WorldWideScience

Sample records for trans-uranium doping utilization

  1. The TRUEX [TRansUranium EXtraction] process and the management of liquid TRU [transuranic] waste

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1987-01-01

    The TRUEX process is a new generic liquid-liquid extraction process for removal of all actinides from acidic nitrate or chloride nuclear waste solutions. Because of its high efficiency and great flexibility, the TRUEX process appears destined to be widely used in the US and possibly in other countries for cost-effective management and disposal of transuranic (TRU) wastes. In the US, TRU wastes are those that contain ≥3.7 x 10 6 Bq/kg) of TRU elements with half-lives greater than 20 y. This paper gives a brief review of the relevant chemistry and summarizes the current status of development and deployment of the TRUEX (TRansUranium EXtraction) process flowsheets to treat specific acidic waste solutions at several US Department of Energy sites. 19 refs., 4 figs., 4 tabs

  2. Carbon monoxide and related π-acceptors are good ligands for trivalent metallocenes of uranium and the trans-uranium metals

    International Nuclear Information System (INIS)

    Andersen, R.A.

    1990-01-01

    The evolution of the concept that tertiary phosphines are good ligands towards the tetravalent uranium halides and that phosphines, carbon monoxide, and related π-acceptor ligands are good ligands towards the trivalent uranium metallocenes will be described. Solid state X-ray, crystallographic and solution state equilibrium quotient studies show the ligand displacement series: (RO) 3 P > R 3 P > R 3 N; RNC > RCN. These concepts will be extended to the trans-uranium element neptunium and plutonium

  3. Design and installation of high-temperature ultrasonic measuring system and grinder for nuclear fuel containing trans-uranium elements

    International Nuclear Information System (INIS)

    Serizawa, Hiroyuki; Kikuchi, Hironobu; Iwai, Takashi; Arai, Yasuo; Kurosawa, Makoto; Mimura, Hideaki; Abe, Jiro

    2005-07-01

    A high-temperature ultrasonic measuring system had been designed and installed in a glovebox (711-DGB) to study a mechanical property of nuclear fuel containing trans-uranium (TRU) elements. A figuration apparatus for the cylinder-type sample preparation had also been modified and installed in an established glovebox (142-D). The system consists of an ultrasonic probe, a heating furnace, cooling water-circulating system, a cooling air compressor, vacuum system, gas supplying system and control system. An A/D converter board and an pulsar/receiver board for the measurement of wave velocity were installed in a personal computer. The apparatus was modified to install into the glovebox. Some safety functions were supplied to the control system. The shape and size of the sample was revised to minimize the amount of TRU elements for the use of the measurement. The maximum sample temperature is 1500degC. The performance of the installed apparatuses and the glovebox were confirmed through a series of tests. (author)

  4. Neutron Detection Utilizing Gadolinium Doped Hafnium Oxide Films

    National Research Council Canada - National Science Library

    Blasy, Bryan D

    2008-01-01

    ... retains monoclinic local symmetery for all levels of doping. Current as a function of voltage experiments identified the films as having poor diode characteristics with high leakage current in the forward bias region...

  5. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  6. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    Science.gov (United States)

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  7. Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper

    Science.gov (United States)

    Yamanouchi, Michihiko; Chen, Lin; Kim, Junyeon; Hayashi, Masamitsu; Sato, Hideo; Fukami, Shunsuke; Ikeda, Shoji; Matsukura, Fumihiro; Ohno, Hideo

    2013-05-01

    We show a three terminal magnetic tunnel junction (MTJ) with a 10-nm thick channel based on an interconnection material Cu with 10% Ir doping. By applying a current density of less than 1012 A m-2 to the channel, depending on the current direction, switching of a MTJ defined on the channel takes place. We show that spin transfer torque (STT) plays a critical role in determining the threshold current. By assuming the spin Hall effect in the channel being the source of the STT, the lower bound of magnitude of the spin Hall angle is evaluated to be 0.03.

  8. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    Science.gov (United States)

    Kellogg, Isaiah D.; Koylu, Umit O.; Dogan, Fatih

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.

  9. A Green Desulfurization Technique: Utilization of Flue Gas SO2 to Produce H2 via a Photoelectrochemical Process Based on Mo-Doped BiVO4

    Directory of Open Access Journals (Sweden)

    Jin Han

    2017-12-01

    Full Text Available A green photoelectrochemical (PEC process with simultaneous SO2 removal and H2 production has attracted an increasing attention. The proposed process uses flue gas SO2 to improve H2 production. The improvement of the efficiency of this process is necessary before it can become industrial viable. Herein, we reported a Mo modified BiVO4 photocatalysts for a simultaneous SO2 removal and H2 production. And the PEC performance could be significantly improved with doping and flue gas removal. The evolution rate of H2 and removal of SO2 could be enhanced by almost three times after Mo doping as compared with pristine BiVO4. The enhanced H2 production and SO2 removal is attributed to the improved bulk charge carrier transportation after Mo doping, and greatly enhanced oxidation reaction kinetics on the photoanode due to the formation of SO32− after SO2 absorption by the electrolyte. Due to the utilization of SO2 to improve the production of H2, the proposed PEC process may become a profitable desulfurization technique.

  10. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  11. Towards Effective Utilization of Nitrogen-Containing Active Sites: Nitrogen-doped Carbon Layers Wrapped CNTs Electrocatalysts for Superior Oxygen Reduction

    International Nuclear Information System (INIS)

    Nie, Yao; Xie, Xiaohong; Chen, Siguo; Ding, Wei; Qi, Xueqiang; Wang, Yao; Wang, Jun; Li, Wei; Wei, Zidong; Shao, Minhua

    2016-01-01

    Highlights: • Active sites rendered by the surface enriched N are more effective to catalyze ORR. • The CNT assures the rapid electron transport to N-containing catalytic active sites. • The elaborately introduced MnO 2 template ensures the formation of the NC well-wrapped CNT nanocomposits. • The designed CNT@NC exhibits superior ORR performance in alkaline media. - Abstract: The great challenge of designing nitrogen-doped carbon catalysts for oxygen reduction reaction (ORR) is how to reach high utilization of nitrogen-containing active sites and high electrocatalytic performance. By considering the requirements for achieving high nitrogen utilization, proper nitrogen bonding state, and sufficient electron transportation, this work developed a core–shell nanostructured CNT@NC composite with an N-containing carbon shell well-wrapped around a carbon nanotube (CNT) core based on a sacrificed template method. The easily accessible nitrogen atoms enriched on the surface, combined with the contacted CNT electron highways, render the N-containing active sites at outer shell with high ORR catalytic efficiency.

  12. Airplane dopes and doping

    Science.gov (United States)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  13. Utilization of visible to NIR light energy by Yb{sup +3}, Er{sup +3} and Tm{sup +3} doped BiVO{sub 4} for the photocatalytic degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Regmi, Chhabilal [Research Center for Eco-Multifunctional Nanomaterials, Sun Moon University, Chungnam 31460 (Korea, Republic of); Kshetri, Yuwaraj K. [Department of Advanced Materials Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Ray, Schindra Kumar [Research Center for Eco-Multifunctional Nanomaterials, Sun Moon University, Chungnam 31460 (Korea, Republic of); Pandey, Ramesh Prasad [Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Lee, Soo Wohn, E-mail: swlee@sunmoon.ac.kr [Research Center for Eco-Multifunctional Nanomaterials, Sun Moon University, Chungnam 31460 (Korea, Republic of)

    2017-01-15

    Highlights: • Lanthanide doped BiVO{sub 4} as highly efficient upconversion and photocatalytic material. • Well defined beads like morphology for better photocatalytic activity. • Effective utilization of NIR and visible light for efficient photocatalytic degradation of methylene blue. • Nontoxic to human cells, potential for application in biological fields. - Abstract: Lanthanide-doped BiVO{sub 4} semiconductors with efficient photocatalytic activities over a broad range of the solar light spectrum have been synthesized by the microwave hydrothermal method using ethylenediaminetetraacetic acid (EDTA). The structural, morphological, and optical properties of the as-synthesized samples were evaluated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, UV–vis diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS). The toxicity of the samples was measured using Mus musculus skin melanoma cells (B16-F10 (ATCC{sup ®} CRL-6475™)) and were found to be nontoxic for human cells. The photocatalytic efficiency of the prepared samples was evaluated by methylene blue (MB) degradation. The best photocatalytic activity was shown by BiVO{sub 4} with 6:3:3 mol percentage of Yb{sup +3}:Er{sup +3}:Tm{sup +3} in all solar light spectrum. The synthesized samples possess low band gap energy and a hollow structure suitable for the better photocatalytic activity. The observed NIR photoactivity supports that the upconversion mechanism is involved in the overall photocatalytic process. Therefore, this approach provides a better alternative upconversion material for integral solar light absorption.

  14. First principle modeling of oxygen-doped monolayer graphitic carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jie [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi' an University of Technology, Xi' an 710048 (China); Liang, Shuhua, E-mail: liangsh@xaut.edu.cn [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi' an University of Technology, Xi' an 710048 (China); Wang, Xianhui [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi' an University of Technology, Xi' an 710048 (China); Zhang, Jianmin [College of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China)

    2015-07-01

    The effect of oxygen doping on the electronic and geometric structures of monolayer graphitic carbon nitride was calculated by first principle. It reveals the favorable O doping configurations over all the Fermi levels utilizing the Ab initio thermodynamics approach. The valence charge density difference contour map presents a weaker covalent nature on O–C bonds for O{sub N2}-doped structure and a complex ionic-covalent character associated with O–N{sub 2} bonds for O{sub i}-doped structure. Based on the analysis of the electronic structures of the doped and un-doped systems, it is found that O doping facilitates the visible-light absorption of monolayer g-C{sub 3}N{sub 4}. Especially, O{sub i} doping shows an intrinsic semiconductor behavior and the occupied doping band can be avoided to be the recombination center. In addition, O doping causes slightly stronger delocalization of the HOMO and LUMO which facilitates the enhancement of the carrier mobility. Moreover, O{sub i} doping can induce more activity sites, and, thus, is beneficial for the separation of photogenerated e{sup −}/h{sup +} pairs to some extent. - Highlights: • We reveal the favorable O doping configurations over all the Fermi levels. • O doping facilitates the visible-light absorption of monolayer g-C{sub 3}N{sub 4}. • O doping causes slightly stronger delocalization of the HOMO and LUMO.

  15. Phase transitions and doping in semiconductor nanocrystals

    Science.gov (United States)

    Sahu, Ayaskanta

    impurities (or doping) allows further control over the electrical and optical properties of nanocrystals. However, while impurity doping in bulk semiconductors is now routine, doping of nanocrystals remains challenging. In particular, evidence for electronic doping, in which additional electrical carriers are introduced into the nanocrystals, has been very limited. Here, we adopt a new approach to electronic doping of nanocrystals. We utilize a partial cation exchange to introduce silver impurities into cadmium selenide (CdSe) and lead selenide (PbSe) nanocrystals. Results indicate that the silver-doped CdSe nanocrystals show a significant increase in fluorescence intensity, as compared to pure CdSe nanocrystals. We also observe a switching from n- to p-type doping in the silver-doped CdSe nanocrystals with increased silver amounts. Moreover, the silver-doping results in a change in the conductance of both PbSe and CdSe nanocrystals and the magnitude of this change depends on the amount of silver incorporated into the nanocrystals. In the bulk, silver chalcogenides (Ag2E, E=S, Se, and Te) possess a wide array of intriguing properties, including superionic conductivity. In addition, they undergo a reversible temperature-dependent phase transition which induces significant changes in their electronic and ionic properties. While most of these properties have been examined extensively in bulk, very few studies have been conducted at the nanoscale. We have recently developed a versatile synthesis that yields colloidal silver chalcogenide nanocrystals. Here, we study the size dependence of their phase-transition temperatures. We utilize differential scanning calorimetry and in-situ X-ray diffraction analyses to observe the phase transition in nanocrystal assemblies. We observe a significant deviation from the bulk alpha (low-temperature) to beta (high-temperature) phase-transition temperature when we reduce their size to a few nanometers. Hence, these nanocrystals provide great

  16. Doping control in sport

    DEFF Research Database (Denmark)

    Overbye, Marie Birch

    2016-01-01

    Doping testing is a key component enforced by anti-doping authorities to detect and deter doping in sport. Policy is developed to protect athletes' right to participate in doping-free sport; and testing is a key tool to secure this right. Accordingly, athletes' responses to anti-doping efforts.......e., the efforts of stakeholders involved in testing) in their own sport both nationally and worldwide. Moreover, it seeks to identify whether specific factors such as previous experience of testing and perceived proximity of doping have an impact on athletes' perceptions of the testing system. The study comprises...... a web-based questionnaire (N = 645; response rate 43%) and uses qualitative findings to elaborate on and explain quantitative results. Results showed that two-thirds of the athletes reported the national testing programme in their sport to be appropriate. A majority of the athletes who had an opinion...

  17. Polarization induced doped transistor

    Science.gov (United States)

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  18. Remarkably Enhancing Green-Excitation Efficiency for Solar Energy Utilization: Red Phosphors Ba2ZnS3:Eu2+, X-Co-Doped Halide Ions (X = Cl, Br, I).

    Science.gov (United States)

    Luo, Tingting; Du, Yun; Qiu, Zhongxian; Li, Yanmei; Wang, Xiaofang; Zhou, Wenli; Zhang, Jilin; Yu, Liping; Lian, Shixun

    2017-05-15

    Eu 2+ -activated Ba 2 ZnS 3 has been reported as a red phosphor with a broad emission band peaking at 650 nm under blue excitation for white-LED. In this study, Ba 2 ZnS 3 :Eu 2+ , X - (X = F, Cl, Br, I) phosphors doped with halide ions were prepared by traditional high-temperature solid-state reaction. Phase identification of powders was performed by X-ray powder diffraction analysis, confirming the existence of single-phase Ba 2 ZnS 3 crystals without dopant. The corresponding excitation spectra showed an additional broad band in the green region peaking at 550 nm when the phosphor was halogenated except by the smallest F - . It was proved that the green-excitation efficiency successively strengthened from Cl - , to Br - , to I - , which suggested larger halide ions made a greater contribution to the further splitting of the t 2g energy level of the doped Eu 2+ ions in the host Ba 2 ZnS 3 , and the optimized formula Ba 1.995 ZnS 2.82 :Eu 2+ 0.005 , I - 0.18 showed a potential application in solar spectral conversion for agricultural greenhouse and solar cell. Defect chemistry theory and crystal field theory provided insights into the key role of halide ions in enhancing green-excitation efficiency.

  19. [Doping and sports].

    Science.gov (United States)

    Lippi, G; Guidi, G

    1999-09-01

    Doping is widely known as the use of banned substances and practices by athletes in an attempt to improve sporting performances. The term doping likely derives from "dope", an ancient expression referred to a primitive alcoholic drink that was used as a stimulant in South African ceremonial dances; gradually, the term was extended and finally adopted his current significance. There are at least two essential reasons to support the fight against doping: the potential harmful effects on athletes and the depth corruption of the fair competition. An exhaustive list of banned substances and methods has been drawn by the International Olympic Committee and further accepted by other International Sport Authorities and Federations. This list, regularly updated, is basically divided into doping substances (stimulants, narcotic analgesics, anabolic agents, diuretics, peptide and glycoprotein hormones and analogues), doping methods (blood doping, pharmacological, chemical and physical manipulation) and drugs subjected to certain restrictions (alcohol, marijuana, local anesthetics, corticosteroids and beta-blockers). Although there might be some medical conditions, which could legitimate the need of these substances or methods, there is no place for their use in sport. Thus, an athlete's consume of any of these substances or methods will result in disqualification. Aim of the present review is to provide a synthetic description of both the desirable effects and the potentially harmful consequences of the use of some of the major doping substances and methods.

  20. Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co3O4 nanosheets grown on Ni foam and polyaniline hydrogel derived N-doped nanocarbon electrode materials

    Science.gov (United States)

    Fan, Xin; Chen, Weiliang; Pang, Shuhua; Lu, Wei; Zhao, Yu; Liu, Zheng; Fang, Dong

    2017-12-01

    In the present work, asymmetric supercapacitors (ASCs) are assembled using a highly conductive N-doped nanocarbon (NDC) material derived from a polyaniline hydrogel as a cathode, and Ni foam covered with flower-like Co3O4 nanosheets (Co3O4-Ni) prepared from a zeolitic imidazolate metal-organic framework as a single precursor serves as a high gravimetric capacitance anode. At a current of 0.2 A g-1, the Co3O4-Ni electrode provides a gravimetric capacitance of 637.7 F g-1, and the NDC electrode provides a gravimetric capacitance of 359.6 F g-1. The ASC assembled with an optimal active material loading operates within a wide potential window of 0-1.1 V, and provides a high areal capacitance of 25.7 mF cm-2. The proposed ASC represents a promising strategy for designing high-performance supercapacitors.

  1. Doped graphene supercapacitors

    Science.gov (United States)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  2. To dope or not to dope

    DEFF Research Database (Denmark)

    Overbye, Marie Birch; Knudsen, Mette Lykke; Pfister, Gertrud Ursula

    2013-01-01

    tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43%) represe......tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43...... a more decisive factor. Top incentives were related toqualified medical assistance, improved health or faster recovery from injury, the low risk of being caughtand the threat posed to an elite career.Conclusions: Our results reveal that numerous circumstances affect athletes’ thoughts on doping...

  3. A first principle study of phosphorous doped graphyne

    Science.gov (United States)

    Deb, Jyotirmoy; Paul, Debolina; Sarkar, Utpal

    2017-05-01

    Based on density functional theory (DFT) calculation with generalized gradient approximation (GGA), we have investigated the effect of doping by phosphorous (P) atom at ring and chain position on the electronic properties of graphyne. The stability of the P-doped graphyne system has been determined on the basis of cohesive energy. Doping at chain position shows the possibility of modulating its band gap which might be useful for nano-electronics application. The surprising change from semiconducting to metallic behavior when P atom is placed at ring position of graphyne might be utilized in electronics for the fabrication of metal-semiconductor interfaces and also as an electrode in batteries.

  4. Pareto utility

    NARCIS (Netherlands)

    Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.

    2013-01-01

    In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility

  5. Review of Sodium and Plutonium related Technical Standards in Trans-Uranium Fuel Fabrication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Misuk; Jeon, Jong Seon; Kang, Hyun Sik; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, we would introduce and review technical standards related to sodium fire and plutonium criticality safety. This paper may be helpful to identify considerations in the development of equipment, standards, and etc., to meet the safety requirements in the design, construction and operating of TFFF, KAPF and SFR. The feasibility and conceptual designs are being examined on related facilities, for example, TRU Fuel Fabrication Facilities (TFFF), Korea Advanced Pyro-process Facility (KAPF), and Sodium Cooled Fast Reactor (SFR), in Korea. However, the safety concerns of these facilities have been controversial in part because of the Sodium fire accident and Plutonium related radiation safety caused by transport and handling accident. Thus, many researches have been performed to ensure safety and various documents including safety requirements have been developed. In separating and reducing the long-lived radioactive transuranic(TRU) in the spent nuclear fuel, reusing as the potential energy of uranium fuel resources and reducing the high level wastes, TFFF would be receiving the attention of many people. Thus, people would wonder whether compliance with technical standards that ensures safety. For new facility design, one of the important tasks is to review of technical standards, especially for sodium and Plutonium because of water related highly reactive characteristics and criticality hazard respectively. We have introduced and reviewed two important technical standards for TFFF, which are sodium fire and plutonium criticality safety, in this paper. This paper would provide a brief guidance, about how to start and what is important, to people who are responsible for the initial design to operation of TFFF.

  6. Study of cis- and trans-uranium elements by paper chromatography and electrophoresis

    International Nuclear Information System (INIS)

    Clanet, F.

    1968-01-01

    In this work, the field of application of paper chromatography and electrophoresis in inorganic chemistry has been extended to elements 90 to 96 in hydrochloric and nitric acid solution. Results obtained concern the following points: 1) - Characterization of the valency states of Np and of Pu using coloured reactions on chromatograms and electrophoregrams. The valency IV is characterized by alizarin, arsenazo-I and thorin-I, whilst diphenylcarbazide is used for the hexavalent state. 2) - Paper chromatography: by using as eluent, mixtures of equal parts of aqueous HCl and HNO 3 solutions and of alcohols (methanol, ethanol and n-butanol), the R f values of elements 90 to 96 have been determined. It has been possible to deduce certain conclusions concerning the complexing of these elements by Cl - and NO 3 - ions. 3) - We have developed an electrophoretic technique on cellulose acetate membranes in order to separate the charged species formed by the elements 90 to 96 in HCl and HNO 3 solutions from 1 to 12 M. Mobility curves have been obtained. It appears from our results that the tendency for the elements considered to form anionic complexes follows the order of the ionic potentials when the valency state is four; this order is reversed for the valency three. The ions Cl - have a smaller tendency to form complexes than the NO 3 - ions with respect to these elements in their oxidation state III or IV, but the reverse phenomenon is observed for U VI and Pu VI . Finally, the complexing of the cations Pu 4+ and PuUO 2 2+ by NO 3 - follows the order of the ionic potentials but occurs in the reverse order for Cl - ions. 4) - Various analytical applications are considered: separation of the various elements from each other and separation of the valency states of Np and of Pu. (author) [fr

  7. Borazino-Doped Polyphenylenes.

    Science.gov (United States)

    Marinelli, Davide; Fasano, Francesco; Najjari, Btissam; Demitri, Nicola; Bonifazi, Davide

    2017-04-19

    The divergent synthesis of two series of borazino-doped polyphenylenes, in which one or more aryl units are replaced by borazine rings, is reported for the first time, taking advantage of the decarbonylative [4 + 2] Diels-Alder cycloaddition reaction between ethynyl and tetraphenylcyclopentadienone derivatives. Because of the possibility of functionalizing the borazine core with different groups on the aryl substituents at the N and B atoms of the borazino core, we have prepared borazino-doped polyphenylenes featuring different doping dosages and orientations. To achieve this, two molecular modules were prepared: a core and a branching unit. Depending on the chemical natures of the central aromatic module and the reactive group, each covalent combination of the modules yields one exclusive doping pattern. By means of this approach, three- and hexa-branched hybrid polyphenylenes featuring controlled orientations and dosages of the doping B 3 N 3 rings have been prepared. Detailed photophysical investigations showed that as the doping dosage is increased, the strong luminescent signal is progressively reduced. This suggests that the presence of the B 3 N 3 rings engages additional deactivation pathways, possibly involving excited states with an increasing charge-separated character that are restricted in the full-carbon analogues. Notably, a strong effect of the orientational doping on the fluorescence quantum yield was observed for those hybrid polyphenylene structures featuring low doping dosages. Finally, we showed that Cu-catalyzed 1,3-dipolar cycloaddition is also chemically compatible with the BN core, further endorsing the inorganic benzene as a versatile aromatic scaffold for engineering of molecular materials with tailored and exploitable optoelectronic properties.

  8. Sanctions for doping in sport

    Directory of Open Access Journals (Sweden)

    Mandarić Sanja

    2014-01-01

    Full Text Available Top-level sport imposes new and more demanding physical and psychological pressures, and the desire for competing, winning and selfassertion leads athletes into temptation to use prohibited substances in order to achieve the best possible results. Regardless of the fact that the adverse consequences of prohibited substances are well-known, prestige and the need to dominate sports arenas have led to their use in sports. Doping is one of the biggest issues in sport today, and the fight against it is a strategic objective on both global and national levels. World Anti-Doping Agency, the International Olympic Committee, international sports federations, national anti-doping agencies, national sports federations, as well as governments and their repressive apparatuses are all involved in the fight against doping in sport. This paper points to a different etymology and phenomenology of doping, the beginnings of doping in sport, sports doping scandals as well as the most important international instruments regulating this issue. Also, there is a special reference in this paper to the criminal and misdemeanor sanctions for doping in sport. In Serbia doping in sport is prohibited by the Law on Prevention of Doping in Sports which came into force in 2005 and which prescribes the measures and activities aimed at prevention of doping in sport. In this context, the law provides for the following three criminal offenses: use of doping substances, facilitating the use of doping substances, and unauthorized production and putting on traffic of doping substances. In addition, aiming at curbing the abuse of doping this law also provides for two violations. More frequent and repetitive doping scandals indicate that doping despite long-standing sanctions is still present in sports, which suggests that sanctions alone have not given satisfactory results so far.

  9. Fitness Doping and Body Management

    DEFF Research Database (Denmark)

    Thualagant, Nicole

    This PhD thesis examines in a first paper the conceptualization of fitness doping and its current limitations. Based on a review of studies on bodywork and fitness doping it is emphasised that the definition of doping does not provide insights into bodywork of both men and women. Moreover...... for body control and thus a management of the body....

  10. Tetrahidrokanabinol kao doping

    OpenAIRE

    Milošević, Marcela

    2015-01-01

    Doping je jedan od glavnih problema suvremenog sporta. Definira se kao kršenje jednog ili više antidopinških pravila definiranih odredbama Svjetskog antidopinškog kodeksa. Prema tri WADA-ina kriterija među doping sredstva spada i tetrahidrokarabinol, porijeklom iz biljke Cannabis sativa, Cannabinaceae. To je spoj iz skupine kanabinoida s najjačim psihoaktivnim djelovanjem. Za njegovo djelovanje zaslužni su mehanizmi farmakokinetike i farmakodinamike. Ovisno o načinu primjene apsorpcija mu var...

  11. Viability of the Fricke dosemeter doped with methylene blue

    International Nuclear Information System (INIS)

    Souza, V.L.B.; Santos, C.D.A.; Rodrigues, K.R.G.; Cunha, M.S.; Figueiredo, M.D.C.; Melo, R.T.

    2009-01-01

    This work aims to find the possible utilization of the Fricke dosemeter doped with methylene blue (FMB) for the dosimetry of photodynamic therapy. The FMB was irradiated wit X rays and light emitted diodes demonstrating positive answers to the stimulus, being probably to be used for dosimetric objectives

  12. DC conductivity and spectroscopic studies of polyaniline doped with ...

    Indian Academy of Sciences (India)

    study shows structural modifications in functional groups with doping in PANI. Photoluminescence spectra exhibit emission properties of the samples. Keywords. Polyaniline; D.C. conductivity; UV-visible; XRD; FTIR; PL. 1. Introduction. Polymers are typically utilized in electrical, optical and electronic devices as insulators ...

  13. Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Kirmani, Ahmad R.

    2016-10-07

    In recent years colloidal quantum dot (CQD) photovoltaics have developed rapidly because of novel device architectures and robust surface passivation schemes. Achieving controlled net doping remains an important unsolved challenge for this field. Herein we present a general molecular doping platform for CQD solids employing a library of metal–organic complexes. Low effective ionization energy and high electron affinity complexes are shown to produce n- and p-doped CQD solids. We demonstrate the obvious advantage in solar cells by p-doping the CQD absorber layer. Employing photoemission spectroscopy, we identify two doping concentration regimes: lower concentrations lead to efficient doping, while higher concentrations also cause large surface dipoles creating energy barriers to carrier flow. Utilizing the lower concentration regime, we remove midgap electrons leading to 25% enhancement in the power conversion efficiency relative to undoped cells. Given the vast number of available metal–organic complexes, this approach opens new and facile routes to tuning the properties of CQDs for various applications without necessarily resorting to new ligand chemistries.

  14. Doping in sport

    African Journals Online (AJOL)

    Objective. To determine the attitudes, beliefs and knowledge of talented young athletes residing in Gauteng regarding prohibited performance-enhancing drugs (PEDs) and anti-doping rules and regulations. Methods. This was a survey study using a quantitative research approach. South African TuksSport academy ...

  15. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the ...

  16. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    Wintec

    Abstract. We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle ...

  17. Role Models on Dope

    DEFF Research Database (Denmark)

    Christiansen, Ask Vest; Gleaves, John

    2014-01-01

    Compared to football-players cyclists are virtuous role models. Yes, Lance Armstrong, Michael Rasmussen and other riders have doped, and because of this they have received the predicate as the most immoral athletes in the sporting world. But if morality is not only a question of whether a person...

  18. BLOOD DOPING AND RISKS

    Directory of Open Access Journals (Sweden)

    Goran Vasić

    2015-05-01

    Full Text Available Doping is the way in which athletes misuse of chemicals and other types of medical interventions (eg, blood replacement, try to get ahead in the results of other athletes or their performance at the expense of their own health. The aim of this work is the analysis of blood doping and the display of negative consequences that this way of increasing capabilities brings. Method: The methodological work is done descriptively. Results: Even in 1972 at the Stockholm Institute for gymnastics and sport, first Dr. Bjorn Ekblom started having blood doping. Taken from the blood, athletes through centifuge separating red blood cells from blood plasma, which is after a month of storage in the fridge, every athlete back into the bloodstream. Tests aerobic capacity thereafter showed that the concerned athletes can run longer on average for 25% of the treadmill than before. Discussion: Blood doping carries with it serious risks, excessive amount of red cells “thickens the blood,” increased hematocrit, which reduces the heart’s ability to pump blood to the periphery. All this makes it difficult for blood to flow through blood vessels, and there is a great danger that comes to a halt in the circulation, which can cause cardiac arrest, stroke, pulmonary edema, and other complications that can be fatal.

  19. P-type nitrogen-doped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis.

    Science.gov (United States)

    Herring, Natalie P; Panchakarla, Leela S; El-Shall, M Samy

    2014-03-04

    We report herein the development of a facile microwave irradiation (MWI) method for the synthesis of high-quality N-doped ZnO nanostructures with controlled morphology and doping level. We present two different approaches for the MWI-assisted synthesis of N-doped ZnO nanostructures. In the first approach, N-doping of Zn-poor ZnO prepared using zinc peroxide (ZnO2) as a precursor is carried out under MWI in the presence of urea as a nitrogen source and oleylamine (OAm) as a capping agent for the shape control of the resulting N-doped ZnO nanostructures. Our approach utilizes the MWI process for the decomposition of ZnO2, where the rapid transfer of energy directly to ZnO2 can cause an instantaneous internal temperature rise and, thus, the activation energy for the ZnO2 decomposition is essentially decreased as compared to the decomposition under conductive heating. In the second synthesis method, a one-step synthesis of N-doped ZnO nanostructures is achieved by the rapid decomposition of zinc acetate in a mixture of urea and OAm under MWI. We demonstrate, for the first time, that MWI decomposition of zinc acetate in a mixture of OAm and urea results in the formation of N-doped nanostructures with controlled shape and N-doping level. We report a direct correlation between the intensity of the Raman scattering bands in N-doped ZnO and the concentration of urea used in the synthesis. Electrochemical measurements demonstrate the successful synthesis of stable p-type N-doped ZnO nanostructures using the one-step MWI synthesis and, therefore, allow us to investigate, for the first time, the relationship between the doping level and morphology of the ZnO nanostructures. The results provide strong evidence for the control of the electrical behavior and the nanostructured shapes of ZnO nanoparticles using the facile MWI synthesis method developed in this work.

  20. Fitness Doping and Body Management

    DEFF Research Database (Denmark)

    Thualagant, Nicole

    This PhD thesis examines in a first paper the conceptualization of fitness doping and its current limitations. Based on a review of studies on bodywork and fitness doping it is emphasised that the definition of doping does not provide insights into bodywork of both men and women. Moreover......, it is argued that the social and a cultural context are missing in the many epidemiological studies on the prevalence of doping. The second paper explores the difficulties of implementing an anti-doping policy, which was originally formulated in an elite sport context, in a fitness context and more...... specifically in a sport-for-all context. It is questioned whether the anti-doping policy contradicts some of the national sport-for-all organisation, DGI’s values of fostering fellowship, challenge and health. Last but not least, this thesis examines in a third paper the bodywork of the users’ of the club...

  1. Estimating Utility

    DEFF Research Database (Denmark)

    Arndt, Channing; Simler, Kenneth R.

    2010-01-01

    A fundamental premise of absolute poverty lines is that they represent the same level of utility through time and space. Disturbingly, a series of recent studies in middle- and low-income economies show that even carefully derived poverty lines rarely satisfy this premise. This article proposes...... an information-theoretic approach to estimating cost-of-basic-needs (CBN) poverty lines that are utility consistent. Applications to date illustrate that utility-consistent poverty measurements derived from the proposed approach and those derived from current CBN best practices often differ substantially......, with the current approach tending to systematically overestimate (underestimate) poverty in urban (rural) zones....

  2. ERYTHROPOIETIN AS DOPING AGENT

    Directory of Open Access Journals (Sweden)

    Nina Đukanović

    2012-09-01

    Full Text Available Doping is the use of prohibited substances and/or methods that improve the abilities of athletes. Erythropoietin (EPO, the kidney hormone, belongs to a group of substances that are classified as blood doping, and it can be found on the list of banned substances from 1990. year. Its application leads to an increase in the number of red blood cells, which enables better supply of oxygen, and thus improve the aerobic performance of athletes. Because of that, EPO is very popular in sports where the endurance is predominantly required like a marathon, cycling, triathlon, nordic skiing. Erythropoietin can cause some adverse events, primarily to increase blood viscosity, which is associated with a higher risk of various thromboembolic complications. In detection of EPO use two groups of tests are available, through a urine sample (direct method and blood sample (indirect method.

  3. Doping and Public Health

    DEFF Research Database (Denmark)

    Christiansen, Ask Vest

    rad av världens främsta idrottsvetare och dopningsexperter hade mött upp för att presentera papers till en intresserad och engagerad publik. Temat för konferensen var "Doping and Public Health", och den aspekten behandlades också; dock tolkade flera presentatörer temat på sina egna vis, och hela...

  4. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  5. The use of genes for performance enhancement: doping or therapy?

    Directory of Open Access Journals (Sweden)

    R.S. Oliveira

    2011-12-01

    Full Text Available Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM to enhance athletic performance. In such ‘gene doping’, exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO, vascular endothelial growth factor (VEGF, insulin-like growth factor type 1 (IGF-1, myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.

  6. Promoting mechanism of N-doped single-walled carbon nanotubes for O2 dissociation and SO2 oxidation

    Science.gov (United States)

    Chen, Yanqiu; Yin, Shi; Chen, Yang; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2018-03-01

    Although heteroatom doping in carbon based catalysts have recently received intensive attentions, the role of the intrinsically porous structure of practical carbon materials and their potential synergy with doping atoms are still unclear. To investigate the complex effects, a range of N-doped single-walled carbon nanotubes (SWCNTs) were used to investigate their potential use for O2 dissociation and the subsequent SO2 oxidation using density functional theory. It is found that graphite N doping can synergize with the outer surface of SWCNTs to facilitate the dissociation of O2. The barrier for the dissociation on dual graphite N-doped SWCNT-(8, 8) is as low as 0.3 eV, and the subsequent SO2 oxidation is thermodynamically favorable and kinetically feasible. These results spotlight on developing promising carboncatalyst via utilization of porous gemometry and heteroatom-doping of carbon materials simultaneously.

  7. Nonlinear Elasticity of Doped Semiconductors

    Science.gov (United States)

    2017-02-01

    AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  8. Electrostatic Doping in Semiconductor Devices

    NARCIS (Netherlands)

    Gupta, Gaurav; Rajasekharan, Bijoy; Hueting, Raymond J.E.

    2017-01-01

    To overcome the limitations of chemical doping in nanometer-scale semiconductor devices, electrostatic doping (ED) is emerging as a broadly investigated alternative to provide regions with a high electron or hole density in a semiconductor device. In this paper, we review various reported ED

  9. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Ahmed A. [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Nuclear and Radiation Engineering, Faculty of Engineering, Alexandria University, Alexandria (Egypt); Fadlallah, Mohamed M. [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Physics, Faculty of Science, Benha University, Benha (Egypt); Badawi, Ashraf [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Maarouf, Ahmed A., E-mail: ahmed.maarouf@egnc.gov.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Egypt Nanotechnology Center & Department of Physics, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2016-07-30

    Highlights: • Doping boron nitride sheets with aluminum or gallium atoms significantly enhances their molecular adsorption properties. • Adsorption of glucose or glucosamine on Al- and Ga-doped boron nitride sheets changes the band gap. • Doping concentration changes the bad gap, but has a minor effect on the adsorption energy. - Abstract: Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  10. Qualitative and Semiquantitative Analysis of Doping Products Seized at the Swiss Border.

    Science.gov (United States)

    Weber, Christina; Krug, Oliver; Kamber, Matthias; Thevis, Mario

    2017-05-12

    Substances developed for therapeutic use are also known to be misused by athletes as doping agents and, outside of regulated sport, for image-enhancement. This has generated a market for counterfeit doping substances. Counterfeit doping agents may be of poor pharmaceutical quality and therefore constitute health risks to consumers. This study aims to investigate the pharmaceutical quality of 1,190 doping products seized at the Swiss border. Swiss customs authorities seize incoming shipments potentially containing doping agents. Qualitative and semiquantitative analyses were performed in order to test for prohibited doping substances. The main analytical methods utilized for characterizing confiscated compounds were liquid chromatography-high resolution mass spectrometry, polyacrylamide gel electrophoresis with subsequent in-gel tryptic digestion and identification of peptidic compounds using nanoliquid chromatography-tandem mass spectrometry, and electrochemiluminescence immuno assay. For 889 (75%) of the analyzed products, the label suggested the content of anabolic agents, for 146 samples (12%) peptide hormones or growth factors, and for 113 items (9%) antiestrogens, aromatase inhibitors or other metabolic modulators. For the majority of the investigated products, the pharmaceutical quality was an unsatisfactory standard: nonapproved substances were detected and less than 20% of the products contained the claimed substance in the respective amount. A comprehensive sample of confiscated doping products was analyzed, allowing for monitoring of developments regarding the use of doping substances in Switzerland and for anticipating future trends and challenges in sports drug testing. An alarming number of tested products was of substandard pharmaceutical quality.

  11. Doped beryllium lanthanate crystals

    International Nuclear Information System (INIS)

    1974-01-01

    Monocrystals of doped beryllium lanthanate, Be 2 Lasub(2-2x)Zsub(2x)O 5 --where Z may be any rare earth, but preferably neodymium, and x may have values between 0.001 and 0.2, but preferably between 0.007 and 0.015-- are recommended as laser hosts. They are softer and may be grown at a lower temperature than Y 3 A1 5 O 12 :Nd (YAG:Nd). Their chemical composition and preparation are described. An example of an optically pumped laser apparatus with this type of monocrystal as laser host is presented

  12. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: thierry.melin@isen.iemn.univ-lille1.fr [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  13. The self-consistent energy system with an enhanced non-proliferated core concept for global nuclear energy utilization

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Ishiguma, Kazuo; Fujii-e, Yoichi

    2008-01-01

    A sustainable nuclear energy system was developed based on the concept of Self-Consistent Nuclear Energy System (SCNES). Our study that trans-uranium (TRU) metallic fuel fast reactor cycle coupled with recycling of five long-lived fission products (LLFP) as well as actinides is the most promising system for the sustainable nuclear utilization. Efficient utilization of uranium-238 through the SCNES concept opens the doors to prolong the lifetime of nuclear energy systems towards several tens of thousand years. Recent evolution of the concept revealed compatibility of fuel sustainability, minor actinide (MA) minimization and non-proliferation aspects for peaceful use of nuclear energy systems through the discussion. As for those TRU compositions stabilized under fast neutron spectra, plutonium isotope fractions are remained in the range of reactor grade classification with high fraction of Pu240 isotope. Recent evolution of the SCNES concept has revealed that TRU recycling can cope with enhancing non-proliferation efforts in peaceful use with the 'no-blanket and multi-zoning core' concept. Therefore, the realization of SCNES is most important. In addition, along the process to the goals, a three-step approach is proposed to solve concurrent problems raised in the LWR systems. We discussed possible roles and contribution to the near future demand along worldwide expansion of LWR capacities by applying the 1st generation SCNES. MA fractions in TRU are more than 10% from LWR discharged fuels and even higher up to 20% in fuels from long interim storages. TRU recycling in the 1st generation SCNES system can reduce the MA fractions down to 4-5% in a few decades. This capability significantly releases 'MA' pressures in down-stream of LWR systems. Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable decision

  14. The Ethics of Doping and Anti-Doping

    DEFF Research Database (Denmark)

    Møller, Verner

    With every positive drugs test the credibility and veracity of modern elite sport is diminished. In this radical and provocative critique of current anti-doping policy and practice, Verner Møller argues that the fight against doping – promoted as an initiative to cleanse sport of cheats – is at h......With every positive drugs test the credibility and veracity of modern elite sport is diminished. In this radical and provocative critique of current anti-doping policy and practice, Verner Møller argues that the fight against doping – promoted as an initiative to cleanse sport of cheats....... It is important reading for all serious students and scholars of the ethics, sociology and politics of sport....

  15. Gemstone Color and Silicon Doping in the ETRR-2 Reactor

    International Nuclear Information System (INIS)

    Helal, A. I.

    2004-01-01

    The present article presents a general view of the recent utilities of the rectors. The applications depend on the effect of the neutrons on the material. The effect on pure silicon ingots which is known as neutron transmutation doping is used as a way to transfer the silicon ingot as an insulator to a semiconductor one. The effect on geological stones which is known as artificial gem colored stones are presented as new applications of the reactor facilities. (author)

  16. Doping in Two Elite Athletics Competitions Assessed by Randomized-Response Surveys.

    Science.gov (United States)

    Ulrich, Rolf; Pope, Harrison G; Cléret, Léa; Petróczi, Andrea; Nepusz, Tamás; Schaffer, Jay; Kanayama, Gen; Comstock, R Dawn; Simon, Perikles

    2018-01-01

    Doping in sports compromises fair play and endangers health. To deter doping among elite athletes, the World Anti-Doping Agency (WADA) oversees testing of several hundred thousand athletic blood and urine samples annually, of which 1-2% test positive. Measures using the Athlete Biological Passport suggest a higher mean prevalence of about 14% positive tests. Biological testing, however, likely fails to detect many cutting-edge doping techniques, and thus the true prevalence of doping remains unknown. We surveyed 2167 athletes at two sporting events: the 13th International Association of Athletics Federations Word Championships in Athletics (WCA) in Daegu, South Korea in August 2011 and the 12th Quadrennial Pan-Arab Games (PAG) in Doha, Qatar in December 2011. To estimate the prevalence of doping, we utilized a "randomized response technique," which guarantees anonymity for individuals when answering a sensitive question. We also administered a control question at PAG assessing past-year use of supplements. The estimated prevalence of past-year doping was 43.6% (95% confidence interval 39.4-47.9) at WCA and 57.1% (52.4-61.8) at PAG. The estimated prevalence of past-year supplement use at PAG was 70.1% (65.6-74.7%). Sensitivity analyses, assessing the robustness of these estimates under numerous hypothetical scenarios of intentional or unintentional noncompliance by respondents, suggested that we were unlikely to have overestimated the true prevalence of doping. Doping appears remarkably widespread among elite athletes, and remains largely unchecked despite current biological testing. The survey technique presented here will allow future investigators to generate continued reference estimates of the prevalence of doping.

  17. Doping of two-dimensional MoS2 by high energy ion implantation

    Science.gov (United States)

    Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang

    2017-12-01

    Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.

  18. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    Science.gov (United States)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  19. Local Plasmon Engineering in Doped Graphene

    DEFF Research Database (Denmark)

    Hage, Fredrik Sydow; Hardcastle, Trevor P.; Gjerding, Morten Niklas

    2018-01-01

    transmission electron microscopy. A relative 16% decrease or 20% increase in the π plasmon quality factor is attributed to the presence of a single substitutional B or N atom dopant, respectively. This modification is in both cases shown to be relatively localized, with data suggesting the plasmonic response......Single-atom B or N substitutional doping in single-layer suspended graphene, realized by low-energy ion implantation, is shown to induce a dampening or enhancement of the characteristic interband π plasmon of graphene through a high-resolution electron energy loss spectroscopy study using scanning...... waveband at the atomic scale, a crucial step in the quest for utilizing graphene's properties toward the development of plasmonic and optoelectronic devices operating at ultraviolet frequencies....

  20. Synthesis of nitrogen-doped graphene via solid microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li, E-mail: zhangli379@sohu.com [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Ji, Bingcheng, E-mail: debbo.jee@outlook.com [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Wang, Kai [School of Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Song, Jinyan [School of Information Engineering, Dalian Ocean University, Dalian, Liaoning 116024 (China)

    2014-07-01

    Graphical abstract: - Highlights: • A direct solid microwave method is developed to prepare nitrogen-doped graphene. • The method consists of two steps, namely the functionalization and microwave irradiation. • Melamine can serve as not only functionalizing agent but also nitrogen source. - Abstract: In this paper, we propose a solid microwave-mediated method for scalable production of nitrogen-doped graphene sheets (NGS) using low-cost industrial material melamine as functionalizing agent and nitrogen source. The strong interaction of microwaves with graphene oxide has been fully utilized to generate in situ heating that induces the decompose melamine and nitrogen doping of graphene. The morphology, structure, and components of the as-produced nitrogen-doped graphene are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), pore-size distribution (PSD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results show NGS can be successfully synthesized via this strategy.

  1. Chiral structures and tunable magnetic moments in 3d transition metal doped Pt6 clusters

    International Nuclear Information System (INIS)

    Zhang Xiu-Rong; Yang Xing; Ding Xun-Lei

    2012-01-01

    The structural, electronic, and magnetic properties of transition metal doped platinum clusters MPt 6 (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) are systematically studied by using the relativistic all-electron density functional theory with the generalized gradient approximation. Most of the doped clusters show larger binding energies than the pure Pt 7 cluster, which indicates that the doping of the transition metal atom can stabilize the pure platinum cluster. The results of the highest occupied molecular orbital (HOMO)—lowest unoccupied molecular orbital (LUMO) gaps suggest that the doped clusters can have higher chemical activities than the pure Pt 7 cluster. The magnetism calculations demonstrate that the variation range of the magnetic moments of the MPt 6 clusters is from 0 μ B to 7 μ B , revealing that the MPt 6 clusters have potential utility in designing new spintronic nanomaterials with tunable magnetic properties

  2. Flux pinning mechanism and Hc2-anisotropy in melanin doped bulk MgB2

    Science.gov (United States)

    Shahabuddin Shah, M.; Shahabuddin, Mohammed; Alzayed, Nasser S.; Parakkandy, Jafar M.

    2014-06-01

    Flux pinning mechanism in melanin doped MgB2 superconductor has been studied using a scaling law proposed by Dew-Hughes and another method proposed by Eisterer. Our experimental data could be fitted very closely by the aforementioned scaling law. The fitting parameters, the positions of peaks bpeak and k = bpeak/bn confirm a grain-boundary pinning in the 10% melanin doped sample, while the undoped sample consists of mixed pinning. Furthermore, percolation theory was utilized under grain-boundary approximation to investigate the role of Hc2-anisotropy in the critical current density, and its dependence on applied field as well as temperature. The Hc2-anisotropy decreases with melanin doping resulting in the increase of Jc in high field. There is suppression of flux pinning maximum due to melanin doping, which is found to be the main reason for the degradation of low-field Jc.

  3. Synthesis, characterization and photovoltaic properties of Mn-doped Sb2S3 thin film

    Directory of Open Access Journals (Sweden)

    Horoz Sabit

    2018-03-01

    Full Text Available Synthesis and characterization of Mn-doped Sb2S3 thin films (TFs prepared by chemical bath deposition (CBD at room temperature have been documented and their structural, optical, morphological, magnetic and photovoltaic properties have been examined for the first time. Their structural properties reveal that the Mn-doped Sb2S3 TF has an orthorhombic phase structure of Sb2S3, and that the grain size of the Mn-doped Sb2S3 TF (72.9 nm becomes larger than that of undoped Sb2S3 TF (69.3 nm. It has been observed that Mn content causes the Sb2S3 TF band gap to decrease. This situation clearly correlates with band tailing due to the impurities that are involved. The morphological properties have revealed that the shape of the Mn-doped Sb2S3 TF is more uniform than the shape of its undoped counterpart. The study on its magnetic properties has demonstrated that the Mn-doped Sb2S3 TF exhibits paramagnetic behavior. Its paramagnetic Curie-Weiss temperature was found to be -4.1 K. This result suggests that there is an anti-ferromagnetic interaction between Mn moments in the Mn-doped Sb2S3 TF. Incident photon to electron conversion efficiency (IPCE and J-V measurements were also carried out for the Mn-doped Sb2S3 TF for the first time. The results have indicated that the Mn-doped Sb2S3 TF can be utilized as a sensitizer to improve the performance of solar cells. Another important observation on the photovoltaic properties of Mn-doped Sb2S3 TF is that the spectral response range is wider than that of undoped Sb2S3 TF. Our study suggests that the introduction of dopant could serve as an effective means of improving the device performance of solar cells.

  4. Doping and thrombosis in sports.

    Science.gov (United States)

    Lippi, Giuseppe; Banfi, Giuseppe

    2011-11-01

    Historically, humans have long sought to enhance their "athletic" performance to increase body weight, aggressiveness, mental concentration and physical strength, contextually reducing fatigue, pain, and improving recovery. Although regular training is the mainstay for achieving these targets, the ancillary use of ergogenic aids has become commonplace in all sports. The demarcation between ergogenic aids and doping substances or practices is continuously challenging and mostly based on perceptions regarding the corruption of the fairness of competition and the potential side effects or adverse events arising from the use of otherwise unnecessary ergogenic substances. A kaleidoscope of side effects has been associated with the use of doping agents, including behavioral, skeletal, endocrinologic, metabolic, hemodynamic, and cardiovascular imbalances. Among the various doping substances, the most striking association with thrombotic complications has been reported for androgenic anabolic steroids (i.e., cardiomyopathy, fatal and nonfatal arrhythmias, myocardial infarction [MI], intracardiac thrombosis, stroke, venous thromboembolism [VTE], limb arterial thrombosis, branch retinal vein occlusion, cerebral venous sinus thrombosis) and blood boosting (i.e., VTE and MI, especially for epoetin and analogs). The potential thrombotic complication arising from misuse of other doping agents such as the administration of cortisol, growth hormone, prolactin, cocaine, and platelet-derived preparations is instead speculative or anecdotal at best. The present article provides an overview on the epidemiological association as well as the underlying biochemical and biological mechanisms linking the practice of doping in sports with the development of thrombosis. © Thieme Medical Publishers.

  5. Potassium doped MWCNTs for hydrogen storage enhancement

    International Nuclear Information System (INIS)

    Adabi Qomi, S.; Gashtasebi, M.; Khoshnevisan, B.

    2012-01-01

    Here we have used potassium doped MWCNTs for enhancement of hydrogen storage process. XRD and SEM images have confirmed the doping of potassium. For studying the storage process a hydrogenic battery set up has been used. In the battery the working electrode has been made of the silver foam deposited by the doped MWCNTs electrophoretically.

  6. Doped phosphorene for hydrogen capture: A DFT study

    Science.gov (United States)

    Zhang, Hong-ping; Hu, Wei; Du, Aijun; Lu, Xiong; Zhang, Ya-ping; Zhou, Jian; Lin, Xiaoyan; Tang, Youhong

    2018-03-01

    Hydrogen capture and storage is the core of hydrogen energy application. With its high specific surface area, direct bandgap, and variety of potential applications, phosphorene has attracted much research interest. In this study, density functional theory (DFT) is utilized to study the interactions between doped phosphorenes and hydrogen molecules. The effects of different dopants and metallic or nonmetallic atoms on phosphorene/hydrogen interactions is systematically studied by adsorption energy, electron density difference, partial density of states analysis, and Hirshfeld population. Our results indicate that the metallic dopants Pt, Co, and Ni can help to improve the hydrogen capture ability of phosphorene, whereas the nonmetallic dopants have no effect on it. Among the various metallic dopants, Pt performs very differently, such that it can help to dissociate H2 on phosphorene. Specified doped phosphorene could be a promising candidate for hydrogen storage, with behaviors superior to those of intrinsic graphene sheet.

  7. Rainbow Emission from an Atomic Transition in Doped Quantum Dots.

    Science.gov (United States)

    Hazarika, Abhijit; Pandey, Anshu; Sarma, D D

    2014-07-03

    Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

  8. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  9. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  10. Flux pinning mechanism and H{sub c2}-anisotropy in melanin doped bulk MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shahabuddin Shah, M., E-mail: mshahabuddin@ksu.edu.sa; Shahabuddin, Mohammed; Alzayed, Nasser S.; Parakkandy, Jafar M.

    2014-06-15

    Highlights: • Melanin doping enhances superconducting properties of MgB{sub 2}. • Grain boundary pinning is the dominant pinning mechanism in melanin doped MgB{sub 2}. • Experimental J{sub c} data could be very closely fitted using Percolation model. • Anisotropy is reduced due to melanin doping resulting in increase in J{sub c} in high field. • Pinning force maximum is suppressed due to melanin doping. - Abstract: Flux pinning mechanism in melanin doped MgB{sub 2} superconductor has been studied using a scaling law proposed by Dew-Hughes and another method proposed by Eisterer. Our experimental data could be fitted very closely by the aforementioned scaling law. The fitting parameters, the positions of peaks b{sub peak} and k = b{sub peak}/b{sub n} confirm a grain-boundary pinning in the 10% melanin doped sample, while the undoped sample consists of mixed pinning. Furthermore, percolation theory was utilized under grain-boundary approximation to investigate the role of H{sub c2}-anisotropy in the critical current density, and its dependence on applied field as well as temperature. The H{sub c2}-anisotropy decreases with melanin doping resulting in the increase of J{sub c} in high field. There is suppression of flux pinning maximum due to melanin doping, which is found to be the main reason for the degradation of low-field J{sub c}.

  11. Controlled synthesis of Eu2+ and Eu3+ doped ZnS quantum dots and their photovoltaic and magnetic properties

    Directory of Open Access Journals (Sweden)

    Sabit Horoz

    2016-04-01

    Full Text Available Eu-doped ZnS quantum dots (QDs have been synthesized by wet-chemical method and found to form in zinc blende (cubic structure. Both Eu2+ and Eu3+ doped ZnS can be controllably synthesized. The Eu2+ doped ZnS QDs show broad photoluminescence emission peak around 512 nm, which is from the Eu2+ intra-ion transition of 4f6d1 – 4f7, while the Eu3+ doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu3+ doped samples exhibit signs of ferromagnetism, on the other hand, Eu2+ doped samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QD solar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnS QDs in solar cell technology.

  12. Electronegativity and doping in semiconductors

    KAUST Repository

    Schwingenschlögl, Udo

    2012-08-23

    Charge transfer predicted by standard models is at odds with Pauling’s electronegativities but can be reconciled by the introduction of a cluster formation model [Schwingenschlögl et al., Appl. Phys. Lett. 96, 242107 (2010)]. Using electronic structure calculations, we investigate p- and n-type doping in silicon and diamond in order to facilitate comparison as C has a higher electronegativity compared to Si. All doping conditions considered can be explained in the framework of the cluster formation model. The implications for codoping strategies and dopant-defect interactions are discussed.

  13. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlögl, Udo

    2010-06-17

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  14. Phosphorous Doping of Nanostructured Crystalline Silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Steckel, André

    surface aspect ration (22.25) of bSi to planar surface doping concentration might be slightly higher than on planar surfaces. Therefore, we conducted a study and present recent results of doping of bSi and compared their properties to planar Si. We doped planar, KOH-etched random pyramid and bSi surfaces...... with phosphorous (POCl3) in the temperature range 850-1000oC for 15 and 20 min, respectively. Sheet resistance measurements show slight differences in doping density between planar, KOH pyramidal and bSi structures. bSi samples have lower sheet resistance, pointing to higher doping density presumably due...

  15. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  16. Perspective of pharmacists in Qatar regarding doping and anti-doping in sports.

    Science.gov (United States)

    Mottram, David; Khalifa, Sherief; Alemrayat, Bayan; Rahhal, Alaa; Ahmed, Afif; Stuart, Mark; Awaisu, Ahmed

    2016-06-01

    The aim of this study was to evaluate the current knowledge and perceptions of pharmacists in Qatar with regard to the use of drugs in sport and to explore their views on the introduction of education and training in the area of sports pharmacy. A cross-sectional survey was conducted targeting both hospital and community pharmacists in Qatar. A questionnaire consisting of three domains pertaining to participants' knowledge, perceived role of healthcare professionals, and attitudes towards educational needs on the use of drugs in sports was developed and validated. The online survey link and paper-based questionnaires were distributed to the target population. Data analyses were performed using IBM SPSS Statistics. Descriptive and inferential statistics were utilized for the analyses, where Pdrugs that may be used by athletes, particularly with respect to over-the-counter medicines and supplements. The majority (81.7%) of the pharmacists expressed an interest in receiving education and training on sports pharmacy. Specialized training programs are warranted to ensure that pharmacists have the knowledge and skills required to provide athletes with accurate information about anti-doping issues and the safe and effective use of medicines in sport. The development of these programs should be supported by national pharmacy policy makers and designed in collaboration with anti-doping agencies and sports pharmacy experts and educators.

  17. DOPING IN SPORT: GLOBAL ETHICAL ISSUES

    Directory of Open Access Journals (Sweden)

    Angela J. Schneider

    2007-09-01

    Full Text Available DESCRIPTION In this book the question of "How ethical is using performance improving drugs in sport?" is argued in global perspective. PURPOSE The ethical questions in sport are discussed comprehensively. Particularly, different cultures and approach of various countries to that issue were examined. FEATURES The book composed of 10 chapters following a thorough introduction from the editors in 194 pages. The titles are: 1.Fair is Fair, Or Is It? : A Moral Consideration of the Doping Wars in American Sport; 2.Are Doping Sanctions Justified? A Moral Relativistic View; 3.Cultural Nuances: Doping, Cycling and the Tour de France; 4.On Transgendered Athletes, Fairness and Doping: An International Challenge; 5.Creating a Corporate Anti-doping Culture: The Role of Bulgarian Sports Governing Bodies; 6. Doping in the UK: Alain and Dwain, Rio and Greg - Not Guilty?; 7.The Japanese Debate Surrounding the Doping Ban: The Application of the Harm Principle; 8. Doping and Anti-doping in Sport in China: An Analysis of Recent and Present Attitudes and Actions; 9.Anti-doping in Sport: The Norwegian Perspective; 10.Ethics in Sport: The Greek Educational Perspective on Anti-doping. AUDIENCE Given that this book is about a popular topic in sport, it is a great interest to the sport public as well as students, researchers and practitioners in the sport and exercise disciplines.

  18. Ga self-diffusion in isotopically enriched GaAs heterostructures doped with Si and Zn

    Energy Technology Data Exchange (ETDEWEB)

    Norseng, Marshall Stephen [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This study attempts to advance the modeling of AlGaAs/GaAs/AlAs diffusion by experimental investigation of Ga self-diffusion in undoped, as-grown doped and Zinc diffused structures. We utilize novel, isotopically enriched superlattice and heterostructure samples to provide direct observation and accurate measurement of diffusion with a precision not possible using conventional techniques.

  19. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...

  20. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  1. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania

    Directory of Open Access Journals (Sweden)

    Syed Z. Islam

    2017-03-01

    Full Text Available Mesoporous titania (mp-TiO2 has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to efficiently introduce active non-metal dopants into the lattice of TiO2. This review surveys recent advances in the preparation of mp-TiO2 and their doping with non-metal atoms. Different doping strategies and dopant sources are discussed. Further, co-doping with combinations of non-metal dopants are discussed as strategies to reduce the band gap, improve photogenerated charge separation, and enhance visible light absorption. The improvements resulting from each doping strategy are discussed in light of potential changes in mesoporous architecture, dopant composition and chemical state, extent of band gap reduction, and improvement in photocatalytic activities. Finally, potential applications of non-metal-doped mp-TiO2 are explored in water splitting, CO2 reduction, and environmental remediation with visible light.

  2. Raman and X-Ray photoelectron spectroscopic studies of graphene devices for identification of doping

    Science.gov (United States)

    Aydogan Gokturk, Pinar; Kakenov, Nurbek; Kocabas, Coskun; Suzer, Sefik

    2017-12-01

    Tunability of electronic properties of graphene is one of the most promising properties to integrate it to high efficiency devices in the field of electronics. Here we demonstrate the substrate induced doping of CVD graphene devices using polymers with different functional groups. Both X-Ray secondary electron cut-off and Raman spectra confirm p-type doping of a PVC-Graphene film when compared to a PMMA-Graphene one. We also systematically analyzed the reversible doping effect of acid-base exposure and UV illumination to further dope/undope the polymer supported graphene devices. The shifts in the Raman 2D band towards lower and then to higher wavenumbers, with sequential exposure to ammonia and hydrochloric acid vapors, suggest n-type doing and restoration of graphene to its original state. Finally, the n-type doping with UV irradiation on half-covered samples was utilized and shown by both XPS and Raman to create two regions with different electronic properties and resistances. These type of controlled and reversible doping routes offer new paths for electronic devices especially towards fabricating graphene p-n junctions.

  3. Method of making self-aligned lightly-doped-drain structure for MOS transistors

    Science.gov (United States)

    Weiner, Kurt H.; Carey, Paul G.

    2001-01-01

    A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.

  4. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  5. Steroid profiling in doping analysis

    NARCIS (Netherlands)

    Kerkhof, Daniël Henri van de

    2001-01-01

    Profiling androgens in urine samples is used in doping analysis for the detection of abused steroids of endogenous origin. These profiling techniques were originally developed for the analysis of testosterone, mostly by means of the ratio of testosterone to epitestosterone (T/E ratio). A study was

  6. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    Science.gov (United States)

    Permana, Sidik; Novitrian, Waris, Abdul; Ismail, Suzuki, Mitsutoshi; Saito, Masaki

    2014-09-01

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by convertion rasio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissile material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loding scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.

  7. Efficient inverted bottom-emission blue phosphorescent organic light-emitting diodes with a ytterbium-doped electron injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunkoo; Ahn, Hyuk; Lee, Changhee [Seoul National University, Seoul (Korea, Republic of); Kwak, Jeonghun [Dong-A University, Busan (Korea, Republic of)

    2012-11-01

    An efficient electron injection layer (EIL) for inverted bottom-emission organic light-emitting diodes (IBE-OLEDs) is developed by doping ytterbium (Yb) into an organic electron transport material of 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB). The Yb-doped EIL in the IBE-OLEDs having iridium(III) bis(4,6-(difluorophenyl)pyridinato-N,C{sup 2{sup j}}) picolinate (FIrpic) as a blue phosphorescent dopant shows a lower turn-on voltage (~4.5 V) and about a 6.6 times higher efficiency (~8.6% and 15.3 cd/A at 0.15 mA/cm²) compared with the device without the Yb-doped EIL. Furthermore, the electroluminescence spectrum of the device with the Yb-doped EIL is about the same as that of the device without the Yb-doped EIL. This result indicates that the Yb-doped EIL improves the electron injection from the ITO cathode to the organic electron transport layer. Therefore, the Yb-doped EIL can be utilized as an effective electron injection layer in the OLEDs.

  8. HOMO-LUMO analysis of multi walled carbon nanotubes doped Tetrafluoro Phthalate crystals for nonlinear optical applications

    Science.gov (United States)

    Latha, B.; Kumaresan, P.; Nithiyanantham, S.; Sampathkumar, K.

    2018-01-01

    The MWCNTs doped Tetrafluoro Phthalate (C6H2F4O4) precious stones are constantly having higher transmission rate contrasted with immaculate Tetrafluoro Phthalate crystal. The dependability of Tetrafluoro Phthalate crystal was enhanced by doping MWCNTs.The basic, synthetic, optical, mechanical and non-direct optical properties of the doped precious crystals were dissected with the portrayal concentrates, for example, powder XRD, FT-IR, UV-Visible, Hardness and SHG estimations individually. The dopants are relied upon to substitute the carbon iotas in the Tetrafluoro Phthalate grid because of their change of valency and in addition vicinity of ionic sweep. The strength and charge delocalization of the particle were additionally concentrated on by characteristic security orbital (NBO) examination. The HOMO-LUMO energies depict the charge exchange happens inside the atom. Atomic electrostatic potential has been dissected. The SHG productivity of the immaculate and colors doped TFP crystals were additionally contemplated utilizing Nd:YAG Q-exchanged laser.

  9. Structural "δ Doping" to Control Local Magnetization in Isovalent Oxide Heterostructures

    Science.gov (United States)

    Moon, E. J.; He, Q.; Ghosh, S.; Kirby, B. J.; Pantelides, S. T.; Borisevich, A. Y.; May, S. J.

    2017-11-01

    Modulation and δ -doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here, we demonstrate a purely structural "δ -doping" strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations. The combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to "doping" in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.

  10. Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation

    KAUST Repository

    Hammami, Mohamed Amen

    2016-12-15

    Engineering and scaling-up new materials for better water desalination are imperative to find alternative fresh water sources to meet future demands. Herein, the fabrication of hydrophobic poly(ether imide) composite nanofiber membranes doped with novel ethylene-pentafluorophenylene-based periodic mesoporous organosilica nanoparticles is reported for enhanced and fouling resistant membrane distillation. Novel organosilica nanoparticles were homogeneously incorporated into electrospun nanofiber membranes depicting a proportional increase of hydrophobicity to the particle contents. Direct contact membrane distillation experiments on the organosilica-doped membrane with only 5% doping showed an increase of flux of 140% compared to commercial membranes. The high porosity of organosilica nanoparticles was further utilized to load the eugenol antimicrobial agent which produced a dramatic enhancement of the antibiofouling properties of the membrane of 70% after 24 h.

  11. Laser-ablated active doping technique for visible spectroscopy measurements on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Matthew Robert

    2013-09-01

    Visible spectroscopy is a powerful diagnostic, allowing plasma parameters ranging from temperature and density to electric and magnetic fields to be measured. Spectroscopic dopants are commonly introduced to make these measurements. On Z, dopants are introduced passively (i.e. a salt deposited on a current-carrying surface); however, in some cases, passive doping can limit the times and locations at which measurements can be made. Active doping utilizes an auxiliary energy source to disperse the dopant independently from the rest of the experiment. The objective of this LDRD project was to explore laser ablation as a method of actively introducing spectroscopic dopants. Ideally, the laser energy would be delivered to the dopant via fiber optic, which would eliminate the need for time-intensive laser alignments in the Z chamber. Experiments conducted in a light lab to assess the feasibility of fibercoupled and open-beam laser-ablated doping are discussed.

  12. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    International Nuclear Information System (INIS)

    Srivastava, Subodh; Sharma, Preetam; Singh, M.; Vijay, Y. K.; Sharma, S. S.; Sharma, Vinay; Rajura, Rajveer Singh

    2014-01-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO 2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO 2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO 2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement

  13. Optical Properties of Rare Earth Doped SrS Phosphor: A Review

    Science.gov (United States)

    Khare, Ayush; Mishra, Shubhra; Kshatri, D. S.; Tiwari, Sanjay

    2017-02-01

    Rare earth (RE) doped SrS phosphor has attracted a lot of attention on a wide range of photo-, cathodo-, thermo-, and electroluminescent applications. Upon doping with different RE elements (e.g., Ce, Pr, Eu, Yb), the luminescence from SrS can be varied over the entire visible region by appropriately choosing the composition of the strontium sulfide host. The main applications include flat panel displays and SrS-based powder electroluminescence (EL) for back lights. Sulfide materials known for providing Eu2+ based red emission band and preferred as a color conversion material in white light emitting diodes are discussed. Especially, the applications of RE doped SrS are described in light of their utility as conversion and storage phosphors. The effect of energy level splitting, EL efficiency, post-annealing, milling time, and impurity on luminescence properties for SrS are also discussed.

  14. Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation.

    Science.gov (United States)

    Hammami, Mohammed Amen; Croissant, Jonas G; Francis, Lijo; Alsaiari, Shahad K; Anjum, Dalaver H; Ghaffour, Noreddine; Khashab, Niveen M

    2017-01-18

    Engineering and scaling-up new materials for better water desalination are imperative to find alternative fresh water sources to meet future demands. Herein, the fabrication of hydrophobic poly(ether imide) composite nanofiber membranes doped with novel ethylene-pentafluorophenylene-based periodic mesoporous organosilica nanoparticles is reported for enhanced and fouling resistant membrane distillation. Novel organosilica nanoparticles were homogeneously incorporated into electrospun nanofiber membranes depicting a proportional increase of hydrophobicity to the particle contents. Direct contact membrane distillation experiments on the organosilica-doped membrane with only 5% doping showed an increase of flux of 140% compared to commercial membranes. The high porosity of organosilica nanoparticles was further utilized to load the eugenol antimicrobial agent which produced a dramatic enhancement of the antibiofouling properties of the membrane of 70% after 24 h.

  15. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  16. Effect of hexamethylenetetramine (HMT) concentration on the properties of boron doped ZnO nanotubes array films and the performance of dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Roza, Liszulfah; Iwantono, I.; Andika, Gusyeri; Umar, Akrajas Ali; Rahman, Mohd. Yusri. Abd

    2018-02-01

    This paper reports the effect of hexamethylenetetramine (HMT) concentration on the structural, morphological and optical properties of B-doped ZnO nanotubes arrays. B-doped ZnO nanotubes were employed as anode in dye-sensitized solar cells (DSSCs). The effect of these properties on the photovoltaic performance was also studied. B-doped ZnO nanotube arrays were prepared via hydrothermal technique on FTO substrate at constant concentration of zinc nitrate. The field emission scanning electron microscopy (FESEM) images indicate that the density and length of B-doped ZnO nanotubes increase with the concentration of HMT. However, the diameter decreases with the increase of HMT concentration. The JSC, VOC, FF and η of 1.48 mA cm-2, 0.38 V, 0.39 and 0.224% respectively have been obtained by the DSSC utilizing B-doped ZnO nanotube prepared at 0.06 M HMT.

  17. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Salleh, Muhamad Mat; Chen, Xiaomei; Oyama, Munetaka

    2016-01-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m -1 K -2 ) and 10 μV/K (and 19.5 μW m -1 K -2 ), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  18. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  19. Tunable graphene doping by modulating the nanopore geometry on a SiO2/Si substrate

    KAUST Repository

    Lim, Namsoo

    2018-02-28

    A tunable graphene doping method utilizing a SiO2/Si substrate with nanopores (NP) was introduced. Laser interference lithography (LIL) using a He–Cd laser (λ = 325 nm) was used to prepare pore size- and pitch-controllable NP SiO2/Si substrates. Then, bottom-contact graphene field effect transistors (G-FETs) were fabricated on the NP SiO2/Si substrate to measure the transfer curves. The graphene transferred onto the NP SiO2/Si substrate showed relatively n-doped behavior compared to the graphene transferred onto a flat SiO2/Si substrate, as evidenced by the blue-shift of the 2D peak position (∼2700 cm−1) in the Raman spectra due to contact doping. As the porosity increased within the substrate, the Dirac voltage shifted to a more positive or negative value, depending on the initial doping type (p- or n-type, respectively) of the contact doping. The Dirac voltage shifts with porosity were ascribed mainly to the compensation for the reduced capacitance owing to the SiO2–air hetero-structured dielectric layer within the periodically aligned nanopores capped by the suspended graphene (electrostatic doping). The hysteresis (Dirac voltage difference during the forward and backward scans) was reduced when utilizing an NP SiO2/Si substrate with smaller pores and/or a low porosity because fewer H2O or O2 molecules could be trapped inside the smaller pores.

  20. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  1. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    Science.gov (United States)

    König, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements. PMID:28425460

  2. Nitrogen-Doped Graphene/Platinum Counter Electrodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Lin, Chinan

    2014-12-17

    Nitrogen-doped graphene (NGR) was utilized in dye-sensitized solar cells for energy harvesting. NGR on a Pt-sputtered fluorine-doped tin oxide substrate (NGR/Pt/FTO) as counter electrodes (CEs) achieves the high efficiency of 9.38% via the nitrogen doping into graphene. This is due to (i) the hole-cascading transport at the interface of electrolyte/CEs via controlling the valence band maximum of NGR located between the redox potential of the I-/I- redox couple and the Fermi level of Pt by nitrogen doping, (ii) the extended electron transfer surface effect provided by large-surface-area NGR, (iii) the high charge transfer efficiency due to superior catalytic characteristics of NGR via nitrogen doping, and (iv) the superior light-reflection effect of NGR/Pt/FTO CEs, facilitating the electron transfer from CEs to I3 - ions of the electrolyte and light absorption of dye. The result demonstrated that the NGR/Pt hybrid structure is promising in the catalysis field. (Chemical Presented). © 2014 American Chemical Society.

  3. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    Science.gov (United States)

    König, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-04-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements.

  4. Influence of magnetism and correlation on the spectral properties of doped Mott insulators

    Science.gov (United States)

    Wang, Yao; Moritz, Brian; Chen, Cheng-Chien; Devereaux, Thomas P.; Wohlfeld, Krzysztof

    2018-03-01

    Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. For this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t -J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is, in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.

  5. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    Unknown

    CaAl2O4) doped with different rare earth ions have been studied and their suitability for radiation dosimetry applications is discussed. It is observed that monocalcium aluminate doped with cerium is a good dosimeter having linear response up to ...

  6. Proton-transfer doping of polyacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, L.M.; Schomaker, J.A. (School of Chemistry and Biochemistry, Georgia Inst. of Tech., Atlanta (USA))

    1991-04-30

    Exhaustive deprotonation of films of poly(acetylene-co-1,3-butadiene) (PAB) fails to produce a conductive film. In contrast, deprotonation of segmented polyacetylene (SPA) produces a conductive material with similar characteristics to n-doped polyacetylene. Thus the feasibility of a proton-transfer approach to doping of polyacetylene has been demonstrated. (orig.).

  7. doped ZnO thick film resistors

    Indian Academy of Sciences (India)

    The characterization and ethanol gas sensing properties of pure and doped ZnO thick films were investigated. Thick films of pure zinc oxide were prepared by the screen printing technique. Pure zinc oxide was almost insensitive to ethanol. Thick films of Al2O3 (1 wt%) doped ZnO were observed to be highly sensitive to ...

  8. Heteroatom doped graphene in photocatalysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Lutfi Kurnianditia; Ong, Wee-Jun [Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor (Malaysia); Chang, Wei Sea [Mechanical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor (Malaysia); Chai, Siang-Piao, E-mail: chai.siang.piao@monash.edu [Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor (Malaysia)

    2015-12-15

    Graphical abstract: - Highlights: • Doping graphene with foreign atoms extends its function in the photocatalyst system. • Chemically doped graphene improved the electrical conductivity. • Chemically doped graphene outperform conventional rGO as a semiconductor support. • Chemically doped graphene cause bandgap opening and formation of catalytic sites. • Chemically doped graphene can behave as functional standalone photocatalyst. - Abstract: Photocatalysis has been a focus of great attention due to its useful environmental applications such as eliminating hazardous pollutants and generating sustainable energy. Coincidentally, graphene, a 2D allotrope of carbon, has also infiltrated many research fields due to its outstanding properties – photocatalysis being no exception. As of recent, there has been growing research focus on heteroatom (O, N, B, P and S) doping of graphene and its emergent application opportunities. In this study, rather than the familiar graphene as the electron transfer medium that is normally integrated in a photocatalyst system, we contrarily explore the implication of heteroatom doped graphene and the underlying mechanism behind their advantageous uses in photocatalysis. This review surveys the literature and highlights recent progress and challenges in the development of chemically doped graphene in the photocatalysis scene. It is desired that this review will promote awareness and encourage further investigations for the development in this budding research area.

  9. Electrochemical synthesis and characterization of chloride doped ...

    Indian Academy of Sciences (India)

    Unknown

    (HCl) by potentiodynamic method in an electrochemical cell and studied by cyclic voltammetry and FTIR techniques. The FTIR spectra confirmed Cl– ion doping in the ... were not hygroscopic whereas chloride doped polyaniline films were found to be highly hygroscopic. Keywords. Conducting polymer; electrochemical ...

  10. Moral entrepreneurship and doping cultures in sport

    NARCIS (Netherlands)

    Stokvis, R.

    2003-01-01

    In this article, the fight against doping has been analyzed as an ongoing process of social definition. It is dependent on the development of power relations within and outside the world of sport. To analyze these dependencies, I identified a variety of important doping cultures in sport and studied

  11. Ultratough single crystal boron-doped diamond

    Science.gov (United States)

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  12. Heteroatom doped graphene in photocatalysis: A review

    International Nuclear Information System (INIS)

    Putri, Lutfi Kurnianditia; Ong, Wee-Jun; Chang, Wei Sea; Chai, Siang-Piao

    2015-01-01

    Graphical abstract: - Highlights: • Doping graphene with foreign atoms extends its function in the photocatalyst system. • Chemically doped graphene improved the electrical conductivity. • Chemically doped graphene outperform conventional rGO as a semiconductor support. • Chemically doped graphene cause bandgap opening and formation of catalytic sites. • Chemically doped graphene can behave as functional standalone photocatalyst. - Abstract: Photocatalysis has been a focus of great attention due to its useful environmental applications such as eliminating hazardous pollutants and generating sustainable energy. Coincidentally, graphene, a 2D allotrope of carbon, has also infiltrated many research fields due to its outstanding properties – photocatalysis being no exception. As of recent, there has been growing research focus on heteroatom (O, N, B, P and S) doping of graphene and its emergent application opportunities. In this study, rather than the familiar graphene as the electron transfer medium that is normally integrated in a photocatalyst system, we contrarily explore the implication of heteroatom doped graphene and the underlying mechanism behind their advantageous uses in photocatalysis. This review surveys the literature and highlights recent progress and challenges in the development of chemically doped graphene in the photocatalysis scene. It is desired that this review will promote awareness and encourage further investigations for the development in this budding research area.

  13. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    The thermoluminescence (TL) properties of calcium aluminate (CaAl2O4) doped with different rare earth ions have been studied and their suitability for radiation dosimetry applications is discussed. It is observed that monocalcium aluminate doped with cerium is a good dosimeter having linear response up to about 4 kGy of ...

  14. Electronic properties of magnetically doped nanotubes

    Indian Academy of Sciences (India)

    Unknown

    Electronic properties of magnetically doped nanotubes. KEIVAN ESFARJANI*, Z CHEN† and Y KAWAZOE†. Sharif Institute of Technology, and Institute for Physics and Mathematics, Tehran, Iran. †Institute for Materials Research, Tohoku University, Sendai, Japan. Abstract. Effect of doping of carbon nanotubes by magnetic ...

  15. Electronic properties of magnetically doped nanotubes

    Indian Academy of Sciences (India)

    Unknown

    body of publications since their discovery in 1991 (Iijima. 1991). Recent experimental (Lee et al 1997; Rao et al. 1997; Grigorian et al 1998a, b) and theoretical (Miya- moto et al 1995; Esfarjani et al 1999) studies on doping nanotubes focused on doping by alkali metal or halogene elements as electron donors or acceptors, ...

  16. Neutron transmutation doping of polycrystalline silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1976-04-01

    Chemical vapor deposition (CVD) of doped silane has been used by others to deposit a polycrytalline silicon film (polysil) on metal or graphite substrates, but dopant migration to grain boundaries during deposition apparently prohibits attaining a uniform or desired dopant concentration. In contrast, we have used neutron transmutation doping to introduce a uniform phosphorus dopant concentration in commercially available undoped CVD polysil at doping concentrations greater than or equal to 2 x 10 15 cm -3 . Radiation damage annealing to 800 0 C did not indicate dopant migration. Carrier mobility increased with doping concentration and the minority carrier lifetime (MCL) appears to be comparable to that of neutron transmutation doped (NTD) single crystal Si. Application of this technique to photovoltaic solar cell fabrication is discussed

  17. [Cardiovascular alterations associated with doping].

    Science.gov (United States)

    Thieme, D; Büttner, A

    2015-05-01

    Doping -the abuse of anabolic-androgenic steroids in particular- is widespread in amateur and recreational sports and does not solely represent a problem of professional sports. Excessive overdose of anabolic steroids is well documented in bodybuilding or powerlifting leading to significant side effects. Cardiovascular damages are most relevant next to adverse endocrine effects.Clinical cases as well as forensic investigations of fatalities or steroid consumption in connection with trafficking of doping agents provide only anecdotal evidence of correlations between side effects and substance abuse. Analytical verification and self-declarations of steroid users have repeatedly confirmed the presumption of weekly dosages between 300 and 2000 mg, extra to the fact that co-administration of therapeutics to treat side-effects represent a routine procedure. Beside the most frequent use of medications used to treat erectile dysfunction or estrogenic side-effects, a substantial number of antihypertensive drugs of various classes, i.e. beta-blockers, diuretics, angiotensin II receptor antagonists, calcium channel blockers, as well as ACE inhibitors were recently confiscated in relevant doping cases. The presumptive correlation between misuse of anabolic steroids and self-treatment of cardiovascular side effects was explicitly confirmed by detailed user statements.Two representative fatalities of bodybuilders were introduced to outline characteristic, often lethal side effects of excessive steroid abuse. Moreover, illustrative autopsy findings of steroid acne, thrombotic occlusion of Ramus interventricularis anterior and signs of cardiac infarctions are presented.A potential steroid abuse should be carefully considered in cases of medical consultations of patients exhibiting apparent constitutional modifications and corresponding adverse effects. Moreover, common self-medications -as frequently applied by steroid consumers- should be taken into therapeutic considerations.

  18. Controlled synthesis of Eu{sup 2+} and Eu{sup 3+} doped ZnS quantum dots and their photovoltaic and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Horoz, Sabit; Poudyal, Uma; Wang, Wenyong; Tang, Jinke, E-mail: jtang2@uwyo.edu [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Yakami, Baichhabi; Pikal, Jon M. [Department of Electrical Engineering, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-04-15

    Eu-doped ZnS quantum dots (QDs) have been synthesized by wet-chemical method and found to form in zinc blende (cubic) structure. Both Eu{sup 2+} and Eu{sup 3+} doped ZnS can be controllably synthesized. The Eu{sup 2+} doped ZnS QDs show broad photoluminescence emission peak around 512 nm, which is from the Eu{sup 2+} intra-ion transition of 4f{sup 6}d{sup 1} – 4f{sup 7}, while the Eu{sup 3+} doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu{sup 3+} doped samples exhibit signs of ferromagnetism, on the other hand, Eu{sup 2+} doped samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QD solar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnS QDs in solar cell technology.

  19. Temperature Optimized Ammonia and Ethanol Sensing Using Ce Doped Tin Oxide Thin Films in a Novel Flow Metric Gas Sensing Chamber

    Directory of Open Access Journals (Sweden)

    K. Govardhan

    2016-01-01

    Full Text Available A simple process of gas sensing is represented here using Ce doped tin oxide nanomaterial based thin film sensor. A novel flow metric gas chamber has been designed and utilized for gas sensing. Doping plays a vital role in enhancing the sensing properties of nanomaterials. Ce doped tin oxide was prepared by hydrothermal method and the same has been used to fabricate a thin film for sensing. The microstructure and morphology of the prepared materials were analysed by SEM, XRD, and FTIR analysis. The SEM images clearly show that doping can clamp down the growth of the large crystallites and can lead to large agglomeration spheres. Thin film gas sensors were formed from undoped pure SnO2 and Ce doped SnO2. The sensors were exposed to ammonia and ethanol gases. The responses of the sensors to different concentrations (50–500 ppm of ammonia and ethanol at different operating temperatures (225°C–500°C were studied. Results show that a good sensitivity towards ammonia was obtained with Ce doped SnO2 thin film sensor at an optimal operating temperature of 325°C. The Ce doped sensor also showed good selectivity towards ammonia when compared with ethanol. Pure SnO2 showed good sensitivity with ethanol when compared with Ce doped SnO2 thin film sensor. Response time of the sensor and its stability were also studied.

  20. Mechanistic Study on the Solution-Phase n-Doping of 1,3-Dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole Derivatives

    Science.gov (United States)

    Naab, Benjamin D.; Guo, Song; Olthof, Selina; Evans, Eric G. B.; Wei, Peng; Millhauser, Glenn L.; Kahn, Antoine; Barlow, Stephen; Marder, Seth R.; Bao, Zhenan

    2014-01-01

    The discovery of air-stable n-dopants for organic semiconductor materials has been hindered by the necessity of high-energy HOMOs and the air sensitivity of compounds that satisfy this requirement. One strategy for circumventing this problem is to utilize stable precursor molecules that form the active doping complex in situ during the doping process or in a postdeposition thermal- or photo-activation step. Some of us have reported on the use of 1H-benzimidazole (DMBI) and benzimidazolium (DMBI-I) salts as solution- and vacuum-processable n-type dopant precursors, respectively. It was initially suggested that DMBI dopants function as single-electron radical donors wherein the active doping species, the imidazoline radical, is generated in a postdeposition thermal annealing step. Herein we report the results of extensive mechanistic studies on DMBI-doped fullerenes, the results of which suggest a more complicated doping mechanism is operative. Specifically, a reaction between the dopant and host that begins with either hydride or hydrogen atom transfer and which ultimately leads to the formation of host radical anions is responsible for the doping effect. The results of this research will be useful for identifying applications of current organic n-doping technology and will drive the design of next-generation n-type dopants that are air stable and capable of doping low-electron-affinity host materials in organic devices. PMID:24011269

  1. Lanthanide-doped luminescent ionogels

    OpenAIRE

    Lunstroot, Kyra; Driesen, Kris; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Görller-Walrand, Christiane; Binnemans, Koen; Bellayer, Séverine; Viau, Lydie; Le Bideau, Jean; Vioux, André

    2009-01-01

    Ionogels are solid oxide host networks confining at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving anthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C6mim][Ln(tta)4], where tta is 2-thenoyltrifluoroacetonate and Ln = Nd, Sm, Eu, Ho, Er, Yb, and [choli...

  2. Metal-doped organic foam and method of making same. [Patent application

    Science.gov (United States)

    Rinde, J.A.

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  3. The importance of cooling of urine samples for doping analysis

    NARCIS (Netherlands)

    Kuenen, J.G.; Konings, W.N.

    2009-01-01

    Storing and transporting of urine samples for doping analysis, as performed by the anti-doping organizations associated with the World Anti-Doping Agency, does not include a specific protocol for cooled transport from the place of urine sampling to the doping laboratory, although low cost cooling

  4. The importance of cooling of urine samples for doping analysis

    NARCIS (Netherlands)

    Kuenen, J. Gijs; Konings, Wil N.

    Storing and transporting of urine samples for doping analysis, as performed by the anti-doping organizations associated with the World Anti-Doping Agency, does not include a specific protocol for cooled transport from the place of urine sampling to the doping laboratory, although low cost cooling

  5. Zirconia doped silicon nitride ceramics

    International Nuclear Information System (INIS)

    Ekstroem, T.; Falk, L.K.L.; Knutson-Wedel, E.M.

    1992-01-01

    This presentation is concerned with the value added to silicon nitride ceramics by doping with smaller amounts of zirconia. The effects which the different sintering additives ZrO 2 , Y 2 O 3 stabilized ZrO 2 , Y 2 O 3 , Al 2 O 3 and AIN have upon densification, α- to β-Si 3 N 4 phase transformation and final microstructure are discussed. Silicon nitride ceramics containing these additives have been formed either by pressureless sintering or by hot isostatic pressing (HIP) at temperatures in the range 1550 to 1775 deg C. The fine scale microstructures of the densified materials, characterized by analytical electron microscopy and X-ray diffractometry, have been related to mechanical properties viz. strength, hardness and indentation fracture toughness. The most pronounced value added by ZrO 2 doping is that a properly adjusted combination of sintering aids makes it possible to substantially reduce the volume fraction of residual intergranular glass through formation of crystalline ZrO 2 (Y 2 O 3 ) solid solutions. This behaviours opens the possibility of developing new silicon nitride ceramics for high temperature applications. 25 refs., 4 figs

  6. [Soft skills : Somewhat different doping].

    Science.gov (United States)

    Heppner, H J

    2018-02-01

    Doping actually means the taking of illegal substances or the use of forbidden methods to increase or maintain performance. Diseases associated with age and functional decline can lead to constraints in the activities of daily living and this leads to loss of autonomy; therefore, doping in its different variations is used to try to achieve performance, which would not otherwise be possible. A somewhat different method is soft skills, i.e. personal, social and methodological competences, which are adopted to remain fit with the help of selection and compensation. One of the main cornerstones for healthy aging apart from medical interventions is physical activity and to keep training up to old age. An early beginning with sports activities and to continue practicing sport in a variety of forms into old age, plays a decisive role in healthy aging. There are also many recommendations for nutrition, such as changing eating habits and the composition of nourishment to counteract the process of aging. With increasing age the interests and life style also change and therefore early planning is absolutely necessary. Preservation of cognitive capabilities is one of the most important requirements to overcome aging. Not only the cognitive resources must be promoted but also attention must be paid to the resilience to deal with losses. Resilience plays a key role. People with a positive attitude to living with old age show less functional physical impairment and recover from illness more quickly. Humor, optimism and physical activity are crucial for successful aging.

  7. Detonation nanodiamonds for doping Kevlar.

    Science.gov (United States)

    Comet, Marc; Pichot, Vincent; Siegert, Benny; Britz, Fabienne; Spitzer, Denis

    2010-07-01

    This paper reports on the first attempt to enclose diamond nanoparticles--produced by detonation--into a Kevlar matrix. A nanocomposite material (40 wt% diamond) was prepared by precipitation from an acidic solution of Kevlar containing dispersed nanodiamonds. In this material, the diamond nanoparticles (Ø = 4 nm) are entirely wrapped in a Kevlar layer about 1 nm thick. In order to understand the interactions between the nanodiamond surface and the polymer, the oxygenated surface functional groups of nanodiamond were identified and titrated by Boehm's method which revealed the exclusive presence of carboxyl groups (0.85 sites per nm2). The hydrogen interactions between these groups and the amide groups of Kevlar destroy the "rod-like" structure and the classical three-dimensional organization of this polymer. The distortion of Kevlar macromolecules allows the wrapping of nanodiamonds and leads to submicrometric assemblies, giving a cauliflower structure reminding a fractal object. Due to this structure, the macroscopic hardness of Kevlar doped by nanodiamonds (1.03 GPa) is smaller than the one of pure Kevlar (2.31 GPa). To our knowledge, this result is the first illustration of the change of the mechanical properties induced by doping the Kevlar with nanoparticles.

  8. Viability of the Fricke dosemeter doped with methylene blue; Viabilidade do dosimetro Fricke dopado com azul de metileno

    Energy Technology Data Exchange (ETDEWEB)

    Souza, V.L.B.; Santos, C.D.A.; Rodrigues, K.R.G.; Cunha, M.S.; Figueiredo, M.D.C.; Melo, R.T. [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2009-07-01

    This work aims to find the possible utilization of the Fricke dosemeter doped with methylene blue (FMB) for the dosimetry of photodynamic therapy. The FMB was irradiated wit X rays and light emitted diodes demonstrating positive answers to the stimulus, being probably to be used for dosimetric objectives

  9. Utility usage forecasting

    Science.gov (United States)

    Hosking, Jonathan R. M.; Natarajan, Ramesh

    2017-08-22

    The computer creates a utility demand forecast model for weather parameters by receiving a plurality of utility parameter values, wherein each received utility parameter value corresponds to a weather parameter value. Determining that a range of weather parameter values lacks a sufficient amount of corresponding received utility parameter values. Determining one or more utility parameter values that corresponds to the range of weather parameter values. Creating a model which correlates the received and the determined utility parameter values with the corresponding weather parameters values.

  10. Achieving Remarkable Activity and Durability toward Oxygen Reduction Reaction Based on Ultrathin Rh-Doped Pt Nanowires.

    Science.gov (United States)

    Huang, Hongwen; Li, Kan; Chen, Zhao; Luo, Laihao; Gu, Yuqian; Zhang, Dongyan; Ma, Chao; Si, Rui; Yang, Jinlong; Peng, Zhenmeng; Zeng, Jie

    2017-06-21

    The research of active and sustainable electrocatalysts toward oxygen reduction reaction (ORR) is of great importance for industrial application of fuel cells. Here, we report a remarkable ORR catalyst with both excellent mass activity and durability based on sub 2 nm thick Rh-doped Pt nanowires, which combine the merits of high utilization efficiency of Pt atoms, anisotropic one-dimensional nanostructure, and doping of Rh atoms. Compared with commercial Pt/C catalyst, the Rh-doped Pt nanowires/C catalyst shows a 7.8 and 5.4-fold enhancement in mass activity and specific activity, respectively. The combination of extended X-ray absorption fine structure analysis and density functional theory calculations reveals that the compressive strain and ligand effect in Rh-doped Pt nanowires optimize the adsorption energy of hydroxyl and in turn enhance the specific activity. Moreover, even after 10000 cycles of accelerated durability test in O 2 condition, the Rh-doped Pt nanowires/C catalyst exhibits a drop of 9.2% in mass activity, against a big decrease of 72.3% for commercial Pt/C. The improved durability can be rationalized by the increased vacancy formation energy of Pt atoms for Rh-doped Pt nanowires.

  11. IR-doped ruthenium oxide catalyst for oxygen evolution

    Science.gov (United States)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  12. Entrez Programming Utilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Entrez Programming Utilities (E-utilities) are a set of eight server-side programs that provide a stable interface into the Entrez query and database system at...

  13. Investigating the effect of Mn-doped CeO2 nanoparticles by co-precipitation method

    Science.gov (United States)

    Prabaharan, D. Durai Manoharadoss; Sadaiyandi, K.; Mahendran, M.; Sagadevan, Suresh

    2018-02-01

    The paper exhibits a detailed study about the synthesis and characterization in analysis of structural, morphological, optical and electrical investigations of pure and Mn-doped Cerium oxide (CeO2) nanoparticles which were synthesized by co-precipitation technique. Phase formation of the prepared sample was analyzed with powder X-ray diffraction (PXRD) examines, scanning electron microscopy (SEM) examination. The PXRD comes about affirmed partial crystallinity having cubic phases and the crystallite sizes of the pure and Mn-doped Cerium oxide (CeO2) were estimated by utilizing Debye-Scherrer's formula and they were calculated to be 12 and 14 nm individually. SEM pictures revealed that the particles were profoundly accumulated and were of permeable nature. The optical properties of pure and Mn-doped CeO2 were ascertained by using UV-visible absorption spectrum. The estimated band gap values for the pure and the Mn-doped CeO2 nanoparticles were observed to be 2.7 and 2.6 eV, respectively, utilizing UV-Vis spectroscopy. At different frequencies and temperatures the dielectric properties of the Mn-doped Cerium oxide (CeO2) nanoparticles, for example, the dielectric consistent, the dielectric loss and the AC conductivity, were studied.

  14. Alternative medicine and doping in sports

    Directory of Open Access Journals (Sweden)

    Benjamin Koh

    2012-01-01

    Full Text Available Athletes are high achievers who may seek creative or unconventional methods to improve performance. The literature indicates that athletes are among the heaviest users of complementary and alternative medicine (CAM and thus may pioneer population trends in CAM use. Unlike non-athletes, athletes may use CAM not just for prevention, treatment or rehabilitation from illness or injuries, but also for performance enhancement. Assuming that athletes’ creative use of anything unconventional is aimed at “legally” improving performance, CAM may be used because it is perceived as more “natural” and erroneously assumed as not potentially doping. This failure to recognise CAMs as pharmacological agents puts athletes at risk of inadvertent doping.The general position of the World Anti-Doping Authority (WADA is one of strict liability, an application of the legal proposition that ignorance is no excuse and the ultimate responsibility is on the athlete to ensure at all times whatever is swallowed, injected or applied to the athlete is both safe and legal for use. This means that a violation occurs whether or not the athlete intentionally or unintentionally, knowingly or unknowingly, used a prohibited substance/method or was negligent or otherwise at fault. Athletes are therefore expected to understand not only what is prohibited, but also what might potentially cause an inadvertent doping violation. Yet, as will be discussed, athlete knowledge on doping is deficient and WADA itself sometimes changes its position on prohibited methods or substances. The situation is further confounded by the conflicting stance of anti-doping experts in the media. These highly publicised disagreements may further portray inconsistencies in anti-doping guidelines and suggest to athletes that what is considered doping is dependent on the dominant political zeitgeist. Taken together, athletes may believe that unless a specific and explicit ruling is made, guidelines are

  15. Alternative medicine and doping in sports.

    Science.gov (United States)

    Koh, Benjamin; Freeman, Lynne; Zaslawski, Christopher

    2012-01-01

    Athletes are high achievers who may seek creative or unconventional methods to improve performance. The literature indicates that athletes are among the heaviest users of complementary and alternative medicine (CAM) and thus may pioneer population trends in CAM use. Unlike non-athletes, athletes may use CAM not just for prevention, treatment or rehabilitation from illness or injuries, but also for performance enhancement. Assuming that athletes' creative use of anything unconventional is aimed at "legally" improving performance, CAM may be used because it is perceived as more "natural" and erroneously assumed as not potentially doping. This failure to recognise CAMs as pharmacological agents puts athletes at risk of inadvertent doping.The general position of the World Anti-Doping Authority (WADA) is one of strict liability, an application of the legal proposition that ignorance is no excuse and the ultimate responsibility is on the athlete to ensure at all times whatever is swallowed, injected or applied to the athlete is both safe and legal for use. This means that a violation occurs whether or not the athlete intentionally or unintentionally, knowingly or unknowingly, used a prohibited substance/method or was negligent or otherwise at fault. Athletes are therefore expected to understand not only what is prohibited, but also what might potentially cause an inadvertent doping violation. Yet, as will be discussed, athlete knowledge on doping is deficient and WADA itself sometimes changes its position on prohibited methods or substances. The situation is further confounded by the conflicting stance of anti-doping experts in the media. These highly publicised disagreements may further portray inconsistencies in anti-doping guidelines and suggest to athletes that what is considered doping is dependent on the dominant political zeitgeist. Taken together, athletes may believe that unless a specific and explicit ruling is made, guidelines are open to interpretation

  16. Pairing correlations in electron-doped cuprates

    Science.gov (United States)

    Aligia, A. A.; Arrachea, Liliana

    2001-12-01

    We calculate on-site s, extended s and dx2-y2 pairing correlation functions in a generalized Hubbard model for the cuprates, for parameters appropriate for electron-doped systems, using numerical diagonalization of a 4×4 cluster. We find indications of d-wave superconductivity for small doping (~0.1 electrons per unit cell) and s-wave superconductivity for overdoped systems (~0.5 electrons per unit cell) or small U. The magnitude of the pairing correlation functions and the vertex contributions to them are in general much smaller than in the hole-doped case. We also present results for the spin-structure factor.

  17. Research Utilization in Rehabilitation.

    Science.gov (United States)

    Rogers, Everett M.

    In terms of its attention to research utilization, vocational rehabilitation today may be where agriculture was in 1913. One reason for this is an inadequate understanding of the process of research utilization. Scattered studies of research utilization have occurred, but suffer from a lack of integration. Among propositions that may be postulated…

  18. Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Morasae; Zirak, Mohammad [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Naseri, Amene [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of); Khorashadizade, Elham [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza Z., E-mail: moshfegh@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11555-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-04-30

    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured photocatalysts under visible light. In this review, we have classified different approaches to activate ZnO as a photocatalyst in visible-light spectrum. Utilization of various nonmetals, transition metals and rare-earth metals for doping in ZnO crystal lattice to create visible-light-responsive doped ZnO photocatalysts is discussed. Generation of localized energy levels within the gap in doped ZnO nanostructures has played an important role in effective photocatalytic reaction under visible-light irradiation. The effect of dopant type, ionic size and its concentration on the crystal structure, electronic property and morphology of doped ZnO with a narrower band gap is reviewed systematically. Finally, a comparative study is performed to evaluate two classes of metals and nonmetals as useful dopants for ZnO nanostructured photocatalysts under visible light. - Highlights: • Metals and nonmetals used as a dopant to shift ZnO band gap toward visible-light. • Modification of electronic structure played a crucial role in doped ZnO activity. • Correlation between dopant's characteristics and ZnO visible activity was reviewed. • Photo-degradation of doped ZnO was studied and compared for different dopants.

  19. Fullerenes doped with metal halides

    International Nuclear Information System (INIS)

    Martin, T.P.; Heinebrodt, M.; Naeher, U.; Goehlich, H.; Lange, T.; Schaber, H.

    1993-01-01

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C 60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  20. Screening dynamics in doped titanates

    Energy Technology Data Exchange (ETDEWEB)

    Rubensson, J.E.; Luening, J.; Eisebitt, S. [Forschungszentrum Juelich (Germany)] [and others

    1997-04-01

    The time scale for carrier relaxation in semiconductors is on the same order of magnitude as the life time of shallow core hole states (a few femtoseconds). Resonant Inelastic soft X-ray scattering (RIXS) which involves (virtual) excitations of core levels consequently contains information about the time development of the electronic structure on this time scale. In many cases one can treat the scattering in an absorption (SXA) followed-by-emission (SXE) picture, where simply the rates for various processes can be compared with the intermediate core hole state decay rate as an internal {open_quotes}clock{close_quotes}. By variation of x (0 < x < 1) in La{sub x}Sr{sub 1{minus}x}TiO{sub 3}, the amount of Ti d electrons in the system can be controlled. SrTiO{sub 3} (x=0) is an insulator with an empty Ti d band. With increasing x, electrons are doped into the Ti d-band, and LaTiO{sub 3} (x=1) is a Mott Hubbard insulator with a Ti 3d{sup 1} configuration. In this work the authors demonstrate that the rate for Ti 2p core hole screening in La{sub x}Sr{sub 1{minus}x}TiO{sub 3} is doping dependent. The screening rate increases with the availability of Ti 3d electrons, and they estimate it to be 3.8 x 10{sup 13}/sec in La{sub 0.05}Sr{sub 0.95}TiO{sub 3}.

  1. Superconductivity in carrier-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Takahiro Muranaka, Yoshitake Kikuchi, Taku Yoshizawa, Naoki Shirakawa and Jun Akimitsu

    2008-01-01

    Full Text Available We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm−3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  2. Active Optical Fibers Doped with Ceramic Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jan Mrazek

    2014-01-01

    Full Text Available Erbium-doped active optical fiber was successfully prepared by incorporation of ceramic nanocrystals inside a core of optical fiber. Modified chemical vapor deposition was combined with solution-doping approach to preparing preform. Instead of inorganic salts erbium-doped yttrium-aluminium garnet nanocrystals were used in the solution-doping process. Prepared preform was drawn into single-mode optical fiber with a numerical aperture 0.167. Optical and luminescence properties of the fiber were analyzed. Lasing ability of prepared fiber was proofed in a fiber-ring set-up. Optimal laser properties were achieved for a fiber length of 20~m. The slope efficiency of the fiber-laser was about 15%. Presented method can be simply extended to the deposition of other ceramic nanomaterials.

  3. Semiconducting behavior of substitutionally doped bilayer graphene

    Science.gov (United States)

    Mousavi, Hamze; Khodadadi, Jabbar; Grabowski, Marek

    2018-02-01

    In the framework of the Green's functions approach, random tight-binding model and using the coherent potential approximation, electronic characteristics of the bilayer graphene are investigated by exploring various forms of substitutional doping of a single or both layers of the system by either boron and (or) nitrogen atoms. The results for displacement of the Fermi level resemble the behavior of acceptor or donor doping in a conventional semiconductor, dependent on the impurity type and concentration. The particular pattern of doping of just one layer with one impurity type is most efficient for opening a gap within the energy bands which could be tuned directly by impurity concentration. Doping both layers at the same time, each with one impurity type, leads to an anomaly whereby the gap decreases with increasing impurity concentration.

  4. Fabrication of Gold Nanoparticles Doped DVB Foams

    International Nuclear Information System (INIS)

    Fang Yu; Luo Xuan; Fan Yongheng; Zhang Qingjun; Ren Hongbo; Xiao Lei

    2009-01-01

    The fabrication of gold nanoparticles doped low density DVB foams was researched, which can be used as ICF target materials. By high internal phase emulsion (HIPE) method, gold nanoparticles doped low density DVB foams were prepared, with gold nanoparticles dissolved in inner phase. The results show that the content of Au in the gold nanoparticles doped DVB foam is 3. 19%, the axial direction density of the foam is uniform which indicates none evident settlement of gold nanoparticles. SEM tests show that the gold doped DVB polymer foams have open-celled structure and very uniform aperture, and the average pore size is about 1 μm, which is much smaller than that of pure DVB foams. EDX test shows that Au disperses uniformly in the foams. (authors)

  5. The moral disengagement in doping scale

    DEFF Research Database (Denmark)

    Kavussanu, Maria; Hatzigeorgiadis, Antonis; Elbe, Anne-Marie

    2016-01-01

    Statement of Problem The use of banned substances to enhance performance occurs in sport. Therefore, developing valid and reliable instruments that can predict likelihood to use banned substances is important. Method We conducted three studies. In Study 1, football players (N = 506) and athletes...... from a variety of team sports (N = 398) completed the Moral Disengagement in Doping Scale (MDDS). In Study 2, team sport athletes (N = 232) completed the MDDS and questionnaires measuring moral disengagement in sport, doping attitudes, moral identity, antisocial sport behavior, situational doping......, as well as test-rest reliability, of the scale. In Study 3, doping moral disengagement was positively related with reported likelihood and temptation to use a banned substance. The scale exhibited very good internal consistency across the three studies. Conclusions In conclusion, the MDDS can be used...

  6. Doped Chiral Polymer Negative Index Materials (DCPNIM)

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer-Negative Index Materials (DCP-NIM) with tunable resonance frequencies are developed by adding various plasmonic nanoinclusions into chiral...

  7. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  8. Phase Separation in Doped Mott Insulators

    Directory of Open Access Journals (Sweden)

    Chuck-Hou Yee

    2015-04-01

    Full Text Available Motivated by the commonplace observation of Mott insulators away from integer filling, we construct a simple thermodynamic argument for phase separation in first-order doping-driven Mott transitions. We show how to compute the critical dopings required to drive the Mott transition using electronic structure calculations for the titanate family of perovskites, finding good agreement with experiment. The theory predicts that the transition is percolative and should exhibit Coulomb frustration.

  9. Brief History of Anti-Doping.

    Science.gov (United States)

    Ljungqvist, Arne

    2017-01-01

    The fight against doping in sport as we know it today commenced by the creation of the International Olympic Committee (IOC) Medical Commission in 1961 following the death of a Danish cyclist during the Rome Olympic Games the year before. After a slow start, the fight got under way as from the early 1970s under the leadership of the IOC and of the International Association of Athletics Federations. Despite a lack of understanding and weak support even from the sports community, a series of measures were taken during the 1970s and 1980s which still form cornerstones of today's anti-doping strategy. In addition to information and education campaigns, the most important examples are the introduction of procedural rules for doping controls, the establishment and follow-up of a list of prohibited substances and methods, the accreditation of doping control laboratories, the introduction of in- and out-of-competition testing, rules for therapeutic use exemption, and the introduction of blood sampling. During the 1990s, the anti-doping fight gained increasing support both inside and outside the sport community. In order to harmonize the wide variety of rules that had developed both in sport organizations and at the domestic level and to promote anti-doping activities, the World Anti-Doping Agency (WADA) was jointly created by the Olympic movement and the public authorities in 1999. WADA is today carrying on the fight supported by the universally accepted WADA Code and an International Anti-Doping Convention under UNESCO. © 2017 S. Karger AG, Basel.

  10. Preparation of nitrogen-doped carbon tubes

    Science.gov (United States)

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  11. Porous allograft bone scaffolds: doping with strontium.

    Directory of Open Access Journals (Sweden)

    Yantao Zhao

    Full Text Available Strontium (Sr can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES, X-ray photoelectron spectroscopy (XPS, and energy-dispersive X-ray spectroscopy (EDS. Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05. Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes.

  12. The redox behavior of potassium doped C60 peapods

    Science.gov (United States)

    Kalbáč, Martin; Kavan, Ladislav; Kataura, Hiromichi; Zukalová, Markéta; Dunsch, Lothar

    2004-09-01

    The redox behavior of fullerene peapods C60@SWCNT was studied by spectroelectrochemistry at samples chemically n-doped by K vapor. Strong chemical doping was proven by vanishing of the RBM mode and the downshift of TG mode in Raman spectroelectrochemistry. The K-doped peapods were subsequently studied electrochemically and thus n- and p-doped, respectively. The Ag(2) mode of intratubular fullerene in K-doped peapods contacting air was still red-shifted as referred to its position in a pristine peapod. An air-insensitive residual doping was found to be resistant also to cathodic charging. An explanation is given for this behavior.

  13. Reporting doping in sport: national level athletes' perceptions of their role in doping prevention.

    Science.gov (United States)

    Whitaker, L; Backhouse, S H; Long, J

    2014-12-01

    This paper qualitatively explores national level athletes' willingness to report doping in sport. Following ethical approval, semi-structured interviews were conducted with nine national level athletes from rugby league (n = 5) and track and field athletics (n = 4). Thematic analysis established the main themes within the data. Contextual differences existed around the role that athletes perceived they would play if they became aware of doping. Specifically, track and field athletes would adopt the role of a whistle-blower and report individuals who were doping in their sport. In comparison, the rugby league players highlighted a moral dilemma. Despite disagreeing with their teammates' actions, the players would adhere to a code of silence and refrain from reporting doping. Taking these findings into account, prevention programs might focus on changing broader group and community norms around doping. In doing so, community members' receptivity to prevention messages may increase. Moreover, developing skills to intervene (e.g., speaking out against social norms that support doping behavior) or increasing awareness of reporting lines could enhance community responsibility for doping prevention. In sum, the findings highlight the need to consider the context of sport and emphasize that a one-size-fits-all approach to anti-doping is problematic. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The worldwide fight against doping: from the beginning to the World Anti-Doping Agency.

    Science.gov (United States)

    Kamber, Matthias; Mullis, Primus-E

    2010-03-01

    This article describes the worldwide endeavor to combat doping in sports. It describes the historical reasons the movement began and outlines the current status of this effort by international sports groups, governments, and the World Anti-Doping Agency. The purposes, strengths, and limitations of the various entities are illustrated; and recommendations for improvements are made. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Potential of P-doped carbon nanocone and Si-doped boron nitride ...

    Indian Academy of Sciences (India)

    22

    The mechanisms of N2O reduction via CO on surfaces of P-doped carbon nanocone (CNC) and. Si-doped boron nitride nanocone (BNNC) by density functional theory were investigated. The adsorption energies of P and Si on surfaces of CNC and BNNC were -293.1 and -325.7 kcal/mol, respectively. The decomposition of ...

  16. Doping and musculoskeletal system: short-term and long-lasting effects of doping agents.

    Science.gov (United States)

    Nikolopoulos, Dimitrios D; Spiliopoulou, Chara; Theocharis, Stamatios E

    2011-10-01

    Doping is a problem that has plagued the world of competition and sports for ages. Even before the dawn of Olympic history in ancient Greece, competitors have looked for artificial means to improve athletic performance. Since ancient times, athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A Prohibited List of doping substances and methods banned in sports is published yearly by the World Anti-Doping Agency. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, β₂-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. Apart from the unethical aspect of doping, as it abrogates fair-play's principle, it is extremely important to consider the hazards it presents to the health and well-being of athletes. The referred negative effects for the athlete's health have to do, on the one hand, by the high doses of the performance-enhancing agents and on the other hand, by the relentless, superhuman strict training that the elite or amateur athletes put their muscles, bones, and joints. The purpose of this article is to highlight the early and the long-lasting consequences of the doping abuse on bone and muscle metabolism. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  17. Al-doped and in-doped ZnO thin films in heterojunctions with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chabane, L.; Zebbar, N.; Kechouane, M. [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32-16111, Algiers (Algeria); Aida, M.S. [LCMet Interface, Faculty of Sciences, University of Constantine, 25000 (Algeria); Trari, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), BP 32-16111 Algiers (Algeria)

    2016-04-30

    The undoped, Al-doped and In-doped ZnO thin films were deposited by ultrasonic spray pyrolysis technique, onto glass and p-Si substrates and the physical properties of the films were investigated. The X-ray diffraction, optical analysis and electrical characterisations, indicate that the films were polycrystalline with hexagonal würtzite type structure and revealed that the aluminium doping deteriorates the crystalline and optical properties and enhances the electrical conductivity whereas indium doping improves all properties. The transport mechanism controlling the conduction through the heterojunctions was studied. For the heterostructures, the temperature dependent current–voltage characteristics showed rectifying behaviour in the dark, but current transport mechanism is not the same for all heterojunctions. Therefore, the presence of the interface states and volume defects are identified as limiting factors for obtaining a high quality heterojunction interface. - Highlights: • Al-doped and In-doped ZnO thin films have been deposited onto Si. • In-doped ZnO/p-Si heterojunction showed poor rectifying behaviour. • Al-doped ZnO/p-Si heterojunction showed a good rectifying at room temperature. • The carriers transport mechanisms was controlled by interfacial and volume defects.

  18. Reversible CO2 adsorption by an activated nitrogen doped graphene/polyaniline material.

    Science.gov (United States)

    Kemp, K Christian; Chandra, Vimlesh; Saleh, Muhammad; Kim, Kwang S

    2013-06-14

    For effective adsorption of carbon dioxide (CO2), we investigate a porous N functionalized graphene adsorbent produced by the chemical activation of a reduced graphene oxide/polyaniline composite. The N-doped graphene composite is microporous with a maximum BET surface area of 1336 m(2) g(-1). It shows a highly reversible maximum CO2 storage capacity of 2.7 mmol g(-1) at 298 K and 1 atm (5.8 mmol g(-1) at 273 K and 1 atm). The N-doped graphene shows good stability during recycling with only an initial decrease of 10% (3-2.7 mmol g(-1)) in adsorption capacity before attaining a cycling equilibrium. The adsorbance capacity is correlated with N content × pore volume or N content × surface area. Given that there is no proper correlation parameter, these factors can be used to increase the CO2 adsorption capacity of N-doped graphene materials for practical utility. The as synthesized material also displays selectivity towards CO2 adsorption compared to H2, N2, Ar or CH4. The as formed material shows that graphene can be uniformly N-doped using the presented synthetic method.

  19. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  20. Electrochemical bisphenol A sensor based on N-doped graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Fan Haixia; Li Yan; Wu Dan; Ma Hongmin; Mao Kexia; Fan Dawei [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Du Bin, E-mail: bindu0720@gmail.com [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Li He, E-mail: lihecd@gmail.com [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei Qin, E-mail: sdjndxwq@163.com [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer N-doped graphene sheets have catalytic activity towards the BPA oxidation. Black-Right-Pointing-Pointer The biosensor based on N-doped graphene sheets and chitosan. Black-Right-Pointing-Pointer This method was proposed for determination of BPA utilizing N-doped graphene sheets. - Abstract: Bisphenol A (BPA), which could disrupt endocrine system and cause cancer, has been considered as an endocrine disruptor. Therefore, it is very important and necessary to develop a sensitive and selective method for detection of BPA. Herein, nitrogen-doped graphene sheets (N-GS) and chitosan (CS) were used to prepare electrochemical BPA sensor. Compared with graphene, N-GS has favorable electron transfer ability and electrocatalytic property, which could enhance the response signal towards BPA. CS also exhibits excellent film forming ability and improves the electrochemical behavior of N-GS modified electrode. The sensor exhibits a sensitive response to BPA in the range of 1.0 Multiplication-Sign 10{sup -8}-1.3 Multiplication-Sign 10{sup -6} mol L{sup -1} with a low detection limit of 5.0 Multiplication-Sign 10{sup -9} mol L{sup -1} under the optimal conditions. Finally, this proposed sensor was successfully employed to determine BPA in water samples with satisfactory results.

  1. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices.

    Science.gov (United States)

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-24

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C(2')] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)₂Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)₂Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)₂Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  2. Enhanced Photocatalytic Activity of ZrO2-SiO2 Nanoparticles by Platinum Doping

    Directory of Open Access Journals (Sweden)

    Mohammad W. Kadi

    2013-01-01

    Full Text Available ZrO2-SiO2 mixed oxides were prepared via the sol-gel method. Photo-assisted deposition was utilized for doping the prepared mixed oxide with 0.1, 0.2, 0.3, and 0.4 wt% of Pt. XRD spectra showed that doping did not result in the incorporation of Pt within the crystal structure of the material. UV-reflectance spectrometry showed that the band gap of ZrO2-SiO2 decreased from 3.04 eV to 2.48 eV with 0.4 wt% Pt doping. The results show a specific surface area increase of 20%. Enhanced photocatalysis of Pt/ZrO2-SiO2 was successfully tested on photo degradation of cyanide under illumination of visible light. 100% conversion was achieved within 20 min with 0.3 wt% of Pt doped ZrO2-SiO2.

  3. Micro-orientation control of silicon polymer thin films on graphite surfaces modified by heteroatom doping

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, Iwao, E-mail: shimoyama.iwao@jaea.go.jp [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Baba, Yuji [Fukushima Administrative Department, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Hirao, Norie [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan)

    2017-05-31

    Highlights: • Micro-orientation control method for organic polysilane thin films is proposed. • This method utilizes surface modification of graphite using heteroatom doping. • Lying, standing, and random orientations can be freely controlled by this method. • Micro-pattering of a polysilane film with controlled orientations is achieved. - Abstract: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is applied to study orientation structures of polydimethylsilane (PDMS) films deposited on heteroatom-doped graphite substrates prepared by ion beam doping. The Si K-edge NEXAFS spectra of PDMS show opposite trends of polarization dependence for non irradiated and N{sub 2}{sup +}-irradiated substrates, and show no polarization dependence for an Ar{sup +}-irradiated substrate. Based on a theoretical interpretation of the NEXAFS spectra via first-principles calculations, we clarify that PDMS films have lying, standing, and random orientations on the non irradiated, N{sub 2}{sup +}-irradiated, and Ar{sup +}-irradiated substrates, respectively. Furthermore, photoemission electron microscopy indicates that the orientation of a PDMS film can be controlled with microstructures on the order of μm by separating irradiated and non irradiated areas on the graphite surface. These results suggest that surface modification of graphite using ion beam doping is useful for micro-orientation control of organic thin films.

  4. Reduction Expansion Synthesis as Strategy to Control Nitrogen Doping Level and Surface Area in Graphene.

    Science.gov (United States)

    Canty, Russell; Gonzalez, Edwin; MacDonald, Caleb; Osswald, Sebastian; Zea, Hugo; Luhrs, Claudia C

    2015-10-16

    Graphene sheets doped with nitrogen were produced by the reduction-expansion (RES) method utilizing graphite oxide (GO) and urea as precursor materials. The simultaneous graphene generation and nitrogen insertion reactions are based on the fact that urea decomposes upon heating to release reducing gases. The volatile byproducts perform two primary functions: (i) promoting the reduction of the GO and (ii) providing the nitrogen to be inserted in situ as the graphene structure is created. Samples with diverse urea/GO mass ratios were treated at 800 °C in inert atmosphere to generate graphene with diverse microstructural characteristics and levels of nitrogen doping. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructural features of the products. The effects of doping on the samples structure and surface area were studied by X-ray diffraction (XRD), Raman Spectroscopy, and Brunauer Emmet Teller (BET). The GO and urea decomposition-reduction process as well as nitrogen-doped graphene stability were studied by thermogravimetric analysis (TGA) coupled with mass spectroscopy (MS) analysis of the evolved gases. Results show that the proposed method offers a high level of control over the amount of nitrogen inserted in the graphene and may be used alternatively to control its surface area. To demonstrate the practical relevance of these findings, as-produced samples were used as electrodes in supercapacitor and battery devices and compared with conventional, thermally exfoliated graphene.

  5. Reduction Expansion Synthesis as Strategy to Control Nitrogen Doping Level and Surface Area in Graphene

    Directory of Open Access Journals (Sweden)

    Russell Canty

    2015-10-01

    Full Text Available Graphene sheets doped with nitrogen were produced by the reduction-expansion (RES method utilizing graphite oxide (GO and urea as precursor materials. The simultaneous graphene generation and nitrogen insertion reactions are based on the fact that urea decomposes upon heating to release reducing gases. The volatile byproducts perform two primary functions: (i promoting the reduction of the GO and (ii providing the nitrogen to be inserted in situ as the graphene structure is created. Samples with diverse urea/GO mass ratios were treated at 800 °C in inert atmosphere to generate graphene with diverse microstructural characteristics and levels of nitrogen doping. Scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to study the microstructural features of the products. The effects of doping on the samples structure and surface area were studied by X-ray diffraction (XRD, Raman Spectroscopy, and Brunauer Emmet Teller (BET. The GO and urea decomposition-reduction process as well as nitrogen-doped graphene stability were studied by thermogravimetric analysis (TGA coupled with mass spectroscopy (MS analysis of the evolved gases. Results show that the proposed method offers a high level of control over the amount of nitrogen inserted in the graphene and may be used alternatively to control its surface area. To demonstrate the practical relevance of these findings, as-produced samples were used as electrodes in supercapacitor and battery devices and compared with conventional, thermally exfoliated graphene.

  6. Structural and electronic properties of alkali-doped single-walled carbon nanotubes

    Science.gov (United States)

    Nemes, Norbert Marcel

    -T resistivity in terms of the barrier height modulation model of Derycke. The oxygen modulates the tunneling barriers within the bulk sample. Alkali doped SWNT show the hallmark feature of metals, conduction electron spin resonance. We study this with in situ electrochemical doping. The spin susceptibility and conductivity increase with K concentration as the Fermi-level shifts to higher density of states regions due to charge transfer. However, the spin relaxation rate and g-factor are independent of K-concentration, indicating a microscopically inhomogeneous doping process, where fully doped regions grow at the expense of undoped ones. We develop a method of determining the microwave conductivity in situ, based on changes in the skin depth, utilizing the ferromagnetic resonance of the catalyst impurities.

  7. US utility partnerships

    International Nuclear Information System (INIS)

    Worthington, B.

    1995-01-01

    Activities of the United States Energy Association were reviewed, as well as the manner in which its members are benefitting from the Association's programs. The principal cooperative program set up is the Utility Partnership Program, which was described. Through this program the Association is matching US companies, both electric utilities and gas utilities, with counterparts in Eastern Europe or the former Soviet Union. So far, about 25 partnerships were signed, e.g. in the Czech Republic, in Kazakhstan, in Poland, and in Slovakia. It was estimated that the return to the United States from the investments made by the American government in these Utility Partnership Programs has been well over 100-fold

  8. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    Science.gov (United States)

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.; Johnston, S.; Moritz, B.; Devereaux, T. P.

    2017-11-01

    We present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists out to relatively high doping levels. We study the evolution of the d -wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ .

  9. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed

    2017-05-23

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  10. Clean Olympians? Doping and anti-doping: the views of talented young British athletes.

    Science.gov (United States)

    Bloodworth, Andrew; McNamee, Michael

    2010-07-01

    Review articles suggest a small but significant proportion (between 3 and 12%) of male adolescents have used anabolic-androgenic steroids (AAS) at some point (Yesalis and Bahrke, 2000; Calfee and Fadale, 2006). In sport, the use of prohibited substances or processes to enhance performance, collectively referred to as 'doping', is banned by both sports' National and International Governing Bodies, and by the World Anti-Doping Agency (WADA) who run an extensive testing programme and educational initiatives designed to foster anti-doping attitudes. A total of 40 talented male and female athletes (mean average age 19.6 years) from 13 different sports attended 12 focus groups held over the UK intended to investigate athletes' attitudes toward doping. Focus group transcriptions were analysed and coded with the use of QSR NVivo 8. Athletes in general did not report a significant national doping problem in their sport, but exhibited sporting xenophobia with regard to both doping practices and the stringency of testing procedures outside of the UK. Athletes often viewed doping as 'unnatural' and considered the shame associated with doping to be a significant deterrent. Athletes perceived no external pressure to use performance enhancing drugs. In response to hypothetical questions, however, various factors were acknowledged as potential 'pressure' points: most notably injury recovery and the economic pressures of elite sport. Finally, a significant minority of athletes entertained the possibility of taking a banned hypothetical performance enhancing drug under conditions of guaranteed success and undetectability. The athletes in this study generally embraced those values promoted in anti-doping educational programmes, although there were some notable exceptions. That the social emotion of shame was considered a significant deterrent suggests anti-doping efforts that cultivate a shared sense of responsibility to remain 'clean' and emphasise the social sanctions associated

  11. Fe-doped CeO2 solid solutions: Substituting-site doping versus interstitial-site doping, bulk doping versus surface doping

    Science.gov (United States)

    Bao, Huizhi; Qian, Kun; Fang, Jun; Huang, Weixin

    2017-08-01

    Doping CeO2 cubic fluorite with transitional metal ions can effectively improve its redox behavior, oxygen storage capacity and catalytic performance, but the relevant fundamental understanding of the promotion effect is still insufficient due to the difficulty on determining the distribution of dopant. We herein demonstrate an effective approach to determine this dopant distribution by combining X-ray absorption spectroscopy and selective chemisorption. Cubic CexFe1-xO2 fluorite solid solutions (x ≥ 0.70) were prepared by co-precipitation method. With the increasing of Fe molar ratio in CexFe1-xO2, Fe3+ initially substitutes Ce4+ and/or occupy intersitial sites with x ≥ 0.80, and then transfers to form sub-Fe2O3 structure in fluorite lattice as more Fe3+ are present; meanwhile, the Fe3+ doping initially occurs only in the bulk with x ≥ 0.96 and then extends to the surface with 0.87 ≤ x fluorite solid solutions at the molecular level that are of great importance for the fundamental understanding of their properties.

  12. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Gupta, Shubhra [Sri Venkateswara College, University of Delhi, New Delhi-110021 (India); Natasha [Maharaja Agrasen College, University of Delhi-110053 (India)

    2016-05-06

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Y doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.

  13. Transport properties of polycrystalline boron doped diamond

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.R. de [Instituto Nacional de Pesquisas Espaciais, INPE/LAS, S.J. Campos, SP 12227-010 (Brazil); Berengue, O.M. [Universidade Estadual Paulista, UNESP Departamento de Física, Guaratinguetá 12.516-410 (Brazil); Moro, J. [Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Bragança Paulista 12929-600 (Brazil); Ferreira, N.G. [Instituto Nacional de Pesquisas Espaciais, INPE/LAS, S.J. Campos, SP 12227-010 (Brazil); Chiquito, A.J. [Universidade Federal de São Carlos, Departamento de Física, São Carlos 13565-905 (Brazil); Baldan, M.R., E-mail: baldan@las.inpe.br [Instituto Nacional de Pesquisas Espaciais, INPE/LAS, S.J. Campos, SP 12227-010 (Brazil)

    2014-08-30

    Highlights: • Synthetic boron doped diamond films were grown by hot filament chemical vapor deposition. • We characterized the films by hall effects as a function of temperature and magnetic field. • The resistivity was investigated. • The conduction mechanism was dominated by variable range hopping (VRH). - Abstract: The influence of doping level in the electronic conductivity and resistivity properties of synthetic diamond films grown by hot filament chemical vapor deposition (HFCVD) was investigated. Eight different doping level concentrations varied from 500 to 30,000 ppm were considered. The polycrystalline morphology observed by scanning electron microscopy and Raman spectra was strongly affected by the addition of boron. The electric characterization by Hall effect as a function of temperature and magnetic field showed that at sufficiently low temperatures, electrical conduction is dominated by variable range hopping (VRH) conducting process. The resistivity was also investigated by temperature-dependent transport measurements in order to investigate the conduction mechanism in the doped samples. The samples exhibited the VRH (m = 1/4) mechanism in the temperature range from 77 to 300 K. The interface between metal, and our HFCVD diamond was also investigated for the lower doped samples.

  14. Unintentional doping in GaN.

    Science.gov (United States)

    Zhu, Tongtong; Oliver, Rachel A

    2012-07-21

    The optimisation of GaN-based electronic and optoelectronic devices requires control over the doping of the material. However, device performance, particular for lateral transport electronic devices, is degraded by the presence of unintentional doping, which for heteroepitaxial GaN layers grown in the polar (0001) orientation is mainly confined to a layer adjacent to the GaN/substrate interface. The use of scanning capacitance microscopy (SCM) has demonstrated that this layer forms due to the high rate of incorporation of gas phase impurities, primarily oxygen, during the early stages of growth, when N-rich semi-polar facets are often present. The presence of such facets leads to additional unintentional doping when defect density reduction strategies involving a three-dimensional growth phase (such as epitaxial lateral overgrowth) are employed. Many semi-polar epitaxial layers, on the other hand, exhibit significant unintentional doping throughout their thickness, except when a three-dimensional growth phase is introduced to aid in defect density reduction resulting in the presence of (0001) and non-polar facets which incorporate less dopant. Non-polar epitaxial samples exhibit behaviour more similar to (0001)-oriented material, but oxygen diffusion from the sapphire substrate along prismatic stacking faults also locally affects the extent of the unintentional doping in this case.

  15. Erbium doped stain etched porous silicon

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, B.; Diaz-Herrera, B.; Guerrero-Lemus, R.; Mendez-Ramos, J.; Rodriguez, V.D.; Hernandez-Rodriguez, C.; Martinez-Duart, J.M.

    2008-01-01

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO 3 solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er 3+ ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy

  16. Electrochemical doping of vanadium oxide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Popa, A.; Hellmann, I.; Klingeler, R.; Kataev, V.; Arango, Y.; Taeschner, C.; Knupfer, M.; Buechner, B. [Leibniz-Institute for Solid State and Materials Research, IFW Dresden (Germany); Vavilova, E. [Leibniz-Institute for Solid State and Materials Research, IFW Dresden (Germany); Kazan Physical Technical Institute, RAS, Kazan (Russian Federation); Klauss, H.H. [Technical University- Dresden (Germany); Masquelier, C. [Laboratoire de Reactivite et de Chimie des Solides, Amiens (France)

    2008-07-01

    A new class of nanoscale low-dimensional magnets, mixed valent vanadium oxide multiwall nanotubes (VO{sub x}-NTs), show up diverse novel properties ranging from spin frustration and semiconductivity to ferromagnetism by doping with either electrons or holes. The structural low dimensionality and mixed valency of vanadium ions yield a complex temperature dependence of the static magnetization and the nuclear relaxation rates. Upon electron doping of VO{sub x}-NTs, our spectroscopic data confirm an increased number of magnetic V{sup 4.4+} sites. Interestingly, a considerable superparamagnetic moment of 0.1 {mu}{sub B} is found at room temperature after electrochemical intercalation of 10% of Li while no strong effect on the magnetization occurs for other doping levels. Recent {mu}SR studies on Li{sub 0.1}VO{sub x}-NT indeed confirm that more than 40% of the sample is magnetic. This result is corroborated by Li{sup 7}-NMR measurements which confirm the increase of V{sup 4.4+} sites upon Li doping and imply an additional internal magnetic field only for the doping level 0.1.

  17. Electrospark doping of steel with tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Seksenalina, Malika, E-mail: sportmiss@bk.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irinaikonnikova@yandex.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru; Vlasov, Victor, E-mail: rector@tsuab.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Ivanov, Yuriy, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation)

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  18. Electrospark doping of steel with tungsten

    International Nuclear Information System (INIS)

    Denisova, Yulia; Shugurov, Vladimir; Petrikova, Elizaveta; Seksenalina, Malika; Ivanova, Olga; Ikonnikova, Irina; Kunitsyna, Tatyana; Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-01

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties

  19. Sodium-Doped Molybdenum Targets for Controllable Sodium Incorporation in CIGS Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, L. M.; Repins, I. L.; Glynn, S.; Carducci, M. D.; Honecker, D. M.; Pankow, J.l W.; Young, M. R.; DeHart, C.; Sundaramoorthy, R.; Beall, C. L.; To, B.

    2011-01-01

    The efficiency of Cu(In, Ga)Se{sub 2} (CIGS) solar cells is enhanced when Na is incorporated in the CIGS absorber layer. This work examines Na incorporation in CIGS utilizing Na-doped Mo sputtered from targets made with sodium molybdate-doped (MONA) powder. Mo:Na films with varying thicknesses were sputtered onto Mo-coated borosilicate glass (BSG) or stainless steel substrates for CIGS solar cells. By use of this technique, the Na content of CIGS can be varied from near-zero to higher than that obtained from a soda-lime glass (SLG) substrate. Targets and deposition conditions are described. The doped Mo films are analyzed, and the resulting devices are compared to devices fabricated on Mo-coated SLG as well as Mo-coated BSG with NaF. Completed devices utilizing MONA exceeded 15.7% efficiency without anti-reflective coating, which was consistently higher than devices prepared with the NaF precursor. Strategies for minimizing adhesion difficulties are presented.

  20. Sodium-Doped Molybdenum Targets for Controllable Sodium Incorporation in CIGS Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, L. M.; Repins, I. L.; Glynn, S.; Carducci, M. D.; Honecker, D. M.; Pankow, J.; Young, M.; DeHart, C.; Sundaramoorthy, R.; Beall, C. L.; To, B.

    2011-07-01

    The efficiency of Cu(In,Ga)Se2 (CIGS) solar cells is enhanced when Na is incorporated in the CIGS absorber layer. This work examines Na incorporation in CIGS utilizing Na-doped Mo sputtered from targets made with sodium molybdate-doped (MONA) powder. Mo:Na films with varying thicknesses were sputtered onto Mo-coated borosilicate glass (BSG) or stainless steel substrates for CIGS solar cells. By use of this technique, the Na content of CIGS can be varied from near-zero to higher than that obtained from a soda-lime glass (SLG) substrate. Targets and deposition conditions are described. The doped Mo films are analyzed, and the resulting devices are compared to devices fabricated on Mo-coated SLG as well as Mo-coated BSG with NaF. Completed devices utilizing MONA exceeded 15.7% efficiency without anti-reflective coating, which was consistently higher than devices prepared with the NaF precursor. Strategies for minimizing adhesion difficulties are presented.

  1. Doping To Reduce Base Resistances Of Bipolar Transistors

    Science.gov (United States)

    Lin, True-Lon

    1991-01-01

    Modified doping profile proposed to reduce base resistance of bipolar transistors. A p/p+ base-doping profile reduces base resistance without reducing current gain. Proposed low/high base-doping profile realized by such low-temperature deposition techniques as molecular-beam epitaxy, ultra-high-vacuum chemical-vapor deposition, and limited-reaction epitaxy. Produces desired doping profiles without excessive diffusion of dopant.

  2. Current Status of Doping in Japan Based on Japan Anti-Doping Disciplinary Panels of the Japan Anti-Doping Agency (JADA): A Suggestion on Anti-Doping Activities by Pharmacists in Japan.

    Science.gov (United States)

    Imanishi, Takashi; Kawabata, Takayoshi; Takayama, Akira

    2017-01-01

    In 2009, the Japan Anti-Doping Agency (JADA) established the "Sports Pharmacist Accreditation Program" to prevent doping in sports. Since then, anti-doping activities in Japan have been attracting attention. In this study, we investigated research about the current status of doping from 2007 to 2014 in Japan to make anti-doping activities more concrete, and we also discussed future anti-doping activities by pharmacists. In Japan, bodybuilding was the sporting event with the highest number and rate of doping from 2007 to 2014. Many of the positive doping cases were detected for class S1 (anabolic agents), S5 (diuretics and masking agents), and S6 (stimulants). Within class S1, supplements were the main cause of positive doping. Within class S5, medicines prescribed by medical doctors were the main cause of positive doping. Within class S6, non-prescription medicines (e.g., OTC) were the main cause of positive doping. When we looked at the global statistics on doping, many of the positive doping cases were detected for class S1. On comparing the Japanese statistics with the global statistics, the rate of positive doping caused by class S1 was significantly lower, but that caused by classes S5 and S6 was significantly higher in Japan than in the world. In conclusion, pharmacists in Japan should pay attention to class S1, S5, and S6 prohibited substances and to the sport events of bodybuilding. Based on this study, sports pharmacists as well as common pharmacists should suggest new anti-doping activities to prevent doping in the future.

  3. Synthesis of Doped and non-Doped Nano MgO Ceramic Membranes

    Directory of Open Access Journals (Sweden)

    Shiraz Labib

    2013-12-01

    Full Text Available Doped and non-doped MgO coated thin films on alumina substrates were prepared using a chelating sol-gel method under controlled conditions to prepare nanomaterials with unprecedented properties. The effect of doping of ZnO on thermal, surface and structural properties was investigated using DTA-TG, BET and XRD respectively. Also microstructural studies and coating thickness measurements of MgO thin film were conducted using SEM. An increase in the thermal stability of MgO with increasing ZnO doping percent was observed. The increase of ZnO doping percent showed a marked decrease in the average particle size of MgO powder as a result of the replacement of some Mg2+ by Zn2+ which has similar ionic radius as Mg2+. This decrease in particle size of MgO was also related to the decrease of the degree of MgO crystalinity. The increase of ZnO doping also showed a marked decrease in coating thickness values of the prepared membranes. This decrease was related to the  mechanism of ZnO doping into a MgO crystal lattice.

  4. DC conductivity and spectroscopic studies of polyaniline doped with ...

    Indian Academy of Sciences (India)

    :1, 1:2 and 2:1 (w/w) for chemi- cal doping to enhance the conductivity of synthesized polyaniline (PANI). The doping of polyaniline is carried out using tetrahydrofuran as a solvent. Doped samples are characterized using various techniques ...

  5. Doped luminescent materials and particle discrimination using same

    Science.gov (United States)

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  6. Photocatalytic oxidation of acetaminophen using carbon self-doped titanium dioxide

    Directory of Open Access Journals (Sweden)

    Mark Daniel G. de Luna

    2016-07-01

    Full Text Available A new carbon self-doped (C-doped TiO2 photocatalyst was synthesized by sol–gel method, in which titanium butoxide was utilized because of its dual functions as a titanium precursor and a carbon source. The effects of calcination temperature from 200 to 600 °C on the photocatalytic activity towards acetaminophen (ACT, which was used as a model persistent organic pollutant under visible light were examined. The effects of temperature on the structure and physicochemical properties of the C-doped TiO2 were also investigated by X-ray diffraction, BET measurement, X-ray photoelectron spectroscopy, and scanning electron microscopy. The specific surface area of the as-doped TiO2 declined as the crystal size increased with increasing calcination temperature. Only amorphous TiO2 was present at 200 °C, while an anatase phase was observed between 300 and 500 °C. Both anatase and rutile phases were observed at 600 °C. Photocatalytic activity increased as the calcination temperature initially increased from 200 to 300 °C but it decreased as the calcination temperature further increased from 400 to 600 °C. The highest ACT removal of 94% with an apparent rate constant of 5.0 × 10−3 min−1 was achieved using the new doped TiO2 calcined at 300 °C, which had an atomic composition of 31.6% Ti2p3, 50.3% O1s and 18.2% C1s.

  7. Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M., E-mail: vianden@hiskp.uni-bonn.d [Rheinische Friedrich-Wilhelms-Universitaet Bonn (HISKP- Bonn) (Germany). Helmholtz - Institut fuer Strahlen- und Kernphysik

    2011-07-01

    PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO{sub 2} doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive {sup 111}In probe nuclei in the sample of SnO{sub 2} doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at {sup 111}Cd sites in SnO{sub 2} doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive {sup 111}In in the sample are the ion-implantation using radioactive ion beam of {sup 111}In and the chemical process in which {sup 111}InCl{sub 3} solution is added during the preparation of SnO{sub 2} doped with Co using sol gel method. The ion-implantation of {sup 111}In in SnO{sub 2} doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF{sub 2} detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO{sub 2} powder samples using {sup 111}In-{sup 111}Cd probe. (author)

  8. Utility portfolio diversification

    International Nuclear Information System (INIS)

    Griffes, P.H.

    1990-01-01

    This paper discusses portfolio analysis as a method to evaluate utility supply decisions. Specifically a utility is assumed to increase the value of its portfolio of assets whenever it invests in a new supply technology. This increase in value occurs because the new asset either enhances the return or diversifies the risks of the firm's portfolio of assets. This evaluation method is applied to two supply innovations in the electric utility industry: jointly-owned generating plants and supply contracts with independent power producers (IPPs)

  9. Electron transport in doped fullerene molecular junctions

    Science.gov (United States)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  10. Lattice and magnetic effects in doped manganites

    Energy Technology Data Exchange (ETDEWEB)

    Gor' kov, L P [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    1998-06-30

    The 'double exchange' mechanism and Jahn-Teller instabilities are shown to account for the low-temperature properties of slightly doped LaMnO{sub 3} in the framework of the band insulator model. Analysis of the doping of La{sub 1-x}A{sub x}MnO{sub 3} with divalent A atoms suggests that Coulomb forces cause holes to be localized near dopants, which makes the formation of conducting clusters along these charged centers a major factor in the physics of such compounds. A percolation theory analysis of experimental data is given. The two-phase coexistence regime and the large-volume Fermi surface at high concentrations are discussed. The relevance of some of the results to doping physics in cuprates is suggested. (special issue)

  11. Effects of pressure on doped Kondo insulators

    International Nuclear Information System (INIS)

    Lee, Chengchung; Xu, Wang

    1999-08-01

    The effects of pressure on the doped Kondo insulators (KI) are studied in the framework of the slave-boson mean-field theory under the coherent potential approximation (CPA). A unified picture for both electron-type KI and hole-type KI is presented. The density of states of the f-electrons under the applied pressures and its variation with the concentration of the Kondo holes are calculated self-consistently. The specific heat coefficient, the zero-temperature magnetic susceptibility as well as the low temperature electric resistivity of the doped KI under various pressures are obtained. The two contrasting pressure-dependent effects observed in the doped KI systems can be naturally explained within a microscopic model. (author)

  12. Doping monolayer graphene with single atom substitutions

    KAUST Repository

    Wang, Hongtao

    2012-01-11

    Functionalized graphene has been extensively studied with the aim of tailoring properties for gas sensors, superconductors, supercapacitors, nanoelectronics, and spintronics. A bottleneck is the capability to control the carrier type and density by doping. We demonstrate that a two-step process is an efficient way to dope graphene: create vacancies by high-energy atom/ion bombardment and fill these vacancies with desired dopants. Different elements (Pt, Co, and In) have been successfully doped in the single-atom form. The high binding energy of the metal-vacancy complex ensures its stability and is consistent with in situ observation by an aberration-corrected and monochromated transmission electron microscope. © 2011 American Chemical Society.

  13. Electronic properties of doped gapped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: hamze.mousavi@gmail.com [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Nano Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-04-01

    One of the carbon atoms in each Bravais lattice unit cell of pristine graphene plane is substituted by a foreign atom leading to a band gap in the density of states of the system. Then, the gapped graphene is randomly doped by another impurity. The density of states, electronic heat capacity and electrical conductivity of the gapped and doped gapped graphene are investigated within random tight-binding Hamiltonian model and Green's function formalism. The results show that by presence of impurities in the gapped graphene the band gap moves towards lower (higher) values of energy when dopants act as acceptors (donors). The heat capacity decreases (increases) before (after) the Schottky anomaly as well. It is also found that the electrical conductivity of the doped gapped graphene reduces on all ranges of temperature.

  14. Facile synthesis, structural characterization, and photoluminescence mechanism of Dy3+ doped YVO4 and Ca2+ co-doped YVO4:Dy3+ nano-lattices

    Science.gov (United States)

    Dhiren Meetei, Sanoujam; Deben Singh, Mutum; Dorendrajit Singh, Shougaijam

    2014-05-01

    Light plays a vital role in the evolution of life. From sunlight to candle-light and then to other form of lighting devices, human beings are utilizing light since time immemorial. Lighting devices such as conventional incandescent lamp and fluorescent lamp have been replaced by Light Emitting Diodes (LEDs) for the later is cheap, durable, etc. Now-a-days, phosphor converted LEDs have been burning issues in the fabrication of lighting devices. Especially, lanthanide ion(s) doped phosphors are of great interest for the same. However, doped phosphors have a limitation of luminescence quenching, i.e., instead of increasing luminescence on increasing dopant concentration, the luminescence decreases. Therefore, it must be rectified by one or other means so as to get maximum desirable intensity for uses in display or lighting devices. In the present work, YVO4:Dy3+ and YVO4:Dy3+/Ca2+ nano-lattices are synthesized by a facile technique. Structural characterizations such as x-ray diffraction, SEM, TEM, HRTEM, and Selected Area Electron Diffraction (SAED) of the samples are reported. Photoluminescence (PL) excitation and emission, enhanced mechanism, and lifetime are thoroughly discussed. PL intensity of the quenched YVO4:Dy3+ is made increased up to 432.63% by Ca2+ co-doping. Role of the Ca2+ on the luminescence enhanced mechanism of YVO4:Dy3+/Ca2+ is elucidated.

  15. Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield

    KAUST Repository

    Soldan, Giada

    2016-04-10

    A high quantum yield (QY) of photoluminescence (PL) in nanomaterials is necessary for a wide range of applications. Unfortunately, the weak PL and moderate stability of atomically precise silver nanoclusters (NCs) suppress their utility. Herein, we accomplished a ≥26-fold PL QY enhancement of the Ag29(BDT)12(TPP)4 cluster (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine) by doping with a discrete number of Au atoms, producing Ag29-xAux(BDT)12(TPP)4, x=1-5. The Au-doped clusters exhibit an enhanced stability and an intense red emission around 660nm. Single-crystal XRD, mass spectrometry, optical, and NMR spectroscopy shed light on the PL enhancement mechanism and the probable locations of the Au dopants within the cluster.

  16. MSIS Drug Utilization Datamart

    Data.gov (United States)

    U.S. Department of Health & Human Services — This page provides background needed to take advantage of the capabilities of the MSIS Drug Utilization Datamart. This mart allows the user to develop high-level...

  17. Chemical Search Web Utility

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Chemical Search Web Utility is an intuitive web application that allows the public to easily find the chemical that they are interested in using, and which...

  18. Doped oxide nanoarchitectures for device applications

    International Nuclear Information System (INIS)

    Lupan, O.; Railean, S.; Sontea, V.; Pocaznoi, I.; Chow, L.

    2011-01-01

    Full text: We present an experimental approach to study magnesium and cadmium-alloyed zinc oxide nanorods and their integration in wavelength-tunable light-emitting diodes (LEDs). Doped zinc oxide were deposited on p-GaN substrates. Low-dimensional ternary structures have been obtained for magnesium sulfate, cadmium chloride concentration in the deposition bath. Accordingly to SEM observations the cadmium-alloyed zinc oxide have a nanorod morphology. Structural analyses demonstrate that the zinc oxide nanomaterial is doped with the magnesium or cadmium incorporated within ZnO nanorods. Reported results are of great importance for wavelength-tunable LED and nanosensors applications. (authors)

  19. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  20. Utility requirements for HTGRs

    International Nuclear Information System (INIS)

    Nicholls, D.R.

    1997-01-01

    Eskom, the state utility of South Africa, is currently evaluating the technical and economic feasibility of the helium cooled Pebble Bed Modular Reactor with a closed cycle gas turbine power conversion system for future power generating additions to its electric system. This paper provides an overview of the Eskom system including the needs of the utility for future generation capacity and the key performance requirements necessary for incorporation of this gas cooled reactor plant. (author)

  1. Utility requirements for fusion

    International Nuclear Information System (INIS)

    Vondrasek, R.J.

    1982-02-01

    This report describes work done and results obtained during performance of Task 1 of a study of Utility Requirements and Criteria for Fusion Options. The work consisted of developing a list of utility requirements for fusion optics containing definition of the requirements and showing their relative importance to the utility industry. The project team members developed a preliminary list which was refined by discussions and literature searches. The refined list was recast as a questionnaire which was sent to a substantial portion of the utility industry in this country. Forty-three questionnaire recipients responded including thirty-two utilities. A workshop was held to develop a revised requirements list using the survey responses as a major input. The list prepared by the workshop was further refined by a panel consisting of vice presidents of the three project team firms. The results of the study indicate that in addition to considering the cost of energy for a power plant, utilities consider twenty-three other requirements. Four of the requirements were judged to be vital to plant acceptability: Plant Capital Cost, Financial Liability, Plant Safety and Licensability

  2. Current anti-doping policy: a critical appraisal.

    Science.gov (United States)

    Kayser, Bengt; Mauron, Alexandre; Miah, Andy

    2007-03-29

    Current anti-doping in competitive sports is advocated for reasons of fair-play and concern for the athlete's health. With the inception of the World Anti Doping Agency (WADA), anti-doping effort has been considerably intensified. Resources invested in anti-doping are rising steeply and increasingly involve public funding. Most of the effort concerns elite athletes with much less impact on amateur sports and the general public. We review this recent development of increasingly severe anti-doping control measures and find them based on questionable ethical grounds. The ethical foundation of the war on doping consists of largely unsubstantiated assumptions about fairness in sports and the concept of a "level playing field". Moreover, it relies on dubious claims about the protection of an athlete's health and the value of the essentialist view that sports achievements reflect natural capacities. In addition, costly antidoping efforts in elite competitive sports concern only a small fraction of the population. From a public health perspective this is problematic since the high prevalence of uncontrolled, medically unsupervised doping practiced in amateur sports and doping-like behaviour in the general population (substance use for performance enhancement outside sport) exposes greater numbers of people to potential harm. In addition, anti-doping has pushed doping and doping-like behaviour underground, thus fostering dangerous practices such as sharing needles for injection. Finally, we argue that the involvement of the medical profession in doping and anti-doping challenges the principles of non-maleficience and of privacy protection. As such, current anti-doping measures potentially introduce problems of greater impact than are solved, and place physicians working with athletes or in anti-doping settings in an ethically difficult position. In response, we argue on behalf of enhancement practices in sports within a framework of medical supervision. Current anti-doping

  3. PULSION registered HP: Tunable, High Productivity Plasma Doping

    International Nuclear Information System (INIS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism--deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  4. Current anti-doping policy: a critical appraisal

    Directory of Open Access Journals (Sweden)

    Mauron Alexandre

    2007-03-01

    Full Text Available Abstract Background Current anti-doping in competitive sports is advocated for reasons of fair-play and concern for the athlete's health. With the inception of the World Anti Doping Agency (WADA, anti-doping effort has been considerably intensified. Resources invested in anti-doping are rising steeply and increasingly involve public funding. Most of the effort concerns elite athletes with much less impact on amateur sports and the general public. Discussion We review this recent development of increasingly severe anti-doping control measures and find them based on questionable ethical grounds. The ethical foundation of the war on doping consists of largely unsubstantiated assumptions about fairness in sports and the concept of a "level playing field". Moreover, it relies on dubious claims about the protection of an athlete's health and the value of the essentialist view that sports achievements reflect natural capacities. In addition, costly antidoping efforts in elite competitive sports concern only a small fraction of the population. From a public health perspective this is problematic since the high prevalence of uncontrolled, medically unsupervised doping practiced in amateur sports and doping-like behaviour in the general population (substance use for performance enhancement outside sport exposes greater numbers of people to potential harm. In addition, anti-doping has pushed doping and doping-like behaviour underground, thus fostering dangerous practices such as sharing needles for injection. Finally, we argue that the involvement of the medical profession in doping and anti-doping challenges the principles of non-maleficience and of privacy protection. As such, current anti-doping measures potentially introduce problems of greater impact than are solved, and place physicians working with athletes or in anti-doping settings in an ethically difficult position. In response, we argue on behalf of enhancement practices in sports within a

  5. Study of Cu-doping effects on magnetic properties of Fe-doped ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    doped ZnO; diluted magnetic semiconductors; DOS. 1. Introduction. Magnetism and semiconducting properties can coexist in semiconductor materials by introducing a small fraction of magnetic impurity atoms such as Mn, Cr, Co, Ni, Fe and Cu.

  6. Hydrogen Solubility in Pr-doped and Un-doped YSZ for One Chamber Fuel Cell

    DEFF Research Database (Denmark)

    Bay, Lasse; Horita, T.; Sakai, N.

    1998-01-01

    Yttria-stabilised zirconia electrolytes (YSZ and Pr-doped YSZ) and yttria-doped strontium cerate (SYC) were tested in a one chamber fuel cell fed with a mixture of methane and air at 1223 K. The obtained performances were 4 mW cm(-2), 3 mW cm(-2), 2.5 mW cm(-2), and 0.15 mW cm(-2) for SYC, 1.8 mo...

  7. Reporting doping in sport: national level athletes' perceptions of their role in doping prevention.

    OpenAIRE

    Whitaker, L; Backhouse, SH; Long, J

    2014-01-01

    This paper qualitatively explores national level athletes' willingness to report doping in sport. Following ethical approval, semi-structured interviews were conducted with nine national level athletes from rugby league (n = 5) and track and field athletics (n = 4). Thematic analysis established the main themes within the data. Contextual differences existed around the role that athletes perceived they would play if they became aware of doping. Specifically, track and field athletes would ado...

  8. Double-wall carbon nanotubes doped with different Br2 doping levels: a resonance Raman study.

    Science.gov (United States)

    do Nascimento, Gustavo M; Hou, Taige; Kim, Yoong Ahm; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Akuzawa, Noboru; Dresselhaus, Mildred S

    2008-12-01

    This report focuses on the effects of different Br2 doping levels on the radial breathing modes of "double-wall carbon nanotube (DWNT) buckypaper". The resonance Raman profile of the Br2 bands are shown for different DWNT configurations with different Br2 doping levels. Near the maximum intensity of the resonance Raman profile, mainly the Br2 molecules adsorbed on the DWNT surface contribute strongly to the observed omega(Br-Br) Raman signal.

  9. Effects of Different Doping Ratio of Cu Doped CdS on QDSCs Performance

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2015-01-01

    Full Text Available We use the successive ionic layer adsorption and reaction (SILAR method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.

  10. Integration of the Forensic Dimension into Anti-Doping Strategies.

    Science.gov (United States)

    Marclay, François; Saugy, Martial

    2017-01-01

    Traditionally, research in anti-doping has been stimulated by the need for technological improvements to accommodate the expansion of the list of prohibited substances and methods. Nevertheless, in recent years, anti-doping found itself at a crossroads due to the increasing complexity and constant refinement of doping methods. As illustrated by the 2012 USADA (United States Anti-Doping Agency) versus Lance Armstrong case, a change in paradigm was necessary. The exploration of new scientific avenues to understand the mechanisms of doping and pinpoint its practice was most needed to allow designing more efficient preventive or disruptive strategies. In this context, and at the time of writing in 2017, transposing the concept of forensic intelligence to anti-doping was identified as a promising approach to address the different aspects of doping, from the individual athlete to organized doping and trafficking of substances in a proactive rather than a reactive way. Indeed, collection, structuring, and logical processing of multiple sources of information, and not strictly results of bioanalytical testing of urinary and blood samples, can bring additional value to detect and describe potential, emerging, or existing doping issues. This anti-doping intelligence can provide anti-doping authorities and relevant stakeholders with timely, accurate, and usable information for decision making to solve, reduce, and/or prevent doping-related activities. The integration of intelligence to complement other anti-doping approaches is a potentially major step forward in the development of more effective and robust anti-doping strategies. © 2017 S. Karger AG, Basel.

  11. Silicon transmutation doping techniques and practices

    International Nuclear Information System (INIS)

    1988-04-01

    This report is the result of an IAEA Consultants' meeting on Silicon Transmutation Doping Techniques and Practices, held at the Institute of Atomic Energy, Otwock-Swierk, Poland, during 20-22 November 1985. A separate abstract was prepared for each of the 10 papers presented at the meeting and included in this report. Refs, figs and tabs

  12. Self-activating and doped tantalate phosphors.

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, May Devan; Rohwer, Lauren Elizabeth Shea

    2011-01-01

    An ideal red phosphor for blue LEDs is one of the biggest challenges for the solid-state lighting industry. The appropriate phosphor material should have good adsorption and emission properties, good thermal and chemical stability, minimal thermal quenching, high quantum yield, and is preferably inexpensive and easy to fabricate. Tantalates possess many of these criteria, and lithium lanthanum tantalate materials warrant thorough investigation. In this study, we investigated red luminescence of two lithium lanthanum tantalates via three mechanisms: (1) Eu-doping, (2) Mn-doping and (3) self-activation of the tantalum polyhedra. Of these three mechanisms, Mn-doping proved to be the most promising. These materials exhibit two very broad adsorption peaks; one in the UV and one in the blue region of the spectrum; both can be exploited in LED applications. Furthermore, Mn-doping can be accomplished in two ways; ion-exchange and direct solid-state synthesis. One of the two lithium lanthanum tantalate phases investigated proved to be a superior host for Mn-luminescence, suggesting the crystal chemistry of the host lattice is important.

  13. Doped spin ladders under magnetic field

    International Nuclear Information System (INIS)

    Roux, G.

    2007-07-01

    This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)

  14. Strain promoted conductivity of doped carbon nanotubes

    Science.gov (United States)

    Kuo, Hsin-Fu; Hsu, Ching-Tung; Lien, Der-Hsien; Syue, Sen-Hong; Kao, Yin-Shen; Li, Ching-Chen; Li, Yi-Fan; Chin, Wei; Chang, Shih-Chin; Wei, Bee-Yu; Hsu, Wen-Kuang

    2008-12-01

    Strain promoted conductivity is detected in boron-doped carbon nanotubes and conductance biased at 3.5, 3.8, -4.6, -5.7, and -6.4 V exceeds 0.5G0. Deflection induced degeneracy of BC3-π bands accounts for conductance increment.

  15. Elite Sport, Doping and Public Health

    DEFF Research Database (Denmark)

     aim of this book is toillustrate how the issue of doping has evolved beyond the world of elite sport into an arena of public health.  In so doing, the book drawsupon multi-disciplinary perspectives from applied and professionalethics, biomedical science, history, philosophy, policy studies, andsociology.  The essays, written by a group of leading international......The issue of doping in sport was once of interest only to aficionados of elite sports.  Nowadays, it is a matter of intense public scrutiny thatspans the worlds of health, medicine, sports, politics, technology, andbeyond.  In keeping with this territorial expansion, the...... experts, is theproduct of a colloquium of the International Network of HumanisticDoping Research held at Aarhus University in Denmark.  Their scoperanges from conceptual analysis, case studies to policy critique.  Eachof these disciplinary perspectives, it is argued, is necessary to understand the problem of doping “in...

  16. Gene doping: the hype and the reality.

    Science.gov (United States)

    Wells, D J

    2008-06-01

    Some spectacular results from genetic manipulation of laboratory rodents and increasing developments in human gene therapy raise the spectre of genetic modification or 'gene doping' in sports. Candidate targets include the induction of muscle hypertrophy through overexpression of specific splice variants of insulin-like growth factor-1 or blockade of the action of myostatin, increasing oxygen delivery by raising the hematocrit through the use of erythropoietin, induction of angiogenesis with vascular endothelial growth factors or related molecules and changes in muscle phenotype through expression of peroxisome-proliferator-activated receptor- delta and associated molecules. Some of these potential genetic enhancements, particularly where the genetic modification and its action are confined to the muscles, may be undetectable using current tests. This had lead to exaggerated predictions that gene doping in athletics will be common within the next few years. However, a review of the methods of gene transfer and the current 'state of the art' in development of genetic treatments for human disease show that the prospects for gene doping remain essentially theoretical at present. Despite this conclusion, it will be important to continue to monitor improvements in the technology and to develop methods of detection, particularly those based on identifying patterns of changes in response to doping as opposed to the detection of specific agents.

  17. Synthesis and characterization of calcium doped lanthanum ...

    Indian Academy of Sciences (India)

    56

    substituent in the A site decreases the band gap energy and changes the magnetic, electric and photocatalytic properties. In this perovskite type oxides, the doped lanthanum based La1-xAxMnO3manganites(A is an alkaline element such as Ca2+, Sr2+, Na+, K+ and etc.) have interesting properties. These materials.

  18. Thermal expansion of doped lanthanum gallates

    Indian Academy of Sciences (India)

    The dependence of average thermal expansion coefficient (av) on the dopant concentration on either or site of the perovskite structure was found to be linear, when the composition at the other site was kept constant. Mg doping on the -site had a greater effect on the average thermal expansion coefficient than Sr ...

  19. Non-intentional doping in sports.

    Science.gov (United States)

    Yonamine, Mauricio; Garcia, Paula Rodrigues; de Moraes Moreau, Regina Lúcia

    2004-01-01

    Compulsory drug testing was introduced in 1968 by the International Olympic Committee. Since then, several doping cases have been reported in sports competition world wide. Positive results are based on the detection of prohibited substances, their metabolites and markers in biological (mainly urine) samples supplied by athletes. In some cases, the evidences were not contested and athletes admitted the use of banned substances. However, in other cases, athletes denied the use of doping to enhance performance and claimed to have inadvertently or passively absorbed the drug. Unfortunately, no current accepted analytical method is capable of distinguishing between a sample from a cheater and one from an athlete who was passively exposed to a doping agent. Athletes' allegations have included the passive inhalation of drug smoke (e.g. marijuana) or the ingestion of food or products sold as nutritional supplements that contained prohibited substances. In the scientific literature, several studies have been performed to investigate the possibility of an accidental exposure being the reason for the appearance of detectable quantities of banned substances in urine samples. Based on these studies, this article discusses those cases where the athlete's claims could be possible in generating a positive result in doping control and in which circumstances it would be improbable to happen.

  20. Biological passport in the fight against doping

    Directory of Open Access Journals (Sweden)

    Mitja Ferlež

    2012-10-01

    for new ways of proving abuse of prohibited substances and methods. One of these is the strategy of long-term monitoring of biomarkers for identifying and sanctioning blood doping in athletes. This strategy is based on the assumption that doping will change values of biomarkers of the athlete that are otherwise kept in homeostasis. If we use a validated mathematical model, it is possible to determine whether the change in the values of biomarkers is due to doping or due to natural variations. Such a model is a biological passport, which enables the identification of the abnormal blood changes in biological indicators of the athlete. Since 2010 it has been possible to introduce sanctions against the athlete for breach of anti-doping rules based solely on an abnormal change of biomarkers. The introduction of the biological passport is a milestone in demonstrating drug abuse in sports, because it substantiates the abnormal deviations of biomarkers from the expected, although the cause of it remains unknown.

  1. Electroluminescence of doped organic thin films

    Science.gov (United States)

    Tang, C. W.; VanSlyke, S. A.; Chen, C. H.

    1989-05-01

    Electroluminescent (EL) devices are constructed using multilayer organic thin films. The basic structure consists of a hole-transport layer and a luminescent layer. The hole-transport layer is an amorphous diamine film in which the only mobile carrier is the hole. The luminescent layer consists of a host material, 8-hydroxyquinoline aluminum (Alq), which predominantly transports electrons. High radiance has been achieved at an operating voltage of less than 10 V. By doping the Alq layer with highly fluorescent molecules, the EL efficiency has been improved by about a factor of 2 in comparison with the undoped cell. Representative dopants are coumarins and DCMs. The EL quantum efficiency of the doped system is about 2.5%, photon/electron. The EL colors can be readily tuned from the blue-green to orange-red by a suitable choice of dopants as well as by changing the concentration of the dopant. In the doped system the electron-hole recombination and emission zones can be confined to about 50 Å near the hole-transport interface. In the undoped Alq, the EL emission zone is considerably larger due to exciton diffusion. The multilayer doped EL structure offers a simple means for the direct determination of exciton diffusion length.

  2. Electronic properties of magnetically doped nanotubes

    Indian Academy of Sciences (India)

    Effect of doping of carbon nanotubes by magnetic transition metal atoms has been considered in this paper. In the case of semiconducting tubes, it was found that the system has zero magnetization, whereas in metallic tubes the valence electrons of the tube screen the magnetization of the dopants: the coupling to the tube ...

  3. Synthesis, spectroscopy and simulation of doped nanocrystals

    NARCIS (Netherlands)

    Suyver, Jan Frederik

    2003-01-01

    This thesis deals with the properties of semiconductor nanocrystals (ZnS or ZnSe) in the size range (diameter) of 2 nm to 10 nm. The nanocrystals under investigation are doped with the transition metal ions manganese or copper. The goal is to study photoluminescence and electroluminescence from

  4. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  5. doped cadmium potassium phosphate hexahydrate: A substitutional ...

    Indian Academy of Sciences (India)

    Single crystal EPR studies of VO(II)-doped cadmium potassium phosphate hexahydrate (CPPH) have been carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice only substitutionally in place of Cd(II). Spin Hamiltonian ...

  6. Utility planning for decommissioning

    International Nuclear Information System (INIS)

    Williams, D.H.

    1982-01-01

    Though the biggest impact on a utility of nuclear power plant decommissioning may occur many years from now, procrastination of efforts to be prepared for that time is unwarranted. Foresight put into action through planning can significantly affect that impact. Financial planning can assure the recovery of decommissioning costs in a manner equitable to customers. Decision-making planning can minimize adverse affects of current decisions on later decommissioning impacts and prepare a utility to be equipped to make later decommissioning decisions. Technological knowledge base planning can support all other planning aspects for decommissioning and prepare a utility for decommissioning decisions. Informed project planning can ward off potentially significant pitfalls during decommissioning and optimize the effectiveness of the actual decommissioning efforts

  7. Electric utility report '80

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A collection of brief atricles describes the trends and developments in Canada's electric utilities for the 1980's. Generating stations planned or under construction are listed. The trends in technology discused at a recent Canadian Electrical Association meeting are summarized in such areas as turbine stability control, power line vibration control, system reliability, substations and transformer specifications. Developments in nuclear generation are discussed and compared on the world scale where Japan, for example, has the world's largest nuclear program. Progress on fusion is discussed. In Canada the electric utilities are receiving the support of the comprehensive nuclear R and D program of Atomic Energy of Canada Ltd. New innovations in utility technology such as street lighting contactors, superconductive fault limiters and demand profile analyzers are discussed. (T.I.)

  8. Harmonization of anti-doping rules in a global context (World Anti-Doping Agency-laboratory accreditation perspective).

    Science.gov (United States)

    Ivanova, Victoria; Miller, John H M; Rabin, Olivier; Squirrell, Alan; Westwood, Steven

    2012-07-01

    This article provides a review of the leading role of the World Anti-Doping Agency (WADA) in the context of the global fight against doping in sport and the harmonization of anti-doping rules worldwide through the implementation of the World Anti-Doping Program. Particular emphasis is given to the WADA-laboratory accreditation program, which is coordinated by the Science Department of WADA in conjunction with the Laboratory Expert Group, and the cooperation with the international accreditation community through International Laboratory Accreditation Cooperation and other organizations, all of which contribute to constant improvement of laboratory performance in the global fight against doping in sport. A perspective is provided of the means to refine the existing anti-doping rules and programs to ensure continuous improvement in order to face growing sophisticated challenges. A viewpoint on WADA's desire to embrace cooperation with other international organizations whose knowledge can contribute to the fight against doping in sport is acknowledged.

  9. Health care utilization

    DEFF Research Database (Denmark)

    Jacobsen, Christian Bøtcher; Andersen, Lotte Bøgh; Serritzlew, Søren

    An important task in governing health services is to control costs. The literatures on both costcontainment and supplier induced demand focus on the effects of economic incentives on health care costs, but insights from these literatures have never been integrated. This paper asks how economic cost...... containment measures affect the utilization of health services, and how these measures interact with the number of patients per provider. Based on very valid register data, this is investigated for 9.556 Danish physiotherapists between 2001 and 2008. We find that higher (relative) fees for a given service...... are important, but that economics cannot alone explain the differences in health care utilization....

  10. On single doping and co-doping of spray pyrolysed ZnO films: Structural, electrical and optical characterisation

    International Nuclear Information System (INIS)

    Vimalkumar, T.V.; Poornima, N.; Jinesh, K.B.; Kartha, C. Sudha; Vijayakumar, K.P.

    2011-01-01

    In this paper we present studies on ZnO thin films (prepared using Chemical Spray pyrolysis (CSP) technique) doped in two different ways; in one set, 'single doping' using indium was done while in the second set, 'co-doping' using indium and fluorine was adopted. In the former case, effect of in-situ as well as ex-situ doping using In was analyzed. Structural (XRD studies), electrical (I-V measurements) and optical characterizations (through absorption, transmission and photoluminescence studies) of the films were done. XRD analysis showed that, for spray-deposited ZnO films, ex-situ doping using Indium resulted in preferred (0 0 2) plane orientation, while in-situ doping caused preferred orientation along (1 0 0), (0 0 2), (1 0 1) planes; however for higher percentage of in-situ doping, orientation of grains changed from (0 0 2) plane to (1 0 1) plane. The co-doped films had (0 0 2) and (1 0 1) planes. Lowest resistivity (2 x 10 -3 Ω cm) was achieved for the films, doped with 1% Indium through in-situ method. Photoluminescence (PL) emissions of ex-situ doped and co-doped samples had two peaks; one was the 'near band edge' emission (NBE) and the other was the 'blue-green' emission. But interestingly the PL emission of in-situ doped samples exhibited only the 'near band edge' emission. Optical band gap of the films increased with doping percentage, in all cases of doping.

  11. First-principles study of doping effect on the phase transition of zinc oxide with transition metal doped

    International Nuclear Information System (INIS)

    Wu, Liang; Hou, Tingjun; Wang, Yi; Zhao, Yanfei; Guo, Zhenyu; Li, Youyong; Lee, Shuit-Tong

    2012-01-01

    Highlights: ► We study the doping effect on B4, B1 structures and phase transition of ZnO. ► We calculate the phase transition barrier and phase transition path of doped ZnO. ► The transition metal doping decreases the bulk modulus and phase transition pressure. ► The magnetic properties are influenced by the phase transition process. - Abstract: Zinc oxide (ZnO) is a promising material for its wide application in solid-state devices. With the pressure raised from an ambient condition, ZnO transforms from fourfold wurtzite (B4) to sixfold coordinated rocksalt (B1) structure. Doping is an efficient approach to improve the structures and properties of materials. Here we use density-functional theory (DFT) to study doped ZnO and find that the transition pressure from B4 phase to B1 phase of ZnO always decreases with different types of transition metal (V, Cr, Mn, Fe, Co, or Ni) doped, but the phase transition path is not affected by doping. This is consistent with the available experimental results for Mn-doped ZnO and Co-doped ZnO. Doping in ZnO causes the lattice distortion, which leads to the decrease of the bulk modulus and accelerates the phase transition. Mn-doped ZnO shows the strongest magnetic moment due to its half filled d orbital. For V-doped ZnO and Cr-doped ZnO, the magnetism is enhanced by phase transition from B4 to B1. But for Mn-doped ZnO, Fe-doped ZnO, Co-doped ZnO, and Ni-doped ZnO, B1 phase shows weaker magnetic moment than B4 phase. These results can be explained by the amount of charge transferred from the doped atom to O atom. Our results provide a theoretical basis for the doping approach to change the structures and properties of ZnO.

  12. The world anti-doping code : a South African perspective : research ...

    African Journals Online (AJOL)

    During February 2003 the World Anti-Doping Agency adopted the World-Anti Doping Code in Copenhagen in an effort to create and independent anti-doping body and to co-ordinate the harmonisation of doping regulations. The Code encompasses the principles around which the anti-doping effort in sport will revolve in ...

  13. Electric utilities in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Although the conference dealt specifically with concerns of the electric utilities in Illinois, the issues were dealt with in the national context as well. A separate abstract was prepared for each of the 5 sections of this proceeding. A total of 25 papers were presented. Section titles are: Forecasting, Planning and Siting, Reliability, Rates and Financing, and Future Developments.

  14. Male Adolescent Contraceptive Utilization.

    Science.gov (United States)

    Finkel, Madelon Lubin; Finkel, David J.

    1978-01-01

    The contraceptive utilization of a sample of sexually active, urban, high school males (Black, Hispanic, and White) was examined by anonymous questionnaire. Contraceptive use was haphazard, but White males tended to be more effective contraceptors than the other two groups. Reasons for nonuse were also studied. (Author/SJL)

  15. Nontransferable Utility Bankruptcy Games

    NARCIS (Netherlands)

    Estevez, A.; Borm, P.E.M.; Fiestras-Janeiro, G.

    2014-01-01

    In this paper, we analyze bankruptcy problems with nontransferable utility (NTU) from a game theoretical perspective by redefining corresponding NTU-bankruptcy games in a tailor-made way. It is shown that NTU-bankruptcy games are both coalitional merge convex and ordinal convex. Generalizing the

  16. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Minoda, Ai; Oshima, Shinji; Iki, Hideshi; Akiba, Etsuo

    2014-01-01

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m 3 to 5.86 kg/m 3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  17. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    International Nuclear Information System (INIS)

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-01-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H 2 O 2 , with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates

  18. Nitrogen-doped graphene-silver nanodendrites for the non-enzymatic detection of hydrogen peroxide

    International Nuclear Information System (INIS)

    Tajabadi, M.T.; Basirun, W.J.; Lorestani, F.; Zakaria, R.; Baradaran, S.; Amin, Y.M.; Mahmoudian, M.R.; Rezayi, M.; Sookhakian, M.

    2015-01-01

    Highlights: • N-graphene/Ag nanodendrities by electrophoretic and electrochemical deposition. • Support of N-graphene shows efficient electrocatalytic activity toward H 2 O 2 reduction. • The fabricated non-enzymatic H 2 O 2 electrochemical sensor improved in the presence of Ag. - Abstract: An organic-metal hybrid film based on nitrogen-doped graphene-silver nanodendrites (Ag-NG) was fabricated on an indium tin oxide (ITO) electrode using a simple electrophoretic and electrochemical sequential deposition approach. The microwave-assisted method was utilized for the synthesis of nitrogen-doped graphene. This method involves a three-step process consisting of graphite oxidation, exfoliation, and finally chemical reduction with the use of hydrazine as the reducing agent, which leads to the simultaneous reduction of graphene oxide and production of nitrogen-doped graphene. The morphology and structure of the as-fabricated electrode were determined by X-ray diffraction, field emission electron microscopy and transmission electron microscopy. The as-prepared Ag-NG-modified ITO electrode exhibited superior electrocatalytic activity toward hydrogen peroxide (H 2 O 2 ) reduction, with a wide linear detection range of 100 μM to 80 mM (r = 0.9989) and a detection limit of 0.26 μM with a signal-to-noise ratio of 3. Furthermore, the fabricated non-enzymatic H 2 O 2 electrochemical sensor exhibited excellent stability and reproducibility

  19. Nitrogen-Doped Activated Carbon as Metal-Free Catalysts Having Various Functions

    Directory of Open Access Journals (Sweden)

    Shin-Ichiro Fujita

    2017-10-01

    Full Text Available Nitrogen-doped carbon materials have been gaining increasing interest as metal-free catalysts. In this article, the authors have briefly introduced their recent studies on the utilization of nitrogen-doped activated carbon (N-AC for several organic synthesis reactions, which include base catalyzed reactions of Knoevenagel condensation and transesterification, aerobic oxidation of xanthene and alcohols, and transfer hydrogenation of nitrobenzene, 3-nitrostyrene, styrene, and phenylacetylene with hydrazine. Doped-nitrogen species existed on the AC surface in different structures. For example, pyridine-type nitrogen species appear to be involved in the active sites for Knoevenagel condensation and for the oxidation of xanthene, while graphite-type nitrogen species appear to be involved for the oxidation of alcohols. Being different from these reactions, both surface nitrogen and oxygen species are involved in the active sites for the hydrogenation of nitrobenzene. N-AC was practically inactive for the transfer hydrogenation of vinyl and ethynyl groups, but it can catalyze those hydrogenation reactions assisted by co-existing nitrobenzene. Comparison of N-AC with conventional catalysts shows that N-AC can alternate with conventional solid base catalysts and supported metal catalysts for the Knoevenagel condensation and oxidation reactions.

  20. Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering.

    Science.gov (United States)

    Azeena, S; Subhapradha, N; Selvamurugan, N; Narayan, S; Srinivasan, N; Murugesan, R; Chung, T W; Moorthi, A

    2017-02-01

    Bioactive ceramic materials with metal ions generation brought great attention in the class of biomaterials development and widely employed as a filler material for bone tissue regeneration. The present study aimed to fabricate calcium silicate based ceramic material doped with copper metal particles by sol-gel method. Rice straw of agricultural waste was utilized as a source material to synthesize wollastonite, then wollastonite was doped with copper to fabricate copper doped wollastonite (Cu-Ws) particles. The synthesized materials were subjected to physio-chemical characterization by TEM, DLS, FTIR, XRD and DSC analysis. It was found that the sizes of the WS particles was around 900nm, while adding copper the size was increased upto 1184nm and the addition of copper to the material sharpening the peak. The release of Cu ions was estimated by ICP analysis. The anti-bacterial potentiality of the particles suggested that better microbial growth inhibition against E. coli (Gram negative) and S. aureus (Gram positive) strains from ATCC, in which the growth inhibition was more significant against S. aureus. The biocompatibility in mouse Mesenchymal Stem cells (mMSC) showed the non-toxic effect up to 0.05mg/ml concentration while the increase in concentration was found to be toxic to the cells. So the particles may have better potential application with the challenging prevention of post implantation infection in the field of bone tissue engineering (BTE). Copyright © 2016. Published by Elsevier B.V.

  1. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping.

    Science.gov (United States)

    Wi, Sungjin; Kim, Hyunsoo; Chen, Mikai; Nam, Hongsuk; Guo, L Jay; Meyhofer, Edgar; Liang, Xiaogan

    2014-05-27

    Layered transition-metal dichalcogenides hold promise for making ultrathin-film photovoltaic devices with a combination of excellent photovoltaic performance, superior flexibility, long lifetime, and low manufacturing cost. Engineering the proper band structures of such layered materials is essential to realize such potential. Here, we present a plasma-assisted doping approach for significantly improving the photovoltaic response in multilayer MoS2. In this work, we fabricated and characterized photovoltaic devices with a vertically stacked indium tin oxide electrode/multilayer MoS2/metal electrode structure. Utilizing a plasma-induced p-doping approach, we are able to form p-n junctions in MoS2 layers that facilitate the collection of photogenerated carriers, enhance the photovoltages, and decrease reverse dark currents. Using plasma-assisted doping processes, we have demonstrated MoS2-based photovoltaic devices exhibiting very high short-circuit photocurrent density values up to 20.9 mA/cm(2) and reasonably good power-conversion efficiencies up to 2.8% under AM1.5G illumination, as well as high external quantum efficiencies. We believe that this work provides important scientific insights for leveraging the optoelectronic properties of emerging atomically layered two-dimensional materials for photovoltaic and other optoelectronic applications.

  2. Attitudes and doping: a structural equation analysis of the relationship between athletes' attitudes, sport orientation and doping behaviour

    Directory of Open Access Journals (Sweden)

    Petróczi Andrea

    2007-11-01

    Full Text Available Abstract Background For effective deterrence methods, individual, systemic and situational factors that make an athlete or athlete group more susceptible to doping than others should be fully investigated. Traditional behavioural models assume that the behaviour in question is the ultimate end. However, growing evidence suggests that in doping situations, the doping behaviour is not the end but a means to an end, which is gaining competitive advantage. Therefore, models of doping should include and anti-doping policies should consider attitudes or orientations toward the specific target end, in addition to the attitude toward the 'tool' itself. Objectives The aim of this study was to empirically test doping related dispositions and attitudes of competitive athletes with the view of informing anti-doping policy developments and deterrence methods. To this end, the paper focused on the individual element of the drug availability – athlete's personality – situation triangle. Methods Data were collected by questionnaires containing a battery of psychological tests among competitive US male college athletes (n = 199. Outcome measures included sport orientation (win and goal orientation and competitiveness, doping attitude, beliefs and self-reported past or current use of doping. A structural equation model was developed based on the strength of relationships between these outcome measures. Results Whilst the doping model showed satisfactory fit, the results suggested that athletes' win and goal orientation and competitiveness do not play a statistically significant role in doping behaviour, but win orientation has an effect on doping attitude. The SEM analysis provided empirical evidence that sport orientation and doping behaviour is not directly related. Conclusion The considerable proportion of doping behaviour unexplained by the model suggests that other factors play an influential role in athletes' decisions regarding prohibited methods

  3. Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications.

    Science.gov (United States)

    Ivandini, Tribidasari A; Einaga, Yasuaki

    2017-01-24

    Boron-doped diamond (BDD) electrodes are recognized as being superior to other electrode materials due to their outstanding chemical and dimensional stability, their exceptionally low background current, the extremely wide potential window for water electrolysis that they have, and their excellent biocompatibility. However, whereas these properties have been utilized in the rapid development of electroanalytical applications, very few studies have been done in relation to their applications in electrocatalysis or electrosynthesis. In this report, following on from reports of the electrosynthesis of various products through anodic and cathodic reactions using BDD electrodes, the potential use of these electrodes in electrosynthesis is discussed.

  4. Interference-Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles

    OpenAIRE

    Saha, Suparna; Sarkar, Priyabrata; Turner, Anthony

    2014-01-01

    This paper presents a new approach to detect dopamine in nanomolar range using an electrochemical sensor utilizing a composite made of chitosan-stabilized silver nanoparticles and p-toluene sulfonic acid-doped ultrathin polypyrrole film. Studies included cyclic voltammogram, amperometry, differential pulse voltammetry and also investigation by electrochemical impedance spectroscopy. A detection limit of 0.58 nM was achieved in the linear range 1 x 10(-9) M to 1.2 x 10(-7) M. High sensitivity ...

  5. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy.

    Science.gov (United States)

    Shen, Jie; Zhao, Liang; Han, Gang

    2013-05-01

    Lanthanide-doped upconverting luminescent nanoparticles (UCNPs) are promising materials for optical imaging-guided drug delivery and therapy due to their unique optical and chemical properties. UCNPs absorb low energy near-infrared (NIR) light and emit high-energy shorter wavelength photons. Their special features allow them to overcome various problems associated with conventional imaging probes and to provide versatility for creating nanoplatforms with both imaging and therapeutic modalities. Here, we discuss several approaches to fabricate and utilize UCNPs for traceable drug delivery and therapy. Published by Elsevier B.V.

  6. Continuously Tunable Erbium-Doped Fiber Ring Laser Using Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    S. W. Harun H. Ahmad and P. Poopalan

    2012-08-01

    Full Text Available An efficient tunable erbium-doped fiber (EDF ring laser utilizing a single fiber Bragg grating (FBG and an optical circulator is investigated. The laser demonstrates a threshold of 3.43 mW and a slope efficiency of 12.5%. Tunability of the fiber laser is obtained by thermal tuning of the FBG. Simultaneous temperature tuning demonstrates a 0.01 nm/oC variation in laser wavelength.Key Words:  Fiber Bragg grating, fiber laser, tunable laser, ring laser, thermal tuning

  7. Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jian Zeng

    2013-03-01

    Full Text Available Spinel LiMn2O4 is an appealing candidate cathode material for Li-ion rechargeable batteries, but it suffers from severe capacity fading, especially at higher temperature (55 °C during discharging/charging. In recent years, many attempts have been made to synthesize modified LiMn2O4. This paper reviews the recent research on the preparation and doping modes of doped LiMn2O4 for modifying the LiMn2O4. We firstly compared preparation methods for doped spinel LiMn2O4, such as solid state reactions and solution synthetic methods. Then we mainly discuss doping modes reported in recent years, such as bulk doping, surface doping and combined doping. A comparison of different doping modes is also provided. The research shows that the multiple-ion doping and combined doping modes of LiMn2O4 used in Li-ion battery are excellent for improving different aspects of the electrochemical performance which holds great promise in the future. From this paper, we also can see that spinel LiMnO4 as an attractive candidate cathode material for Li-ion batteries.

  8. Identification of black market products and potential doping agents in Germany 2010-2013.

    Science.gov (United States)

    Krug, Oliver; Thomas, Andreas; Walpurgis, Katja; Piper, Thomas; Sigmund, Gerd; Schänzer, Wilhelm; Laussmann, Tim; Thevis, Mario

    2014-11-01

    The desire to increase the athletic performance, to 'optimize' an individual's appearance, and to complement but also to arguably substitute exercise by means of drugs and drug candidates has generated a considerable (illicit) market for compounds such as anabolic-androgenic steroids, stimulants, growth promoting peptide hormones, and so on. Genuinely developed for therapeutic use, their abuse/misuse generates enormous health risks, which has necessitated comprehensive controls of compound trafficking by customs and anti-doping authorities. From 2012 to 2013, the Bureau of Customs Investigation confiscated products containing anabolic-androgenic steroids (AAS; 259 kg), stimulants (13 kg), selective estrogen receptor modulators (SERMs; 24 kg), and human growth hormone (hGH; 3500 ampules). In cooperation with the Bureau and under the umbrella of the European Monitoring Center for Emerging Doping Agents (EuMoCEDA), the Cologne Anti-Doping Laboratory analyzed an additional 337 (black market) products between 2010 and 2013, allowing to monitor developments in drug use and, hence, the anticipation of new challenges in sports drug testing. Main tools utilized in characterizing confiscated materials were liquid chromatography-high resolution mass spectrometry (LC-HRMS), gas chromatography-high resolution mass spectrometry (GC-HRMS), and polyacrylamide gel electrophoresis (PAGE) with subsequent bottom-up identification of peptidic compounds using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Among the 337 substances analyzed in the doping control laboratory in Cologne, 67 active ingredients were found, 49 of which being categorized as doping agents by the World Anti-Doping Agency (WADA). A total of 83.7 % accounted for steroidal substances (predominantly testosterone, trenbolone, and nandrolone and corresponding esters), 12.8 % accounted for peptide hormones and growth factors (predominantly hGH and growth hormone releasing peptides (GHRPs)), 3.2 % of

  9. Comparison of resolution characteristics between exponential-doping and uniform-doping GaN photocathodes

    Science.gov (United States)

    Wang, Hong-gang; Qian, Yun-sheng; Lu, Liu-bing; Cheng, Hong-chang; Chang, Ben-kang

    2013-08-01

    The studies of quantum efficiency, electronic energy distribution and stability are highly concerned in the application of Negative electron affinity (NEA) gallium nitride (GaN) photocathodes while the resolution of photocathodes are concerned rarely. The resolutions of some image intensifiers are smaller than computational value partly because of ignoring the resolution of photocathodes. To a certain extent, the resolutions of image intensifiers are influenced by photocathodes. Electronic transverse diffusion is the main cause of decreasing the resolution of photocathodes whereas the exponential-doping structure can reduce its influence. In this paper, the resolution characteristics of photocathodes have been studied by using the modulation transfer function (MTF) method. The MTF expressions of transmission-mode exponential-doping photocathodes have been obtained by solving the two-dimensional continuity equations. According to the MTF expressions, the resolution characteristics between exponential-doping and uniform-doping GaN photocathodes are calculated theoretically and analyzed comparatively. At the same time, the relationships between resolution and thickness of the emission layer Te, electron diffusion length LD are researched in detail. The calculated results show that, compared with the uniform-doping photocathode, the exponential-doping structure can increase the resolution of photocathode evidently. The resolution of exponential-doping GaN photocathode is improved distinctly when the spatial frequency varies from 400 to 800 lp/mm. The MTF characteristics approach gradually when f increases or decreases. Let f =600 lp/mm, the resolution increases by 20%-48% approximately. The constant built-in electric field for exponential-doping GaN photocathode can increase the resolution of photocathode. The improvement of resolution is different from decreasing Te, LD or increasing the recombination velocity of back-interface which are at the cost of reducing the

  10. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles

    Science.gov (United States)

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  11. DOPING CONTROL AND LIABILITY FOR THE USE OF DOPING IN SPORT

    Directory of Open Access Journals (Sweden)

    Lyudmila Aleksandrovna Kiryanova

    2017-10-01

    Full Text Available Purpose. The article is devoted to the use by athletes of different performance enhancing drugs and banned anabolic steroids to enhance athletic performance. Authors aim to justify the improvement of the Russian legislation and anti-doping education. Methodology. The study constitutes an analysis of the legal documents of international standards and Russian legislation, the formulation of the concept of “doping”, the definition of the role of WADA in the development of anti-doping information and education programs for young generation of athletes. The authors identified pedagogical and organizational issues of the fight against doping in sport. Results. The studies found that an important thing of educational work is the pedagogical aspect. The authors have developed anti-doping activities that are recommended for use in the system of youth sports and education in the universities of physical culture. Practical implications. The results of the study are recommended for use in educational techniques anti-doping character in the sphere of physical culture and sports.

  12. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  13. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  14. Utilization of research reactors

    International Nuclear Information System (INIS)

    1962-01-01

    About 200 research reactors are now in operation in different parts of the world, and at least 70 such facilities, which are in advanced stages of planning and construction, should be critical within the next two or three years. In the process of this development a multitude of problems are being encountered in formulating and carrying out programs for the proper utilization of these facilities, especially in countries which have just begun or are starting their atomic energy work. An opportunity for scientific personnel from different Member States to discuss research reactor problems was given at an international symposium on the Programing and Utilization of Research Reactors organized by the Agency almost immediately after the General Conference session. Two hundred scientists from 35 countries, as well as from the European Nuclear Energy Agency and EURATOM, attended the meeting which was held in Vienna from 16 to 21 October 1961

  15. Utility customer issues

    International Nuclear Information System (INIS)

    Downey, W.H.

    1997-01-01

    Customer issues affected by the restructuring of the $250 billion US electric power industry were discussed. In the past the industry's vertically integrated utilities conducted their business in protected geographic markets. With deregulation and greater competition, that industry structure will change. This presentation highlighted the strategies that Unicom is using to react to the restructuring of the electric power industry. The underlying principle is for the utility to reinvent itself to change its market orientation and focus on customer services, such as reliability, responsiveness, custom tailored solutions, and guaranteed savings over time. Attempting to become total energy providers and delivering integrated solutions to meet the needs of large industrial and commercial consumers, intensive market research, improved service and installation, and sophisticated customer retention initiatives will also have to be high on the agenda

  16. The fight against fitness doping in sports clubs

    DEFF Research Database (Denmark)

    Thualagant, Nicole; Pfister, Gertrud Ursula

    2012-01-01

    This article focuses on the anti-doping policies led in Danish fitness centers in a sport for all context. Fitness, an ever growing training form is gaining in popularity and has in this context been adopted as a training activity by DGI, one of the leading sports for all organization in Denmark....... As a result of this gain in popularity, fitness activities are not only offered in commercial fitness centers but also in fitness centers attached to sport for all clubs. This development has emancipated a focus on doping and thereby in the establishing of anti-doping policies in sport for all clubs. Denmark...... is one of the few countries who illegalizes doping in fitness centers and who tests its members for doping. This article contributes with a discussion concerning the challenges, DGI, as a sport for all organization encounters in relation to the anti-doping policies and its objectives of fostering health...

  17. Doped ZnO nanowires obtained by thermal annealing.

    Science.gov (United States)

    Shan, C X; Liu, Z; Wong, C C; Hark, S K

    2007-02-01

    Doped ZnO nanowires were prepared in a very simple and inexpensive thermal annealing method using ZnSe nanowires as a precursor. As doped, P doped, and As/P codoped ZnO nanowires were obtained in this method. X-ray diffraction shows that the zincblende ZnSe nanowires were converted to doped wurtzite ZnO nanowires. The incorporation of the dopants was confirmed by energy dispersive X-ray spectroscopy. The doping concentration could be adjusted by changing the annealing temperature and duration. Scanning electron microscopy indicated that the morphology of the ZnSe nanowires was essentially retained after the annealing and doping process. Photoluminescence spectroscopy also verified the incorporation of the dopants into the nanowires.

  18. Plasmon scattering in electron and hole doped diamond

    Science.gov (United States)

    Kazempour, Ali; Morshedloo, Toktam

    2018-02-01

    By using a first principle method, we address the plasmon manipulation of diamond crystal as a function of electron and hole doped concentration ranging from light to the heavy doping regime. Our results indicate that with increasing doping concentration plasmon resonances shift to lower energies into the near ultraviolet. Further, for electron and hole doped material, bulk plasmon dispersion shows a different trend compared with undoped crystal particularly at the small momentum transfer which is attributed to strong inhomogeneity of electron charge density. Eventually, by comparison of phonon linewidths a general discussion is presented about possible mechanisms of plasmon-phonon coupling. At heavy doping regime, near the zone edge, optical phonons have the most growing contribution in bulk plasmon damping which may lead to enhanced plasmon-assisted Raman scattering for doped diamond.

  19. UTILITY OF SIMPLIFIED LABANOTATION

    Directory of Open Access Journals (Sweden)

    Maria del Pilar Naranjo

    2016-02-01

    Full Text Available After using simplified Labanotation as a didactic tool for some years, the author can conclude that it accomplishes at least three main functions: efficiency of rehearsing time, social recognition and broadening of the choreographic consciousness of the dancer. The doubts of the dancing community about the issue of ‘to write or not to write’ are highly determined by the contexts and their own choreographic evolution, but the utility of Labanotation, as a tool for knowledge, is undeniable.

  20. NASA's Technology Utilization Program.

    Science.gov (United States)

    Farley, C. F.

    1972-01-01

    NASA's Technology Utilization Program is described, illustrating how it can be useful in achieving improved productivity, providing more jobs, solving public sector challenges, and strengthening the international competitive situation. Underlying the program is the fact that research and development conducted in NASA's aeronautics and space programs have generated much technical information concerning processes, products, or techniques which may be useful to engineers, doctors, or to others. The program is based on acquisition and publication, working with the user, and applications engineering.

  1. Debating Clinical Utility

    OpenAIRE

    Burke, W.; Laberge, A.-M.; Press, N.

    2010-01-01

    The clinical utility of genetic tests is determined by the outcomes following test use. Like other measures of value, it is often contested. Stakeholders may have different views about benefits and risks and about the importance of social versus health outcomes. They also commonly disagree about the evidence needed to determine whether a test is effective in achieving a specific outcome. Questions may be presented as factual disagreements, when they are actually debates about what information...

  2. Role of the utility

    International Nuclear Information System (INIS)

    Bellin, A.

    1986-03-01

    It is common to say that a nuclear programme needs basic infrastructures such as an appropriate educational system, governmental organizations for regulation, decision and inspection, engineering organizations for design and implementation, industrial infrastructures for manufacturing, erection and commissioning, operation organizations for running and maintaining power plants. This schematic organization is not sufficient to succeed in a nuclear programme: one has to consider very carefully the attribution of responsibilities. It appears, that, among all the different systems which exist in the world for the organization of a nuclear project, it is always the utility which bears the overall responsibility for the implementation of the project. It defines objectives such as production capacity, schedule, price; it takes part in the definition of a national policy for energy supply, for the choice of a type of reactor, for the implementation of a national nuclear industry; it selects sites and conducts feasibility studies including a preliminary project; it participates in the definition of organization charts and selects contractors; it calls for and obtains authorizations from regulatory bodies; it manages the project, coordinates contractors and permanently ensures that goals are attained as regards safety, quality, schedule, costs. The French utility has directly taken charge of all these basic responsibilities and this is commonly considered as a major reason of the success of the French nuclear programme. Depending on its capacities, the utility may delegate some of these responsibilities - mainly concerning engineering and project management - to experienced firms. Nevertheless, one has to remember that the utility bears the final responsibility and that it is probably the organization most fully aware of the fact that the final goal is not the construction of a nuclear power station but the production of nuclear electricity in the best and safest conditions

  3. Electric utilities in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, L.S. [Smith Barney Inc., New York, NY (United States)

    1998-10-01

    A century ago--in the year J.J. Thomson discovered the electron--electricity, gas and traction companies battled for markets, and corrupt city councils demanded their fair share of the take. One tycoon became so disgusted with the confusion and dishonesty that he decided to bribe the legislature to set up an honest, state-run regulatory agency that would bring order to chaos. But he was found out. The scandal set back the cause of regulation until 1907, the year in which the electric washing machine and the vacuum cleaner were invented. By then, electricity sales had septupled from 1897 levels, and three states had established utility regulation. In the coming decade, 1997 to 2007, the utility business could undergo similar dramatic change, but it will move toward less regulation and more competition during a period of slow growth. Management will have to work harder to achieve success, however, because much of the profits will have to come not from a growing market but from the pockets of competitors. By 2007, electricity will constitute a component of a larger energy and utility services industry that sells electricity, natural gas and possibly water, propane and telecommunications. Customized service will meet the needs of consumers of all sizes. The dominant firm in the industry, the virtual utility, may look more like a financial organization or a mass marketer than the traditional converter of raw material to energy. Emphasis on market-based pricing should lead to more efficient use of resources. If the process works right, the consumer wins.

  4. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  5. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    International Nuclear Information System (INIS)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent; Zidan, Ragaiy

    2013-01-01

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C 60 from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na 6 C 60 or Li 6 C 60 . Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H 2 while the lithium doped material can reversibly store 5.0 wt.% H 2 through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  6. Steam activation of boron doped diamond electrodes

    International Nuclear Information System (INIS)

    Ohashi, Tatsuya; Zhang Junfeng; Takasu, Yoshio; Sugimoto, Wataru

    2011-01-01

    Highlights: → Steam activation of boron doped diamond (BDD) electrodes. → Steam activated BDD has a porous columnar texture. → Steam activated BDD has a wide potential window. - Abstract: Boron doped diamond (BDD) electrodes were activated in steam at various temperatures, resulting in high quality BDD electrodes with a porous microstructure. Distinct columnar structures were observed by scanning electron microscopy. The electrochemically active surface area of the steam-activated BDD was up to 20 times larger than the pristine BDD electrode owing to the porous texture. In addition, a widening of the potential window was observed after steam activation, suggesting that the quality of BDD was enhanced due to oxidative removal of graphitic impurities during the activation process.

  7. Magnetism in dilute iron doped YN semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Mewar University, -312901 Rajasthan (India); Dwievdi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [TCMPL, Dept. of Physics, Feroze Gandhi College, Raebareli-229001 (U.P) (India)

    2016-05-23

    The full potential linearized augmented plane-wave (FP-LAPW) scheme of computation is used to explore the electronic and magnetic properties of Fe doped into YN. Band structure calculations show that YN is a semicon ductor with a narrow indirect band gap of 0.08 eV along Γ-X direction. Optical properties such as reflectivity, absorption coefficient are reported and are discussed on the basis of corresponding electronic structure. Spin polarized results indicate that the ground state of Y{sub 1-x}Fe{sub x}N (x=0.06, 0.12, 0.25) is ferromagnetic with a high moment on Fe-atom and zero moment on Y and N atoms, except in the case of 25 % doping. A discussion of the transport properties of YN and Y{sub 1-x}Fe{sub x}N is given in order to get insights of the Fe substitution effects.

  8. Superconductivity in alkali-doped C60

    International Nuclear Information System (INIS)

    Ramirez, Arthur P.

    2015-01-01

    Highlight: • Superconductivity in alkali-doped C 60 (A 3 C 60 ) is well described by an s-wave state produced by phonon mediated pairing. • Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures up to 33 K in single-phase material. • The good understanding of pairing in A 3 C 60 offers a paradigm for the development of new superconducting materials. - Abstract: Superconductivity in alkali-doped C 60 (A 3 C 60 , A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (T c ) up to 33 K in single-phase material. The good understanding of pairing in A 3 C 60 offers a paradigm for the development of new superconducting materials

  9. Study of aluminum-doped silicon clusters

    International Nuclear Information System (INIS)

    Zhan Shichang; Li Baoxing; Yang Jiansong

    2007-01-01

    Using full-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have investigated the effect of aluminum heteroatoms on the geometric structures and bond characteristics of Si n (n=5-10) clusters in detail. It is found that the geometric framework of the ground state structures for Si n (n=5-10) clusters change to some extent upon the substitution of Al atoms in some Si atoms. The effect of aluminum doping on the silicon clusters depends on the geometric structures of Si n (n=5-10) clusters. In particular, the calculations suggest that the aluminum doping would improve the bond strength of some Si-Si bonds in the mixed Si n - m Al m clusters

  10. Gain characteristics of erbium doped fiber amplifier

    Science.gov (United States)

    Zhang, Lihua; Du, Yungang; Xi, Ying; Li, Jijun; Zhao, Chunwang

    2008-12-01

    In the design of Erbium Doped Fiber Amplifier (EDFA), improving flat-gain has great important significance. The working principle and gain characteristics of EDFA are introduced briefly, the influence of the factors such as Erbium doped fiber (EDF) length and pump power on the gain of EDFA is analyzed in detail, and the simulation experiments were carried out with Optisystem software. The result shows that, when pump power is constant, with EDF length departing the optimal value, the gain of each channel decreases at different degrees; when EDF length is constant, with pump power departing the optimal value, the gain of each channel changes at different degrees. Moreover, Er3+ concentration has significant effect on the gain, and there is an optimal Er3+ concentration to get the largest gain.

  11. Hybrid laser technology and doped biomaterials

    Science.gov (United States)

    Jelínek, Miroslav; Zemek, Josef; Remsa, Jan; Mikšovský, Jan; Kocourek, Tomáš; Písařík, Petr; Trávníčková, Martina; Filová, Elena; Bačáková, Lucie

    2017-09-01

    Hybrid laser-based technologies for deposition of new types of doped thin films are presented. The focus is on arrangements combining pulsed laser deposition (PLD) with magnetron sputtering (MS), and on the setup with two simultaneously running PLD systems (dual PLD). Advantages and disadvantages of both arrangements are discussed. Layers of different dopants concentration were prepared. Experience with deposition of chromium and titanium doped diamond-like carbon (DLC) films for potential coating of bone implants is presented. Properties of the layers prepared by both technologies are compared and discussed. The suitability of the layers for colonization with human bone marrow mesenchymal stem cells and human osteoblast-like cells, were also evaluated under in vitro conditions.

  12. Vortex (particle) and antivortex (hole) doping into superconducting network

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Shimizu, Makoto; Matsushima, Yoshiaki; Hayashi, Masahiko; Ebisawa, Hiromichi; Sato, Osamu; Kato, Masaru; Satoh, Kazuo

    2007-01-01

    Superconducting finite-sized Pb square networks with 10 x 10 square holes fabricated by electron beam lithography have been investigated in view of particle (vortex) doping into superconducting networks. Vortex image observations were carried out by a SQUID microscope to compare with predictions from the Ginzburg-Landau theory. We found the exactly reversed pattern between the vortex-doping x and the antivortex doping 1 - x into the fully occupied network (x = 1/4)

  13. Graded Doping for Enhanced Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Ning, Zhijun

    2013-02-05

    A novel approach to improving all-inorganic colloidal quantum dot (CQD) homojunction solar cells by engineering the doping spatial profile to produce a doping gradient within the n-type absorber is presented. The doping gradient greatly improves carrier collection and enhances the voltages attainable by the device, leading to a 1 power point power conversion efficiency (PCE) improvement over previous inorganic CQD solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  15. Noise in distributed erbium-doped fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Povlsen, Jørn Hedegaard; Bjarklev, Anders Overgaard

    1993-01-01

    Theoretical limits in noise figure for a long-haul transmission line based on lumped amplification are contrasted with distributed amplification. The latter results in a reduction of approximately 60% of the required number of pump power stations. The distributed optical amplification is provided...... by an erbium-doped fiber and comparisons of aluminum and germanium as codopant materials are shown. The pump power consumption and noise figure are analyzed with respect to the background loss...

  16. Ferromagnetism in metallocene-doped fullerenes

    CERN Document Server

    Mihailovic, D

    2003-01-01

    Ferromagnetism in fullerene-based systems doped with metallocenes is reviewed. These compounds form a ferromagnetic state by spin-coupling between pi electrons on fullerene units, while the metallocene molecules do not contribute to the spin ordering. One of these compounds has the highest critical temperature (19 K) for this class of compound. The magnetic properties of these materials are very strongly dependent on the crystallization conditions. Refs. 19 (author)

  17. Ferromagnetism in metallocene-doped fullerenes

    International Nuclear Information System (INIS)

    Mihailovic, D.

    2003-01-01

    Ferromagnetism in fullerene-based systems doped with metallocenes is reviewed. These compounds form a ferromagnetic state by spin-coupling between π electrons on fullerene units, while the metallocene molecules do not contribute to the spin ordering. One of these compounds has the highest critical temperature (19 K) for this class of compound. The magnetic properties of these materials are very strongly dependent on the crystallization conditions. Refs. 19 (author)

  18. Long-Term Stability Evaluation of a Sn-Doped Ni-C Eutectic Cell Suitable for Radiation Thermometry

    Science.gov (United States)

    Teixeira, R. N.; Machin, G.

    2017-07-01

    Metal carbon eutectic cells (high-temperature fixed points, HTFPs) (Machin in AIP Conf Proc 1552:305, 2013) are being considered for use as reliable high-temperature references for non-contact thermometry above the copper point (1084.62°C). Recent studies have demonstrated the concept of using doped metal carbon eutectic cells as artefacts suitable for temperature scale comparisons (Teixeira et al. in AIP Conf Proc 1552:363, 2013; Teixeira et al. in Int J Thermophys 35:467-474, 2014; Machin et al. in Int J Thermophys 36:327-335, 2015). When using such artefacts, the participating institutes do not know the realization temperature of the doped HTFP cell, because it has been modified by the addition of a selected dopant at a definite concentration. The use of such fixed points can critically evaluate the real measurement capability of the institutes in any comparison. The pyrometry laboratory of Inmetro developed a set of doped Ni-C eutectic cells in 2012 and 2013. This paper describes the long-term stability of a Sn-doped Ni-C cell constructed in 2012, which accumulated more than 220 h above 1300°C amounting to more than 50 cycles of melts and freezes. The cell remained stable, well within the measurement uncertainty, throughout the evaluation period demonstrating the utility of such cells for scale comparison purposes.

  19. Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method

    Science.gov (United States)

    Liu, Shiyuan; Wang, Lijun; Chou, Kuochih

    2018-03-01

    Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.

  20. Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    David Sebastián

    2018-04-01

    Full Text Available The low oxidation kinetics of alcohols and the need for expensive platinum group metals are still some of the main drawbacks for the commercialization of energy efficient direct alcohol fuel cells. In this work, we investigate the influence of nitrogen doping of ordered mesoporous carbon (CMK as support on the electrochemical activity of PtRu nanoparticles. Nitrogen doping procedures involve the utilization of pyrrole as both nitrogen and carbon precursor by means of a templating method using mesoporous silica. This method allows obtaining carbon supports with up to 14 wt. % nitrogen, with an effective introduction of pyridinic, pyrrolic and quaternary nitrogen. PtRu nanoparticles were deposited by sodium formate reduction method. The presence of nitrogen mainly influences the Pt:Ru atomic ratio at the near surface, passing from 50:50 on the bare (un-doped CMK to 70:30 for the N-doped CMK catalyst. The electroactivity towards the methanol oxidation reaction (MOR was evaluated in acid and alkaline electrolytes. The presence of nitrogen in the support favors a faster oxidation of methanol due to the enrichment of Pt at the near surface together with an increase of the intrinsic activity of PtRu nanoparticles.

  1. Manipulation of inherent characteristics of graphene through N and Mg atom co-doping; a DFT study

    Science.gov (United States)

    Rafique, Muhammad; Mirjat, Nayyar H.; Soomro, Aamir M.; Khokhar, Suhail; Shuai, Yong

    2018-04-01

    First-principles calculations were performed to investigate the structural, electronic, magnetic and optical properties of nitrogen (N) and magnesium (Mg) atom co-doped graphene systems. We observed that, N and Mg atom co-doping in graphene, introduces half-metallic properties in the electronic structure of graphene, introduces ferromagnetism behavior along with new trends in optical properties of graphene. Doping site and concentration of N and Mg atoms in graphene was changed and resulting effects of these changes on aforementioned properties were investigated. Through density of states plots we observed that, Mg atom sp orbitals mainly induced magnetic moments in graphene. It was revealed that, N/Mg atoms substitution in graphene introduces a red shift in absorption spectrum towards visible range and a finite absorption coefficient quantity value in 0 to 3 eV and 7 to 11 eV energy intervals is also produced, that is unavailable for absorption spectrum of intrinsic graphene. Moreover, N/Mg atoms co-doping produces increment in the reflectivity parameter of graphene in low lying energy region, while producing diminishing behavior in the higher energy range. These results offer a possibility to tune electronic, magnetic and optical characteristics of graphene sufficiently for utilization in graphene based spintronic and optoelectronic devices.

  2. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett

    2006-09-01

    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  3. 4th Neutron Transmutation Doping Conference

    CERN Document Server

    1984-01-01

    viii The growing use of NTD silicon outside the U. S. A. motivated an interest in having the next NTD conference in Europe. Therefore, the Third International Conference on Neutron Transmutation-Doped Silicon was organized by Jens Guldberg and held in Copenhagen, Denmark on August 27-29, 1980. The papers presented at this conference reviewed the developments which occurred during the t'A'O years since the previous conference and included papers on irradiation technology, radiation-induced defects, characteriza­ tion of NTD silicon, and the use of NTD silicon for device appli­ cations. The proceedings of this conference were edited by Jens Guldberg and published by Plenum Press in 1981. Interest in, and commercial use of, NTD silicon continued to grow after the Third NTD Conference, and research into neutron trans­ mutation doping of nonsilicon semiconductors had begun to accel­ erate. The Fourth International Transmutation Doping Conference reported in this volume includes invited papers summarizing the p...

  4. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    Science.gov (United States)

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Computer Modelling of Hafnium Doping in Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Romel M. Araujo

    2018-03-01

    Full Text Available Lithium niobate (LiNbO3 is an important technological material with good electro-optic, acousto-optic, elasto-optic, piezoelectric and nonlinear properties. Doping LiNbO3 with hafnium (Hf has been shown to improve the resistance of the material to optical damage. Computer modelling provides a useful means of determining the properties of doped and undoped LiNbO3, including its defect chemistry, and the effect of doping on the structure. In this paper, Hf-doped LiNbO3 has been modelled, and the final defect configurations are found to be consistent with experimental results.

  6. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  7. Nitrogen-doped carbon aerogels for electrical energy storage

    Science.gov (United States)

    Campbell, Patrick; Montalvo, Elizabeth; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Reed, Eric W.; Worsley, Marcus A.

    2017-10-03

    Disclosed here is a method for making a nitrogen-doped carbon aerogel, comprising: preparing a reaction mixture comprising formaldehyde, at least one nitrogen-containing resorcinol analog, at least one catalyst, and at least one solvent; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the nitrogen-doped carbon aerogel. Also disclosed is a nitrogen-doped carbon aerogel obtained according to the method and a supercapacitor comprising the nitrogen-doped carbon aerogel.

  8. Highly doped layer for tunnel junctions in solar cells

    Science.gov (United States)

    Fetzer, Christopher M.

    2017-08-01

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  9. Doping dependence of the Raman spectrum of defected graphene.

    Science.gov (United States)

    Bruna, Matteo; Ott, Anna K; Ijäs, Mari; Yoon, Duhee; Sassi, Ugo; Ferrari, Andrea C

    2014-07-22

    We investigate the evolution of the Raman spectrum of defected graphene as a function of doping. Polymer electrolyte gating allows us to move the Fermi level up to 0.7 eV, as directly monitored by in situ Hall-effect measurements. For a given number of defects, we find that the intensities of the D and D' peaks decrease with increasing doping. We assign this to an increased total scattering rate of the photoexcited electrons and holes, due to the doping-dependent strength of electron-electron scattering. We present a general relation between D peak intensity and defects valid for any doping level.

  10. Superconductivity in heavily boron-doped silicon carbide

    OpenAIRE

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    The discoveries of superconductivity in heavily boron-doped diamond (C:B) in 2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily-boron doped silicon carbide (SiC:B). The sample used for that study consists of cubic and hexagonal SiC ph...

  11. Electrical transport crossovers and thermopower in doped polyaniline conducting polymer

    Science.gov (United States)

    Brault, D.; Lepinoy, M.; Limelette, P.; Schmaltz, B.; Tran Van, F.

    2017-12-01

    We report on both the electrical and thermoelectric transport properties as a function of temperature in polyaniline doped with camphor sulfonic acid (CSA) for a wide range of CSA doping. A transport crossovers diagram illustrating metallic and insulating like behaviors is proposed and seems to result from the interplay between charge doping and disorder. In particular, the one half doping not only leads to an optimal electrical conductivity reaching 120 S/cm at 300 K but also the lowest thermopower slope. The measured thermopower appears closely related to the metallic onset in agreement with a metallic origin of its linear temperature dependence.

  12. Cu doped AlSb polycrystalline thin films

    International Nuclear Information System (INIS)

    Wu Lili; Jin Shuo; Zeng Guanggen; Zhang Jingquan; Li Wei; Feng Lianghuan; Li Bing; Wang Wenwu

    2013-01-01

    Cu-doped AlSb polycrystalline films were grown on quartz glass by magnetron co-sputtering. The structural, morphological and electrical properties of the films were studied. The incorporation of copper atoms can result in the increase of lattice constants, and annealing is helpful to eliminate this deformation. Cu-doped AlSb films exhibit weak n-type conductivity. The results show that the doping effect has a close relationship with the annealing process, meaning that the position of Cu atom in AlSb polycrystalline films might influence the doping effect. (semiconductor materials)

  13. Adsorption of chloroform on N-doped and Al-doped graphene: A first-principle study

    Science.gov (United States)

    Tian, Y. L.; Ren, J. F.; Yue, W. W.; Chen, M. N.; Hu, G. C.; Yuan, X. B.

    2017-10-01

    Adsorption properties of chloroform (CHCl3) on pristine graphene, N-doped graphene and Al-doped graphene are studied by using density functional theory (DFT) calculations. Our calculations reveal that there are higher charge transfer and smaller adsorption distance and bigger adsorption energy when CHCl3 is adsorbed on Al-doped graphene comparing with adsorptions on pristine graphene and N-doped graphene. The p-p orbital coupling between Al and Cl is stronger than those of Csbnd Cl and Nsbnd Cl, which suggests that Al-doped graphene is more sensitive to the adsorption of CHCl3. Al-doped graphene can be a good candidate for sensors or catalyst to detect and adsorb CHCl3.

  14. Market research for electric utilities

    International Nuclear Information System (INIS)

    Shippee, G.

    1999-01-01

    Marketing research is increasing in importance as utilities become more marketing oriented. Marketing research managers need to maintain autonomy from the marketing director or ad agency and make sure their work is relevant to the utility's operation. This article will outline a model marketing research program for an electric utility. While a utility may not conduct each and every type of research described, the programs presented offer a smorgasbord of activities which successful electric utility marketers often use or have access to

  15. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong, E-mail: rsguo@tju.edu.cn; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-03-15

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m{sup 1/2}. - Abstract: The effects of substitution of Ba{sup 2+} by Sr{sup 2+} on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba{sub 1−x}Sr{sub x}Fe{sub 12}O{sub 19}, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m{sup 1/2} for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase.

  16. Photocatalysis with chromium-doped TiO2: Bulk and surface doping

    KAUST Repository

    Ould-Chikh, Samy

    2014-04-15

    The photocatalytic properties of TiO2 modified by chromium are usually found to depend strongly on the preparation method. To clarify this problem, two series of chromium-doped titania with a chromium content of up to 1.56 wt % have been prepared under hydrothermal conditions: the first series (Cr:TiO2) is intended to dope the bulk of TiO2, whereas the second series (Cr/TiO2) is intended to load the surface of TiO2 with Cr. The catalytic properties have been compared in the photocatalytic oxidation of formic acid. Characterization data provides evidence that in the Cr/TiO2 catalysts chromium is located on the surface of TiO2 as amorphous CrOOH clusters. In contrast, in the Cr:TiO 2 series, chromium is mostly dissolved in the titania lattice, although a minor part is still present on the surface. Photocatalytic tests show that both series of chromium-doped titania demonstrate visible-light-driven photo-oxidation activity. Surface-doped Cr/TiO2 solids appear to be more efficient photocatalysts than the bulk-doped Cr:TiO2 counterparts. It\\'s classified! The photocatalytic properties of TiO2 modified by chromium depend strongly on the preparation method. To clarify this problem, two types of modified titania are discussed: one with CrIII doped in the bulk and one with CrOOH clusters on the TiO2 surface (see picture). Both series show visible-light-driven photo-oxidation activity. However, surface modification appears to be a more efficient strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source

    Energy Technology Data Exchange (ETDEWEB)

    Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Feuillet, G. [CEA, LETI, Département Optronique, F-38054 Grenoble (France); Kolobov, A. V.; Fons, P. [Nanodelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562 (Japan); SPring-8, Japan Synchrotron Radiation Institute (JASRI), Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Mitrofanov, K. V.; Tominaga, J. [Nanodelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562 (Japan); Tamenori, Y. [SPring-8, Japan Synchrotron Radiation Institute (JASRI), Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2014-05-21

    In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites.

  18. Time Functions as Utilities

    Science.gov (United States)

    Minguzzi, E.

    2010-09-01

    Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K + relation (Seifert’s relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg’s and Levin’s theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K + (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin’s theorem and smoothing techniques.

  19. Social group utility maximization

    CERN Document Server

    Gong, Xiaowen; Yang, Lei; Zhang, Junshan

    2014-01-01

    This SpringerBrief explains how to leverage mobile users' social relationships to improve the interactions of mobile devices in mobile networks. It develops a social group utility maximization (SGUM) framework that captures diverse social ties of mobile users and diverse physical coupling of mobile devices. Key topics include random access control, power control, spectrum access, and location privacy.This brief also investigates SGUM-based power control game and random access control game, for which it establishes the socially-aware Nash equilibrium (SNE). It then examines the critical SGUM-b

  20. Energy utilization in Canada

    International Nuclear Information System (INIS)

    Klassen, J.

    1976-04-01

    The situation of the energy supply of Canada is characterized by its geographic location and by the dispersal of the energy consumers over a wide area. At present, the energy supply leaving the successful CANDU nuclear energy programme out of account, is based mainly on crude oil, natural gas, and electricity as well as on coal imported from the USA. The targets of Canadian enery policies and energy research are stated as follows: a) Reducing and optimizing energy consumption, b) introducing district heating, and c) utilizing the extensive local coal deposits. (GG) [de

  1. Managing the nuclear utility

    International Nuclear Information System (INIS)

    Williams, J.W. Jr.

    1985-01-01

    The Florida Power and Light Company (FP and L) is the fifth largest investor-owned utility in the country. The success of nuclear power generation at the St. Lucie Units 1 and 2 and Turkey Point Units 3 and 4 has resulted from a continuing management commitment to the nuclear program. The management of the power plants rely strongly on teamwork for most large projects and activities whether they entail plant operation, construction, or maintenance. Various examples of how teamwork has been used to realize the successful completion of projects or solutions to problems are given

  2. Tribal Utility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: • Demand-side management – This refers to efforts to reduce energy use through energy efficiency and conservation measures. • Off-grid, facility and household scale renewable energy systems – These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. • Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. • Medium to large scale renewable energy development for sale to the grid – In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be

  3. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    Science.gov (United States)

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  4. Advancement of CMOS Doping Technology in an External Development Framework

    Science.gov (United States)

    Jain, Amitabh; Chambers, James J.; Shaw, Judy B.

    2011-01-01

    The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.

  5. Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms.

    Science.gov (United States)

    Koenig, Steven P; Doganov, Rostislav A; Seixas, Leandro; Carvalho, Alexandra; Tan, Jun You; Watanabe, Kenji; Taniguchi, Takashi; Yakovlev, Nikolai; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2016-04-13

    Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating.

  6. Unconventional cells of TiO2 doped with erbium

    International Nuclear Information System (INIS)

    Ribeiro, P.C.; Campos, R.D.; Oliveira, A.S.; Wellen, R.; Diniz, V.C.S.; Costa, A.C.F.M. da

    2016-01-01

    The technology used in TiO 2 solar cells is in constant improvement, new configurations have been developed, aiming practicality and leading to efficiency increase of photovoltaic devices. This paper proposes a new technology for the production of solar cells in order to investigate a better utilization of solar spectrum of TiO2 doped with erbium (Er 3+ ), proven by energetic conversion. The Ti 0,9 Er 0,1 O2 system was obtained by Pechini method. Nanoparticles have a crystallite size 65.30 nm and surface area 118.48 m 2 /g. These characteristics are essential for the formation of the film to be deposited on the conductive glass substrate constituting the cell's photoelectrode. The other side of the cell is the platinum counter electrode. The cell will have the faces sealed by a thermoplastic and, finally the electrolyte will be inserted, then they will be electrically evaluated through energy efficiency and confronted with the literature data base. (author)

  7. Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

    Science.gov (United States)

    Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.

    2012-01-01

    Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.

  8. Thirteen years of the fight against doping in figures.

    Science.gov (United States)

    Aguilar, Millán; Muñoz-Guerra, Jesús; Plata, María Del Mar; Del Coso, Juan

    2017-06-01

    Every year, the World Anti-Doping Agency (WADA) publishes the main statistics reported by the accredited laboratories, which provide very valuable information for assessing changes in the patterns of doping in sports over time. Using the information provided since 2003 as the basis for the analysis, the evolution of doping/anti-doping figures over the last decade can be examined in reasonable detail, at least in reference to samples analyzed and categories of substances more commonly found in athletes' samples. This brief analysis of the WADA statistical reports leads us to the following outcomes: the increase in anti-doping pressure from 2003 to 2015, as evidenced by increased numbers of samples analyzed and banned substances, has not directly produced a higher frequency of adverse/atypical findings. Although this could be interpreted as steady state in the capacity to detect doping through this whole period, it also resulted in a significant increase in the absolute number of samples catalogued as doping (from 2247 in 2003 to 5912 in 2015). Anabolic agents have been the most common doping substances detected in all statistics reports while the remaining groups of substances are much less frequently found in doping control samples. Given that one might have expected the enhancement of the anti-doping programme led by WADA over this last decade to have increased the percentage of adverse/atypical findings, the fact that it did not might indicate the need to take another step in sampling strategies, such as 'more intelligent testing' based on the differences in the prevalence of doping substances among sports. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Kulanthaivel, Senthilguru [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Roy, Bibhas [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 (India); Agarwal, Tarun [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Giri, Supratim [Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008 (India); Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S. [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Maiti, Tapas K. [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 (India); Banerjee, Indranil, E-mail: indraniliit@gmail.com [Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2016-01-01

    ABSTRACT: The present study delineates the synthesis and characterization of cobalt doped proangiogenic–osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co{sup 2+}) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP–OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic–osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. - Highlights: • Cobalt (Co{sup +2}) doped hydroxyapatite (Co-HAp) can be prepared by the wet chemical method. • The concentration of Co{sup +2} influences the physico-chemical properties of HAp. • Co-HAp was found to be biocompatible and osteogenic. • Co-HAp enhanced cellular VEGF secretion through HIF-1α stabilization. • The optimum biological performance of Co-HAp was achieved for 0.33% (w/w) Co{sup +2} doping.

  10. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light.

    Science.gov (United States)

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.

  11. Geothermal Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.

    1998-01-03

    Man has utilized the natural heat of the earth for centuries. Worldwide direct use of geothermal currently amounts to about 7,000 MWt, as compared to 1,500 MWe, now being used for the generation of electricity. Since the early 1970s, dwindling domestic reservoirs of oil and gas, continued price escalation of oil on the world market and environmental concerns associated with coal and nuclear energy have created a growing interest in the use of geothermal energy in the United States. The Department of Energy goals for hydrothermal resources utilization in the United States, expressed in barrels of oil equivalent, is 50 to 90 million bbl/yr by 1985 and 350 to 900 million bbl/yr by the year 2000. This relatively clean and highly versatile resource is now being used in a multitude of diverse applications (e.g., space heating and cooling, vegetable dehydration, agriculture, aquaculture, light manufacturing), and other applications requiring a reliable and economic source of heat.

  12. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  13. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  14. Synthesis of Fluorophore-Doped Polystyrene Microspheres: Seed Material for Airflow Sensing.

    Science.gov (United States)

    Wohl, Christopher J; Kiefer, Jacob M; Petrosky, Brian J; Tiemsin, Pacita I; Lowe, K Todd; Maisto, Pietro M F; Danehy, Paul M

    2015-09-23

    Kiton red 620 (KR620) doped polystyrene latex microspheres (PSLs) were synthesized via soap-free emulsion polymerization to be utilized as a relatively nontoxic, fluorescent seed material for airflow characterization experiments. Poly(styrene-co-styrenesulfonate) was used as the PSL matrix to promote KR620 incorporation. Additionally, a bicarbonate buffer and poly(diallyldimethylammonium chloride), polyD, cationic polymer were added to the reaction solution to stabilize the pH and potentially influence the electrostatic interactions between the PSLs and dye molecules. A design of experiments (DOE) approach was used to efficiently investigate the variation of these materials. Using a 4-factor, 2-level response surface design with a center point, a series of experiments were performed to determine the dependence of these factors on particle diameter, diameter size distribution, fluorescent emission intensity, and KR620 retention. Using statistical analysis, the factors and factor interactions that most significantly affect the outputs were identified. These particles enabled velocity measurements to be made much closer to walls and surfaces than previously. Based on these results, KR620-doped PSLs may be utilized to simultaneously measure the velocity and mixing concentration, among other airflow parameters, in complex flows.

  15. Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy

    Science.gov (United States)

    Shivaraju, H. P.; Midhun, G.; Anil Kumar, K. M.; Pallavi, S.; Pallavi, N.; Behzad, Shahmoradi

    2017-11-01

    Designing photocatalytic materials with modified functionalities for the utilization of renewable energy sources as an alternative driving energy has attracted much attention in the area of sustainable wastewater treatment applications. Catalyst-assisted advanced oxidation process is an emerging treatment technology for organic pollutants and toxicants in industrial wastewater. Preparation of visible-light-responsive photocatalyst such as Mg-doped TiO2 polyscales was carried out under mild sol-gel technique. Mg-doped TiO2 polyscales were characterized by powder XRD, SEM, FTIR, and optical and photocatalytic activity techniques. The Mg-doped TiO2 showed a mixed phase of anatase and rutile with an excellent crystallinity, structural elucidations, polyscales morphology, consequent shifting of bandgap energy and adequate photocatalytic activities under visible range of light. Mg-doped TiO2 polyscales were investigated for their efficiencies in the degradation of most commonly used industrial dyes in the real-time textile wastewater. Mg-doped TiO2 polyscales showed excellent photocatalytic degradation efficiency in both model industrial dyes (65-95%) and textile wastewater (92%) under natural sunlight as an alternative and renewable driving energy.

  16. Modeling energy band gap of doped TiO2 semiconductor using homogeneously hybridized support vector regression with gravitational search algorithm hyper-parameter optimization

    Science.gov (United States)

    Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Aldhafferi, Nahier; Alqahtani, Abdullah

    2017-11-01

    Titanium dioxide (TiO2) semiconductor is characterized with a wide band gap and attracts a significant attention for several applications that include solar cell carrier transportation and photo-catalysis. The tunable band gap of this semiconductor coupled with low cost, chemical stability and non-toxicity make it indispensable for these applications. Structural distortion always accompany TiO2 band gap tuning through doping and this present work utilizes the resulting structural lattice distortion to estimate band gap of doped TiO2 using support vector regression (SVR) coupled with novel gravitational search algorithm (GSA) for hyper-parameters optimization. In order to fully capture the non-linear relationship between lattice distortion and band gap, two SVR models were homogeneously hybridized and were subsequently optimized using GSA. GSA-HSVR (hybridized SVR) performs better than GSA-SVR model with performance improvement of 57.2% on the basis of root means square error reduction of the testing dataset. Effect of Co doping and Nitrogen-Iodine co-doping on band gap of TiO2 semiconductor was modeled and simulated. The obtained band gap estimates show excellent agreement with the values reported from the experiment. By implementing the models, band gap of doped TiO2 can be estimated with high level of precision and absorption ability of the semiconductor can be extended to visible region of the spectrum for improved properties and efficiency.

  17. The Impact of Molecular p-Doping on Charge Transport in High-Mobility Small-Molecule/Polymer Blend Organic Transistors

    KAUST Repository

    Paterson, Alexandra F.

    2017-12-27

    Molecular doping is a powerful tool with the potential to resolve many of the issues currently preventing organic thin-film transistor (OTFT) commercialization. However, the addition of dopant molecules into organic semiconductors often disrupts the host lattice, introducing defects and harming electrical transport. New dopant-based systems that overcome practical utilization issues, while still reaping the electrical performance benefits, would therefore be extremely valuable. Here, the impact of p-doping on the charge transport in blends consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), the polymer indacenodithiophene-benzothiadiazole (C16IDT-BT), and the molecular dopant C60F48 is investigated. Electrical field-effect measurements indicate that p-doping not only enhances the average saturation mobility from 1.4 to 7.8 cm2 V−1 s−1 over 50 devices (maximum values from around 4 to 13 cm2 V−1 s−1), but also improves bias–stress stability, contact resistance, threshold voltage, and the overall device-to-device performance variation. Importantly, materials characterization using X-ray diffraction, X-ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy, combined with charge transport modeling, reveal that effective doping is achieved without perturbing the microstructure of the polycrystalline semiconductor film. This work highlights the remarkable potential of ternary organic blends as a simple platform for OTFTs to achieve all the benefits of doping, with none of the drawbacks.

  18. Synthesis of Zn-doped TiO{sub 2} microspheres with enhanced photovoltaic performance and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Wang Lingling [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Liu Bingkun; Zhai Jiali; Fan Haimei; Wang Dejun; Lin Yanhong [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Xie Tengfeng, E-mail: xietf@jlu.edu.cn [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China)

    2011-07-15

    Highlights: > Near-monodisperse Zn-doped TiO{sub 2} microspheres have been synthesized. > The photovoltaic properties of the samples were examined by SPS, FISPS and TPV measurements. > Surface photovoltage results revealed Zn doping can promote charge transfer in TiO{sub 2} film electrode. - Abstract: Zn-doped TiO{sub 2} microspheres have been synthesized by introducing a trace amount of zinc nitrate hexahydrate to the reaction system. Scanning electron microscope (SEM), field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) have been utilized to characterize the samples. Both surface photovoltage spectroscopy (SPS) technique based on lock-in amplifier and transient photovoltage (TPV) measurement reveal that the slight doping of Zn can promote the separation of photo-generated charges as well as restrain the recombination due to the strong interface built-in electric field and the decreasing of surface trap states. The photovoltaic parameters of dye-sensitized solar cells (DSSCs) based on Zn-doped TiO{sub 2} are significantly better, compared to that of a cell based on undoped TiO{sub 2}. The relation between the performance of DSSCs and their photovoltaic properties is also discussed.

  19. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. F., E-mail: babaibaik2002@yahoo.com; Zainol, M. N., E-mail: nizarzainol@yahoo.com; Hannas, M., E-mail: mhannas@gmail.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my; Rusop, Mohamad, E-mail: rusop@salam.uitm.edu.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Rahman, S. A., E-mail: saadah@um.edu.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Low Dimensional Materials Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-07-06

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 10{sup 3} Ωcm{sup −1}. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.

  20. Doped spin ladders under magnetic field; Echelles de spins dopees sous champ magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G

    2007-07-15

    This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)

  1. Study of Cu-doping effects on magnetic properties of Fe-doped ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    CPA). We show that the total magnetic moment ... in Zn0∙975–xFe0∙025CuxO. Keywords. (Fe, Cu)-doped ZnO; diluted magnetic semiconductors; DOS. ... play an important role in the physical properties. From II–. VI compound semiconductors ...

  2. Erbium-doped integrated waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Bradley, J.; Pollnau, Markus

    Erbium-doped fiber devices have been extraordinarily successful due to their broad optical gain around 1.5–1.6 μm. Er-doped fiber amplifiers enable efficient, stable amplification of high-speed, wavelength-division-multiplexed signals, thus continue to dominate as part of the backbone of longhaul

  3. Spectral analysis of Cu and Mn ions doped borofluorophosphate ...

    Indian Academy of Sciences (India)

    WINTEC

    2+ doped BFP glasses have pink colour. Figures 1–4 present photographs of both reference and. Figure 1. Photographs of reference and Cu. 2+. : borofluoro- phosphate glasses. Figure 2. Photographs of reference and Cu. 2+. : borofluoro- phosphate glasses. 0⋅5 mol% Cu. 2+ and Mn. 2+ ions doped borofluorophosphate.

  4. BF3-doped polyaniline: A novel conducting polymer

    Indian Academy of Sciences (India)

    A detailed procedure for the synthesis of PANI and doping with BF3 has been previously reported [2]. The sample was characterized for complete doping us- ing routine spectroscopic techniques, like UV–visible absorption, FTIR and 11B magic-angle-spinning (MAS) NMR spectroscopy. For the four-probe conductivity. 135 ...

  5. Optical properties of zinc–vanadium glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Optical properties of zinc–vanadium glasses doped with samarium trioxide. B ERAIAH. Department of Physics, Bangalore University, Bangalore 560 056, India. MS received 12 June 2012; revised 6 March 2013. Abstract. Zinc–vanadium glasses doped with samarium oxide having the chemical composition Sm2O3(x).

  6. Structural, thermal and optical properties of Cu 2 + doped ...

    Indian Academy of Sciences (India)

    Pure and Cu 2 + doped methacrylic acid–ethyl acrylate (MAA:EA) copolymer films were prepared using thesolution cast technique. The amorphous feature of the copolymer was depicted using X-ray diffraction scans and degreeof crystallinity was found to vary with increasing doping content. UV–Vis absorption spectra in ...

  7. Structural, thermal and optical properties of Cu 2 doped methacrylic ...

    Indian Academy of Sciences (India)

    Pure and Cu 2 + doped methacrylic acid–ethyl acrylate (MAA:EA) copolymer films were prepared using thesolution cast technique. The amorphous feature of the copolymer was depicted using X-ray diffraction scans and degreeof crystallinity was found to vary with increasing doping content. UV–Vis absorption spectra in ...

  8. Electrochemical preparation of nitrogen-doped graphene quantum ...

    Indian Academy of Sciences (India)

    Here we report a remarkable transformation of nitrogen-doped multiwalled carbon nanotubes (MWCNTs) to size selective nitrogen-doped graphene quantum dots (N-GQDs) by a two-step electrochemical method. The sizes of the N-GQDs strongly depend on the applied anodic potential, moreover increasing potential ...

  9. Pure and doped vanadium sesquioxide: A brief experimental review

    Energy Technology Data Exchange (ETDEWEB)

    Yethiraj, M. (Los Alamos National Lab., NM (USA))

    1990-09-01

    Vanadium sesquioxide (V{sub 2}O{sub 3}) undergoes a number of phase transitions as a function of temperature and doping. These phase transformations have been studied extensively using numerous experimental techniques. In this article, the author attempts to briefly review the experimental data on the pure and doped V{sub 2}O{sub 3} system.

  10. Pure and doped vanadium sesquioxide: A brief experimental review

    Science.gov (United States)

    Yethiraj, Mohana

    1990-09-01

    Vanadium sesquioxide (V 2O 3) undergoes a number of phase transitions as a function of temperature and doping. These phase transformations have been studied extensively using numerous experimental techniques. In this article, I shall attempt to briefly review the experimental data on the pure and doped V 2O 3 system.

  11. Role of mesoscopic morphology in charge transport of doped ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2. Role of mesoscopic morphology in charge transport of doped polyaniline ... In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among ...

  12. Gene doping: an overview and current implications for athletes

    NARCIS (Netherlands)

    van der Gronde, T.; de Hon, O.; Haisma, H.J.; Pieters, T.

    2013-01-01

    The possibility of gene doping, defined as the transfer of nucleic acid sequences and/or the use of normal or genetically modified cells to enhance sport performance, is a real concern in sports medicine. The abuse of knowledge and techniques gained in the area of gene therapy is a form of doping,

  13. Thiourea-doped ammonium dihydrogen phosphate: A single crystal ...

    Indian Academy of Sciences (India)

    Thiourea-doped ammonium dihydrogen phosphate (TADP) exhibits nonlinear optical property and the second harmonic generation efficiency of these crystals is three times that of pure ammonium dihydrogen phosphate (ADP) crystal. In this context, the study of structural distortion in the thiourea-doped ADP crystal is ...

  14. Enhanced room temperature multiferroicity in Gd doped BFO

    CSIR Research Space (South Africa)

    Pradhan, SK

    2009-01-01

    Full Text Available deficient Gd doped multiferroic BFO system. At particular doping level of Gd, this bulk ceramics showed spectacular M~H behavior at room temperature which is likely to open a new avenue for the potential applications in information storing technology as well...

  15. Terahertz radiation from delta-doped GaAs

    DEFF Research Database (Denmark)

    Birkedal, Dan; Hansen, Ole; Sørensen, Claus Birger

    1994-01-01

    Terahertz pulse emission from four different delta-doped molecular beam epitaxially grown GaAs samples is studied. We observe a decrease of the emitted THz pulse amplitude as the distance of the delta-doped layer from the surface is increased, and a change in polarity of the THz pulses as compare...

  16. Effect of Zn doping on optical properties and photoconductivity of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 3. Effect of Zn doping on optical properties and ... Surprisingly, regardless of doping level, the luminescent properties of films are related to the fundamental bandgap energy and deep levels inside the bandgap. Photoconductivity of the films have been ...

  17. Effect of doping on TSD relaxation in cellulose acetate films

    Indian Academy of Sciences (India)

    Unknown

    The peak currents, released charge and activation energies associated with the peaks are affected by AA doping. The effect of doping with acrylic acid on the discharge current indicates the formation of molecular aggregates. Keywords. TSD relaxation; cellulose acetate; acrylic acid; molecular aggregates. 1. Introduction.

  18. BF3-doped polyaniline: A novel conducting polymer

    Indian Academy of Sciences (India)

    Abstract. We review the unusual structural, transport and magnetic properties of highly conducting polyaniline, doped with boron trifluoride. Our studies establish the unique conducting state of this system, which is in distinct contrast with the conventional proton-doped polyaniline samples.

  19. Tunable two-phase coexistence in half-doped manganites

    Indian Academy of Sciences (India)

    Our recent work on half-doped manganites builds on those ideas to explain our data showing continuously tunable phase coexistence of FM and AFM states. Macroscopic hysteresis across transitions is often used to assert their first-order nature, and this has also been done in the case of half-doped manganites [6]. Kuwa-.

  20. Spectroscopy and dynamics of rare earth doped fluorides

    NARCIS (Netherlands)

    Ebens, Willem Omco

    1995-01-01

    The defect structure of RE doped Fluorides has been studied along with the conductivity properties, using a variety of techniques, both experimental and theoretical. Two systems have been studied in detail, which represent two kinds of defect states for RE doped SrFr. The system SrFr:CeF, has been

  1. Effect of paramagnetic manganese ions doping on frequency and ...

    Indian Academy of Sciences (India)

    The manganese doped layered ceramic samples (Na1.9Li0.1)Ti3O7 : XMn(0.01 ≤ X ≤ 0.1) have been prepared using high temperature solid state reaction. The room temperature electron paramagnetic resonance (EPR) investigations exhibit that at lower percentage of doping the substitution of manganese ions occur as ...

  2. Effects of Nb doping on the microstructure, ferroelectric and ...

    Indian Academy of Sciences (India)

    ... by a conventional oxide-mixed method and the effects of Nb-doping on microstructure, piezoelectric and ferroelectricproperties of the ceramics were investigated. All the ceramics exhibit a pure perovskite structure with rhombohedral symmetry. The grain growth of the ceramics is inhibited after the addition of Nb doping.

  3. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  4. Electrochemical preparation of nitrogen-doped graphene quantum ...

    Indian Academy of Sciences (India)

    Abstract. Here we report a remarkable transformation of nitrogen-doped multiwalled carbon nanotubes. (MWCNTs) to size selective nitrogen-doped graphene quantum dots (N-GQDs) by a two-step electrochemical method. The sizes of the N-GQDs strongly depend on the applied anodic potential, moreover increasing ...

  5. Site-specific doping, tunable dielectric properties and intrinsic ...

    Indian Academy of Sciences (India)

    2015-05-29

    May 29, 2015 ... Mn doping in SrTiO3 leads to the emergence of qualitatively distinct and novel physical properties. We show that Mn ions can be controllably doped at either of the perovskite (Sr) or (Ti) site as well as at both sites simultaneously and the resultant physical properties depend intimately on the particular ...

  6. Synthesis and spectroscopic characterization of palladium-doped ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we reported synthesis of palladium (Pd)-doped titanium dioxide (TiO2) (Pd-TiO2) nanopar- ticles by the sol–gel-assisted method. The synthesized Pd-doped TiO2 nanoparticles were characterized using X-ray diffraction, transmission electronic microscopy, energy-dispersive spectroscopy, Fourier ...

  7. Utilities in UNIX

    International Nuclear Information System (INIS)

    Perez, L.

    2002-01-01

    This manual goes to the users with some or much experience in the unix operating system. In such manner that they can get more efficiency using the unix of the most vendors. Include the majority of UNIX commands, shell built-in functions to create scripts, and a brief explication of the variables in several environments. In addition, other products are included, more and more integrated in the most of the unix operating systems. For example: the scanning and processing language awk, the print server LPRng, GNU Utilities, batch subsystem, etc. The manual was initially based in an specific unix. But it and been written for use of the most unix that exist: Tru64 unix, aix, iris, hpux. solaris y linux. In this way, many examples in the chapter had been included. The purpose of this manual is to provide an UNIX reference for advanced users in any of the unix operating systems family. (Author)

  8. Efficiency of Nb-Doped ZnO Nanoparticles Electrode for Dye-Sensitized Solar Cells Application

    Science.gov (United States)

    Anuntahirunrat, Jirapat; Sung, Youl-Moon; Pooyodying, Pattarapon

    2017-09-01

    The technological of Dye-sensitized solar cells (DSSCs) had been improved for several years. Due to its simplicity and low cost materials with belonging to the part of thin films solar cells. DSSCs have numerous advantages and benefits among the other types of solar cells. Many of the DSSC devices had use organic chemical that produce by specific method to use as thin film electrodes. The organic chemical that widely use to establish thin film electrodes are Zinc Oxide (ZnO), Titanium Dioxide (TiO2) and many other chemical substances. Zinc oxide (ZnO) nanoparticles had been used in DSSCs applications as thin film electrodes. Nanoparticles are a part of nanomaterials that are defined as a single particles 1-100 nm in diameter. From a few year ZnO widely used in DSSC applications because of its optical, electrical and many others properties. In particular, the unique properties and utility of ZnO structure. However the efficiency of ZnO nanoparticles based solar cells can be improved by doped various foreign impurity to change the structures and properties. Niobium (Nb) had been use as a dopant of metal oxide thin films. Using specification method to doped the ZnO nanoparticles thin film can improved the efficiencies of DSSCs. The efficiencies of Nb-doped ZnO can be compared by doping 0 at wt% to 5 at wt% in ZnO nanoparticles thin films that prepared by the spin coating method. The thin film electrodes doped with 3 at wt% represent a maximum efficiencies with the lowest resistivity of 8.95×10-4 Ω·cm.

  9. Energy utilities and the Internet

    International Nuclear Information System (INIS)

    2000-01-01

    The chances for energy utilities in the Netherlands to present themselves on the Internet are briefly outlined. It appears that other businesses are ahead of the Dutch utilities in offering electronic services with respect to energy

  10. Myostatin: genetic variants, therapy and gene doping

    Directory of Open Access Journals (Sweden)

    André Katayama Yamada

    2012-09-01

    Full Text Available Since its discovery, myostatin (MSTN has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.Desde sua descoberta, a miostatina (MSTN entrou na linha de frente em pesquisas relacionadas às terapias musculares porque mutações intrínsecas ou inibição desta proteína tanto por abordagens farmacológicas como genéticas resultam em hipertrofia muscular e hiperplasia. Além do aumento da massa muscular, a inibição de MSTN potencialmente prejudica o tecido conectivo, modula a força muscular, facilita o transplante de mioblastos, promove regeneração tecidual, induz termogênese no tecido adiposo e aumenta a oxidação na musculatura esquelética. É também sabido que os atuais avanços em terapia gênica têm uma relação com o esporte devido ao uso ilícito de tal método. Os efeitos adversos de tal abordagem, seus efeitos no desempenho de atletas e métodos para detectar doping genético s

  11. Electronic transport in Si:P δ-doped wires

    DEFF Research Database (Denmark)

    Smith, J. S.; Drumm, D. W.; Budi, Akin

    2015-01-01

    Despite the importance of Si:P δ-doped wires for modern nanoelectronics, there are currently no computational models of electron transport in these devices. In this paper we present a nonequilibrium Green’s function model for electronic transport in a δ-doped wire, which is described by a tight......-binding Hamiltonian matrix within a single-band effective-mass approximation. We use this transport model to calculate the current-voltage characteristics of a number of δ-doped wires, achieving good agreement with experiment. To motivate our transport model we have performed density-functional calculations...... for a variety of δ-doped wires, each with different donor configurations. These calculations also allow us to accurately define the electronic extent of a δ-doped wire, which we find to be at least 4.6 nm....

  12. Tailoring thermal transport properties of graphene by nitrogen doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tingting; Li, Jianhua; Cao, Yuwei; Zhu, Liyan, E-mail: lyzhu@hytc.edu.cn; Chen, Guibin, E-mail: gbchen@hytc.edu.cn [Huaiyin Normal University, School of Physics and Electronic & Electrical Engineering (China)

    2017-02-15

    The influence of two different nitrogen doping configurations, graphite-like and pyridinic-like nitrogen doping (denoted as graphite-N and pyridinic-N hereafter, respectively), on the thermal conduction of graphene is carefully studied via non-equilibrium molecular dynamic (NEMD) simulations. The thermal conductivity is more strongly suppressed in the pyridinic-N-doped graphene than that in the graphite-N-doped sample, which can be well understood from the changes in bond strength between nitrogen and carbon atoms, phonon group velocities, phonon density of states, participation ratio, and phonon transmission. Our study indicates that the pyridinic-N doping is an efficient method to tune the thermal conduction in graphene, especially for the situation where low thermal conductivity is requested, e.g., thermoelectric applications and thermal shielding.

  13. Synthesis of S-doped graphene by liquid precursor.

    Science.gov (United States)

    Gao, Hui; Liu, Zheng; Song, Li; Guo, Wenhua; Gao, Wei; Ci, Lijie; Rao, Amrita; Quan, Weijin; Vajtai, Robert; Ajayan, Pulickel M

    2012-07-11

    Doping is a common and effective approach to tailor semiconductor properties. Here, we demonstrate the growth of large-area sulfur (S)-doped graphene sheets on copper substrate via the chemical vapor deposition technique by using liquid organics (hexane in the presence of S) as the precursor. We found that S could be doped into graphene's lattice and mainly formed linear nanodomains, which was proved by elemental analysis, high resolution transmission microscopy and Raman spectra. Measurements on S-doped graphene field-effect transistors (G-FETs) revealed that S-doped graphene exhibited lower conductivity and distinctive p-type semiconductor properties compared with those of pristine graphene. Our approach has produced a new member in the family of graphene based materials and is promising for producing graphene based devices for multiple applications.

  14. Two dimensional tunable photonic crystals and n doped semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Hussein A. [Dept. of Physics, Faculty of Sciences, Beni-Suef University (Egypt); El-Naggar, Sahar A. [Dept. of Engineering Math. and Physics, Faculty of Engineering, Cairo University, Giza (Egypt); Aly, Arafa H., E-mail: arafa16@yahoo.com [Dept. of Physics, Faculty of Sciences, Beni-Suef University (Egypt)

    2015-06-15

    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications.

  15. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    International Nuclear Information System (INIS)

    Kotov, I.V.; Humanic, T.J.; Nouais, D.; Randel, J.; Rashevsky, A.

    2006-01-01

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and s imulation/atlas.html>] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile

  16. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V. [Ohio State University, Columbus, OH 43210 (United States)]. E-mail: kotov@mps.ohio-state.edu; Humanic, T.J. [Ohio State University, Columbus, OH 43210 (United States); Nouais, D. [INFN, Sezione di Torino, I-10125 Turin (Italy); Randel, J. [Ohio State University, Columbus, OH 43210 (United States); Rashevsky, A. [INFN, Sezione di Triste, I-34127 Trieste (Italy)

    2006-11-30

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and ] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile.

  17. Optical method for the screening of doping substances

    International Nuclear Information System (INIS)

    Lademann, J; Patzelt, A; Richter, H; Sterry, W; Shevtsova, J; Gladkowa, N D; Gelikonov, V M; Gonchukov, S A; Blume-Peytavi, U

    2008-01-01

    During the last years, an increased misuse of doping substances in sport has been observed. The action of doping substances characterized by the stimulation of blood flow and metabolic processes is also reflected in the hair structure. In the present study it was demonstrated that optical coherent tomography is well suited for the analysis of hair parameters influenced by doping. Analyzing 20 patients, systemically treated with steroids which also represent doping substances, it was found that in all cases a significant increase in the cross-section of the hairs could be detected. The results obtained in the study are not only important for the screening of doping substances but also for medical diagnostics and control of compliance of patients

  18. Effect of doping on the electron transport in polyfluorene

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, Manisha, E-mail: mansa83@gmail.com [Soft Materials Research Laboratory, Centre of Material Sciences, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad, 211002 (India); Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Srivastava, Ritu [Physics for Energy Harvesting Division, National Physical Laboratory (Council of Scientific and Industrial Research), Dr K. S. Krishnan Road, New Delhi 110012 (India); Dhar, Ravindra [Soft Materials Research Laboratory, Centre of Material Sciences, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad, 211002 (India); Tiwari, R. S. [Department of Physics, Banaras Hindu University, Varanasi-221005 (India)

    2016-05-06

    In this paper, electron transport of pure and DMC doped polyfluorne (PF) films have been studied at various doping concentrations. Pure films show space charge limited conduction with field and temperature dependent mobility. The J–V characteristics of doped PF were ohmic at low voltages due to thermally released carriers from dopant states. At higher voltages the current density increases nonlinearly due to field dependent mobility and carrier concentration thereby filling of tail states of HOMO of the host. The conductivity of doped films were analyzed using the Unified Gaussian Disorder Model (UGDM). The carrier concentration obtained from the fitting show a non-linear dependence on doping concentration which may be due to a combined effect of thermally activated carrier generation and increased carrier mobility.

  19. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures

    Science.gov (United States)

    Ye, Lingting; Zhang, Minyi; Huang, Ping; Guo, Guocong; Hong, Maochun; Li, Chunsen; Irvine, John T. S.; Xie, Kui

    2017-01-01

    Sustainable future energy scenarios require significant efficiency improvements in both electricity generation and storage. High-temperature solid oxide cells, and in particular carbon dioxide electrolysers, afford chemical storage of available electricity that can both stabilize and extend the utilization of renewables. Here we present a double doping strategy to facilitate CO2 reduction at perovskite titanate cathode surfaces, promoting adsorption/activation by making use of redox active dopants such as Mn linked to oxygen vacancies and dopants such as Ni that afford metal nanoparticle exsolution. Combined experimental characterization and first-principle calculations reveal that the adsorbed and activated CO2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The dual doping strategy provides optimal performance with no degradation being observed after 100 h of high-temperature operation and 10 redox cycles, suggesting a reliable cathode material for CO2 electrolysis. PMID:28300066

  20. X-ray photoelectron spectroscopy studies on Pd doped SnO2 liquid petroleum gas sensor

    Science.gov (United States)

    Phani, A. R.

    1997-10-01

    The present investigation deals with the electrical response of palladium doped tin oxide, as a means of improving the selectivity for liquid petroleum gas (LPG) in the presence of CO, CH4. The sensor element with the composition of Pd(1.5 wt %) in the base material SnO2 sintered at 800 °C, has shown a high sensitivity towards LPG with a negligible cross interference of CO and CH4 at an operating temperature of 350 °C. This greatly suggests the possibility of utilizing the sensor for the detection of LPG. X-ray photoelectron spectroscopy studies have been carried out to determine the possible chemical species involved in the gas-solid interaction and the enhancing mechanism of the Pd doped SnO2 sensor element, towards LPG sensitivity.

  1. Low temperature fabrication and doping concentration analysis of Au/Sb ohmic contacts to n-type Si

    Directory of Open Access Journals (Sweden)

    J. Q. Liu

    2015-11-01

    Full Text Available This paper investigates low temperature ohmic contact formation of Au/Sb to n-type Si substrates through AuSb/NiCr/Au metal stacks. Liquid epitaxy growth is utilized to incorporate Sb dopants into Si substrate in AuSi melt. The best specific contact resistivity achieved is 0.003 Ω ⋅ cm2 at 425 oC. Scanning electron microscopy (SEM reveals inverted pyramidal crater regions at the metal/semiconductor interface, indicating that AuSi alloying efficiently occurs at such sites. Secondary ion mass spectroscopy (SIMS shows that Sb atoms are successfully incorporated into Si as doping impurities during the anneal process, and the Sb doping concentration at the contact interface is found to be higher than the solid solubility limit in a Si crystal. This ohmic contacts formation method is suitable for semiconductor fabrication processes with limited thermal budget, such as post CMOS integration of MEMS.

  2. Low temperature fabrication and doping concentration analysis of Au/Sb ohmic contacts to n-type Si

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. Q.; Wang, C.; Zhu, T.; Wu, W. J. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Fan, J.; Tu, L. C., E-mail: tlc@hust.edu.cn [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Institute of Geophysics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-11-15

    This paper investigates low temperature ohmic contact formation of Au/Sb to n-type Si substrates through AuSb/NiCr/Au metal stacks. Liquid epitaxy growth is utilized to incorporate Sb dopants into Si substrate in AuSi melt. The best specific contact resistivity achieved is 0.003 Ω ⋅ cm{sup 2} at 425 {sup o}C. Scanning electron microscopy (SEM) reveals inverted pyramidal crater regions at the metal/semiconductor interface, indicating that AuSi alloying efficiently occurs at such sites. Secondary ion mass spectroscopy (SIMS) shows that Sb atoms are successfully incorporated into Si as doping impurities during the anneal process, and the Sb doping concentration at the contact interface is found to be higher than the solid solubility limit in a Si crystal. This ohmic contacts formation method is suitable for semiconductor fabrication processes with limited thermal budget, such as post CMOS integration of MEMS.

  3. Thermoelectric and magnetic properties of Cr-doped single crystal Bi2Se3 - Search for energy filtering

    Science.gov (United States)

    Cermak, P.; Ruleova, P.; Holy, V.; Prokleska, J.; Kucek, V.; Palka, K.; Benes, L.; Drasar, C.

    2018-02-01

    Thermoelectric effects are one of the promising ways to utilize waste heat. Novel approaches have appeared in recent decades aiming to enhance thermoelectric conversion. The theory of energy filtering of free carriers by inclusions is among the latest developed methods. Although the basic idea is clear, experimental evidence of this phenomenon is rare. Based on this concept, we searched suitable systems with stable structures showing energy filtering. Here, we report on the anomalous behavior of Cr-doped single-crystal Bi2Se3 that indicates energy filtering. The solubility of chromium in Bi2Se3 was studied, which is the key parameter in the formation process of inclusions. We present recent results on the effect of Cr-doping on the transport coefficients on a wide set of single crystalline samples. Magnetic measurements were used to corroborate the conclusions drawn from the transport and X-ray measurements.

  4. Spectrophotometric Analysis of Phosphoric Acid Leakage in High-Temperature Phosphoric Acid-Doped Polybenzimidazole Membrane Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Seungyoon Han

    2016-01-01

    Full Text Available High-temperature proton exchange membrane fuel cells (HT-PEMFCs utilize a phosphoric acid- (PA- doped polybenzimidazole (PBI membrane as a polymer electrolyte. The PA concentration in the membrane can affect fuel cell performance, as a significant amount of PA can leak from the membrane electrode assembly (MEA by dissolution in discharged water, which is a byproduct of cell operation. Spectrophotometric analysis of PA leakage in PA-doped polybenzimidazole membrane fuel cells is described here. This spectrophotometric analysis is based on measurement of absorption of an ion pair formed by phosphomolybdic anions and the cationoid color reagent. Different color reagents were tested based on PA detection sensitivity, stability of the formed color, and accuracy with respect to the amount of PA measured. This method allows for nondestructive analysis and monitoring of PA leakage during HT-PEMFCs operation.

  5. Subthreshold Current and Swing Modeling of Gate Underlap DG MOSFETs with a Source/Drain Lateral Gaussian Doping Profile

    Science.gov (United States)

    Singh, Kunal; Kumar, Sanjay; Goel, Ekta; Singh, Balraj; Kumar, Mirgender; Dubey, Sarvesh; Jit, Satyabrata

    2017-01-01

    This paper proposes a new model for the subthreshold current and swing of the short-channel symmetric underlap ultrathin double gate metal oxide field effect transistors with a source/drain lateral Gaussian doping profile. The channel potential model already reported earlier has been utilized to formulate the closed form expression for the subthreshold current and swing of the device. The effects of the lateral straggle and geometrical parameters such as the channel length, channel thickness, and oxide thickness on the off current and subthreshold slope have been demonstrated. The devices with source/drain lateral Gaussian doping profiles in the underlap structure are observed to be highly resistant to short channel effects while improving the current drive. The proposed model is validated by comparing the results with the numerical simulation data obtained by using the commercially available ATLAS™, a two-dimensional (2-D) device simulator from SILVACO.

  6. Mesoporous Phosphorus-Doped g-C3N4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance.

    Science.gov (United States)

    Zhu, Yun-Pei; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2015-08-05

    Graphitic carbon nitride (g-C3N4) has been deemed a promising heterogeneous metal-free catalyst for a wide range of applications, such as solar energy utilization toward water splitting, and its photocatalytic performance is reasonably adjustable through tailoring its texture and its electronic and optical properties. Here phosphorus-doped graphitic carbon nitride nanostructured flowers of in-plane mesopores are synthesized by a co-condensation method in the absence of any templates. The interesting structures, together with the phosphorus doping, can promote light trapping, mass transfer, and charge separation, enabling it to perform as a more impressive catalyst than its pristine carbon nitride counterpart for catalytic hydrogen evolution under visible light irradiation. The catalyst has low cost, is environmentally friendly, and represents a potential candidate in photoelectrochemistry.

  7. Optical and structural characterization of GaSb and Te-doped GaSb single crystals

    International Nuclear Information System (INIS)

    Tirado-Mejia, L.; Villada, J.A.; Rios, M. de los; Penafiel, J.A.; Fonthal, G.; Espinosa-Arbelaez, D.G.; Ariza-Calderon, H.; Rodriguez-Garcia, M.E.

    2008-01-01

    Optical and structural properties of GaSb and Te-doped GaSb single crystals are reported herein. Utilizing the photoreflectance technique, the band gap energy for doped samples was obtained at 0.814 eV. Photoluminescence (PL) spectra showed a peak at 0.748 eV that according to this research, belongs to electronic states of pure GaSb and not to the longitudinal optical (LO) phonon replica as has been reported by other authors. Analysis of the full width at half maximum (FWHM) values of X-ray diffraction, as well as micro-Raman peaks showed that the inclusion of Te decreases the crystalline quality

  8. A historical glance to the doping phenomenon

    Directory of Open Access Journals (Sweden)

    María de Lourdes Rodríguez-Pérez

    2015-04-01

    Full Text Available From the humanity's beginnings, the rivalry has made that in any sport competition all the possible means are used (licit and illicit to obtain an advantage and this way, to get the status or money associated to the victory, appea ling in many cases to the doping; where doctors, trainers and pharmacologists have worked in non ethic way to increase the sportsmen performance. The Anglo - Saxon term “doping” is derived from the word “ dop" of kaffir origin, south African tribe , adapted later to the Boer and, fi n ally to English. Firstly it made mention to a strong liquor used by the tribes in the cult ceremonies to the gods. Some of the first s ubstances used with this end are ”hydromel", as stimulating and wine due to its inhibitors and relaxants effects , the win e was used a lot in the first Olympic Games. I n the III century B.C. a preparation with grasses and other substances was used to improve the sportsmen performance . We can say therefore that the doping history goes back to the Olympic Games of the Classic G reece, although, it is not until the second half of the XIX century, when its commercial peak begins and it its consumption incredibly increased. At the moment the term “doping” is used in the spor t environment and it refers to the use of forbidden substa nces (or the presence of markers of this substances in the athlete's body or methods that can improve the physical or mental condition of a spo rtsman artificially, and with it, the performance in the sport practice, according to the International Olympic Committee. The present research seeks to carry out a coursebook o n the historical aspects of the doping development from its beginnings until the present time due to the relevance this marked phenomenon has gotten in the contemporary sport and its univers al repercussion.

  9. Detection of SARMs in doping control analysis.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2018-03-15

    The class of selective androgen receptor modulators (SARMs) has been the subject of intense and dedicated clinical research over the past two decades. Potential therapeutic applications of SARMs are manifold and focus particularly on the treatment of conditions manifesting in muscle loss such as general sarcopenia, cancer-associated cachexia, muscular dystrophy, etc. Consequently, based on the substantial muscle- and bone-anabolic properties of SARMs, these agents constitute substances with significant potential for misuse in sport and have therefore been added to the Word Anti-Doping Agency's (WADA's) Prohibited List in 2008. Since then, numerous adverse analytical findings have been reported for various different SARMs, which has underlined the importance of proactive and preventive anti-doping measures concerning emerging drugs such as these anabolic agents, which have evidently been misused in sport despite the fact that none of these SARMs has yet received full clinical approval. In this review, analytical data on SARMs generated in the context of research conducted for sports drug testing purposes are summarized and state-of-the-art test methods aiming at intact drugs as well as diagnostic urinary metabolites are discussed. Doping control analytical approaches predominantly rely on chromatography hyphenated to mass spectrometry, which have allowed for appropriately covering the considerable variety of pharmacophores present in SARMs such as the non-steroidal representatives ACP-105, BMS-564929, GLPG0492 (DT-200), LG-121071, LGD-2226, LGD-4033/VK 5211, ostarine/enobosarm, RAD-140, S-40503, etc. as well as steroidal compounds such as MK-0773 and YK-11. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Neutron-transmutation-doped germanium bolometers

    International Nuclear Information System (INIS)

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  11. Uneven book on doping and public health

    DEFF Research Database (Denmark)

    Christiansen, Ask Vest

    2017-01-01

    Professor Arne Ljungqvist is a heavyweight player in international sport. Not so much because he finished in the top three of European high jumpers at the Olympic Games in Helsinki in 1952. But because of his massive influence in international sport policy via his high ranked positions in the IAA......-2014, and Chairman of WADA’s Health, Medical & Research Committee 1999-2014. While he thus cannot claim to be have an impartial voice in anti-doping, he does have extensive knowledge and an enormous network....

  12. Magnetic correlations in doped transition metal oxides

    International Nuclear Information System (INIS)

    The authors review recent reactor- and spallation-source-based neutron scattering experiments on the magnetic fluctuations and order in a variety of doped transition metal oxides. In particular, data are shown for the NiO chain compound, Y 2-x Ca x BaNiO 5 , the two-dimensional cuprate superconductors La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 6+x , and the classical three-dimensional ''Mott-Hubbard'' system V 2-y O 3

  13. Doping and cluster formation in diamond

    KAUST Repository

    Schwingenschlögl, Udo

    2011-09-09

    Introducing a cluster formation model, we provide a rational fundamental viewpoint for the difficulty to achieve n-type dopeddiamond. We argue that codoping is the way forward to form appropriately doped shallow regions in diamond and other forms of carbon such as graphene. The electronegativities of the codopants are an important design criterion for the donor atom to efficiently donate its electron. We propose that the nearest neighbour codopants should be of a considerably higher electronegativity compared to the donor atom. Codoping strategies should focus on phosphorous for which there are a number of appropriate codopants.

  14. Scintillation of rare earth doped fluoride nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Ballato, J. [Center for Optical Materials Science and Engineering Technologies (COMSET), and School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Yukihara, E. G. [Physics Department, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States); DeVol, T. A. [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634-0905 (United States)

    2011-09-12

    The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.

  15. Extended O-Doped Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Stassen, Daphné; Demitri, Nicola; Bonifazi, Davide

    2016-05-10

    The synthesis of O-doped benzorylenes, in which peripheral carbon atoms have been replaced by oxygen atoms, has been achieved for the first time. This includes key high-yielding ring-closure steps which, through intramolecular C-O bond formation, allow stepwise planarization of oligonaphthalenes. Single-crystal X-ray diffraction showed that the tetraoxa derivative forms remarkable face-to-face π-π stacks in the solid state, a favorable solid-state arrangement for organic electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Extended O‐Doped Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Stassen, Daphné; Demitri, Nicola

    2016-01-01

    Abstract The synthesis of O‐doped benzorylenes, in which peripheral carbon atoms have been replaced by oxygen atoms, has been achieved for the first time. This includes key high‐yielding ring‐closure steps which, through intramolecular C−O bond formation, allow stepwise planarization of oligonaphthalenes. Single‐crystal X‐ray diffraction showed that the tetraoxa derivative forms remarkable face‐to‐face π–π stacks in the solid state, a favorable solid‐state arrangement for organic electronics. PMID:27062492

  17. Simultaneous nitrogen doping and reduction of graphene oxide.

    Science.gov (United States)

    Li, Xiaolin; Wang, Hailiang; Robinson, Joshua T; Sanchez, Hernan; Diankov, Georgi; Dai, Hongjie

    2009-11-04

    We developed a simple chemical method to obtain bulk quantities of N-doped, reduced graphene oxide (GO) sheets through thermal annealing of GO in ammonia. X-ray photoelectron spectroscopy (XPS) study of GO sheets annealed at various reaction temperatures reveals that N-doping occurs at a temperature as low as 300 degrees C, while the highest doping level of approximately 5% N is achieved at 500 degrees C. N-doping is accompanied by the reduction of GO with decreases in oxygen levels from approximately 28% in as-made GO down to approximately 2% in 1100 degrees C NH(3) reacted GO. XPS analysis of the N binding configurations of doped GO finds pyridinic N in the doped samples, with increased quaternary N (N that replaced the carbon atoms in the graphene plane) in GO annealed at higher temperatures (> or = 900 degrees C). Oxygen groups in GO were found responsible for reactions with NH(3) and C-N bond formation. Prereduced GO with fewer oxygen groups by thermal annealing in H(2) exhibits greatly reduced reactivity with NH(3) and a lower N-doping level. Electrical measurements of individual GO sheet devices demonstrate that GO annealed in NH(3) exhibits higher conductivity than those annealed in H(2), suggesting more effective reduction of GO by annealing in NH(3) than in H(2), consistent with XPS data. The N-doped reduced GO shows clearly n-type electron doping behavior with the Dirac point (DP) at negative gate voltages in three terminal devices. Our method could lead to the synthesis of bulk amounts of N-doped, reduced GO sheets useful for various practical applications.

  18. Synthesis and characterization of Gd-doped magnetite nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Honghu; Malik, Vikash; Mallapragada, Surya; Akinc, Mufit

    2017-01-01

    Synthesis of magnetite nanoparticles has attracted increasing interest due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. Here we investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizes under the conditions tested (0–10 at% Gd 3+ ). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. Our results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd 3+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe (3−x) Gd x O 4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method. - Highlights: • Gd-doped magnetite nanoparticles are synthesized via aqueous co-precipitation method under mild conditions. • Gd doping affects growth of magnetite nanoparticles leading to tunable particle size. • Gd-doped magnetite nanoparticles exhibit ferrimagnetic properties.

  19. Lanthanide-doped CaS and SrS luminescent nanocrystals : A single-source precursor approach for doping

    NARCIS (Netherlands)

    Zhao, Yiming|info:eu-repo/dai/nl/355358352; Rabouw, Freddy T.|info:eu-repo/dai/nl/413318036; Puffelen, Tim Van; van Walree, Kees|info:eu-repo/dai/nl/147609089; Gamelin, Daniel R.; De Mello Donegá, Celso|info:eu-repo/dai/nl/125593899; Meijerink, A|info:eu-repo/dai/nl/075044986

    2014-01-01

    The incorporation of dopants with optical or magnetic functionalities into colloidal nanocrystals (NCs) has been a longstanding challenge for nanomaterial research. A deeper understanding of the doping kinetics will aid a better control of the doping process. In particular, alkaline-earth sulfides

  20. Intended or Unintended Doping? A Review of the Presence of Doping Substances in Dietary Supplements Used in Sports.

    Science.gov (United States)

    Martínez-Sanz, José Miguel; Sospedra, Isabel; Ortiz, Christian Mañas; Baladía, Eduard; Gil-Izquierdo, Angel; Ortiz-Moncada, Rocio

    2017-10-04

    The use of dietary supplements is increasing among athletes, year after year. Related to the high rates of use, unintentional doping occurs. Unintentional doping refers to positive anti-doping tests due to the use of any supplement containing unlisted substances banned by anti-doping regulations and organizations, such as the World Anti-Doping Agency (WADA). The objective of this review is to summarize the presence of unlabeled doping substances in dietary supplements that are used in sports. A review of substances/metabolites/markers banned by WADA in ergonutritional supplements was completed using PubMed. The inclusion criteria were studies published up until September 2017, which analyzed the content of substances, metabolites and markers banned by WADA. 446 studies were identified, 23 of which fulfilled all the inclusion criteria. In most of the studies, the purpose was to identify doping substances in dietary supplements. Substances prohibited by WADA were found in most of the supplements analyzed in this review. Some of them were prohormones and/or stimulants. With rates of contamination between 12 and 58%, non-intentional doping is a point to take into account before establishing a supplementation program. Athletes and coaches must be aware of the problems related to the use of any contaminated supplement and should pay special attention before choosing a supplement, informing themselves fully and confirming the guarantees offered by the supplement.

  1. Probing the doping mechanisms and electrical properties of Al, Ga and In doped ZnO prepared by spray pyrolysis

    KAUST Repository

    Maller, Robert

    2016-05-24

    The measured structural, optical and electrical properties of Al, Ga and In doped ZnO films deposited using spray pyrolysis are reported over the doping range 0.1 - 3 atomic percent (at. %). Over the entire doping series highly transparent, polycrystalline thin films are prepared. Using the AC Hall effect we probe the electronic properties of our doped films separating the impact of doping on the measured charge carrier concentrations and Hall mobility, with an emphasis on the low doping, < 1 at. %, range. In this doping range highly resistive films are formed and we highlight AC Hall as a reliable and highly reproducible technique for analysing the doping mechanism. The implementation of a simple, post-deposition heat treatment of our AZO films creates typical films with charge carrier concentrations exceeding > 1019 cm-3 and electron mobilities over 10 cm2/Vs. We describe in detail the nature of the defect chemistry and the role of intrinsic defects, particularly traps, and show that despite significant variations in dopant species and grain boundary concentrations that the defect chemistry dominates the electrical characteristics.

  2. Intended or Unintended Doping? A Review of the Presence of Doping Substances in Dietary Supplements Used in Sports

    Science.gov (United States)

    Mañas Ortiz, Christian; Ortiz-Moncada, Rocio

    2017-01-01

    Introduction: The use of dietary supplements is increasing among athletes, year after year. Related to the high rates of use, unintentional doping occurs. Unintentional doping refers to positive anti-doping tests due to the use of any supplement containing unlisted substances banned by anti-doping regulations and organizations, such as the World Anti-Doping Agency (WADA). The objective of this review is to summarize the presence of unlabeled doping substances in dietary supplements that are used in sports. Methodology: A review of substances/metabolites/markers banned by WADA in ergonutritional supplements was completed using PubMed. The inclusion criteria were studies published up until September 2017, which analyzed the content of substances, metabolites and markers banned by WADA. Results: 446 studies were identified, 23 of which fulfilled all the inclusion criteria. In most of the studies, the purpose was to identify doping substances in dietary supplements. Discussion: Substances prohibited by WADA were found in most of the supplements analyzed in this review. Some of them were prohormones and/or stimulants. With rates of contamination between 12 and 58%, non-intentional doping is a point to take into account before establishing a supplementation program. Athletes and coaches must be aware of the problems related to the use of any contaminated supplement and should pay special attention before choosing a supplement, informing themselves fully and confirming the guarantees offered by the supplement. PMID:28976928

  3. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  4. Doping Level of Boron-Doped Diamond Electrodes Controls the Grafting Density of Functional Groups for DNA Assays.

    Science.gov (United States)

    Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang

    2015-09-02

    The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.

  5. Boron-doped MnTe semiconductor-sensitized ZnO solar cells

    Indian Academy of Sciences (India)

    Administrator

    Abstract. We studied the photovoltaic performance of boron-doped MnTe semiconductor-sensitized solar cells (B-doped MnTe SSCs). The B-doped MnTe semiconductor was grown on ZnO using two stages of the successive ionic layer adsorption and reaction (SILAR) technique. The two phases of B-doped semiconductor.

  6. N-doping of organic semiconductors by bis-metallosandwich compounds

    Science.gov (United States)

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  7. Electron Paramagnetic Resonance and X-ray Diffraction of Boron- and Phosphorus-Doped Nanodiamonds

    Science.gov (United States)

    Binh, Nguyen Thi Thanh; Dolmatov, V. Yu.; Lapchuk, N. M.; Shymanski, V. I.

    2017-11-01

    Powders of boron- and phosphorus-doped detonation nanodiamonds and sintered pellets of non-doped nanodiamond powders were studied using electron paramagnetic resonance and x-ray diffraction. Doping of detonation nanodiamond crystals with boron and phosphorus was demonstrated to be possible. These methods could be used to diagnose diamond nanocrystals doped during shock-wave synthesis.

  8. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Tougaard, S.

    2002-01-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced...

  9. Utilization management in anatomic pathology.

    Science.gov (United States)

    Lewandrowski, Kent; Black-Schaffer, Steven

    2014-01-01

    There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.

  10. Utility service entrance in boreholes

    International Nuclear Information System (INIS)

    1987-08-01

    This study evaluates alternatives for utility service entrances to the repository. We determined the requirements for a repository utility supply. These requirements were defined as safety, maintainability, flexibility, reliability, cost efficiency, voltage regulation, and simplicity of operation. The study showed that repository shafts can best satisfy all requirements for location of the utility supply without the use of borehole penetrations into the repository. It is recommended that the shafts be utilized for utility distribution to the repository, and that the current NWTS program position to minimize the number of boreholes penetrating the repository horizon be maintained. 42 refs., 2 figs., 3 tabs

  11. National Utility Rate Database: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  12. Gas utilization technologies

    International Nuclear Information System (INIS)

    Biljetina, R.

    1994-01-01

    One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ''Survey of Natural Research, Development, and Demonstration RD ampersand D Priorities'' indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ''Strategic Vision for Natural Gas Through the Year 2000,'' clearly identify the market sectors driving today's technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors

  13. Knowledge-based utility

    International Nuclear Information System (INIS)

    Chwalowski, M.

    1997-01-01

    This presentation provides industry examples of successful marketing practices by companies facing deregulation and competition. The common thread through the examples is that long term survival of today's utility structure is dependent on the strategic role of knowledge. As opposed to regulated monopolies which usually own huge physical assets and have very little intelligence about their customers, unregulated enterprises tend to be knowledge-based, characterized by higher market value than book value. A knowledge-based enterprise gathers data, creates information and develops knowledge by leveraging it as a competitive weapon. It institutionalizes human knowledge as a corporate asset for use over and over again by the use of databases, computer networks, patents, billing, collection and customer services (BCCS), branded interfaces and management capabilities. Activities to become knowledge-based such as replacing inventory/fixed assets with information about material usage to reduce expenditure and achieve more efficient operations, and by focusing on integration and value-adding delivery capabilities, were reviewed

  14. Debating clinical utility.

    Science.gov (United States)

    Burke, Wylie; Laberge, A-M; Press, N

    2010-01-01

    The clinical utility of genetic tests is determined by the outcomes following test use. Like other measures of value, it is often contested. Stakeholders may have different views about benefits and risks and about the importance of social versus health outcomes. They also commonly disagree about the evidence needed to determine whether a test is effective in achieving a specific outcome. Questions may be presented as factual disagreements, when they are actually debates about what information matters or how facts should be interpreted and used in clinical decision-making. Defining the different issues at stake is therefore an important element of policy-making. Key issues include evidence standards for test use, and in particular, the circumstances under which prospective controlled data should be required, as well as evidence on feasibility, cost and equitable delivery of testing; the goals of population-based screening programs, and in particular, the role of social outcomes in evaluating test value; and the appropriate uses and funding of tests that inform non-medical actions. Addressing each of these issues requires attention to stakeholder values and methods for effective deliberation that incorporate consumer as well as health professional perspectives. Copyright 2010 S. Karger AG, Basel.

  15. Gnuastro: GNU Astronomy Utilities

    Science.gov (United States)

    Akhlaghi, Mohammad

    2018-01-01

    Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.

  16. Automated ISS Flight Utilities

    Science.gov (United States)

    Offermann, Jan Tuzlic

    2016-01-01

    During my internship at NASA Johnson Space Center, I worked in the Space Radiation Analysis Group (SRAG), where I was tasked with a number of projects focused on the automation of tasks and activities related to the operation of the International Space Station (ISS). As I worked on a number of projects, I have written short sections below to give a description for each, followed by more general remarks on the internship experience. My first project is titled "General Exposure Representation EVADOSE", also known as "GEnEVADOSE". This project involved the design and development of a C++/ ROOT framework focused on radiation exposure for extravehicular activity (EVA) planning for the ISS. The utility helps mission managers plan EVAs by displaying information on the cumulative radiation doses that crew will receive during an EVA as a function of the egress time and duration of the activity. SRAG uses a utility called EVADOSE, employing a model of the space radiation environment in low Earth orbit to predict these doses, as while outside the ISS the astronauts will have less shielding from charged particles such as electrons and protons. However, EVADOSE output is cumbersome to work with, and prior to GEnEVADOSE, querying data and producing graphs of ISS trajectories and cumulative doses versus egress time required manual work in Microsoft Excel. GEnEVADOSE automates all this work, reading in EVADOSE output file(s) along with a plaintext file input by the user providing input parameters. GEnEVADOSE will output a text file containing all the necessary dosimetry for each proposed EVA egress time, for each specified EVADOSE file. It also plots cumulative dose versus egress time and the ISS trajectory, and displays all of this information in an auto-generated presentation made in LaTeX. New features have also been added, such as best-case scenarios (egress times corresponding to the least dose), interpolated curves for trajectories, and the ability to query any time in the

  17. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato

    2017-02-01

    Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic

  18. A Moessbauer study of doped magnetite

    International Nuclear Information System (INIS)

    Nistor, C.I.; Boekema, C.; Woude, F. van der; Sawatzky, G.A.

    1975-01-01

    Doped magnetite was investigated by means of the Moessbauer effect to ascertain the behaviour of conduction electrons in magnetite. The Moessbauer spectrum of Fe 3 O 4 recorded at room temperature consisted of two patterns: one corresponding to the Fe 3+ (A) ions and another corresponding to the Fe(B) ions. The first A and B lines of the room temperature Moessbauer spectra of Msub(0.1)Fesub(2.9)O 4 with M = Li, Ni and Sn are presented. The B site lines of the spectra were asymmetrically broadened and showed a certain structure whereas the A site lines were narrow. In the Moessbauer spectrum of Lisub(0.2)Fesub(2.8)O 4 recorded at 407 0 C even separate lines between the A and B patterns were observed. It was found that the symmetry and line broadening were only slightly temperature dependent and were still present at higher temperatures. The application of a charge oscillation model was found to be valid only for lower impurity concentrations. The Moessbauer study of doped magnetite revealed the occurrence of spin and charge density oscillations in the B sublattice. (Z.S.)

  19. Pressure-mediated doping in graphene.

    Science.gov (United States)

    Nicolle, Jimmy; Machon, Denis; Poncharal, Philippe; Pierre-Louis, Olivier; San-Miguel, Alfonso

    2011-09-14

    Exfoliated graphene and few layer graphene samples supported on SiO(2) have been studied by Raman spectroscopy at high pressure. For samples immersed on a alcohol mixture, an electron transfer of ∂n/∂P ∼ 8 × 10(12) cm(-2) GPa(-1) is observed for monolayer and bilayer graphene, leading to giant doping values of n ∼ 6 × 10(13) cm(-2) at the maximum pressure of 7 GPa. Three independent and consistent proofs of the doping process are obtained from (i) the evolution of the Raman G-band to 2D-band intensity ratio, (ii) the pressure coefficient of the G-band frequency, and (iii) the 2D band components splitting in the case of the bilayer sample. The charge transfer phenomena is absent for trilayer samples and for samples immersed in argon or nitrogen. We also show that a phase transition from a 2D biaxial strain response, resulting from the substrate drag upon volume reduction, to a 3D hydrostatic compression takes place when going from the bilayer to the trilayer sample. By model calculations we relate this transition to the unbinding of the graphene-SiO(2) system when increasing the number of graphene layers and as function of the surface roughness parameters. We propose that the formation of silanol groups on the SiO(2) substrate allows for a capacitance-induced substrate-mediated charge transfer.

  20. Westinghouse new advanced developed doped pellet

    International Nuclear Information System (INIS)

    Backmann, Karin; Valizadeh, Sima; Hallstadius, Lars; Wright, Jonathan; Widegren, Hans; Roennberg, Gunnar

    2008-01-01

    Westinghouse has developed ADOPT (Advanced Doped Pellet Technology) UO 2 fuel containing additions of Cr 2 O 3 and Al 2 O 3 . Our paper presents results from the extensive investigation program which covered examinations of doped and reference standard pellets both in the manufactured and irradiated states. The additives facilitate pellet densification during sintering and enlarge the pellet grain size. The in-reactor performance of the ADOPT pellets has been investigated in pool-side and hot cell Post Irradiation Examinations (PIEs), as well as in the Studsvik R2 test reactor. The investigations have identified three areas of improved operational behavior: Reduced fission gas release, improved Pellet Cladding Interaction (PCI) performance thanks to increased pellet plasticity, and higher resistance against post failure degradation. Fuel segments have been exposed to ramp tests and enhanced power steady-state operation in the Studsvik R2 reactor after base-irradiation to above 30 MWd/kgU in a commercial BWR. ADOPT reveals up to 30% lower fission gas release than standard UO 2 pellets. The fuel degradation in an erosion tests under irradiation, showed that ADOPT pellets have a reduced rate of fuel washout, as compared to standard UO 2 pellets. Fuel rods with ADOPT pellets have been irradiated in several LWRs since 1999, including two full SVEA Optima2 reloads in 2005. (orig.)

  1. Doped graphene electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Park, Hyesung; Kim, Ki Kang; Bulovic, Vladimir; Kong, Jing; Rowehl, Jill A

    2010-01-01

    In this work graphene sheets grown by chemical vapor deposition (CVD) with controlled numbers of layers were used as transparent electrodes in organic photovoltaic (OPV) devices. It was found that for devices with pristine graphene electrodes, the power conversion efficiency (PCE) is comparable to their counterparts with indium tin oxide (ITO) electrodes. Nevertheless, the chances for failure in OPVs with pristine graphene electrodes are higher than for those with ITO electrodes, due to the surface wetting challenge between the hole-transporting layer and the graphene electrodes. Various alternative routes were investigated and it was found that AuCl 3 doping on graphene can alter the graphene surface wetting properties such that a uniform coating of the hole-transporting layer can be achieved and device success rate can be increased. Furthermore, the doping both improves the conductivity and shifts the work function of the graphene electrode, resulting in improved overall PCE performance of the OPV devices. This work brings us one step further toward the future use of graphene transparent electrodes as a replacement for ITO.

  2. Color stable manganese-doped phosphors

    Science.gov (United States)

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  3. Dispersion relations in heavily-doped nanostructures

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2016-01-01

    This book presents the dispersion relation in heavily doped nano-structures. The materials considered are III-V, II-VI, IV-VI, GaP, Ge, Platinum Antimonide, stressed, GaSb, Te, II-V, HgTe/CdTe superlattices and Bismuth Telluride semiconductors. The dispersion relation is discussed under magnetic quantization and on the basis of carrier energy spectra. The influences of magnetic field, magneto inversion, and magneto nipi structures on nano-structures is analyzed. The band structure of optoelectronic materials changes with photo-excitation in a fundamental way according to newly formulated electron dispersion laws. They control the quantum effect in optoelectronic devices in the presence of light. The measurement of band gaps in optoelectronic materials in the presence of external photo-excitation is displayed. The influences of magnetic quantization, crossed electric and quantizing fields, intense electric fields on the on the dispersion relation in heavily doped semiconductors and super-lattices are also disc...

  4. Buprenorphine transdermal system utilization.

    Science.gov (United States)

    Wallace, Laura; Kadakia, Aditi

    2017-01-01

    To evaluate utilization patterns in patients initiating buprenorphine transdermal system (BTDS), CIII, and estimate the proportion decreasing their total opioid dose over time. This retrospective cohort study used data from the Truven Health Analytics MarketScan® Commercial Claims and Encounters Database from 1 January 2011 through 31 December 2015. Eligible individuals were adults aged 18-64 years newly dispensed BTDS (index prescription) who had at least six months of insurance coverage prior to (baseline period) and following (study period) the index prescription. Back and neck pain was the most common pain condition in the study population (n = 31,533) and 88% were dispensed opioids in the baseline period. Nearly half (48%) received BTDS in a strength of 10 mcg/hour as their index prescription. Most (80%) patients prescribed BTDS had concomitant prescriptions for other opioids, chiefly immediate-release (IR) opioids (77%). During the baseline period, median opioid dose among patients prescribed opioids was 50 morphine-equivalent doses (MED), with 33% of patients using nonsteroidal anti-inflammatory drugs and 44% adjuvant analgesics. During the study period, BTDS use lasted a median 30 days and mean 100 days. Median dose of BTDS remained largely constant, and median dose of all opioids during continuous use of BTDS was 65.6 units MED. However, 24% of patients reduced total units MED from the baseline period (median mean dose, 74.5 units MED) until the end of the study period (42.8). Most patients initiating treatment with BTDS had a history of treatment with IR opioids. Though the average change in total opioid daily dose after patients were prescribed BTDS was modest, an important subpopulation of approximately one-quarter of patients were able to markedly reduce their total units MED compared with prior opioid therapy. BTDS should be investigated as an option to help patients step down from higher opioid doses.

  5. wssa_utils: WSSA 12 micron dust map utilities

    Science.gov (United States)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2014-02-01

    wssa_utils contains utilities for accessing the full-sky, high-resolution maps of the WSSA 12 micron data release. Implementations in both Python and IDL are included. The code allows users to sample values at (longitude, latitude) coordinates of interest with ease, transparently mapping coordinates to WSSA tiles and performing interpolation. The wssa_utils software also serves to define a unique WSSA 12 micron flux at every location on the sky.

  6. Krypton irradiation damage in Nd-doped zirconolite and perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Davoisne, C. [Department of Materials, Imperial College London, London (United Kingdom); LRCS, CNRS-UMR 6007, Universite de Picardie Jules Verne, Amiens (France); Stennett, M.C.; Hyatt, N.C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield (United Kingdom); Peng, N.; Jeynes, C. [Ion Beam Centre, University of Surrey, Guildford (United Kingdom); Lee, W.E., E-mail: w.e.lee@imperial.ac.uk [Department of Materials, Imperial College London, London (United Kingdom)

    2011-08-01

    Understanding the effect of radiation damage and noble gas accommodation in potential ceramic hosts for plutonium disposition is necessary to evaluate their long-term behaviour during geological disposal. Polycrystalline samples of Nd-doped zirconolite and Nd-doped perovskite were irradiated ex situ with 2 MeV Kr{sup +} at a dose of 5 x 10{sup 15} ions cm{sup -2} to simulate recoil of Pu nuclei during alpha decay. The feasibility of thin section preparation of both pristine and irradiated samples by Focused Ion Beam sectioning was demonstrated. After irradiation, the Nd-doped zirconolite revealed a well defined amorphous region separated from the pristine material by a thin (40-60 nm) damaged interface. The zirconolite lattice was lost in the damaged interface, but the fluorite sublattice was retained. The Nd-doped perovskite contained a defined irradiated layer composed of an amorphous region surrounded by damaged but still crystalline layers. The structural evolution of the damaged regions is consistent with a change from orthorhombic to cubic symmetry. In addition in Nd-doped perovskite, the amorphisation dose depended on crystallographic orientation and possibly sample configuration (thin section or bulk). Electron Energy Loss Spectroscopy revealed Ti remained in the 4+ oxidation state but there was a change in Ti coordination in both Nd-doped perovskite and Nd-doped zirconolite associated with the crystalline to amorphous transition.

  7. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    Science.gov (United States)

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  8. Facility Utilization Reports - FAA Aviation Information Utilization Reports

    Data.gov (United States)

    Department of Transportation — Provides: (1) Space management and planning, including area calculations, tracking space by organization and employee, and monitoring space utilization information....

  9. Calcium decorated and doped phosphorene for gas adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Lalitha, Murugan; Nataraj, Yuvarani; Lakshmipathi, Senthilkumar, E-mail: lsenthilkumar@buc.edu.in

    2016-07-30

    Highlights: • Phosphorene exhibits n-type/p-type nature on decorating/doping calcium respectively. • Gas molecules (CH{sub 4}, CO{sub 2}, H{sub 2} and NH{sub 3}) are physisorbed on phosphorene. • Ca decorated Phosphorene is recommended for high density hydrogen storage applications. • Calcium doping on zigzag and armchair sites makes phosphorene more reactive. • CH{sub 4}, CO{sub 2}, H{sub 2} prefer Ca-doped on zigzag1 site, whereas ammonia prefers Ca-doped on armchair. - Abstract: In this paper, we present the results from first-principles study based on the electronic structure and adsorption characteristics of CH{sub 4}, CO{sub 2}, H{sub 2} and NH{sub 3} adsorbed on Ca decorated/doped phosphorene. Our study finds that phosphorene exhibits n-type behaviour on decorating calcium, and p-type on doping calcium. Gas molecules are physisorbed on both pristine and calcium-mediated phosphorene, visible through their lower binding energy and charge transfer values. Ca decorated phosphorene is suitable for hydrogen storage due to its higher binding energy for H{sub 2}. Ca doped structures shows increased binding affinity towards CH{sub 4} and NH{sub 3} in zigzag1 direction and armchair directions respectively. The extracts of our study implies that Ca doped phosphorene possess increased binding affinity towards gas molecules, and the results are highly helpful for gas adsorption and to design gas sensors based on calcium doped or decorated phosphorene.

  10. Utilization of the irradiation holes in the core at HANARO

    International Nuclear Information System (INIS)

    Lee, Shoong Sung; Ahn, Guk Hoon

    2008-01-01

    HANARO is a multipurpose research reactor. The three hexagonal and four circular holes are reserved for the irradiation tests in the core. Twenty holes including two NTD(Neutron Transmutation Doping) holes, a LH(Large Hole) and NAA holes are located in the reflector tank. These hole have been used for radioisotope production, material and fuel irradiation tests, beam application research and neutron activation analysis. In the initial stage of normal operation, the using time of irradiation holes located in the core was less the 40% of the reactor operation day. To raise utilization of irradiation holes, the equipment and facilities have been developed such as various capsules. Another area for increasing the utilization of HANARO was the fuel irradiation tests to develop the new fuels. Various fuel irradiation tests have been performed. Recently, the usage time of the irradiation holes in the core was more than 90% of the reactor operation day. If the FTL starts an irradiation service, the irradiation holes in the core will be fully used. In this paper describes the status of utilization of irradiation holes in the core

  11. A survey and analysis of demand for HANARO utilization

    International Nuclear Information System (INIS)

    Sohn, J. M.; Yoo, K.J. and others

    1999-03-01

    The purpose of this survey and analysis is to identify the level of demand for the HANARO utilization that will be applied to developing experimental facilities, to advertise the HANARO, and to find able staff members for user group organization. The demand survey was performed on a nationwide basis of universities, hospitals, research institute, industrial firms, and public institutions from May 7, 1998 to July 30, 1998 through the internet, electronic mail, mail or fax. This survey contains of two parts: the first part is to identify the demand for the experimental facilities of HANARO such as neutron beam, cold neutron beam, fuel and material irradiation testing, radioisotope, neutron activation analysis, boron neutron capture therapy, and neutron transmutation doping. The second part is to survey the intention of participating in the neutron beam user group, radioisotope user group, and fuel and material irradiation testing user group. 1,181 individuals have replied to the survey. The number of replies concerning the utilization of HANARO and the user groups are 3,374 and 440, respectively. The results of this demand survey will be analyzed and used to the study of a more active utilization and a more efficient management of HANARO. They will be applied to the future planning the development of the experimental facilities of HANARO. (author). 22 tabs., 30 figs

  12. The upgraded JRR-3 and future scope of its utilization

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko; Umei, Hiroshi; Takahashi, Hidetake; Sakamoto, Masanobu

    1985-10-01

    At the time of start to construct the upgraded JRR-3, the present report describes general features on the upgraded JRR-3 and future scope of its utilization on the purpose of the mutual understanding with researchers who use the reactor and the utilization facilities. The materials edited in the report have been written by 28 reactor engineers and scientists in JAERI, and 35 scientists in universities. According to the reviewed subjects as shown below, it was confirmed that the upgraded JRR-3 would be extensively expected by much more fields. (1) Reactor and utilization facilities. 1. Plan and main features of the upgraded JRR-3, Reactor building 2. Irradiation facilities: Hydraulic rabbits, Pneumatic tubes, Rig Hot Cell, etc. 3. Neutron beam facilities: Horizontal tubes, Cold neutron source and Neutron guide tubes (2) Neutron beam experimental facilities. 1. Neutron diffractometer, neutron spectrometer, Small-angle neutron scattering, Neutron radiography, etc. (3) Recent trends. 1. Irradiation research of fuels and materials in research reactor 2. Activation analysis, Radioisotope, Neutron transmutation doping, etc. 3. Neutron scattering research. (author)

  13. Band gap narrowing and doping level of heavily doped Germanium nanocrystals deduced from photoconductivity studies

    Science.gov (United States)

    Lambert, Y.; Gao, Y.; Pi, X. D.; Grandidier, B.; Stiévenard, D.

    2017-09-01

    We investigate the photoconductivity of a n+-ZnO/n-Ge NCs/p+-GaAs junction where the active layer consists of heavily n-doped Ge NCs synthesized in the gas phase. Measurement of a significant current at energies smaller than the band gap of GaAs demonstrates the photogeneration of charge carriers by the Ge NCs. From the correlation of the NC size with the absorption threshold, a narrowing of the direct band gap in the Ge NC thin film is obtained and attributed to the heavy doping of the Ge NCs. A remarkably high electrical activation of 15% is found for the incorporated P impurities in the NCs.

  14. Luminescence and laser performances of coumarin dyes doped in ORMOSILs

    International Nuclear Information System (INIS)

    Yang Yu; Qian Guodong; Su Deliang; Wang Zhiyu; Wang Minquan

    2005-01-01

    Laser dyes such as coumarin 440 (C440) and coumarin 500 (C500) were doped into vinyltriethoxysilane (VTES)-derived organically modified silicates (ORMOSILs) by sol-gel process. The fluorescence properties of these two dyes doped in VTES-derived ORMOSILs with various initial dye concentrations were studied. A longitudinal pumped solid-state dye laser was established with a Q-switched Nd:YAG laser source. The laser performances of C440 and C500 dyes doped in VTES-derived ORMOSILs were also measured

  15. Doped silicene: Evidence of a wide stability range

    KAUST Repository

    Cheng, Yingchun

    2011-06-17

    The effects of doping on the lattice structure, electronic structure, phonon spectrum, and electron-phonon coupling of low-buckling silicene are studied by first-principles calculations. Although the lattice is found to be very sensitive to the carrier concentration, it is stable in a wide doping range. The frequencies of the E2g-Γ and A′-K Raman modes can be used to probe the carrier concentration. In addition, the phonon dispersion displays Kohn anomalies at the Γ and K points which are reduced by doping. This implies that the electron-phonon coupling cannot be neglected in field-effect transistor applications. Copyright © 2011 EPLA.

  16. Zr doping on lithium niobate crystals: Raman spectroscopy and chemometrics

    Science.gov (United States)

    Kokanyan, Ninel; Chapron, David; Kokanyan, Edvard; Fontana, Marc D.

    2017-03-01

    Raman measurements were investigated on Zr-doped lithium niobate LiNbO3 crystals with different concentrations. Spectra were treated by fitting procedure and principal component analysis which both provide results consistent with each other. The concentration dependence of the frequency on the main low-frequency optical phonons provides an insight of site incorporation of Zr ions in the host lattice. The threshold concentration of about 2% is evidenced, confirming the interest of Zr doping as an alternative to Mg doping for the reduction of the optical damage in lithium niobate.

  17. Optical Properies of Polystyrene Films Doped by Methyl Green Dye

    Directory of Open Access Journals (Sweden)

    Asrar A. Saeed

    2017-11-01

    Full Text Available Effects of methyl green (MG dye on the optical properties of polystyrene (PS have been studied. Pure polystyrene and MG doped PS films were prepared by using casting method. These films were characterized using UV/VIS spectrophotometer technique in order to estimate the type of electric transition which was found to be indirect transition. The value of the optical energy gap was decreased with increasing doping ratios of methyl green dye. Absorption coefficient, extinction coefficient, refractive index and energy gap have been also investigated; it was found that all the above parameters affects by doping dye.

  18. Boron-doped nanodiamonds as possible agents for local hyperthermia

    Science.gov (United States)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2-5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1-5 W cm-2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  19. Synthesis and Characterization Carbon Nanotubes Doped Carbon Aerogels

    Science.gov (United States)

    Xu, Yuelong; Yan, Meifang; Liu, Zhenfa

    2017-12-01

    Polycondensation of phloroglucinol, resorcinol and formaldehyde with carbon nanotube (CNT) as the additives, using sodium carbonate as the catalyst, leads to the formation of CNT - doped carbon aerogels. The structure of carbon aerogels (CAs) with carbon nanotubes (CNTs) were characterized by X-ray diffraction and scanning electron microscopy. The specific surface area, pore size distribution and pore volume were measured by surface area analyzer. The results show that when the optimum doping dosage is 5%, the specific surface area of CNT - doped carbon aerogel is up to 665 m2 g-1 and exhibit plentiful mesoporous.

  20. Lanthanide-doped upconverting phosphors for bioassay and therapy

    Science.gov (United States)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  1. Magnetism in 3d transition metal doped SnO

    KAUST Repository

    Albar, Arwa

    2016-09-12

    Using first principles calculations, we investigate the structural and electronic properties of 3d transition metal doped SnO. We examine the stability of different doping sites using formation energy calculations. The magnetic behavior of the dopant atoms is found to be complex because of interplay between strong structural relaxation, spin-lattice coupling, and crystal field splitting. The interaction between dopant atoms is analyzed as a function of their separation, showing that clustering typically counteracts spin polarization. An exception is found for V doping, which thus turns out to be a promising candidate for realizing a magnetic p-type oxide.

  2. Structural and electrical characterization of zinc oxide doped with antimony

    Directory of Open Access Journals (Sweden)

    G. Juárez Díaz

    2014-08-01

    Full Text Available In this work we report the results of structural and electrical characterization realized on zinc oxide single crystal samples with (001 orientation, which were doped with antimony. Doping was carried out by antimony thermal diffusion at 1000 °C for periods of 1 and 2 hours under nitrogen environment from a solid source formed by antimony oxide. Electrical characterization by I-V curves and Hall effect shown an increase in acceptor concentration which demonstrates that doping is effective and create holes in zinc oxide samples.

  3. Privatization of municipal electrical utilities

    International Nuclear Information System (INIS)

    Carr, J.

    1998-01-01

    The challenges and special issues which arise through the sale of a municipal electric utility were discussed. The recent sales of two utilities, the Kentville Electric Commission in Nova Scotia and Cornwall Electric in Ontario, were used as examples to show how the sale of an electric utility differs from the sale of most business enterprises. Municipal utilities are integral parts of the communities they serve which introduces several complexities into the sale. Factors that require special attention in the sale of the utilities, including electricity rates, local accountability, treatment of employees and local economic development, and the need for a comprehensive communication program to deal with the substantial public interest that sale of a municipal utility will engender, were reviewed

  4. Potential of P-doped carbon nanocone and Si-doped boron nitride ...

    Indian Academy of Sciences (India)

    22

    Si-doped boron nitride nanocone (BNNC) by density functional theory were investigated. The adsorption energies of P and Si on surfaces of CNC and BNNC were -293.1 and -325.7 kcal/mol, respectively. The decomposition of CNC-P-N2O and BNNC-Si-N2O and reduction of CNC-P-. O* and BNNC-Si-O* by CO molecule ...

  5. Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures

    Science.gov (United States)

    Ajay, A.; Lim, C. B.; Browne, D. A.; Polaczyński, J.; Bellet-Amalric, E.; Bleuse, J.; den Hertog, M. I.; Monroy, E.

    2017-10-01

    In this paper, we study band-to-band and intersubband (ISB) characteristics of Si- and Ge-doped GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 μm. Regarding the band-to-band properties, we discuss the variation of the screening of the internal electric field by free carriers, as a function of the doping density and well/nanodisk size. We observe that nanowire heterostructures consistently present longer photoluminescence decay times than their planar counterparts, which supports the existence of an in-plane piezoelectric field associated to the shear component of the strain tensor in the nanowire geometry. Regarding the ISB characteristics, we report absorption covering 1.45-1.75 μm using Ge-doped quantum wells, with comparable performance to Si-doped planar heterostructures. We also report similar ISB absorption in Si- and Ge-doped nanowire heterostructures indicating that the choice of dopant is not an intrinsic barrier for observing ISB phenomena. The spectral shift of the ISB absorption as a function of the doping concentration due to many body effects confirms that Si and Ge efficiently dope GaN/AlN nanowire heterostructures.

  6. Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY

    Directory of Open Access Journals (Sweden)

    Luis H. da S. Lacerda

    2016-04-01

    Full Text Available ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.

  7. [Doping in disabled sports. Doping control activities at the Paralympic Games 1984-2008 and in Germany 1992-2008].

    Science.gov (United States)

    Thevis, Mario; Hemmersbach, Peter; Geyer, Hans; Schänzer, Wilhelm

    2009-12-15

    Activities concerning the fight against doping with regard to the Paralympic Games have been initiated in 1984, when first doping controls were conducted. The foundation of the International Paralympic Committee exactly 20 years ago (1989) considerably supported systematic sports drug-testing programs specifically designed to meet the particular challenges related to disabled sports, which yielded a variety of adverse analytical findings (e.g., with anabolic steroids, diuretics, corticosteroids, and stimulants) especially at Paralympic Summer Games. In Germany, doping controls for handicapped athletes were established in 1992 and have been conducted since by the National Paralympic Committee Germany and the National Anti-Doping Agency. Also here, various analogies in terms of antidoping rule violations were found in comparison to doping controls of nondisabled athletes. In the present article, available numbers of samples analyzed at Paralympic Summer and Winter Games as well as within the doping control program for disabled sports in Germany are summarized, and particularities concerning sample collection and the doping method termed boosting are presented.

  8. Optical sensing of 3-phenoxybenzoic acid as a pyrethroid pesticides exposure marker by surface imprinting polymer capped on manganese-doped zinc sulfide quantum dots

    OpenAIRE

    Vivek Pandey; Abhishek Chauhan; Gajanan Pandey; Mohana Krishna Reddy Mudiam

    2015-01-01

    The present communication deals with the synthesis of luminescent Mn-doped ZnS quantum dots (QDs) anchored to surface imprinted polymer for the optical sensing of 3-phenoxy benzoic acid (3-PBA) in urine samples. The combination of sensing and surface functionalization not only improves the selectivity of the method, but also increases the optosensing ability of the material for non-phosphorescent substances. The developed material was utilized for the selective and sensitive detection of 3-PB...

  9. Mox fuel utilization in ATR

    OpenAIRE

    下村 和生; 川太 徳夫

    1987-01-01

    ATR, a heavy-water moderated boiling-light-water cooled reactor developed in Japan, is a unique reactor with out-standing flexibility regarding nuclear fuel utilization, because it has superior properties concerning the utilization of plutonium, recovered uranium and depleted uranium. The development of this type of reactor is expected to contribute both to the stable supply of energy and to the establishment of plutonium utilization in Japan. Much effort has been and will be made on the deve...

  10. Utility deregulation and AMR technology

    International Nuclear Information System (INIS)

    Moore, G.

    1991-01-01

    This article reviews the effects of deregulation on other utilities and services and examines how the electric utilities can avoid the worst of these effects and capitalize of the best aspects of competition in achieving marketing excellence. The article presents deregulation as a customer service and underscores the need for utilities to learn to compete aggressively and intelligently and provide additional services available through technology such as automated meter reading

  11. Low doping concentration studies of doped PVA-Coumarin nanocomposite films

    International Nuclear Information System (INIS)

    Tripathi, J.; Bisen, R.; Choudhary, A.; Tripathi, S.; Sharma, A.; Shripathi, T.

    2016-01-01

    The observations of combination of Poly (vinyl) alcohol and Coumarin properties in nanocmposite films are reported. The X-ray diffraction measurements reveal nanocrystalline nature of PVA film, which remains nanocrystalline after doping Coumarin but along with PVA peaks, additional peak due to dopant crystallinity is seen. The absorption edge shows a double edge feature, where distinct bandgaps for PVA host and dopant Coumarin are obtained. However at a higher doping wt % of 1 and 2, the absorption is mainly dominated by Coumarin and single absorption edge is observed giving a bandgap equal to that of bulk Coumarin (3.3 eV). The composite formation affects the bonding of host drastically and is seen through the bond modification in FTIR spectra. The results suggest that doping below 2 wt% is advantageous as combination of PVA and Coumarin properties are obtained but at 2 wt %, the properties are dominated by mainly Coumarin and the signature of PVA from optical properties is completely lost.

  12. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.

    Science.gov (United States)

    Mudedla, Sathish Kumar; Balamurugan, Kanagasabai; Kamaraj, Manoharan; Subramanian, Venkatesan

    2016-01-07

    The interaction of nucleobases (NBs) with the surface of silicon doped graphene (SiGr) and defective silicon doped graphene (dSiGr) has been studied using electronic structure methods. A systematic comparison of the calculated interaction energies (adsorption strength) of NBs with the surface of SiGr and dSiGr with those of pristine graphene (Gr) has also been made. The doping of graphene with silicon increases the adsorption strength of NBs. The introduction of defects in SiGr further enhances the strength of interaction with NBs. The appreciable stability of complexes (SiGr-NBs and dSiGr-NBs) arises due to the partial electrostatic and covalent (Si···O(N)) interaction in addition to π-π stacking. The interaction energy increases with the size of graphene models. The strong interaction between dSiGr-NBs and concomitant charge transfer causes significant changes in the electronic structure of dSiGr in contrast to Gr and SiGr. Further, the calculated optical properties of all the model systems using time dependent density functional theory (TD-DFT) reveal that absorption spectra of SiGr and dSiGr undergo appreciable changes after adsorption of NBs. Thus, the significant variations in the HOMO-LUMO gap and absorption spectra of dSiGr after interaction with the NBs can be exploited for possible applications in the sensing of DNA nucleobases.

  13. Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping.

    Science.gov (United States)

    Cabria, I; López, M J; Alonso, J A

    2008-04-14

    Density functional calculations are reported for the adsorption of molecular hydrogen on carbon nanopores. Two models for the pores have been considered: (i) The inner walls of (7,7) carbon nanotubes and (ii) the highly curved inner surface of nanotubes capped on one end. The effect of Li doping is investigated in all cases. The hydrogen physisorption energies increase due to the concavity effect inside the clean nanotubes and on the bottom of the capped nanotubes. Li doping also enhances the physisorption energies. The sum of those two effects leads to an increase by a factor of almost 3 with respect to the physisorption in the outer wall of undoped nanotubes and in flat graphene. Application of a quantum-thermodynamical model to clean cylindrical pores of diameter 9.5 A, the diameter of the (7,7) tube, indicates that cylindrical pores of this size can store enough hydrogen to reach the volumetric and gravimetric goals of the Department of Energy at 77 K and low pressures, although not at 300 K. The results are useful to explain the experiments on porous carbons. Optimizations of the pore size, concavity, and doping appear as promising alternatives for achieving the goals at room temperature.

  14. Low doping concentration studies of doped PVA-Coumarin nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J., E-mail: jtripathi00@rediffmail.com; Bisen, R.; Choudhary, A. [Dept. of Physics, ISLE, IPS Academy, Indore (India); Tripathi, S. [Dept. of Physics, Manipal University Jaipur, Jaipur (India); Presently at: Optics and Thin Film Laboratory, Bhabha Atomic Research Centre-Vizag, Visakhapatnam (India); Sharma, A. [Dept. of Physics, Manipal University Jaipur, Jaipur (India); Shripathi, T. [UGC-DAE Consortium for Scientific Research, Indore (India)

    2016-05-23

    The observations of combination of Poly (vinyl) alcohol and Coumarin properties in nanocmposite films are reported. The X-ray diffraction measurements reveal nanocrystalline nature of PVA film, which remains nanocrystalline after doping Coumarin but along with PVA peaks, additional peak due to dopant crystallinity is seen. The absorption edge shows a double edge feature, where distinct bandgaps for PVA host and dopant Coumarin are obtained. However at a higher doping wt % of 1 and 2, the absorption is mainly dominated by Coumarin and single absorption edge is observed giving a bandgap equal to that of bulk Coumarin (3.3 eV). The composite formation affects the bonding of host drastically and is seen through the bond modification in FTIR spectra. The results suggest that doping below 2 wt% is advantageous as combination of PVA and Coumarin properties are obtained but at 2 wt %, the properties are dominated by mainly Coumarin and the signature of PVA from optical properties is completely lost.

  15. VT Electric Utility Franchise Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) ELCFRANCHISE includes Vermont's Electric Utility Franchise boundaries. It is a compilation of many data sources. The boundaries are approximate...

  16. Enhanced Visible Light Photocatalytic Activity of V2O5 Cluster Modified N-Doped TiO2 for Degradation of Toluene in Air

    Directory of Open Access Journals (Sweden)

    Fan Dong

    2012-01-01

    Full Text Available V2O5 cluster-modified N-doped TiO2 (N-TiO2/V2O5 nanocomposites photocatalyst was prepared by a facile impregnation-calcination method. The effects of V2O5 cluster loading content on visible light photocatalytic activity of the as-prepared samples were investigated for degradation of toluene in air. The results showed that the visible light activity of N-doped TiO2 was significantly enhanced by loading V2O5 clusters. The optimal V2O5 loading content was found to be 0.5 wt.%, reaching a removal ratio of 52.4% and a rate constant of 0.027 min−1, far exceeding that of unmodified N-doped TiO2. The enhanced activity is due to the deposition of V2O5 clusters on the surface of N-doped TiO2. The conduction band (CB potential of V2O5 (0.48 eV is lower than the CB level of N-doped TiO2 (−0.19 V, which favors the photogenerated electron transfer from CB of N-doped TiO2 to V2O5 clusters. This function of V2O5 clusters helps promote the transfer and separation of photogenerated electrons and holes. The present work not only displays a feasible route for the utilization of low cost V2O5 clusters as a substitute for noble metals in enhancing the photocatalysis but also demonstrates a facile method for preparation of highly active composite photocatalyst for large-scale applications.

  17. The Prevalence and Covariates of Potential Doping Behavior in Kickboxing; Analysis Among High-Level Athletes

    Directory of Open Access Journals (Sweden)

    Sekulic Damir

    2017-10-01

    Full Text Available The official reports on doping behavior in kickboxing are alarming, but there have been no empirical studies that examined this problem directly. The aim of this study was to investigate the prevalence, gender differences and covariates of potential-doping-behavior, in kickboxing athletes. A total of 130 high-level kickboxing athletes (92 males, 21.37 ± 4.83 years of age, 8.39 ± 5.73 years of training experience; 38 women, 20.31 ± 2.94 years of age; 9.84 ± 4.74 years of training experience completed questionnaires to study covariates and potential-doping behavior. The covariates were: sport factors (i.e. experience, success, doping-related factors (i.e. opinion about penalties for doping users, number of doping testing, potential-doping-behavior, etc., sociodemographic variables, task- and ego-motivation, knowledge on sports nutrition, and knowledge on doping. Gender-based differences were established by independent t-tests, and the Mann-Whitney test. Multinomial logistic regression analyses were performed to define the relationships between covariates and a tendency toward potential-doping behavior (positive tendency – neutral – negative tendency. The potential-doping behavior was higher in those athletes who perceived kickboxing as doping contaminated sport. The more experienced kickboxers were associated with positive intention toward potential-doping behavior. Positive intention toward potential-doping behavior was lower in those who had better knowledge on sports nutrition. The task- and ego-motivation were not associated to potential-doping behavior. Because of the high potential-doping-behavior (less than 50% of athletes showed a negative tendency toward doping, and similar prevalence of potential-doping behavior between genders, this study highlights the necessity of a systematic anti-doping campaign in kickboxing. Future studies should investigate motivational variables as being potentially related to doping behavior in younger

  18. Controlled cobalt doping in biogenic magnetite nanoparticles

    Science.gov (United States)

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  19. Characterization of boron doped nanocrystalline diamonds

    International Nuclear Information System (INIS)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V

    2008-01-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range

  20. Neodymium-doped laser yttrium oxide ceramics

    International Nuclear Information System (INIS)

    Bagaev, S N; Vatnik, S M; Vedin, I A; Maiorov, A P; Pestryakov, E V; Osipov, V V; Ivanov, M G; Solomonov, V I; Platonov, V V; Orlov, A N; Rasuleva, A V; Ivanov, V V; Kaigorodov, A S; Khrustov, V R; Shestakov, A V; Salkov, A V

    2008-01-01

    We studied mechanical, optical, and lasing parameters of neodymium-doped yttrium oxide ceramics synthesised by using a new technology involving the laser synthesis of nanopowders and their magnetic pulsed compaction. The fracture toughness of ceramics to cracks and its microhardness were measured to be K IC = 0.9-1.4 MPa m 1/2 and H ν = 11.8 GPa, respectively. Ceramic samples sintered in the temperature range from 1550 to 2050 0 C have the porosity (1-150)x10 -4 % and the optical loss coefficient α 1.07 = 0.03-2.1 cm -1 at a wavelength of 1.07 μm. It is shown that such porosity does not affect the optical loss coefficient of light. Lasing at ∼1.079 μm with a slope efficiency of 15% was obtained in a 1.1-mm-thick sample pumped by laser diodes. (active media. lasers)

  1. Viscoelasticity of colloidal polycrystals doped with impurities

    Science.gov (United States)

    Louhichi, Ameur; Tamborini, Elisa; Oberdisse, Julian; Cipelletti, Luca; Ramos, Laurence

    2015-09-01

    We investigate how the microstructure of a colloidal polycrystal influences its linear visco-elasticity. We use thermosensitive copolymer micelles that arrange in water in a cubic crystalline lattice, yielding a colloidal polycrystal. The polycrystal is doped with a small amount of nanoparticles, of size comparable to that of the micelles, which behave as impurities and thus partially segregate in the grain boundaries. We show that the shear elastic modulus only depends on the packing of the micelles and varies neither with the presence of nanoparticles nor with the crystal microstructure. By contrast, we find that the loss modulus is strongly affected by the presence of nanoparticles. A comparison between rheology data and small-angle neutron-scattering data suggests that the loss modulus is dictated by the total amount of nanoparticles in the grain boundaries, which in turn depends on the sample microstructure.

  2. Controlled cobalt doping in biogenic magnetite nanoparticles.

    Science.gov (United States)

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-06

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.

  3. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  4. Oxygen-induced doping on reduced PEDOT.

    Science.gov (United States)

    Mitraka, E; Jafari, M J; Vagin, M; Liu, X; Fahlman, M; Ederth, T; Berggren, M; Jonsson, M P; Crispin, X

    2017-03-07

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) has shown promise as air electrode in renewable energy technologies like metal-air batteries and fuel cells. PEDOT is based on atomic elements of high abundance and is synthesized at low temperature from solution. The mechanism of oxygen reduction reaction (ORR) over chemically polymerized PEDOT:Cl still remains controversial with eventual role of transition metal impurities. However, regardless of the mechanistic route, we here demonstrate yet another key active role of PEDOT in the ORR mechanism. Our study demonstrates the decoupling of conductivity (intrinsic property) from electrocatalysis (as an extrinsic phenomenon) yielding the evidence of doping of the polymer by oxygen during ORR. Hence, the PEDOT electrode is electrochemically reduced (undoped) in the voltage range of ORR regime, but O 2 keeps it conducting; ensuring PEDOT to act as an electrode for the ORR. The interaction of oxygen with the polymer electrode is investigated with a battery of spectroscopic techniques.

  5. Photocatalytic evolution of molecular hydrogen and oxygen over La-doped NaTaO3 particles: Effect of different cocatalysts (Presentation Recording)

    Science.gov (United States)

    Ivanova, Irina; Kandiel, Tarek; Hakki, Amer; Dillert, Ralf; Bahnemann, Detlef W.

    2015-09-01

    To solve the global energy and environmental issues highly efficient systems for solar energy conversion and storage are needed. One of them involves the photocatalytic conversion of solar energy into the storable fuel molecular hydrogen via the water splitting process utilizing metal-oxide semiconductors as catalysts. Since photocatalytic water splitting is still a rather poorly understood reaction, fundamental research in this field is required. Herein, the photocatalytic activity for water splitting was investigated utilizing La-doped NaTaO3 as a model photocatalyst. The activity of La-doped NaTaO3 was assessed by the determination of the overall quantum yield of molecular hydrogen and molecular oxygen evolution. In pure water La-doped NaTaO3 exhibits rather poor activity for the photocatalytic H2 evolution whereby no O2 was detected. To enhance the photocatalytic activity the surface of La-doped NaTaO3 was modified with various cocatalysts including noble metals (Pt, Au and Rh) and metal oxides (NiO, CuO, CoO, AgO and RuO2). The photocatalytic activity was evaluated in pure water, in aqueous methanol solution, and in aqueous silver nitrate solution. The results reveal that cocatalysts such as RuO2 or CuO exhibiting the highest catalytic activity for H2 evolution from pure water, possess, however, the lowest activity for O2 evolution from aqueous silver nitrate solution. La-doped NaTaO3 modified with Pt shows the highest quantum yield of 33 % with respect to the H2 evolution in the presence of methanol. To clarify the role of methanol in such a photocatalytic system, long-term investigations and isotopic studies were performed. The underlying mechanisms of methanol oxidation were elucidated.

  6. Magnetic properties of sulfur-doped graphene

    International Nuclear Information System (INIS)

    Zhu, J.; Park, H.; Podila, R.; Wadehra, A.; Ayala, P.; Oliveira, L.; He, J.; Zakhidov, A.A.; Howard, A.; Wilkins, J.; Rao, A.M.

    2016-01-01

    While studying magnetism of d- and f-electron systems has been consistently an active research area in physics, chemistry, and biology, there is an increasing interest in the novel magnetism of p-electron systems, especially in graphene and graphene-derived nanostructures. Bulk graphite is diamagnetic in nature, however, graphene is known to exhibit either a paramagnetic response or weak ferromagnetic ordering. Although many groups have attributed this magnetism in graphene to defects or unintentional magnetic impurities, there is a lack of compelling evidence to pinpoint its origin. To resolve this issue, we systematically studied the influence of entropically necessary intrinsic defects (e.g., vacancies, edges) and extrinsic dopants (e.g., S-dopants) on the magnetic properties of graphene. We found that the saturation magnetization of graphene decreased upon sulfur doping suggesting that S-dopants demagnetize vacancies and edges. Our density functional theory calculations provide evidence for: (i) intrinsic defect demagnetization by the formation of covalent bonds between S-dopant and edges/vacancies concurring with the experimental results, and (ii) a net magnetization from only zig-zag edges, suggesting that the possible contradictory results on graphene magnetism in the literature could stem from different defect-types. Interestingly, we observed peculiar local maxima in the temperature dependent magnetizations that suggest the coexistence of different magnetic phases within the same graphene samples. - Highlights: • Magnetic properties of pristine and S-doped graphene were investigated. • Pristine graphene with intrinsic defects exhibits a non-zero magnetic moment. • The addition of S-dopants was found to quench the magnetic ordering. • DFT calculations confirmed that magnetization in graphene arises from defects. • DFT calculations show S-dopants quench local magnetic moment of defect structures.

  7. Thermoelectric Properties of Bi Doped Tetrahedrite

    Science.gov (United States)

    Prem Kumar, D. S.; Chetty, R.; Femi, O. E.; Chattopadhyay, K.; Malar, P.; Mallik, R. C.

    2017-05-01

    Bi doped tetrahedrites with nominal compositions of Cu12Sb4- x Bi x S13 ( x = 0, 0.2, 0.4, 0.6, 0.8) were synthesized by the solid state reaction method. Powder x-ray diffraction patterns confirmed that Cu12Sb4S13 (tetrahedrite structure) was the main phase, along with Cu3SbS4 and Cu3SbS3 as the secondary phases. Electron probe microanalysis provided the elemental composition of all the samples. It was confirmed that the main phase is the tetrahedrite phase with slight deviations in the stoichiometry. All the transport properties were measured between 423 K and 673 K. The electrical resistivity increased with an increase in Bi content for all the samples, possibly induced by the variation in the carrier concentration, which may be due to the influence of impurity phases. The increase in electrical resistivity with an increase in temperature indicates the degenerate semiconducting nature of the samples. The absolute Seebeck coefficient is positive throughout the temperature range indicating the p-type nature of the samples. The Seebeck coefficient for all the samples increased with an increase in Bi content as electrical resistivity. The variation of electrical resistivity and the Seebeck coefficient with doping can be attributed to the changes in the carrier concentration of the samples. The total thermal conductivity increases with an increase in temperature and decreases with an increase in the Bi content that could be due to the reduction in carrier thermal conductivity. The highest thermoelectric figure of merit ( zT) 0.84 at 673 K was obtained for the sample with x = 0.2 due to lower thermal conductivity (1.17 W/m K).

  8. Magnetic properties of sulfur-doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J. [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Clemson Nanomaterial Center, Clemson University, Clemson, SC (United States); Park, H. [Department of Physics, The Ohio State University, Columbus, OH (United States); Podila, R., E-mail: rpodila@g.clemson.edu [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Clemson Nanomaterial Center, Clemson University, Clemson, SC (United States); COMSET, Clemson University, Clemson, SC (United States); Wadehra, A. [Department of Physics, The Ohio State University, Columbus, OH (United States); Ayala, P. [Faculty of Physics, University of Vienna, Vienna (Austria); Oliveira, L.; He, J. [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Zakhidov, A.A.; Howard, A. [Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX (United States); Wilkins, J. [Department of Physics, The Ohio State University, Columbus, OH (United States); Rao, A.M., E-mail: arao@g.clemson.edu [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Clemson Nanomaterial Center, Clemson University, Clemson, SC (United States); COMSET, Clemson University, Clemson, SC (United States)

    2016-03-01

    While studying magnetism of d- and f-electron systems has been consistently an active research area in physics, chemistry, and biology, there is an increasing interest in the novel magnetism of p-electron systems, especially in graphene and graphene-derived nanostructures. Bulk graphite is diamagnetic in nature, however, graphene is known to exhibit either a paramagnetic response or weak ferromagnetic ordering. Although many groups have attributed this magnetism in graphene to defects or unintentional magnetic impurities, there is a lack of compelling evidence to pinpoint its origin. To resolve this issue, we systematically studied the influence of entropically necessary intrinsic defects (e.g., vacancies, edges) and extrinsic dopants (e.g., S-dopants) on the magnetic properties of graphene. We found that the saturation magnetization of graphene decreased upon sulfur doping suggesting that S-dopants demagnetize vacancies and edges. Our density functional theory calculations provide evidence for: (i) intrinsic defect demagnetization by the formation of covalent bonds between S-dopant and edges/vacancies concurring with the experimental results, and (ii) a net magnetization from only zig-zag edges, suggesting that the possible contradictory results on graphene magnetism in the literature could stem from different defect-types. Interestingly, we observed peculiar local maxima in the temperature dependent magnetizations that suggest the coexistence of different magnetic phases within the same graphene samples. - Highlights: • Magnetic properties of pristine and S-doped graphene were investigated. • Pristine graphene with intrinsic defects exhibits a non-zero magnetic moment. • The addition of S-dopants was found to quench the magnetic ordering. • DFT calculations confirmed that magnetization in graphene arises from defects. • DFT calculations show S-dopants quench local magnetic moment of defect structures.

  9. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    Science.gov (United States)

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-04

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  10. Monolithic Rare Earth Doped PTR Glass Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of the project is to demonstrate the feasibility of a monolithic solid state laser on the basis of PTR glass co-doped with luminescent rare earth ions....

  11. Photoemission of graded-doping GaN photocathode

    International Nuclear Information System (INIS)

    Fu Xiao-Qian; Chang Ben-Kang; Wang Xiao-Hui; Li Biao; Du Yu-Jie; Zhang Jun-Ju

    2011-01-01

    We study the photoemission process of graded-doping GaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, which results in the enhancement of quantum efficiency. The intervalley scattering mechanism and the lattice scattering mechanism in high electric fields are also investigated. To prevent negative differential mobility from appearing, the surface doping concentration needs to be optimized, and it is calculated to be 3.19×10 17 cm −3 . The graded-doping GaN photocathode with higher performance can be realized by further optimizing the doping profile. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Photoemission of graded-doping GaN photocathode

    Science.gov (United States)

    Fu, Xiao-Qian; Chang, Ben-Kang; Wang, Xiao-Hui; Li, Biao; Du, Yu-Jie; Zhang, Jun-Ju

    2011-03-01

    We study the photoemission process of graded-doping GaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, which results in the enhancement of quantum efficiency. The intervalley scattering mechanism and the lattice scattering mechanism in high electric fields are also investigated. To prevent negative differential mobility from appearing, the surface doping concentration needs to be optimized, and it is calculated to be 3.19×1017 cm-3. The graded-doping GaN photocathode with higher performance can be realized by further optimizing the doping profile. Project supported by the National Natural Science Foundation of China (Grant No. 60871012) and the Research Fund of Nanjing University of Science and Technology (Grant No. 2010ZYTS032).

  13. Electron field emission from boron doped microcrystalline diamond

    International Nuclear Information System (INIS)

    Roos, M.; Baranauskas, V.; Fontana, M.; Ceragioli, H.J.; Peterlevitz, A.C.; Mallik, K.; Degasperi, F.T.

    2007-01-01

    Field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond have been studied. Doping level (N B ) of different samples has been varied by the B/C concentration in the gas feed during the growth process and doping saturation has been observed for high B/C ratios. Threshold field (E th ) for electron emission as function of B/C concentration has been measured, and the influences of grain boundaries, doping level and surface morphology on field emission properties have been investigated. Carrier transport through conductive grains and local emission properties of surface sites have been figured out to be two independent limiting effects in respect of field emission. Emitter current densities of 500 nA cm -2 were obtained using electric fields less than 8 V/μm

  14. Mechanical properties of phosphorus-doped polysilicon films

    CERN Document Server

    Lee, S W; Kim, J P; Park, S J; Yi, S W; Cho, D I; Kim, J J

    1998-01-01

    Polysilicon films deposited by low pressure chemical vapor deposition (LPCVD) are the most widely used structural material in microelectromechanical systems (MEMS). However, the structural properties of LPCVD polysilicon films are known to vary significantly, depending on deposition conditions as well as post-deposition processes. This paper investigates the effects of phosphorus doping and texture on Young's modulus of polysilicon films. Polysilicon films are deposited at 585 .deg. C, 605 .deg. C, and 625 .deg. C to a thickness of 2 mu m. Specimens with varying phosphorus doping levels are prepared by the diffusion process at various temperatures and times using both POCl sub 3 and phosphosilicate glass (PSG) source. Texture is measured using an X-ray diffractometer. Young's modulus is estimated from the average values of the resonant frequencies measured from four-different size lateral resonators. Our results show that Young's modulus of diffusion doped polysilicon films decreases with increasing doping co...

  15. Fluorine compounds for doping conductive oxide thin films

    Science.gov (United States)

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  16. Asymmetrically doped one-dimensional trans-polymers

    International Nuclear Information System (INIS)

    Caldas, Heron

    2009-01-01

    More than 30 years ago [H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Comm. 578 (1977); S. Etemad, A.J. Heeger, Ann. Rev. Phys. Chem. 33 (1982) 443] it was discovered that doped trans-polyacetylene (CH) x , a one-dimensional (1D) conjugated polymer, exhibits electrical conductivity. In this work we show that an asymmetrically doped 1D trans-polymer has non-conventional properties, as compared to symmetrically doped systems. Depending on the level of asymmetry between the chemical potentials of the two involved fermionic species, the polymer can be in a partially or fully spin polarized state. Some possible experimental consequences of doped 1D trans-polymers used as 1D organic polarized conductors are discussed.

  17. Rhenium-doped MoS2 films

    Science.gov (United States)

    Hallam, Toby; Monaghan, Scott; Gity, Farzan; Ansari, Lida; Schmidt, Michael; Downing, Clive; Cullen, Conor P.; Nicolosi, Valeria; Hurley, Paul K.; Duesberg, Georg S.

    2017-11-01

    Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in future electronic devices. Here, we report on a straightforward approach to the n-type doping of molybdenum disulfide (MoS2) films with rhenium (Re). High-Resolution Scanning Transmission Electron Microscopy and Energy-Dispersive X-ray spectroscopy are used to identify Re in interstitial and lattice sites of the MoS2 structure. Hall-effect measurements confirm the electron donating influence of Re in MoS2, while the nominally undoped films exhibit a net p-type doping. Density functional theory (DFT) modelling indicates that Re on Mo sites is the origin of the n-type doping, whereas S-vacancies have a p-type nature, providing an explanation for the p-type behaviour of nominally undoped MoS2 films.

  18. Suppression of irradiation effects in gold-doped silicon detectors

    International Nuclear Information System (INIS)

    McPherson, M.; Sloan, T.; Jones, B.K.

    1997-01-01

    Two sets of silicon detectors were irradiated with 1 MeV neutrons to different fluences and then characterized. The first batch were ordinary p-i-n photodiodes fabricated from high-resistivity (400 Ω cm) silicon, while the second batch were gold-doped powder diodes fabricated from silicon material initially of low resistivity (20 Ω cm). The increase in reverse leakage current after irradiation was found to be more in the former case than in the latter. The fluence dependence of the capacitance was much more pronounced in the p-i-n diodes than in the gold-doped diodes. Furthermore, photo current generation by optical means was less in the gold doped devices. All these results suggest that gold doping in silicon somewhat suppresses the effects of neutron irradiation. (author)

  19. Heavily nitrogen doped, graphene supercapacitor from silk cocoon

    International Nuclear Information System (INIS)

    Sahu, Vikrant; Grover, Sonia; Tulachan, Brindan; Sharma, Meenakshi; Srivastava, Gaurav; Roy, Manas; Saxena, Manav; Sethy, Niroj; Bhargava, Kalpana; Philip, Deepu; Kim, Hansung; Singh, Gurmeet; Singh, Sushil Kumar; Das, Mainak; Sharma, Raj Kishore

    2015-01-01

    Doping of graphene with nitrogen is of much interest, since it improves the overall conductivity and supercapacitive properties. Besides conductivity, nitrogen doping also enhances the pseudo-capacitance due to fast and reversible surface redox processes. In this work, we have developed a cheap and easy process for synthesizing heavily nitrogen doped graphene (15% nitrogen) from non-mulberry silk cocoon membrane (Tassar, Antheraea mylitta) by pyrolyzing the cocoon at 400 °C in argon atmosphere. Further we have investigated the performance of this heavily ‘nitrogen doped graphene’ (NDG) in a supercapacitor device. Our results suggest that NDG obtained from cocoon has improved supercapacitor performance. The improved performance is due to the high electronegativity of nitrogen that forms dipoles on the graphene surface. These dipoles consequently enhance the tendency of graphene to attract charged species to its surface. This is a green and clean synthesis approach for developing electronic materials for energy applications

  20. Photoluminescence of Titanium-Doped Zinc Orthosilicate Phosphor Gel Films

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Mu-Tsun; Wu, Jun-Min; Lin, Jian-You [Department of Materials Science and Engineering, National Formosa University, PO Box 385 Douliu, Yunlin 640, Taiwan (China); Lu, Fu-Hsing; Wang, Yen-Kai, E-mail: mttsai@ms23.hinet.net [Department of Materials Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan (China)

    2011-10-29

    Titanium-doped zinc orthosilicate ({alpha}-Zn{sub 2}SiO{sub 4}:Ti) phosphor thin films were deposited on silicon wafer substrates by the sol-gel process. The crystallization processes and photoluminescence properties of the films were investigated. X-ray diffraction revealed that the dried films were amorphous and converted into single-phase willemite structure following annealed at 600 deg. C and above. Upon thermal annealing at 800 deg. C - 1000 deg. C, Ti-doped willemite thin films had the average crystallite sizes of 17{approx}28 nm. The luminescence properties of phosphor films were characterized by excitation and emission spectra. Photoluminescence spectra of Ti-doped films exhibited prominent blue emission bands centered at 402 nm under an excitation wavelength of 225 nm. The emission intensity was dependent on the level of titanium doping, annealing temperature, and film thickness.

  1. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  2. Magnetic characterization of rare earth doped spinel ferrite

    Science.gov (United States)

    Abdellatif, M. H.; El-Komy, G. M.; Azab, A. A.

    2017-11-01

    Doping spinel structure with large rare earth ions can alter the physical properties of the lattice, which can be used for tuning the magnetic and electrical properties of the ferrite material. We investigated the effect of rare earth doping on the crystal properties such as magnetoimpedance. The X-ray and HRTEM data revealed that the strain increases with increasing the ionic radius of the rare-earth. The Study implemented three types of rare earth, namely Dy, Gd, and Sm. The rare earth ions are in the Spinel crystal of Mn-Cr ferrite. The magnetoimpedance showed all negative slope, with the Gd-doped Mn-Cr ferrite sample, have the giant magnetoimpedance up to 60% drop in impedance at electric field frequency 10 kHz. The magnetisation and remanence of the samples were correlated to the microstrain, in which the magnetisation and remanence of the rare earth doped Mn-Cr ferrite samples decrease as the microstrain increases.

  3. Analytical Model of Symmetric Halo Doped DG-Tunnel FET

    Directory of Open Access Journals (Sweden)

    S. Nagarajan

    2015-11-01

    Full Text Available Two-dimensional analytical model of symmetric halo doped double gate tunnel field effect transistor has been presented in this work. This model is developed based on the 2-D Poisson’s equation. Some important parameters such that surface potential, vertical and lateral electric field, electric field intensity and band energy have been modelled. The doping concentration and length of halo regions are varied and dependency of various parameters is studied. The halo doping is imparted to improve the ON current and to reduce the intrinsic ambipolarity of the device. Hence we can achieve improved ION/IOFF ratio. The scaling property of halo doped structure is analyzed with various dielectric constants.

  4. Extrinsic doping of CuGaSe2 single crystals

    Science.gov (United States)

    Schön, J. H.

    2000-02-01

    Technological applications of semiconductors depend critically on the ability to dope them. Single crystals of CuGaSe2 were doped during crystal growth either by a post-growth diffusion step or by ion-implantation, in order to study the limits of extrinsic doping. The electrical and optical properties of the doped samples are analysed by Hall effect and photoluminescence (PL) measurements. The carrier concentration at room temperature can be adjusted between 2 × 1019 cm-3 (p-type) and 1017 cm-3 (n-type). Various donor and acceptor levels are identified and ascribed to dopant-induced point defects taking into account the dopant concentration and/or the post-growth treatment of the single crystals.

  5. Solution-mediated cladding doping of commercial polymer optical fibers

    Science.gov (United States)

    Stajanca, Pavol; Topolniak, Ievgeniia; Pötschke, Samuel; Krebber, Katerina

    2018-03-01

    Solution doping of commercial polymethyl methacrylate (PMMA) polymer optical fibers (POFs) is presented as a novel approach for preparation of custom cladding-doped POFs (CD-POFs). The presented method is based on a solution-mediated diffusion of dopant molecules into the fiber cladding upon soaking of POFs in a methanol-dopant solution. The method was tested on three different commercial POFs using Rhodamine B as a fluorescent dopant. The dynamics of the diffusion process was studied in order to optimize the doping procedure in terms of selection of the most suitable POF, doping time and conditions. Using the optimized procedure, longer segment of fluorescent CD-POF was prepared and its performance was characterized. Fiber's potential for sensing and illumination applications was demonstrated and discussed. The proposed method represents a simple and cheap way for fabrication of custom, short to medium length CD-POFs with various dopants.

  6. The evolving science of detection of 'blood doping'

    DEFF Research Database (Denmark)

    Lundby, Carsten; Robach, Paul; Saltin, Bengt

    2012-01-01

    Blood doping practices in sports have been around for at least half a century and will likely remain for several years to come. The main reason for the various forms of blood doping to be common is that they are easy to perform, and the effects on exercise performance are gigantic. Yet another...... reason for blood doping to be a popular illicit practice is that detection is difficult. For autologous blood transfusions, for example, no direct test exists, and the direct testing of misuse with recombinant human erythropoietin (rhEpo) has proven very difficult despite a test exists. Future blood...... and that they work more efficiently with the international sports federations in an attempt to limit blood doping....

  7. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  8. Sodium doping and reactivity in pure and mixed ice nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Pysanenko, Andriy; Rubovič, Peter; Fárník, Michal

    2015-01-01

    Roč. 69, č. 12 (2015), 269 ISSN 1434-6079 R&D Projects: GA ČR GA14-08937S Institutional support: RVO:61388955 Keywords : nanoparticles * sodium doping * reactivity Subject RIV: CF - Physical ; Theoretical Chemistry

  9. The fight against fitness doping in sports clubs

    DEFF Research Database (Denmark)

    Thualagant, Nicole; Pfister, Gertrud Ursula

    2012-01-01

    , personal development and a sense of community. This contribution debates whether the national anti-doping policies fits to the current situation of the club based fitness centers and if the policies comply with the centers aims and ideologies, i.e. with DGI's objectives and philosophy of sport for all......This article focuses on the anti-doping policies led in Danish fitness centers in a sport for all context. Fitness, an ever growing training form is gaining in popularity and has in this context been adopted as a training activity by DGI, one of the leading sports for all organization in Denmark....... As a result of this gain in popularity, fitness activities are not only offered in commercial fitness centers but also in fitness centers attached to sport for all clubs. This development has emancipated a focus on doping and thereby in the establishing of anti-doping policies in sport for all clubs. Denmark...

  10. Superconductivity in heavily boron-doped silicon carbide.

    Science.gov (United States)

    Kriener, Markus; Muranaka, Takahiro; Kato, Junya; Ren, Zhi-An; Akimitsu, Jun; Maeno, Yoshiteru

    2008-12-01

    The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  11. Synthesis and characterization of hydroxyapatite-doped silver nanoparticles

    International Nuclear Information System (INIS)

    Andrade, Flavio Augusto Cavadas da Silva; Rollo, Joao Manuel Domingos de Almeida; Rigo, Eliana Cristina da Silva; Vercik, Andres; Vercik, Luci Cristina de Oliveira; Valencia, German Ayala; Ferreira, Leticcia Gaviao

    2012-01-01

    Hydroxyapatite-doped silver nanoparticles was obtained by immersing the powder in increasing dilutions of a solution containing AGNPS which were synthesized in different times and were characterized by UV-vis spectroscopy. The X-ray diffraction (XRD)studies demonstrate no change in the major phase of HA. Scanning Electron Microscopy (SEM) revealed morphological characteristics of powders after doping and the presence of silver was confirmed by energy dispersive X-ray (EDAX) analysis.The antibacterial effect of the doped powders was evaluated using strain of Staphylococcus aureus by disc-diffusion test. The zone of inhibition was found to vary with the amount of silver nanoparticle in the doped powder even for low concentrations of AgNPs. These results indicate that the method of immersion hydroxyapatite in solutions containing AgNPs is promising to obtain bioactive materials with low cytotoxicity and antibacterial effects. (author)

  12. Plasmon-polaritonic bands in sequential doped graphene superlattices

    Science.gov (United States)

    Ramos-Mendieta, Felipe; Palomino-Ovando, Martha; Hernández-López, Alejandro; Fuentecilla-Cárcamo, Iván

    Doped graphene has the extraordinary quality of supporting two types of surface excitations that involve electric charges (the transverse magnetic surface plasmons) or electric currents (the transverse electric modes). We have studied numerically the collective modes that result from the coupling of surface plasmons in doped graphene multilayers. By use of structured supercells with fixed dielectric background and inter layer separation, we found a series of plasmon-polaritonic bands of structure dependent on the doping sequence chosen for the graphene sheets. Periodic and quasiperiodic sequences for the graphene chemical potential have been studied. Our results show that transverse magnetic bands exist only in the low frequency regime but transverse electric bands arise within specific ranges of higher frequencies. Our calculations are valid for THz frequencies and graphene sheets with doping levels between 0.1 eV and 1.2 eV have been considered. AHL and IFC aknowledge fellowship support from CONACYT México.

  13. Progress in rare-earth-doped fibre lasers

    OpenAIRE

    Payne, D.N.

    1987-01-01

    Single-mode fiber with rare-earth doped cores have stirred considerable interest since their introduction. Already a variety of devices and applications have emerged, including fiber lasers, inline amplifiers, distributed sensors, absorption filters and bistable switches.

  14. Recording multiple holographic gratings in silver-doped ...

    Indian Academy of Sciences (India)

    doped photopolymer film using peristrophic multiplexing techniques. Constant and variable exposure scheduling methods were adopted for storing gratings in the film using He–Ne laser (632.8 nm). The role of recording geometry on the dynamic ...

  15. Synthesis and characterization of Nd3+: Yb3+ co-doped near infrared sensitive fluorapatite nanoparticles as a bioimaging probe

    Science.gov (United States)

    Karthi, S.; Kumar, G. A.; Sardar, D. K.; Santhosh, C.; Girija, E. K.

    2018-03-01

    Trivalent Nd and Yb co-doped rod shaped hexagonal phase fluorapatite (FAP) nanoparticles of length and width about 32 and 13 nm, respectively were prepared by hydrothermal method and investigated the ability for 980 nm emission via Nd3+ → Yb3+ energy transfer with the objective of utilizing them in biomedical imaging. Nd3+ → Yb3+ energy transfer in FAP was studied as a function of both Nd3+ and Yb3+ concentrations and found that when Yb3+ concentration was 10 mol% the FAP phase has partially turned in to YbPO4 phase. The Yb3+ emission intensity at 980 nm significantly increased up to 5 mol% Yb3+ doping and then reduced drastically for further increase in its concentration. Nd3+ →Yb3+ energy transfer rates were evaluated from the decay curves and found that a transfer rate of 71% for 2 mol% Nd3+ co-doped with 5 mol% Yb3+. The cytocompatibility test with fibroblast like cells using MTT assay revealed that the nanoparticles are compatible with the cells.

  16. Infrared response of the lateral PIN structure of a highly titanium-doped silicon-on-insulator material

    International Nuclear Information System (INIS)

    Ma Zhi-Hua; Cao Quan; Zuo Yu-Hua; Zheng Jun; Xue Chun-Lai; Cheng Bu-Wen; Wang Qi-Ming

    2011-01-01

    The intermediate band (IB) solar cell is a promising third-generation solar cell that could possibly achieve very high efficiency above the Shockley—Queisser limit. One of the promising ways to synthesize IB material is to introduce heavily doped deep level impurities in conventional semiconductors. High-doped Ti with a concentration of 10 20 cm −3 –10 21 cm −3 in the p-type top Si layer of silicon-on-insulator (SOI) substrate is obtained by ion implantation and rapid thermal annealing (RTA). Secondary ion mass spectrometry measurements confirm that the Ti concentration exceeds the theoretical Mott limit, the main requirement for the formation of an impurity intermediate band. Increased absorption is observed in the infrared (IR) region by Fourier transform infrared spectroscopy (FTIR) technology. By using a lateral p-i-n structure, an obvious infrared response in a range of 1100 nm–2000 nm is achieved in a heavily Ti-doped SOI substrate, suggesting that the improvement on IR photoresponse is a result of increased absorption in the IR. The experimental results indicate that heavily Ti-implanted Si can be used as a potential kind of intermediate-band photovoltaic material to utilize the infrared photons of the solar spectrum. (condensed matter: structural, mechanical, and thermal properties)

  17. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Wang, Xianyou; Cai, Siyu; Xiang, Kaixiong; Zhang, Yapeng; Xue, Jiaxi

    2017-04-22

    Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon/sulfur composites (NSHPC/S) are successfully fabricated for high energy density lithium-sulfur batteries. The effects of nitrogen, sulfur dual-doping on the structures and properties of the NSHPC/S composites are investigated in detail by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and charge/discharge tests. The results show that N, S dual-doping not only introduces strong chemical adsorption and provides more active sites but also significantly enhances the electronic conductivity and hydrophilic properties of hierarchical porous biomass-derived carbon, thereby significantly enhancing the utilization of sulfur and immobilizing the notorious polysulfide shuttle effect. Especially, the as-synthesized NSHPC-7/S exhibits high initial discharge capacity of 1204 mA h g -1 at 1.0 C and large reversible capacity of 952 mA h g -1 after 300 cycles at 0.5 C with an ultralow capacity fading rate of 0.08 % per cycle even at high sulfur content (85 wt %) and high active material areal mass loading (2.8 mg cm -2 ) for the application of high energy density Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Highly efficient and heavily-doped organic light-emitting devices based on an orange phosphorescent iridium complex

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shunliang; Wang, Qi [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Li, Ming [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-10-15

    Heavily doped and highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by utilizing an orange iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C{sup 2'}]iridium(III) (acetylacetonate) [(tbpbt){sub 2}Ir(acac)], as a phosphor. When the doping concentration of [(tbpbt){sub 2}Ir(acac)] reached as high as 15 wt%, the PhOLEDs exhibited a power efficiency, current efficiency, and external quantum efficiency of 24.5 lm/W, 32.1 cd/A, 15.7%, respectively, implying a promising quenching-resistant characteristics of this novel phosphor. Furthermore, the efficient white PhOLEDs had been obtained by employing (tbpbt){sub 2}Ir(acac) as a self-host orange emitter, indicating that (tbpbt){sub 2}Ir(acac) could serve as a promising phosphor to fabricate white organic light-emitting devices with simplified manufacturing process. - Highlights: • Efficient phosphorescent devices were fabricated. • Optimized phosphor doping ratio reached as high as 15 wt%. • The results proved a promising quench-resistant property of the phosphor. • Efficient white devices based on this phosphor as self-host layer had been realized.

  19. Combined host–guest doping and host-free systems for high-efficiency white organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhao Juan; Yu Junsheng; Liu Shengqiang; Jiang Yadong

    2012-01-01

    Highly efficient white organic light-emitting devices (WOLEDs) with a four-layer structure were realized by utilizing phosphorescent blue and yellow emitters. The key concept of device construction is to combine host–guest doping system of the blue emitting layer (EML) and the host-free system of yellow EML. Two kinds of WOLEDs incorporated with distinct host materials, namely N,N'-dicarbazolyl-3,5-benzene (mCP) and p-bis(triphenylsilyly)benzene (UGH2), were fabricated. Without using light out-coupling technology, a maximum current efficiency (η C ) of 58.8 cd/A and a maximum external quantum efficiency (η EQE ) of 18.77% were obtained for the mCP-based WOLED; while a maximum η C of 65.3 cd/A and a maximum η EQE of 19.04% were achieved for the UGH2-based WOLED. Meanwhile, both WOLEDs presented higher performance than that of conventionally full-doping WOLEDs. Furthermore, systematic studies of the high-efficiency WOLEDs were progressed. - Highlights: ► Efficient WOLEDs by combining two systems. ► Host–guest doping system for blue emitting layer. ► Host-free system for yellow emitting layer. ► Maximum current efficiency of 65.3 cd/A and external quantum efficiency of 19.04%.

  20. Effect of Graphite Doped TiO2 Nanoparticles on Smoke Degradation

    International Nuclear Information System (INIS)

    Roshasnorlyza Hazan; Mohamad Shahrizal Md Zain; Natrah Syafiqah Rosli

    2016-01-01

    Secondhand smoke affects in the same way as regular smoker. The best solution is to purify the air efficiently and effectively. In this study, we were successfully doped TiO 2 nanoparticle with graphite to accelerate the degradation of cigarette smoke. The graphite doped and undoped TiO 2 nanoparticles were prepared from synthetic rutile using alkaline fusion method and their photo catalytic activity were investigated under visible light irradiation. The photo catalytic activity of the TiO 2 nanoparticles was analyzed in terms of their particle size analysis, crystallization and optical band gap. TiO 2 nanoparticle act as photo catalyzer by utilization of light energy to excite electron-hole pairs in smoke degradation processes. With the aided from graphite in TiO 2 nanoparticles, the smoke degradation was accelerate up to 44.4 %. In this case, graphite helps to reduce optical band gap of TiO 2 nanoparticle, thus increasing excitation of electron from valence band to conduction band. (author)

  1. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  2. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage.

    Science.gov (United States)

    Tian, Lei-Lei; Wei, Xian-Yong; Zhuang, Quan-Chao; Jiang, Chen-Hui; Wu, Chao; Ma, Guang-Yao; Zhao, Xing; Zong, Zhi-Min; Sun, Shi-Gang

    2014-06-07

    A facile bottom-up strategy was developed to fabricate nitrogen-doped graphene sheets (NGSs) from glucose using a sacrificial template synthesis method. Three main types of nitrogen dopants (pyridinic, pyrrolic and graphitic nitrogens) were introduced into the graphene lattice, and an inimitable microporous structure of NGS with a high specific surface area of 504 m(2) g(-1) was obtained. Particularly, with hybrid features of lithium ion batteries and Faradic capacitors at a low rate and features of Faradic capacitors at a high rate, the NGS presents a superior lithium storage performance. During electrochemical cycling, the NGS electrode afforded an enhanced reversible capacity of 832.4 mA h g(-1) at 100 mA g(-1) and an excellent cycling stability of 750.7 mA h g(-1) after 108 discharge-charge cycles. Furthermore, an astonishing rate capability of 333 mA h g(-1) at 10,000 mA g(-1) and a high rate cycle performance of 280.6 mA h g(-1) even after 1200 cycles were also achieved, highlighting the significance of nitrogen doping on the maximum utilization of graphene-based materials for advanced lithium storage.

  3. Structural, Optical, Electrical, and Photoresponse Properties of Postannealed Sn-Doped ZnO Nanorods

    Directory of Open Access Journals (Sweden)

    Q. Humayun

    2013-01-01

    Full Text Available Tin (Sn doped ZnO nanorods were synthesized on glass substrate using a sol-gel method. The synthesized nanorods were postannealed at 150, 350, and 500°C. The surface morphologies of Sn-doped ZnO nanorods at different postannealing temperatures were studied using scanning electron microscope (SEM. XRD results show that as the postannealing temperature increased from 150°C to 500°C, the c-axis orientation becomes stronger. Refractive indices and dielectric constants were calculated on the basis of different relationships by utilizing bandgap values. These bandgap values were obtained in terms of optical absorption by using a UV-Visible spectrophotometer. The enhancing effects of annealing temperatures on electrical properties were observed in terms of current-to-voltage measurements. Resistivity decreases as postannealing temperature increases from 150°C to 500°C. Annealed samples were evaluated for UV-sensing application. The samples exhibit a responsivity of 1.7 A/W.

  4. Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline-TiO₂ composite.

    Science.gov (United States)

    Bairi, Venu Gopal; Bourdo, Shawn E; Sacre, Nicolas; Nair, Dev; Berry, Brian C; Biris, Alexandru S; Viswanathan, Tito

    2015-10-16

    A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO₂. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO₂ and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO₂ composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  5. DTT-doped MWCNT coating for checking shuttle effect of lithium-sulfur battery

    Science.gov (United States)

    Xiaogang, Sun; Jie, Wang; Xu, Li; Wei, Chen

    2018-01-01

    In order to improve the rate and reversible capacity of lithium-sulfur (Li-S) battery, a reagent of dithiothreitol (DTT) was utilized to check the dissolution and shuttle of long-chain lithium polysulfides (LiPSs) by cutting the disulfide bond (-S-S- bonds) in them. The slurry of DTT-doped multi-walled carbon nanotubes (MWCNTs) was coated on the surface of sulfur cathode as a shield to slice the long-chain LiPSs to short-chain ones for checking the dissolution and migration of LiPSs to lithium anode. The morphology and structure of the electrodes were observed by scanning electron microscopy (SEM). The electrochemical performance was tested by galvanostatic charge-discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The initial discharge capacity of S-DTT- carbon nanotube paper (CNTP) electrode reached 1670 and 949 mAh/g at 0.05 and 2 C respectively with a coulombic efficiency of over 99%. The electrode maintained a reversible specific capacity of 949 mAh/g after 45 cycles at 2 C. This suggested that the DTT-doped MWCNT coating can restrain shuttle effect and improve the rate and capacity of Li-S battery. The S-DTT-CNTP electrode not only accommodates the volume expansion but also provides stable electronics and ions channels.

  6. Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Young Chul [Inha Univ., Incheon (Korea, Republic of). Dept. of Physics; Luk, Ting S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Robert Ellis, A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brener, Igal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies

    2014-09-29

    Here, we utilize the unique dispersion properties of leaky plasmon polaritons in epsilon-near-zero (ENZ) thin films to demonstrate thermal radiation control. Owing to its highly flat dispersion above the light line, a thermally excited leaky wave at the ENZ frequency out-couples into free space without any scattering structures, resulting in a narrowband, wide-angle, p-polarized thermal emission spectrum. We demonstrate this idea by measuring angle- and polarization-resolved thermal emission spectra from a single layer of unpatterned, doped semiconductors with deep-subwavelength film thickness (d/λ0 ~ 6 ×10-3, where d is the film thickness and λ0 is the free space wavelength). We show that this semiconductor ENZ film effectively works as a leaky wave thermal radiation antenna, which generates far-field radiation from a thermally excited mode. The use of semiconductors makes the radiation frequency highly tunable by controlling doping densities and also facilitates device integration with other components. Therefore, this leaky plasmon polariton emission from semiconductor ENZ films provides an avenue for on-chip control of thermal radiation.

  7. Screening for 2-quinolinone-derived selective androgen receptor agonists in doping control analysis.

    Science.gov (United States)

    Thevis, Mario; Kohler, Maxie; Maurer, Joachim; Schlörer, Nils; Kamber, Matthias; Schänzer, Wilhelm

    2007-01-01

    Selective androgen receptor modulators (SARMs) represent a class of emerging drugs with high potential for misuse in sports, and therefore members of this group are banned as anabolic agents by the World Anti-Doping Agency. Preventive approaches to restrict their use include early implementation of target analytes into doping control screening assays and evaluation of the mass spectrometric behavior of these drugs to allow their unequivocal identification as well as the characterization of structurally related compounds and metabolic products. Four model SARMs with the 6-alkylamino-2-quinolinone structure, including the advanced drug candidate LGD-2226, were synthesized. Fragmentation pathways after positive electrospray ionization and collision-induced dissociation were studied using an LTQ Orbitrap mass analyzer, and diagnostic product ions and common dissociation pathways were employed to establish a screening procedure targeting intact quinolinone-based SARMs as well as putative metabolic products such as dealkylated analogues. Therefore, features of a triple quadrupole mass analyzer such as multiple reaction monitoring and precursor ion scanning were utilized. Sample preparation based on commonly employed liquid-liquid extraction and subsequent liquid chromatographic/tandem mass spectrometric measurement allowed for detection limits of 0.01-0.2 ng/mL, and intra- and interday precisions between 3.2 and 8.5% and between 6.3 and 16.6%, respectively. Recoveries varied from 81 to 98%, and tests for ion suppression or enhancement effects were negative for all analytes. Copyright (c) 2007 John Wiley & Sons, Ltd.

  8. A DFT study on the catalytic hydrogenation of CO2 to formic acid over Ti-doped graphene nanoflake

    Science.gov (United States)

    Esrafili, Mehdi D.; Dinparast, Leila

    2017-08-01

    The aim of this study is to investigate the potential of Ti-doped graphene nanoflake (Ti-GNF) for the reduction of CO2 to formic acid by H2. To get a deeper insight into the mechanism of this reaction, the reliable DFT calculations are performed. It is found that the large positive charge on the Ti atom can greatly regulate the surface reactivity of GNF. The formation of the formate group is the rate determining step for the reduction of CO2. The calculated activation energies demonstrate that Ti-GNF could be utilized as an efficient catalyst for the reduction of CO2 to formic acid.

  9. A switchable dual-wavelength erbium-doped fiber laser based on saturable absorber and active optical fiber ring filter

    Science.gov (United States)

    Zhu, Lian-qing; Chen, Qing-shan; Zhao, Ran-ran; Lou, Xiao-ping; He, Wei

    2014-11-01

    A dual-wavelength erbium-doped fiber laser (EDFL) with outstanding stability is presented. In the fiber laser system, two nested active optical fiber ring filters are configured to improve the comb spectrum performance, a saturable absorber is employed to form a gain grating for both filtering and frequency stabilizing, two cascaded fiber Bragg gratings (FBGs) are utilized to achieve dual-wavelength output, and a variable attenuator is arranged to adjust output power. Experimental results illustrate that the peak wavelength drift is less than 3 pm, and a good linear relationship between output power and pump power is realized.

  10. The utility target market model

    International Nuclear Information System (INIS)

    Leng, G.J.; Martin, J.

    1994-01-01

    A new model (the Utility Target Market Model) is used to evaluate the economic benefits of photovoltaic (PV) power systems located at the electrical utility customer site. These distributed PV demand-side generation systems can be evaluated in a similar manner to other demand-side management technologies. The energy and capacity values of an actual PV system located in the service area of the New England Electrical System (NEES) are the two utility benefits evaluated. The annual stream of energy and capacity benefits calculated for the utility are converted to the installed cost per watt that the utility should be willing to invest to receive this benefit stream. Different discount rates are used to show the sensitivity of the allowable installed cost of the PV systems to a utility's average cost of capital. Capturing both the energy and capacity benefits of these relatively environmentally friendly distributed generators, NEES should be willing to invest in this technology when the installed cost per watt declines to ca $2.40 using NEES' rated cost of capital (8.78%). If a social discount rate of 3% is used, installation should be considered when installed cost approaches $4.70/W. Since recent installations in the Sacramento Municipal Utility District have cost between $7-8/W, cost-effective utility applications of PV are close. 22 refs., 1 fig., 2 tabs

  11. Utility strategies - affiliated power marketers

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, J.F. [Aquila Energy Corp., Omaha, NE (United States)

    1994-12-31

    The regulation of affiliated power marketers (APM) is discussed. Any electric utility affiliates that own or control generation must not have market power in the relevant market, which is defined as the utility`s first-tier markets. One can prove that its affiliates do not have generation dominance by: (a) showing that its entire generating capacity is committed under long term contract, (b) showing that its affiliates already are authorized to sell at market-based rates, or (c) submitting a market analysis which demonstrates that the affiliates do not possess generation market power. The electric utility affiliates must have a transmission tariff on file which provides for comparable transmission services. The APM must agree not to buy power from, or sell power to its electric utility affiliate without prior approval by the Federal Energy Regulatory Commission (FERC). The APM must notify FERC if it sells power to, buys power from, or obtains transmission service from a utility that has any business relationship with any affiliates. Any non-sales services provided by the utility affiliates must not be priced below market value. Procedures must ensure that market information is not shared between the utility and the APM, or shared on a comparable basis with non-affiliates. A continuing obligation exists for the APM to notify FERC of any change in these criteria occurring after approval is granted. Concerns with these provisions and suggested improvements are discussed.

  12. Photoluminescence investigation of compensation in nitrogen doped zinc selenide

    Science.gov (United States)

    Moldovan, Monica

    A detailed liquid-helium-temperature photoluminescence study has been performed on a series of ZnSe epilayers grown by molecular beam epitaxy. The samples were grown at West Virginia University and include undoped and nitrogen-doped epilayers (with different levels of doping). The PL has been studied as a function of excitation wavelength, power, temperature and time. Electron Paramagnetic Resonance (EPR) and Photoluminescence Excitation (PLE) were also performed. An ionization energy of 50 meV for the "deep" donor in a lightly doped ZnSe:N sample is determined using power dependence data. Heavily nitrogen-doped samples (≥8 x 1018 cm-3 ) provided evidence for a second deeper donor with an ionization energy greater than 100 meV. The importance of accounting for interference effects in the PL spectra from heavily-doped ZnSe:N is shown. A model is proposed to explain the PL and PLE results in the presence of potential fluctuation and the deeper donor. The PL spectra obtained from samples grown using two rf sources (Oxford and EPI) were compared. Although the EPI source produced a lower ratio of ions to atomic nitrogen, compensation is still a problem for heavily doped samples. A third band, at 2.66 eV, is observed under high-power pulsed excitation, and the presence of this band can be correlated with growth conditions. Under the same conditions, a bound exciton appeared in a heavily doped sample. The presence of this exciton, called the IV line, was attributed to Se vacancies in undoped ZnSe/GaAs. The EPR results indicate the presence of singly ionized selenium vacancies in our heavily doped samples, and they can play a role in compensation.

  13. Influence of Zn doping on electrical and optical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    In the case of single layer SnO2 film, absorption edge is 3⋅57 eV and when doped with Zn absorption edge shifts towards lower energies (longer wavelengths). The absorption edge lies in the range of 3⋅489–3⋅557 eV depending upon the Zn doping concentration. The direct and indirect transitions and their dependence ...

  14. Giant tunnel-electron injection in nitrogen-doped graphene

    DEFF Research Database (Denmark)

    Lagoute, Jerome; Joucken, Frederic; Repain, Vincent

    2015-01-01

    Scanning tunneling microscopy experiments have been performed to measure the local electron injection in nitrogen-doped graphene on SiC(000) and were successfully compared to ab initio calculations. In graphene, a gaplike feature is measured around the Fermi level due to a phonon-mediated tunneling...... and at carbon sites. Nitrogen doping can therefore be proposed as a way to improve tunnel-electron injection in graphene....

  15. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  16. Dielectric behaviour of sodium and potassium doped magnesium ...

    Indian Academy of Sciences (India)

    Pure phase of magnesium titanate (MgTiO3) was obtained at 1100°C by both the conventional solid-state method as well as by the flux method starting from hexahydrated magnesium nitrate and titanium dioxide as the reactants. MgTiO3 doped with Na or K was also prepared by the solid-state route. Na and K doped ...

  17. Optical bistability and multistability in polaritonic materials doped with nanoparticles

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate the optical bistability and multistability in polaritonic materials doped with nanoparticles inside an optical ring cavity. It is found that the optical bistability and multistability can be easily controlled by adjusting the corresponding parameters of the system properly. The effect of the dipole–dipole interaction has also been included in the formulation, which leads to interesting phenomena. Our scheme opens up the possibility of controling the optical bistability and multistability in polaritonic materials doped with nanoparticles. (letter)

  18. Effect of erbium-calcium manganite doping on microstructure and ...

    African Journals Online (AJOL)

    In this research, (80-x) mol% zinc oxide with 20 mol% CaMnO3 as the additive and (x) mol% erbium oxide Er2O3 as the doping material where x = 0.5, 1.0 and 1.5. Aims of this work are to elucidate the effects of doping material on microstructure ZnO and nonlinear characteristics of ZnO based varistor ceramics.

  19. Dielectric behaviour of sodium and potassium doped magnesium

    Indian Academy of Sciences (India)

    Pure phase of magnesium titanate (MgTiO3) was obtained at 1100°C by both the conventional solid-state method as well as by the flux method starting from hexahydrated magnesium nitrate and titanium dioxide as the reactants. MgTiO3 doped with Na or K was also prepared by the solid-state route. Na and K doped ...

  20. Experimental and computational studies of Si-doped fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Billas, I.M.L.; Tast, F.; Branz, W.; Malinowski, N.; Heinebrodt, M.; Martin, T.P.; Boero, M.; Massobrio, C.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1999-12-01

    Silicon in-cage doped fullerenes result from laser-induced photofragmentation of mixed clusters of composition C{sub 60}Si{sub x}. These parent clusters are produced in a low pressure condensation cell, through the mixing of silicon vapor with a vapor containing the preformed C{sub 60} molecules. The geometric and the electronic structures of fullerenes substitutionally doped with one and two silicon atoms are studied by ab-initio calculations within density functional theory. (orig.)