redox effector factor-1 in reactive astrocytes.

    Science.gov (United States)

    Baek, Hyunjung; Lim, Chae Seong; Byun, Hee Sun; Cho, Hyun Sil; Lee, Yu Ran; Shin, Yong Sup; Kim, Hyun-Woo; Jeon, Byeong Hwa; Kim, Dong Woon; Hong, Jinpyo; Hur, Gang Min; Park, Jin Bong

    2016-12-16

    Apurinic/apyrimidinic endonuclease 1 (APE1), a ubiquitous multipurpose protein, is also known as redox effector factor-1 (Ref-1). It is involved in DNA repair and redox signaling and, in turn, oxidative stress-induced neurodegeneration. Although previous studies have demonstrated that APE1/Ref-1 functions as a negative regulator of inflammatory response via several mechanisms in neuronal cells, little is known about the roles of APE1/Ref-1 in glial cells. In this study, we found that cytoplasmic APE1/Ref-1 expression was upregulated in reactive astrocytes of the kainic acid- or lipopolysaccharide (LPS)-injected hippocampus. Analysis of the inflammatory response induced by extranuclear APE1/Ref-1 (ΔNLS-Ref-1) in cultured primary astrocytes revealed that it markedly suppressed inducible nitric oxide synthase (iNOS) expression and tumor necrosis factor-α (TNF-α) secretion induced by LPS to a similar extent as did wild type APE1/Ref-1 (WT-Ref-1), supporting the concept an anti-inflammatory role of extranuclear APE1/Ref-1 in astrocytes. Additionally, overexpression of WT- and ΔNLS-Ref-1 suppressed the transcriptional activity of nuclear factor-κB (NF-κB), although it effectively enhanced activator protein 1 (AP-1) activity. The blunting effect of APE1/Ref-1 on LPS-induced NF-κB activation was not mediated by IκB kinase (IKK) activity. Instead, APE1/Ref-1 inhibited p300-mediated acetylation of p65 by suppressing intracellular reactive oxygen species (ROS) levels following LPS treatment. Taken together, our results showed that altered expression and/or subcellular distribution of APE1/Ref-1 in activated astrocytes regulated the neuroinflammatory response to excitotoxin and endotoxin insults used in model of neurodegenerative brain diseases.

  13. Transcriptional control of megakaryocyte development.

    Science.gov (United States)

    Goldfarb, A N

    2007-10-15

    Megakaryocytes are highly specialized cells that arise from a bipotent megakaryocytic-erythroid progenitor (MEP). This developmental leap requires coordinated activation of megakaryocyte-specific genes, radical changes in cell cycle properties, and active prevention of erythroid differentiation. These programs result from upregulation of megakaryocyte-selective transcription factors, downregulation of erythroid-selective transcription factors and ongoing mediation of common erythro-megakaryocytic transcription factors. Unlike most developmental programs, no single lineage-unique family of master regulators exerts executive control over the megakaryocytic plan. Rather, an assemblage of non-unique factors and signals converge to determine lineage and differentiation. In human megakaryopoiesis, hereditary disorders of platelet production have confirmed contributions from three distinct transcription factor families. Murine models have extended this repertoire to include multiple additional factors. At a mechanistic level, the means by which these non-unique factors collaborate in the establishment of a perfectly unique cell type remains a central question.

  14. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    Although retroviral vector systems have been found to efficiently transduce a variety of cell types in vitro, the use of vectors based on murine leukemia virus in preclinical models of somatic gene therapy has led to the identification of transcriptional silencing in vivo as an important problem....... Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t...

  15. RNA-guided transcriptional regulation

    Science.gov (United States)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  16. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1.

    NARCIS (Netherlands)

    Williams, K.J.; Telfer, B.A.; Xenaki, D.; Sheridan, M.R.; Desbaillets, I.; Peters, H.J.; Honess, D.; Harris, A.L.; Dachs, G.U.; Kogel, A.J. van der; Stratford, I.J.

    2005-01-01

    BACKGROUND AND PURPOSE: To test the hypothesis that deficiency in expression of the transcription factor, HIF-1, renders tumours more radioresponsive than HIF-1 proficient tumours. PATIENTS AND METHODS: Tumours comprising mouse hepatoma cells lacking HIF-1beta (and thereby HIF-1 function) were grown

  17. Hypoxia-Inducible Factor-1α in carcinogenesis and progression of breast cancer

    NARCIS (Netherlands)

    Bos, R.

    2004-01-01

    This thesis is primarily focused on the previously hardly explored role of HIF-1 in breast cancer. HIF-1 is a transcription factor induced by hypoxia, but also by some oncogenes, tumor suppressor genes and growth factors. Activated HIF-1 can induce angiogenesis, glycolysis, erythropoiesis, and other

  18. Initiation of HIV Reverse Transcription

    OpenAIRE

    Isel, Catherine; Ehresmann, Chantal; Marquet, Roland

    2010-01-01

    Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of...

  19. Discovery of 4,6-disubstituted pyrimidines as potent inhibitors of the heat shock factor 1 (HSF1) stress pathway and CDK9.

    Science.gov (United States)

    Rye, Carl S; Chessum, Nicola E A; Lamont, Scott; Pike, Kurt G; Faulder, Paul; Demeritt, Julie; Kemmitt, Paul; Tucker, Julie; Zani, Lorenzo; Cheeseman, Matthew D; Isaac, Rosie; Goodwin, Louise; Boros, Joanna; Raynaud, Florence; Hayes, Angela; Henley, Alan T; de Billy, Emmanuel; Lynch, Christopher J; Sharp, Swee Y; Te Poele, Robert; Fee, Lisa O'; Foote, Kevin M; Green, Stephen; Workman, Paul; Jones, Keith

    2016-08-01

    Heat shock factor 1 (HSF1) is a transcription factor that plays key roles in cancer, including providing a mechanism for cell survival under proteotoxic stress. Therefore, inhibition of the HSF1-stress pathway represents an exciting new opportunity in cancer treatment. We employed an unbiased phenotypic screen to discover inhibitors of the HSF1-stress pathway. Using this approach we identified an initial hit ( 1 ) based on a 4,6-pyrimidine scaffold (2.00 μM). Optimisation of cellular SAR led to an inhibitor with improved potency ( 25 , 15 nM) in the HSF1 phenotypic assay. The 4,6-pyrimidine 25 was also shown to have high potency against the CDK9 enzyme (3 nM).

  20. National Capital Planning Commission Meeting Transcripts

    Data.gov (United States)

    National Capital Planning Commission — Transcripts of the monthly (with the exception of August) National Capital Planning Commission meeting transcripts are provided for research to confirm actions taken...

  1. Activation of the Hypoxia Inducible Factor 1α Subunit Pathway in Steatotic Liver Contributes to Formation of Cholesterol Gallstones.

    Science.gov (United States)

    Asai, Yoichiro; Yamada, Tetsuya; Tsukita, Sohei; Takahashi, Kei; Maekawa, Masamitsu; Honma, Midori; Ikeda, Masanori; Murakami, Keigo; Munakata, Yuichiro; Shirai, Yuta; Kodama, Shinjiro; Sugisawa, Takashi; Chiba, Yumiko; Kondo, Yasuteru; Kaneko, Keizo; Uno, Kenji; Sawada, Shojiro; Imai, Junta; Nakamura, Yasuhiro; Yamaguchi, Hiroaki; Tanaka, Kozo; Sasano, Hironobu; Mano, Nariyasu; Ueno, Yoshiyuki; Shimosegawa, Tooru; Katagiri, Hideki

    2017-05-01

    Hypoxia-inducible factor 1α subunit (HIF1A) is a transcription factor that controls the cellular response to hypoxia and is activated in hepatocytes of patients with nonalcoholic fatty liver disease (NAFLD). NAFLD increases the risk for cholesterol gallstone disease by unclear mechanisms. We studied the relationship between HIF1A and gallstone formation associated with liver steatosis. We performed studies with mice with inducible disruption of Hif1a in hepatocytes via a Cre adenoviral vector (inducible hepatocyte-selective HIF1A knockout [iH-HIFKO] mice), and mice without disruption of Hif1a (control mice). Mice were fed a diet rich in cholesterol and cholate for 1 or 2 weeks; gallbladders were collected and the number of gallstones was determined. Livers and biliary tissues were analyzed by histology, quantitative reverse-transcription polymerase chain reaction, immunohistochemistry, and immunoblots. We measured concentrations of bile acid, cholesterol, and phospholipid in bile and rates of bile flow. Primary hepatocytes and cholangiocytes were isolated and analyzed. HIF1A was knocked down in Hepa1-6 cells with small interfering RNAs. Liver biopsy samples from patients with NAFLD, with or without gallstones, were analyzed by quantitative reverse-transcription polymerase chain reaction. Control mice fed a diet rich in cholesterol and cholate developed liver steatosis with hypoxia; levels of HIF1A protein were increased in hepatocytes around central veins and 90% of mice developed cholesterol gallstones. Only 20% of the iH-HIFKO mice developed cholesterol gallstones. In iH-HIFKO mice, the biliary lipid concentration was reduced by 36%, compared with control mice, and bile flow was increased by 35%. We observed increased water secretion from hepatocytes into bile canaliculi to mediate these effects, resulting in suppression of cholelithogenesis. Hepatic expression of aquaporin 8 (AQP8) protein was 1.5-fold higher in iH-HIFKO mice than in control mice. Under hypoxic

  2. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  3. Concurrent spindle-cell thymoma and thymic cysts in a Barbary sheep (Ammotragus lervia): case report and review of the literature.

    Science.gov (United States)

    Li, Wen-Ta; Chang, Hui-Wen; Jeng, Chian-Ren; Liu, Chen-Hsuan; Wang, Fun-In; Chang, Li-Jen; Pang, Victor Fei

    2016-11-01

    An ~21-year-old female Barbary sheep (Ammotragus lervia) died spontaneously following a lengthy episode of difficulty in walking. An ~6 × 3 × 3 cm, unilocular cystic growth was found in the cranioventral thorax. The fibrotic cystic wall, lined by a single layer of flattened to cuboidal epithelial cells, was invaginated and partially encircled solid masses of fusiform neoplastic cells with multiple intratumoral cystic structures. The fusiform neoplastic cells were intensely positive for cytokeratin (CK) and partially positive for α-smooth muscle actin and vimentin, but negative for thyroid transcription factor-1 (TTF-1) and neuron-specific enolase (NSE). The intratumoral cysts were lined by CK-positive but TTF-1- negative, NSE-negative, flattened, cuboidal to columnar epithelial cells, suggestive of cystically dilated medullary duct epithelium-derived structures. Based on the location and histopathologic findings of the growth, concurrent spindle-cell thymoma and thymic cysts was diagnosed. We also discuss the correlation between thymic cysts and thymoma and review the literature of thymomas in ovine and wildlife species. © 2016 The Author(s).

  4. Lack of association of interferon regulatory factor 1 with severe malaria in affected child-parental trio studies across three African populations.

    Directory of Open Access Journals (Sweden)

    Valentina D Mangano

    Full Text Available Interferon Regulatory Factor 1 (IRF-1 is a member of the IRF family of transcription factors, which have key and diverse roles in the gene-regulatory networks of the immune system. IRF-1 has been described as a critical mediator of IFN-gamma signalling and as the major player in driving TH1 type responses. It is therefore likely to be crucial in both innate and adaptive responses against intracellular pathogens such as Plasmodium falciparum. Polymorphisms at the human IRF1 locus have been previously found to be associated with the ability to control P. falciparum infection in populations naturally exposed to malaria. In order to test whether genetic variation at the IRF1 locus also affects the risk of developing severe malaria, we performed a family-based test of association for 18 Single Nucleotide Polymorphisms (SNPs across the gene in three African populations, using genotype data from 961 trios consisting of one affected child and his/her two parents (555 from The Gambia, 204 from Kenya and 202 from Malawi. No significant association with severe malaria or severe malaria subphenotypes (cerebral malaria and severe malaria anaemia was observed for any of the SNPs/haplotypes tested in any of the study populations. Our results offer no evidence that the molecular pathways regulated by the transcription factor IRF-1 are involved in the immune-based pathogenesis of severe malaria.

  5. Hypoxia-inducible factor-1α upregulates tyrosine hydroxylase and dopamine transporter by nuclear receptor ERRγ in SH-SY5Y cells.

    Science.gov (United States)

    Lim, Juhee; Kim, Hyo-In; Bang, Yeojin; Seol, Wongi; Choi, Hueng-Sik; Choi, Hyun Jin

    2015-04-15

    Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor relevant to the development of many mammalian organs including the brain. However, the molecular mechanisms by which signaling events mediate neuronal differentiation have not been fully elucidated. In the present study, we show for the first time that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is upregulated by HIF-1α and plays essential roles in HIF-1α-induced upregulation of dopaminergic marker molecules such as tyrosine hydroxylase and dopamine transporter. We found that deferoxamine upregulated HIF-1α and enhanced the dopaminergic phenotype and neurite outgrowth of SH-SY5Y cells. Deferoxamine activated transcription and protein expression of ERRγ, and deferoxamine-induced upregulation of tyrosine hydroxylase and dopamine transporter was attenuated by using the ERRγ inverse agonist or silencing ERRγ. Altogether, these results suggest that HIF-1α can positively regulate the dopaminergic phenotype through ERRγ. This study could provide new perspectives for understanding the mechanisms underlying the promotion of dopaminergic neuronal differentiation by hypoxia.

  6. Monitoring the Induction of Heat Shock Factor 1/Heat Shock Protein 70 Expression following 17-Allylamino-Demethoxygeldanamycin Treatment by Positron Emission Tomography and Optical Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Mikhail Doubrovin

    2012-01-01

    Full Text Available The cell response to proteotoxic cell stresses is mediated primarily through activation of heat shock factor 1 (HSF1. This transcription factor plays a major role in the regulation of the heat shock proteins (HSPs, including HSP70. We demonstrate that an [124I]iodide-pQHNIG70 positron emission tomography (PET reporter system that includes an inducible HSP70 promoter can be used to image and monitor the activation of the HSF1/HSP70 transcription factor in response to drug treatment (17-allylamino-demethoxygeldanamycin [17-AAG]. We developed a dual imaging reporter (pQHNIG70 for noninvasive imaging of the heat shock response in cell culture and living animals previously and now study HSF1/HSP70 reporter activation in both cell culture and tumor-bearing animals following exposure to 17-AAG. 17-AAG (10–1,000 nM induced reporter expression; a 23-fold increase was observed by 60 hours. Good correspondence between reporter expression and HSP70 protein levels were observed. MicroPET imaging based on [124I]iodide accumulation in pQHNIG70-transduced RG2 xenografts showed a significant 6.2-fold reporter response to 17-AAG, with a corresponding increase in tumor HSP70 and in tumor human sodium iodide symporter and green fluorescent protein reporter proteins. The HSF1 reporter system can be used to screen anticancer drugs for induction of cytotoxic stress and HSF1 activation both in vitro and in vivo.

  7. Enzyme 15-lipoxygenase 1 promotes hypoxia-inducible factor 1α turnover and reduces vascular endothelial growth factor expression: implications for angiogenesis

    International Nuclear Information System (INIS)

    Zhong, Hua; Wang, Ruoxiang; Kelavkar, Uddhav; Wang, Christopher Y; Simons, Jonathan

    2014-01-01

    Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses, including cancers. In this study, we report that 15-lipoxygenase 1 (15-LO1), a key member of the lipoxygenase family, promotes HIF-1α ubiquitination and degradation. Altering the level of 15-LO1 yields inverse changes in HIF-1α and HIF-1 transcriptional activity, under both normoxia and hypoxia, and even in CoCl 2 -treated cells where HIF-1α has been artificially elevated. The antagonistic effect of 15-LO1 is mediated by the Pro 564 /hydroxylation/26S proteasome system, while both the enzymatic activity and the intracellular membrane-binding function of 15-LO1 appear to contribute to HIF-1α suppression. Our findings provide a novel mechanism for HIF-1α regulation, in which oxygen-dependent HIF-1 activity is modulated by an oxygen-insensitive lipid metabolic enzyme

  8. 16 CFR 1502.36 - Official transcript.

    Science.gov (United States)

    2010-01-01

    ... the time the transcript becomes available to propose corrections in the transcript of oral testimony. Corrections are permitted only for transcription errors. The presiding officer shall promptly order justified... presiding officer will arrange for a verbatim stenographic transcript of oral testimony and for necessary...

  9. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans

    DEFF Research Database (Denmark)

    Heintz, Caroline; Doktor, Thomas K; Lanjuin, Anne

    2017-01-01

    via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also...... homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction...

  10. Seasonal Patterns in Growth Hormone, Insulin and Insulin-like Growth Factor-1 in Female Muskoxen

    Directory of Open Access Journals (Sweden)

    Jan Z. Adamczewski

    1997-02-01

    Full Text Available Over a year, mean serum growth hormone concentrations ranged from 0.5 to 3 ng/ml in tame muskoxen with the lowest values and fewest pulses between October and January. Serum insulin ranged from 0.25 to 0.92 ng/ml, with minima in summer. There were marked seasonal changes in serum insulin-like growth factor-1 in both tame and wild muskoxen but the late summer peak was higher and more distinct in the tame animals with levels reaching 160-250 ng/ml in September.

  11. Cloning, expression and identification of an isoform of human stromal cell derived factor-1α

    OpenAIRE

    LIANG, YIN-KU; PING, WEI; BIAN, LIU-JIAO

    2015-01-01

    Human stromal cell derived factor-1α (hSDF-1α), a chemotactic factor of stem cells, regulates inflammation, promotes the mobilization of stem cells and induces angiogenesis following ischemia. Six SDF-1 isoforms, SDF-1α, SDF-1β, SDF-1γ, SDF-1δ, SDF-1ε and SDF-1ϕ, which all contain a signal peptide at the N-terminus, have been reported. In the present study a special isoform of hSDF-1α is described that does not contain the N-terminal signal peptide sequence. The hSDF-1α gene was cloned with t...

  12. Insulin-like growth factor 1 and growth hormone in chronic liver disease

    DEFF Research Database (Denmark)

    Møller, Søren; Becker, Povl Ulrik

    1992-01-01

    mainly due to the decreased liver function. Low levels of somatomedins are also seen in patients with growth hormone (GH) insufficiency, renal impairment, and malnutrition. GH stimulates the production of IGF-1, and both are part of a negative feedback system acting on hepatic, pituitary......Somatomedins or insulin-like growth factors (IGF) are peptides synthesized in the liver. IGFs have different anabolic and metabolic actions and are important in normal growth and development. The concentration of insulin-like growth factor 1 (IGF-1) is low in patients with chronic liver disease...... function....

  13. Transcriptional networks of TCP transcription factors in Arabidopsis development

    NARCIS (Netherlands)

    Danisman, S.D.

    2011-01-01

    Leaves are a plant’s main organs of photosynthesis and hence the development of this organ is under strict control. The different phases of leaf development are under the control of both endogenous and exogenous influences. In this work we were interested in a particular class of transcription

  14. Chromatin and Transcription in Yeast

    Science.gov (United States)

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  15. Visualization of nuclear localization of transcription factors with cyan and green fluorescent proteins in the red alga Porphyra yezoensis.

    Science.gov (United States)

    Uji, Toshiki; Takahashi, Megumu; Saga, Naotsune; Mikami, Koji

    2010-04-01

    Transcription factors play a central role in expression of genomic information in all organisms. The objective of our study is to analyze the function of transcription factors in red algae. One way to analyze transcription factors in eukaryotic cells is to study their nuclear localization, as reported for land plants and green algae using fluorescent proteins. There is, however, no report documenting subcellular localization of transcription factors from red algae. In the present study, using the marine red alga Porphyra yezoensis, we confirmed for the first time successful expression of humanized fluorescent proteins (ZsGFP and ZsYFP) from a reef coral Zoanthus sp. and land plant-adapted sGFP(S65T) in gametophytic cells comparable to expression of AmCFP. Following molecular cloning and characterization of transcription factors DP-E2F-like 1 (PyDEL1), transcription elongation factor 1 (PyElf1) and multiprotein bridging factor 1 (PyMBF1), we then demonstrated that ZsGFP and AmCFP can be used to visualize nuclear localization of PyElf1 and PyMBF1. This is the first report to perform visualization of subcellular localization of transcription factors as genome-encoded proteins in red algae.

  16. Early Development of Hyperparathyroidism Due to Loss of PTH Transcriptional Repression in Patients With HNF1beta Mutations?

    NARCIS (Netherlands)

    Ferre, S.; Bongers, E.M.H.F.; Sonneveld, R.; Cornelissen, E.A.M.; Vlag, J. van der; Boekel, G.A.J van; Wetzels, J.F.M.; Hoenderop, J.G.J.; Bindels, R.J.M.; Nijenhuis, T.

    2013-01-01

    Context: Heterozygous mutations or deletions of the transcription factor hepatocyte nuclear factor 1beta (HNF1beta) result in a heterogeneous syndrome characterized by renal cysts and diabetes, together with a variety of other extrarenal and renal manifestations. Interestingly, in several patients

  17. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Li, Yangxin; Yu, XiYong; Lin, ShuGuang; Li, XiaoHong; Zhang, Saidan; Song, Yao-Hua

    2007-01-01

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response to SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies

  18. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of

  19. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...

  20. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as i...

  1. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  2. HDG1 transcription factor targets

    NARCIS (Netherlands)

    Horstman, A.; Boutilier, K.A.; Sanchez Perez, Gabino

    2015-01-01

    The AIL transcription factor BABY BOOM (BBM) is required together with the related PLETHORA proteins for embryo and root meristem development and its expression is sufficient to confer pluripotency and totipotency to somatic tissues. We show that BBM and other AIL proteins interact with multiple

  3. Altered Metabolism and Lipodystrophy in the Early B-Cell Factor 1-Deficient Mouse

    OpenAIRE

    Fretz, Jackie A.; Nelson, Tracy; Xi, Yougen; Adams, Douglas J.; Rosen, Clifford J.; Horowitz, Mark C.

    2010-01-01

    We previously reported that mice deficient for the transcription factor early B-cell factor (Ebf1) exhibit markedly increased numbers of osteoblasts, bone formation rate, and serum osteocalcin, but the bone marrow of Ebf1−/− mice is also striking in its increased marrow adiposity. The purpose of this work was to analyze the metabolic phenotype that accompanies the altered bone morphology of Ebf1−/− mice. Whereas marrow adiposity was increased, deposition of white adipose tissue in other regio...

  4. Regulation of hypoxia-inducible factor-1α (HIF-1α expression by interleukin-1β (IL-1 β, insulin-like growth factors I (IGF-I and II (IGF-II in human osteoarthritic chondrocytes

    Directory of Open Access Journals (Sweden)

    Angelica Rossi Sartori-Cintra

    2012-01-01

    Full Text Available OBJECTIVE: Hypoxia-inducible factor 1 alpha regulates genes related to cellular survival under hypoxia. This factor is present in osteroarthritic chondrocytes, and cytokines, such as interleukin-1 beta, participate in the pathogenesis of osteoarthritis, thereby increasing the activities of proteolytic enzymes, such as matrix metalloproteinases, and accelerating cartilage destruction. We hypothesize that Hypoxia Inducible Factor-1 alpha (HIF-1α can regulate cytokines (catabolic action and/or growth factors (anabolic action in osteoarthritis. The purpose of this study was to investigate the modulation of HIF-1α in human osteoarthritic chondrocytes by interleukin-1 beta (IL-1β and insulin-like growth factors I (IGF-I and II (IGF-II and to determine the involvement of the phosphatidylinositol-3kinase (PI-3K pathway in this process. METHODS: Human osteroarthritic chondrocytes were stimulated with IL-1β, IGF-I and IGF-II and LY294002, a specific inhibitor of PI-3K. Nuclear protein levels and gene expression were analyzed by western blot and quantitative reverse transcription-polymerase chain reaction analyses, respectively. RESULTS: HIF-1α expression was upregulated by IL-1β at the protein level but not at the gene level. IGF-I treatment resulted in increases in both the protein and mRNA levels of HIF-1α , whereas IGF-II had no effect on its expression. However, all of these stimuli exploited the PI-3K pathway. CONCLUSION: IL-1β upregulated the levels of HIF-1α protein post-transcriptionally, whereas IGF-I increased HIF-1α at the transcript level. In contrast, IGF-II did not affect the protein or gene expression levels of HIF-1α . Furthermore, all of the tested stimuli exploited the PI-3K pathway to some degree. Based on these findings, we are able to suggest that Hypoxia inducible Factor-1 exhibits protective activity in chondrocytes during osteoarthritis.

  5. Post-transcriptional gene silencing is involved in resistance of transgenic papayas to Papaya Ringspot Virus

    Czech Academy of Sciences Publication Activity Database

    Ruanjan, P.; Kertbundit, Sunee; Juříček, Miloslav

    2007-01-01

    Roč. 51, č. 3 (2007), s. 517-520 ISSN 0006-3134 Grant - others:BIOTEC, NASDA(TH) BT-B-06-PG-14-4503 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : Carica papaya * reverse transcription PCR * COAT PROTEIN GENE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.259, year: 2007

  6. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyeong-Jun Han

    Full Text Available Peptidyl prolyl isomerase (PIN1 regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF-1α in human colon cancer (HCT116 cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target.

  7. Regulation of Na(+)/K(+)-ATPase by nuclear respiratory factor 1: implication in the tight coupling of neuronal activity, energy generation, and energy consumption.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T

    2012-11-23

    NRF-1 regulates mediators of neuronal activity and energy generation. NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. NRF-1 functionally regulates mediators of energy consumption in neurons. NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between

  8. Serum insulin-like growth factor 1 in the aging horse

    DEFF Research Database (Denmark)

    Lygren, Tone; Hansen, Sanni; Langberg, Henning

    2014-01-01

    BACKGROUND: Insulin-like growth factor 1 (IGF-1) has important roles in anabolic processes in the musculoskeletal system and has been reported to decrease with age in both people and horses. OBJECTIVES: The objective of this study was to determine serum IGF-1 levels in the aging horse from early...... to late adulthood (age range 5-27 years). METHODS: Healthy horses (n = 72) were used in a cross-sectional study, while 37 paired serum samples were available for a longitudinal study. Serum IGF-1 protein was determined using an ELISA kit validated for use in equine samples. RESULTS: No association...... was found between serum IGF-1 levels and age in the cross-sectional study. In the longitudinal study, a latent variable model fitted to the data revealed that horses in general experienced a 5.2% increase of serum IGF-1 levels over a 5-year period, but horses crossing a change point around 9 years of age...

  9. Nutrition, insulin-like growth factor-1 and retinopathy of prematurity

    Science.gov (United States)

    Hård, Anna-Lena; Smith, Lois E.; Hellström, Ann

    2013-01-01

    SUMMARY Retinopathy of prematurity is a potentially blinding disease starting with impaired retinal vessel growth in the neonatal period. Weeks to months later, peripheral retinal hypoxia induces pathologic neo-vascularization that may lead to retinal detachment and blindness. Current treatment strategies target late stage disease and it would be advantageous if retinopathy of prematurity could be prevented. Poor general growth after very preterm birth is a universal problem associated with increased risk of retinopathy. Loss of the maternal–fetal interaction results not only in loss of nutrients but also of other factors provided in utero. The importance of nutrition and factors such as insulin-like growth factor-1 and ω-3 long chain fatty acids for proper retinal vascularization has been defined in animal studies. Increasing evidence of the applicability of these findings to human infants is accumulating. This review focuses on factors essential for neonatal growth and possible strategies to improve growth and prevent retinopathy. PMID:23428885

  10. Resveratrol Reactivates Latent HIV through Increasing Histone Acetylation and Activating Heat Shock Factor 1.

    Science.gov (United States)

    Zeng, Xiaoyun; Pan, Xiaoyan; Xu, Xinfeng; Lin, Jian; Que, Fuchang; Tian, Yuanxin; Li, Lin; Liu, Shuwen

    2017-06-07

    The persistence of latent HIV reservoirs presents a significant challenge to viral eradication. Effective latency reversing agents (LRAs) based on "shock and kill" strategy are urgently needed. The natural phytoalexin resveratrol has been demonstrated to enhance HIV gene expression, although its mechanism remains unclear. In this study, we demonstrated that resveratrol was able to reactivate latent HIV without global T cell activation in vitro. Mode of action studies showed resveratrol-mediated reactivation from latency did not involve the activation of silent mating type information regulation 2 homologue 1 (SIRT1), which belonged to class-3 histone deacetylase (HDAC). However, latent HIV was reactivated by resveratrol mediated through increasing histone acetylation and activation of heat shock factor 1 (HSF1). Additionally, synergistic activation of the latent HIV reservoirs was observed under cotreatment with resveratrol and conventional LRAs. Collectively, this research reveals that resveratrol is a natural LRA and shows promise for HIV therapy.

  11. X-Ray structure and biophysical properties of rabbit fibroblast growth factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jihun; Blaber, Sachiko I.; Irsigler, Andre; Aspinwall, Eric; Blaber, Michael; (FSU)

    2010-01-14

    The rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel pro-angiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the biophysical properties of rabbit FGF-1 are described. The X-ray structure shows that the amino-acid differences between human and rabbit FGF-1 are solvent-exposed and therefore potentially immunogenic, while the biophysical studies identify differences in thermostability and receptor-binding affinity that distinguish rabbit FGF-1 from human FGF-1.

  12. [A preliminary functional study of AT motif binding factor 1 in colorectal cancer].

    Science.gov (United States)

    Ji, Shu-Feng; Zhong, Lin

    2016-06-20

    To investigate the function of AT motif binding factor 1 (ATBF1) in colorectal cancer. ATBF1 protein expression was detected in 146 pairs of colorectal cancer tissues and the adjacent tissues using immunohistochemistry. ATBF1 protein expression was also examined in colorectal cell lines with laser confocal microscopy. ATBF1-A protein expression in colorectal cancer tissues of different differentiation grades and in the colorectal cancer cell lines were detected with Western blotting. The expressions of ATBF1 mRNA in 38 moderately differentiated colorectal cancer tissues and the paired adjacent tissues and in the colorectal cancer cell lines were tested using RT-PCR. ATBF1 protein expression levels in colorectal cancer tissues and adjacent tissues differed significantly (Pcolorectal cancer cell lines. ATBF1 executes the role of a tumor suppressor gene in colorectal cancer, and its protein expression is associated with tumor differentiation and lymph node metastases.

  13. Circulating concentrations of insulin-like growth factor-1 in dogs with naturally occurring mitral regurgitation

    DEFF Research Database (Denmark)

    Pedersen, Henrik Duelund; Falk, Bo Torkel; Häggström, Jens

    2005-01-01

    Insulin-like growth factor-1 (IGF-1), which mediates most effects of growth hormone, has effects on cardiac mass and function, and plays an important role in the regulation of vascular tone. In humans, an inverse relationship between degree of heart failure (HF) and circulating IGF-1 concentrations...... has been found in several studies. In dogs with HF, few studies have focused on IGF-1. We examined circulating IGF-1 concentrations in dogs with mitral regurgitation (MR) caused by myxomatous mitral valve disease. Study 1 included 88 Cavalier King Charles Spaniels (CKCSs) with a broad range...... of asymptomatic MR (median serum IGF-1: 76.7 µg/L; 25-75 percentile, 59.8-104.9 µg/L). As expected, standard body weight and percentage under- or overweight correlated directly with IGF-1. MR (assessed in 4 different ways) did not correlate with IGF-1. In study 2, 28 dogs with severe MR and stable, treated...

  14. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors.

    Science.gov (United States)

    El-Gamal, Mohammed I; Al-Ameen, Shahad K; Al-Koumi, Dania M; Hamad, Mawadda G; Jalal, Nouran A; Oh, Chang-Hyun

    2018-01-17

    Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.

  15. Expression and clinical significance of fibroblast growth factor 1 in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Liu NQ

    2015-03-01

    Full Text Available Naiqing Liu,1,2,* Jingyu Zhang,2,* Shuxiang Sun,2 Liguang Yang,2 Zhongjin Zhou,2 Qinli Sun,2 Jun Niu11Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, People’s Republic of China; 2Department of General Surgery, Yishui Central Hospital, Linyi, People’s Republic of China*These authors contributed equally to this workBackground: The clinical significance of fibroblast growth factor 1 (FGF1 has been revealed in several cancers, including ovarian cancer, breast cancer, and bladder cancer. However, the clinical significance of FGF1 in gastric adenocarcinoma has not been explored.Patients and methods: In our experiments, we systematically evaluated FGF1 expression in 178 cases of gastric adenocarcinoma with immunohistochemistry, and subsequently analyzed the correlation between FGF1 expression and clinicopathologic features. Moreover, FGF1 expression in tumor tissue and corresponding adjacent tissue was detected and compared by real-time polymerase chain reaction. The Kaplan–Meier method and the Cox-regression model were used with univariate and multivariate analysis, respectively, to evaluate the prognostic value of FGF1 in gastric adenocarcinoma.Results: Higher FGF1 expression rate is 56.7% (101/178 in gastric adenocarcinoma. FGF1 expression in gastric adenocarcinoma was significantly higher than adjacent tissue (P<0.0001. Expression of FGF1 is significantly associated with lymph node invasion (P<0.001, distant metastasis (P=0.013, and differentiation (P=0.015. Moreover, FGF1 overexpression was closely related to unfavorable overall survival rate (P=0.021, and can be identified to be an independent unfavorable prognostic factor (P=0.004.Conclusion: FGF1 is an independent prognostic factor, indicating that FGF1 could be a potential molecular drug target in gastric adenocarcinoma.Keywords: fibroblast growth factor 1, gastric adenocarcinoma, prognosis, biomarker, lymph node, gene fusion

  16. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun [Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Muramatsu, Masaaki [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Sudo, Katsuko [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Animal Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Sato, Noriko, E-mail: nsato.epi@tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  17. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    International Nuclear Information System (INIS)

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-01-01

    Highlights: → Genistein (GEN) is a phytoestrogen found in soy products. → GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. → GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. → A high-resolution melting assay was used to screen for epigenetic change. → We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  18. Alternative staffing services. Contract transcription.

    Science.gov (United States)

    Tessier, C

    1992-03-01

    Contract medical transcription services can be of great assistance in meeting the demands for transcription, without jeopardizing patient, physician, or institutional confidentiality. You simply must require the contract service to provide at least the same degree of protection and preservation of confidentiality that you should require inhouse. To achieve this you must make these requirements explicit, comprehensive, comprehensible, believable, and enforceable. Discuss the requirements with prospective contractors. Review them at least annually with existing contractors and when contracts are due for renewal. Be sure to specify the consequence of breaching confidentiality, and if there are breaches, enforce the terms of the contract. Consult your institution's legal counsel both in developing the contract and in enforcing its provisions. Take into consideration your department's and institution's policies, AHIMA's statement on confidentiality, as well as local, state, and federal laws. Above all, never lose sight of the patient. Ultimately, it is not patient information that you are obligated to protect. It is the patient.

  19. Transcriptional control of t lymphocyte differentiation

    NARCIS (Netherlands)

    F.J.T. Staal (Frank); F. Weerkamp (Floor); A.W. Langerak (Anton); R.W. Hendriks (Rudi); H.C. Clevers (Hans)

    2001-01-01

    textabstractInitiation of gene transcription by transcription factors (TFs) is an important regulatory step in many developmental processes. The differentiation of T cell progenitors in the thymus is tightly controlled by signaling molecules, ultimately activating

  20. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  1. Altered metabolism and lipodystrophy in the early B-cell factor 1-deficient mouse.

    Science.gov (United States)

    Fretz, Jackie A; Nelson, Tracy; Xi, Yougen; Adams, Douglas J; Rosen, Clifford J; Horowitz, Mark C

    2010-04-01

    We previously reported that mice deficient for the transcription factor early B-cell factor (Ebf1) exhibit markedly increased numbers of osteoblasts, bone formation rate, and serum osteocalcin, but the bone marrow of Ebf1(-/-) mice is also striking in its increased marrow adiposity. The purpose of this work was to analyze the metabolic phenotype that accompanies the altered bone morphology of Ebf1(-/-) mice. Whereas marrow adiposity was increased, deposition of white adipose tissue in other regions of the body was severely reduced (sc 40-50%, abdominally 80-85%). Brown adipose exhibited decreased lipid deposition. Subcutaneous and perigonadal white adipose tissue showed a decrease in mRNA transcripts for peroxisomal proliferator-activated receptor-gamma2 and CCAAT/enhancer-binding protein-beta in Ebf1(-/-) tissue compared with wild type. Circulating levels of leptin were decreased in Ebf1(-/-) animals compared with their littermate controls (down 65-95%), whereas adiponectin remained comparable after 2 wk of age. Serum analysis also found the Ebf1(-/-) animals were hypoglycemic and hypotriglyceridemic. After ip injection of insulin, the serum glucose levels in Ebf1(-/-) mice took longer to recover, and after a glucose challenge the Ebf1(-/-) animals reached serum glucose levels almost twice that of their wild-type counterparts. Measurement of circulating pancreatic hormones revealed normal or reduced insulin levels in the Ebf1(-/-) mice, whereas glucagon was significantly increased (up 1.7- to 8.5-fold). Metabolically the Ebf1(-/-) mice had increased O(2) consumption, CO(2) production, food and water intake, and activity. Markers for gluconeogenesis, however, were decreased in the Ebf1(-/-) mice compared with controls. In conclusion, the Ebf1-deficient animals exhibit defects in adipose tissue deposition with increased marrow adiposity and impaired glucose mobilization.

  2. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  3. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-11-03

    We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The buccal minor salivary glands as starting point for a metastasizing adenocarcinoma--report of a case.

    Science.gov (United States)

    Ettl, Tobias; Kleinheinz, Johannes; Mehrotra, Ravi; Schwarz, Stephan; Reichert, Torsten Eugen; Driemel, Oliver

    2008-07-30

    With the 2005 WHO classification of salivary gland tumours and its increasingly recognized diagnostic entities, the frequency of adenocarcinoma (NOS) has decreased significantly. This paper describes a fast growing adenocarcinoma (NOS), originating from the minor salivary glands of the left buccal mucosa with a rapid onset of multiple local and distant metastases, especially in the lung. A lung primary was unlikely as the tumour was characterized by positivity for cytokeratin 20 and negativity for the thyroid transcription factor-1 protein (TTF-1) in immunohistochemistry. A rare case of an adenocarcinoma (NOS) of the minor salivary glands with a rapid development and an unfavourable clinical course is reported. It shows that additional immunohistochemical analysis can decisively contribute to determine the site of the primary tumour in cases with unknown primary.

  5. The buccal minor salivary glands as starting point for a metastasizing adenocarcinoma – report of a case

    Science.gov (United States)

    Ettl, Tobias; Kleinheinz, Johannes; Mehrotra, Ravi; Schwarz, Stephan; Reichert, Torsten Eugen; Driemel, Oliver

    2008-01-01

    Background With the 2005 WHO classification of salivary gland tumours and its increasingly recognized diagnostic entities, the frequency of adenocarcinoma (NOS) has decreased significantly. Case presentation This paper describes a fast growing adenocarcinoma (NOS), originating from the minor salivary glands of the left buccal mucosa with a rapid onset of multiple local and distant metastases, especially in the lung. A lung primary was unlikely as the tumour was characterized by positivity for cytokeratin 20 and negativity for the thyroid transcription factor-1 protein (TTF-1) in immunohistochemistry. Conclusion A rare case of an adenocarcinoma (NOS) of the minor salivary glands with a rapid development and an unfavourable clinical course is reported. It shows that additional immunohistochemical analysis can decisively contribute to determine the site of the primary tumour in cases with unknown primary. PMID:18667060

  6. The buccal minor salivary glands as starting point for a metastasizing adenocarcinoma – report of a case

    Directory of Open Access Journals (Sweden)

    Schwarz Stephan

    2008-07-01

    Full Text Available Abstract Background With the 2005 WHO classification of salivary gland tumours and its increasingly recognized diagnostic entities, the frequency of adenocarcinoma (NOS has decreased significantly. Case presentation This paper describes a fast growing adenocarcinoma (NOS, originating from the minor salivary glands of the left buccal mucosa with a rapid onset of multiple local and distant metastases, especially in the lung. A lung primary was unlikely as the tumour was characterized by positivity for cytokeratin 20 and negativity for the thyroid transcription factor-1 protein (TTF-1 in immunohistochemistry. Conclusion A rare case of an adenocarcinoma (NOS of the minor salivary glands with a rapid development and an unfavourable clinical course is reported. It shows that additional immunohistochemical analysis can decisively contribute to determine the site of the primary tumour in cases with unknown primary.

  7. Micropapillary Lung Cancer with Breast Metastasis Simulating Primary Breast Cancer due to Architectural Distortion on Images

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung Ran; Hong, Eun Kyung; Lee, See Yeon [Center for Breast Cancer, National Cancer Center, Goyang (Korea, Republic of); Ro, Jae Yoon [The Methodist Hospital, Weill Medical College of Cornell University, Houston (United States)

    2012-03-15

    A 47-year-old Korean woman with right middle lobe lung adenocarcinoma, malignant pleural effusion, and multiple lymph node and bone metastases, after three months of lung cancer diagnosis, presented with a palpable right breast mass. Images of the right breast demonstrated architectural distortion that strongly suggested primary breast cancer. Breast biopsy revealed metastatic lung cancer with a negative result for estrogen receptor (ER), progesterone receptor (PR) and mammaglobin, and a positive result for thyroid transcription factor-1 (TTF-1). We present a case of breast metastasis from a case of lung cancer with an extensive micropapillary component, which was initially misinterpreted as a primary breast cancer due to unusual image findings with architectural distortion.

  8. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Science.gov (United States)

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    Cancer cachexia is a progressive wasting disease resulting in significant effects on the quality of life and high mortality. Most studies on cancer cachexia have focused on skeletal muscle; however, the heart is now recognized as a major site of cachexia-related effects. To elucidate possible mechanisms, a proteomic study was performed on the left ventricles of colon-26 (C26) adenocarcinoma tumor-bearing mice. The results revealed several changes in proteins involved in metabolism. An integrated pathway analysis of the results revealed a common mediator in hypoxia-inducible factor-1α (HIF-1α). Work by other laboratories has shown that extensive metabolic restructuring in the C26 mouse model causes changes in gene expression that may be affected directly by HIF-1α, such as glucose metabolic genes. M-mode echocardiography showed progressive decline in heart function by day 19 , exhibited by significantly decreased ejection fraction and fractional shortening, along with posterior wall thickness. Using Western blot analysis, we confirmed that HIF-1α is significantly upregulated in the heart, whereas there were no changes in its regulatory proteins, prolyl hydroxylase domain-containing protein 2 (PHD2) and von Hippel-Lindau protein (VHL). PHD2 requires both oxygen and iron as cofactors for the hydroxylation of HIF-1α, marking it for ubiquination via VHL and subsequent destruction by the proteasome complex. We examined venous blood gas values in the tumor-bearing mice and found significantly lower oxygen concentration compared with control animals in the third week after tumor inoculation. We also examined select skeletal muscles to determine whether they are similarly affected. In the diaphragm, extensor digitorum longus, and soleus, we found significantly increased HIF-1α in tumor-bearing mice, indicating a hypoxic response, not only in the heart, but also in skeletal muscle. These results indicate that HIF-1α may contribute, in part, to the metabolic changes

  9. Effects of 17β-estradiol and 2-methoxyestradiol on the oxidative stress-hypoxia inducible factor-1 pathway in hypoxic pulmonary hypertensive rats.

    Science.gov (United States)

    Wang, Li; Zheng, Quan; Yuan, Yadong; Li, Yanpeng; Gong, Xiaowei

    2017-05-01

    The present study aimed to investigate the effects of 17β-estradiol (E2) and 2-methoxyestradiol (2ME) on the oxidative stress-hypoxia inducible factor-1 (OS-HIF-1) pathway in hypoxic pulmonary hypertensive rats. Female Sprague-Dawley rats were divided randomly into 4 groups, as follows: i) Control (Group A); ii) ovariectomy (OVX) + hypoxia (Group B); iii) OVX + hypoxia + E2 injection (Group C); and iv) 2ME injection (Group D). The rats were maintained under hypoxic conditions for 8 weeks, and mean pulmonary artery pressure (mPAP) and pulmonary arteriole morphology were measured. The reactive oxygen species, superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (Cu/ZnSOD) levels in serum were also measured. MnSOD and HIF-1α expression levels in lung tissue were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. The mPAP and arterial remodeling index were significantly elevated following chronic hypoxia exposure; however, experimental data revealed a reduced response in E2 and 2ME intervention rats. Compared with Group A, Group B had significantly elevated oxidative stress levels, as illustrated by increased serum ROS levels, decreased serum SOD and MnSOD levels and decreased MnSOD mRNA and protein expression levels in lung tissue. Furthermore, HIF-1α mRNA and protein expression in Group B was significantly elevated compared with Group A. E2 and 2ME intervention significantly attenuated the aforementioned parameter changes, suggesting that E2 and 2ME partially ameliorate hypoxic pulmonary hypertension. The underlying mechanism of this may be associated with the increase in MnSOD activity and expression and reduction in ROS level, which reduces the levels of transcription and translation of HIF-1α.

  10. 1α, 25-Dihydroxyvitamin D regulates hypoxia-inducible factor-1α in untransformed and Harvey-ras transfected breast epithelial cells.

    Science.gov (United States)

    Jiang, Yan; Zheng, Wei; Teegarden, Dorothy

    2010-12-08

    The purpose of this study was to determine the mechanism by which 1α, 25-dihydroxyvitamin D (1,25(OH)(2)D) alters hypoxia-inducible factor-1α (HIF-1α) protein in untransformed and Harvey-ras (H-ras) oncogene transfected MCF10A breast epithelial cells. Treatment with 1,25(OH)(2)D (10nM) increased both mRNA (2.55±0.6-fold vs. vehicle, p=0.03) and protein levels (2.37±0.3-fold vs. vehicle, pMCF10A cells in 12h, which remained elevated at 24h. However, in H-ras transfected MCF10A cells, 1,25(OH)(2)D treatment increased HIF-1α protein level (2.08±0.38-fold vs. vehicle, p=0.05) at 12h, with no change in mRNA level and HIF-1α protein level returned to baseline after 24h. A transcription inhibitor prevented the 1,25(OH)(2)D induction of HIF-1α protein and mRNA levels in MCF10A cells, but failed to alter the induction of HIF-1α protein level in H-ras transfected MCF10A cells. On the other hand, inhibition of proteasomal degradation prevented the 1,25(OH)(2)D-induced HIF-1α protein level in H-ras transfected MCF10A but not in MCF10A cells. These results support that 1,25(OH)(2)D regulates HIF-1α protein level via transcriptional regulation in MCF10A cells in contrast to through proteosomal degradation with the presence of H-ras oncogene in MCF10A cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor.

    Science.gov (United States)

    Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders

    2008-11-01

    Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors like vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1) and its receptor, IGF-1R, have been implicated in CNV. We have previously shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in-vivo model. In this study we investigated the effect of PPP on VEGF expression both in vitro and in vivo and whether this effect has anti-angiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in choroids and retinal pigment epithelial cells (APRE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed 22-32% (p = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroids were significantly reduced. In cultured APRE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. We could confirm that PPP reduced the level of transcriptional activity of VEGF promoter. PPP reduces IGF-1 dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the therapy of conditions associated with CNV including neovascular AMD.

  12. Saururus cernuus lignans-Potent small molecule inhibitors of hypoxia-inducible factor-1

    International Nuclear Information System (INIS)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R.; Zhang Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou Yudong

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B 1 , manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC 50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF, and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1α protein accumulation without affecting HIF-1α mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors

  13. Insulin-like growth factor-1 levels in children with Beta-thalassemia minor

    Directory of Open Access Journals (Sweden)

    Mehran Karimi

    2008-09-01

    Full Text Available Objective: Growth retardation in children with b-thalassemia major is multifactorial. Some etiologies described for this condition are hemochromatosis, disturbed growth hormone (GH / insulin growth factor-1 (IGF-1 axis, undernutrition and hypermetabolism. It has also been proven that growth retardation is present in b-thalassemia major children despite regular transfusion and chelation. Our aim was to evaluate the level of IGF-1 in b-thalassemia minor subjects and compare it with that in healthy children. Material and Methods: Fifty children aged 6 months to 15 years with b-thalassemia minor (32 males, 18 females and 50 age- and sex-matched normal healthy children were selected. Medical history was taken and complete physical examination was done in each case; IGF-1 level was checked in all cases. This study was done in Shiraz, southern Iran, during 2005.Results: IGF-1 levels were significantly lower in b-thalassemia minor children than normal children (P = 0.015. This result demonstrates that some etiologies of growth failure in b-thalassemia major other than those described to date can exist, which may be shared with b-thalassemia minor in feature or may be transformed by genes that are either expressed or not.Conclusion: We conclude that in addition to that observed in b-thalassemia major, IGF-1 level is also decreased in b-thalassemia minor, and these two may have similar etiologies.

  14. Osteocalcin and serum insulin-like growth factor-1 as biochemical skeletal maturity indicators

    Directory of Open Access Journals (Sweden)

    Tulika Tripathi

    2017-10-01

    Full Text Available Abstract Background With change in concepts of growth determination methods, there is a surge in the measurement of biomarkers for appraisal of growth status. Osteocalcin is a bone-specific protein and was observed to parallel the normal growth curve. Hence, the present study was intended to assess the levels of serum osteocalcin and serum insulin-like growth factor-1 (IGF-1 and compare them with cervical vertebral maturation index (CVMI stages. Methods The cross-sectional study was performed on 150 subjects (75 males and 75 females in the age group of 8–20 years and segregated into six CVMI stages. Serum osteocalcin and IGF-1 were estimated by ELISA. Mann-Whitney U test was used to compare the mean ranks of serum osteocalcin and serum IGF-1 with different CVMI stages. Spearman correlation was performed to find association between serum osteocalcin and serum IGF-1 across six CVMI stages. Results Peak serum IGF-1 levels were obtained at CVMI stages 4 and 3 for males and females, respectively, with insignificant difference between stages 3 and 4 in females. Peak serum osteocalcin levels were found at stage 5 and 3 for males and females with insignificant difference from other stages except stages 5 and 6 in males. A statistically significant correlation was seen between serum IGF-1 and serum osteocalcin across six CVMI stages (P < 0.01. Conclusions Osteocalcin followed IGF-1 across all CVMI stages but showed insignificant interstage differences.

  15. Targeting insulin-like growth factor 1 leads to amelioration of inflammatory demyelinating disease.

    Directory of Open Access Journals (Sweden)

    Matthew F Cusick

    Full Text Available In patients with multiple sclerosis (MS and in mice with experimental autoimmune encephalomyelitis (EAE, proliferating autoreactive T cells play an important role in the pathogenesis of the disease. Due to the importance of these myelin-specific T cells, these cells have been therapeutic targets in a variety of treatments. Previously we found that Lenaldekar (LDK, a novel small molecule, could inhibit exacerbations in a preclinical model of MS when given at the start of an EAE exacerbation. In those studies, we found that LDK could inhibit human T cell recall responses and murine myelin responses in vitro. In these new studies, we found that LDK could inhibit myelin specific T cell responses through the insulin-like growth factor-1 receptor (IGF-1R pathway. Alteration of this pathway led to marked reduction in T cell proliferation and expansion. Blocking this pathway could account for the observed decreases in clinical signs and inflammatory demyelinating disease, which was accompanied by axonal preservation. Our data indicate that IGF-1R could be a potential target for new therapies for the treatment of autoimmune diseases where autoreactive T cell expansion is a requisite for disease.

  16. Serum Insulin-Like Growth Factor 1 and the Risk of Ischemic Stroke: The Framingham Study.

    Science.gov (United States)

    Saber, Hamidreza; Himali, Jayandra J; Beiser, Alexa S; Shoamanesh, Ashkan; Pikula, Aleksandra; Roubenoff, Ronenn; Romero, Jose R; Kase, Carlos S; Vasan, Ramachandran S; Seshadri, Sudha

    2017-07-01

    Low insulin-like growth factor 1 (IGF-1) has been associated with increased risk of atherosclerosis and atrial fibrillation in cross-sectional studies. Yet, prospective data linking IGF-1 levels to the development of ischemic stroke remain inconclusive. We examined prospectively the association between serum IGF-1 levels and incident ischemic stroke. We measured serum IGF-1 levels in 757 elderly individuals (mean age 79±5, 62% women), free of prevalent stroke, from the Framingham original cohort participants at the 22nd examination cycle (1990-1994) and were followed up for the development of ischemic stroke. Cox models were used to relate IGF-1 levels to the risk for incident ischemic stroke, adjusted for potential confounders. During a mean follow-up of 10.2 years, 99 individuals developed ischemic stroke. After adjustment for age, sex, and potential confounders, higher IGF-1 levels were associated with a lower risk of incident ischemic stroke, with subjects in the lowest quintile of IGF-1 levels having a 2.3-fold higher risk of incident ischemic stroke (95% confidence interval, 1.09-5.06; P =0.03) as compared with those in the top quintile. We observed an effect modification by diabetes mellitus and waist-hip ratio for the association between IGF-1 and ischemic stroke ( P risk of incident ischemic stroke, respectively. IGF-1 levels were inversely associated with ischemic stroke, especially among persons with insulin resistance. © 2017 American Heart Association, Inc.

  17. Function of insulin-like growth factor 1 receptor in cancer resistance to chemotherapy.

    Science.gov (United States)

    Yuan, Jingsheng; Yin, Zhijie; Tao, Kaixiong; Wang, Guobing; Gao, Jinbo

    2018-01-01

    Drug resistance is a primary cause of chemotherapeutic failure; however, how this resistance develops is complex. A comprehensive understanding of chemotherapeutic resistance mechanisms may aid in identifying more effective drugs and improve the survival rates of patients with cancer. Insulin-like growth factor 1 receptor (IGF1R), a member of the insulin receptor family, has been extensively assessed for biological activity, and its putative contribution to tumor cell development and progression. Furthermore, researchers have attended to drugs that target IGF1R since IGF1R functions as a membrane receptor. However, how IGF1R participates in chemotherapeutic resistance remains unclear. Therefore, the present study described the IGF1R gene and its associated signaling pathways, and offered details of IGF1R-induced tumor chemoresistance associated with promoting cell proliferation, inhibition of apoptosis, regulation of ATP-binding cassette transporter proteins and interactions with the extracellular matrix. The present study offered additional explanations for tumor chemotherapy resistance and provided a theoretical basis of IGF1R and its downstream pathways for future possible chemotherapy treatment options.

  18. Targeted selected reaction monitoring mass spectrometric immunoassay for insulin-like growth factor 1.

    Directory of Open Access Journals (Sweden)

    Eric E Niederkofler

    Full Text Available Insulin-like growth factor 1 (IGF1 is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating IGF1 from its binding proteins. The workflow also includes an immunoaffinity step using antibody-derivatized pipette tips, followed by elution, trypsin digestion, and LC-MS/MS separation and detection of the signature peptides in a selected reaction monitoring (SRM mode. The resulting quantitative mass spectrometric immunoassay (MSIA exhibited good linearity in the range of 1 to 1,500 ng/mL IGF1, intra- and inter-assay precision with CVs of less than 10%, and lowest limits of detection of 1 ng/mL. The linearity and recovery characteristics of the assay were also established, and the new method compared to a commercially available immunoassay using a large cohort of human serum samples. The IGF1 SRM MSIA is well suited for use in clinical laboratories.

  19. Insulin-like growth factor 1 receptor regulates hypothermia during calorie restriction.

    Science.gov (United States)

    Cintron-Colon, Rigo; Sanchez-Alavez, Manuel; Nguyen, William; Mori, Simone; Gonzalez-Rivera, Ruben; Lien, Tiffany; Bartfai, Tamas; Aïd, Saba; François, Jean-Christophe; Holzenberger, Martin; Conti, Bruno

    2017-09-05

    When food resources are scarce, endothermic animals can lower core body temperature (T b ). This phenomenon is believed to be part of an adaptive mechanism that may have evolved to conserve energy until more food becomes available. Here, we found in the mouse that the insulin-like growth factor 1 receptor (IGF-1R) controls this response in the central nervous system. Pharmacological or genetic inhibition of IGF-1R enhanced the reduction of temperature and of energy expenditure during calorie restriction. Full blockade of IGF-1R affected female and male mice similarly. In contrast, genetic IGF-1R dosage was effective only in females, where it also induced transient and estrus-specific hypothermia in animals fed ad libitum. These effects were regulated in the brain, as only central, not peripheral, pharmacological activation of IGF-1R prevented hypothermia during calorie restriction. Targeted IGF-1R knockout selectively in forebrain neurons revealed that IGF signaling also modulates calorie restriction-dependent T b regulation in regions rostral of the canonical hypothalamic nuclei involved in controlling body temperature. In aggregate, these data identify central IGF-1R as a mediator of the integration of nutrient and temperature homeostasis. They also show that calorie restriction, IGF-1R signaling, and body temperature, three of the main regulators of metabolism, aging, and longevity, are components of the same pathway.

  20. The Effect of Insulin Like Growth Factor-1 on Recovery of Facial Nerve Crush Injury.

    Science.gov (United States)

    Bayrak, Asuman Feda; Olgun, Yuksel; Ozbakan, Ayla; Aktas, Safiye; Kulan, Can Ahmet; Kamaci, Gonca; Demir, Emine; Yilmaz, Osman; Olgun, Levent

    2017-12-01

    The aim of this study is to investigate the efficacy of locally applied insulin-like growth factor 1 (IGF-1) on the recovery of facial nerve functions after crush injury in a rabbit model. The rabbits were randomly assigned into three groups. Group 1 consisted of the rabbits with crush injury alone; group 2, the animals applied saline solution onto the crushed facial nerve and group 3, IGF-1 implemented to the nerve in the same manner. Facial nerve injury was first electrophysiologically studied on 10th and 42nd days of the procedure. The damage to the facial nerves was then investigated histopathologically, after sacrification of the animals. In the electrophysiological study, compound muscle action potential amplitudes of the crushed nerves in the second group were decreased. In pathological specimens of the first and second groups, the orders of axons were distorted; demyelination and proliferation of Schwann cells were observed. However, in IGF-1 treated group axonal order and myelin were preserved, and Schwann cell proliferation was close to normal (Precovery of the facial nerve crush injury in rabbits. IGF-1 was considered worthy of being tried in clinical studies in facial nerve injury cases.

  1. Endocannabinoids participate in placental apoptosis induced by hypoxia inducible factor-1.

    Science.gov (United States)

    Abán, C; Martinez, N; Carou, C; Albamonte, I; Toro, A; Seyahian, A; Franchi, A; Leguizamón, G; Trigubo, D; Damiano, A; Farina, M

    2016-10-01

    During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed towards the relevance of endocannabinoids (ECs) and hypoxia as modulators of trophoblast cell death. However, the relation between these factors is still unknown. In this report, we evaluated the participation of ECs in placental apoptosis induced by cobalt chloride (CoCl2), a hypoxia mimicking agent that stabilizes the expression of hypoxia inducible factor-1 alpha (HIF-1α). We found that HIF-1α stabilization decreased FAAH mRNA and protein levels, suggesting an increase in ECs tone. Additionally, CoCl2 incubation and Met-AEA treatment reduced cell viability and increased TUNEL-positive staining in syncytiotrophoblast layer. Immunohistochemical analysis demonstrated Bax and Bcl-2 protein expression in the cytoplasm of syncytiotrophoblast. Finally, HIF-1α stabilization produced an increase in Bax/Bcl-2 ratio, activation of caspase 3 and PARP cleavage. All these changes in apoptotic parameters were reversed with AM251, a CB1 antagonist. These results demonstrate that HIF-1α may induce apoptosis in human placenta via intrinsic pathway by a mechanism that involves activation of CB1 receptor suggesting a role of the ECs in this process.

  2. Elongation factor 1 β/δ of Echinococcus granulosus and allergic manifestations in human cystic echinococcosis

    Science.gov (United States)

    Ortona, E; Margutti, P; Vaccari, S; Riganò, R; Profumo, E; Buttari, B; Chersi, A; Teggi, A; Siracusano, A

    2001-01-01

    Allergic reactions, such as urticaria, itching and anaphylactic shock, often complicate the course of cystic echinococcosis (CE). To investigate the role of the IgE-immunoreactive recombinant Echinococcus granulosus elongation factor-1 β/δ (EgEF-1 β/δ) in the allergic disorders during CE we determined humoral and cell-mediated responses to this antigen in patients with CE grouped according to the clinical presence or absence of allergic reactions. Immunoblotting analysis showed that serum IgE-binding reactivity to EgEF-1 β/δ differed significantly in patients with and without allergic reactions (38 of 42, 90% vs. 31 of 56, 56%; P < 10−4). EgEF-1 β/δ induced a proliferative response in 14 of 19 (74%) patients' peripheral blood mononuclear cells (PBMC) irrespective of the allergic manifestations and skewed Th1/Th2 cytokine activation towards a preferentially Th2 polarization. Epitope mapping identified an immunodominant epitope of 18 residues with 78% identity and 89% similarity with an IgE-immunoreactive Strongyloides stercoralis antigen. Overall these findings suggest that EgEF-1 β/δ is an allergenic molecule that may be a general marker of the intensity of CE immune response and that could lead to a deeper understanding of the specific antigen-induced mechanisms underlying allergic reactions in the human host. PMID:11472433

  3. Elongation factor 1 beta/delta of Echinococcus granulosus and allergic manifestations in human cystic echinococcosis.

    Science.gov (United States)

    Ortona, E; Margutti, P; Vaccari, S; Riganò, R; Profumo, E; Buttari, B; Chersi, A; Teggi, A; Siracusano, A

    2001-07-01

    Allergic reactions, such as urticaria, itching and anaphylactic shock, often complicate the course of cystic echinococcosis (CE). To investigate the role of the IgE-immunoreactive recombinant Echinococcus granulosus elongation factor-1 beta/delta (EgEF-1 beta/delta) in the allergic disorders during CE we determined humoral and cell-mediated responses to this antigen in patients with CE grouped according to the clinical presence or absence of allergic reactions. Immunoblotting analysis showed that serum IgE-binding reactivity to EgEF-1 beta/delta differed significantly in patients with and without allergic reactions (38 of 42, 90% vs. 31 of 56, 56%; P < 10(-4)). EgEF-1 beta/delta induced a proliferative response in 14 of 19 (74%) patients' peripheral blood mononuclear cells (PBMC) irrespective of the allergic manifestations and skewed Th1/Th2 cytokine activation towards a preferentially Th2 polarization. Epitope mapping identified an immunodominant epitope of 18 residues with 78% identity and 89% similarity with an IgE-immunoreactive Strongyloides stercoralis antigen. Overall these findings suggest that EgEF-1 beta/delta is an allergenic molecule that may be a general marker of the intensity of CE immune response and that could lead to a deeper understanding of the specific antigen-induced mechanisms underlying allergic reactions in the human host.

  4. Sequence-based identification of Japanese Armillaria species using the elongation factor-1 alpha gene.

    Science.gov (United States)

    Hasegawa, Eri; Ota, Yuko; Hattori, Tsutomu; Kikuchi, Taisei

    2010-01-01

    We analyzed the sequences of three DNA regions-the translation elongation factor-1 alpha (EF-1 alpha) gene and the internal transcribed spacer (ITS) and intergenic spacer (IGS) regions of ribosomal DNA-to compare their accuracy in identifying species of Japanese Armillaria. We studied 49 isolates of eight Armillaria species, A. mellea, A. ostoyae, A. nabsnona, A. cepistipes, A. gallica, A. sinapina, A. tabescens and the biological species Nagasawa E (Nag. E). Phylogenetic analyses of the ITS and IGS data helped in identifying A. mellea, A. ostoyae, A. nabsnona, A. tabescens and Nag. E but could not be used to identify A. gallica, A. cepistipes and A. sinapina. Nevertheless our analysis showed that the EF-1 alpha gene was clearly different in the eight examined species. Restriction fragment length polymorphisms (RFLP) of the IGS-1 region could be used to distinguish most species, but the RFLP profiles of some isolates of A. cepistipes and A. sinapina were the same even with four different restriction enzymes. In conclusion, among the techniques examined in this study, analyzing the EF-1 alpha sequence was found to be the most suitable method for identifying different species of Japanese Armillaria.

  5. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  6. Expression of steroidogenic factor 1 in canine cortisol-secreting adrenocortical tumors and normal adrenals.

    Science.gov (United States)

    Galac, S; Kool, M M J; van den Berg, M F; Mol, J A; Kooistra, H S

    2014-10-01

    We report on a screening for the relative messenger RNA (mRNA) and protein expression of steroidogenic factor 1 (SF-1) in normal canine adrenals (n = 10) and cortisol-secreting adrenocortical tumors (11 adenomas and 26 carcinomas). The relative mRNA expression of SF-1 was determined by quantitative real-time polymerase chain reaction analysis and revealed no differences between normal adrenals, adenomas, and carcinomas. Immunohistochemistry demonstrated SF-1 protein expression in a nuclear pattern throughout the normal adrenal cortex and a predominantly nuclear staining pattern in adrenocortical tumors. Of the 15 dogs available for follow up, 7 dogs developed hypercortisolism within 2.5 yr after adrenalectomy, with metastatic disease in 6 dogs and adrenocortical tumor regrowth in 1 dog. The relative SF-1 mRNA expression in dogs with early recurrence was greater (2.46-fold, P = 0.020) than in dogs in remission for at least 2.5 yr after adrenalectomy. In conclusion, we demonstrated the presence of SF-1 expression in normal canine adrenals and adrenocortical tumors. The high SF-1 mRNA expression in carcinomas with early recurrence might indicate its value as a prognostic marker, as well as its potential for therapeutic development. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effects of Insulin-like Growth Factor-1 on Development of Somatic Cell Cloned Bovine Embryos.

    Science.gov (United States)

    Qu, Pengxiang; Li, Yanyan; Deng, Tengfei; Jia, Dan; Qing, Suzhu; Su, Jianmin; Zhang, Yong; Wang, Yongsheng

    2016-06-01

    The aim of this study was to assess the effect of insulin-like growth factor-1 (IGF-1) on the developmental competence of somatic cell nuclear transfer (SCNT) bovine embryos. First, the expression levels of IGF-1 receptor (IGF-1R) and IGF-1 in the oocytes and embryos of different developmental stages were examined. Then the effects of exogenous IGF-1 on the development of SCNT embryos were evaluated both in vitro and in vivo. The results showed that IGF-1 was not expressed in both IVF and SCNT embryos, whereas IGF-1R could be detected throughout the preimplantation stages in both protein and mRNA levels. Also, exogenous IGF-1 had no obvious impact on the developmental competence of IVF embryos. However, it could improve the developmental competence of SCNT embryos in terms of blastocyst developmental rate (31.3% vs. 43.2%, p embryo transfer, there was an upward tendency in both examined terms in the IGF-1-supplemented group when compared with the control group. In conclusion, the present study showed that supplementing exogenous IGF-1 to the culture medium has an obvious positive effect on the development competence of SCNT embryos.

  8. Insulin-like growth factor-1 protects preimplantation embryos from anti-developmental actions of menadione.

    Science.gov (United States)

    Moss, James I; Pontes, Eduardo; Hansen, Peter James

    2009-11-01

    Menadione is a naphthoquinone used as a vitamin K source in animal feed that can generate reactive oxygen species (ROS) and cause apoptosis. Here, we examined whether menadione reduces development of preimplantation bovine embryos in a ROS-dependent process and tested the hypothesis that actions of menadione would be reduced by insulin-like growth factor-1 (IGF-1). Menadione caused a concentration-dependent decrease in the proportion of embryos that became blastocysts. All concentrations tested (1, 2.5, and 5.0 microM) inhibited development. Treatment with 100 ng/ml IGF-1 reduced the magnitude of the anti-developmental effects of the two lowest menadione concentrations. Menadione also caused a concentration-dependent increase in the percent of cells positive for the TUNEL reaction. The response was lower for IGF-1-treated embryos. The effects of menadione were mediated by ROS because (1) the anti-developmental effect of menadione was blocked by the antioxidants dithiothreitol and Trolox and (2) menadione caused an increase in ROS generation. Treatment with IGF-1 did not reduce ROS formation in menadione-treated embryos. In conclusion, concentrations of menadione as low as 1.0 muM can compromise development of bovine preimplantation embryos to the blastocyst stage of development in a ROS-dependent mechanism. Anti-developmental actions of menadione can be blocked by IGF-1 through effects downstream of ROS generation.

  9. Pharmacokinetic properties of 2nd-generation fibroblast growth factor-1 mutants for therapeutic application.

    Directory of Open Access Journals (Sweden)

    Xue Xia

    Full Text Available Fibroblast growth factor-1 (FGF-1 is an angiogenic factor with therapeutic potential for the treatment of ischemic disease. FGF-1 has low intrinsic thermostability and is characteristically formulated with heparin as a stabilizing agent. Heparin, however, adds a number of undesirable properties that negatively impact safety and cost. Mutations that increase the thermostability of FGF-1 may obviate the need for heparin in formulation and may prove to be useful "2nd-generation" forms for therapeutic use. We report a pharmacokinetic (PK study in rabbits of human FGF-1 in the presence and absence of heparin, as well as three mutant forms having differential effects upon thermostability, buried reactive thiols, and heparin affinity. The results support the hypothesis that heparan sulfate proteoglycan (HSPG in the vasculature of liver, kidney and spleen serves as the principle peripheral compartment in the distribution kinetics. The addition of heparin to FGF-1 is shown to increase endocrine-like properties of distribution. Mutant forms of FGF-1 that enhance thermostability or eliminate buried reactive thiols demonstrate a shorter distribution half-life, a longer elimination half-life, and a longer mean residence time (MRT in comparison to wild-type FGF-1. The results show how such mutations can produce useful 2nd-generation forms with tailored PK profiles for specific therapeutic application.

  10. Eukaryotic translation elongation factor 1A induces anoikis by triggering cell detachment.

    Science.gov (United States)

    Itagaki, Keisuke; Naito, Toshihiko; Iwakiri, Ryota; Haga, Makoto; Miura, Shougo; Saito, Yohei; Owaki, Toshiyuki; Kamiya, Sadahiro; Iyoda, Takuya; Yajima, Hirofumi; Iwashita, Shintaro; Ejiri, Shin-ichiro; Fukai, Fumio

    2012-05-04

    Anoikis, apoptosis because of loss of cell anchorage, is crucial for tissue homeostasis. Fibronectin not only provides a scaffold for cell anchorage but also harbors a cryptic antiadhesive site capable of inducing β1-integrin inactivation. In this study, this cryptic antiadhesive site is implicated in spontaneous induction of anoikis. Nontransformed fibroblasts (NIH3T3) adhering to a fibronectin substratum underwent anoikis during serum starvation culture. This anoikis was caused by proteolytic exposure of the cryptic antiadhesive site in fibronectin by matrix metalloproteinase. Eukaryotic elongation factor 1A (eEF1A) was identified as a membrane receptor for the exposed antiadhesive site. Serum starvation raised the membrane residence of eEF1A, and siRNA-based disruption of this increase rendered cells anoikis-resistant. By contrast, cells became more susceptible to anoikis in parallel with increased membrane residence of eEF1A by enforced expression. These results demonstrate that eEF1A acts as a membrane receptor for the cryptic antiadhesive site of fibronectin, which contributes to cell regulation, including anoikis, through negative regulation of cell anchorage.

  11. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  12. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mushfiquddin Khan

    2017-01-01

    Full Text Available Mild traumatic brain injury (TBI, also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO, the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α, a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

  13. Overexpression of Insulin-like Growth Factor-1 Receptor Is Associated With Penile Cancer Progression.

    Science.gov (United States)

    Ball, Mark W; Bezerra, Stephania M; Chaux, Alcides; Faraj, Sheila F; Gonzalez-Roibon, Nilda; Munari, Enrico; Sharma, Rajni; Bivalacqua, Trinity J; Netto, George J; Burnett, Arthur L

    2016-06-01

    To evaluate insulin-like growth factor-1 receptor (IGF1R) expression in penile cancer and its association with oncologic outcomes. Tissue microarrays were constructed from 53 patients treated at our institution. Expression of IGF1R was evaluated using a Her2-like scoring system. Overexpression was defined as 1+ or greater membranous staining. Association of IGF1R expression with pathologic features was assessed with comparative statistics, and association with local recurrence, progression to nodal or distance metastases, or death was assessed with Kaplan-Meier survival analysis and Cox proportional hazard regression models. Overall, IGF1R overexpression was seen in 33 (62%) cases. With a median follow-up of 27.8 months, IGF1R overexpression was associated with inferior progression-free survival (PFS) (P  =  .003). In a multivariable model controlling for grade, T stage, perineural invasion, and lymphovascular invasion, IGF1R expression was independently associated with disease progression (hazard ratio 2.3, 95% confidence interval 1.1-5.1, P  =  .03. Comparing patients without IGF1R overexpression to those with overexpression, 5-year PFS was 94.1% vs 45.8%. IGF1R overexpression was associated with inferior PFS in penile cancer. Drugs that target IGF1R and downstream messengers may have a therapeutic benefit in patients that exhibit IGF1R overexpression. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition.

    Directory of Open Access Journals (Sweden)

    Darren M Hutt

    Full Text Available Hypoxia inducible factor 1α (HIF-1α is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor--eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.

  15. Dysregulation of Elongation Factor 1A Expression is Correlated with Synaptic Plasticity Impairments in Alzheimer's Disease.

    Science.gov (United States)

    Beckelman, Brenna C; Day, Stephen; Zhou, Xueyan; Donohue, Maggie; Gouras, Gunnar K; Klann, Eric; Keene, C Dirk; Ma, Tao

    2016-09-06

    Synaptic dysfunction may represent an early and crucial pathophysiology in Alzheimer's disease (AD). Recent studies implicate a connection between synaptic plasticity deficits and compromised capacity of de novo protein synthesis in AD. The mRNA translational factor eukaryotic elongation factor 1A (eEF1A) is critically involved in several forms of long-lasting synaptic plasticity. By examining postmortem human brain samples, a transgenic mouse model, and application of synthetic human Aβ42 on mouse hippocampal slices, we demonstrated that eEF1A protein levels were significantly decreased in AD, particularly in the hippocampus. In contrast, brain levels of eukaryotic elongation factor 2 were unaltered in AD. Further, upregulation of eEF1A expression by the adenylyl cyclase activator forskolin, which induces long-lasting synaptic plasticity, was blunted in hippocampal slices derived from Tg2576 AD model mice. Finally, Aβ-induced hippocampal long-term potentiation defects were alleviated by upregulation of eEF1A signaling via brain-specific knockdown of the gene encoding tuberous sclerosis 2. In summary, our findings suggest a strong correlation between the dysregulation of eEF1A synthesis and AD-associated synaptic failure. These findings provide insights into the understanding of molecular mechanisms underlying AD etiology and may aid in identification of novel biomarkers and therapeutic targets.

  16. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    in their regulation at multiple steps of their activation. Plant signaling in connection with transcription factor regulation is an exciting field, allowing research on multiple regulatory mechanisms. This thesis shed light on the importance of integrating all steps of transcription factor activation in a regulatory......Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model...

  17. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.

    Science.gov (United States)

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O; Rydén, Mikael; Horowitz, Mark C; Arner, Peter

    2014-06-03

    White adipose tissue (WAT) morphology characterized by hypertrophy (i.e., fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance, and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation, and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High-fat diet intervention in Ebf1(+/-) mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy, and insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    Science.gov (United States)

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.; Arner, Peter

    2014-01-01

    Summary White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High fat diet-intervention in Ebf1+/− mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy and insulin resistance. PMID:24856929

  19. Interferon-regulatory factor-1 (IRF1) regulates bevacizumab induced autophagy

    Science.gov (United States)

    Henry, Verlene; Tiao, Ningyi; de Groot, John F.

    2015-01-01

    Purpose Antiangiogenic therapy is commonly being used for the treatment of glioblastoma. However, the benefits of angiogenesis inhibitors are typically transient and resistance often develops. Determining the mechanism of treatment failure of the VEGF monoclonal antibody bevacizumab for malignant glioma would provide insight into approaches to overcome therapeutic resistance. Experimental Design In this study, we evaluated the effects of bevacizumab on the autophagy of glioma cells and determined target genes involving in the regulation of bevacizumab-induced autophagy. Results We demonstrated that bevacizumab treatment increased expression of autophagy markers and autophagosome formation in cell culture experiments as well as in in vivo studies. Gene expression profile analysis performed on murine xenograft models of glioblastoma showed increased transcriptional levels of STAT1/IRF1 signaling in bevacizumab resistant tumors compared to control tumors. In vitro experiments showed that bevacizumab treatment increased IRF1 expression in a dose and time dependent manner, which was coincident with bevacizumab-mediated autophagy. Down regulation of IRF1 by shRNA blocked autophagy and increased AIF-dependent apoptosis in bevacizumab-treated glioma cells. Consistently, IRF1 depletion increased the efficacy of anti-VEGF therapy in a glioma xenograft model, which was due to less bevacizumab-promoted autophagy and increased apoptosis in tumors with down-regulated IRF1. Conclusions These data suggest that IRF1 may regulate bevacizumab-induced autophagy, and may be one important mediator of glioblastoma resistant to bevacizumab. PMID:26362401

  20. Cancer cell-associated cytoplasmic B7–H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Kyoung [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Park, Sae-Gwang; Choi, Il-Whan [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Soo-Woong [Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Sang Min [Department of Internal Medicine, Division of Hematology/Oncology, Busan Paik Hospital, Inje University, Busan 614-735 (Korea, Republic of); Choi, Inhak, E-mail: miccih@inje.ac.kr [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of)

    2015-04-03

    Aberrant B7–H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7–H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7–H4 transcription in primary CD138{sup +} multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7–H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7–H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatin immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7–H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7–H4 expression. Furthermore, knockdown of cytoplasmic B7–H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7–H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7–H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment. - Highlights: • Hypoxia upregulates B7–H4 transcription and protein expression. • Hypoxia-induced B7–H4 is detected in the cytoplasm, but not on membrane. • ChIP assay reveals a binding of HIF-1α to B7–H4 promoter at HRE site. • Knockdown and pharmacological inhibition of HIF-1α reduce B7–H4 expression. • B7–H4 knockdown decrease the number of cells in S-phase of cell cycle.

  1. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  2. Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia.

    Science.gov (United States)

    Zhu, Tingna; Zhan, Lixuan; Liang, Donghai; Hu, Jiaoyue; Lu, Zhiwei; Zhu, Xinyong; Sun, Weiwen; Liu, Liu; Xu, En

    2014-10-01

    Hypoxia administered after transient global cerebral ischemia (tGCI) has been shown to induce neuroprotection in adult rats, but the underlying mechanisms for this protection are unclear. Here, we tested the hypothesis that hypoxic postconditioning (HPC) induces neuroprotection through upregulation of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF), and that this involves phosphatidylinositol-3-kinase (PI3K), p38 mitogen-activated protein kinase (p38 MAPK), and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) pathways. The expression of HIF-1α, VEGF, and cleaved caspase-9 were determined by immunohistochemistry and Western blot. As pharmacologic interventions, the HIF-1α inhibitor 2-methoxyestradiol (2ME2), PI3K inhibitor LY294002, p38 MAPK inhibitor SB203580, and MEK inhibitor U0126 were administered before HPC or after tGCI. We found that HPC maintained the higher expression of HIF-1α and VEGF and decreased cleaved caspase-9 levels in CA1 after tGCI. These effects were reversed by 2ME2 administered before HPC, and the neuroprotection of HPC was abolished. LY294002 and SB203580 decreased the expression of HIF-1α and VEGF after HPC, whereas U0126 increased HIF-1α and VEGF after tGCI. These findings suggested that HIF-1α exerts neuroprotection induced by HPC against tGCI through VEGF upregulation and cleaved caspase-9 downregulation, and that the PI3K, p38 MAPK, and MEK pathways are involved in the regulation of HIF-1α and VEGF.

  3. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qi-lin; Yang, Tian-lun [Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Yin, Ji-ye [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan (China); Peng, Zhen-yu [Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Yu, Min [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan (China); Chen, Fang-ping, E-mail: xychenfp@public.cs.hn.Cn [Department of Haematology, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China)

    2009-11-06

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 {mu}g/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT{sub 1}) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 {mu}mol/L) induced HUVECs arrested at G{sub 0}/G{sub 1}, enhanced the expression level of AT{sub 1} mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT{sub 1} mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G{sub 0}/G{sub 1} and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.

  4. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S. [Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Li, Zhiguo [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Chao, Nelson J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Department of Immunology, Duke University Medical Center, Durham, North Carolina (United States); Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Chen, Benny J., E-mail: chen0032@mc.duke.edu [Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States)

    2013-03-15

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells.

  5. Interaction between nucleotide binding sites on chloroplast coupling factor 1 during ATP hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Leckband, D.; Hammes, G.G.

    1987-04-21

    The initial hydrolysis of radioactively-labelled CaATP by chloroplast coupling factor 1 was studied with the quenched-flow method. The time course of hydrolysis can be described as a first-order conversion of the enzyme to an active form followed by steady-state formation of product. The rate constant for the first-order process is independent of substrate concentration but increased hyperbolically to a limiting value of 0.43 s/sup -1/ with increasing concentrations of free Ca/sup 2 +/. A mechanism involving a Ca/sup 2 +/-triggered conversion to an active form of the enzyme is consistent with the data. The steady-state rate varied sigmoidally with the CaATP concentration. Initial exchange of tightly bound ADP is complex: approx. 50% of the bound nucleotide is lost within 30 s, with complete exchange requiring several minutes. The first-order rate constant characterizing the rapid phase of the reaction increases hyperbolically to a limiting value of 0.26 s/sup -1/ as the concentration of CaATP is increased, indicating that the binding of CaATP to the enzyme promotes the exchange process. Modification of the quenched-flow apparatus permitted measurement of the rate of nucleotide exchange during steady-state catalysis. The value of the first-order rate constant characterizing this process is similar to the catalytic rate constant determined under identical conditions. When MgATP is tightly bound to the enzyme, none of the kinetic properties of the enzyme described above were significantly changes. The results obtained suggest a mechanism in which two sites on the enzyme participate in catalysis. Several possible mechanisms consistent with the data are discussed.

  6. Serum insulin-like growth factor-1 levels in patients with pseudoexfoliation syndrome and glaucoma.

    Science.gov (United States)

    Dogan, Aysun Sanal; Kabatas, Naciye; Erden, Gonul; Celikay, Osman; Arzuhal, Abdullah Ercan; Gurdal, Canan

    2017-04-01

    Insulin-like growth factor-1 (IGF-1) is altered in several neurodegenerative diseases, the association between serum IGF-1 levels and glaucoma has not been evaluated. This study was designed to evaluate whether serum IGF-1 levels are different in patients with Pseudoexfoliation (PEX) with or without glaucoma. The study was conducted with 110 participants aged 65 years or older who were divided into three groups: group 1, patients with PEX syndrome; group 2, patients with PEX glaucoma; and group 3, participants without PEX or glaucoma. All participants underwent full ophthalmological examination and a detailed medical history was recorded. Patients with known neurodegenerative diseases other than PEX glaucoma were excluded. Serum IGF-1 levels were measured by automated chemiluminescent assay. Groups 1, 2, and 3 included 35, 34, and 41 patients, respectively; there were no differences regarding age, gender, or systemic disease status. There were also no statistically significant differences between the groups in terms of IGF-1 levels, which were 91.7 ± 39.1, 101.1 ± 40.2, and 107.2 ± 43.8 ng/ml for groups 1, 2, and 3, respectively (p = 0.276). Serum IGF-1 levels were similar by gender, the presence of systemic disease, status of diabetes mellitus, and laterality of the PEX material. There was no correlation between the cup-to-disk ratios and IGF-1 levels (r = -0.214, p = 0.223). IGF-1 levels in the circulation did not differ in the presence of PEX syndrome with or without glaucoma. This may indicate that the neurodegenerative process is local rather than systemic.

  7. Expression of hypoxia-inducible factor-1α and erythropoietin at corneal neovascularization in rats

    Directory of Open Access Journals (Sweden)

    Ji-Min Wang

    2014-12-01

    Full Text Available AIM: To describe the expression of hypoxia-inducible factor-1α(HIF-1αand erythropoietin(EPOin rats' corneal and evaluate its potential effect on corneal neovascularization(CNVgrowth. METHODS: The young SD rats(3mowas chosen and randomly divided into 2 groups, which were experimental group and normal control group. CNV model was established by alkali burn, and the length and area of CNV was observed everyday after operation by slit lamp. After that, the expression of HIF-1α and EPO was measured by SABC and RT-PCR methods at 1, 3, 5, 7, and 14d after alkali burn. The data was analyzed by SPSS 20.0. RESULTS: The area of CNV was increasing at 1, 3, 5, 7, and 14d after alkali burn, and the peak point appear at 7d. The growth speed was decreased after 14d. SABC method told us that no HIF-1α and very tiny amount EPO was detected at normal rats' corneal. The expression of the two factors increased at 1d after alkali burn in corneal epithelium and endoderm. The results of RT-PCR showed that a few amounts of HIF-1α and EPO mRNA were detected at normal group. The expression of the two factors was increased at 3d after alkali burn, and the peak value was found at 7d, however, it was decreased at 14d. Statistical difference was found at different time(PCONCLUSION: HIF-1α and EPO is closely related to CNV.

  8. Association Between Omentin, Visfatin and Insulin-Like Growth Factor-1 in Women With Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Goodarzi

    2014-12-01

    Full Text Available Background Adipokines that are produced by adipose tissue have extensive effects on carbohydrate and lipid metabolism and also on the pathogenesis of the metabolic syndrome (MetS. Objectives This study aimed to measure the concentrations of omentin-1, visfatin and insulin-like growth factor-1 (IGF-1 as likely markers of metabolic syndrome and also to demonstrate their associations in women with MetS. Materials and Methods Eighty women with MetS and eighty healthy women as controls participated in this study. Blood pressure, waist circumference, body mass index (BMI, and serum biochemical parameters were determined in all subjects. The serum level of IGF-1, omentin-1 and visfatin were assessed using the enzyme linked immunosorbent assay (ELISA. The association between omentin, visfatin and IGF-1 was also determined in these women. Results Significantly lower levels of omentin-1 and IGF-1 were observed in MetS subjects compared to the controls (P = 0.009 and < 0.001 respectively. However, a significant difference was not observed in visfatin concentration between the two studied groups (P = 0.67. A positive association was observed between omentin-1, visfatin and IGF-1 in the MetS group. Conclusions Our findings indicated a lower level of both omentin-1 and IGF-1 in women with MetS; this might play a role in the pathogenesis of MetS. Furthermore, the main finding of the current investigation was the association between omentin, visfatin and IGF-1; however determining the molecular mechanism of the observed relationships needs further studies.

  9. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    International Nuclear Information System (INIS)

    Ma, Qi-lin; Yang, Tian-lun; Yin, Ji-ye; Peng, Zhen-yu; Yu, Min; Liu, Zhao-qian; Chen, Fang-ping

    2009-01-01

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 μg/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT 1 ) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 μmol/L) induced HUVECs arrested at G 0 /G 1 , enhanced the expression level of AT 1 mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT 1 mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G 0 /G 1 and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.

  10. Expression and purification of recombinant truncated human keratinocyte growth factor-1

    International Nuclear Information System (INIS)

    Deng Lin; Ma Jisheng; Liu Xiaoju; Wang Xiaojie; Li Xiaokun; Gong Shouliang; Wang Huiyan; Tian Haishan

    2010-01-01

    Objective: To construct the genetic engineering bacteria highly expressing 23 amino acids human keratinocyte growth factor-1 (rhKGF1 dest23 ) missing N terminal, and provide experimental data for development of new drug for treatment of oral mucositis after radiotherapy and chemotherapy. Methods: PCR was used to synthese 23 amino acids rhKGF1 dest23 missing N terminal and sumo gene fragments, and construct four kinds of recombinant prokaryotic expression vectors: pET22b-rhKGF1 dest23 , pET22b-sumo-rhKGF1 dest23 , pET3c-rhKGF1 dest23 and pET3c-sumo-rhKGF1 dest23 , then they were transformed into prokaryotic expression host bacteria: Rosetta (DE3) plysS, BL21 (DE3), BL21 (DE3) Star plysS, origima(DE3) and BL21AI, the best expression combination of plasmid and host strain of rhKGF1 dest23 protein was screened and purified by CM ion-exchange and heparin affinity chromatography and identified with Western blotting. Results: pET22b-rhKGF1 dest23 plasmid and the BL21AI host bacteria was the best combination of expression, after induced by IPTG and arabinose, the majority of recombinant protein was expressed in soluble form, accounting for about 12% of the total bacterial proteins. Its purity reached to more than 95% of the protein after two steps chromatography, then conformed with Western blotting. Conclusion: Human genetic engineering bacteria of KGF1 dest23 is successfully constructed and induced by IPTG and arabinose, then after CM weak cation exchange and heparin affinity chromatography, the purified rhKGF1 dest23 protein is obtained. (authors)

  11. Interferon regulatory factor 1 priming of tumour-derived exosomes enhances the antitumour immune response.

    Science.gov (United States)

    Yang, Mu-Qing; Du, Qiang; Varley, Patrick R; Goswami, Julie; Liang, Zhihai; Wang, Ronghua; Li, Hui; Stolz, Donna B; Geller, David A

    2018-01-01

    Tumour-derived exosomes (TEXs) have a potential for application in cancer vaccines. Whether TEXs after induction by interferon regulatory factor 1 (IRF-1) are capable of enhancing the antitumour response remains to be determined. Exosomes released by tumour cells infected with IRF-1-expressing adenovirus (IRF-1-Exo) or treated with interferon-γ (IFN-Exo) were isolated via ultracentrifugation. The IRF-1 target proteins IL-15Rα and MHC class I (MHC-I) were analysed by western blot. Exosomes along with CpG adjuvant were injected into tumour models to assess the antitumour effects. Tumours were harvested for immunofluorescence staining. Splenocytes from tumour-bearing mice were co-cultured with tumour cells. The IFNγ-positive and granzyme B-positive CD8α+ splenocyte cells were quantified by flow cytometry. The IRF-1-Exo or IFN-Exo displayed increased IL-15Rα and MHC-I expression. Injection of IRF-1-Exo or IFN-Exo combined with CpG had improved antitumour effects in mice. This effect may be a result of increased infiltration of tumours by CD4+ and CD8α+ T cells. Antibody-mediated depletion of CD4+ or CD8+ T cells abrogated the antitumour effects. Splenocytes isolated from CpG+IRF-1-Exo-injected Hepa 1-6 tumour mice had increased IFNγ-positive and granzyme B-positive CD8+ cells after co-culturing with Hepa 1-6 cells as compared with MC38 cells. The IRF-1 priming of TEXs enhances antitumour immune response.

  12. Bax Interacting Factor-1 Promotes Survival and Mitochondrial Elongation in Neurons

    Science.gov (United States)

    Wang, David B.; Uo, Takuma; Kinoshita, Chizuru; Sopher, Bryce L.; Lee, Rona J.; Murphy, Sean P.; Kinoshita, Yoshito; Garden, Gwenn A.; Wang, Hong-Gang

    2014-01-01

    Bax-interacting factor 1 (Bif-1, also known as endophilin B1) is a multifunctional protein involved in the regulation of apoptosis, mitochondrial morphology, and autophagy. Previous studies in non-neuronal cells have shown that Bif-1 is proapoptotic and promotes mitochondrial fragmentation. However, the role of Bif-1 in postmitotic neurons has not been investigated. In contrast to non-neuronal cells, we now report that in neurons Bif-1 promotes viability and mitochondrial elongation. In mouse primary cortical neurons, Bif-1 knockdown exacerbated apoptosis induced by the DNA-damaging agent camptothecin. Neurons from Bif-1-deficient mice contained fragmented mitochondria and Bif-1 knockdown in wild-type neurons also resulted in fragmented mitochondria which were more depolarized, suggesting mitochondrial dysfunction. During ischemic stroke, Bif-1 expression was downregulated in the penumbra of wild-type mice. Consistent with Bif-1 being required for neuronal viability, Bif-1-deficient mice developed larger infarcts and an exaggerated astrogliosis response following ischemic stroke. Together, these data suggest that, in contrast to non-neuronal cells, Bif-1 is essential for the maintenance of mitochondrial morphology and function in neurons, and that loss of Bif-1 renders neurons more susceptible to apoptotic stress. These unique actions may relate to the presence of longer, neuron-specific Bif-1 isoforms, because only these forms of Bif-1 were able to rescue deficiencies caused by Bif-1 suppression. This finding not only demonstrates an unexpected role for Bif-1 in the nervous system but this work also establishes Bif-1 as a potential therapeutic target for the treatment of neurological diseases, especially degenerative disorders characterized by alterations in mitochondrial dynamics. PMID:24523556

  13. Effects of insulin-like growth factor-1 (IGF-1) and amifostine in spinal cord reirradiation

    International Nuclear Information System (INIS)

    Nieder, C.; Andratschke, N.; Price, R.E.; Rivera, B.; Ang, K. Kian

    2005-01-01

    Purpose: To test whether insulin-like growth factor-1 (IGF-1) and amifostine modulate the reirradiation tolerance of rat cervical spinal cord. Initial experiments by the authors' group suggested that administration of each agent alone significantly increased the median latent time to radiation myelopathy (RM) in previously unirradiated animals but did not change the dose-response relationship. Because of different modes of action, a follow-up study was undertaken to test the combined treatment. Material and Methods: The cervical spinal cord of 51 adult Fisher F-344 rats received a single fraction of 16 Gy, which corresponds to approximately 75% of the median paresis dose (ED 50 ), followed 5 months later by a second radiation dose, which ranged from 17 to 21 Gy. The study animals received a single intrathecal injection of 0.3 mg amifostine into the cisterna magna 30-60 min before reirradiation plus three subcutaneous doses of IGF-1 (700 μg) starting from 24 h before to 24 h after reirradiation. Control animals received saline injections via the same routes. Animals were followed until RM developed or until 12 months from reirradiation. Histopathologic examinations were performed post mortem. Results: No animals showed any neurologic abnormalities before reirradiation. RM occurred in controls versus treated rats after a mean latency of 218 versus 314 days (19 Gy; p=0.11) and 104 versus 186 days (21 Gy; p=0.002) from second dose (Figure 1). ED 50 was 18.2 versus 19.4 Gy (p=0.15; Figure 2). Treatment with IGF-1 and amifostine did not significantly influence the rates of tumor induction or intercurrent death. Conclusion: IGF-1 and amifostine significantly reduced RM rates after 21 Gy. The shift of the dose-response curve suggests an increase of the ED 50 for single-dose treatment by approximately 7%. Thus, brief therapeutic intervention might slightly decrease radiation-induced neurotoxicity in a retreatment situation. (orig.)

  14. [Effect of Xinmailong on hypoxia-inducible factor-1alpha expression in neonatal rats with asphyxia].

    Science.gov (United States)

    Huang, Li-Xin; Wu, Xing-Heng

    2009-08-01

    Xinmailong, a compound extracted from Periplaneta americana, is used for the treatment of cardiovascular diseases. This study investigated the effects of Xinmailong on myocardial hypoxia-inducible factor-1alpha (HIF-1alpha) and plasma endothelin-1(ET-1) levels in neonatal rats with asphyxia and explored the protection mechanism of Xinmailong in hypoxia-ischemic myocardial injury. Seven-day-old Sprague-Dawley rats were randomly divided into three groups (n=30 each): sham-operated, asphyxia, Xinmailong-treated asphyxia. Each group was randomly subdivided into three groups according to the observed time points: 6 hrs, 24 hrs and 72 hrs. Xinmailong (5 mg/kg) was intraperitoneally injected to the rats in the Xinmailong-treated group five minutes before asphyxia. Myocardial HIF-1alpha expression, and plasma ET-1 and creatine kinase (CK) levels were measured. The histopathologic changes of the myocardium were observed by hematoxylin-eosin staining. Four rats died in the asphyxia group while only one died in the Xinmailong-treated group during the experiment. The plasma ET-1 and CK levels as well as myocardial HIF-1alpha expression increased at 6 hrs, reached a peak at 24 hrs, and declined at 72 hrs after asphyxia in the asphyxia group, being higher than that in the sham-operated group (Pasphyxia in the asphyxia group. Myocardial HIF-1alpha expression was positively correlated with plasma ET-1 levels (r=0.876, Pasphyxia group (PAsphyxia leads to increase in myocardial HIF-1alpha expression and plasma levels of ET-1 and CK. Xinmailong can reduce the myocardial expression of HIF-1alpha and decrease plasma ET-1 levels, thus alleviating hypoxia-ischemic myocardial injury.

  15. Changes in Insulin-like Growth Factor-1 Level in Patients with Sepsis and Septic Shock

    Directory of Open Access Journals (Sweden)

    Sang Hoon Lee

    2016-11-01

    Full Text Available Background Despite many ongoing, prospective studies on the topic, sepsis still remains one of the main causes of death in hospital. The hormone insulin-like growth factor 1 (IGF-1 has a similar molecular structure to that of insulin. IGF-1 exerts anabolic effects and plays important roles in both normal physiology and pathologic processes. Previous studies have observed low serum IGF-1 level in patients with critical illnesses. Here, we evaluated changes in IGF-1 level based on survival of septic patients. Methods We evaluated 140 patients with sepsis and septic shock (21 with sepsis and 119 with septic shock admitted to the intensive care unit of a university-affiliated hospital in Korea. Serum IGF-1 level was measured on days 0, 1, 3, and 7. Patients with liver disease were excluded from this study. All data were analyzed using SPSS version 20 (SPSS Inc., Chicago, IL, USA. Results Patients with septic shock had significantly lower serum IGF-1 level on days 1 and 3 than patients without septic shock (p = 0.002 and p = 0.007, respectively. Generally, there was a negative relationship between IGF-1 and serum cortisol levels; however, this relationship was only significant on day 3 (p = 0.029. Furthermore, renin showed significantly negative correlation with IGF-1 on day 3 (p = 0.038. IGF-1 level did not show significant difference between survivors and non-survivors. Conclusions Our results showed that IGF-1 was associated with septic shock, and that the IGF-1 axis is severely disrupted in septic patients. Additionally, serum cortisol and renin levels were associated with IGF-1 level.

  16. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells.

    Science.gov (United States)

    Zeng, Ling; Zhou, Hai-Yun; Tang, Na-Na; Zhang, Wei-Feng; He, Gui-Jun; Hao, Bo; Feng, Ya-Dong; Zhu, Hong

    2016-05-28

    To investigate the influence of phosphatidylinositol-3-kinase protein kinase B (PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, mRNA and activity levels of hypoxia inducible factor-1 alpha (HIF-1α), glucose transporter 1, hexokinase-II, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting siRNA to assess impact of the high expression of HIF-1α on glycolysis. HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymes and the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions. The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.

  17. Leptin and insulin growth factor 1: diagnostic markers of the refeeding syndrome and mortality.

    Science.gov (United States)

    Elnenaei, Manal O; Alaghband-Zadeh, Jamshid; Sherwood, Roy; Awara, Mahmoud A; Moniz, Caje; le Roux, Carel W

    2011-09-01

    Refeeding syndrome is difficult to diagnose since the guidelines for identifying those at risk are largely based on subjective clinical parameters and there are no predictive biochemical markers. We examined the suitability of insulin-like growth factor 1 (IGF1) and leptin as markers to identify patients at risk of the refeeding syndrome before initiation of parenteral nutrition (PN). A total of thirty-five consecutive patients referred for commencement of PN were included. Serum leptin and IGF1 were measured before starting PN. Electrolytes, liver and renal function tests were conducted before and daily for 1 week after initiating PN. The primary outcome was a decrease in phosphate 12-36 h after initiating PN. 'Refeeding index' (RI) was defined as leptin × IGF1 divided by 2800 to produce a ratio of 1·0 in patients who are well nourished. RI had better sensitivity (78 %; 95 % CI 40, 97 %) and specificity (78 %; 95 % CI 40, 97 %) with a likelihood ratio of 3·4, at a cut-off value of 0·19 for predicting a ≥ 30 % decrease in phosphate concentration within 12-36 h after starting PN, compared with IGF1 or leptin alone. However, IGF1 was a better predictor of mortality than either leptin or the RI. The present study is the first to derive and test the 'RI', and find that it is a sensitive and specific predictor of the refeeding syndrome in hospitalised patients before starting PN.

  18. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan-Ying, E-mail: biozyy@163.com [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Huang, Xin-Yuan [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000 (China); Chen, Zheng-Wang [Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  19. Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2017-01-01

    Full Text Available Hypoxia inducible factor 1α (HIF-1α, a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs, were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit.

  20. Fluvastatin increases insulin-like growth factor-1 gene expression in rat model of metabolic syndrome

    International Nuclear Information System (INIS)

    Mansy, Wael H.; Sourour, Doaa A.; Shaker, Olfat G.; Mahfouz, Mahmoud M.

    2008-01-01

    Insulin-like growth factor-1 (IGF-1) was found to have a role in both glucose homeostasis and cardiovascular diseases. The present study was designed to compare the effects of fluvastatin and metformin on IGF-1 mRNA expression within the liver and other individual components of the metabolic syndrome induced in rats by high fructose feeding. Rats fed 60% fructose in diet for 6 weeks were treated daily with fluvastatin (3.75 mg/kg/day) during the last two weeks and were compared with untreated fructose fed group. Fasting levels of plasma cholesterol, triglyceride, glucose, insulin, nitric oxide products, IGF-1 mRNA within the liver as well as systolic blood pressure and body weight were determined. Compared to control rats, the fructose fed group developed hypertension, hyperlipidemia, hyperinsulinemia, hyperglycemia and endothelial dysfunction as well as decreased levels of plasma IGF-1 and its mRNA within the liver. Fructose fed rats treated with fluvastatin or metformin for 2 weeks showed significant decrease in plasma cholesterol, triglyceride, insulin and glucose levels compared to untreated fructose fed group. Also, both drugs increased significantly plasma levels of nitric oxide products and IGF-1 together with significant increase in IGF-1 mRNA within the liver. However, only metformin treated rats showed significant decrease in systolic blood pressure compared to fructose fed group. This study showed that in a rat model of insulin resistance, fluvastatin improves the metabolic profile and increases plasma level of IGF-1 and its gene expression as effective as metformin. (author)

  1. Gene transcription and electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  2. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  3. Regulation of glucose transporter protein-1 and vascular endothelial growth factor by hypoxia inducible factor 1α under hypoxic conditions in Hep-2 human cells.

    Science.gov (United States)

    Xu, Ou; Li, Xiaoming; Qu, Yongtao; Liu, Shuang; An, Jie; Wang, Maoxin; Sun, Qingjia; Zhang, Wen; Lu, Xiuying; Pi, Lihong; Zhang, Min; Shen, Yupeng

    2012-12-01

    The present study evaluated the regulation of glucose transporter protein-1 (Glut-1) and vascular endothelial growth factor (VEGF) by hypoxia inducible factor 1α (HIF-1α) under hypoxic conditions in Hep-2 human cells to explore the feasibility of these three genes as tumor markers. Hep-2 cells were cultured under hypoxic and normoxic conditions for 6, 12, 24, 36 and 48 h. The proliferation of Hep-2 cells was evaluated using an MTT assay. The protein and mRNA expression levels of HIF-1α, Glut-1 and VEGF were detected using the S-P immunocytochemical method, western blotting and reverse transcription polymerase chain reaction (RT-PCR). The results revealed that the expression levels of HIF-1α, Glut-1 and VEGF protein in Hep-2 cells were significantly elevated under hypoxic conditions compared with those under normoxic conditions over 36 h. Under hypoxic conditions, mRNA levels of HIF-1α were stable, while mRNA levels of Glut-1 and VEGF changed over time. In conclusion, Glut-1 and VEGF were upregulated by HIF-1α under hypoxic conditions in a time-dependent manner in Hep-2 cells and their co-expression serves as a tumor marker.

  4. LW6, a hypoxia-inducible factor 1 inhibitor, selectively induces apoptosis in hypoxic cells through depolarization of mitochondria in A549 human lung cancer cells.

    Science.gov (United States)

    Sato, Mariko; Hirose, Katsumi; Kashiwakura, Ikuo; Aoki, Masahiko; Kawaguchi, Hideo; Hatayama, Yoshiomi; Akimoto, Hiroyoshi; Narita, Yuichiro; Takai, Yoshihiro

    2015-09-01

    Hypoxia‑inducible factor 1 (HIF‑1) activates the transcription of genes that act upon the adaptation of cancer cells to hypoxia. LW6, an HIF‑1 inhibitor, was hypothesized to improve resistance to cancer therapy in hypoxic tumors by inhibiting the accumulation of HIF‑1α. A clear anti‑tumor effect under low oxygen conditions would indicate that LW6 may be an improved treatment strategy for cancer in hypoxia. In the present study, the HIF‑1 inhibition potential of LW6 on the growth and apoptosis of A549 lung cancer cells in association with oxygen availability was evaluated. LW6 was observed to inhibit the expression of HIF‑1α induced by hypoxia in A549 cells at 20 mM, independently of the von Hippel‑Lindau protein. In addition, at this concentration, LW6 induced hypoxia‑selective apoptosis together with a reduction in the mitochondrial membrane potential. The intracellular reactive oxygen species levels increased in LW6‑treated hypoxic A549 cells and LW6 induced a hypoxia‑selective increase of mitochondrial O2•‑. In conclusion, LW6 inhibited the growth of hypoxic A549 cells by affecting the mitochondria. The inhibition of the mitochondrial respiratory chain is suggested as a potentially effective strategy to target apoptosis in cancer cells.

  5. Changes in Hypoxia-Inducible Factor-1 (HIF-1) and Regulatory Prolyl Hydroxylase (PHD) Enzymes Following Hypoxic-Ischemic Injury in the Neonatal Rat.

    Science.gov (United States)

    Chu, Hannah X; Jones, Nicole M

    2016-03-01

    Hypoxia leads to activation of many cellular adaptive processes which are regulated by the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 consists of HIF-1α and HIF-1ß subunits and levels of HIF-1α protein are regulated by HIF prolyl-hydroxylase enzymes (PHD1, 2, 3). The aim of the current study was to investigate the expression of HIF-1α and PHDs at various time points after hypoxia-ischemia (HI), using a neonatal rat model of HI brain injury. Sprague-Dawley rat pups (postnatal day 7) were anaesthetized and underwent right carotid artery occlusion and were then exposed to 6 % oxygen for 2.5 h at 37 °C. HI injured animals demonstrated a significant reduction in the size of the ipsilateral hemisphere, compared to sham controls. Protein analysis using western blotting and enzyme-linked immunosorbent assay showed that 24 h after HI, there was a significant increase in PHD3 protein and an increase of HIF-1α compared to controls. At the 72 h time point, there was a reduction in PHD3 protein, which appeared to relate to cellular loss. There were no changes in PHD1 or PHD2 protein levels after HI when compared to age-matched controls. Further studies are necessary to establish roles for the HIF-1 regulatory enzyme PHD3 in brain injury processes.

  6. Rac1 augments Wnt signaling by stimulating β-catenin–lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import

    Science.gov (United States)

    Jamieson, Cara; Lui, Christina; Brocardo, Mariana G.; Martino-Echarri, Estefania; Henderson, Beric R.

    2015-01-01

    ABSTRACT β-Catenin transduces the Wnt signaling pathway and its nuclear accumulation leads to gene transactivation and cancer. Rac1 GTPase is known to stimulate β-catenin-dependent transcription of Wnt target genes and we confirmed this activity. Here we tested the recent hypothesis that Rac1 augments Wnt signaling by enhancing β-catenin nuclear import; however, we found that silencing/inhibition or up-regulation of Rac1 had no influence on nuclear accumulation of β-catenin. To better define the role of Rac1, we employed proximity ligation assays (PLA) and discovered that a significant pool of Rac1–β-catenin protein complexes redistribute from the plasma membrane to the nucleus upon Wnt or Rac1 activation. More importantly, active Rac1 was shown to stimulate the formation of nuclear β-catenin–lymphoid enhancer factor 1 (LEF-1) complexes. This regulation required Rac1-dependent phosphorylation of β-catenin at specific serines, which when mutated (S191A and S605A) reduced β-catenin binding to LEF-1 by up to 50%, as revealed by PLA and immunoprecipitation experiments. We propose that Rac1-mediated phosphorylation of β-catenin stimulates Wnt-dependent gene transactivation by enhancing β-catenin–LEF-1 complex assembly, providing new insight into the mechanism of cross-talk between Rac1 and canonical Wnt/β-catenin signaling. PMID:26403202

  7. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions.

    Science.gov (United States)

    Elia, Leonardo; Contu, Riccardo; Quintavalle, Manuela; Varrone, Francesca; Chimenti, Cristina; Russo, Matteo Antonio; Cimino, Vincenzo; De Marinis, Laura; Frustaci, Andrea; Catalucci, Daniele; Condorelli, Gianluigi

    2009-12-08

    MicroRNAs (miRNAs/miRs) are small conserved RNA molecules of 22 nucleotides that negatively modulate gene expression primarily through base paring to the 3' untranslated region of target messenger RNAs. The muscle-specific miR-1 has been implicated in cardiac hypertrophy, heart development, cardiac stem cell differentiation, and arrhythmias through targeting of regulatory proteins. In this study, we investigated the molecular mechanisms through which miR-1 intervenes in regulation of muscle cell growth and differentiation. On the basis of bioinformatics tools, biochemical assays, and in vivo models, we demonstrate that (1) insulin-like growth factor-1 (IGF-1) and IGF-1 receptor are targets of miR-1; (2) miR-1 and IGF-1 protein levels are correlated inversely in models of cardiac hypertrophy and failure as well as in the C2C12 skeletal muscle cell model of differentiation; (3) the activation state of the IGF-1 signal transduction cascade reciprocally regulates miR-1 expression through the Foxo3a transcription factor; and (4) miR-1 expression correlates inversely with cardiac mass and thickness in myocardial biopsies of acromegalic patients, in which IGF-1 is overproduced after aberrant synthesis of growth hormone. Our results reveal a critical role of miR-1 in mediating the effects of the IGF-1 pathway and demonstrate a feedback loop between miR-1 expression and the IGF-1 signal transduction cascade.

  8. Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy.

    Science.gov (United States)

    Zhou, Jian-da; Luo, Cheng-qun; Xie, Hui-qing; Nie, Xin-min; Zhao, Yan-zhong; Wang, Shao-hua; Xu, Yi; Pokharel, Pashupati Babu; Xu, Dan

    2008-07-20

    Chronic dermal ulcers are also referred to as refractory ulcers. This study was conducted to elucidate the therapeutic effect of laser on chronic dermal ulcers and the induced expression of heat shock factor 1 (HSF1) and heat shock protein 70 (HSP70) in wound tissues. Sixty patients with 84 chronic dermal ulcers were randomly divided into traditional therapy and laser therapy groups. Laser treatment was performed in addition to traditional therapy in the laser therapy group. The treatment efficacy was evaluated after three weeks. Five tissue sections of healing wounds were randomly collected along with five normal skin sections as controls. HSP70-positive cells from HSP70 immunohistochemical staining were counted and the gray scale of positive cells was measured for statistical analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the mRNA and protein expressions of HSF1 and HSP70. The cure rate of the wounds and the total efficacy in the laser therapy group were significantly higher than those in the traditional therapy group (P ulcers plays a facilitating role in healing due to the mechanism of laser-activated endogenous heat shock protection in cells in wound surfaces.

  9. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  10. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-02-01

    Full Text Available Heat shock factor 1 (HSF1, a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2 interacting cell death suppressor (BIS. HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs. In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY-box 2 (SOX2 expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2 activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose polymerase (PARP cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.

  11. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors.

    Science.gov (United States)

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A S; Schuringa, Jan Jacob; Bond, Heather M; Morrone, Giovanni

    2011-07-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  12. Hypoxia-Inducible Factor-1α: A Potential Factor for the Enhancement of Osseointegration between Dental Implants and Tissue-Engineered Bone

    Directory of Open Access Journals (Sweden)

    Duohong Zou

    2011-07-01

    Full Text Available Introduction: Tissue-engineered bones are widely utilized to protect healthy tissue, reduce pain, and increase the success rate of dental implants. one of the most challenging obstacles lies in obtaining effective os-seointegration between dental implants and tissue-engineered structures. Deficiencies in vascularization, osteogenic factors, oxygen, and other nutrients inside the tissue-engineered bone during the early stages following implantation all inhibit effective osseointe-gration. Oxygen is required for aerobic metabolism in bone and blood vessel tissues, but oxygen levels inside tissue-engineered bone are not suf-ficient for cell proliferation. HIF-1α is a pivotal regulator of hypoxic and ischemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis, arteriogenesis, and osteogenesis.The hypothesis: Hypoxia-Inducible Factor-1α seems a potential factor for the enhancement of osseointegration between dental implants and tissue-engineered bone.Evaluation of the hypothesis: Enhancement of HIF-1α protein expression is recognized as the most promising approach for angiogenesis, because it can induce multiple angiogenic targets in a coordinated manner. Therefore, it will be a novel potential therapeutic methods targeting HIF-1α expression to enhance osseointegration be-tween dental implants and tissue-engineered bone.

  13. Functional defect of truncated hepatocyte nuclear factor-1α (G554fsX556) associated with maturity-onset diabetes of the young

    International Nuclear Information System (INIS)

    Kooptiwut, Suwattanee; Sujjitjoon, Jatuporn; Plengvidhya, Nattachet; Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapapron; Semprasert, Namoiy; Furuta, Hiroto; Nanjo, Kishio; Banchuin, Napatawn; Yenchitsomanus, Pa-thai

    2009-01-01

    A novel frameshift mutation attributable to 14-nucleotide insertion in hepatocyte nuclear factor-1α (HNF-1α) encoding a truncated HNF-1α (G554fsX556) with 76-amino acid deletion at its carboxyl terminus was identified in a Thai family with maturity-onset diabetes of the young (MODY). The wild-type and mutant HNF-1α proteins were expressed by in vitro transcription and translation (TNT) assay and by transfection in HeLa cells. The wild-type and mutant HNF-1α could similarly bind to human glucose-transporter 2 (GLUT2) promoter examined by electrophoretic mobility shift assay (EMSA). However, the transactivation activities of mutant HNF-1α on human GLUT2 and rat L-type pyruvate kinase (L-PK) promoters in HeLa cells determined by luciferase reporter assay were reduced to approximately 55-60% of the wild-type protein. These results suggested that the functional defect of novel truncated HNF-1α (G554fsX556) on the transactivation of its target-gene promoters would account for the β-cell dysfunction associated with the pathogenesis of MODY.

  14. Functional defect of truncated hepatocyte nuclear factor-1{alpha} (G554fsX556) associated with maturity-onset diabetes of the young

    Energy Technology Data Exchange (ETDEWEB)

    Kooptiwut, Suwattanee, E-mail: S_kooptiwut@hotmail.com [Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sujjitjoon, Jatuporn [Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Plengvidhya, Nattachet [Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapapron [Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Semprasert, Namoiy [Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Furuta, Hiroto; Nanjo, Kishio [The First Department, Wakayama Medical University (Japan); Banchuin, Napatawn [Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai [Division of Medical Molecular Biology, Medicine Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok (Thailand)

    2009-05-22

    A novel frameshift mutation attributable to 14-nucleotide insertion in hepatocyte nuclear factor-1{alpha} (HNF-1{alpha}) encoding a truncated HNF-1{alpha} (G554fsX556) with 76-amino acid deletion at its carboxyl terminus was identified in a Thai family with maturity-onset diabetes of the young (MODY). The wild-type and mutant HNF-1{alpha} proteins were expressed by in vitro transcription and translation (TNT) assay and by transfection in HeLa cells. The wild-type and mutant HNF-1{alpha} could similarly bind to human glucose-transporter 2 (GLUT2) promoter examined by electrophoretic mobility shift assay (EMSA). However, the transactivation activities of mutant HNF-1{alpha} on human GLUT2 and rat L-type pyruvate kinase (L-PK) promoters in HeLa cells determined by luciferase reporter assay were reduced to approximately 55-60% of the wild-type protein. These results suggested that the functional defect of novel truncated HNF-1{alpha} (G554fsX556) on the transactivation of its target-gene promoters would account for the {beta}-cell dysfunction associated with the pathogenesis of MODY.

  15. Interferon Regulatory Factor 1 Transactivates Expression of Human DNA Polymerase η in Response to Carcinogen N-Methyl-N′-nitro-N-nitrosoguanidine*

    Science.gov (United States)

    Qi, Hongyan; Zhu, Huifang; Lou, Meng; Fan, Yanfeng; Liu, Hong; Shen, Jing; Li, Zhongjie; Lv, Xue; Shan, Jianzhen; Zhu, Lijun; Chin, Y. Eugene; Shao, Jimin

    2012-01-01

    DNA polymerase η (Polη) implements translesion DNA synthesis but has low fidelity in replication. We have previously shown that Polη plays an important role in the genesis of nontargeted mutations at undamaged DNA sites in cells exposed to the carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Here, we report that MNNG-induced Polη expression in an interferon regulatory factor 1 (IRF1)-dependent manner in human cells. Mutagenesis analysis showed that four critical residues (Arg-82, Cys-83, Asn-86, and Ser-87) located in the IRF family conserved DNA binding domain-helix α3 were involved in DNA binding and POLH transactivation by IRF1. Furthermore, Polη up-regulation induced by IRF1 was responsible for the increase of mutation frequency in a SupF shuttle plasmid replicated in the MNNG-exposed cells. Interestingly, IRF1 was acetylated by the histone acetyltransferase CBP in these cells. Lys → Arg substitution revealed that Lys-78 of helix α3 was the major acetylation site, and the IRF1-K78R mutation partially inhibited DNA binding and its transcriptional activity. Thus, we propose that IRF1 activation is responsible for MNNG-induced Polη up-regulation, which contributes to mutagenesis and ultimately carcinogenesis in cells. PMID:22367195

  16. Aberrant regulation and modification of heat shock factor 1 in senescent human diploid fibroblasts.

    Science.gov (United States)

    Lee, Yoon Kwang; Liu, Diana J; Lu, Jiebo; Chen, Kuang Yu; Liu, Alice Y-C

    2009-02-01

    Induction of the heat shock response (HSR), determined by hsp70-luciferase reporter and HSP70 protein expression, is attenuated as a function of age of the IMR-90 human diploid fibroblasts. To better understand the underlying mechanism, we evaluated changes in the regulation and function of the HSF1 transcription factor. We show that the activation of HSF1 both in vivo and in vitro was decreased as a function of age, and this was attributable to a change in the regulation of HSF1 as the abundance of HSF1 protein and mRNA was unaffected. HSF1 was primarily cytosolic in young cells maintained at 37 degrees C, and heat shock promoted its quantitative nuclear translocation and trimerization. In old cells, some HSF1 was nuclear sequestered at 37 degrees C, and heat shock failed to promote the quantitative trimerization of HSF1. These changes in HSF1 could be reproduced by treating young cells with H2O2 to stunt them into premature senescence. Flow cytometry measurement of peroxide content showed higher levels in old cells and H2O2-induced premature senescent cells as compared to young cells. Experiments using isoelectric focusing and Western blot showed age-dependent changes in the mobility of HSF1 in a pattern consistent with its S-glutathiolation and S-nitrosylation; these changes could be mimicked by treating young cells with H2O2. Our results demonstrated dynamic age-dependent changes in the regulation but not the amount of HSF1. These changes are likely mediated by oxidative events that promote reversible and irreversible modification of HSF1 including S-glutathiolation and S-nitrosylation.

  17. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  19. Chromatin assembly factor 1, subunit A (P150 facilitates cell proliferation in human hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Xu M

    2016-07-01

    Full Text Available Meng Xu, Yuli Jia, Zhikui Liu, Linglong Ding, Run Tian, Hua Gu, Yufeng Wang, Hongyong Zhang, Kangsheng Tu, Qingguang Liu Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China Abstract: Several studies have revealed that the abnormal expression of chromatin assembly factor 1, subunit A (P150 (CHAF1A was involved in the development of some types of malignant tumors. However, CHAF1A expression and its role in hepatocellular carcinoma (HCC remain poorly characterized. In this study, we first investigated CHAF1A expression in six cell lines and 116 pairs of HCC and matched normal tumor-adjacent tissues to evaluate the clinicopathological characteristics of CHAF1A in HCC. Then, we detected the proliferation and apoptosis in HCC cells. In addition, a subcutaneous tumor model in nude mice was performed to evaluate tumor growth in vivo. We found that the expression of CHAF1A was significantly higher in HCC tissues than that in adjacent nontumor tissues (P<0.01. Clinical analysis indicated that CHAF1A expression was significantly correlated with the tumor–node–metastasis stage, tumor number, and tumor differentiation in HCC tissues (P<0.05, respectively. We also found that CHAF1A may potentially function as a poor prognostic indicator for 5-year overall and disease-free survival in patients with HCC (P<0.05, respectively. The elevated expression of CHAF1A was also observed in HCC cell lines compared with that in normal LO2 hepatic cell line (P<0.01. HCC cancer cells exhibited inhibition of cell growth, reduction in colony-formation ability, increased cell apoptosis rate, and impaired tumorigenicity in nude mice after CHAF1A knockdown. Collectively, we propose that CHAF1A by potentially mediating cancer cell proliferation plays an important role in promoting the development of HCC and may serve as a potential therapeutic target in HCC. Keywords: CHAF1A, hepatocellular

  20. Prognostic role of hypoxia-inducible factor-1 alpha expression in osteosarcoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Ren HY

    2016-03-01

    Full Text Available Hai-Yong Ren,1 Yin-Hua Zhang,1,2 Heng-Yuan Li,1 Tao Xie,1 Ling-Ling Sun,1 Ting Zhu,1 Sheng-Dong Wang,1 Zhao-Ming Ye1 1Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 2The First Department of Orthopaedics, Hospital of Zhejiang General Corps of Armed Police Forces, Jiaxing, People’s Republic of China Background: Hypoxia-inducible factor-1α (HIF-1α plays an important role in tumor progression and metastasis. A number of studies have investigated the association of HIF-1α with prognosis and clinicopathological characteristics of osteosarcoma but yielded inconsistent results.  Method: Systematic computerized searches were performed in PubMed, Embase, and Web of Science databases for relevant original articles. The pooled hazard ratios (HRs and odds ratios (ORs with corresponding confidence intervals (CIs were calculated to assess the prognostic value of HIF-1α expression. The standard mean difference was used to analyze the continuous variable.  Results: Finally, nine studies comprising 486 patients were subjected to final analysis. Protein expression level of HIF-1α was found to be significantly related to overall survival (HR =3.0; 95% CI: 1.46–6.15, disease-free survival (HR =2.23; 95% CI: 1.26–3.92, pathologic grade (OR =21.33; 95% CI: 4.60–98.88, tumor stage (OR =10.29; 95% CI: 3.55–29.82, chemotherapy response (OR =9.68; 95% CI: 1.87–50.18, metastasis (OR =5.06; 95% CI: 2.87–8.92, and microvessel density (standard mean difference =2.83; 95% CI: 2.28–3.39.  Conclusion: This meta-analysis revealed that overexpression of HIF-1α is a predictive factor of poor outcomes for osteosarcoma. HIF-1α appeared to play an important role in prognostic evaluation and may be a potential target in antitumoral therapy. Keywords: HIF-1α, osteosarcoma, prognosis, meta-analysis

  1. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Simiantonaki, Nektaria; Taxeidis, Marios; Jayasinghe, Caren; Kurzik-Dumke, Ursula; Kirkpatrick, Charles James

    2008-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  2. Kadar Hypoxia Inducible Factor-1α pada Penderita Diabetes Melitus Tipe 2 Disertai Mikroalbuminuria dan Retinopati

    Directory of Open Access Journals (Sweden)

    Yumilia Hoo

    2014-06-01

    Full Text Available Type 2 diabetes mellitus (T2DM is still considered a major problem in healthcare, mainly for its progressivity and complications. According to the epidemiological data from the International Diabetes Federation (IDF in 2011, it is stated that microalbuminuria often precedes the onset of diabetic retinopathy. Complications are preceded by endothelial dysfunction that will increase the secretion of cytokines inducing angiogenesis and limpangiogenesis. In hypoxic conditions induced by microvascular changes, hypoxia inducible factor-1 alpha (HIF-1α is secreted, stimulating the production of vascular endothelial growth factor (VEGF which induce angiogenesis. The aim of this study was to know the correlation between plasma HIF-1α concentration with microalbuminuria pattern and diabetic retinopathy in T2DM patients. This cross-sectional study was conducted on 158 T2DM patients in Endocrinology Outpatient Departement of Dr. Hasan Sadikin Hospital during July to December 2012. Data were analyzed using t-test, Mann Whitney, and multivariate analysis of variance (MANOVA methods. Eighty two males (51.9% and 76 females (48.1% participated in the study, making up 158 subjects. Eighty patients (50.6% had normoalbuminuria and 78 patients (49.4% had microalbuminuria. Thirty eight patients were found with diabetic retinopathy (24.1%. The median of HIF-1α plasma concentrations was 0.103 (0.041–0.735 ng/mL in the microalbuminuria group and 0.144 (0.041–0.481 ng/mL (p=0.257.in the normoalbuminuria group. The median of HIF-1α plasma concentration in the group with diabetic retinopathy was 0.041 (0.041–0.33 ng/mL, while in the group without diabetic retinopathy the median was 0.167 (0.041–0.735 ng/mL (p<0.01. In conclusion, low or normal HIF-1α plasma levels in patients without diabetic retinopathy predict the grading of diabetic retinopathy, while high levels of plasma HIF-1α suggests the likehood of retinopathy event in the future.

  3. Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples

    DEFF Research Database (Denmark)

    Le Hellard, S; Mühleisen, T W; Djurovic, S

    2010-01-01

    in glial cell lines that antipsychotic drugs induce the expression of genes involved in cholesterol and fatty acids biosynthesis through activation of the sterol regulatory element binding protein (SREBP) transcription factors, encoded by the sterol regulatory element binding transcription factor 1 (SREBF1......) and sterol regulatory element binding transcription factor 2 (SREBF2) genes. Considering the importance of these factors in the lipid biosynthesis and their possible involvement in antipsychotic drug effects, we hypothesized that genetic variants of SREBF1 and/or SREBF2 could affect schizophrenia...

  4. Specificity and robustness in transcription control networks.

    Science.gov (United States)

    Sengupta, Anirvan M; Djordjevic, Marko; Shraiman, Boris I

    2002-02-19

    Recognition by transcription factors of the regulatory DNA elements upstream of genes is the fundamental step in controlling gene expression. How does the necessity to provide stability with respect to mutation constrain the organization of transcription control networks? We examine the mutation load of a transcription factor interacting with a set of n regulatory response elements as a function of the factor/DNA binding specificity and conclude on theoretical grounds that the optimal specificity decreases with n. The predicted correlation between variability of binding sites (for a given transcription factor) and their number is supported by the genomic data for Escherichia coli. The analysis of E. coli genomic data was carried out using an algorithm suggested by the biophysical model of transcription factor/DNA binding. Complete results of the search for candidate transcription factor binding sites are available at http://www.physics.rockefeller.edu/~boris/public/search_ecoli.

  5. Transcription factors: Time to deliver.

    Science.gov (United States)

    Ulasov, Alexey V; Rosenkranz, Andrey A; Sobolev, Alexander S

    2018-01-10

    Transcription factors (TFs) are at the center of the broad regulatory network orchestrating gene expression programs that elicit different biological responses. For a long time, TFs have been considered as potent drug targets due to their implications in the pathogenesis of a variety of diseases. At the same time, TFs, located at convergence points of cellular regulatory pathways, are powerful tools providing opportunities both for cell type change and for managing the state of cells. This task formulation requires the TF modulation problem to come to the fore. We review several ways to manage TF activity (small molecules, transfection, nanocarriers, protein-based approaches), analyzing their limitations and the possibilities to overcome them. Delivery of TFs could revolutionize the biomedical field. Whether this forecast comes true will depend on the ability to develop convenient technologies for targeted delivery of TFs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Transcriptional regulation by cyclic AMP.

    Science.gov (United States)

    Montminy, M

    1997-01-01

    A number of hormones and growth factors have been shown to stimulate target cells via second messenger pathways that in turn regulate the phosphorylation of specific nuclear factors. The second messenger cyclic AMP, for example, regulates a striking number of physiologic processes, including intermediary metabolism, cellular proliferation, and neuronal signaling, by altering basic patterns of gene expression. Our understanding of cyclic AMP signaling in the nucleus has expanded considerably over the past decade, owing in large part to the characterization of cyclic AMP-responsive promoter elements, transcription factors that bind them, and signal-dependent coactivators that mediate target gene induction. More importantly, these studies have revealed new insights into biological problems as diverse as biological clocks and long-term memory. The purpose of this review is to describe the components of the cyclic AMP response unit and to analyze how these components cooperate to induce target gene expression in response to hormonal stimulation.

  7. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1

    International Nuclear Information System (INIS)

    Williams, Kaye J.; Telfer, Brian A.; Xenaki, Dia; Sheridan, Mary R.; Desbaillets, Isabelle; Peters, Hans J.W.; Honess, Davina; Harris, Adrian L.; Dachs, Gabi U.; Kogel, Albert van der; Stratford, Ian J.

    2005-01-01

    Background and purpose: To test the hypothesis that deficiency in expression of the transcription factor, HIF-1, renders tumours more radioresponsive than HIF-1 proficient tumours. Patients and methods: Tumours comprising mouse hepatoma cells lacking HIF-1β (and thereby HIF-1 function) were grown in nude mice and radiation-induced growth delay compared with that seen for wild-type tumours and tumours derived from HIF-1β negative cells where HIF-1 function had been restored. Results: The xenografts that lack HIF-1 activity take longer to establish their growth and are more radioresponsive than both parental xenografts and those with restored HIF-1 function. Pre-treatment of the HIF-1 deficient xenografts with the hypoxic radiosensitizer misonidazole, had little effect on radioresponse. In contrast this treatment radiosensitized the parental xenografts. In spite of this, no difference in oxygenation status was found between the tumour types as measured by Eppendorf O 2 -electrodes and by binding of the hypoxic cell marker NITP. Admixing wild type and HIF-1 deficient cells in the same tumour at ratios of 1 in 10 and 1 in 100 restores the growth of the mixed tumours to that of a 100% HIF-1 proficient cell population. However, when comparing the effects of radiation on the mixed tumours, radioresponsiveness is maintained in those tumours containing the high proportion of HIF-1 deficient cells. Conclusions: The differences in radioresponse do not correlate with tumour oxygenation, suggesting that the hypoxic cells within the HIF-1 deficient tumours do not contribute to the outcome of radiotherapy. Thus, hypoxia impacts on tumour radioresponsiveness not simply because of the physio-chemical mechanism of oxygen with radiation-induced radicals causing damage 'fixation', but also because hypoxia/HIF-1 promotes expression of genes that allow tumour cells to survive under these adverse conditions. Further, the results from the cell mixing experiments uncouple the growth

  8. Transcription of Byzantine Chant - Problems, Possibilities, Formats

    DEFF Research Database (Denmark)

    Troelsgård, Christian

    2007-01-01

    Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes....

  9. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin...... remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications....... Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression....

  10. Expression of hypoxia inducible factor 1 alpha and its clinical significance in esophageal carcinoma: A meta-analysis.

    Science.gov (United States)

    Jing, Shao Wu; Wang, Jun; Xu, Qing

    2017-07-01

    Many studies have analyzed the relationship between hypoxia inducible factor 1 alpha expression and its relation to differentiation, lymph node metastasis, and other clinicopathological variables of esophageal carcinoma, but the results are still inconsistent. This meta-analysis was carried out to explore hypoxia inducible factor 1 alpha in esophageal carcinoma and its correlation with clinicopathological features and prognosis, in order to provide comprehensive reference for clinic. A total of 18 studies including 1566 patients with esophageal squamous cell carcinoma were enrolled. The results showed that compared with para-carcinoma tissue, the expression of hypoxia inducible factor 1 alpha was significantly enhanced (odds ratio = 0.122, 95% confidence interval = 0.074-0.201, p = 0.000); hypoxia inducible factor 1 alpha was associated with differentiation (odds ratio = 1.458, 95% confidence interval = 1.108-1.920, p = 0.007), T classification (odds ratio = 0.457, 95% confidence interval = 0.265-0.786, p = 0.005), lymph node metastasis (odds ratio = 0.337, 95% confidence interval = 0.185-0.614, p = 0.000), and pathological tumor-node-metastasis stage (odds ratio = 0.362, 95% confidence interval = 0.177-0.740, p = 0.005), whereas there was no relation to histological grade, lymphatic vessel invasion, blood vessel invasion, 3- to 5-year overall survival and disease-free survival. Patients with hypoxia inducible factor 1 alpha overexpression had poor differentiation, increased depth of tumor invasion, more lymph node metastasis, and late pathological tumor-node-metastasis stage. Hypoxia inducible factor 1 alpha could be an indicator for differentiation, T classification, lymph node metastasis, and pathological tumor-node-metastasis stage, and it is worth further study.

  11. Insulin-like growth factor-1 overexpression in cardiomyocytes diminishes ex vivo heart functional recovery after acute ischemia.

    Science.gov (United States)

    Prêle, Cecilia M; Reichelt, Melissa E; Mutsaers, Steven E; Davies, Marilyn; Delbridge, Lea M; Headrick, John P; Rosenthal, Nadia; Bogoyevitch, Marie A; Grounds, Miranda D

    2012-01-01

    Acute insulin-like growth factor-1 administration has been shown to have beneficial effects in cardiac pathological conditions. The aim of the present study was to assess the structural and ex vivo functional impacts of long-term cardiomyocyte-specific insulin-like growth factor-1 overexpression in hearts of transgenic αMHC-IGF-1 Ea mice. Performance of isolated transgenic αMHC-IGF-1 Ea and littermate wild-type control hearts was compared under baseline conditions and in response to 20-min ischemic insult. Cardiac desmin and laminin expression patterns were determined histologically, and myocardial hydroxyproline was measured to assess collagen content. Overexpression of insulin-like growth factor-1 did not modify expression patterns of desmin or laminin but was associated with a pronounced increase (∼30%) in cardiac collagen content (from ∼3.7 to 4.8 μg/mg). Baseline myocardial contractile function and coronary flow were unaltered by insulin-like growth factor-1 overexpression. In contrast to prior evidence of acute cardiac protection, insulin-like growth factor-1 overexpression was associated with significant impairment of acute functional response to ischemia-reperfusion. Insulin-like growth factor-1 overexpression did not modify ischemic contracture development, but postischemic diastolic dysfunction was aggravated (51±5 vs. 22±6 mmHg in nontransgenic littermates). Compared with wild-type control, recovery of pressure development and relaxation indices relative to baseline performance were significantly reduced in transgenic αMHC-IGF-1 Ea after 60-min reperfusion (34±7% vs. 62±7% recovery of +dP/dt; 35±11% vs. 57±8% recovery of -dP/dt). Chronic insulin-like growth factor-1 overexpression is associated with reduced functional recovery after acute ischemic insult. Collagen deposition is elevated in transgenic αMHC-IGF-1 Ea hearts, but there is no change in expression of the myocardial structural proteins desmin and laminin. These findings suggest

  12. A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tsai Chueh-Jen

    2010-01-01

    Full Text Available Abstract There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α and nuclear factor-kappa B (NF-κB were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors.

  13. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function.

    Science.gov (United States)

    Boller, Sören; Grosschedl, Rudolf

    2014-09-01

    During the last decades, many studies have investigated the transcriptional and epigenetic regulation of lineage decision in the hematopoietic system. These efforts led to a model in which extrinsic signals and intrinsic cues establish a permissive chromatin context upon which a regulatory network of transcription factors and epigenetic modifiers act to guide the differentiation of hematopoietic lineages. These networks include lineage-specific factors that further modify the epigenetic landscape and promote the generation of specific cell types. The process of B lymphopoiesis requires a set of transcription factors, including Ikaros, PU.1, E2A, and FoxO1 to 'prime' cis-regulatory regions for subsequent activation by the B-lineage-specific transcription factors EBF1 and Pax-5. The expression of EBF1 is initiated by the combined action of E2A and FoxO1, and it is further enhanced and maintained by several positive feedback loops that include Pax-5 and IL-7 signaling. EBF1 acts in concert with Ikaros, PU.1, Runx1, E2A, FoxO1, and Pax-5 to establish the B cell-specific transcription profile. EBF1 and Pax-5 also collaborate to repress alternative cell fates and lock cells into the B-lineage fate. In addition to the functions of EBF1 in establishing and maintaining B-cell identity, EBF1 is required to coordinate differentiation with cell proliferation and survival. © 2014 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  14. Expression of hypoxia-inducible factor 1 alpha and its downstream targets in fibroepithelial tumors of the breast

    NARCIS (Netherlands)

    Kuijper, Arno; Groep, P. van der; Wall, E. van der; Diest, P.J. van

    2005-01-01

    INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) alpha and its downstream targets carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) are key factors in the survival of proliferating tumor cells in a hypoxic microenvironment. We studied the expression and prognostic relevance

  15. Vitamin D modulates the association of circulating insulin-like growth factor-1 with carotid artery intima-media thickness

    NARCIS (Netherlands)

    Ameri, P.; Canepa, M.; Fabbi, P.; Leoncini, G.; Milaneschi, Y.; Mussap, M.; AlGhatrif, M.; Balbi, M.; Viazzi, F.; Murialdo, G.; Pontremoli, R.; Brunelli, C.; Ferrucci, L.

    2014-01-01

    Objective: Experimental evidence indicates that circulating insulin-like growth factor-1 (IGF-1) counteracts vascular aging and atherosclerosis, for which increased carotid artery intima-media thickness (IMT) is a marker. Yet, IGF-1 concentrations have been inconsistently associated with carotid IMT

  16. Embryonic factor 1 encodes an AMP deaminase and is essential for the zygote to embryo transition in Arabidopsis

    NARCIS (Netherlands)

    Xu, J.; Zhang, H.Y.; Xue, H.W.; Dijkhuis, P.; Liu, C.M.

    2005-01-01

    Fusion of the egg and the sperm cells in plants produces a zygote that develops into an embryo. Screening of ethyl methanesulfonate-mutagenized populations of Arabidopsis led to the identification of EMBRYONIC FACTOR 1 (FAC1), a locus that gives a zygote-lethal phenotype when mutated. The FAC1 gene

  17. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1)

    NARCIS (Netherlands)

    Greijer, A.E.; van der Groep, P.; Kemming, D.; Shvarts, A.; Semenza, G.L.; Meijer, G.J.; van de Wiel, M.A.; Belien, J.A.M.; Van Diest, P; van der Wall, E.E.

    2005-01-01

    The hypoxia-inducible factor 1 (HIF-1) plays a critical role in cellular responses to hypoxia. The aim of the present study was to evaluate which genes are induced by hypoxia, and whether this induction is mediated by HIF-1, by expression microarray analysis of wt and HIF-1α null mouse fibroblasts.

  18. Advances toward DNA-based identification and phylogeny of North American Armillaria species using elongation factor-1 alpha gene

    Science.gov (United States)

    Amy L. Ross-Davis; John W. Hanna; Mee-Sook Kim; Ned B. Klopfenstein

    2012-01-01

    The translation elongation factor-1 alpha gene was used to examine the phylogenetic relationships among 30 previously characterized isolates representing ten North American Armillaria species: A. solidipes (=A. ostoyae), A. gemina, A. calvescens, A. sinapina, A. mellea, A. gallica, A. nabsnona, North American biological species X, A. cepistipes, and A. tabescens. The...

  19. Steroidogenic factor-1 inverse agonists as a treatment option for canine hypercortisolism : in vitro study

    NARCIS (Netherlands)

    Sanders, K|info:eu-repo/dai/nl/413321231; Mol, J A|info:eu-repo/dai/nl/070918775; Slob, A; Kooistra, H S|info:eu-repo/dai/nl/205285864; Galac, S|info:eu-repo/dai/nl/304830860

    2017-01-01

    Hypercortisolism is one of the most commonly diagnosed endocrinopathies in dogs, and new targeted medical treatment options are desirable. Steroidogenic factor-1 (SF-1), an orphan nuclear hormone receptor, is a key regulator of adrenal steroidogenesis, development, and growth. In pituitary-dependent

  20. Stromal cell-derived factor-1 alpha (SDF-1 alpha) improves neural recovery after spinal cord contusion in rats

    NARCIS (Netherlands)

    Zendedel, A.; Nobakht, M.; Bakhtiyari, M.; Beyer, C.; Kipp, M.; Baazm, M.; Joghataie, M.T.

    2012-01-01

    Stromal cell-derived factor-1 alpha (SDF-1α) is an important cytokine, implicated in the control of stem cell trafficking and bone marrow-derived stem cell mobilization. Generally, SDF-1α regulates multiple physiological processes such as embryonic development and organ homeostasis. There is also

  1. Regulation of transcription in hyperthermophilic archaea

    NARCIS (Netherlands)

    Brinkman, A.B.

    2002-01-01

    The aim of the research presented here was to insight in the mechanisms by which transcription in hyperthermophilic archaea is regulated. To accomplish this, we have aimed (I) to identify transcriptional regulatory proteins from hyperthermophilic archaea, (II) to characterize these

  2. 40 CFR 179.94 - Transcripts.

    Science.gov (United States)

    2010-07-01

    ... of particular oral testimony first becomes available to propose corrections in the transcript of that testimony. Corrections are permitted only for transcription errors. The presiding officer shall promptly... have all oral testimony stenographically reported or recorded and transcribed, with evidence that is...

  3. Transcription Through Chromatin - Dynamic Organization of Genes

    Indian Academy of Sciences (India)

    Remodeling of chromatin confers it the ability for dynamic change. Remodeling is essential for transcriptional regulation, the first step of gene expression. Chromatin Structure and Gene Expression. Transcription is the first step of gene expression in which RNA synthesis occurs from the DNA (gene) template in a series of.

  4. Overlapping transcription structure of human cytomegalovirus ...

    Indian Academy of Sciences (India)

    2013-01-21

    Jan 21, 2013 ... Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR.

  5. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo

    2005-01-01

    level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has...

  6. Transcription Through Chromatin - Dynamic Organization of Genes

    Indian Academy of Sciences (India)

    In this article, we discuss the dynamic organization of eukaryotic genes into chromatin. Remodeling of chromatin confers it the ability for dynamic change. Remodeling is essential for transcriptional regulation, the first step of gene expression. Chromatin Structure and Gene Expression. Transcription is the first step of gene ...

  7. Overlapping transcription structure of human cytomegalovirus ...

    Indian Academy of Sciences (India)

    Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three ...

  8. Allograft Inflammatory Factor-1 Links T-Cell Activation, Interferon Response, and Macrophage Activation in Chronic Kawasaki Disease Arteritis.

    Science.gov (United States)

    Rowley, Anne H; Baker, Susan C; Kim, Kwang-Youn A; Shulman, Stanford T; Yang, Amy; Arrollo, David; DeBerge, Matthew; Han, Shuling; Sibinga, Nicholas E S; Pink, Adam J; Thorp, Edward B

    2017-09-01

    Kawasaki disease (KD) is widely viewed as an acute arteritis. However, our pathologic studies show that chronic coronary arteritis can persist long after disease onset and is closely linked with arterial stenosis. Transcriptome profiling of acute KD arteritis tissues revealed upregulation of T lymphocyte, type I interferon, and allograft inflammatory factor-1 (AIF1) genes. We determined whether these immune responses persist in chronic KD arteritis, and we investigated the role of AIF1 in these responses. Gene expression in chronic KD and childhood control arteries was determined by real-time reverse-transcriptase polymerase chain reaction, and arterial protein expression was determined by immunohistochemistry and immunofluorescence. Allograft inflammatory factor-1 small-interfering ribonucleic acid macrophage treatment was performed to investigate the role of AIF1 in macrophage and T lymphocyte activation. Allograft inflammatory factor-1 protein was highly expressed in stenotic KD arteries and colocalized with the macrophage marker CD68. T lymphocyte and interferon pathway genes were significantly upregulated in chronic KD coronary artery tissues. Alpha interferon-induced macrophage expression of CD80 and major histocompatibility complex class II was dependent on AIF1, and macrophage expression of AIF1 was required for antigen-specific T lymphocyte activation. Allograft inflammatory factor-1, originally identified in posttransplant arterial stenosis, is markedly upregulated in KD stenotic arterial tissues. T lymphocyte and type I interferon responses persist in chronic KD arteritis. Allograft inflammatory factor-1 may play multiple roles linking type I interferon response, macrophage activation, and antigen-specific T lymphocyte activation. These results suggest the likely importance of lymphocyte-myeloid cell cross-talk in the pathogenesis of KD arteritis and can inform selection of new immunotherapies for clinical trials in high-risk KD children.

  9. Induction of CD36 and thrombospondin-1 in macrophages by hypoxia-inducible factor 1 and its relevance in the inflammatory process.

    Directory of Open Access Journals (Sweden)

    Dolores Ortiz-Masià

    Full Text Available Inflammation is part of a complex biological response of vascular tissue to pathogens or damaged cells. First inflammatory cells attempt to remove the injurious stimuli and this is followed by a healing process mediated principally by phagocytosis of senescent cells. Hypoxia and p38-MAPK are associated with inflammation, and hypoxia inducible factor 1 (HIF-1 has been detected in inflamed tissues. We aimed to analyse the role of p38-MAPK and HIF-1 in the transcriptional regulation of CD36, a class B scavenger receptor, and its ligand thrombospondin (TSP-1 in macrophages and to evaluate the involvement of this pathway in phagocytosis of apoptotic neutrophils. We have also assessed HIF-1α, p38-MAPK and CD36 immunostaining in the mucosa of patients with inflammatory bowel disease. Results show that hypoxia increases neutrophil phagocytosis by macrophages and induces the expression of CD36 and TSP-1. Addition of a p38-MAPK inhibitor significantly reduced the increase in CD36 and TSP-1 expression provoked by hypoxia and decreased HIF-1α stabilization in macrophages. Transient transfection of macrophages with a miHIF-1α-targeting vector blocked the increase in mRNA expression of CD36 and TSP-1 during hypoxia and reduced phagocytosis, thus highlighting a role for the transcriptional activity of HIF-1. CD36 and TSP-1 were necessary for the phagocytosis of neutrophils induced by hypoxic macrophages, since functional blockade of these proteins undermined this process. Immunohistochemical studies revealed CD36, HIF-1α and p38-MAPK expression in the mucosa of patients with inflammatory bowel disease. A positive and significant correlation between HIF-1α and CD36 expression and CD36 and p38-MAPK expression was observed in cells of the lamina propria of the damaged mucosa. Our results demonstrate a HIF-1-dependent up-regulation of CD36 and TSP-1 that mediates the increased phagocytosis of neutrophils by macrophages during hypoxia. Moreover, they suggest

  10. Hypoxia regulates the expression and localization of CCAAT/enhancer binding protein α by hypoxia inducible factor-1α in bladder transitional carcinoma cells.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Chen, Wei

    2015-08-01

    Hypoxia inducible factor-1α (HIF-1α) is overexpressed in various types of solid tumor in humans, including bladder cancer. HIF-1α regulates the expression of a series of genes, which are involved in cell proliferation, differentiation, apoptosis, angiogenesis, migration and invasion and represents a potential therapeutic target for the treatment of human cancer. Despite extensive investigation of the effects of HIF-1α in the progression and metastasis of bladder cancer, the possible regulatory mechanisms underlying the effects of HIF-1α on bladder cancer cell proliferation and differentiation remain to be elucidated. It has been suggested that the transcription factor CCAAT/enhancer binding protein α (C/EBPα) acts as a tumor suppressor in several types of cancer cell, which are involved in regulating cell differentiation, proliferation and apoptosis. The present study confirmed that, in bladder cancer cells, the expression and localization of C/EBPα was regulated by hypoxia through an HIF-1α -dependent mechanism, which may be significant in bladder cancer cell proliferation and differentiation. The 5637 and T24 bladder cancer cell lines were incubated under normoxic and hypoxic conditions. The expression levels of HIF-1α and C/EBPα were detected by reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence analysis. The results revealed that, under hypoxic conditions, the protein expression levels of HIF-1α were markedly upregulated, but the mRNA levels were not altered. However, the mRNA and protein levels of C/EBPα were significantly reduced. The present study further analyzed the subcellular localization of C/EBPα, which was markedly decreased in the nuclei under hypoxic conditions. Following HIF-1α small interference RNA silencing of HIF-1α, downregulation of C/EBPα was prevented in the bladder cancer cells cultured under hypoxic conditions. In addition, groups of cells treated with 3-(5'-hydroxymethyl

  11. Cloning and characterization of hypoxia-inducible factor-1 subunits from Ascaris suum - a parasitic nematode highly adapted to changes of oxygen conditions during its life cycle.

    Science.gov (United States)

    Goto, Miho; Amino, Hisako; Nakajima, Mikage; Tsuji, Naotoshi; Sakamoto, Kimitoshi; Kita, Kiyoshi

    2013-03-01

    The parasitic nematode Ascaris suum successfully adapts to a significant decrease in oxygen availability during its life cycle by altering its metabolic system dramatically. However, little is known about the regulatory mechanisms of adaptation to hypoxic environments in A. suum. In multicellular organisms, hypoxia-inducible factor-1 (HIF-1), a heterodimeric transcription factor composed of HIF-1α and HIF-1β subunits, is a master regulator of genes involved in adaptation to hypoxia. In the present study, cDNAs encoding HIF-1α and HIF-1β were cloned from A. suum and characterized. The full-length A. suum hif-1α and hif-1β cDNAs contain open reading frames encoding proteins with 832 and 436 amino acids, respectively. In the deduced amino acid sequences of A. suum HIF-1α and HIF-1β, functional domains essential for DNA-binding, dimerization, and oxygen-dependent prolyl hydroxylation were conserved. The interaction between A. suum HIF-1α and HIF-1β was confirmed by the yeast two-hybrid assay. Both A. suum hif-1α and hif-1β mRNAs were expressed at all stages examined (fertilized eggs, third-stage larvae, lung-stage larvae, young adult worms, and adult muscle tissue), and most abundantly in the aerobic free-living third-stage larvae, followed by a gradual decrease after infection of the host. hif-1 mRNA transcription was not sensitive to the oxygen environment in either third-stage larvae or adult worms (muscle tissue), and was regulated in a stage-specific manner. High expression of hif-1 mRNAs in third-stage larvae suggests its contribution to pre-adaptation to a hypoxic environment after infection of their host. Sequence analysis of 5'-upstream regions of mitochondrial complex II (succinate-ubiquinone reductase/quinol-fumarate reductase) genes, which show stage-specific expression and play an important role in oxygen adaptation during the life cycle, revealed that all subunits except for the adult-type flavoprotein subunit (Fp) possess putative hypoxia

  12. Insulin and Insulin-like growth factor-1 can activate the phosphoinositide-3-kinase /Akt/FoxO1 pathway in T cellsin vitro.

    Science.gov (United States)

    Mirdamadi, Yasaman; Bommhardt, Ursula; Goihl, Alexander; Guttek, Karina; Zouboulis, Christos C; Quist, Sven; Gollnick, Harald

    2017-01-01

    Hyper-glycemic food increases insulin-like growth factor 1 (IGF-1) and insulin signaling and regulates endocrine responses and thereby may modulate the course of acne. Inflammation and adaptive immune responses have a pivotal role in all stages of acne. Recent hypothesis suggests that hyperglycemic food reduces nuclear forkhead box-O1 (FoxO1) transcription factor and may eventually induces acne. The aim of our study was to investigate the role of IGF-1 and insulin on the phosphoinositide-3-kinase (PI3K)/Akt/FoxO1 pathway in human primary T cells and on the molecular functions of T cells in vitro . T cells were stimulated with 0.001 μM IGF-1 or 1 μM insulin +/- 20 μM PI3K inhibitor LY294002. T cells were also exposed to SZ95 sebocyte supernatants which were pre-stimulated with IGF-1 or insulin. We found that 0.001 µM IGF-1 and 1 µM insulin activate the PI3K pathway in T cells leading to up-regulation of p-Akt and p-FoxO1 at 15 and 30 minutes. Nuclear FoxO1 was decreased and FoxO transcriptional activity was reduced. 0.001 µM IGF-1 and 1 µM insulin increased T cell proliferation but have no significant effect on Toll-like receptor2/4 (TLR) expression. Interestingly, supernatants from IGF-1- or insulin-stimulated sebocytes activated the PI3K pathway in T cells but reduced T cell proliferation. Taken together, this study helps to support that high glycemic load diet may contribute to induce activation of the PI3K pathway and increase of proliferation in human primary T cells. Factors secreted by IGF-1- and insulin-stimulated sebocytes induce the PI3K pathway in T cells and reduce T cell proliferation, which probably can reflect a protective mechanism of the sebaceous gland basal cells.

  13. Transcription-dependent degradation controls the stability of the SREBP family of transcription factors.

    Science.gov (United States)

    Sundqvist, Anders; Ericsson, Johan

    2003-11-25

    Cholesterol metabolism is tightly controlled by members of the sterol regulatory element-binding protein (SREBP) family of transcription factors. Here we demonstrate that the ubiquitination and degradation of SREBPs depend on their transcriptional activity. Mutations in the transactivation or DNA-binding domains of SREBPs inhibit their transcriptional activity and stabilize the proteins. The transcriptional activity and degradation of these mutants are restored when fused to heterologous transactivation or DNA-binding domains. When SREBP1a was fused to the DBD of Gal4, the ubiquitination and degradation of the fusion protein depended on coexpression of a promoter-reporter gene containing Gal4-binding sites. In addition, disruption of the interaction between WT SREBP and endogenous p300/CBP resulted in inhibition of SREBP-dependent transcription and stabilization of SREBP. Chemical inhibitors of transcription reduced the degradation of transcriptionally active SREBP1a, whereas they had no effect on the stability of transcriptionally inactive mutants, demonstrating that transcriptional activation plays an important role in the degradation of SREBPs. Thus, transcription-dependent degradation of SREBP constitutes a feedback mechanism to regulate the expression of genes involved in cholesterol metabolism and may represent a general mechanism to regulate the duration of transcriptional responses.

  14. Hypoxic Culture Promotes Dopaminergic-Neuronal Differentiation of Nasal Olfactory Mucosa Mesenchymal Stem Cells via Upregulation of Hypoxia-Inducible Factor-1α.

    Science.gov (United States)

    Zhuo, Yi; Wang, Lei; Ge, Lite; Li, Xuan; Duan, Da; Teng, Xiaohua; Jiang, Miao; Liu, Kai; Yuan, Ting; Wu, Pei; Wang, Hao; Deng, Yujia; Xie, Huali; Chen, Ping; Xia, Ying; Lu, Ming

    2017-08-01

    Olfactory mucosa mesenchymal stem cells (OM-MSCs) display significant clonogenic activity and may be easily propagated for Parkinson's disease therapies. Methods of inducing OM-MSCs to differentiate into dopaminergic (DAergic) neurons using olfactory ensheathing cells (OECs) are thus an attractive topic of research. We designed a hypoxic induction protocol to generate DAergic neurons from OM-MSCs using a physiological oxygen (O 2 ) level of 3% and OEC-conditioned medium (OCM; HI group). The normal induction (NI) group was cultured in O 2 at ambient air level (21%). The role of hypoxia-inducible factor-1α (HIF-1α) in the differentiation of OM-MSCs under hypoxia was investigated by treating cells with an HIF-1α inhibitor before induction (HIR group). The proportions of β-tubulin- and tyrosine hydroxylase (TH)-positive cells were significantly increased in the HI group compared with the NI and HIR groups, as shown by immunocytochemistry and Western blotting. Furthermore, the level of dopamine was significantly increased in the HI group. A slow outward potassium current was recorded in differentiated cells after 21 d of induction using whole-cell voltage-clamp tests. A hypoxic environment thus promotes OM-MSCs to differentiate into DAergic neurons by increasing the expression of HIF-1α and by activating downstream target gene TH. This study indicated that OCM under hypoxic conditions could significantly upregulate key transcriptional factors involved in the development of DAergic neurons from OM-MSCs, mediated by HIF-1α. Hypoxia promotes DAergic neuronal differentiation of OM-MSCs, and HIF-1α may play an important role in hypoxia-inducible pathways during DAergic lineage specification and differentiation in vitro.

  15. MDM2 regulates hypoxic hypoxia-inducible factor 1α stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner.

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R; Durden, Donald L

    2014-08-15

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α-HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression.

    Science.gov (United States)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P<0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P<0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Li, Zhengkun; Chen, Wei

    2014-07-01

    Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

  18. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α.

    Science.gov (United States)

    Miao, Zhi-Feng; Wang, Zhen-Ning; Zhao, Ting-Ting; Xu, Ying-Ying; Gao, Jian; Miao, Feng; Xu, Hui-Mian

    2014-12-01

    Peritoneal dissemination is the most common cause of death in gastric cancer patients. The hypoxic microenvironment plays a major role in controlling the tumor stem cell phenotype and is associated with patients' prognosis through hypoxia-inducible factor-1α (HIF-1α), a key transcriptional factor that responds to hypoxic stimuli. During the peritoneal dissemination process, gastric cancer stem/progenitor cells (GCSPCs) are thought to enter into and maintained in peritoneal milky spots (PMSs), which have hypoxic microenvironments. However, the mechanism through which the hypoxic environment of PMSs regulated GCSPC maintenance is still poorly understood. Here, we investigated whether hypoxic PMSs were an ideal cancer stem cell niche suitable for GCSPC engraftment. We also evaluated the mechanisms through which the HIF-1α-mediated hypoxic microenvironment regulated GCSPC fate. We observed a positive correlation between HIF-1α expression and gastric cancer peritoneal dissemination (GCPD) in gastric cancer patients. Furthermore, the GCSPC population expanded in primary gastric cancer cells under hypoxic condition in vitro, and hypoxic GCSPCs showed enhanced self-renewal ability, but reduced differentiation capacity, mediated by HIF-1α. In an animal model, GCSPCs preferentially resided in the hypoxic zone of PMSs; moreover, when the hypoxic microenvironment in PMSs was destroyed, GCPD was significantly alleviated. In conclusion, our results demonstrated that PMSs served as a hypoxic niche and favored GCSPCs peritoneal dissemination through HIF-1α both in vitro and in vivo. These results provided new insights into the GCPD process and may lead to advancements in the clinical treatment of gastric cancer. © 2014 The Authors. STEM CELLS Published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Effects of YC-1 on hypoxia-inducible factor 1 alpha in hypoxic human bladder transitional carcinoma cell line T24 cells.

    Science.gov (United States)

    Li, Yangle; Zhao, Xiaokun; Tang, Huiting; Zhong, Zhaohui; Zhang, Lei; Xu, Ran; Li, Songchao; Wang, Yi

    2012-01-01

    It was the aim of this study to explore the effects of 3-(5'-hydroxymethyl-2'-furyl)-l-benzyl indazole (YC-1) on transcription activity, cell proliferation and apoptosis of hypoxic human bladder transitional carcinoma cells (BTCC), mediated by hypoxia-inducible factor 1α (HIF-1α). BTCC cell line T24 cells were incubated under normoxic or hypoxic conditions, adding different doses of YC-1. The protein expression of HIF-1α and HIF-1α-mediated genes was detected by Western blotting. RT-PCR was used to detect HIF-1α mRNA expression. Cell proliferation, apoptosis and migration activity were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and transwell migration assay. The cells were pretreated by two ERK/p38 MAPK pathway-specific inhibitors, PD98059 or SB203580, and then incubated with YC-1 treatment under hypoxic condition. HIF-1α protein expression was detected by Western blotting. Hypoxic T24 cells expressed a higher level of HIF-1α, vascular endothelial growth factor, matrix metalloproteinases-2, B-cell lymphoma/leukemia-2 protein and HIF-1α mRNA compared with normoxic controls, in which the above-mentioned expression was downregulated by YC-1 in a dose-dependent manner. Cell proliferation and migration activity were inhibited while apoptosis was induced by YC-1 under hypoxic condition. Moreover, YC-1-downregulated HIF-1α expression was reversed by PD98059 and SB203580, respectively. YC-1 inhibits HIF-1α and HIF-1α-mediated gene expression, cell proliferation and migration activity and induces apoptosis in hypoxic BTCC. The ERK/p38 MAPK pathway may be involved in YC-1-mediated inhibition of HIF-1α. Copyright © 2011 S. Karger AG, Basel.

  20. Knockdown of hypoxia-inducible factor-1 alpha reduces proliferation, induces apoptosis and attenuates the aggressive phenotype of retinoblastoma WERI-Rb-1 cells under hypoxic conditions.

    Science.gov (United States)

    Xia, Tian; Cheng, Hao; Zhu, Yu

    2014-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1α) plays a critical role in tumor cell adaption to hypoxia by inducing the transcription of numerous genes. The role of HIF-1α in malignant retinoblastoma remains unclear. We analyzed the role of HIF-1α in WERI-Rb-1 retinoblastoma cells under hypoxic conditions. CoCl2 (125 mmol/L) was added to the culture media to mimic hypoxia. HIF-1α was silenced using siRNA. Gene and protein expression were measured by semi-quantitative RT-PCR and Western blotting. Cell cycle and apoptosis were analyzed by flow cytometry. Cell proliferation, adhesion and invasion were assayed using MTT, Transwell invasion, and cell adhesion assays respectively. Hypoxia significantly upregulated HIF-1α protein expression and the HIF-1α target genes VEGF, GLUT1, and Survivin mRNA. HIF-1α mRNA expression was not affected by hypoxia. Transfection of the siRNA expression plasmid pRNAT-CMV3.2/Neo-HIF-1α silenced HIF-1α by approximately 80% in hypoxic WERI-Rb-1 cells. The knockdown of HIF-1α under hypoxic conditions downregulated VEGF, GLUT1, and Survivin mRNA. It also inhibited proliferation, promoted apoptosis, induced the G0/G1 phase cell cycle arrest, and reduced the adhesion and invasion of WERI-Rb-1 cells. HIF-1α plays a major role in the survival and aggressive phenotype of retinoblastoma cells under hypoxic conditions. Targeting HIF-1α may be a promising therapeutic strategy for human malignant retinoblastoma.

  1. MDM2 Regulates Hypoxic Hypoxia-inducible Factor 1α Stability in an E3 Ligase, Proteasome, and PTEN-Phosphatidylinositol 3-Kinase-AKT-dependent Manner*

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R.; Durden, Donald L.

    2014-01-01

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α–HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. PMID:24982421

  2. Krüppel-like factor 1 mutations and expression of hemoglobins F and A2 in homozygous hemoglobin E syndrome.

    Science.gov (United States)

    Tepakhan, Wanicha; Yamsri, Supawadee; Fucharoen, Goonnapa; Sanchaisuriya, Kanokwan; Fucharoen, Supan

    2015-07-01

    The basis for variability of hemoglobin (Hb) F in homozygous Hb E disease is not well understood. We have examined multiple mutations of the Krüppel-like factor 1 (KLF1) gene; an erythroid specific transcription factor and determined their associations with Hbs F and A2 expression in homozygous Hb E. Four KLF1 mutations including G176AfsX179, T334R, R238H, and -154 (C-T) were screened using specific PCR assays on 461 subjects with homozygous Hb E and 100 normal controls. None of these four mutations were observed in 100 normal controls. Among 461 subjects with homozygous Hb E, 306 had high (≥5 %) and 155 had low (<5 %) Hb F. DNA analysis identified the KLF1 mutations in 35 cases of the former group with high Hb F, including the G176AfsX179 mutation (17/306 = 5.6 %), T334R mutation (9/306 = 2.9 %), -154 (C-T) mutation (7/306 = 2.3 %), and R328H mutation (2/306 = 0.7 %). Only two subjects in the latter group with low Hb F carried the G176AfsX179 and -154 (C-T) mutations. Significant higher Hb A2 level was observed in those of homozygous Hb E with the G176AfsX179 mutation as compared to those without KLF1 mutations. These results indicate that KLF1 is among the genetic factors associated with increased Hbs F and A2, and in combination with other factors could explain the variabilities of these Hb expression in Hb E syndrome.

  3. Notch signaling represses hypoxia-inducible factor-1α-induced activation of Wnt/β-catenin signaling in osteoblasts under cobalt-mimicked hypoxia

    Science.gov (United States)

    LI, CHEN-TIAN; LIU, JIAN-XIU; YU, BO; LIU, RUI; DONG, CHAO; LI, SONG-JIAN

    2016-01-01

    The modification of Wnt and Notch signaling pathways by hypoxia, and its association with osteoblast proliferation and apoptosis remain to be fully elucidated. To investigate Wnt-Notch crosstalk, and its role in hypoxia-induced osteoblast proliferation and apoptosis regulation, the present study investigated the effects of cobalt-mimicked hypoxia on the mouse pre-osteoblast-like cell line, MC3T3-E1, when the Notch signals were repressed using a γ-secretase inhibitor DAPT. The data showed that the cobalt-mimicked hypoxia suppressed cell proliferation under normal conditions, but increased cell proliferation under conditions of Notch repression, in a concentration-dependent manner. The results of western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the cobalt treatment increased the levels of activated β-catenin protein and the expression levels of the target genes, axis inhibition protein 2 and myelocytomatosis oncogene, under DAPT-induced Notch repression. However, no significant changes were found in the expression levels of the Notch intracellular domain protein or the Notch target gene, hes1. In a β-catenin gene-knockdown experiment, the proliferation of the MC3T3-E1 cells under hypoxia were decreased by DAPT treatment, and knockdown of the expression of hypoxia-inducible factor-1α (HIF-1α) suppressed the cobalt-induced increase in Wnt target gene levels. No significant difference in cell proliferation rate was found following DAPT treatment when the expression of HIF-1α was knocked down. The results of the present study showed the opposing effects of Wnt and Notch signaling under cobalt-mimicked hypoxia, which were partially regulated by HIF-1α, The results also showed that osteoblast proliferation was dependent on Wnt-Notch signal crosstalk. PMID:27220406

  4. A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines

    Directory of Open Access Journals (Sweden)

    Stroh Thorsten

    2011-05-01

    Full Text Available Abstract Background In traditional Chinese and Korean medicine, an aqueous extract derived from wood and bark of the Japanese spice bush Lindera obtusiloba (L.obtusiloba is applied to treat inflammations and chronic liver diseases including hepatocellular carcinoma. We previously demonstrated anti-fibrotic effects of L.obtusiloba extract in hepatic stellate cells. Thus, we here consequently examine anti-neoplastic effects of L.obtusiloba extract on human hepatocellular carcinoma (HCC cell lines and the signaling pathways involved. Methods Four human HCC cell lines representing diverse stages of differentiation were treated with L.obtusiloba extract, standardized according to its known suppressive effects on proliferation and TGF-β-expression. Beside measurement of proliferation, invasion and apoptosis, effects on signal transduction and NF-κB-activity were determined. Results L.obtusiloba extract inhibited proliferation and induced apoptosis in all HCC cell lines and provoked a reduced basal and IGF-1-induced activation of the IGF-1R signaling cascade and a reduced transcriptional NF-κB-activity, particularly in the poorly differentiated SK-Hep1 cells. Pointing to anti-angiogenic effects, L.obtusiloba extract attenuated the basal and IGF-1-induced expression of hypoxia inducible factor-1α, vascular endothelial growth factor, peroxisome proliferator-activated receptor-γ, cyclooxygenase-2 and inducible nitric oxide synthase. Conclusions The traditional application of the extract is confirmed by our experimental data. Due to its potential to inhibit critical receptor tyrosine kinases involved in HCC progression via the IGF-1 signaling pathway and NF-κB, the standardized L.obtusiloba extract should be further analysed for its active compounds and explored as (complementary treatment option for HCC.

  5. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin.

    Science.gov (United States)

    Quan, Chunji; Cho, Moon Kyun; Shao, Yuan; Mianecki, Laurel E; Liao, Eric; Perry, Daniel; Quan, Taihao

    2015-12-01

    Stromal cells provide a crucial microenvironment for overlying epithelium. Here we investigated the expression and function of a stromal cell-specific protein, stromal cell-derived factor-1 (SDF-1), in normal human skin and in the tissues of diseased skin. Immunohistology and laser capture microdissection (LCM)-coupled quantitative real-time RT-PCR revealed that SDF-1 is constitutively and predominantly expressed in dermal stromal cells in normal human skin in vivo. To our surprise, an extremely high level of SDF-1 transcription was observed in the dermis of normal human skin in vivo, evidenced by much higher mRNA expression level than type I collagen, the most abundant and highly expressed protein in human skin. SDF-1 was also upregulated in the tissues of many human skin disorders including psoriasis, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Double immunostaining for SDF-1 and HSP47 (heat shock protein 47), a marker of fibroblasts, revealed that fibroblasts were the major source of stroma-cell-derived SDF-1 in both normal and diseased skin. Functionally, SDF-1 activates the ERK (extracellular-signal-regulated kinases) pathway and functions as a mitogen to stimulate epidermal keratinocyte proliferation. Both overexpression of SDF-1 in dermal fibroblasts and treatment with rhSDF-1 to the skin equivalent cultures significantly increased the number of keratinocyte layers and epidermal thickness. Conversely, the stimulative function of SDF-1 on keratinocyte proliferation was nearly completely eliminated by interfering with CXCR4, a specific receptor of SDF-1, or by knock-down of SDF-1 in fibroblasts. Our data reveal that extremely high levels of SDF-1 provide a crucial microenvironment for epidermal keratinocyte proliferation in both physiologic and pathologic skin conditions.

  6. Low early B-cell factor 1 (EBF1) activity in human subcutaneous adipose tissue is linked to a pernicious metabolic profile.

    Science.gov (United States)

    Petrus, P; Mejhert, N; Gao, H; Bäckdahl, J; Arner, E; Arner, P; Rydén, M

    2015-12-01

    Recently, in both human and murine white adipose tissue (WAT), transcription factor early B-cell factor 1 (EBF1) has been shown to regulate adipocyte differentiation, adipose morphology and triglyceride hydrolysis (lipolysis). This study investigated whether EBF1 expression and biological activity in WAT is related to different metabolic parameters. In this cross-sectional study of abdominal subcutaneous WAT, EBF1 protein levels were examined in 18 non-obese subjects, while biological activity was determined in 56 obese and non-obese subjects. Results were assessed by anthropometric measures and blood pressure as well as by plasma lipid levels and insulin sensitivity. EBF1 protein levels were negatively associated with waist circumference (r=-0.56; P=0.015), but not with body mass index (BMI) or body fat (P=0.10-0.29). Biological activity of EBF1 correlated negatively with plasma triglycerides (r=-0.46; P=0.0005) and plasma insulin (r=-0.39; P=0.0027), but positively with plasma HDL cholesterol (r=0.48; P=0.0002) and insulin sensitivity, as assessed by intravenous insulin tolerance test (r=0.64; PEBF1 activity was not associated with age, systolic/diastolic blood pressure or total plasma cholesterol (P=0.17-0.48). In contrast to EBF1 activity, after adjusting for BMI, EBF1 mRNA levels displayed only an association with plasma triglycerides. Low EBF1 protein expression and activity in abdominal subcutaneous WAT is a BMI-independent marker for several traits associated with the metabolic syndrome. However, whether EBF1 constitutes a novel treatment target remains to be demonstrated. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Association in a Chinese population of a genetic variation in the early B-cell factor 1 gene with coronary artery disease.

    Science.gov (United States)

    Li, Yafei; Xie, Zhiyong; Chen, Lei; Yan, Jianjun; Ma, Yao; Wang, Liansheng; Chen, Zhong

    2017-02-10

    Early B-cell factor 1 (EBF1) is a transcription factor expressed primarily during early B cell development. Previous studies have shown EBF1 regulates blood glucose and lipid metabolism in mice with diabetes and central adiposity. Recently, a genetic variation (rs36071027) located in an EBF1 gene intron was associated with carotid artery intima-media thickness. However, whether this polymorphism is actually linked with coronary artery disease (CAD) and its severity remains unclear. This study includes 293 CAD cases and 262 controls without CAD. All participants were devided into two groups based on their coronary angiography results. A polymerase chain reaction-ligase detection reaction was used to identify genotypes at rs36071027, and CAD patients were further divided into subgroups with one-, two-, or three-vessel stenosis reflective of CAD severity. The frequency of the rs36071027 TT genotype was significantly higher in CAD cases versus controls (4.8% vs. 1.5%, 95% CI: 1.13-10.81 P = 0.029). Subjects with a variant genotype T allele had an increased risk of CAD compared to C allele carriers (additive model: 95% CI: 1.13-2.23, P = 0.008). After adjustment for cardiovascular risk factors, analysis of the additive and dominant models involving rs36071027 also revealed that T allele carriers had a significantly higher risk for CAD than C allele carriers (additive model: OR 1.56, 95% CI 1.10-2.22, P = 0.013; dominant model: OR 1.60, 95% CI 1.07-2.41, P = 0.023). Furthermore, both diabetes and the CT + TT rs36071027 genotype were significantly associated with three-vessel stenosis. Our results in a Chinese population suggest that the TT genotype and T alleles in rs36071027 in the EBF1 gene are associated with an increased risk of CAD and its severity.

  8. Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells.

    Directory of Open Access Journals (Sweden)

    Bernhard F Gibbs

    Full Text Available Stem cell factor (SCF is a hematopoietic growth factor that exerts its activity by signalling through the tyrosine kinase receptor known as Kit or CD117. SCF-Kit signalling is crucial for the survival, proliferation and differentiation of hematopoietic cells of myeloid lineage. Furthermore, since myeloid leukaemia cells express the Kit receptor, SCF may play an important role in myeloid leukaemia progression too. However, the mechanisms of this pathophysiological effect remain unclear. Recent evidence shows that SCF triggers accumulation of the inducible alpha subunit of hypoxia-inducible factor 1 (HIF-1 in hematopoietic cells--a transcription complex that plays a pivotal role in cellular adaptation to low oxygen availability. However, it is unknown how SCF impacts on HIF-1α accumulation in human myeloid leukaemia and mast cells. Here we show that SCF induces HIF-1α accumulation in THP-1 human myeloid leukaemia cells but not in LAD2 mast cells. We demonstrated that LAD2 cells have a more robust glutathione (GSH-dependent antioxidative system compared to THP-1 cells and are therefore protected against the actions of ROS generated in an SCF-dependent manner. BSO-induced GSH depletion led to a significant decrease in HIF-1α prolyl hydroxylase (PHD activity in THP-1 cells and to near attenuation of it in LAD2 cells. In THP-1 cells, SCF-induced HIF-1α accumulation is controlled via ERK, PI3 kinase/PKC-δ/mTOR-dependent and to a certain extent by redox-dependent mechanisms. These results demonstrate for the first time an important cross-talk of signalling pathways associated with HIF-1 activation--an important stage of the myeloid leukaemia cell life cycle.

  9. Ascorbic acid, but not dehydroascorbic acid increases intracellular vitamin C content to decrease Hypoxia Inducible Factor -1 alpha activity and reduce malignant potential in human melanoma.

    Science.gov (United States)

    Fischer, Adam P; Miles, Sarah L

    2017-02-01

    Accumulation of hypoxia inducible factor-1 alpha (HIF-1α) in malignant tissue is known to contribute to oncogenic progression and is inversely associated with patient survival. Ascorbic acid (AA) depletion in malignant tissue may contribute to aberrant normoxic activity of HIF-1α. While AA supplementation has been shown to attenuate HIF-1α function in malignant melanoma, the use of dehydroascorbic acid (DHA) as a therapeutic means to increase intracellular AA and modulate HIF-1α function is yet to be evaluated. Here we compared the ability of AA and DHA to increase intracellular vitamin C content and decrease the malignant potential of human melanoma by reducing the activity of HIF-1α. HIF-1α protein accumulation was evaluated by western blot and transcriptional activity was evaluated by reporter gene assay using a HIF-1 HRE-luciferase plasmid. Protein expressions and subcellular localizations of vitamin C transporters were evaluated by western blot and confocal imaging. Intracellular vitamin C content following AA, ascorbate 2-phosphate (A2P), or DHA supplementation was determined using a vitamin C assay. Malignant potential was accessed using a 3D spheroid Matrigel invasion assay. Data was analyzed by One or Two-way ANOVA with Tukey's multiple comparisons test as appropriate with pascorbic acid as an adjuvant cancer therapy remains under investigated. While AA and A2P were capable of modulating HIF-1α protein accumulation/activity, DHA supplementation resulted in minimal intracellular vitamin C activity with decreased ability to inhibit HIF-1α activity and malignant potential in advanced melanoma. Restoring AA dependent regulation of HIF-1α in malignant cells may prove beneficial in reducing chemotherapy resistance and improving treatment outcomes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Factors regulated by interferon gamma and hypoxia-inducible factor 1A contribute to responses that protect mice from Coccidioides immitis infection

    Directory of Open Access Journals (Sweden)

    Woelk Christopher H

    2012-09-01

    Full Text Available Abstract Background Coccidioidomycosis results from airborne infections caused by either Coccidioides immitis or C. posadasii. Both are pathogenic fungi that live in desert soil in the New World and can infect normal hosts, but most infections are self-limited. Disseminated infections occur in approximately 5% of cases and may prove fatal. Mouse models of the disease have identified strains that are resistant (e.g. DBA/2 or susceptible (e.g. C57BL/6 to these pathogens. However, the genetic and immunological basis for this difference has not been fully characterized. Results Microarray technology was used to identify genes that were differentially expressed in lung tissue between resistant DBA/2 and sensitive C57BL/6 mice after infection with C. immitis. Differentially expressed genes were mapped onto biological pathways, gene ontologies, and protein interaction networks, which revealed that innate immune responses mediated by Type II interferon (i.e., IFNG and the signal transducer and activator of transcription 1 (STAT1 contribute to the resistant phenotype. In addition, upregulation of hypoxia inducible factor 1A (HIF1A, possibly as part of a larger inflammatory response mediated by tumor necrosis factor alpha (TNFA, may also contribute to resistance. Microarray gene expression was confirmed by real-time quantitative PCR for a subset of 12 genes, which revealed that IFNG HIF1A and TNFA, among others, were significantly differentially expressed between the two strains at day 14 post-infection. Conclusion These results confirm the finding that DBA/2 mice express more Type II interferon and interferon stimulated genes than genetically susceptible strains and suggest that differential expression of HIF1A may also play a role in protection.

  11. Progestins inhibit estradiol-induced vascular endothelial growth factor and stromal cell-derived factor 1 in human endometrial stromal cells.

    Science.gov (United States)

    Okada, Hidetaka; Okamoto, Rika; Tsuzuki, Tomoko; Tsuji, Shoko; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2011-09-01

    To investigate whether 17β-estradiol (E(2)) and progestins exert direct effects on vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1 (SDF-1/CXCL12) in human endometrial stromal cells (ESCs) and thereby to clarify the regulatory function of these local angiogenic factors in the endometrium. In vitro experiment. Research laboratory at Kansai Medical University. Fourteen patients undergoing hysterectomy for benign reasons. ESCs were cultured with E(2) and/or various clinically relevant progestins (medroxyprogesterone acetate [MPA], norethisterone [NET], levonorgestrel [LNG], dienogest [DNG], and progesterone [P]). The mRNA levels and production of VEGF and SDF-1 were assessed by real-time reverse-transcription polymerase chain reaction and ELISA, respectively. E(2) significantly induced the mRNA levels and protein production of VEGF and SDF-1 in ESCs. MPA could antagonize the E(2)-stimulated effects in a time- and dose-dependent manner, and this effect could be reversed by RU-486 (P receptor antagonist). All of the progestins (MPA, NET, LNG, and DNG; 10(-9) to 10(-7) mol/L) attenuated E(2)-induced VEGF and SDF-1 production, whereas P showed these inhibitory effects only when present in a high concentration (10(-7) mol/L). Progestins have inhibitory effects on E(2)-induced VEGF and SDF-1 in ESCs. These results may indicate a potential mechanism for action of the female sex steroids in the human endometrium that can be helpful for various clinical applications. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. A Novel Mutation in the Critical P-Box Residue of Steroidogenic Factor-1 Presenting with XY Sex Reversal and Transient Adrenal Failure.

    Science.gov (United States)

    Orekhova, Anna S; Kalinchenko, Natalia; Morozov, Ivan A; Vasilyev, Evgeny V; Rubtsov, Petr M; Dedov, Ivan I; Tiulpakov, Anatoly

    2017-11-17

    Although the importance of steroidogenic factor-1 (SF1, NR5A1) for adrenal development is supported by numerous in vitro and in vivo studies, cases of SF1 deficiency associated with adrenal failure are exceptionally rare. The first human NR5A1 mutation was a heterozygous de novo p.G35E variant identified in a patient with disorder of sex development (DSD) 46,XY and primary adrenal insufficiency. Here we describe another association of the "classic" SF1 phenotype with a novel NR5A1 mutation affecting G35 residue. We describe the clinical characteristics of a phenotypically female patient presenting at 2 months with signs of adrenal insufficiency. DSD 46,XY was diagnosed at 4 years. The NR5A1 gene was analyzed by Sanger sequencing. Minigene splicing and dual luciferase reporter assays were used to characterize effects of the novel mutation on splicing and transcription, respectively. Sequencing of the NR5A1 gene revealed a de novo heterozygous c.104G>A:p.G35D substitution. The minigene experiments demonstrated that c.104G>A substitution did not affect splicing. However, transactivation activity of the p.G35D mutant was clearly impaired, which was comparable with the effect of the p.G35E mutation. The findings stress the importance of G35 residue for adrenal development. The current observation also suggests that some patients with SF1 deficiency may present with transient adrenal failure. © 2017 S. Karger AG, Basel.

  13. Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α.

    Science.gov (United States)

    Wan, W; Peng, K; Li, M; Qin, L; Tong, Z; Yan, J; Shen, B; Yu, C

    2017-07-06

    High aerobic glycolysis not only provides energy to cancer cells, but also supports their anabolic growth. JMJD1A, a histone demethylase that specifically demethylates H3K9me1/2, is overexpressed in multiple cancers, including urinary bladder cancer (UBC). It is unclear whether JMJD1A could promote cancer cell growth through enhancing glycolysis. In this study, we found that downregulation of JMJD1A decreased UBC cell proliferation, colony formation and xenograft tumor growth. Knockdown of JMJD1A inhibited glycolysis by decreasing the expression of genes participated in glucose metabolism, including GLUT1, HK2, PGK1, PGM, LDHA and MCT4. Mechanistically, JMJD1A cooperated with hypoxia inducible factor 1α (HIF1α), an important transcription factor for glucose metabolism, to induce the glycolytic gene expression. JMJD1A was recruited to the promoter of glycolytic gene PGK1 to demethylate H3K9me2. However, the JMJD1A (H1120Y) mutant, which loses the demethylase activity, failed to cooperate with HIF1α to induce the glycolytic gene expression, and failed to demethylate H3K9me2 on PGK1 promoter, suggesting that the demethylase activity of JMJD1A is essential for its coactivation function for HIF1α. Inhibition of glycolysis through knocking down HIF1α or PGK1 decelerated JMJD1A-enhanced UBC cell growth. Consistent with these results, a positive correlation between JMJD1A and several key glycolytic genes in human UBC samples was established by analyzing a microarray-based gene expression profile. In conclusion, our study demonstrates that JMJD1A promotes UBC progression by enhancing glycolysis through coactivation of HIF1α, implicating that JMJD1A is a potential molecular target for UBC treatment.

  14. Dissecting the role of the elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs.

    Science.gov (United States)

    Farra, Rossella; Scaggiante, Bruna; Guerra, Chiara; Pozzato, Gabriele; Grassi, Mario; Zanconati, Fabrizio; Perrone, Francesca; Ferrari, Cinzia; Trotta, Francesco; Grassi, Gabriele; Dapas, Barbara

    2017-06-20

    Eukaryotic elongation factor 1A (eEF1A), a protein involved in protein synthesis, has two major isoforms, eEF1A1 and eEF1A2. Despite the evidences of their involvement in hepatocellular carcinoma (HCC), the quantitative contribution of each of the two isoforms to the disease is unknown. We depleted the two isoforms by means of siRNAs and studied the effects in three different HCC cell lines. Particular care was dedicated to select siRNAs able to target each of the two isoform without affecting the other one. This is not a trivial aspect due to the high sequence homology between eEF1A1 and eEF1A2. The selected siRNAs can specifically deplete either eEF1A1 or eEF1A2. This, in turn, results in an impairment of cell vitality, growth and arrest in the G1/G0 phase of the cell cycle. Notably, these effects are quantitatively superior following eEF1A1 than eEF1A2 depletion. Moreover, functional tests revealed that the G1/G0 block induced by eEF1A1 depletion depends on the down-regulation of the transcription factor E2F1, a known player in HCC. In conclusion, our data indicate that the independent targeting of the two eEF1A isoforms is effective in reducing HCC cell growth and that eEF1A1 depletion may result in a more evident effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Haplotype-based case-control study on human apurinic/apyrimidinic endonuclease 1/redox effector factor-1 gene and essential hypertension.

    Science.gov (United States)

    Naganuma, Takahiro; Nakayama, Tomohiro; Sato, Naoyuki; Fu, Zhenyan; Soma, Masayoshi; Yamaguchi, Mai; Shimodaira, Masanori; Aoi, Noriko; Usami, Ron

    2010-02-01

    Oxidative DNA damage is involved in the pathophysiology of essential hypertension (EH), which is a multifactorial disorder. Apurinic/apyrimidinic endonuclease 1/redox effector factor-1 (APE1/REF-1) is an essential endonuclease in the base excision repair pathway of oxidatively damaged DNA, in addition to having reducing properties that promote the binding of redox-sensitive transcription factors. Blood pressure in APE1/REF-1-knockout mice is reported to be significantly higher than in wild-type mice. The aim of this study was to investigate the relationship between EH and the human APE1/REF-1 gene through a haplotype-based case-control study using single-nucleotide polymorphisms (SNPs). We selected five SNPs in the human APE1/REF-1 gene (rs1760944, rs3136814, rs17111967, rs3136817, and rs1130409), and performed case-control studies in 265 EH patients and 266 age-matched normotensive (NT) subjects. rs17111967 was found to show nonheterogeneity among Japanese subjects. There were no significant differences in the overall distribution of genotypes or alleles for each SNP between EH and NT groups. In the overall distribution of the haplotype-based case-control study constructed based on rs1760944, rs3136817, and rs1130409, the frequency of the G-T-T haplotype was significantly higher in the EH group than in the NT group (2.1% vs. 0.0%, P = 0.001). Multiple logistic regression analysis also revealed significant differences for the G-T-T haplotype, even after adjustment for confounding factors (OR = 8.600, 95% CI: 1.073-68.951, P = 0.043). Based on the present results, the G-T-T haplotype appears to be a genetic marker of EH, and the APE1/REF-1 gene appears to be a susceptibility gene for EH.

  16. Apaf-1 is a transcriptional target for E2F and p53

    DEFF Research Database (Denmark)

    Moroni, M C; Hickman, E S; Lazzerini Denchi, E

    2001-01-01

    RB or the deregulation of E2F activity occurs via both p53-dependent and p53-independent mechanisms. The mechanism by which E2F induces apoptosis is still unclear. Here we show that E2F1 directly regulates the expression of Apaf-1, the gene for apoptosis protease-activating factor 1. These results provide a direct link......, independently of the pRB pathway, Apaf-1 is a direct transcriptional target of p53, suggesting that p53 might sensitize cells to apoptosis by increasing Apaf-1 levels....

  17. HEAT SHOCK FACTOR 1-MEDIATED THERMOTOLERANCE PREVENTS CELL DEATH AND RESULTS IN G2/M CELL CYCLE ARREST

    Science.gov (United States)

    Mammalian cells respond to stress by activating heat shock transcription factors (e.g., HSF1) that regulate increased synthesis of heat shock proteins (HSPs). HSPs mediate protection from deleterious effects of stress by preventing permanent disruption of normal cellular mitosis...

  18. Colon cancer associated transcripts in human cancers.

    Science.gov (United States)

    Chen, Yincong; Xie, Haibiao; Gao, Qunjun; Zhan, Hengji; Xiao, Huizhong; Zou, Yifan; Zhang, Fuyou; Liu, Yuchen; Li, Jianfa

    2017-10-01

    Long non-coding RNAs serve as important regulators in complicated cellular activities, including cell differentiation, proliferation and death. Dysregulation of long non-coding RNAs occurs in the formation and progression of cancers. The family of colon cancer associated transcripts, long non-coding RNAs colon cancer associated transcript-1 and colon cancer associated transcript-2 are known as oncogenes involved in various cancers. Colon cancer associated transcript-1 is a novel lncRNA located in 8q24.2, and colon cancer associated transcript-2 maps to the 8q24.21 region encompassing rs6983267. Colon cancer associated transcripts have close associations with clinical characteristics, such as lymph node metastasis, high TNM stage and short overall survival. Knockdown of them can reverse the malignant phenotypes of cancer cells, including proliferation, migration, invasion and apoptosis. Moreover, they can increase the expression level of c-MYC and oncogenic microRNAs via activating a series of complex mechanisms. In brief, the family of colon cancer associated transcripts may serve as potential biomarkers or therapeutic targets for human cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Optogenetic control of transcription in zebrafish.

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    Full Text Available Light inducible protein-protein interactions are powerful tools to manipulate biological processes. Genetically encoded light-gated proteins for controlling precise cellular behavior are a new and promising technology, called optogenetics. Here we exploited the blue light-induced transcription system in yeast and zebrafish, based on the blue light dependent interaction between two plant proteins, blue light photoreceptor Cryptochrome 2 (CRY2 and the bHLH transcription factor CIB1 (CRY-interacting bHLH 1. We demonstrate the utility of this system by inducing rapid transcription suppression and activation in zebrafish.

  20. Transcriptional mapping of rabies virus in vivo

    International Nuclear Information System (INIS)

    Flamand, A.; Delagneau, J.F.

    1978-01-01

    Synthesis of the proteins of rabies virus was studied in hamster cell infected with uv-irradiated virus. The uv target size of genes L, N, M 1 , and M 2 was measured during primary transcription. Except for N, the target size of the remaining genes was considerably larger than that of their physical sizes. The data fit the hypothesis that four genes occupy a single transcriptional unit and that transcription of rabies virus proceeds in the order N, M 1 , M 2 , and L

  1. Enhancer RNAs: the new molecules of transcription.

    Science.gov (United States)

    Lai, Fan; Shiekhattar, Ramin

    2014-04-01

    In the past few years, technological advances in nucleotide sequencing have culminated in a greater understanding of the complexity of the human transcriptome. Notably, the discovery that distal regulatory elements known as enhancers are transcribed and such enhancer-derived transcripts (eRNAs) serve a critical function in transcriptional activation has added a new dimension to transcriptional regulation. Here we review recent insights into the tissue-specific and temporal-specific gene regulation brought about by the discovery of eRNAs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. [Effects of intermittent hypoxic exposure on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha and erythropoietin levels].

    Science.gov (United States)

    Zhang, Cheng-yan; Zhang, Ji-xin; Lü, Xiao-tao; Li, Bao-yu

    2009-10-01

    To investigate the effects of intermittent hypoxic exposure and normoxic convalescence on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha (HIF-1alpha) and erythropoietin (EPO) levels. Rat models of intermittent hypoxic exposure were established, combined with the clinical research on volunteers experiencing the intermittent plateau work. Blood samples for red blood cell (RBC) counts, hemoglobin (Hb) and hematocrit (HCT) were collected, serum HIF-1alpha and EPO levels were measured using enzyme linked immunosorbent assay. RBC counts, Hb concentration and HCT were significantly higher than the normoxic group (P hypoxic exposure can enhance serum hypoxia inducible factor-1 alpha and erythropointin levels and the generation of red blood cells, which leads to an increase in hemoglobin concentration and hematocrit. The results have changed with the hypoxic exposure period prolonged. Normoxic convalescence after intermittent hypoxic exposure can make the related indexes reduced, and contribute to the organism recovery.

  3. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  4. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    International Nuclear Information System (INIS)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-01-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal α-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  5. Structural and functional insight into TAF1-TAF7, a subcomplex of transcription factor II D

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Suparna; Lou, Xiaohua; Hwang, Peter; Rajashankar, Kanagalaghatta R.; Wang, Xiaoping; Gustafsson, Jan-Åke; Fletterick, Robert J.; Jacobson, Raymond H.; Webb, Paul [MDACC; (HMRI); (Cornell); (UCSF); (Houston)

    2014-07-01

    Transcription factor II D (TFIID) is a multiprotein complex that nucleates formation of the basal transcription machinery. TATA binding protein-associated factors 1 and 7 (TAF1 and TAF7), two subunits of TFIID, are integral to the regulation of eukaryotic transcription initiation and play key roles in preinitiation complex (PIC) assembly. Current models suggest that TAF7 acts as a dissociable inhibitor of TAF1 histone acetyltransferase activity and that this event ensures appropriate assembly of the RNA polymerase II-mediated PIC before transcriptional initiation. Here, we report the 3D structure of a complex of yeast TAF1 with TAF7 at 2.9 Å resolution. The structure displays novel architecture and is characterized by a large predominantly hydrophobic heterodimer interface and extensive cofolding of TAF subunits. There are no obvious similarities between TAF1 and known histone acetyltransferases. Instead, the surface of the TAF1–TAF7 complex contains two prominent conserved surface pockets, one of which binds selectively to an inhibitory trimethylated histone H3 mark on Lys27 in a manner that is also regulated by phosphorylation at the neighboring H3 serine. Our findings could point toward novel roles for the TAF1–TAF7 complex in regulation of PIC assembly via reading epigenetic histone marks.

  6. Ebf1 and c-Myb repress rag transcription downstream of Stat5 during early B cell development.

    Science.gov (United States)

    Timblin, Greg A; Schlissel, Mark S

    2013-11-01

    The temporal control of RAG (Rag) expression in developing lymphocytes prevents DNA breaks during periods of proliferation that could threaten genomic integrity. In developing B cells, the IL-7R and precursor B cell Ag receptor (pre-BCR) synergize to induce proliferation and the repression of Rag at the protein and mRNA levels for a brief period following successful Ig H chain gene rearrangement. Whereas the mechanism of RAG2 protein downregulation is well defined, little is known about the pathways and transcription factors that mediate transcriptional repression of Rag. Using Abelson murine leukemia virus-transformed B cells to model this stage of development, we identified early B cell factor 1 (Ebf1) as a strong repressor of Rag transcription. Short hairpin RNA-mediated knockdown of either Ebf1 or its downstream target c-Myb was sufficient to induce Rag transcription in these highly proliferative cells. Ebf1 and c-Myb antagonize Rag transcription by negatively regulating the binding of Foxo1 to the Rag locus. Ebf1 accomplishes this through both direct negative regulation of Foxo1 expression and direct positive regulation of Gfi1b expression. Ebf1 expression is driven by the IL-7R downstream effector Stat5, providing a link between the negative regulation of Rag transcription by IL-7 and a novel repressive pathway involving Ebf1 and c-Myb.

  7. A flavin-dependent halogenase catalyzes the chlorination step in the biosynthesis of Dictyostelium differentiation-inducing factor 1

    OpenAIRE

    Neumann, Christopher S.; Walsh, Christopher T.; Kay, Robert R.

    2010-01-01

    Differentiation-inducing factor 1 (DIF-1) is a polyketide-derived morphogen which drives stalk cell formation in the developmental cycle of Dictyostelium discoideum. Previous experiments demonstrated that the biosynthetic pathway proceeds via dichlorination of the precursor molecule THPH, but the enzyme responsible for this transformation has eluded characterization. Our recent studies on prokaryotic flavin-dependent halogenases and insights from the sequenced Dd genome led us to a candidate ...

  8. Solution structure of human insulin-like growth factor 1: A nuclear magnetic resonance and restrained molecular dynamics study

    International Nuclear Information System (INIS)

    Cooke, R.M.; Harvey, T.S.; Campbell, I.D.

    1991-01-01

    The solution structure of human insulin-like growth factor 1 has been investigated with a combination of nuclear magnetic resonance and restrained molecular dynamics methods. The results show that the solution structure is similar to that of insulin, but minor differences exist. The regions homologous to insulin are well-defined, while the remainder of the molecular exhibits greater disorder. The resultant structures have been used to visualize the sites for interaction with a number of physiologically important protein

  9. In silico and wet lab approaches to study transcriptional regulation

    NARCIS (Netherlands)

    Hestand, Matthew Scott

    2010-01-01

    Gene expression is a complicated process with multiple types of regulation, including binding of proteins termed transcription factors. This thesis looks at transcription factors and transcription factor binding site discovery through computational predictions and wet lab work to better elucidate

  10. High throughput assays for analyzing transcription factors.

    Science.gov (United States)

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed.

  11. Characterization of BRCA2 Transcriptional Regulation

    National Research Council Canada - National Science Library

    Couch, Fergus

    1998-01-01

    .... Initially, reagents for transcriptional studies were generated. The promoter was cloned into luciferase reporter vectors, and expression constructs of BRCA2, BRCA1, p53, p21, p27 and a number of other cell cycle regulating genes were generated...

  12. Salmonella Typhimurium transcription profiles in space flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Salmonella transcription profiles were obtained from samples flown on space shuttle mission STS-115 and compared to profiles from Salmonella grown under identical...

  13. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  14. Biophysical models of transcription in cells

    Science.gov (United States)

    Choubey, Sandeep

    Cells constantly face environmental challenges and deal with them by changing their gene expression patterns. They make decisions regarding which genes to express and which genes not to express based on intra-cellular and environmental cues. These decisions are often made by regulating the process of transcription. While the identities of the different molecules that take part in regulating transcription have been determined for a number of different genes, their dynamics inside the cell are still poorly understood. One key feature of these regulatory dynamics is that the numbers of the bio-molecules involved is typically small, resulting in large temporal fluctuations in transcriptional outputs (mRNA and protein). In this thesis I show that measurements of the cell-to-cell variability of the distribution of transcribing RNA polymerases along a gene provide a previously unexplored method for deciphering the mechanism of its transcription in vivo. First, I propose a simple kinetic model of transcription initiation and elongation from which I calculate transcribing RNA polymerase copy-number fluctuations. I test my theory against published data obtained for yeast genes and propose a novel mechanism of transcription. Rather than transcription being initiated through a single rate-limiting step, as was previously proposed, my single-cell analysis reveals the presence of at least two rate limiting steps. Second, I compute the distribution of inter-polymerase distance distribution along a gene and propose a method for analyzing inter-polymerase distance distributions acquired in experiments. By applying this method to images of polymerases transcribing ribosomal genes in E.coli I show that one model of regulation of these genes is consistent with inter-polymerase distance data while a number of other models are not. The analytical framework described in this thesis can be used to extract quantitative information about the dynamics of transcription from single

  15. Specificity in ROS Signaling and Transcript Signatures

    OpenAIRE

    Vaahtera, Lauri; Brosché, Mikael; Wrzaczek, Michael; Kangasjärvi, Jaakko

    2014-01-01

    Significance: Reactive oxygen species (ROS), important signaling molecules in plants, are involved in developmental control and stress adaptation. ROS production can trigger broad transcriptional changes; however, it is not clear how specificity in transcriptional regulation is achieved. Recent Advances: A large collection of public transcriptome data from the model plant Arabidopsis thaliana is available for analysis. These data can be used for the analysis of biological processes that are a...

  16. A biophysical model for transcription factories

    International Nuclear Information System (INIS)

    Canals-Hamann, Ana Z; Neves, Ricardo Pires das; Reittie, Joyce E; Iñiguez, Carlos; Soneji, Shamit; Enver, Tariq; Buckle, Veronica J; Iborra, Francisco J

    2013-01-01

    Transcription factories are nuclear domains where gene transcription takes place although the molecular basis for their formation and maintenance are unknown. In this study, we explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories. We found that transcriptional active chromatin contains modifications like histone H4 acetylated at Lysine 16 (H4K16ac). Single fibre analysis showed that this modification spans the entire body of the gene. Furthermore, H4K16ac genes cluster in regions up to 500 Kb alternating active and inactive chromatin. The introduction of H4K16ac in chromatin induces stiffness in the chromatin fibre. The result of this change in flexibility is that chromatin could behave like a multi-block copolymer with repetitions of stiff-flexible (active-inactive chromatin) components. Copolymers with such structure self-organize through spontaneous phase separation into microdomains. Consistent with such model H4K16ac chromatin form foci that associates with nascent transcripts. We propose that transcription factories are the result of the spontaneous concentration of H4K16ac chromatin that are in proximity, mainly in cis

  17. The regulation of transcriptional repression in hypoxia.

    Science.gov (United States)

    Cavadas, Miguel A S; Cheong, Alex; Taylor, Cormac T

    2017-07-15

    A sufficient supply molecular oxygen is essential for the maintenance of physiologic metabolism and bioenergetic homeostasis for most metazoans. For this reason, mechanisms have evolved for eukaryotic cells to adapt to conditions where oxygen demand exceeds supply (hypoxia). These mechanisms rely on the modification of pre-existing proteins, translational arrest and transcriptional changes. The hypoxia inducible factor (HIF; a master regulator of gene induction in response to hypoxia) is responsible for the majority of induced gene expression in hypoxia. However, much less is known about the mechanism(s) responsible for gene repression, an essential part of the adaptive transcriptional response. Hypoxia-induced gene repression leads to a reduction in energy demanding processes and the redirection of limited energetic resources to essential housekeeping functions. Recent developments have underscored the importance of transcriptional repressors in cellular adaptation to hypoxia. To date, at least ten distinct transcriptional repressors have been reported to demonstrate sensitivity to hypoxia. Central among these is the Repressor Element-1 Silencing Transcription factor (REST), which regulates over 200 genes. In this review, written to honor the memory and outstanding scientific legacy of Lorenz Poellinger, we provide an overview of our existing knowledge with respect to transcriptional repressors and their target genes in hypoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Proofreading of misincorporated nucleotides in DNA transcription

    International Nuclear Information System (INIS)

    Voliotis, Margaritis; Liverpool, Tanniemola B; Cohen, Netta; Molina-París, Carmen

    2012-01-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighbouring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction. (paper)

  19. Lineage-specific partitions in archaeal transcription

    Directory of Open Access Journals (Sweden)

    Richard M. R. Coulson

    2006-01-01

    Full Text Available The phylogenetic distribution of the components comprising the transcriptional machinery in the crenarchaeal and euryarchaeal lineages of the Archaea was analyzed in a systematic manner by genome-wide profiling of transcription complements in fifteen complete archaeal genome sequences. Initially, a reference set of transcription-associated proteins (TAPs consisting of sequences functioning in all aspects of the transcriptional process, and originating from the three domains of life, was used to query the genomes. TAP-families were detected by sequence clustering of the TAPs and their archaeal homologues, and through extensive database searching, these families were assigned a function. The phylogenetic origins of archaeal genes matching hidden Markov model profiles of protein domains associated with transcription, and those encoding the TAP-homologues, showed there is extensive lineage-specificity of proteins that function as regulators of transcription: most of these sequences are present solely in the Euryarchaeota, with nearly all of them homologous to bacterial DNA-binding proteins. Strikingly, the hidden Markov model profile searches revealed that archaeal chromatin and histone-modifying enzymes also display extensive taxon-restrictedness, both across and within the two phyla.

  20. The effects of cocaine on HIV transcription.

    Science.gov (United States)

    Tyagi, Mudit; Weber, Jaime; Bukrinsky, Michael; Simon, Gary L

    2016-06-01

    Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.

  1. Intrinsic terminators in Mycoplasma hyopneumoniae transcription.

    Science.gov (United States)

    Fritsch, Tiago Ebert; Siqueira, Franciele Maboni; Schrank, Irene Silveira

    2015-04-08

    Mycoplasma hyopneumoniae, an important pathogen of swine, exhibits a low guanine and cytosine (GC) content genome. M. hyopneumoniae genome is organised in long transcriptional units and promoter sequences have been mapped upstream of all transcription units. These analysis provided insights into the gene organisation and transcription initiation at the genome scale. However, the presence of transcriptional terminator sequences in the M. hyopneumoniae genome is poorly understood. In silico analyses demonstrated the presence of putative terminators in 82% of the 33 monocistronic units (mCs) and in 74% of the 116 polycistronic units (pCs) considering different classes of terminators. The functional activity of 23 intrinsic terminators was confirmed by RT-PCR and qPCR. Analysis of all terminators found by three software algorithms, combined with experimental results, allowed us to propose a pattern of RNA hairpin formation during the termination process and to predict the location of terminators in the M. hyopneumoniae genome sequence. The stem-loop structures of intrinsic terminators of mycoplasma diverge from the pattern of terminators found in other bacteria due the low content of guanine and cytosine. In M. hyopneumoniae, transcription can end after a transcriptional unit and before its terminator sequence and can also continue past the terminator sequence with RNA polymerases gradually releasing the RNA.

  2. Transcriptional tools: Small molecules for modulating CBP KIX-dependent transcriptional activators.

    Science.gov (United States)

    Bates, Caleb A; Pomerantz, William C; Mapp, Anna K

    2011-01-01

    Previously it was demonstrated that amphipathic isoxazolidines are able to functionally replace the transcriptional activation domains of endogenous transcriptional activators. In addition, in vitro binding studies suggested that a key binding partner of these molecules is the CREB Binding Protein (CBP), more specifically the KIX domain within this protein. Here we show that CBP plays an essential role in the ability of isoxazolidine transcriptional activation domains to activate transcription in cells. Consistent with this model, isoxazolidines are able to function as competitive inhibitors of the activators MLL and Jun, both of which utilize a binding interaction with KIX to up-regulate transcription. Further, modification of the N2 side chain produced three analogs with enhanced potency against Jun-mediated transcription, although increased cytotoxicity was also observed. Collectively these small KIX-binding molecules will be useful tools for dissecting the role of the KIX domain in a variety of pathological processes. 2010 Wiley Periodicals, Inc.

  3. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  4. Dynamic analysis of stochastic transcription cycles.

    Directory of Open Access Journals (Sweden)

    Claire V Harper

    2011-04-01

    Full Text Available In individual mammalian cells the expression of some genes such as prolactin is highly variable over time and has been suggested to occur in stochastic pulses. To investigate the origins of this behavior and to understand its functional relevance, we quantitatively analyzed this variability using new mathematical tools that allowed us to reconstruct dynamic transcription rates of different reporter genes controlled by identical promoters in the same living cell. Quantitative microscopic analysis of two reporter genes, firefly luciferase and destabilized EGFP, was used to analyze the dynamics of prolactin promoter-directed gene expression in living individual clonal and primary pituitary cells over periods of up to 25 h. We quantified the time-dependence and cyclicity of the transcription pulses and estimated the length and variation of active and inactive transcription phases. We showed an average cycle period of approximately 11 h and demonstrated that while the measured time distribution of active phases agreed with commonly accepted models of transcription, the inactive phases were differently distributed and showed strong memory, with a refractory period of transcriptional inactivation close to 3 h. Cycles in transcription occurred at two distinct prolactin-promoter controlled reporter genes in the same individual clonal or primary cells. However, the timing of the cycles was independent and out-of-phase. For the first time, we have analyzed transcription dynamics from two equivalent loci in real-time in single cells. In unstimulated conditions, cells showed independent transcription dynamics at each locus. A key result from these analyses was the evidence for a minimum refractory period in the inactive-phase of transcription. The response to acute signals and the result of manipulation of histone acetylation was consistent with the hypothesis that this refractory period corresponded to a phase of chromatin remodeling which significantly

  5. Effect of low dose exposure to the herbicide atrazine and its metabolite on cytochrome P450 aromatase and steroidogenic factor-1 mRNA levels in the brain of premetamorphic bullfrog tadpoles (Rana catesbeiana).

    Science.gov (United States)

    Gunderson, Mark P; Veldhoen, Nik; Skirrow, Rachel C; Macnab, Magnus K; Ding, Wei; van Aggelen, Graham; Helbing, Caren C

    2011-03-01

    The transcriptional regulator steroidogenic factor 1 (SF-1) and the enzyme cytochrome P450 aromatase (CYP19) play a central role in modulation of a broad range of tissue-specific developmental processes associated with hormone homeostasis that includes differentiation of the central nervous system. SF-1 and CYP19 expression may be targeted by a variety of endocrine disruptive agents prevalent within the environment. In the present study, we cloned and characterized partial sequences for bullfrog (Rana catesbeiana) SF-1 and CYP19 and examined the effects of a 48h exposure to 1 and 100μg/l of the herbicide atrazine (ATZ) and its major metabolite desethylatrazine (DEA), as well as 5ng/l of the estrogenic chemical, 17α-ethynylestradiol (EE(2)), and 673ng/l of the thyroid hormone, 3,5,3'-triiodothyronine (T(3)), on SF-1 and CYP19 mRNA abundance in the brains of premetamorphic bullfrog tadpoles. Quantitative RT-PCR analysis showed an increase in CYP19 mRNA following a 48h exposure to EE(2) but not T(3) while no significant changes in SF-1 transcript levels occurred. We observed a strong positive correlation between CYP19 and SF-1 transcript abundance in the ATZ-exposed animals which was not evident with DEA- or hormone-exposed tadpoles. Our results are intriguing in light of reported behavioral changes in ATZ-exposed frogs and suggest that further research is warranted to examine the relationship and role of CYP19 and SF-1 in amphibian brain development. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Bisphenol AF-induced endogenous transcription is mediated by ERα and ERK1/2 activation in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Ming Li

    Full Text Available Bisphenol AF (BPAF-induced transcriptional activity has been evaluated by luciferase reporter assay. However, the molecular mechanism of BPAF-induced endogenous transcription in human breast cancer cells has not been fully elucidated. In the present study, we investigated the effect and mechanism of BPAF-induced endogenous transcription detected by real-time PCR in human breast cancer cells. We found that BPAF stimulated transcription of estrogen responsive genes, such as trefoil factor 1 (TFF1, growth regulation by estrogen in breast cancer 1 (GREB1 and cathepsin D (CTSD, through dose-dependent and time-dependent manners in T47D and MCF7 cells. Gene-silencing of ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER by small interfering RNA revealed that BPAF-induced endogenous transcription was dependent on ERα and GPER, implying both genomic and nongenomic pathways might be involved in the endogenous transcription induced by BPAF. ERα-mediated gene transcription was further confirmed by inhibition of ER activity using ICI 182780 in ERα-positive T47D and MCF7 cells as well as overexpression of ERα in ERα-negative MDA-MB-231 breast cancer cells. Moreover, we utilized Src tyrosine kinase inhibitor PP2 and two MEK inhibitors PD98059 and U0126 to elucidate the rapid nongenomic activation of Src/MEK/ERK1/2 cascade on endogenous transcription. Our data showed that BPAF-induced transcription could be significantly blocked by PP2, PD98059 and U0126, suggesting activation of ERK1/2 was also required to regulate endogenous transcription. Taken together, these results indicate that BPAF-induced endogenous transcription of estrogen responsive genes is mediated through both genomic and nongenomic pathways involving the ERα and ERK1/2 activation in human breast cancer cells.

  7. Extraction of transcript diversity from scientific literature.

    Directory of Open Access Journals (Sweden)

    Parantu K Shah

    2005-06-01

    Full Text Available Transcript diversity generated by alternative splicing and associated mechanisms contributes heavily to the functional complexity of biological systems. The numerous examples of the mechanisms and functional implications of these events are scattered throughout the scientific literature. Thus, it is crucial to have a tool that can automatically extract the relevant facts and collect them in a knowledge base that can aid the interpretation of data from high-throughput methods. We have developed and applied a composite text-mining method for extracting information on transcript diversity from the entire MEDLINE database in order to create a database of genes with alternative transcripts. It contains information on tissue specificity, number of isoforms, causative mechanisms, functional implications, and experimental methods used for detection. We have mined this resource to identify 959 instances of tissue-specific splicing. Our results in combination with those from EST-based methods suggest that alternative splicing is the preferred mechanism for generating transcript diversity in the nervous system. We provide new annotations for 1,860 genes with the potential for generating transcript diversity. We assign the MeSH term "alternative splicing" to 1,536 additional abstracts in the MEDLINE database and suggest new MeSH terms for other events. We have successfully extracted information about transcript diversity and semiautomatically generated a database, LSAT, that can provide a quantitative understanding of the mechanisms behind tissue-specific gene expression. LSAT (Literature Support for Alternative Transcripts is publicly available at http://www.bork.embl.de/LSAT/.

  8. Carcinoma bronquíolo-alveolar difuso em um cão: aspectos clínico-patológicos e imuno-histoquímicos Diffuse bronchioloalveolar carcinoma in a dog: clinicopathological and immunohistochemical findings

    Directory of Open Access Journals (Sweden)

    Ricardo Barbosa Lucena

    2011-01-01

    Full Text Available Um cão Poodle, 12 anos de idade, demonstrou marcada dispneia. Na radiografia, havia comprometimento difuso do pulmão e foi feito diagnóstico de pneumonia intersticial. Na necropsia, o pulmão continha múltiplos e pequenos nódulos coalescentes. Histologicamente, os nódulos eram compostos por células epiteliais cuboides ou colunares baixas atípicas, que eram PAS-negativa. A avaliação imuno-histoquímica revelou positividade para citoceratina, fator 1 de transcrição da tireoide (TTF-1 e apoproteína A surfactante (SP-A. O tumor foi negativo para vimentina e cromogranina A. As áreas necróticas não marcaram para TTF-1 e SP-A. Com base nos achados histopatológicos e imuno-histoquímicos, foi realizado o diagnóstico de carcinoma bronquíolo-alveolar não mucinoso com envolvimento difuso do pulmão. Essa é uma forma rara de apresentação desse tumor que pode mimetizar pneumonia na avaliação clínica e radiográfica. O diagnóstico definitivo é baseado na histopatologia e imuno-histoquímica.A 12-year-old poodle dog was presented with a history of severe dyspnea. Radiology revealed diffuse pulmonary lesion which was diagnosed as interstitial pneumonia. At necropsy there were multiple small coalescent nodules distributed throughout the lung parenchyma. Histologically the nodules consisted of cubic to low columnar atypical epithelial cells which were PAS-negatives. In the immunohistochemistry reaction this cells were marked for cytokeratin, TTF (thyroid transcription factor-1 and surfactant apoprotein A (SP-A. The neoplastic cells were negative for vimentin and cromagranine A. The necrotic areas were not marked for TTF-1 and SP-A. Based of the histopathological and immunohistochemistry findings a diagnosis of non-mucinous bronchioloalveolar carcinoma with diffuse involvement of the lung was made. This is a rare form of presentation for this tumor, and it can mimetize pneumonia on clinical and morphological examination. A definitive

  9. Expression and cytoprotective activity of the small GTPase RhoB induced by the Escherichia coli cytotoxic necrotizing factor 1

    DEFF Research Database (Denmark)

    Huelsenbeck, Stefanie C; Roggenkamp, Dennis; May, Martin

    2013-01-01

    B expression, based on the inactivation of Rho/Ras proteins. In this study, we report on a long lasting expression of RhoB in cultured cells upon activation of Rho proteins by the cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. The observations of this study highlight a new pathway involving Rac1...... without any signs of cell death. In conclusion, the cytoprotective RhoB response is not only evoked by bacterial protein toxins inactivating Rho/Ras proteins but also by the Rac1-activating toxin CNF1....

  10. Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression

    DEFF Research Database (Denmark)

    Pouladi, Mahmoud A; Xie, Yuanyun; Skotte, Niels Henning

    2010-01-01

    Levels of full-length huntingtin (FL htt) influence organ and body weight, independent of polyglutamine length. The growth hormone-insulin like growth factor-1 (GH-IGF-1) axis is well established as a regulator of organ growth and body weight. In this study, we investigate the involvement...... and decreases the body weight of YAC128 animals to WT levels. Furthermore, given the ubiquitous expression of IGF-1 within the central nervous system, we also examined the impact of FL htt levels on IGF-1 expression in different regions of the brain, including the striatum, cerebellum of YAC18, YAC128...

  11. Transcription of the T4 late genes

    Directory of Open Access Journals (Sweden)

    Kassavetis George A

    2010-10-01

    Full Text Available Abstract This article reviews the current state of understanding of the regulated transcription of the bacteriophage T4 late genes, with a focus on the underlying biochemical mechanisms, which turn out to be unique to the T4-related family of phages or significantly different from other bacterial systems. The activator of T4 late transcription is the gene 45 protein (gp45, the sliding clamp of the T4 replisome. Gp45 becomes topologically linked to DNA through the action of its clamp-loader, but it is not site-specifically DNA-bound, as other transcriptional activators are. Gp45 facilitates RNA polymerase recruitment to late promoters by interacting with two phage-encoded polymerase subunits: gp33, the co-activator of T4 late transcription; and gp55, the T4 late promoter recognition protein. The emphasis of this account is on the sites and mechanisms of actions of these three proteins, and on their roles in the formation of transcription-ready open T4 late promoter complexes.

  12. Transcriptional features of genomic regulatory blocks.

    Science.gov (United States)

    Akalin, Altuna; Fredman, David; Arner, Erik; Dong, Xianjun; Bryne, Jan Christian; Suzuki, Harukazu; Daub, Carsten O; Hayashizaki, Yoshihide; Lenhard, Boris

    2009-01-01

    Genomic regulatory blocks (GRBs) are chromosomal regions spanned by highly conserved non-coding elements (HCNEs), most of which serve as regulatory inputs of one target gene in the region. The target genes are most often transcription factors involved in embryonic development and differentiation. GRBs often contain extensive gene deserts, as well as additional 'bystander' genes intertwined with HCNEs but whose expression and function are unrelated to those of the target gene. The tight regulation of target genes, complex arrangement of regulatory inputs, and the differential responsiveness of genes in the region call for the examination of fundamental rules governing transcriptional activity in GRBs. Here we use extensive CAGE tag mapping of transcription start sites across different human tissues and differentiation stages combined with expression data and a number of sequence and epigenetic features to discover these rules and patterns. We show evidence that GRB target genes have properties that set them apart from their bystanders as well as other genes in the genome: longer CpG islands, a higher number and wider spacing of alternative transcription start sites, and a distinct composition of transcription factor binding sites in their core/proximal promoters. Target gene expression correlates with the acetylation state of HCNEs in the region. Additionally, target gene promoters have a distinct combination of activating and repressing histone modifications in mouse embryonic stem cell lines. GRB targets are genes with a number of unique features that are the likely cause of their ability to respond to regulatory inputs from very long distances.

  13. Global SUMOylation on active chromatin is an acute heat stress response restricting transcription.

    Science.gov (United States)

    Niskanen, Einari A; Malinen, Marjo; Sutinen, Päivi; Toropainen, Sari; Paakinaho, Ville; Vihervaara, Anniina; Joutsen, Jenny; Kaikkonen, Minna U; Sistonen, Lea; Palvimo, Jorma J

    2015-07-28

    Cells have developed many ways to cope with external stress. One distinctive feature in acute proteotoxic stresses, such as heat shock (HS), is rapid post-translational modification of proteins by SUMOs (small ubiquitin-like modifier proteins; SUMOylation). While many of the SUMO targets are chromatin proteins, there is scarce information on chromatin binding of SUMOylated proteins in HS and the role of chromatin SUMOylation in the regulation of transcription. We mapped HS-induced genome-wide changes in chromatin occupancy of SUMO-2/3-modified proteins in K562 and VCaP cells using ChIP-seq. Chromatin SUMOylation was further correlated with HS-induced global changes in transcription using GRO-seq and RNA polymerase II (Pol2) ChIP-seq along with ENCODE data for K562 cells. HS induced a rapid and massive rearrangement of chromatin SUMOylation pattern: SUMOylation was gained at active promoters and enhancers associated with multiple transcription factors, including heat shock factor 1. Concomitant loss of SUMOylation occurred at inactive intergenic chromatin regions that were associated with CTCF-cohesin complex and SETDB1 methyltransferase complex. In addition, HS triggered a dynamic chromatin binding of SUMO ligase PIAS1, especially onto promoters. The HS-induced SUMOylation on chromatin was most notable at promoters of transcribed genes where it positively correlated with active transcription and Pol2 promoter-proximal pausing. Furthermore, silencing of SUMOylation machinery either by depletion of UBC9 or PIAS1 enhanced expression of HS-induced genes. HS-triggered SUMOylation targets promoters and enhancers of actively transcribed genes where it restricts the transcriptional activity of the HS-induced genes. PIAS1-mediated promoter SUMOylation is likely to regulate Pol2-associated factors in HS.

  14. Regulation of Carotenoid Biosynthesis by Shade Relies on Specific Subsets of Antagonistic Transcription Factors and Cofactors.

    Science.gov (United States)

    Bou-Torrent, Jordi; Toledo-Ortiz, Gabriela; Ortiz-Alcaide, Miriam; Cifuentes-Esquivel, Nicolas; Halliday, Karen J; Martinez-García, Jaime F; Rodriguez-Concepcion, Manuel

    2015-11-01

    Carotenoids are photosynthetic pigments essential for the protection against excess light. During deetiolation, their production is regulated by a dynamic repression-activation module formed by PHYTOCHROME-INTERACTING FACTOR1 (PIF1) and LONG HYPOCOTYL5 (HY5). These transcription factors directly and oppositely control the expression of the gene encoding PHYTOENE SYNTHASE (PSY), the first and main rate-determining enzyme of the carotenoid pathway. Antagonistic modules also regulate the responses of deetiolated plants to vegetation proximity and shade (i.e. to the perception of far-red light-enriched light filtered through or reflected from neighboring plants). These responses, aimed to adapt to eventual shading from plant competitors, include a reduced accumulation of carotenoids. Here, we show that PIF1 and related photolabile PIFs (but not photostable PIF7) promote the shade-triggered decrease in carotenoid accumulation. While HY5 does not appear to be required for this process, other known PIF antagonists were found to modulate the expression of the Arabidopsis (Arabidopsis thaliana) PSY gene and the biosynthesis of carotenoids early after exposure to shade. In particular, PHYTOCHROME-RAPIDLY REGULATED1, a transcriptional cofactor that prevents the binding of true transcription factors to their target promoters, was found to interact with PIF1 and hence directly induce PSY expression. By contrast, a change in the levels of the transcriptional cofactor LONG HYPOCOTYL IN FAR RED1, which also binds to PIF1 and other PIFs to regulate shade-related elongation responses, did not impact PSY expression or carotenoid accumulation. Our data suggest that the fine-regulation of carotenoid biosynthesis in response to shade relies on specific modules of antagonistic transcriptional factors and cofactors. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Var transcription profiling of Plasmodium falciparum 3D7: assignment of cytoadherent phenotypes to dominant transcripts

    Directory of Open Access Journals (Sweden)

    Wunderlich Gerhard

    2008-01-01

    Full Text Available Abstract Background Cytoadherence of Plasmodium falciparum-infected red blood cells is mediated by var gene-encoded P. falciparum erythrocyte membrane protein-1 and host receptor preference depends in most cases on which of the 50–60 var genes per genome is expressed. Enrichment of phenotypically homogenous parasites by panning on receptor expressing cells is fundamental for the identification of the corresponding var transcript. Methods P. falciparum 3D7 parasites were panned on several transfected CHO-cell lines and their var transcripts analysed by i reverse transcription/PCR/cloning/sequencing using a universal DBLα specific oligonucleotide pair and ii by reverse transcription followed by quantitative PCR using 57 different oligonucleotide pairs. Results Each cytoadherence selected parasite line also adhered to untransfected CHO-745 cells and upregulation of the var gene PFD995/PFD1000c was consistently associated with cytoadherence to all but one CHO cell line. In addition, parasites panned on different CHO cell lines revealed candidate var genes which reproducibly associated to the respective cytoadherent phenotype. The transcription profile obtained by RT-PCR/cloning/sequencing differed significantly from that of RT-quantitative PCR. Conclusion Transfected CHO cell lines are of limited use for the creation of monophenotypic cytoadherent parasite lines. Nevertheless, 3D7 parasites can be reproducibly selected for the transcription of different determined var genes without genetic manipulation. Most importantly, var transcription analysis by RT-PCR/cloning/sequencing may lead to erroneous interpretation of var transcription profiles.

  16. The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Burek, C.; Sander, E. E.; Grummt, I.

    2001-01-01

    Roč. 29, č. 2 (2001), s. 423-429 ISSN 0305-1048 Institutional research plan: CEZ:AV0Z5052915 Keywords : rDNA transcription * PTRF * transcription reinitiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.373, year: 2001

  17. Treatment of femoral head necrosis with transplantation of stromal cell-derived factor-1: an experimental study

    International Nuclear Information System (INIS)

    Meng Wei; Cao Haili; Bai Bin; Zheng Shangfei; Xu Wei

    2009-01-01

    Objective: To discuss the therapeutic mechanism and efficacy of stromal cell-derived factor-1 (SDF-1) in the treatment of femoral head necrosis. Methods: Experimental models of hydrocortisoneinduced femoral head necrosis were established in 30 Japanese rabbits, which were randomly and equally divided into three groups. Group A was regarded as control group, group B received marrow core decompression and saline injection treatment and group C underwent marrow core decompression and SDF-1 transplantation. Eight weeks after the procedure all the survival rabbits (n = 27) were sacrificed, and the specimens were sent for the measuring of bone mineral density and for histopathologic examination. Results Eight weeks after the treatment, the bone mineral density of rabbits in group C was significantly increased. Pathologically, in SDF-1 treated rabbits the amounts of the blood vessels and osteoblast cells were obviously increased while the empty bone lacunae were markedly decreased. Conclusion: Transplantation of stromal cell-derived factor-1 together with marrow core decompression is very effective for the treatment of femoral head necrosis and this technique has showed a vast and bright prospect in clinical practice. (authors)

  18. Whole Body Vibration Retards Progression of Atherosclerosis via Insulin-Like Growth Factor 1 in Apolipoprotein E-Deficient Mice

    Directory of Open Access Journals (Sweden)

    He Wu

    2018-01-01

    Full Text Available Whole body vibration (WBV has a marked impact on lipid metabolism and the endocrine system, which is related to the progression of atherosclerosis (AS. To investigate the effects of WBV, we measured the atherosclerotic plaque area of apolipoprotein E-knockout (ApoE−/− AS mice, which were trained by WBV (15 Hz, 30 min for 12 weeks. Simultaneously, serum levels of lipids, insulin-like growth factor 1 (IGF-1, insulin-like growth factor 1 receptor (IGF-1R, interleukin 6 (IL-6, and the mRNA and protein levels of the same in the aorta were compared between the control and WBV groups. The results indicated that WBV significantly reduced the atherosclerotic plaque area with lower very low-density lipoprotein (VLDL and oxidized low-density lipoprotein (ox-LDL in the blood. Moreover, the levels of IGF-1 in serum and expression of IL-6, IGF-1R, and p-IGF-1R protein in the mice aorta decreased significantly in the WBV group. In addition, we found that serum IGF-1 in mice increased to the highest concentration in 30 min after WBV for 10, 30, 60, and 120 minutes. These results suggested that appropriate WBV may delay the progression of AS, which was associated with acutely elevated serum IGF-1 and lower levels of IGF-1 and IL-6 in the aorta for long-term treatment.

  19. Whole Body Vibration Retards Progression of Atherosclerosis via Insulin-Like Growth Factor 1 in Apolipoprotein E-Deficient Mice.

    Science.gov (United States)

    Wu, He; Zhang, Yibo; Yang, Xuan; Li, Xian; Shao, Zhenya; Zhou, Zipeng; Li, Yuanlong; Pan, Shuwen; Liu, Chang

    2018-01-01

    Whole body vibration (WBV) has a marked impact on lipid metabolism and the endocrine system, which is related to the progression of atherosclerosis (AS). To investigate the effects of WBV, we measured the atherosclerotic plaque area of apolipoprotein E-knockout (ApoE -/- ) AS mice, which were trained by WBV (15 Hz, 30 min) for 12 weeks. Simultaneously, serum levels of lipids, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 1 receptor (IGF-1R), interleukin 6 (IL-6), and the mRNA and protein levels of the same in the aorta were compared between the control and WBV groups. The results indicated that WBV significantly reduced the atherosclerotic plaque area with lower very low-density lipoprotein (VLDL) and oxidized low-density lipoprotein (ox-LDL) in the blood. Moreover, the levels of IGF-1 in serum and expression of IL-6, IGF-1R, and p-IGF-1R protein in the mice aorta decreased significantly in the WBV group. In addition, we found that serum IGF-1 in mice increased to the highest concentration in 30 min after WBV for 10, 30, 60, and 120 minutes. These results suggested that appropriate WBV may delay the progression of AS, which was associated with acutely elevated serum IGF-1 and lower levels of IGF-1 and IL-6 in the aorta for long-term treatment.

  20. Mapping Gray's BIS and BAS Constructs onto Factor 1 and Factor 2 of Hare's Psychopathy Checklist - Revised.

    Science.gov (United States)

    Wallace, John F; Malterer, Melanie B; Newman, Joseph P

    2009-12-01

    Reinforcement Sensitivity Theory (RST; Gray, 1987; Gray & McNaughton, 2000) has proven to be a valuable tool for understanding psychopathy (e.g., Fowles, 1980, 1988; Newman & Malterer, 2009; Poythress, Edens, Landfield, Lilienfeld, Skeem, & Douglas, 2008). Recent research has linked two RST constructs, the Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS), to individuals with primary psychopathy and secondary psychopathy (Lykken, 1995; Newman, MacCoon, Vaughn, & Sadeh, 2005): Primary psychopaths manifest low BIS reactivity and secondary psychopaths manifest high BAS reactivity. In the present study, we examine the relationships between the BIS/BAS constructs and Factors 1 and 2 of the Psychopathy Checklist - Revised (PCL-R) in a sample of 472 incarcerated male offenders. Paralleling their relationships with primary and secondary psychopathy, the BIS/BAS constructs were differentially related to the two PCL-R factors. Specifically, the influence of the BIS was found to be more prominent than the influence of the BAS for Factor 1, and the influence of the BAS was more prominent than that of the BIS for Factor 2.

  1. Transcription factor, promoter, and enhancer utilization in human myeloid cells

    NARCIS (Netherlands)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91

  2. The role of alveolar type II cells in swine leptospirosis

    Directory of Open Access Journals (Sweden)

    Ângela P. Campos

    2015-07-01

    Full Text Available Abstract: This study aimed to investigate a possible relationship between alveolar type II cells and the inflammatory response to infection with Leptospira spp., and thus comprise a further element that can be involved in the pathogenesis of lung injury in naturally infected pigs. The study group consisted of 73 adult pigs that were extensively reared and slaughtered in Teresina, Piauí state, and Timon, Maranhão state, Brazil. The diagnosis of leptospirosis was made using the microscopic agglutination test (MAT aided by immunohistochemistry and polymerase chain reaction. The MAT registered the occurrence of anti-Leptospira antibodies in 10.96% (8/73 of the pigs. Immunohistochemistry allowed for the visualization of the Leptospira spp. antigen in the lungs of 87.67% (64/73 of the pigs. There was hyperplasia of bronchus-associated lymphoid tissue and circulatory changes, such as congestion of alveolar septa, parenchymal hemorrhage and edema within the alveoli. Lung inflammation was more intense (p = 0.0312 in infected animals, which also showed increased thickening of the alveolar septa (p = 0.0006. Evaluation of alveolar type II (ATII cells using an anti-TTF-1 (Thyroid Transcription Factor-1 antibody showed that there were more immunostained cells in the non-infected pigs (53.8% than in the infected animals (46.2% and that there was an inverse correlation between TTF-1 positive cells and the inflammatory infiltrate. There was no amplification of Leptospira DNA in the lung samples, but leptospiral DNA amplification was observed in the kidneys. The results of this study showed that a relationship exists between a decrease in alveolar type II cells and a leptospire infection. Thus, this work points to the importance of studying the ATII cells as a potential marker of the level of lung innate immune response during leptospirosis in pigs.

  3. Solid cell nests of the thyroid gland: morphological, immunohistochemical and genetic features.

    Science.gov (United States)

    Manzoni, Marco; Roversi, Gaia; Di Bella, Camillo; Pincelli, Angela I; Cimino, Vincenzo; Perotti, Mario; Garancini, Mattia; Pagni, Fabio

    2016-05-01

    The correct identification of solid cell nests (SCNs) is an important issue in thyroid pathology because of the spectrum of differential diagnoses of this type of lesion. Ten cases of 295 consecutive thyroidectomies showed the presence of SCNs at histological examination. The identification of the exact SCN type required the distinction of the cystic and solid pattern; SCNs were usually composed of a mixture of main cells (MCs) and C-cells (CCs). The immunohistochemical calcitonin stain identified CCs easily, both inside SCNs and dispersed in islets at the periphery. For the characterization of MCs, we added the utility of p40 to p63. The use of thyroid transcription factor-1 (TTF-1) helped in their identification, as MCs did not react with this marker; the combination of TTF-1 and p40 or p63 IHC stains was useful for the characterization of cystic SCNs of both types 3 and 4. The negativity of mouse monoclonal mesothelioma antibody (HMBE-1) and a very low proliferative index (MIB-1) supported the diagnosis. [Correction added on 23 November 2015, after online publication: MIB-1 was incorrectly defined, the expanded form was deleted.] We discourage the use of galectin-3 (Gal-3) and cytokeratin-19 (CK-19), as they have an important overlap with papillary thyroid carcinoma. The complete absence of any B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations is an additional fundamental finding. We reviewed the most relevant morphological and immunohistochemical features of SCNs and have provided a genetic analysis of the BRAF gene because of its expanding use in thyroid pathology. © 2015 John Wiley & Sons Ltd.

  4. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network......Transcriptional regulation is the most committed type of regulation in living cells where transcription factors (TFs) control the expression of their target genes and TF expression is controlled by other TFs forming complex transcriptional regulatory networks that can be highly interconnected. Here...... as a measure of the organization and interconnectivity of the network. We find that the number of driver nodes n(D) needed to control the whole network is 64% of the TFs in the E. coli transcriptional regulatory network in contrast to only 17% for the yeast network, 4% for the mouse network and 8...

  5. Early B-cell factor 1 regulates the expansion of B-cell progenitors in a dose-dependent manner.

    Science.gov (United States)

    Åhsberg, Josefine; Ungerbäck, Jonas; Strid, Tobias; Welinder, Eva; Stjernberg, Jenny; Larsson, Malin; Qian, Hong; Sigvardsson, Mikael

    2013-11-15

    Transcription factor doses are of importance for normal and malignant B-lymphocyte development; however, the understanding of underlying mechanisms and functional consequences of reduced transcription factor levels is limited. We have analyzed progenitor and B-lineage compartments in mice carrying heterozygote mutations in the E2a, Ebf1, or Pax5 gene. Although lymphoid progenitors from Ebf1 or Pax5 heterozygote mice were specified and lineage-restricted in a manner comparable with Wt progenitors, this process was severely impaired in E2a heterozygote mutant mice. This defect was not significantly enhanced upon combined deletion of E2a with Ebf1 or Pax5. Analysis of the pre-B-cell compartment in Ebf1 heterozygote mice revealed a reduction in cell numbers. These cells expressed Pax5 and other B-lineage-associated genes, and global gene expression analysis suggested that the reduction of the pre-B-cell compartment was a result of impaired pre-B-cell expansion. This idea was supported by a reduction in IL2Rα-expressing late pre-B-cells as well as by cell cycle analysis and by the finding that the complexity of the VDJ rearrangement patterns was comparable in Wt and Ebf1(+/-) pre-B-cells, although the number of progenitors was reduced. Heterozygote deletion of Ebf1 resulted in impaired response to IL7 in vitro and reduced expression levels of pre-BCR on the cell surface, providing possible explanations for the observed stage-specific reduction in cellular expansion. Thus, transcription factor doses are critical for specification as well as expansion of B-lymphoid progenitors, providing increased insight into the molecular regulation of B-cell development.

  6. Early B-cell Factor 1 Regulates the Expansion of B-cell Progenitors in a Dose-dependent Manner*

    Science.gov (United States)

    Åhsberg, Josefine; Ungerbäck, Jonas; Strid, Tobias; Welinder, Eva; Stjernberg, Jenny; Larsson, Malin; Qian, Hong; Sigvardsson, Mikael

    2013-01-01

    Transcription factor doses are of importance for normal and malignant B-lymphocyte development; however, the understanding of underlying mechanisms and functional consequences of reduced transcription factor levels is limited. We have analyzed progenitor and B-lineage compartments in mice carrying heterozygote mutations in the E2a, Ebf1, or Pax5 gene. Although lymphoid progenitors from Ebf1 or Pax5 heterozygote mice were specified and lineage-restricted in a manner comparable with Wt progenitors, this process was severely impaired in E2a heterozygote mutant mice. This defect was not significantly enhanced upon combined deletion of E2a with Ebf1 or Pax5. Analysis of the pre-B-cell compartment in Ebf1 heterozygote mice revealed a reduction in cell numbers. These cells expressed Pax5 and other B-lineage-associated genes, and global gene expression analysis suggested that the reduction of the pre-B-cell compartment was a result of impaired pre-B-cell expansion. This idea was supported by a reduction in IL2Rα-expressing late pre-B-cells as well as by cell cycle analysis and by the finding that the complexity of the VDJ rearrangement patterns was comparable in Wt and Ebf1+/− pre-B-cells, although the number of progenitors was reduced. Heterozygote deletion of Ebf1 resulted in impaired response to IL7 in vitro and reduced expression levels of pre-BCR on the cell surface, providing possible explanations for the observed stage-specific reduction in cellular expansion. Thus, transcription factor doses are critical for specification as well as expansion of B-lymphoid progenitors, providing increased insight into the molecular regulation of B-cell development. PMID:24078629

  7. Transcriptional control of mitosis: deregulation and cancer

    Directory of Open Access Journals (Sweden)

    Somsubhra eNath

    2015-05-01

    Full Text Available Research over the past few decades has well established the molecular functioning of mitosis. Deregulation of these functions has also been attributed to the generation of aneuploidy in different tumor types. Numerous studies have given insight into the regulation of mitosis by cell cycle specific proteins. Optimum abundance of these proteins is pivotal to timely execution of mitosis. Aberrant expressions of these mitotic proteins have been reported in different cancer types. Several post-transcriptional mechanisms and their interplay have subsequently been identified that control the level of mitotic proteins. However, to date, infrequent incidences of cancer-associated mutations have been reported for the genes expressing these proteins. Therefore, altered expression of these mitotic regulators in tumor samples can largely be attributed to transcriptional deregulation. This review discusses the biology of transcriptional control for mitosis and evaluates its role in the generation of aneuploidy and tumorigenesis.

  8. Transcriptional control of the cell cycle.

    Science.gov (United States)

    Sánchez, I; Dynlacht, B D

    1996-06-01

    Although a significant amount of evidence has demonstrated that there are intimate connections between transcriptional controls and cell cycle regulation, the precise mechanisms underlying these connections remain largely obscure. A number of recent advances have helped to define how critical cell cycle regulators, such as the retinoblastoma family of tumor suppressor proteins and the cyclin-dependent kinases, might function on a biochemical level and how such mechanisms of action have been conserved not only in the regulation of transcription by all three RNA polymerases but also across species lines. In addition, the use of in vivo techniques has begun to explain how the activity of the E2F transcription factor family is tied to the cell cycle dependent expression of target genes.

  9. Runx transcription factors in neuronal development

    Directory of Open Access Journals (Sweden)

    Shiga Takashi

    2008-08-01

    Full Text Available Abstract Runt-related (Runx transcription factors control diverse aspects of embryonic development and are responsible for the pathogenesis of many human diseases. In recent years, the functions of this transcription factor family in the nervous system have just begun to be understood. In dorsal root ganglion neurons, Runx1 and Runx3 play pivotal roles in the development of nociceptive and proprioceptive sensory neurons, respectively. Runx appears to control the transcriptional regulation of neurotrophin receptors, numerous ion channels and neuropeptides. As a consequence, Runx contributes to diverse aspects of the sensory system in higher vertebrates. In this review, we summarize recent progress in determining the role of Runx in neuronal development.

  10. Battles and hijacks: Noncoding transcription in plants

    KAUST Repository

    Ariel, Federico

    2015-06-01

    Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription. © 2015 Elsevier Ltd.

  11. Deciphering the Innate Lymphoid Cell Transcriptional Program

    Directory of Open Access Journals (Sweden)

    Cyril Seillet

    2016-10-01

    Full Text Available Innate lymphoid cells (ILCs are enriched at mucosal surfaces, where they provide immune surveillance. All ILC subsets develop from a common progenitor that gives rise to pre-committed progenitors for each of the ILC lineages. Currently, the temporal control of gene expression that guides the emergence of these progenitors is poorly understood. We used global transcriptional mapping to analyze gene expression in different ILC progenitors. We identified PD-1 to be specifically expressed in PLZF+ ILCp and revealed that the timing and order of expression of the transcription factors NFIL3, ID2, and TCF-1 was critical. Importantly, induction of ILC lineage commitment required only transient expression of NFIL3 prior to ID2 and TCF-1 expression. These findings highlight the importance of the temporal program that permits commitment of progenitors to the ILC lineage, and they expand our understanding of the core transcriptional program by identifying potential regulators of ILC development.

  12. Transcriptional inhibition by the retinoblastoma protein

    DEFF Research Database (Denmark)

    Fattaey, A; Helin, K; Harlow, E

    1993-01-01

    The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M. The underphosphory......The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M......-mediated transcription would be lost by mutation in the retinoblastoma gene in human tumours, by pRB's interaction with DNA tumour virus oncoproteins, or by phosphorylation during the cell cycle....

  13. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  14. Crowdsourcing for quantifying transcripts: An exploratory study.

    Science.gov (United States)

    Azzam, Tarek; Harman, Elena

    2016-02-01

    This exploratory study attempts to demonstrate the potential utility of crowdsourcing as a supplemental technique for quantifying transcribed interviews. Crowdsourcing is the harnessing of the abilities of many people to complete a specific task or a set of tasks. In this study multiple samples of crowdsourced individuals were asked to rate and select supporting quotes from two different transcripts. The findings indicate that the different crowdsourced samples produced nearly identical ratings of the transcripts, and were able to consistently select the same supporting text from the transcripts. These findings suggest that crowdsourcing, with further development, can potentially be used as a mixed method tool to offer a supplemental perspective on transcribed interviews. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Kotaro, E-mail: hif.panc@gmail.com [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Uto, Yoshihiro [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nagasawa, Hideko [Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hori, Hitoshi [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Shimada, Mitsuo [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  16. The anti-proliferative effect of L-carnosine correlates with a decreased expression of hypoxia inducible factor 1 alpha in human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Barbara Iovine

    Full Text Available In recent years considerable attention has been given to the use of natural substances as anticancer drugs. The natural antioxidant dipeptide L-carnosine belongs to this class of molecules because it has been proved to have a significant anticancer activity both in vitro and in vivo. Previous studies have shown that L-carnosine inhibits the proliferation of human colorectal carcinoma cells by affecting the ATP and Reactive Oxygen Species (ROS production. In the present study we identified the Hypoxia-Inducible Factor 1α (HIF-1α as a possible target of L-carnosine in HCT-116 cell line. HIF-1α protein is over-expressed in multiple types of human cancer and is the major cause of resistance to drugs and radiation in solid tumours. Of particular interest are experimental data supporting the concept that generation of ROS provides a redox signal for HIF-1α induction, and it is known that some antioxidants are able to suppress tumorigenesis by inhibiting HIF-1α. In the current study we found that L-carnosine reduces the HIF-1α protein level affecting its stability and decreases the HIF-1 transcriptional activity. In addition, we demonstrated that L-carnosine is involved in ubiquitin-proteasome system promoting HIF-1α degradation. Finally, we compared the antioxidant activity of L-carnosine with that of two synthetic anti-oxidant bis-diaminotriazoles (namely 1 and 2, respectively. Despite these three compounds have the same ability in reducing intracellular ROS, 1 and 2 are more potent scavengers and have no effect on HIF-1α expression and cancer cell proliferation. These findings suggest that an analysis of L-carnosine antioxidant pathway will clarify the mechanism underlying the anti-proliferative effects of this dipeptide on colon cancer cells. However, although the molecular mechanism by which L-carnosine down regulates or inhibits the HIF-1α activity has not been yet elucidated, this ability may be promising in treating hypoxia

  17. Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis.

    Science.gov (United States)

    Armartmuntree, Napat; Murata, Mariko; Techasen, Anchalee; Yongvanit, Puangrat; Loilome, Watcharin; Namwat, Nisana; Pairojkul, Chawalit; Sakonsinsiri, Chadamas; Pinlaor, Somchai; Thanan, Raynoo

    2018-04-01

    Early B cell factor 1 (EBF1) is a transcription factor involved in the differentiation of several stem cell lineages and it is a negative regulator of estrogen receptors. EBF1 is down-regulated in many tumors, and is believed to play suppressive roles in cancer promotion and progression. However, the functional roles of EBF1 in carcinogenesis are unclear. Liver fluke-infection-associated cholangiocarcinoma (CCA) is an oxidative stress-driven cancer of bile duct epithelium. In this study, we investigated EBF1 expression in tissues from CCA patients, CCA cell lines (KKU-213, KKU-214 and KKU-156), cholangiocyte (MMNK1) and its oxidative stress-resistant (ox-MMNK1-L) cell lines. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) was used as an oxidative stress marker. Our results revealed that EBF1 expression was suppressed in cancer cells compared with the individual normal bile duct cells at tumor adjacent areas of CCA tissues. CCA patients with low EBF1 expression and high formation of 8-oxodG were shown to correlate with poor survival. Moreover, EBF1 was suppressed in the oxidative stress-resistant cell line and all of CCA cell lines compared to the cholangiocyte cell line. This suggests that prolonged oxidative stress suppressed EBF1 expression and the reduced EBF1 level may facilitate CCA genesis. To elucidate the significance of EBF1 suppression in CCA genesis, EBF1 expression of the MMNK1 cell line was down-regulated by siRNA technique, and its effects on stem cell properties (CD133 and Oct3/4 expressions), tumorigenic properties (cell proliferation, wound healing and cell migration), estrogen responsive gene (TFF1), estrogen-stimulated wound healing, and cell migration were examined. The results showed that CD133, Oct3/4 and TFF1 expression levels, wound healing, and cell migration of EBF1 knockdown-MMNK1 cells were significantly increased. Also, cell migration of EBF1-knockdown cells was significantly enhanced after 17β-estradiol treatment. Our

  18. Role of Hypoxia-inducible factor-1 and its target genes in human lung adenocarcinoma cells after photon- versus carbon ion irradiation

    International Nuclear Information System (INIS)

    Bill, Verena Maria

    2013-01-01

    Exposed to hypoxia tumor cells are notably resistant to photon irradiation. The hypoxiainducible transcription factor 1α (HIF-1α) seems to play a fundamental role in this resistance, while its role after heavy-ion beam remains unknown. The intention of this study was to determine how A549-cells (non-small-cell lung carcinoma) react in different oxygenation states after irradiation with photons or heavy ions, particularly in regards to their expression of HIF-1 target genes. Resistance of hypoxic A549 cells after photon irradiation was documented by cellular and clonogenic survival. In contrast, cellular survival after heavy-ion irradiation in hypoxic cells was not elevated to normoxic cells. Among the oxygen dependent regulation of HIF-1 target genes, gene expression analyses showed an increased expression of GLUT-1, LDH-A, PDK-1 and VEGF after photon irradiation but not after heavy-ion irradiation after 48 hours in normoxic cells. As expected, CDKN1A as inhibitor of cell cycle progression showed higher expression after both radiation forms; interestingly CDKN1A was also in an oxygen dependent manner lightly upregulated. In western blot analyses we demonstrated a significant increase of HIF-1 and GLUT-1 caused by hypoxia, but only a tendency of increased protein level in hypoxia after photon irradiation and no changes after heavy-ion irradiation. Significantly higher protein level of secreted VEGF-A could be measured 72 hours after photon irradiation in normoxic cells by ELISA analyses. Controversially discussed, I could not detect an association between HIF-1 and SCF or Trx-1 in A549-cells in this study. Whereas Trx-1-expression was neither influenced by changed oxygen partial pressure nor irradiation, I could show increased SCF mRNA by quantitative Real Time-PCR and secreted protein level by ELISA after photon irradiation independent of oxygen state. In summary, this study showed that HIF-1 and its target genes (GLUT-1, LDHA; PDK, VEGF) and also SCF was

  19. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyun-Jeong; Ahn, Jeong-Min [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Kim, Younghun [Department of Chemical Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of); Choi, Jinhee, E-mail: jinhchoi@uos.ac.kr [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of)

    2013-07-15

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO{sub 3} in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO{sub 3} did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO{sub 3}. These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO{sub 3}. • HIF-1 and PMK-1 were needed for AgNPs- and AgNO{sub 3}-induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO{sub 3} did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal

  20. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Eom, Hyun-Jeong; Ahn, Jeong-Min; Kim, Younghun; Choi, Jinhee

    2013-01-01

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO 3 in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO 3 did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO 3 . These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO 3 . • HIF-1 and PMK-1 were needed for AgNPs- and AgNO 3 -induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO 3 did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal amount of silver mass contained

  1. Molecular characterization, expression analysis and RNAi knock-down of elongation factor 1α and 1γ from Nilaparvata lugens and its yeast-like symbiont.

    Science.gov (United States)

    Wang, W X; Zhu, T H; Li, K L; Chen, L F; Lai, F X; Fu, Q

    2017-06-01

    In the present paper, four cDNAs encoding the alpha and gamma subunits of elongation factor 1 (EF-1) were cloned and sequenced from Nilaparvata lugens, named NlEF-1α, NlEF-1γ, and its yeast-like symbiont (YLS), named YsEF-1α and YsEF-1γ, respectively. Comparisons with sequences from other species indicated a greater conservation for EF-1α than for EF-1γ. NlEF-1α has two identical copies. The deduced amino acid sequence homology of NlEF-1α and NlEF-1γ is 96 and 64%, respectively, compared with Homalodisca vitripennis and Locusta migratoria. The deduced amino acid sequence homology of YsEF-1α and YsEF-1γ is 96 and 74%, respectively, compared with Metarhizium anisopliae and Ophiocordyceps sinensis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis revealed that the expression level of NlEF-1α and NlEF-1γ mRNA in hemolymph, ovary, fat body and salivary glands were higher than the midgut and leg tissue. YsEF-1α and YsEF-1γ was highly expressed in fat body. The expression level of NlEF-1α was higher than that of NlEF-1γ. Through RNA interference (RNAi) of the two genes, the mortality of nymph reached 92.2% at the 11th day after treatment and the ovarian development was severely hindered. The RT-qPCR analysis verified the correlation between mortality, sterility and the down-regulation of the target genes. The expression and synthesis of vitellogenin (Vg) protein in insects injected with NlEF-1α and NlEF-1γ double-stranded RNA (dsRNA) was significantly lower than control groups. Attempts to knockdown the YsEF-1 genes in the YLS was unsuccessful. However, the phenotype of N. lugens injected with YsEF-1α dsRNA was the same as that injected with NlEF-1α dsRNA, possibly due to the high similarity (up to 71.9%) in the nucleotide sequences between NlEF-1α and YsEF-1α. We demonstrated that partial silencing of NlEF-1α and NlEF-1γ genes caused lethal and sterility effect on N. lugens. NlEF-1γ shares low identity with that of

  2. Genetic Variation for Thermotolerance in Lettuce Seed Germination Is Associated with Temperature-Sensitive Regulation of ETHYLENE RESPONSE FACTOR1 (ERF1)1[OPEN

    Science.gov (United States)

    O’Brien, Laurel K.; Truco, Maria Jose; Huo, Heqiang; Sideman, Rebecca; Hayes, Ryan; Michelmore, Richard W.

    2016-01-01

    Seeds of most lettuce (Lactuca sativa) cultivars are susceptible to thermoinhibition, or failure to germinate at temperatures above approximately 28°C, creating problems for crop establishment in the field. Identifying genes controlling thermoinhibition would enable the development of cultivars lacking this trait and, therefore, being less sensitive to high temperatures during planting. Seeds of a primitive accession (PI251246) of lettuce exhibited high-temperature germination capacity up to 33°C. Screening a recombinant inbred line population developed from PI215246 and cv Salinas identified a major quantitative trait locus (Htg9.1) from PI251246 associated with the high-temperature germination phenotype. Further genetic analyses discovered a tight linkage of the Htg9.1 phenotype with a specific DNA marker (NM4182) located on a single genomic sequence scaffold. Expression analyses of the 44 genes encoded in this genomic region revealed that only a homolog of Arabidopsis (Arabidopsis thaliana) ETHYLENE RESPONSE FACTOR1 (termed LsERF1) was differentially expressed between PI251246 and cv Salinas seeds imbibed at high temperature (30°C). LsERF1 belongs to a large family of transcription factors associated with the ethylene-signaling pathway. Physiological assays of ethylene synthesis, response, and action in parental and near-isogenic Htg9.1 genotypes strongly implicate LsERF1 as the gene responsible for the Htg9.1 phenotype, consistent with the established role for ethylene in germination thermotolerance of Compositae seeds. Expression analyses of genes associated with the abscisic acid and gibberellin biosynthetic pathways and results of biosynthetic inhibitor and hormone response experiments also support the hypothesis that differential regulation of LsERF1 expression in PI251246 seeds elevates their upper temperature limit for germination through interactions among pathways regulated by these hormones. Our results support a model in which LsERF1 acts through

  3. Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis

    Directory of Open Access Journals (Sweden)

    Napat Armartmuntree

    2018-04-01

    Full Text Available Early B cell factor 1 (EBF1 is a transcription factor involved in the differentiation of several stem cell lineages and it is a negative regulator of estrogen receptors. EBF1 is down-regulated in many tumors, and is believed to play suppressive roles in cancer promotion and progression. However, the functional roles of EBF1 in carcinogenesis are unclear. Liver fluke-infection-associated cholangiocarcinoma (CCA is an oxidative stress-driven cancer of bile duct epithelium. In this study, we investigated EBF1 expression in tissues from CCA patients, CCA cell lines (KKU-213, KKU-214 and KKU-156, cholangiocyte (MMNK1 and its oxidative stress-resistant (ox-MMNK1-L cell lines. The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG was used as an oxidative stress marker. Our results revealed that EBF1 expression was suppressed in cancer cells compared with the individual normal bile duct cells at tumor adjacent areas of CCA tissues. CCA patients with low EBF1 expression and high formation of 8-oxodG were shown to correlate with poor survival. Moreover, EBF1 was suppressed in the oxidative stress-resistant cell line and all of CCA cell lines compared to the cholangiocyte cell line. This suggests that prolonged oxidative stress suppressed EBF1 expression and the reduced EBF1 level may facilitate CCA genesis. To elucidate the significance of EBF1 suppression in CCA genesis, EBF1 expression of the MMNK1 cell line was down-regulated by siRNA technique, and its effects on stem cell properties (CD133 and Oct3/4 expressions, tumorigenic properties (cell proliferation, wound healing and cell migration, estrogen responsive gene (TFF1, estrogen-stimulated wound healing, and cell migration were examined. The results showed that CD133, Oct3/4 and TFF1 expression levels, wound healing, and cell migration of EBF1 knockdown-MMNK1 cells were significantly increased. Also, cell migration of EBF1-knockdown cells was significantly enhanced after 17

  4. Genetic blockade of insulin-like growth factor-1 receptor via recombinant adenovirus in lung cancer can be enhanced by the histone deacetylase inhibitor, vorinostat.

    Science.gov (United States)

    Park, Mi-Young; Kim, Dal Rae; Eo, Eun Young; Lim, Hyo Jeong; Park, Jong Sun; Cho, Young-Jae; Yoon, Ho-Il; Lee, Jae Ho; Lee, Choon-Taek

    2013-01-01

    Many approaches have been suggested as anti-tumor therapy for targeting insulin-like growth factor 1 receptor (IGF-1R), such as monoclonal antibodies and tyrosine kinase inhibitor. We introduced recombinant adenoviruses expressing antisense, dominant negative or short hairpin RNA to IGF-1R. Moreover, we demonstrated that histone deacetylase inhibitor (vorinostat) can increase the transduction efficiency of adenoviruses by increasing CAR-induced transduction and by enhancing the transcription of the adenoviral transgene. In the present study, we showed that the combination of ad-sh (short hairpin) IGF-1R with vorinostat leads to a synergistic enhancement of IGF-1R blockade. We measured the change in IGF-1R upon cotreatment with vorinostat and ad-shIGF-1R. Changes in transduction efficiency of ad-shIGF-1R were measured by fluorescent microscopy. Changes in apoptotic proportion and cell survival after the cotreatment were measured by the sub-G1 assay and cell counts. The effect of nuclear factor (NF)-κB activation was also measured by NF-κB p65 activation enzyme-linked immunosorbent assay. Drug interactions were analyzed upon cotreatment with ad-shIGF-1R, vorinostat and cisplatin. Combined treatment of ad-shIGF-1R and vorinostat synergistically suppressed the IGF-1R expression in lung cancer cell lines and also increased the transduction efficiency of ad-shIGF-1R. Ad-shIGF-1R and vorinostat cotreatment increased apoptotic cell death and synergistically suppressed cell growth compared to ad-shIGF-1R or vorinostat treatment alone. Vorinostat suppressed NF-κB activation, which was activated by ad-shIGF-1R. Moreover, triple combination of ad-shIGF-1R, vorinostat and cisplatin demonstrated synergistic cytotoxicity on lung cancer cells. Vorinostat enhanced the blocking capability of ad-shIGF-1R. The combined treatment of vorinostat and ad-sh-IGF-1R appears to have promising potential as a new therapeutic approach for lung cancer. Copyright © 2013 John Wiley & Sons, Ltd.

  5. aHIF but not HIF-1α transcript is a poor prognostic marker in human breast cancer

    International Nuclear Information System (INIS)

    Cayre, Anne; Rossignol, Fabrice; Clottes, Eric; Penault-Llorca, Frédérique

    2003-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is part of a transcriptional factor that regulates genes involved in metabolic and vascular adaptation of tumours to oxygen restriction. A splicing variant lacking exon 14 (sHIF-1α) encodes a truncated protein that competes with the normal HIF-1α protein, decreasing its activity. A natural antisense transcript (aHIF) complementary to the 3'-untranslated region of HIF-1α mRNA was described recently. With a semiquantitative multiplex reverse transcriptase–PCR (RT–PCR) assay, we assessed transcript concentrations of HIF-1α, sHIF-1α and aHIF in 110 patients with invasive breast carcinoma. We found a strong positive association between HIF-1α and sHIF-1α, sHIF-1α and aHIF, and an inverse correlation between HIF-1α /sHIF-1α and aHIF. aHIF transcript expression was associated with poor disease-free survival in univariate (P = 0.0038) and multivariate (P = 0.0016) analyses in this series of high-risk primary breast carcinomas. In our series of breast cancer patients, aHIF, and not HIF-1α transcript, is a marker of poor prognosis

  6. The LIM Homeodomain Transcription Factor LHX6

    Science.gov (United States)

    Zhang, Zichao; Gutierrez, Diana; Li, Xiao; Bidlack, Felicitas; Cao, Huojun; Wang, Jianbo; Andrade, Kelsey; Margolis, Henry C.; Amendt, Brad A.

    2013-01-01

    LHX6 is a LIM-homeobox transcription factor expressed during embryogenesis; however, the molecular mechanisms regulating LHX6 transcriptional activities are unknown. LHX6 and the PITX2 homeodomain transcription factor have overlapping expression patterns during tooth and craniofacial development, and in this report, we demonstrate new transcriptional mechanisms for these factors. PITX2 and LHX6 are co-expressed in the oral and dental epithelium and epithelial cell lines. Lhx6 expression is increased in Pitx2c transgenic mice and decreased in Pitx2 null mice. PITX2 activates endogenous Lhx6 expression and the Lhx6 promoter, whereas LHX6 represses its promoter activity. Chromatin immunoprecipitation experiments reveal endogenous PITX2 binding to the Lhx6 promoter. LHX6 directly interacts with PITX2 to inhibit PITX2 transcriptional activities and activation of multiple promoters. Bimolecular fluorescence complementation assays reveal an LHX6·PITX2 nuclear interaction in living cells. LHX6 has a dominant repressive effect on the PITX2 synergistic activation with LEF-1 and β-catenin co-factors. Thus, LHX6 acts as a transcriptional repressor and represses the expression of several genes involved in odontogenesis. We have identified specific defects in incisor, molar, mandible, bone, and root development and late stage enamel formation in Lhx6 null mice. Amelogenin and ameloblastin expression is reduced and/or delayed in the Lhx6 null mice, potentially resulting from defects in dentin deposition and ameloblast differentiation. Our results demonstrate that LHX6 regulates cell proliferation in the cervical loop and promotes cell differentiation in the anterior region of the incisor. We demonstrate new molecular mechanisms for LHX6 and an interaction with PITX2 for normal craniofacial and tooth development. PMID:23229549

  7. Transcriptional landscape of the human cell cycle.

    Science.gov (United States)

    Liu, Yin; Chen, Sujun; Wang, Su; Soares, Fraser; Fischer, Martin; Meng, Feilong; Du, Zhou; Lin, Charles; Meyer, Clifford; DeCaprio, James A; Brown, Myles; Liu, X Shirley; He, Housheng Hansen

    2017-03-28

    Steady-state gene expression across the cell cycle has been studied extensively. However, transcriptional gene regulation and the dynamics of histone modification at different cell-cycle stages are largely unknown. By applying a combination of global nuclear run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and histone-modification Chip sequencing (ChIP-seq), we depicted a comprehensive transcriptional landscape at the G0/G1, G1/S, and M phases of breast cancer MCF-7 cells. Importantly, GRO-seq and RNA-seq analysis identified different cell-cycle-regulated genes, suggesting a lag between transcription and steady-state expression during the cell cycle. Interestingly, we identified genes actively transcribed at early M phase that are longer in length and have low expression and are accompanied by a global increase in active histone 3 lysine 4 methylation (H3K4me2) and histone 3 lysine 27 acetylation (H3K27ac) modifications. In addition, we identified 2,440 cell-cycle-regulated enhancer RNAs (eRNAs) that are strongly associated with differential active transcription but not with stable expression levels across the cell cycle. Motif analysis of dynamic eRNAs predicted Kruppel-like factor 4 (KLF4) as a key regulator of G1/S transition, and this identification was validated experimentally. Taken together, our combined analysis characterized the transcriptional and histone-modification profile of the human cell cycle and identified dynamic transcriptional signatures across the cell cycle.

  8. Transcriptional regulation of long-term potentiation.

    Science.gov (United States)

    Bliim, Nicola; Leshchyns'ka, Iryna; Sytnyk, Vladimir; Janitz, Michael

    2016-10-01

    Long-term potentiation (LTP), the persistent strengthening of synapses following high levels of stimulation, is a form of synaptic plasticity that has been studied extensively as a possible mechanism for learning and memory formation. The strengthening of the synapse that occurs during LTP requires cascades of complex molecular processes and the coordinated remodeling of pre-synaptic and post-synaptic neurons. Despite over four decades of research, our understanding of the transcriptional mechanisms and molecular processes underlying LTP remains incomplete. Identification of all the proteins and non-coding RNA transcripts expressed during LTP may provide greater insight into the molecular mechanisms involved in learning and memory formation.

  9. A Phase Separation Model for Transcriptional Control.

    Science.gov (United States)

    Hnisz, Denes; Shrinivas, Krishna; Young, Richard A; Chakraborty, Arup K; Sharp, Phillip A

    2017-03-23

    Phase-separated multi-molecular assemblies provide a general regulatory mechanism to compartmentalize biochemical reactions within cells. We propose that a phase separation model explains established and re