WorldWideScience

Sample records for trail receptors sensitizes

  1. Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation.

    Science.gov (United States)

    Zhou, Jing; Lu, Guo-Dong; Ong, Chye-Sun; Ong, Choon-Nam; Shen, Han-Ming

    2008-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important member of the tumor necrosis factor subfamily with great potential in cancer therapy. Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess potent anti-inflammatory and anticancer activities. Here, we showed that pretreatment with Andro significantly enhances TRAIL-induced apoptosis in various human cancer cell lines, including those TRAIL-resistant cells. Such sensitization is achieved through transcriptional up-regulation of death receptor 4 (DR4), a death receptor of TRAIL. In search of the molecular mechanisms responsible for DR4 up-regulation, we found that the tumor suppressor p53 plays an essential role in DR4 transcriptional activation. Andro is capable of activating p53 via increased p53 phosphorylation and protein stabilization, a process mediated by enhanced reactive oxygen species production and subsequent c-Jun NH(2)-terminal kinase activation. Pretreatment with an antioxidant (N-acetylcysteine) or a c-Jun NH(2)-terminal kinase inhibitor (SP600125) effectively prevented Andro-induced p53 activation and DR4 up-regulation and eventually blocked the Andro-induced sensitization on TRAIL-induced apoptosis. Taken together, these results present a novel anticancer effect of Andro and support its potential application in cancer therapy to overcome TRAIL resistance.

  2. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    International Nuclear Information System (INIS)

    Mota, Alba; Jiménez-Garcia, Lidia; Herránz, Sandra; Heras, Beatriz de las; Hortelano, Sonsoles

    2015-01-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  3. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  4. Human embryonic and induced pluripotent stem cells express TRAIL receptors and can be sensitized to TRAIL-Iiduced apoptosis

    Czech Academy of Sciences Publication Activity Database

    Vinarsky, V.; Krivanek, J.; Rankel, Liina; Nahácka, Zuzana; Barta, T.; Jaros, J.; Anděra, Ladislav; Hampl, A.

    2013-01-01

    Roč. 22, č. 22 (2013), s. 2964-2974 ISSN 1547-3287 R&D Projects: GA ČR GAP301/10/1971 Grant - others:GA MŠk(CZ) ED1.100/02/0123 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : TRAIL * apoptosis * pluripotent stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.202, year: 2013

  5. Targeting pro-apoptotic trail receptors sensitizes HeLa cervical cancer cells to irradiation-induced apoptosis

    NARCIS (Netherlands)

    Maduro, John H.; de Vries, Elisabeth G. E.; Meersma, Gert-Jan; Hougardy, Brigitte M. T.; van der Zee, Ate G. J.; De Jong, Steven

    2008-01-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL

  6. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Aydin Cigdem

    2005-05-01

    Full Text Available Abstract Background Tumor Necrosis Factor (TNF-Related Apoptosis-Inducing Ligand (TRAIL selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL. Methods TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. Results MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4 expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3 on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells

  7. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Sanlioglu, Ahter D; Dirice, Ercument; Aydin, Cigdem; Erin, Nuray; Koksoy, Sadi; Sanlioglu, Salih

    2005-01-01

    Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL). TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4

  8. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    Science.gov (United States)

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  9. Targeting Death Receptor TRAIL-R2 by Chalcones for TRAIL-Induced Apoptosis in Cancer Cells

    Science.gov (United States)

    Szliszka, Ewelina; Jaworska, Dagmara; Kłósek, Małgorzata; Czuba, Zenon P.; Król, Wojciech

    2012-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties. PMID:23203129

  10. Fascaplysin sensitizes cells to TRAIL-induced apoptosis through upregulating DR5 expression

    Science.gov (United States)

    Wang, Feng; Chen, Haimin; Yan, Xiaojun; Zheng, Yanling

    2013-05-01

    This study investigated the molecular mechanism of anti-tumor effect of fascaplysin, a nitrogenous red pigment firstly isolated from a marine sponge. Microarray analysis show that the TNF and TNF receptor superfamily in human umbilical vein endothelial cells (HUVEC) and human hepatocarcinoma cells (BEL-7402) were significantly regulated by fascaplysin. Western Blot results reveal that fascaplysin increased the expression of cleaved caspase-9, active caspase-3, and decreased the level of procaspase-8 and Bid. Flow cytometry and cytotoxicity tests indicate that fascaplysin sensitized cells to tumor necrosis-related apoptosisinducing ligand-(TRAIL) induced apoptosis, which was markedly blocked by TRAIL R2/Fc chimera, a dominant negative form of TRAIL receptor DR5. Therefore, our results demonstrate that fascaplysin promotes apoptosis through the activation of TRAIL signaling pathway by upregulating DR5 expression.

  11. The emphysematous lung is abnormally sensitive to TRAIL-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Milot Julie

    2011-08-01

    Full Text Available Abstract Background Alveolar apoptosis is increased in the emphysematous lung. However, mechanisms involved are not fully understood. Recently, we demonstrated that levels of TRAIL receptor 1 and 2, levels of p53, and Bax/Bcl-xL ratio were elevated in the lung of subjects with emphysema, despite smoking cessation. Thus, we postulate that due to chronic pulmonary oxidative stress, the emphysematous lung would be abnormally sensitive to TRAIL-mediated apoptosis. Methodology A549 cells were exposed to rTRAIL, cigarette smoke extract, and/or H2O2 prior to caspase-3 activity measurement and annexin V staining assessment. In addition, freshly resected lung samples were obtained from non-emphysematous and emphysematous subjects and exposed ex vivo to rTRAIL for up to 18 hours. Lung samples were harvested and levels of active caspase-3 and caspase-8 were measured from tissue lysates. Results Both cigarette smoke extract and H2O2 were able to sensitize A549 cells to TRAIL-mediated apoptosis. Moreover, following exposure to rTRAIL, caspase-3 and -8 were activated in lung explants from emphysematous subjects while being decreased in lung explants from non-emphysematous subjects. Significance of the study Alveolar sensitivity to TRAIL-mediated apoptosis is strongly increased in the emphysematous lung due to the presence of oxidative stress. This might be a new mechanism leading to increased alveolar apoptosis and persistent alveolar destruction following smoking cessation.

  12. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin

    Directory of Open Access Journals (Sweden)

    Felley-Bosco Emanuela

    2007-10-01

    Full Text Available Abstract Background The incidence of malignant pleural mesothelioma (MPM is associated with exposure to asbestos, and projections suggest that the yearly number of deaths in Western Europe due to MPM will increase until 2020. Despite progress in chemo- and in multimodality therapy, MPM remains a disease with a poor prognosis. Inducing apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or agonistic monoclonal antibodies which target TRAIL-receptor 1 (TRAIL-R1 or TRAIL-R2 has been thought to be a promising cancer therapy. Results We have compared the sensitivity of 13 MPM cell lines or primary cultures to TRAIL and two fully human agonistic monoclonal antibodies directed to TRAIL-R1 (Mapatumumab and TRAIL-R2 (Lexatumumab and examined sensitization of the MPM cell lines to cisplatin-induced by the TRAIL-receptor antibodies. We found that sensitivity of MPM cells to TRAIL, Mapatumumab and Lexatumumab varies largely and is independent of TRAIL-receptor expression. TRAIL-R2 contributes more than TRAIL-R1 to death-receptor mediated apoptosis in MPM cells that express both receptors. The combination of cisplatin with Mapatumumab or Lexatumumab synergistically inhibited the cell growth and enhanced apoptotic death. Furthermore, pre-treatment with cisplatin followed by Mapatumumab or Lexatumumab resulted in significant higher cytotoxic effects as compared to the reverse sequence. Combination-induced cell growth inhibition was significantly abrogated by pre-treatment of the cells with the antioxidant N-acetylcysteine. Conclusion Our results suggest that the sequential administration of cisplatin followed by Mapatumumab or Lexatumumab deserves investigation in the treatment of patients with MPM.

  13. TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies.

    Science.gov (United States)

    MacFarlane, Marion; Kohlhaas, Susan L; Sutcliffe, Michael J; Dyer, Martin J S; Cohen, Gerald M

    2005-12-15

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its agonistic antibodies, which are currently in early clinical trials for treating various malignancies, induce apoptosis through triggering of either TRAIL-R1 or TRAIL-R2. Based on studies using agonistic monoclonal antibodies, we recently proposed that primary chronic lymphocytic leukemic cells seem to signal apoptosis primarily through TRAIL-R1. We have now synthesized mutant forms of TRAIL specific for TRAIL-R1 or TRAIL-R2. The selectivity of these mutants to induce apoptosis in cell lines is due to selective binding to their cognate receptors resulting in apoptosis via formation of a death-inducing signaling complex. Using these mutants, we now unequivocally show that primary cells from patients with chronic lymphocytic leukemia and mantle cell lymphoma signal to apoptosis almost exclusively through TRAIL-R1. Thus, no significant therapeutic benefit can be anticipated from treating such patients with agents currently in clinical trials that signal predominantly through TRAIL-R2, such as HGS-ETR2 or Apo2L/TRAIL. Our study highlights the necessity to determine whether primary cells from a particular tumor signal via TRAIL-R1 or TRAIL-R2. Such information will provide a rational approach to optimize TRAIL therapy.

  14. Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells.

    Science.gov (United States)

    Yoon, Ji-Yong; Cho, Hyun-Soo; Lee, Jeong-Ju; Lee, Hyo-Jung; Jun, Soo Young; Lee, Jae-Hye; Song, Hyuk-Hwan; Choi, SangHo; Saloura, Vassiliki; Park, Choon Gil; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-04-01

    TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. BITC Sensitizes Pancreatic Adenocarcinomas to TRAIL-induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Christina A. Wicker

    2009-01-01

    Full Text Available Pancreatic adenocarcinoma is an aggressive cancer with a greater than 95% mortality rate and short survival after diagnosis. Chemotherapeutic resistance hinders successful treatment. This resistance is often associated with mutations in codon 12 of the K-Ras gene (K-Ras 12, which is present in over 90% of all pancreatic adenocarcinomas. Codon 12 mutations maintain Ras in a constitutively active state leading to continuous cellular proliferation. Our study determined if TRAIL resistance in pancreatic adenocarcinomas with K-Ras 12 mutations could be overcome by first sensitizing the cells with Benzyl isothiocyanate (BITC. BITC is a component of cruciferous vegetables and a cell cycle inhibitor. BxPC3, MiaPaCa2 and Panc-1 human pancreatic adenocarcinoma cell lines were examined for TRAIL resistance. Our studies show BITC induced TRAIL sensitization by dual activation of both the extrinsic and intrinsic apoptotic pathways.

  16. Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL

    Directory of Open Access Journals (Sweden)

    Margherita Iaboni

    2016-01-01

    Full Text Available TNF-related apoptosis-inducing ligand (TRAIL is a promising antitumor agent for its remarkable ability to selectively induce apoptosis in cancer cells, without affecting the viability of healthy bystander cells. The TRAIL tumor suppressor pathway is deregulated in many human malignancies including lung cancer. In human non-small cell lung cancer (NSCLC cells, sensitization to TRAIL therapy can be restored by increasing the expression levels of the tumor suppressor microRNA-212 (miR-212 leading to inhibition of the anti-apoptotic protein PED/PEA-15 implicated in treatment resistance. In this study, we exploited a previously described RNA aptamer inhibitor of the tyrosine kinase receptor Axl (GL21.T expressed on lung cancer cells, as a means to deliver miR-212 into human NSCLC cells expressing Axl. We demonstrate efficient delivery of miR-212 following conjugation of the miR to GL21.T (GL21.T-miR212 chimera. We show that the chimera downregulates PED and restores TRAIL-mediate cytotoxicity in cancer cells. Importantly, treatment of Axl+ lung cancer cells with the chimera resulted in (i an increase in caspase activation and (ii a reduction of cell viability in combination with TRAIL therapy. In conclusion, we demonstrate that the GL21.T-miR212 chimera can be employed as an adjuvant to TRAIL therapy for the treatment of lung cancer.

  17. Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL.

    Science.gov (United States)

    Iaboni, Margherita; Russo, Valentina; Fontanella, Raffaela; Roscigno, Giuseppina; Fiore, Danilo; Donnarumma, Elvira; Esposito, Carla Lucia; Quintavalle, Cristina; Giangrande, Paloma H; de Franciscis, Vittorio; Condorelli, Gerolama

    2016-03-08

    TNF-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent for its remarkable ability to selectively induce apoptosis in cancer cells, without affecting the viability of healthy bystander cells. The TRAIL tumor suppressor pathway is deregulated in many human malignancies including lung cancer. In human non-small cell lung cancer (NSCLC) cells, sensitization to TRAIL therapy can be restored by increasing the expression levels of the tumor suppressor microRNA-212 (miR-212) leading to inhibition of the anti-apoptotic protein PED/PEA-15 implicated in treatment resistance. In this study, we exploited a previously described RNA aptamer inhibitor of the tyrosine kinase receptor Axl (GL21.T) expressed on lung cancer cells, as a means to deliver miR-212 into human NSCLC cells expressing Axl. We demonstrate efficient delivery of miR-212 following conjugation of the miR to GL21.T (GL21.T-miR212 chimera). We show that the chimera downregulates PED and restores TRAIL-mediate cytotoxicity in cancer cells. Importantly, treatment of Axl+ lung cancer cells with the chimera resulted in (i) an increase in caspase activation and (ii) a reduction of cell viability in combination with TRAIL therapy. In conclusion, we demonstrate that the GL21.T-miR212 chimera can be employed as an adjuvant to TRAIL therapy for the treatment of lung cancer.

  18. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis

    International Nuclear Information System (INIS)

    Polek, Tara C.; Talpaz, Moshe; Spivak-Kroizman, Taly R.

    2006-01-01

    Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects

  19. Downregulation of DcR3 sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Liang CJ

    2017-01-01

    Full Text Available Chaojie Liang,* Yingchen Xu,* Guangming Li, Tuanjie Zhao, Feng Xia, Guanqun Li, Dongxin Zhang, Jixiang Wu Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Decoy receptor 3 (DcR3 has been recently described as an antiapoptosis and prometastasis factor since it can competitively bind to FasL, TL1A, and LIGHT, and it is highly expressed in many malignant tumors. Downregulation of DcR3 can promote tumor cell apoptosis and inhibit metastasis. A previous study demonstrated that reduction of DcR3 could induce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-mediated apoptosis in pancreatic cancer cells. However, whether such an effect is seen in hepatocellular carcinoma (HCC remains to be explored. This study was designed to investigate the sensitivity of HCC cells to TRAIL after silencing DcR3, and this was done by evaluating the expression of DcR3 in HCC cells and the effect on TRAIL-mediated apoptosis after downregulation of DcR3. Our data showed that DcR3 was highly expressed in HepG2, BEL-7402, Hep3B, Huh-7, MHCC97H, and SMCC7721 cell lines compared with normal liver cell line LO-2. Both HepG2 and BEL-7402 were tolerant to TRAIL-mediated apoptosis, and the tolerance was negatively correlated to the expression of DcR3. Silencing of DcR3 with shRNA and treatment with TRAIL induced obvious apoptosis in HepG2 and BEL-7402, with more cancer cells found in the G1 phase. SiDcR3 combined with TRAIL could induce activation of caspases-3, -8, and -9, raise the expression of the apoptotic protein Bax, and reduce the expression of antiapoptotic proteins (Bcl-2, Mcl-1, Bcl-XL, IAP-2, and survivin. Caspase-8 inhibitor Ac-IETD-CHO significantly decreased the activation of caspase cascade, indicating that the extrinsic pathway may have a vital role in the apoptotic events induced by SiDcR3/TRAIL. Furthermore, our

  20. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Ruo-Jing Wei

    2018-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  1. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Wei, Ruo-Jing; Zhang, Xin-Shi; He, Da-Lin

    2018-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa) cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro) and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR) and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS) in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  2. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5.

    Science.gov (United States)

    Zhao, Yingmei; Tian, Binqiang; Wang, Yong; Ding, Haiying

    2017-10-26

    BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. MATERIAL AND METHODS The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20-100 µM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. RESULTS Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. CONCLUSIONS Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.

  3. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Taylor, David J; Parsons, Christine E; Han, Haiyong; Jayaraman, Arul; Rege, Kaushal

    2011-01-01

    Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells

  4. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  5. High susceptibility of metastatic cells derived from human prostate and colon cancer cells to TRAIL and sensitization of TRAIL-insensitive primary cells to TRAIL by 4,5-dimethoxy-2-nitrobenzaldehyde

    Directory of Open Access Journals (Sweden)

    Lee Jae-Won

    2011-04-01

    Full Text Available Abstract Background Tumor recurrence and metastasis develop as a result of tumors' acquisition of anti-apoptotic mechanisms and therefore, it is necessary to develop novel effective therapeutics against metastatic cancers. In this study, we showed the differential TRAIL responsiveness of human prostate adenocarcinoma PC3 and human colon carcinoma KM12 cells and their respective highly metastatic PC3-MM2 and KM12L4A sublines and investigated the mechanism underlying high susceptibility of human metastatic cancer cells to TRAIL. Results PC3-MM2 and KM12L4A cells with high level of c-Myc and DNA-PKcs were more susceptible to TRAIL than their poorly metastatic primary PC3 and KM12 cells, which was associated with down-regulation of c-FLIPL/S and Mcl-1 and up-regulation of the TRAIL receptor DR5 but not DR4 in both metastatic cells. Moreover, high susceptibility of these metastatic cells to TRAIL was resulted from TRAIL-induced potent activation of caspase-8, -9, and -3 in comparison with their primary cells, which led to cleavage and down-regulation of DNA-PKcs. Knockdown of c-Myc gene in TRAIL-treated PC3-MM2 cells prevented the increase of DR5 cell surface expression, caspase activation and DNA-PKcs cleavage and attenuated the apoptotic effects of TRAIL. Moreover, the suppression of DNA-PKcs level with siRNA in the cells induced the up-regulation of DR5 and active caspase-8, -9, and -3. We also found that 4,5-dimethoxy-2-nitrobenzaldehyde (DMNB, a specific inhibitor of DNA-PK, potentiated TRAIL-induced cytotoxicity and apoptosis in relatively TRAIL-insensitive PC3 and KM12 cells and therefore functioned as a TRAIL sensitizer. Conclusion This study showed the positive relationship between c-Myc expression in highly metastatic human prostate and colon cancer cells and susceptibility to TRAIL-induced apoptosis and therefore indicated that TRAIL might be used as an effective therapeutic modality for advanced metastatic cancers overexpressing c-Myc and

  6. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL...... siRNA on drug sensitization of A549 cells to TRAIL treatment. The results showed that treatment of A549 cells with HSP27 siRNA down-regulated HSP27 expression but did not induce significant apoptosis. However, combination of HSP27 siRNA with TRAIL-induced significant apoptosis in TRAIL-resistant A549...... cells. In addition to inducing caspases activation and apoptosis, combined treatment with HSP27 siRNA and TRAIL also increased JNK and p53 expression and activity. Collectively, these findings provide a conclusion that siRNA targeting of the HSP27 gene specifically down-regulated HSP27 expression in A...

  7. Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway

    Czech Academy of Sciences Publication Activity Database

    Drosopoulos, K.G.; Roberts, M.L.; Čermák, Lukáš; Sasazuki, T.; Shirasawa, S.; Anděra, Ladislav; Pintzas, A.

    2005-01-01

    Roč. 280, č. 24 (2005), s. 22856-22867 ISSN 0021-9258 R&D Projects: GA AV ČR(CZ) KSK5020115; GA AV ČR(CZ) KJB5052407 Keywords : TRAIL * Ras * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.854, year: 2005

  8. Down-regulation of DcR2 sensitizes androgen-dependent prostate cancer LNCaP cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Vindrieux David

    2011-12-01

    Full Text Available Abstract Background Dysregulation of many apoptotic related genes and androgens are critical in the development, progression, and treatment of prostate cancer. The differential sensitivity of tumour cells to TRAIL-induced apoptosis can be mediated by the modulation of surface TRAIL receptor expression related to androgen concentration. Our previous results led to the hypothesis that downregulation of TRAIL-decoy receptor DcR2 expression following androgen deprivation would leave hormone sensitive normal prostate cells vulnerable to the cell death signal generated by TRAIL via its pro-apoptotic receptors. We tested this hypothesis under pathological conditions by exploring the regulation of TRAIL-induced apoptosis related to their death and decoy receptor expression, as also to hormonal concentrations in androgen-sensitive human prostate cancer, LNCaP, cells. Results In contrast to androgen-insensitive PC3 cells, decoy (DcR2 and death (DR5 receptor protein expression was correlated with hormone concentrations and TRAIL-induced apoptosis in LNCaP cells. Silencing of androgen-sensitive DcR2 protein expression by siRNA led to a significant increase in TRAIL-mediated apoptosis related to androgen concentration in LNCaP cells. Conclusions The data support the hypothesis that hormone modulation of DcR2 expression regulates TRAIL-induced apoptosis in LNCaP cells, giving insight into cell death induction in apoptosis-resistant hormone-sensitive tumour cells from prostate cancer. TRAIL action and DcR2 expression modulation are potentially of clinical value in advanced tumour treatment.

  9. Ethanolic Extract of Polish Propolis: Chemical Composition and TRAIL-R2 Death Receptor Targeting Apoptotic Activity against Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ewelina Szliszka

    2013-01-01

    Full Text Available Propolis possesses chemopreventive properties through direct anticancer and indirect immunomodulatory activities. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL plays a significant role in immunosurveillance and defense against cancer cells. TRAIL triggers apoptosis upon binding to TRAIL-R1 (DR4 and TRAIL-R2 (DR5 death receptors expressed on cancer cell surface. The activation of TRAIL apoptotic signaling is considered an attractive option for cancer prevention. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. The aim of this study was to investigate the chemical composition and proapoptotic mechanism of ethanolic extract of Polish propolis (EEP-P against cancer cells. The identification and quantification of phenolic compounds in propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. TRAIL-resistant LNCaP prostate cancer cells were treated with EEP-P and TRAIL. Cytotoxicity was measured by MTT and LDH assays. Apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptors expression was analyzed using flow cytometry. Pinobanksin, chrysin, methoxyflavanone, p-coumaric acid, ferulic acid and caffeic acid were the main phenolics found in EEP-P. Propolis sensitized LNCaP cells through upregulation of TRAIL-R2. These results suggest that EEP-P supports TRAIL-mediated immunochemoprevention in prostate cancer cells.

  10. Ethanolic Extract of Polish Propolis: Chemical Composition and TRAIL-R2 Death Receptor Targeting Apoptotic Activity against Prostate Cancer Cells.

    Science.gov (United States)

    Szliszka, Ewelina; Sokół-Łętowska, Anna; Kucharska, Alicja Z; Jaworska, Dagmara; Czuba, Zenon P; Król, Wojciech

    2013-01-01

    Propolis possesses chemopreventive properties through direct anticancer and indirect immunomodulatory activities. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays a significant role in immunosurveillance and defense against cancer cells. TRAIL triggers apoptosis upon binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors expressed on cancer cell surface. The activation of TRAIL apoptotic signaling is considered an attractive option for cancer prevention. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. The aim of this study was to investigate the chemical composition and proapoptotic mechanism of ethanolic extract of Polish propolis (EEP-P) against cancer cells. The identification and quantification of phenolic compounds in propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. TRAIL-resistant LNCaP prostate cancer cells were treated with EEP-P and TRAIL. Cytotoxicity was measured by MTT and LDH assays. Apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptors expression was analyzed using flow cytometry. Pinobanksin, chrysin, methoxyflavanone, p-coumaric acid, ferulic acid and caffeic acid were the main phenolics found in EEP-P. Propolis sensitized LNCaP cells through upregulation of TRAIL-R2. These results suggest that EEP-P supports TRAIL-mediated immunochemoprevention in prostate cancer cells.

  11. TRAIL/DR5 signaling promotes macrophage foam cell formation by modulating scavenger receptor expression.

    Directory of Open Access Journals (Sweden)

    Fang Fang Liu

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L has been shown to have protective effects against atherosclerosis. However, whether TRAIL has any effects on expression of macrophage scavenger receptors and lipid uptake has not yet been studied. Macrophage lines RAW264.7 and THP-1, and mouse primary peritoneal macrophages, were cultured in vitro and treated with recombinant human TRAIL. Real-time PCR and western blot were performed to measure mRNA and protein expressions. Foam cell formation was assessed by internalization of acetylated and oxidized low-density lipoproteins (LDL. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. We found that TRAIL treatment increased expression of scavenger receptor (SR-AI and SR-BI in a time- and dose-dependent manner, and this effect was accompanied by increased foam cell formation. These effects of TRAIL were abolished by a TRAIL neutralizing antibody or in DR5 receptor-deficient macrophages. The increased LDL uptake by TRAIL was blocked by SR-AI gene silencing or the SR-AI inhibitor poly(I:C, while SR-BI blockade with BLT-1 had no effect. TRAIL-induced SR-AI expression was blocked by the inhibitor of p38 mitogen-activated protein kinase, but not by inhibitors of ERK1/2 or JNK. TRAIL also induced apoptosis in macrophages. In contrast to macrophages, TRAIL showed little effects on SR expression or apoptosis in vascular smooth muscle cells. In conclusion, our results demonstrate that TRAIL promotes macrophage lipid uptake via SR-AI upregulation through activation of the p38 pathway.

  12. Prognostic significance of TRAIL death receptors in Middle Eastern colorectal carcinomas and their correlation to oncogenic KRAS alterations

    Directory of Open Access Journals (Sweden)

    Hussain Azhar R

    2010-07-01

    Full Text Available Abstract Background Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL is a member of the tumour necrosis factor cytokine family that induces apoptosis upon binding to its death domain containing receptors, TRAIL receptor 1 (DR4 and TRAIL receptor 2 (DR5. Expression of TRAIL receptors is higher in colorectal carcinoma (CRC as compared to normal colorectal mucosa and targeted therapy with TRAIL leads to preferential killing of tumor cells sparing normal cells. Methods We investigated the expression of TRAIL and its receptors in a tissue microarray cohort of 448 Middle Eastern CRC. We also studied the correlation between TRAIL receptors and various clinico-pathological features including key molecular alterations and overall survival. Results CRC subset with TRAIL-R1 expression was associated with a less aggressive phenotype characterized by early stage (p = 0.0251 and a histology subtype of adenocarcinomas (p = 0.0355. Similarly CRC subset with TRAIL-R2 expression was associated with a well-differentiated tumors (p KIP1 and KRAS4A isoforms was significantly higher in CRC subset with TRAIL-R1 and TRAIL-R2 expression; TRAIL-R1 expression was also associated with cleaved caspase-3(p = 0.0011. Interestingly, TRAIL-R2 expression was associated with a microsatellite stable (MS--S/L phenotype (p = 0.0003 and with absence of KRAS mutations (p = 0.0481. Conclusion TRAIL-R1 expression was an independent prognostic marker for better survival in all CRC samples and even in the CRC group that received adjuvant therapy. The biological effects of TRAIL in CRC models, its enhancement of chemosensitivity towards standard chemotherapeutic agents and the effect of endogenous TRAIL receptor levels on survival make TRAIL an extremely attractive therapeutic target.

  13. Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer.

    Science.gov (United States)

    Ganten, Tom M; Sykora, Jaromir; Koschny, Ronald; Batke, Emanuela; Aulmann, Sebastian; Mansmann, Ulrich; Stremmel, Wolfgang; Sinn, Hans-Peter; Walczak, Henning

    2009-10-01

    TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis upon binding to TRAIL receptors 1 and 2 (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL-R3 (DcR1) and TRAIL-R4 (DcR2) have no or only a truncated cytoplasmic death domain. Consequently, they cannot induce apoptosis and instead have been proposed to inhibit apoptosis induction by TRAIL. Agonists for the apoptosis-inducing TRAIL-R1 and TRAIL-R2 are currently tested in clinical trials. To determine the expression pattern of all surface-bound TRAIL receptors and their prognostic clinical value, we investigated tumour samples of 311 patients with breast cancer by immunohistochemistry. TRAIL receptor expression profiles were correlated with clinico-pathological data, disease-free survival and overall survival. TRAIL-R1 was more strongly expressed in better differentiated tumours, and correlated positively with surrogate markers of a better prognosis (hormone receptor status, Bcl-2, negative nodal status), but negatively with the expression of Her2/neu and the proliferation marker Ki67. In contrast, TRAIL-R2 and TRAIL-R4 expression correlated with higher tumour grades, higher Ki67 index, higher Her2/neu expression and a positive nodal status at the time of diagnosis, but with lower expression of Bcl-2. Thus, the TRAIL receptor expression pattern was predictive of nodal status. Patients with grade 1 and 2 tumours, who had TRAIL-R2 but no TRAIL-R1, showed a positive lymph node status in 47% of the cases. Vice versa, only 19% had a positive nodal status with high TRAIL-R1 but low TRAIL-R2. Most strikingly, TRAIL-R4 and -R2 expression negatively correlated with overall survival of breast cancer patients. Although TRAIL-R2 correlated with more aggressive tumour behaviour, mammary carcinoma could be sensitised to TRAIL-R2-induced apoptosis, suggesting that TRAIL-R2 might therefore be used to therapeutically target such tumours. Hence, determination of the TRAIL receptor expression profile may aid in defining which breast

  14. TRAIL induces pro-apoptotic crosstalk between the TRAIL-receptor signaling pathway and TrkAIII in SH-SY5Y cells, unveiling a potential therapeutic "Achilles heel" for the TrkAIII oncoprotein in neuroblastoma.

    Science.gov (United States)

    Gneo, Luciana; Ruggeri, Pierdomenico; Cappabianca, Lucia; Farina, Antonietta Rosella; Di Ianni, Natalia; Mackay, Andrew Reay

    2016-12-06

    TrkAIII expression in neuroblastoma (NB) associates with advanced stage disease, worse prognosis, post therapeutic relapse, and in NB models TrkAIII exhibits oncogenic activity and promotes chemotherapeutic-resistance. Here, we report a potential therapeutic "Achilles heel" for the TrkAIII oncoprotein in a SH-SY5Y NB model that is characterised by one-way TRAIL-induced, pro-apoptotic crosstalk between the TRAIL receptor signaling pathway and TrkAIII that results in the delayed induction of apoptosis. In TrkAIII SH-SY5Y cells, blocked in the intrinsic apoptosis pathway by elevated constitutive Bcl-2, Bcl-xL and Mcl-1 expression, TRAIL induced delayed caspase-dependent apoptosis via the extrinsic pathway and completely abrogated tumourigenic capacity in vitro. This effect was initiated by TRAIL-induced SHP-dependent c-Src activation, the induction of TrkAIII/SHP-1/c-Src complexing leading to SHP-mediated TrkAIII de-phosphorylation, subsequent induction of complexing between de-phosphorylated TrkAIII and cFLIP associated with a time-dependent increase the caspase-8 to cFLIP ratio at activated death receptors, resulting in delayed caspase cleavage and caspase-dependent apoptosis. We also confirm rate-limiting roles for c-FLIP and Mcl-1 in regulating the sensitivity of TrkAIII SH-SY5Y cells to TRAIL-induced apoptosis via the extrinsic and intrinsic pathways, respectively. Our study unveils a novel mechanism for the TRAIL-induced apoptosis of TrkAIII expressing NB cells that depends upon SHP/Src-mediated crosstalk between the TRAIL-receptor signaling pathway and TrkAIII, and supports a novel potential pro-apoptotic therapeutic use for TRAIL in TrkAIII expressing NB.

  15. Short-hairpin RNA-induced suppression of adenine nucleotide translocase-2 in breast cancer cells restores their susceptibility to TRAIL-induced apoptosis by activating JNK and modulating TRAIL receptor expression

    Directory of Open Access Journals (Sweden)

    Kim Chul-Woo

    2010-09-01

    Full Text Available Abstract Background Tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL; apo2 ligand induces apoptosis in cancer cells but has little effect on normal cells. However, many cancer cell types are resistant to TRAIL-induced apoptosis, limiting the clinical utility of TRAIL as an anti-cancer agent. We previously reported that the suppression of adenine nucleotide translocase-2 (ANT2 by short-hairpin RNA (shRNA induces apoptosis of breast cancer cells, which frequently express high levels of ANT2. In the present study, we examined the effect of RNA shRNA-induced suppression of ANT2 on the resistance of breast cancer cells to TRAIL-induced apoptosis in vitro and in vivo. Results ANT2 shRNA treatment sensitized MCF7, T47 D, and BT474 cells to TRAIL-induced apoptosis by up-regulating the expression of TRAIL death receptors 4 and 5 (DR4 and DR5 and down-regulating the TRAIL decoy receptor 2 (DcR2. In MCF7 cells, ANT2 knockdown activated the stress kinase c-Jun N-terminal kinase (JNK, subsequently stabilizing and increasing the transcriptional activity of p53 by phosphorylating it at Thr81; it also enhanced the expression and activity of DNA methyltransferase 1 (DNMT1. ANT2 shRNA-induced overexpression of DR4/DR5 and TRAIL sensitization were blocked by a p53 inhibitor, suggesting that p53 activation plays an important role in the transcriptional up-regulation of DR4/DR5. However, ANT2 knockdown also up-regulated DR4/DR5 in the p53-mutant cell lines BT474 and T47 D. In MCF7 cells, ANT2 shRNA treatment led to DcR2 promoter methylation and concomitant down-regulation of DcR2 expression, consistent with the observed activation of DNMT1. Treatment of the cells with a demethylating agent or JNK inhibitor prevented the ANT2 shRNA-induced down-regulation of DcR2 and activation of both p53 and DNMT1. In in vivo experiments using nude mice, ANT2 shRNA caused TRAIL-resistant MCF7 xenografts to undergo TRAIL-induced cell death, up-regulated DR4/DR5

  16. Candidate Gene Study of TRAIL and TRAIL Receptors: Association with Response to Interferon Beta Therapy in Multiple Sclerosis Patients

    Science.gov (United States)

    Órpez-Zafra, Teresa; Pinto-Medel, María Jesús; Oliver-Martos, Begoña; Ortega-Pinazo, Jesús; Arnáiz, Carlos; Guijarro-Castro, Cristina; Varadé, Jezabel; Álvarez-Lafuente, Roberto; Urcelay, Elena; Sánchez-Jiménez, Francisca

    2013-01-01

    TRAIL and TRAIL Receptor genes have been implicated in Multiple Sclerosis pathology as well as in the response to IFN beta therapy. The objective of our study was to evaluate the association of these genes in relation to the age at disease onset (AAO) and to the clinical response upon IFN beta treatment in Spanish MS patients. We carried out a candidate gene study of TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 genes. A total of 54 SNPs were analysed in 509 MS patients under IFN beta treatment, and an additional cohort of 226 MS patients was used to validate the results. Associations of rs1047275 in TRAILR-2 and rs7011559 in TRAILR-4 genes with AAO under an additive model did not withstand Bonferroni correction. In contrast, patients with the TRAILR-1 rs20576-CC genotype showed a better clinical response to IFN beta therapy compared with patients carrying the A-allele (recessive model: p = 8.88×10−4, pc = 0.048, OR = 0.30). This SNP resulted in a non synonymous substitution of Glutamic acid to Alanine in position 228 (E228A), a change previously associated with susceptibility to different cancer types and risk of metastases, suggesting a lack of functionality of TRAILR-1. In order to unravel how this amino acid change in TRAILR-1 would affect to death signal, we performed a molecular modelling with both alleles. Neither TRAIL binding sites in the receptor nor the expression levels of TRAILR-1 in peripheral blood mononuclear cell subsets (monocytes, CD4+ and CD8+ T cells) were modified, suggesting that this SNP may be altering the death signal by some other mechanism. These findings show a role for TRAILR-1 gene variations in the clinical outcome of IFN beta therapy that might have relevance as a biomarker to predict the response to IFN beta in MS. PMID:23658636

  17. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

    International Nuclear Information System (INIS)

    Dai, Yao; Liu, Meilan; Tang, Wenhua; Li, Yongming; Lian, Jiqin; Lawrence, Theodore S; Xu, Liang

    2009-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling

  18. Ischemic tolerance modulates TRAIL expression and its receptors and generates a neuroprotected phenotype

    OpenAIRE

    Cantarella, G; Pignataro, G; Di Benedetto, G; Anzilotti, S; Vinciguerra, A; Cuomo, O; Di Renzo, G F; Parenti, C; Annunziato, L; Bernardini, R

    2014-01-01

    TNF-related apoptosis inducing ligand (TRAIL), a member of the TNF superfamily released by microglia, appears to be involved in the induction of apoptosis following focal brain ischemia. Indeed, brain ischemia is associated with progressive enlargement of damaged areas and prominent inflammation. As ischemic preconditioning reduces inflammatory response to brain ischemia and ameliorates brain damage, the purpose of the present study was to evaluate the role of TRAIL and its receptors in strok...

  19. Ischemic tolerance modulates TRAIL expression and its receptors and generates a neuroprotected phenotype.

    Science.gov (United States)

    Cantarella, G; Pignataro, G; Di Benedetto, G; Anzilotti, S; Vinciguerra, A; Cuomo, O; Di Renzo, G F; Parenti, C; Annunziato, L; Bernardini, R

    2014-07-17

    TNF-related apoptosis inducing ligand (TRAIL), a member of the TNF superfamily released by microglia, appears to be involved in the induction of apoptosis following focal brain ischemia. Indeed, brain ischemia is associated with progressive enlargement of damaged areas and prominent inflammation. As ischemic preconditioning reduces inflammatory response to brain ischemia and ameliorates brain damage, the purpose of the present study was to evaluate the role of TRAIL and its receptors in stroke and ischemic preconditioning and to propose, by modulating TRAIL pathway, a new therapeutic strategy in stroke. In order to achieve this aim a rat model of harmful focal ischemia, obtained by subjecting animals to 100 min of transient occlusion of middle cerebral artery followed by 24 h of reperfusion and a rat model of ischemic preconditioning in which the harmful ischemia was preceded by 30 mins of tMCAO, which represents the preconditioning protective stimulus, were used. Results show that the neuroprotection elicited by ischemic preconditioning occurs through both upregulation of TRAIL decoy receptors and downregulation of TRAIL itself and of its death receptors. As a counterproof, immunoneutralization of TRAIL in tMCAO animals resulted in significant restraint of tissue damage and in a marked functional recovery. Our data shed new light on the mechanisms that propagate ongoing neuronal damage after ischemia in the adult mammalian brain and provide new molecular targets for therapeutic intervention. Strategies aimed to repress the death-inducing ligands TRAIL, to antagonize the death receptors, or to activate the decoy receptors open new perspectives for the treatment of stroke.

  20. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis.

    Science.gov (United States)

    Wynne, James W; Shiell, Brian J; Marsh, Glenn A; Boyd, Victoria; Harper, Jennifer A; Heesom, Kate; Monaghan, Paul; Zhou, Peng; Payne, Jean; Klein, Reuben; Todd, Shawn; Mok, Lawrence; Green, Diane; Bingham, John; Tachedjian, Mary; Baker, Michelle L; Matthews, David; Wang, Lin-Fa

    2014-01-01

    Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis.

  1. Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-05-01

    Full Text Available Objective(s: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its underlying mechanisms. Materials and Methods:NCI-H460 and A549 cells were treated with TRAIL alone, cisplatin alone or combination treatment in this study. The cytotoxicity was evaluated according to Sulforhodamine B assay, and apoptosis was examined using Hoechst 33342 staining and flow cytometry. The mRNA and protein levels of TRAIL receptors and apoptotic proteins including caspase-8, caspase-9, Bcl-2 and Bax were determined by RT-PCR and Western blotting, respectively. Results:Our results showed that NCI-H460 cells were sensitive to TRAIL, whereas A549 cells were resistant. However, subtoxic-dose cisplatin could enhance the both cells to TRAIL-mediated cell proliferation inhibition and apoptosis. The underlying mechanisms might be associated with the down-regulation of DcR2 and up-regulation of Caspase-8, Caspase-9 and Bax. Conclusion:Subtoxic-dose cisplatin could enhance both TRAIL- sensitive and TRAIL- resistant NSCLC cells to TRAIL-mediated apoptosis. These findings motivated further studies to evaluate such a combinatory therapeutic strategy against NSCLC in the animal models.

  2. Induction of proapoptotic antibodies to triple-negative breast cancer by vaccination with TRAIL death receptor DR5 DNA.

    Science.gov (United States)

    Piechocki, Marie P; Wu, Gen Sheng; Jones, Richard F; Jacob, Jennifer B; Gibson, Heather; Ethier, Stephen P; Abrams, Judith; Yagita, Hideo; Venuprasad, K; Wei, Wei-Zen

    2012-12-01

    TNF-related apoptosis-inducing ligand receptor 2 [TRAIL-R2 or death receptor 5 (DR5)] is expressed at elevated levels in a broad range of solid tumors to mediate apoptotic signals from TRAIL or agonist antibodies. We tested the hypothesis that DR5 DNA vaccination will induce proapoptotic antibody to trigger apoptosis of tumor cells. BALB/c mice were electrovaccinated with DNA-encoding wild-type human DR5 (phDR5) or its derivatives. Resulting immune serum or purified immune IgG induced apoptosis in triple-negative breast cancer (TNBC) cells, which were also TRAIL sensitive. The proapoptotic activity of immune serum at dilutions of 0.5-2% was comparable to that of 1-2 μg/ml of TRAIL. Apoptotic activity of immune serum was enhanced by antibody crosslinking. Apoptotic cell death induced by anti-DR5 antibody was shown by the cleavage of PARP and caspase-3. In contrast, immune serum had no effect on the proliferation of activated human T cells, which expressed low levels of DR5. In vivo, hDR5 reactive immune serum prevented growth of SUM159 TNBC cells in severe combined immune-deficient mice. DR5-specific IFN-γ-secreting T cells were also induced by DNA vaccination. Furthermore, the feasibility to overcome immune tolerance to self DR5 was shown by the induction of mouse DR5-binding antibody after electrovaccination of BALB/c mice with pmDR5ectm-Td1 encoding a fusion protein of mouse DR5 and an immunogenic fragment of tetanus toxin. These findings support DR5 as a promising vaccine target for controlling TNBC and other DR5-positive cancers. Copyright © 2012 UICC.

  3. The Murine Natural Cytotoxic Receptor NKp46/NCR1 Controls TRAIL Protein Expression in NK Cells and ILC1s

    Directory of Open Access Journals (Sweden)

    Sam Sheppard

    2018-03-01

    Full Text Available Summary: TRAIL is an apoptosis-inducing ligand constitutively expressed on liver-resident type 1 innate lymphoid cells (ILC1s and a subset of natural killer (NK cells, where it contributes to NK cell anti-tumor, anti-viral, and immunoregulatory functions. However, the intrinsic pathways involved in TRAIL expression in ILCs remain unclear. Here, we demonstrate that the murine natural cytotoxic receptor mNKp46/NCR1, expressed on ILC1s and NK cells, controls TRAIL protein expression. Using NKp46-deficient mice, we show that ILC1s lack constitutive expression of TRAIL protein and that NK cells activated in vitro and in vivo fail to upregulate cell surface TRAIL in the absence of NKp46. We show that NKp46 regulates TRAIL expression in a dose-dependent manner and that the reintroduction of NKp46 in mature NK cells deficient for NKp46 is sufficient to restore TRAIL surface expression. These studies uncover a link between NKp46 and TRAIL expression in ILCs with potential implications in pathologies involving NKp46-expressing cells. : Sheppard et al. find that mice deficient in the activating receptor NCR1/NKp46 (Ncr1−/− fail to express the apoptosis-inducing ligand TRAIL at the surface of group 1 innate lymphoid cells (ILC1s. Keywords: NK cell, natural killer cell, NKp46, ILC1, TRAIL, IL-15, IL-2

  4. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block

  5. TRAIL receptor upregulation and the implication of KRAS/BRAF mutations in human colon cancer tumours

    Czech Academy of Sciences Publication Activity Database

    Oikonomou, E.; Kosmidou, V.; Katseli, A.; Kothonidis, K.; Mourtzoukou, D.; Kontogeorgos, G.; Anděra, Ladislav; Zografos, G.; Pintzas, A.

    2009-01-01

    Roč. 125, č. 9 (2009), s. 2127-2135 ISSN 0020-7136 R&D Projects: GA MŠk 1M0506 Grant - others:EC(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorectal tumours * TRAIL receptors expression * KRAS/ BRAF oncogenic mutations Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.722, year: 2009

  6. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth.

    Directory of Open Access Journals (Sweden)

    Robbert G van der Most

    Full Text Available BACKGROUND: Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. METHODS AND FINDINGS: We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-alpha/beta response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-gamma and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5 antibodies. CONCLUSION: The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion.

  7. The Proteasome Inhibitor Bortezomib Sensitizes AML with Myelomonocytic Differentiation to TRAIL Mediated Apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, Marianne van; Murphy, Eoin [Apoptosis Research Center, National University of Ireland, University Road, Galway (Ireland); School of Natural Sciences, National University of Ireland, University Road, Galway (Ireland); Morrell, Ruth [Apoptosis Research Center, National University of Ireland, University Road, Galway (Ireland); School of Natural Sciences, National University of Ireland, University Road, Galway (Ireland); School of Medicine, National University of Ireland, University Road, Galway (Ireland); Knapper, Steven [Department of Haematology, School of Medicine, Cardiff University, Heath Park, CF14 4XN Cardiff (United Kingdom); O' Dwyer, Michael [Apoptosis Research Center, National University of Ireland, University Road, Galway (Ireland); School of Medicine, National University of Ireland, University Road, Galway (Ireland); Samali, Afshin; Szegezdi, Eva, E-mail: eva.szegezdi@nuigalway.ie [Apoptosis Research Center, National University of Ireland, University Road, Galway (Ireland); School of Natural Sciences, National University of Ireland, University Road, Galway (Ireland)

    2011-03-15

    Acute myeloid leukemia (AML) is an aggressive stem cell malignancy that is difficult to treat. There are limitations to the current treatment regimes especially after disease relapse, and therefore new therapeutic agents are urgently required which can overcome drug resistance whilst avoiding unnecessary toxicity. Among newer targeted agents, both tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and proteasome inhibitors show particular promise. In this report we show that a combination of the proteasome inhibitor bortezomib and TRAIL is effective against AML cell lines, in particular, AML cell lines displaying myelomonocytic/monocytic phenotype (M4/M5 AML based on FAB classification), which account for 20-30% of AML cases. We show that the underlying mechanism of sensitization is at least in part due to bortezomib mediated downregulation of c-FLIP and XIAP, which is likely to be regulated by NF-κB. Blockage of NF-κB activation with BMS-345541 equally sensitized myelomonocytic AML cell lines and primary AML blasts to TRAIL.

  8. The Proteasome Inhibitor Bortezomib Sensitizes AML with Myelomonocytic Differentiation to TRAIL Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Eva Szegezdi

    2011-03-01

    Full Text Available Acute myeloid leukemia (AML is an aggressive stem cell malignancy that is difficult to treat. There are limitations to the current treatment regimes especially after disease relapse, and therefore new therapeutic agents are urgently required which can overcome drug resistance whilst avoiding unnecessary toxicity. Among newer targeted agents, both tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL and proteasome inhibitors show particular promise. In this report we show that a combination of the proteasome inhibitor bortezomib and TRAIL is effective against AML cell lines, in particular, AML cell lines displaying myelomonocytic/monocytic phenotype (M4/M5 AML based on FAB classification, which account for 20-30% of AML cases. We show that the underlying mechanism of sensitization is at least in part due to bortezomib mediated downregulation of c-FLIP and XIAP, which is likely to be regulated by NF-κB. Blockage of NF-κB activation with BMS-345541 equally sensitized myelomonocytic AML cell lines and primary AML blasts to TRAIL.

  9. The Murine Natural Cytotoxic Receptor NKp46/NCR1 Controls TRAIL Protein Expression in NK Cells and ILC1s.

    Science.gov (United States)

    Sheppard, Sam; Schuster, Iona S; Andoniou, Christopher E; Cocita, Clement; Adejumo, Thomas; Kung, Sam K P; Sun, Joseph C; Degli-Esposti, Mariapia A; Guerra, Nadia

    2018-03-27

    TRAIL is an apoptosis-inducing ligand constitutively expressed on liver-resident type 1 innate lymphoid cells (ILC1s) and a subset of natural killer (NK) cells, where it contributes to NK cell anti-tumor, anti-viral, and immunoregulatory functions. However, the intrinsic pathways involved in TRAIL expression in ILCs remain unclear. Here, we demonstrate that the murine natural cytotoxic receptor mNKp46/NCR1, expressed on ILC1s and NK cells, controls TRAIL protein expression. Using NKp46-deficient mice, we show that ILC1s lack constitutive expression of TRAIL protein and that NK cells activated in vitro and in vivo fail to upregulate cell surface TRAIL in the absence of NKp46. We show that NKp46 regulates TRAIL expression in a dose-dependent manner and that the reintroduction of NKp46 in mature NK cells deficient for NKp46 is sufficient to restore TRAIL surface expression. These studies uncover a link between NKp46 and TRAIL expression in ILCs with potential implications in pathologies involving NKp46-expressing cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL but not its receptors during oral cancer progression

    Directory of Open Access Journals (Sweden)

    Muller Susan

    2007-06-01

    Full Text Available Abstract Background TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5 and two decoy (DcR1, and DcR2 receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM, oral premalignancies (OPM, and primary and metastatic oral squamous cell carcinomas (OSCC in order to characterize the changes in their expression patterns during OSCC initiation and progression. Methods DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Results Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Conclusion Loss of TRAIL expression is an early event during oral

  11. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis.

    Science.gov (United States)

    Kohlhaas, Susan L; Craxton, Andrew; Sun, Xiao-Ming; Pinkoski, Michael J; Cohen, Gerald M

    2007-04-27

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is selectively toxic to tumor compared with normal cells. Other members of the TNF family of death ligands (TNF, CD95L) engage their respective receptors (TNF-R1 and CD95), resulting in internalization of receptor and ligand and recruitment of adaptor proteins to the caspase activation platform known as the death-inducing signaling complex (DISC). Recently, TNF-R1 and CD95 have been shown to induce apoptosis with an absolute requirement for internalization of their corresponding receptors in the formation of a DISC. We show that TRAIL and its receptors are rapidly endocytosed in a time- and concentration-dependent manner. Blockade of receptor internalization with hyperosmotic sucrose did not inhibit TRAIL-induced apoptosis but, rather, amplified the apoptotic signaling of TRAIL. Plate-bound and soluble TRAIL induced similar levels of apoptosis. Together these results suggest that neither ligand nor receptor internalization is required for TRAIL-induced apoptosis. Internalization of TRAIL is mediated primarily by clathrin-dependent endocytosis and also by clathrin-independent pathways. Inhibition of clathrin-dependent internalization by overexpression of dominant negative forms of dynamin or AP180 did not inhibit TRAIL-induced apoptosis. Consistent with the finding that neither internalization of TRAIL nor its receptors is required for transmission of its apoptotic signal, recruitment of FADD (Fas-associated death domain) and procaspase-8 to form the TRAIL-associated DISC occurred at 4 degrees C, independent of endocytosis. Our findings demonstrate that TRAIL and TRAIL receptor 1/2, unlike TNF-TNF-R1 or CD95L-CD95, do not require internalization for formation of the DISC, activation of caspase-8, or transmission of an apoptotic signal in BJAB type I cells.

  12. Different modulation of TRAIL-induced apoptosis by inhibition of pro-survival pathways in TRAIL-sensitive and TRAIL-resistant colon cancer cells

    Czech Academy of Sciences Publication Activity Database

    Vaculová, Alena; Hofmanová, Jiřina; Souček, Karel; Kozubík, Alois

    2006-01-01

    Roč. 580, č. 28-29 (2006), s. 6565-6569 ISSN 0014-5793 R&D Projects: GA ČR(CZ) GA524/04/0895; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507 Keywords : TRAIL * apoptosis * Mc1-1 Subject RIV: BO - Biophysics Impact factor: 3.372, year: 2006

  13. The sesquiterpene lactone eupatolide sensitizes breast cancer cells to TRAIL through down-regulation of c-FLIP expression.

    Science.gov (United States)

    Lee, Jongkyu; Hwangbo, Cheol; Lee, Jung Joon; Seo, Juhee; Lee, Jeong-Hyung

    2010-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapeutics due to its ability to induce apoptosis selectively in cancer cells. However, sensitivity of cancer cells for induction of apoptosis by TRAIL varies considerably. Therefore, it is important to develop agents that overcome this resistance. We show, for the first time, that eupatolide, the sesquiterpene lactone isolated from the medicinal plant Inula britannica, sensitizes human breast cancer cells to TRAIL-induced apoptosis. Treatment with TRAIL in combination with subtoxic concentrations of eupatolide enhanced the TRAIL-induced cytotoxicity in MCF-7, MDA-MB-231 and MDA-MB-453 breast cancer cells, whereas each reagent alone slightly induced cell death. The combination induced sub-G1 phase DNA content and annexin V-staining in MCF-7 cells, which are major features of apoptosis. Apoptotic characteristics induced by the combined treatment were significantly inhibited by a pan-caspase inhibitor. The sensitization to TRAIL-induced apoptosis was accompanied by the activation of caspase-8 and was concomitant with Bid and poly(ADP-ribose) polymerase (PARP) cleavage. Treatment of eupatolide alone significantly down-regulated the expression of cellular FLICE inhibitory protein (c-FLIP) in MCF-7 cells. Furthermore, enforced expression of c-FLIP significantly attenuated the apoptosis induced by this combination in MCF-7 cells, suggesting a key role for c-FLIP down-regulation in these events. We also observed that euaptolide inhibited AKT phosphorylation in a dose- and time-dependent manner. Moreover, inhibition of Akt by LY294002, a specific PI3K inhibitor, down-regulated c-FLIP expression in MCF-7 cells. Taken together, these results indicate that eupatolide could augment TRAIL-induced apoptosis in human breast cancer cells by down-regulating c-FLIP expression through the inhibition of AKT phosphorylation and be a valuable compound to overcome TRAIL resistance in

  14. Trails, Other - Trails

    Data.gov (United States)

    NSGIC State | GIS Inventory — This trails map layer represents off-road recreational trail features and important road connections that augment Utah’s recreational trail network. This map layer...

  15. Novel Water-Borne Polyurethane Nanomicelles for Cancer Chemotherapy: Higher Efficiency of Folate Receptors Than TRAIL Receptors in a Cancerous Balb/C Mouse Model.

    Science.gov (United States)

    Ajorlou, Elham; Khosroushahi, Ahmad Yari; Yeganeh, Hamid

    2016-06-01

    Since the introduction of nanocarriers, the delivery of chemotherapeutic agents for treatment of patients with cancer has been possible with better effectiveness. The latest findings are also support that further enhancement in therapeutic effectiveness of these nanocarriers can be attained, if surface decoration with proper targeting agents is considered. This study aimed at treating a variety of 4T1 murine breast cancer cell line, mainly demonstrating high folate and TRAIL receptor expression of cancerous cells. The therapeutic efficacy of paclitaxel loaded Cremophore EL (Taxol®), paclitaxel loaded waterborne polyurethane nanomicelles (PTX-PU) and paclitaxel loaded waterborne polyurethane nanomicelles conjugated with folate (PTX-PU-FA) and TRAIL (PTX-PU-TRAIL) on treating 4T1 cell was also compared. The findings that worth noting are: PTX-PU outperformed Taxol® in a Balb/C mouse model, furthermore, tumor growth was adequately curbed by folate and TRAIL-decorated nanomicelles rather than the unconjugated formulation. Tumors of mice treated with PTX-PU-FA and PTX-PU-TRAIL shrank substantially compared to those treated with Taxol®, PTX-PU and PTX-PU-TRAIL (average 573 mm(3) versus 2640, 846, 717 mm(3) respectively), 45 days subsequent to tumor inoculation. The microscopic study of hematoxylin-eosin stained tumors tissue and apoptotic cell fraction substantiated that the most successful therapeutic effects have been observed for the mice treated with PTX-PU-FA (about 90% in PTX-PU-FA versus 75%, 60%, 15% in PTX-PU-TRAIL, PTX-PU, and Taxol® group respectively). Using folate-targeted nanocarriers to treat cancers characterized by a high level of folate ligand expression is well substantiated by the findings of this study.

  16. Effect of Her-2/neu Signaling on Sensitivity to TRAIL in Prostate Cancer

    National Research Council Canada - National Science Library

    Lee, Yong J

    2005-01-01

    .... In this study, we observed that pretreatment of acetyl salicylic acid (ASA) augmented TRAIL-induced apoptotic death in human prostate adenocarcinoma LNCaP and human colorectal carcinoma CX-1 cells...

  17. Selective inhibition of PED protein expression sensitizes B-cell chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Garofalo, Michela; Romano, Giulia; Quintavalle, Cristina; Romano, Maria Fiammetta; Chiurazzi, Federico; Zanca, Ciro; Condorelli, Gerolama

    2007-03-15

    B-cell chronic lymphocytic leukaemia (B-CLL) cells fail to undergo apoptosis. The mechanism underlying this resistance to cell death is still largely unknown. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) effectively kills tumour cells but not normal cells, and thus represents an attractive tool for the treatment of cancer. Unfortunately, lymphocytes from B-CLL patients are resistant to TRAIL-mediated apoptosis. Thus, we aimed to study the involvement of PED, a DED-family member with a broad antiapoptotic action, in this resistance. We demonstrate that B lymphocytes obtained from patients with B-CLL express high levels of PED. Treatment of B-CLL cells with specific PED antisense oligonucleotides, a protein synthesis inhibitor or HDAC inhibitors, induced a significant downregulation of PED and sensitized these cells to TRAIL-induced cell death. These findings suggest a direct involvement of PED in resistance to TRAIL-induced apoptosis in B-CLL. It also identifies this DED-family member as a potential therapeutic target for this form of leukaemia. (c) 2006 Wiley-Liss, Inc.

  18. TNFα cooperates with IFN-γ to repress Bcl-xL expression to sensitize metastatic colon carcinoma cells to TRAIL-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Feiyan Liu

    Full Text Available BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. CONCLUSIONS/SIGNIFICANCE: TNFα and IFN

  19. General Sensitization of melanoma cells for TRAIL-induced apoptosis by the potassium channel inhibitor TRAM-34 depends on release of SMAC.

    Directory of Open Access Journals (Sweden)

    Sandra-Annika Quast

    Full Text Available The death ligand TRAIL represents a promising therapeutic strategy for metastatic melanoma, however prevalent and inducible resistance limit its applicability. A new approach is presented here for sensitization to TRAIL. It is based on inhibition of the membrane potassium channel KCa3.1 (IK1, which serves fundamental cellular functions related to membrane potential. The selective inhibitor TRAM-34 did not induce apoptosis by itself but synergistically enhanced TRAIL sensitivity and overrode TRAIL resistance in a large panel of melanoma cell lines. Expression of IK1 was also found in mitochondria, and its inhibition resulted in mitochondrial membrane hyperpolarization and an early activation of Bax. The combination of TRAM-34 and TRAIL resulted in massive release of mitochondrial factors, cytochrome c, AIF and SMAC/DIABLO. Bax knockdown and Bcl-2 overexpression abolished apoptosis. Overexpression of XIAP diminished apoptosis by two-fold, and SMAC knockdown almost completely abolished apoptosis. These data uncover the existence of a rheostat in melanoma cells, consisting of inhibitor of apoptosis proteins and SMAC, which regulates TRAIL sensitivity. Thus, a new strategy is described based on mitochondrial membrane channels, which correspond to Bax activation. As both TRAIL and IK1 inhibitors had shown only minor side effects in clinical trials, a clinical application of this combination is conceivable.

  20. Characterisation of the Redox Sensitive NMDA Receptor

    KAUST Repository

    Alzahrani, Ohood

    2016-05-01

    Glucose entry into the brain and its subsequent metabolism to L-lactate, regulated by astrocytes, plays a major role in synaptic plasticity and memory formation. A recent study has shown that L-lactate produced by the brain upon stimulation of glycolysis, and glycogen-derived L-lactate from astrocytes and its transport into neurons, is crucial for memory formation. A recent study revealed the molecular mechanisms that underlie the role of L-lactate in neuronal plasticity and long-term memory formation. L-lactate was shown to induce a cascade of molecular events via modulation of redox-sensitive N-Methyl-D-aspartate (NMDA) receptor activity that was mimicked by nicotinamide adenine dinucleotide hydride (NADH) co-enzyme. This indicated that changes in cellular redox state, following L-lactate transport inside the cells and its subsequent metabolism, production of NADH, and favouring a reduced state are the key effects of L-lactate. Therefore, we are investigating the role of L-lactate in modulating NMDA receptor function via redox modulatory sites. Accordingly, crucial redox-sensitive cysteine residues, Cys320 and Cys87, of the NR2A NMDA receptor subunit are mutated using site-directed mutation, transfected, and expressed in HEK293 cells. This cellular system will then be used to characterise and monitor its activity upon Llactate stimulation, compared to the wild type. This will be achieved by calcium imaging, using fluorescent microscopy. Our data shows that L-lactate potentiated NMDA receptor activity and increased intracellular calcium influx in NR1/NR2A wild type compared to the control condition (WT NR1/NR2A perfused with (1μM) glutamate and (1μM) glycine agonist only), showing faster response initiation and slower decay rate of the calcium signal to the baseline. Additionally, stimulating with L-lactate associated with greater numbers of cells having high fluorescent intensity (peak amplitude) compared to the control. Furthermore, L-lactate rescued the

  1. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  2. Beneficial effect of TRAIL on HIV burden, without detectable immune consequences.

    Directory of Open Access Journals (Sweden)

    Brett D Shepard

    2008-08-01

    Full Text Available During uncontrolled HIV disease, both TNF-related apoptosis inducing ligand (TRAIL and TRAIL receptor expression are increased. Enhanced TRAIL sensitivity is due to TRAIL receptor up-regulation induced by gp120. As a result of successful antiretroviral therapy TRAIL is down-regulated, and there are fewer TRAIL-sensitive cells. In this setting, we hypothesized that all cells that contain virus, including those productively- and latently-infected, have necessarily been "primed" by gp120 and remain TRAIL-sensitive, whereas uninfected cells remain relatively TRAIL-resistant.We evaluated the immunologic and antiviral effects of TRAIL in peripheral blood lymphocytes collected from HIV-infected patients with suppressed viral replication. The peripheral blood lymphocytes were treated with recombinant TRAIL or an equivalent amount of bovine serum albumin as a negative control. Treated cells were then analyzed by quantitative flow cytometry, ELISPOT for CD4+ and CD8+ T-cell function, and limiting dilution microculture for viral burden. Alterations in the cytokine milieu of treated cells were assessed with a multiplex cytokine assay. Treatment with recombinant TRAIL in vitro reduced viral burden in lymphocytes collected from HIV-infected patients with suppressed viral load. TRAIL treatment did not alter the cytokine milieu of treated cells. Moreover, treatment with recombinant TRAIL had no adverse effect on either the quantity or function of immune cells from HIV-infected patients with suppressed viral replication.TRAIL treatment may be an important adjunct to antiretroviral therapy, even in patients with suppressed viral replication, perhaps by inducing apoptosis in cells with latent HIV reservoirs. The absence of adverse effect on the quantity or function of immune cells from HIV-infected patients suggests that there is not a significant level of "bystander death" in uninfected cells.

  3. NF-κB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL

    Directory of Open Access Journals (Sweden)

    Karacay Bahri

    2010-10-01

    Full Text Available Abstract Background Lung cancer causes the highest rate of cancer-related deaths both in men and women. As many current treatment modalities are inadequate in increasing patient survival, new therapeutic strategies are required. TNF-related apoptosis-inducing ligand (TRAIL selectively induces apoptosis in tumor cells but not in normal cells, prompting its current evaluation in a number of clinical trials. The successful therapeutic employment of TRAIL is restricted by the fact that many tumor cells are resistant to TRAIL. The goal of the present study was to test a novel combinatorial gene therapy modality involving adenoviral delivery of TRAIL (Ad5hTRAIL and IKK inhibition (AdIKKβKA to overcome TRAIL resistance in lung cancer cells. Methods Fluorescent microscopy and flow cytometry were used to detect optimum doses of adenovirus vectors to transduce lung cancer cells. Cell viability was assessed via a live/dead cell viability assay. Luciferase assays were employed to monitor cellular NF-κB activity. Apoptosis was confirmed using Annexin V binding. Results Neither Ad5hTRAIL nor AdIKKβKA infection alone induced apoptosis in A549 lung cancer cells, but the combined use of Ad5hTRAIL and AdIKKβKA significantly increased the amount of A549 apoptosis. Luciferase assays demonstrated that both endogenous and TRAIL-induced NF-κB activity was down-regulated by AdIKKβKA expression. Conclusions Combination treatment with Ad5hTRAIL and AdIKKβKA induced significant apoptosis of TRAIL-resistant A549 cells, suggesting that dual gene therapy strategy involving exogenous TRAIL gene expression with concurrent IKK inhibition may be a promising novel gene therapy modality to treat lung cancer.

  4. Behavioral control and reward sensitivity in adolescents’ risk taking behavior : A longitudinal TRAILS study

    NARCIS (Netherlands)

    Peeters, M.; Oldehinkel, Tineke; Vollebergh, W.A.M.

    2017-01-01

    Neurodevelopmental theories of risk behavior hypothesize that low behavioral control in combination with high reward sensitivity explains adolescents' risk behavior. However, empirical studies examining this hypothesis while including actual risk taking behavior in adolescence are lacking. In this

  5. Behavioral Control and Reward Sensitivity in Adolescents' Risk Taking Behavior : A Longitudinal TRAILS Study

    NARCIS (Netherlands)

    Peeters, Margot; Oldehinkel, Tineke; Vollebergh, Wilma

    2017-01-01

    Neurodevelopmental theories of risk behavior hypothesize that low behavioral control in combination with high reward sensitivity explains adolescents' risk behavior. However, empirical studies examining this hypothesis while including actual risk taking behavior in adolescence are lacking. In this

  6. Mcl-1 and YY1 inhibition and induction of DR5 by the BH3-mimetic Obatoclax (GX15-070) contribute in the sensitization of B-NHL cells to TRAIL apoptosis

    Science.gov (United States)

    Martínez-Paniagua, Melisa A; Baritaki, Stavroula; Huerta-Yepez, Sara; Ortiz-Navarrete, Vianney F; González-Bonilla, Cesar

    2011-01-01

    The pan Bcl-2 family antagonist Obatoclax (GX15-070), currently in clinical trials, was shown to sensitize TRAIL-resistant tumors to TRAIL-mediated apoptosis via the release of Bak and Bim from Mcl-1 or Bcl-2/Bcl-XL complexes or by the activation of Bax, though other mechanisms were not examined. Herein, we hypothesize that Obatoclax-mediated sensitization to TRAIL apoptosis may also result from alterations of the apoptotic pathways. The TRAIL-resistant B-cell line Ramos was used as a model for investigation. Treatment of Ramos cells with obatoclax significantly inhibited the expression of several members of the Bcl-2 family, dissociated Bak from Mcl-1 and inhibited the NFκB activity. Cells treated with Mcl-1 siRNA were sensitized to TRAIL apoptosis. We examined whether the sensitization of Ramos to TRAIL by Obatoclax resulted from signaling of the DR4 and/or DR5. Transfection with DR5 siRNA, but not with DR4 siRNA, sensitized the cells to apoptosis following treatment with Obatoclax and TRAIL. The signaling via DR5 correlated with Obatoclax-induced inhibition of the DR5 repressor Yin Yang 1 (YY1). Transfection with YY1 siRNA sensitized the cells to TRAIL apoptosis following treatment with Obatoclax and TRAIL. Overall, the present findings reveal a new mechanism of Obatoclax-induced sensitization to TRAIL apoptosis and the involvement of the inhibition of NFκB activity and downstream Mcl-1 and YY1 expressions and activities. PMID:21822052

  7. Acidic deposition along the Appalachian Trail corridor and its effects on acid-sensitive terrestrial and aquatic resources

    Science.gov (United States)

    Lawrence, Gregory B.; Sullivan, Timothy J.; Burns, Douglas A.; Bailey, Scott W.; Cosby, Bernard J.; Dovciak, Martin; Ewing, Holly A.; McDonnell, Todd C.; Minocha, Rakesh; Riemann, Rachel; Quant, Juliana; Rice, Karen C.; Siemion, Jason; Weathers, Kathleen C.

    2015-01-01

    The Appalachian National Scenic Trail (AT), a unit of the National Park Service (NPS), spans nearly 2,200 miles from Georgia to Maine, encompassing a diverse range of ecosystems. Acidic deposition (acid rain) threatens the AT’s natural resources. Acid rain is a result of sulfur (S) and nitrogen (N) compounds produced from fossil fuel combustion, motor vehicles, and agricultural practices. The AT is particularly vulnerable to S and N because it passes along ridgetops that receive higher levels of acid rain than lower valley terrain, and these ridges are often underlain by bedrock with minimal ability to buffer acidic inputs. Further, there are numerous S and N emission sources across the region. In the environment, acidic deposition can lower the pH of streams and soils which can ultimately affect fish, invertebrates, and vegetation that inhabit these areas. To address this concern, the MegaTransect Deposition Effects Study evaluated the condition and sensitivity of the AT corridor with respect to acidic deposition, and defined air pollution thresholds (critical and target loads) and recovery rates. Findings indicate that additional S emission

  8. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors

    Directory of Open Access Journals (Sweden)

    Latha eMukunda

    2016-02-01

    Full Text Available Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs, occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX and a highly conserved co-receptor protein (Orco. The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs expressing Or22a inside the fly’s antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native

  9. Enhanced sensitivity of muscarinic cholinergic receptor associated with dopaminergic receptor subsensitivity after chronic antidepressant treatment

    International Nuclear Information System (INIS)

    Koide, T.; Matsushita, H.

    1981-01-01

    The chronic effects of antidepressant treatment on striatal dopaminergic (DA) and muscarinic cholinergic (mACh) receptors of the rat brain have been examined comparatively in this study using 3 H-spiroperidol ( 3 H-SPD) and 3 H-quinuclidinyl benzilate ( 3 H-QNB) as the respective radioactive ligands. Imipramine and desipramine were used as prototype antidepressants. Although a single administration of imipramine or desipramine did not affect each receptor sensitivity, chronic treatment with each drug caused a supersensitivity of mACh receptor subsequent to DA receptor subsensitivity. Furthermore, it has been suggested that anti-mACh properties of imipramine or desipramine may not necessarily be related to the manifestation of mACh receptor supersensitivity and that sustained DA receptor subsensitivity may play some role in the alterations of mACh receptor sensitivity

  10. ShRNA-mediated knock-down of CXCR7 increases TRAIL-sensitivity in MCF-7 breast cancer cells.

    Science.gov (United States)

    Gao, Weiran; Mei, Xifan; Wang, Jikun; Zhang, Xianglin; Yuan, Yajiang

    2015-09-01

    This study aims to investigate the effects of CXCR7-shRNA on TRAIL-mediated apoptosis and suppression of invasive migration and the underlying mechanisms. (1) We constructed CXCR-7-shRNA lentiviral vectors and confirmed their silencing efficiency in MCF-7 cells by RT-PCR analysis. (2) The effects of CXCR7 and/or TRAIL on cell proliferation were examined by MTT assay. (3) Trans well invasion assay was used to examine the effects of CXCR7 silencing and/or TRAIL on MCF-7 cell invasive migration. (4) Expression of Caspase-3, and Caspase-8, and MMP-2 and MMP-9 proteins was examined by Western blot analysis. (1) Viral titers were 2.95 × 10(8) TU/ml, 3.01 × 10(8) TU/ml, 3.26 × 10(8) TU/ml, and 3.08 × 10(8) TU/ml, respectively. (2) CHXR7 shRNAs markedly decreased CXCR7 mRNA expression in MCF-7 cells, among which CXCR7-shRNA-1 showed significantly higher rate of inhibition (P < 0.05). (3) Combination of TRAIL and CXCR7-shRNA-1 resulted in marked suppression of cell proliferation in time-dependent manner (P < 0.05). (4) Cell invasion capacity was inhibited in each experimental group as compared to blank control group at 48 h post treatments (P < 0.05). Among them, combination of TRAIL and CXCR7-shRNA had the highest inhibitory effect (P < 0.05). (5) Western blot analysis indicated that TRAIL alone does not affect CXCR7 expression, but either TRAIL + CXCR7 shRNA or CXCR7 shRNA alone markedly suppressed CXCR7 protein expression. Furthermore, combination of TRAIL and CXCR-7-shRNA significantly increased Caspase-3 and Caspase-8 expression and decreased MMP-2 and MMP-9 expression (P < 0.05). Knock-down of CXCR-7 expression leads to augmented TRAIL-mediated suppression of MCF-7 cell proliferation and invasion.

  11. Hypothyroidism leads to increased dopamine receptor sensitivity and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, A.D.; Overstreet, D.H.; Crocker, J.M.

    1986-06-01

    Rats treated with iodine-131 were confirmed to be hypothyroid by their reduced baseline core body temperatures, reduced serum thyroxine concentrations and elevated serum thyroid stimulating hormone concentrations. When hypothyroid rats were compared to euthyroid controls they were more sensitive to the effects of apomorphine (1.0 mumol/kg) on stereotypy, operant responding and body temperature and showed a smaller reduction in locomotor activity after injection of haloperidol (0.25 mumol/kg). Receptor binding studies on striatal homogenates indicated that hypothyroid rats had increased concentrations of D2 dopamine receptors but there was no change in the affinity. It is concluded that hypothyroidism increases dopamine receptor sensitivity by increasing receptor concentration.

  12. Greenway Trails

    Data.gov (United States)

    Town of Cary, North Carolina — View the Town’s current and proposed greenway system, including connectors and street side trails.A greenway is a linear parcel of land set aside to preserve open...

  13. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts

    Czech Academy of Sciences Publication Activity Database

    Psahoulia, F.H.; Drosopoulos, K.G.; Doubravská, Lenka; Anděra, Ladislav; Pintzas, A.

    2007-01-01

    Roč. 6, č. 9 (2007), s. 2591-2599 ISSN 1535-7163 R&D Projects: GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : TRAIL * apoptosis * lipid rafts Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.800, year: 2007

  14. Hair receptor sensitivity to changes in laminar boundary layer shape

    International Nuclear Information System (INIS)

    Dickinson, B T

    2010-01-01

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  15. Hair receptor sensitivity to changes in laminar boundary layer shape

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, B T, E-mail: btdickinson@lifetime.oregonstate.ed [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542 (United States)

    2010-03-15

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  16. EGFR-targeted TRAIL and a Smac mimetic synergize to overcome apoptosis resistance in KRAS mutant colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Yvonne Möller

    Full Text Available TRAIL is a death receptor ligand that induces cell death preferentially in tumor cells. Recombinant soluble TRAIL, however, performs poorly as an anti-cancer therapeutic because oligomerization is required for potent biological activity. We previously generated a diabody format of tumor-targeted TRAIL termed Db(αEGFR-scTRAIL, comprising single-stranded TRAIL molecules (scTRAIL and the variable domains of a humanized variant of the EGFR blocking antibody Cetuximab. Here we define the bioactivity of Db(αEGFR-scTRAIL with regard to both EGFR inhibition and TRAIL receptor activation in 3D cultures of Caco-2 colorectal cancer cells, which express wild-type K-Ras. Compared with conventional 2D cultures, Caco-2 cells displayed strongly enhanced sensitivity toward Db(αEGFR-scTRAIL in these 3D cultures. We show that the antibody moiety of Db(αEGFR-scTRAIL not only efficiently competed with ligand-induced EGFR function, but also determined the apoptotic response by specifically directing Db(αEGFR-scTRAIL to EGFR-positive cells. To address how aberrantly activated K-Ras, which leads to Cetuximab resistance, affects Db(αEGFR-scTRAIL sensitivity, we generated stable Caco-2tet cells inducibly expressing oncogenic K-Ras(G12V. In the presence of doxycycline, these cells showed increased resistance to Db(αEGFR-scTRAIL, associated with the elevated expression of the anti-apoptotic proteins cIAP2, Bcl-xL and FlipS. Co-treatment of cells with the Smac mimetic SM83 restored the Db(αEGFR-scTRAIL-induced apoptotic response. Importantly, this synergy between Db(αEGFR-scTRAIL and SM83 also translated to 3D cultures of oncogenic K-Ras expressing HCT-116 and LoVo colorectal cancer cells. Our findings thus support the notion that Db(αEGFR-scTRAIL therapy in combination with apoptosis-sensitizing agents may be promising for the treatment of EGFR-positive colorectal cancers, independently of their KRAS status.

  17. Snail Trails

    Science.gov (United States)

    Galus, Pamela

    2002-01-01

    The slime trails of snails lead the author's students to a better understanding of science as inquiry and the processes of science. During this five-day activity, students get up close and personal with one of her favorite creatures, the land snail. Students begin by observing the organism and recording their observations. After making initial…

  18. Bypassing the need for pre-sensitization of cancer cells for anticancer TRAIL therapy with secretion of novel cell penetrable form of Smac from hA-MSCs as cellular delivery vehicle.

    Science.gov (United States)

    Khorashadizadeh, Mohsen; Soleimani, Masoud; Khanahmad, Hossein; Fallah, Ali; Naderi, Mahmood; Khorramizadeh, Mohammadreza

    2015-06-01

    TNF-related apoptosis inducing ligand (TRAIL) is a novel anticancer agent with selective apoptosis-inducing activity on cancer cells. However, many malignant tumors still remain unresponsive. Although cells can bypass apoptosis by different functions, the defect in the blocking role of second mitochondria-derived activator of caspase (Smac) on X-linked inhibitor of apoptosis protein (XIAP) is known to be an important hub for immortal characteristic of malignant cells. Actually, XIAP is known as an apoptosis inhibitor. To date, the sensitization of cancerous cells to TRAIL was successfully performed with different protocols, mainly through blocking XIAP with Smac administration. However, all these sensitization methodologies need to be performed prior to TRAIL administration on cancerous cells which in turn limit their practical application in clinics. Therefore, we hypothesized that concurrent expression of Smac and TRAIL on human adipose-derived mesenchymal stem cells (hA-MSC-ST) could both sensitize and destroy cancerous cells. To this aim, we generated hA-MSC-ST, secreting a novel cell penetrable form of Smac and a trimeric form of TRAIL. Indeed, the cell penetrable form of Smac obviates the need for any pretreatment of cancerous cells. Our data depicted that individual overexpression of TRAIL or Smac in different breast cancer cell types induced limited or no apoptosis, respectively. Conversely, their concomitant overexpression markedly increased cell death even for a resistant type of breast cancer cells, MCF-7. Notably, we observed no cytotoxicity of our methodology on normal cells. In summary, this is the first demonstration that a dual approach using simultaneous overexpression of a cell penetrable form of Smac and TRAIL sensitize and promote apoptotic process even in resistant breast cancer cells.

  19. Implicación de NF-κB y p53 en la expresión de receptores de muerte-TRAIL y apoptosis por procianidinas en células metastásicas humanas SW620

    Directory of Open Access Journals (Sweden)

    María Elena Maldonado

    2010-12-01

    Resultados. La muerte celular activada por procianidinas fue prevenida por inhibidores específicos de NF-κB y de p53: amino-4-(4-fenoxi-feniletilamino-quinazolina y pifitrina α, respectivamente. La quinazolina y la pifitrina α inhibieron la activación dependiente de procianidinas de TRAIL-DR4/DR5. Sin embargo, el aumento en la expresión de TRAIL-DR4 disminuyó significativamente sólo cuando la quinazolina y la pifitrina α se usaron simultáneamente; este efecto no se observó con cada uno por separado. No se observaron para TRAIL-DR5 estos efectos, lo cual sugiere que la expresión de cada receptor de muerte TRAIL puede estar regulada en forma diferente. Conclusiones. Estos datos sugieren que NF-κB y p53 se requieren parcialmente en la apoptosis de células SW620 inducida por procianidinas mediante el aumento en TRAIL-DR4/-DR5. La proporción de DR4/DR5 podría ser un factor determinante en la activación de la apoptosis por vía de TRAIL-DR4/-DR5.

  20. Paving TRAIL's Path with Ubiquitin.

    Science.gov (United States)

    Lafont, Elodie; Hartwig, Torsten; Walczak, Henning

    2018-01-01

    Despite its name, signalling induced by the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is versatile. Besides eliciting cell death by both apoptosis and necroptosis, TRAIL can also induce migration, proliferation, and cytokine production in cancerous and non-cancerous cells. Unravelling the mechanisms regulating the intricate balance between these different outputs could therefore facilitate our understanding of the role of TRAIL in tissue homeostasis, immunity, and cancer. Ubiquitination and its reversal, deubiquitination, are crucial modulators of immune receptor signalling. This review discusses recent progress on the orchestration of TRAIL signalling outcomes by ubiquitination of various components of the signalling complexes, our understanding of the molecular switches that decide between cell death and gene activation, and what remains to be discovered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. P2X4: A fast and sensitive purinergic receptor

    Directory of Open Access Journals (Sweden)

    Jaanus Suurväli

    2017-10-01

    Full Text Available Extracellular nucleotides have been recognized as important mediators of activation, triggering multiple responses via plasma membrane receptors known as P2 receptors. P2 receptors comprise P2X ionotropic receptors and G protein-coupled P2Y receptors. P2X receptors are expressed in many tissues, where they are involved in a number of functions including synaptic transmission, muscle contraction, platelet aggregation, inflammation, macrophage activation, differentiation and proliferation, neuropathic and inflammatory pain. P2X4 is one of the most sensitive purinergic receptors (at nanomolar ATP concentrations, about one thousand times more than the archetypal P2X7. P2X4 is widely expressed in central and peripheral neurons, in microglia, and also found in various epithelial tissues and endothelial cells. It localizes on the plasma membrane, but also in intracellular compartments. P2X4 is preferentially localized in lysosomes, where it is protected from proteolysis by its glycosylation. High ATP concentration in the lysosomes does not activate P2X4 at low pH; P2X4 gets activated by intra-lysosomal ATP only in its fully dissociated tetra-anionic form, when the pH increases to 7.4. Thus, P2X4 is functioning as a Ca2+-channel after the fusion of late endosomes and lysosomes. P2X4 modulates major neurotransmitter systems and regulates alcohol-induced responses in microglia. P2X4 is one of the key receptors mediating neuropathic pain. However, injury-induced upregulation of P2X4 expression is gender dependent and plays a key role in pain difference between males and females. P2X4 is also involved in inflammation. Extracellular ATP being a pro-inflammatory molecule, P2X4 can trigger inflammation in response to high ATP release. It is therefore involved in multiple pathologies, like post-ischemic inflammation, rheumatoid arthritis, airways inflammation in asthma, neurodegenerative diseases and even metabolic syndrome. Although P2X4 remains poorly

  2. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  3. TRAIL receptor I (DR4) polymorphisms C626G and A683C are associated with an increased risk for hepatocellular carcinoma (HCC) in HCV-infected patients

    International Nuclear Information System (INIS)

    Körner, Christian; Nattermann, Jacob; Spengler, Ulrich; Nischalke, Hans Dieter; Riesner, Katarina; Krämer, Benjamin; Eisenhardt, Marianne; Glässner, Andreas; Wolter, Franziska; Berg, Thomas; Müller, Tobias; Sauerbruch, Tilman

    2012-01-01

    Tumour surveillance via induction of TRAIL-mediated apoptosis is a key mechanism, how the immune system prevents malignancy. To determine if gene variants in the TRAIL receptor I (DR4) gene affect the risk of hepatitis C virus (HCV)-induced liver cancer (HCC), we analysed DR4 mutations C626G (rs20575) and A683C (rs20576) in HCV-infected patients with and without HCC. Frequencies of DR4 gene polymorphisms were determined by LightSNiP assays in 159 and 234 HCV-infected patients with HCC and without HCC, respectively. 359 healthy controls served as reference population. Distribution of C626G and A683C genotypes were not significantly different between healthy controls and HCV-positive patients without HCC. DR4 variants 626C and 683A occurred at increased frequencies in patients with HCC. The risk of HCC was linked to carriage of the 626C allele and the homozygous 683AA genotype, and the simultaneous presence of the two risk variants was confirmed as independent HCC risk factor by Cox regression analysis (Odds ratio 1.975, 95% CI 1.205-3.236; p = 0.007). Furthermore HCV viral loads were significantly increased in patients who simultaneously carried both genetic risk factors (2.69 ± 0.36 × 10 6 IU/ml vs. 1.81 ± 0.23 × 10 6 IU/ml, p = 0.049). The increased prevalence of patients with a 626C allele and the homozygous 683AA genotype in HCV-infected patients with HCC suggests that these genetic variants are a risk factor for HCC in chronic hepatitis C

  4. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization.

    Science.gov (United States)

    Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S

    2015-02-01

    Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Superior Hiking Trail

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  6. Role of endoplasmic reticulum stress in alpha-TEA mediated TRAIL/DR5 death receptor dependent apoptosis.

    Directory of Open Access Journals (Sweden)

    Richa Tiwary

    2010-07-01

    Full Text Available Alpha-TEA (RRR-alpha-tocopherol ether-linked acetic acid analog, a derivative of RRR-alpha-tocopherol (vitamin E exhibits anticancer actions in vitro and in vivo in variety of cancer types. The objective of this study was to obtain additional insights into the mechanisms involved in alpha-TEA induced apoptosis in human breast cancer cells.alpha-TEA induces endoplasmic reticulum (ER stress as indicated by increased expression of CCAAT/enhancer binding protein homologous protein (CHOP as well as by enhanced expression or activation of specific markers of ER stress such as glucose regulated protein (GRP78, phosphorylated alpha subunit of eukaryotic initiation factor 2 (peIF-2alpha, and spliced XBP-1 mRNA. Knockdown studies using siRNAs to TRAIL, DR5, JNK and CHOP as well as chemical inhibitors of ER stress and caspase-8 showed that: i alpha-TEA activation of DR5/caspase-8 induces an ER stress mediated JNK/CHOP/DR5 positive amplification loop; ii alpha-TEA downregulation of c-FLIP (L protein levels is mediated by JNK/CHOP/DR5 loop via a JNK dependent Itch E3 ligase ubiquitination that further serves to enhance the JNK/CHOP/DR5 amplification loop by preventing c-FLIP's inhibition of caspase-8; and (iii alpha-TEA downregulation of Bcl-2 is mediated by the ER stress dependent JNK/CHOP/DR5 signaling.Taken together, ER stress plays an important role in alpha-TEA induced apoptosis by enhancing DR5/caspase-8 pro-apoptotic signaling and suppressing anti-apoptotic factors c-FLIP and Bcl-2 via ER stress mediated JNK/CHOP/DR5/caspase-8 signaling.

  7. Evaluation of preventive and therapeutic activity of novel non-steroidal anti-inflammatory drug, CG100649, in colon cancer: Increased expression of TNF-related apoptosis-inducing ligand receptors enhance the apoptotic response to combination treatment with TRAIL.

    Science.gov (United States)

    Woo, Jong Kyu; Kang, Ju-Hee; Jang, Yeong-Su; Ro, Seonggu; Cho, Joong Myung; Kim, Hwan-Mook; Lee, Sang-Jin; Oh, Seung Hyun

    2015-04-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested as the potential new class of preventive or therapeutic antitumor agents. The aim of the present study was to evaluate the antitumor activity of the novel NSAID, CG100649. CG100649 is a novel NSAID dual inhibitor for COX-2 and carbonic anhydrase (CA)-I/-II. In the present study, we investigated the alternative mechanism by which CG100649 mediated suppression of the colon cancer growth and development. The anchorage‑dependent and -independent clonogenic assay showed that CG100649 inhibited the clonogenicity of human colon cancer cells. The flow cytometric analysis showed that CG100649 induced the G2/M cell cycle arrest in colon cancer cells. Animal studies showed that CG100649 inhibited the tumor growth in colon cancer xenograft in nude mice. Furthermore, quantitative PCR and FACS analysis demonstrated that CG100649 upregulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors (DR4 and DR5) but decreased the expression of decoy receptors (DcR1 and DcR2) in colon cancer cells. The results showed that CG100649 treatment sensitized TRAIL‑mediated growth suppression and apoptotic cell death. The combination treatment resulted in significant repression of the intestinal polyp formation in APCmin/+ mice. Our data clearly demonstrated that CG100649 contains preventive and therapeutic activity for colon cancer. The present study may be useful for identification of the potential benefit of the NSAID CG100649, for the achievement of a better treatment response in colon cancer.

  8. A New Player in the Development of TRAIL Based Therapies for Hepatocarcinoma Treatment: ATM Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Stagni, Venturina; Santini, Simonetta; Barilà, Daniela, E-mail: daniela.barila@uniroma2.it [Department of Biology, University of Tor Vergata, Rome 00133 (Italy); Laboratory of Cell Signaling, Santa Lucia Foundation-IRCCS, Rome 00179 (Italy)

    2012-04-05

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCCs are genetically and phenotypically heterogeneous tumors characterized by very poor prognosis, mainly due to the lack, at present, of effective therapeutic options, as these tumors are rarely suitable for radiotherapy and often resistant to chemotherapy protocols. In the last years, agonists targeting the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) death receptor, has been investigated as a valuable promise for cancer therapy, based on their selectivity for malignant cells and low toxicity for healthy cells. However, many cancer models display resistance to death receptor induced apoptosis, pointing to the requirement for the development of combined therapeutic approaches aimed to selectively sensitize cancer cells to TRAIL. Recently, we identified ATM kinase as a novel modulator of the ability of chemotherapeutic agents to enhance TRAIL sensitivity. Here, we review the biological determinants of HCC responsiveness to TRAIL and provide an exhaustive and updated analysis of the molecular mechanisms exploited for combined therapy in this context. The role of ATM kinase as potential novel predictive biomarker for combined therapeutic approaches based on TRAIL and chemotherapeutic drugs will be closely discussed.

  9. Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis

    NARCIS (Netherlands)

    Hougardy, BMT; Maduro, JH; van der Zee, AGJ; de Groot, DJA; van den Heuvel, FAJ; de Vries, EGE; de Jong, S

    2006-01-01

    In cervical carcinogenesis, the p53 tumor suppressor pathway is disrupted by HPV (human papilloma virus) E6 oncogene expression. E6 targets p53 for rapid proteasome-mediated degradation. We therefore investigated whether proteasome inhibition by MG132 could restore wild-type p53 levels and sensitize

  10. TNF-related apoptosis-inducing ligand (TRAIL) for bone sarcoma treatment: Pre-clinical and clinical data.

    Science.gov (United States)

    Gamie, Zakareya; Kapriniotis, Konstantinos; Papanikolaou, Dimitra; Haagensen, Emma; Da Conceicao Ribeiro, Ricardo; Dalgarno, Kenneth; Krippner-Heidenreich, Anja; Gerrand, Craig; Tsiridis, Eleftherios; Rankin, Kenneth Samora

    2017-11-28

    Bone sarcomas are rare, highly malignant mesenchymal tumours that affect teenagers and young adults, as well as older patients. Despite intensive, multimodal therapy, patients with bone sarcomas have poor 5-year survival, close to 50%, with lack of improvement over recent decades. TNF-related apoptosis-inducing ligand (TRAIL), a member of the tumour necrosis factor (TNF) ligand superfamily (TNFLSF), has been found to induce apoptosis in cancer cells while sparing nontransformed cells, and may therefore offer a promising new approach to treatment. We cover the existing preclinical and clinical evidence about the use of TRAIL and other death receptor agonists in bone sarcoma treatment. In vitro studies indicate that TRAIL and other death receptor agonists are generally potent against bone sarcoma cell lines. Ewing's sarcoma cell lines present the highest sensitivity, whereas osteosarcoma and chondrosarcoma cell lines are considered less sensitive. In vivo studies also demonstrate satisfactory results, especially in Ewing's sarcoma xenograft models. However, the few clinical trials in the literature show only low or moderate efficacy of TRAIL in treating bone sarcoma. Potential strategies to overcome the in vivo resistance reported include co-administration with other drugs and the potential to deliver TRAIL on the surface of primed mesenchymal or immune cells and the use of targeted single chain antibodies such as scFv-scTRAIL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Inhibition of COX-2 expression by topical diclofenac enhanced radiation sensitivity via enhancement of TRAIL in human prostate adenocarcinoma xenograft model

    Science.gov (United States)

    2013-01-01

    Background COX-2 inhibitors have an antitumor potential and have been verified by many researchers. Treatment of cancer cells with external stressors such as irradiation can stimulate the over-expression of COX-2 and possibly confer radiation resistance. In this study, we tested if topical diclofenac, which inhibits both COX-1 and COX-2, administration rendered prostate tumor cells sensitize to the effects of radiation. Methods LNCaP-COX-2 and LNCaP-Neo cells were treated with 0 to 1000 μM diclofenac. Next, a clonogenic assay was performed in which cells were subjected to irradiation (0 to 4 Gy) with or without diclofenac. COX-2 expression and other relevant molecules were measured by real-time PCR and immunohistochemistry after irradiation and diclofenac treatment. In addition, we assessed the tumor volumes of xenograft LNCaP-COX-2 cells treated with topical diclofenac with or without radiation therapy (RT). Results LNCaP-COX-2 and LNCaP-Neo cell lines experienced cytotoxic effects of diclofenac in a dose related manner. Clonogenic assays demonstrated that LNCaP-COX-2 cells were significantly more resistant to RT than LNCaP-Neo cells. Furthermore, the addition of diclofenac sensitized LNCaP-COX-2 not but LNCaP-Neo cells to the cytocidal effects of radiation. In LNCaP-COX-2 cells, diclofenac enhanced radiation-induced apoptosis compared with RT alone. This phenomenon might be attributed to enhancement of RT-induced TRAIL expression as demonstrated by real-time PCR analysis. Lastly, tumor volumes of LNCaP-COX-2 cells xenograft treated with diclofenac or RT alone was >4-fold higher than in mice treated with combined diclofenac and radiation (pdiclofenac enhances the effect of RT on prostate cancer cells that express COX-2. Thus, diclofenac may have potential as radiosensitizer for treatment of prostate cancer. PMID:23289871

  12. Tangeretin sensitises human lung cancer cells to TRAIL- induced ...

    African Journals Online (AJOL)

    expression of death receptor 5 and CEBP homologous protein (CHOP) mRNA. The cytotoxic effects of ... mediated TRAIL sensitisation. Conclusions: Tangeretin induces death receptors and enhances TRAIL-induced apoptosis through up- .... cold whole-cell lysate buffer (5 M NaCl, 10 %. Nonidet P-40, 0.2 M sodium ...

  13. HDAC2 attenuates TRAIL-induced apoptosis of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Saur Dieter

    2010-04-01

    Full Text Available Abstract Background Pancreatic ductal adenocarcinoma (PDAC is one of the most malignant tumors with a dismal prognosis and no effective conservative therapeutic strategies. Although it is demonstrated that histone deacetylases (HDACs, especially the class I HDACs HDAC1, 2 and 3 are highly expressed in this disease, little is known about HDAC isoenzyme specific functions. Results Depletion of HDAC2, but not HDAC1, in the pancreatic cancer cell lines MiaPaCa2 and Panc1 resulted in a marked sensitization towards the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Correspondingly, the more class I selective HDAC inhibitor (HDACI valproic acid (VPA synergized with TRAIL to induce apoptosis of MiaPaCa2 and Panc1 cells. At the molecular level, an increased expression of the TRAIL receptor 1 (DR5, accelerated processing of caspase 8, pronounced cleavage of the BH3-only protein Bid, and increased effector caspase activation was observed in HDAC2-depleted and TRAIL-treated MiaPaCa2 cells. Conclusions Our data characterize a novel HDAC2 function in PDAC cells and point to a strategy to overcome TRAIL resistance of PDAC cells, a prerequisite to succeed with a TRAIL targeted therapy in clinical settings.

  14. Signaling Cascades Regulating NMDA Receptor Sensitivity to Ethanol

    OpenAIRE

    RON, DORIT

    2004-01-01

    One of the major targets for ethanol (alcohol) in the brain is the N-methyl-d-aspartate (NMDA) receptor, a glutamate-gated ion channel. Intriguingly, the effects of ethanol on the NMDA receptor are not homogeneous throughout the brain. This review focuses on recent studies revealing molecular mechanisms that mediate the actions of ethanol on the NMDA receptor in different brain regions via changes in NMDA receptor phosphorylation and compartmentalization. Specifically, the role of the scaffol...

  15. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    International Nuclear Information System (INIS)

    Voigt, Susann; Kalthoff, Holger; Adam, Dieter; Philipp, Stephan; Davarnia, Parvin; Winoto-Morbach, Supandi; Röder, Christian; Arenz, Christoph; Trauzold, Anna; Kabelitz, Dieter; Schütze, Stefan

    2014-01-01

    The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may

  16. The SMAC mimetic BV6 induces cell death and sensitizes different cell lines to TNF-α and TRAIL-induced apoptosis.

    Science.gov (United States)

    El-Mesery, Mohamed; Shaker, Mohamed E; Elgaml, Abdelaziz

    2016-12-01

    The inhibitors of apoptosis proteins are implicated in promoting cancer cells survival and resistance toward immune surveillance and chemotherapy. Second mitochondria-derived activator of caspases (SMAC) mimetics are novel compounds developed to mimic the inhibitory effect of the endogenous SMAC/DIABLO on these IAPs. Here, we examined the potential effects of the novel SMAC mimetic BV6 on different human cancer cell lines. Our results indicated that BV6 was able to induce cell death in different human cancer cell lines. Mechanistically, BV6 dose dependently induced degradation of IAPs, including cIAP1 and cIAP2. This was coincided with activating the non-canonical NF -kappa B (NF-κB) pathway, as indicated by stabilizing NF-κB-inducing kinase (NIK) for p100 processing to p52. More interestingly, BV6 was able to sensitize some of the resistant cancer cell lines to apoptosis induced by the death ligands tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) that are produced by different cells of the immune system. Such cell death enhancement was mediated by inducing an additional cleavage of caspase-9 to augment that of caspase-8 induced by death ligands. This eventually led to more processing of the executioner caspase-3 and poly (ADP-ribose) polymerase (PARP). In conclusion, therapeutic targeting of IAPs by BV6 might be an effective approach to enhance cancer regression induced by immune system. Our data also open up the future possibility of using BV6 in combination with other antitumor therapies to overcome cancer drug resistance.

  17. Unique resistance of breast carcinoma cell line T47D to TRAIL but not anti-Fas is linked to p43cFLIP(L).

    Science.gov (United States)

    Guseva, Natalya V; Rokhlin, Oskar W; Taghiyev, Agshin F; Cohen, Michael B

    2008-02-01

    The majority of breast cancer cell lines are resistant to tumor necrosis factor -related apoptosis inducing ligand (TRAIL) induced apoptosis. TRAIL and Fas receptor death-inducing signaling complex (DISCs) formation are similar and involve ligand-dependent recruitment of FADD and caspase-8. We have found that the breast carcinoma cell line T47D is an unusual example of selective sensitivity to anti-Fas mAb treatment but resistant to TRAIL. Therefore, a detailed comparison of these two signaling pathways in one cell line should provide insight into the mechanism of TRAIL resistance. We observed that only anti-Fas mAb induces caspase activation and cell death in T47D. Further, FADD and caspase-8 interact with both TRAIL-R1 and TRAIL-R2, and that the amount of caspase-8 recruited by Fas-, TRAIL-R1 and TRAIL-R2 are the same. cFLIP(S) and cFLIP(R )isoforms block death receptor-induced apoptosis by inhibiting caspase-8 activation at the DISC; the role of cFLIP(L )at the DISC is still controversial. It has been suggested that the presence of the cleaved form of FLIP(L)-p43 at the DISC prevents caspase-8 cleavage. We found that both TRAIL and anti-Fas mAb-induced DISCs contain the cleaved form of p43 cFLIP(L) and its amount at the Fas DISC was higher compared to the TRAIL DISC. We also found that inhibition of cFLIP(L) expression in T47D cells decreased Fas-mediated caspase-8 activation and activation of effector caspases. We propose that in T47D p43 cFLIP(L) in the Fas-DISC may promote caspase-8 activation. The mechanism by which different amounts of p43cFLIP(L) regulates caspase-8 activation remains to be investigated.

  18. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats

    Science.gov (United States)

    Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A

    2017-01-01

    Abstract Background Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Methods Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Results Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Conclusions Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. PMID:28531297

  19. Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization

    Science.gov (United States)

    Tapper, Andrew R.; McKinney, Sheri L.; Nashmi, Raad; Schwarz, Johannes; Deshpande, Purnima; Labarca, Cesar; Whiteaker, Paul; Marks, Michael J.; Collins, Allan C.; Lester, Henry A.

    2004-11-01

    The identity of nicotinic receptor subtypes sufficient to elicit both the acute and chronic effects of nicotine dependence is unknown. We engineered mutant mice with α4 nicotinic subunits containing a single point mutation, Leu9' --> Ala9' in the pore-forming M2 domain, rendering α4* receptors hypersensitive to nicotine. Selective activation of α4* nicotinic acetylcholine receptors with low doses of agonist recapitulates nicotine effects thought to be important in dependence, including reinforcement in response to acute nicotine administration, as well as tolerance and sensitization elicited by chronic nicotine administration. These data indicate that activation of α4* receptors is sufficient for nicotine-induced reward, tolerance, and sensitization.

  20. Cooperative TRAIL production mediates IFNα/Smac mimetic-induced cell death in TNFα-resistant solid cancer cells.

    Science.gov (United States)

    Roesler, Stefanie; Eckhardt, Ines; Wolf, Sebastian; Fulda, Simone

    2016-01-26

    Smac mimetics antagonize IAP proteins, which are highly expressed in several cancers. Recent reports indicate that Smac mimetics trigger a broad cytokine response and synergize with immune modulators to induce cell death. Here, we identify a differential requirement of TRAIL or TNFα as mediators of IFNα/Smac mimetic-induced cell death depending on the cellular context. Subtoxic concentrations of Smac mimetics cooperate with IFNα to induce cell death in various solid tumor cell lines in a highly synergistic manner as determined by combination index. Mechanistic studies show that IFNα/BV6 cotreatment promotes the formation of a caspase-8-activating complex together with the adaptor protein FADD and RIP1. Assembly of this RIP1/FADD/caspase-8 complex represents a critical event, since RIP1 silencing inhibits IFNα/BV6-induced cell death. Strikingly, pharmacological inhibition of paracrine/autocrine TNFα signaling by the TNFα scavenger Enbrel rescues HT-29 colon carcinoma cells, but not A172 glioblastoma cells from IFNα/BV6-induced cell death. By comparison, A172 cells are significantly protected against IFNα/BV6 treatment by blockage of TRAIL signaling through genetic silencing of TRAIL or its cognate receptor TRAIL receptor 2 (DR5). Despite this differential requirement of TNFα and TRAIL signaling, mRNA and protein expression is increased by IFNα/BV6 cotreatment in both cell lines. Interestingly, A172 cells turn out to be resistant to exogenously added recombinant TNFα even in the presence of BV6, whereas they display a high sensitivity towards TRAIL/BV6. In contrast, BV6 efficiently sensitizes HT-29 cells to TNFα while TRAIL only had limited efficacy. This demonstrates that a differential sensitivity towards TRAIL or TNFα determines the dependency on either death receptor ligand for IFNα/Smac mimetic-induced cell death. Thus, by concomitant stimulation of both death receptor systems IFNα/Smac mimetic combination treatment is an effective strategy to

  1. Newly established tumourigenic primary human colon cancer cell lines are sensitive to TRAIL-induced apoptosis in vitro and in vivo

    Czech Academy of Sciences Publication Activity Database

    Oikonomou, E.; Kothonidis, K.; Zografos, G.; Nasioulas, G.; Anděra, Ladislav; Pintzas, A.

    2007-01-01

    Roč. 97, č. 12 (2007), s. 73-84 ISSN 0007-0920 Grant - others:EU(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : TRAIL * apoptosis * colon cancer cell lines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.635, year: 2007

  2. Audit trails in an online accountability system

    International Nuclear Information System (INIS)

    Jamison, C.

    1985-01-01

    The Safeguards Accountability Network (SAN) is an online computer system that was developed by Rockwell International to track the accounting and processing of nuclear materials from the time it arrives at Rocky Flats Plant through its life cycle. A major contributor to the success of SAN is the use of audit trails. They have proven to be invaluable for the management and safeguarding of these sensitive materials at Rocky Flats. Producing effective audit trails requires the recording of all pertinent transactions and the capability to access and report the information in a timely fashion. This paper discusses the implementation and application of these audit trails on the Rocky Flats SAN system

  3. PED is overexpressed and mediates TRAIL resistance in human non-small cell lung cancer.

    Science.gov (United States)

    Zanca, Ciro; Garofalo, Michela; Quintavalle, Cristina; Romano, Giulia; Acunzo, Mario; Ragno, Pia; Montuori, Nunzia; Incoronato, Mariarosaria; Tornillo, Luigi; Baumhoer, Daniel; Briguori, Carlo; Terracciano, Luigi; Condorelli, Gerolama

    2008-12-01

    PED (phosphoprotein enriched in diabetes) is a death-effector domain (DED) family member with a broad anti-apoptotic action. PED inhibits the assembly of the death-inducing signalling complex (DISC) of death receptors following stimulation. Recently, we reported that the expression of PED is increased in breast cancer cells and determines the refractoriness of these cells to anticancer therapy. In the present study, we focused on the role of PED in non-small cell lung cancer (NSCLC), a tumour frequently characterized by evasion of apoptosis and drug resistance. Immunohistochemical analysis of a tissue microarray, containing 160 lung cancer samples, indicated that PED was strongly expressed in different lung tumour types. Western blotting performed with specimens from NSCLC-affected patients showed that PED was strongly up-regulated (>6 fold) in the areas of tumour compared to adjacent normal tissue. Furthermore, PED expression levels in NSCLC cell lines correlated with their resistance to tumour necrosis factor related apoptosis-inducing ligand (TRAIL)-induced cell death. The involvement of PED in the refractoriness to TRAIL-induced cell death was investigated by silencing PED expression in TRAIL-resistant NSCLC cells with small interfering (si) RNAs: transfection with PED siRNA, but not with cFLIP siRNA, sensitized cells to TRAIL-induced cell death. In conclusion, PED is specifically overexpressed in lung tumour tissue and contributes to TRAIL resistance.

  4. Systematic analysis of off-target effects in an RNAi screen reveals microRNAs affecting sensitivity to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Enright Anton J

    2010-03-01

    Full Text Available Abstract Background RNA inhibition by siRNAs is a frequently used approach to identify genes required for specific biological processes. However RNAi screening using siRNAs is hampered by non-specific or off target effects of the siRNAs, making it difficult to separate genuine hits from false positives. It is thought that many of the off-target effects seen in RNAi experiments are due to siRNAs acting as microRNAs (miRNAs, causing a reduction in gene expression of unintended targets via matches to the 6 or 7 nt 'seed' sequence. We have conducted a careful examination of off-target effects during an siRNA screen for novel regulators of the TRAIL apoptosis induction pathway(s. Results We identified 3 hexamers and 3 heptamer seed sequences that appeared multiple times in the top twenty siRNAs in the TRAIL apoptosis screen. Using a novel statistical enrichment approach, we systematically identified a further 17 hexamer and 13 heptamer seed sequences enriched in high scoring siRNAs. The presence of one of these seeds sequences (which could explain 6 of 8 confirmed off-target effects is sufficient to elicit a phenotype. Three of these seed sequences appear in the human miRNAs miR-26a, miR-145 and miR-384. Transfection of mimics of these miRNAs protects several cell types from TRAIL-induced cell death. Conclusions We have demonstrated a role for miR-26a, miR-145 and miR-26a in TRAIL-induced apoptosis. Further these results show that RNAi screening enriches for siRNAs with relevant off-target effects. Some of these effects can be identified by the over-representation of certain seed sequences in high-scoring siRNAs and we demonstrate the usefulness of such systematic analysis of enriched seed sequences.

  5. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    Science.gov (United States)

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  6. BAY61-3606 potentiates the anti-tumor effects of TRAIL against colon cancer through up-regulating DR4 and down-regulating NF-κB.

    Science.gov (United States)

    Du, Jipei; Wang, Yufang; Chen, Degao; Ji, Guangyu; Ma, Qizhao; Liao, Shiping; Zheng, Yanjiang; Zhang, Ji; Hou, Yiping

    2016-12-28

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is well known for its ability to preferentially induce apoptosis in malignant cells without causing damage to most normal cells. However, inherent and acquired resistance of tumor to TRAIL-induced apoptosis limits its therapeutic applicability. Here we show that the orally available tyrosine kinase inhibitor, BAY61-3606, enhances the sensitivity of human colon cancer cells, especially those harboring active mutations in Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene, to TRAIL-induced apoptosis in vitro and in vivo. The sensitization was achieved by up-regulating death receptor 4 (DR4) and the tumor suppressor p53. BAY61-3606-induced the up-regulation of DR4 is p53-dependent. Knockout of p53 decreased BAY61-3606-induced DR4 expression and inhibited the effect of BAY61-3606 on TRAIL-induced apoptosis. In addition, BAY61-3606 suppressed activity of NF-κB and regulated its gene products, which might also contribute to TRAIL-induced apoptosis. In conclusion, our results showed that BAY61-3606 sensitizes colon cancer cells to TRAIL-induced apoptosis via up-regulating DR4 expression in p53-dependent manner and inhibiting NF-κB activity, suggesting that the combination of TRAIL and BAY61-3606 may be a promising therapeutic approach in the treatment of colon cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Lipopolysaccharide-induced expression of TRAIL promotes dendritic cell differentiation.

    Science.gov (United States)

    Cho, Young S; Challa, Sreerupa; Clancy, Lauren; Chan, Francis K-M

    2010-08-01

    Tumour necrosis factor-related apoptosis inducing ligand (TRAIL) is a death-inducing cytokine whose physiological function is not well understood. Here, we show that TRAIL has a role in programming human dendritic cell (DC) differentiation. TRAIL expression was strongly induced in DCs upon stimulation with lipopolysaccharide (LPS) or Polyinosine-polycytidylic acid (poly(I:C)) stimulation. Blockade of TRAIL with neutralizing antibody partially inhibited LPS-induced up-regulation of co-stimulatory molecules and the expression of inflammatory cytokines including interleukin-12 (IL-12) p70. In addition, neutralization of TRAIL in LPS-treated DCs inhibited the DC-driven differentiation of T cells into interferon-gamma (IFN-gamma) -producing effectors. The effects of TRAIL neutralization in poly(I:C)-treated DCs were similar, except that IL-12 production and the differentiation of effector T cells into IFN-gamma producers were not inhibited. Strikingly, TRAIL stimulation alone was sufficient to induce morphological changes resembling DC maturation, up-regulation of co-stimulatory molecules, and enhancement of DC-driven allogeneic T-cell proliferation. However, TRAIL alone did not induce inflammatory cytokine production. We further show that the effects of TRAIL on DC maturation were not the result of the induction of apoptosis, but may involve p38 activation. Hence, our data demonstrate that TRAIL co-operates with other cytokines to facilitate DC functional maturation in response to Toll-like receptor activation.

  8. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  9. DIRBE Comet Trails

    Science.gov (United States)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  10. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Directory of Open Access Journals (Sweden)

    Elise Courtot

    2015-12-01

    Full Text Available Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  11. Variation in mothers' arginine vasopressin receptor 1a and dopamine receptor D4 genes predicts maternal sensitivity via social cognition.

    Science.gov (United States)

    Leerkes, E M; Su, J; Calkins, S; Henrich, V C; Smolen, A

    2017-02-01

    We examined the extent to which the arginine vasopressin receptor 1a (AVPR1a) and dopamine receptor D4 (DRD4) were related to sensitive maternal behavior directly or indirectly via maternal social cognition. Participants were 207 (105 European-American and 102 African-American) mothers and their children (52% females). Sensitive maternal behavior was rated and aggregated across a series of tasks when infants were 6 months, 1 year and 2 years old. At 6 months, mothers were interviewed about their empathy, attributions about infant behavior and beliefs about crying to assess their parenting-related social cognition. Mothers with long alleles for AVPR1a and DRD4 engaged in more mother-oriented social cognition (i.e. negative attributions and beliefs about their infants' crying, β = 0.13, P social cognition. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    Science.gov (United States)

    De Miguel, Diego; Gallego-Lleyda, Ana; María Ayuso, José; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; José Fernández, Luis; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  13. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    De Miguel, Diego; Gallego-Lleyda, Ana; Erviti-Ardanaz, Sandra; Anel, Alberto; Martinez-Lostao, Luis; Ayuso, José María; Fernández, Luis José; Ochoa, Ignacio; Pazo-Cid, Roberto; Del Agua, Celia

    2016-01-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment. (paper)

  14. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  15. DRBE comet trails

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov [CREST/UMBC, Code 665, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  16. X-linked inhibitor of apoptosis inhibition sensitizes acute myeloid leukemia cell response to TRAIL and chemotherapy through potentiated induction of proapoptotic machinery.

    Science.gov (United States)

    Zhou, Jianbiao; Lu, Xiao; Tan, Tuan Zea; Chng, Wee-Joo

    2018-01-01

    Acute myeloid leukemia (AML) is an aggressive disease with an increasing incidence and relatively low 5-year survival rate. Unfortunately, the underlying mechanism of leukemogenesis is poorly known, and there has been little progress in the treatment for AML. Studies have shown that X-linked inhibitor of apoptosis (XIAP), one of the inhibitors of apoptosis proteins (IAPs), is highly expressed and contributes to chemoresistance in AML. Hence, a novel drug, RO6867520 (RO-BIR2), developed by Roche targeting the BIR2 domain in XIAP to reactivate blocked apoptosis, is a promising therapy for AML. The monotherapy of RO-BIR2 had minimal effect on most of the AML cell lines tested except U-937. In contrast to AML cell lines, in general, RO-BIR2 alone has been shown to inhibit the proliferation of primary AML patient samples effectively and induced apoptosis in a dose-dependent manner. A combination of RO-BIR2 with TNF-related apoptosis-inducing ligand (TRAIL) led to highly synergistic effect on AML cell lines and AML patient samples. This combination therapy is capable of inducing apoptosis, thereby leading to an increase in specific apoptotic cell population, along with the activation of caspase 3/7. A number of apoptotic-related proteins such as XIAP, cleavage of caspase 3, cleavage of caspase 7, and cleaved PARP were changed upon combination therapy. Combination of RO-BIR2 with Ara-C had similar effect as the TRAIL combination. Ara-C combination also led to synergistic effect on AML cell lines and AML patient samples with low combination indexes (CIs). We conclude that the combination of RO-BIR2 with either TRAIL or Ara-C represents a potent therapeutic strategy for AML and is warranted for further clinical trials to validate the synergistic benefits in patients with AML, especially for the elderly who are abstaining from intensive chemotherapy. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  17. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    Science.gov (United States)

    Dijkstra, M.; van Baar, J. J.; Wiegerink, R. J.; Lammerink, T. S. J.; de Boer, J. H.; Krijnen, G. J. M.

    2005-07-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy membranes. The movement of the membranes is detected capacitively. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept.

  18. Compatibility of Ohio trail users

    Science.gov (United States)

    Roger E. McCay; George H. Moeller

    1976-01-01

    Compatibility indexes show how Ohio trail users feel about meeting each other on the trail. All four of the major types of trail users-hikers, horseback riders, bicycle riders, and motorcycle riders-enjoy meeting their own kind. But they also feel antagonism toward the faster, more mechanized trail users; e.g., everyone likes hikers, but few like motorcycle riders....

  19. Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Ahring, Philip K; Christensen, Jeppe K

    2011-01-01

    The neuronal a4ß2 nicotinic acetylcholine receptors exist as two distinct subtypes, (a4)(2)(ß2)(3) and (a4)(3)(ß2)(2), and biphasic responses to acetylcholine and other agonists have been ascribed previously to coexistence of these two receptor subtypes. We offer a novel and radical explanation...... for the observation of two distinct agonist sensitivities. Using different expression ratios of mammalian a4 and ß2 subunits and concatenated constructs, we demonstrate that a biphasic response is an intrinsic functional property of the (a4)(3)(ß2)(2) receptor. In addition to two high-sensitivity sites at a4ß2...... interfaces, the (a4)(3)(ß2)(2) receptor contains a third low-sensitivity agonist binding site in the a4a4 interface. Occupation of this site is required for full activation and is responsible for the widened dynamic response range of this receptor subtype. By site-directed mutagenesis, we show that three...

  20. Olfactory receptors on the maxillary palps of small ermine moth larvae: evolutionary history of benzaldehyde sensitivity

    Science.gov (United States)

    Xu, Sen; Menken, Steph B. J.

    2007-01-01

    In lepidopterous larvae the maxillary palps contain a large portion of the sensory equipment of the insect. Yet, knowledge about the sensitivity of these cells is limited. In this paper a morphological, behavioral, and electrophysiological investigation of the maxillary palps of Yponomeuta cagnagellus (Lepidoptera: Yponomeutidae) is presented. In addition to thermoreceptors, CO2 receptors, and gustatory receptors, evidence is reported for the existence of two groups of receptor cells sensitive to plant volatiles. Cells that are mainly sensitive to (E)-2-hexenal and hexanal or to (Z)-3-hexen-1-ol and 1-hexanol were found. Interestingly, a high sensitivity for benzaldehyde was also found. This compound is not known to be present in Euonymus europaeus, the host plant of the monophagous Yponomeuta cagnagellus, but it is a prominent compound in Rosaceae, the presumed hosts of the ancestors of Y. cagnagellus. To elucidate the evolutionary history of this sensitivity, and its possible role in host shifts, feeding responses of three Yponomeuta species to benzaldehyde were investigated. The results confirm the hypothesis that the sensitivity to benzaldehyde evolved during the ancestral shift from Celastraceae to Rosaceae and can be considered an evolutionary relict, retained in the recently backshifted Celastraceae-specialist Y. cagnagellus. PMID:17372741

  1. Continental Divide Trail

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This shapefile was created to show the proximity of the Continental Divide to the Continental Divide National Scenic Trail in New Mexico. This work was done as part...

  2. State Park Trails

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set is a collection of ArcView shapefiles (by park) of trails within statutory boundaries of individual MN State Parks, State Recreation Areas and State...

  3. Trails Management at LANL - A Presentation to the Los Alamos County Parks and Recreation Board

    Energy Technology Data Exchange (ETDEWEB)

    Pava, Daniel Seth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-12

    Los Alamos National Laboratory’s (LANL) trail management program goals include reduce risk of damage and injury to property, human life, and health, and sensitive natural and cultural resources from social trail use at LANL, facilitate the establishment of a safe viable network of linked trails, maintain security of LANL operations, and many more, respect the wishes of local Pueblos, adapt trail use to changing conditions in a responsive manner, and maintain the recreational functionality of the DOE lands. There are approximately 30 miles of LANL trails. Some are open to the public and allow bicycles, horses, hikers, and runners. Know the rules of the trails to stay safe.

  4. Exploring the Molecular Mechanisms of Glucocorticoid Receptor Action from Sensitivity to Resistance

    OpenAIRE

    Ramamoorthy, Sivapriya; Cidlowski, John A.

    2013-01-01

    Glucocorticoids regulate a variety of physiological processes, and are commonly used to treat disorders of inflammation, autoimmune diseases, and cancer. Glucocorticoid action is predominantly mediated through the classic glucocorticoid receptor (GR), but sensitivity to glucocorticoids varies among individuals, and even within different tissues from the same individual. The molecular basis of this phenomenon can be partially explained through understanding the process of generating bioavailab...

  5. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    NARCIS (Netherlands)

    Dijkstra, Marcel; van Baar, J.J.J.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; de Boer, J.H.; Krijnen, Gijsbertus J.M.

    2005-01-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy

  6. THE ARC TRAIL

    African Journals Online (AJOL)

    canal to fonn part of Moss. • The trail should be made use of by schools and the public. • The area should be cleared of exotic vegetation. e Indigenous trees should be planted to replace the removed exotic trees. The establishment of the ARC trail in 1985 came about as a direct result of the 1983 team1s rec ommenda ti ons ...

  7. Bortezomib and TRAIL : A perfect match for apoptotic elimination of tumour cells?

    NARCIS (Netherlands)

    de Wilt, L. H. A. M.; Kroon, J.; Jansen, G.; de Jong, S.; Peters, G. J.; Kruyt, F. A. E.

    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that selectively eradicates tumour cells via specific cell surface receptors and is intensively explored for use as a novel anticancer approach. To enhance the efficacy of TRAIL receptor agonists the proteasome inhibitor

  8. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Thomas B Duguet

    2016-07-01

    Full Text Available Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the

  9. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice.

    Science.gov (United States)

    Tobón, Krishna E; Catuzzi, Jennifer E; Cote, Samantha R; Sonaike, Adenike; Kuzhikandathil, Eldo V

    2015-07-01

    The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression have been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady-state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within 30 min when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated with the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within 5 min of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggest a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. The effect of hyperthyroidism on opiate receptor binding and pain sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Edmondson, E.A. (Baylor College of Medicine, Houston, TX (USA)); Bonnet, K.A.; Friedhoff, A.J. (New York Univ. School of Medicine, NY (USA))

    1990-01-01

    This study was conducted to determine the effect of thyroid hormone on opiate receptor ligand-binding and pain sensitivity. Specific opiate receptor-binding was performed on brain homogenates of Swiss-Webster mice. There was a significant increase in {sup 3}H-naloxone-binding in thyroxine-fed subjects (hyperthyroid). Scatchard analysis revealed that the number of opiate receptors was increased in hyperthyroid mice (Bmax = 0.238 nM for hyperthyroid samples vs. 0.174 nM for controls). Binding affinity was unaffected (Kd = 1.54 nM for hyperthyroid and 1.58 nM for control samples). When mice were subjected to hotplate stimulation, the hyperthyroid mice were noted to be more sensitive as judged by pain aversion response latencies which were half that of control animals. After morphine administration, the hyperthyroid animals demonstrated a shorter duration of analgesia. These findings demonstrate that thyroxine increases opiate receptor number and native pain sensitivity but decreases the duration of analgesia from morphine.

  11. Certification trails for data structures

    Science.gov (United States)

    Sullivan, Gregory F.; Masson, Gerald M.

    1993-01-01

    Certification trails are a recently introduced and promising approach to fault detection and fault tolerance. The applicability of the certification trail technique is significantly generalized. Previously, certification trails had to be customized to each algorithm application; trails appropriate to wide classes of algorithms were developed. These certification trails are based on common data-structure operations such as those carried out using these sets of operations such as those carried out using balanced binary trees and heaps. Any algorithms using these sets of operations can therefore employ the certification trail method to achieve software fault tolerance. To exemplify the scope of the generalization of the certification trail technique provided, constructions of trails for abstract data types such as priority queues and union-find structures are given. These trails are applicable to any data-structure implementation of the abstract data type. It is also shown that these ideals lead naturally to monitors for data-structure operations.

  12. 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis.

    Science.gov (United States)

    Siegelin, Markus David; Habel, Antje; Gaiser, Timo

    2009-02-01

    17-AAG is a selective HSP90-inhibitor that exhibited therapeutic activity in cancer. In this study three glioblastoma cell lines (U87, LN229 and U251) were treated with 17-AAG, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the combination of both. Treatment with subtoxic doses of 17-AAG in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, suggesting that this combined treatment may offer an attractive strategy for treating gliomas. 17-AAG treatment down-regulated survivin through proteasomal degradation. In addition, over-expression of survivin attenuated cytotoxicity induced by the combination of 17-AAG and TRAIL. In summary, survivin is a key regulator of TRAIL-17-AAG mediated cell death in malignant glioma.

  13. Modeling Starburst cells' GABA(B) receptors and their putative role in motion sensitivity.

    Science.gov (United States)

    Grzywacz, Norberto M; Zucker, Charles L

    2006-07-15

    Neal and Cunningham (Neal, M. J., and J. R. Cunningham. 1995. J. Physiol. (Lond.). 482:363-372) showed that GABA(B) agonists and glycinergic antagonists enhance the light-evoked release of retinal acetylcholine. They proposed that glycinergic cells inhibit the cholinergic Starburst amacrine cells and are in turn inhibited by GABA through GABA(B) receptors. However, as recently shown, glycinergic cells do not appear to have GABA(B) receptors. In contrast, the Starburst amacrine cell has GABA(B) receptors in a subpopulation of its varicosities. We thus propose an alternate model in which GABA(B)-receptor activation reduces the release of ACh from some dendritic compartments onto a glycinergic cell, which then feeds back and inhibits the Starburst cell. In this model, the GABA necessary to make these receptors active comes from the Starburst cell itself, making them autoreceptors. Computer simulations of this model show that it accounts quantitatively for the Neal and Cunningham data. We also argue that GABA(B) receptors could work to increase the sensitivity to motion over other stimuli.

  14. Modeling Starburst Cells' GABAB Receptors and Their Putative Role in Motion Sensitivity

    Science.gov (United States)

    Grzywacz, Norberto M.; Zucker, Charles L.

    2006-01-01

    Neal and Cunningham (Neal, M. J., and J. R. Cunningham. 1995. J. Physiol. (Lond.). 482:363–372) showed that GABAB agonists and glycinergic antagonists enhance the light-evoked release of retinal acetylcholine. They proposed that glycinergic cells inhibit the cholinergic Starburst amacrine cells and are in turn inhibited by GABA through GABAB receptors. However, as recently shown, glycinergic cells do not appear to have GABAB receptors. In contrast, the Starburst amacrine cell has GABAB receptors in a subpopulation of its varicosities. We thus propose an alternate model in which GABAB-receptor activation reduces the release of ACh from some dendritic compartments onto a glycinergic cell, which then feeds back and inhibits the Starburst cell. In this model, the GABA necessary to make these receptors active comes from the Starburst cell itself, making them autoreceptors. Computer simulations of this model show that it accounts quantitatively for the Neal and Cunningham data. We also argue that GABAB receptors could work to increase the sensitivity to motion over other stimuli. PMID:16648160

  15. Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin.

    Science.gov (United States)

    Pronin, Alexey N; Xu, Hong; Tang, Huixian; Zhang, Lan; Li, Qing; Li, Xiaodong

    2007-08-21

    Variation in human taste is a well-known phenomenon. However, little is known about the molecular basis for it. Bitter taste in humans is believed to be mediated by a family of 25 G protein-coupled receptors (hT2Rs, or TAS2Rs). Despite recent progress in the functional expression of hT2Rs in vitro, up until now, hT2R38, a receptor for phenylthiocarbamide (PTC), was the only gene directly linked to variations in human bitter taste. Here we report that polymorphism in two hT2R genes results in different receptor activities and different taste sensitivities to three bitter molecules. The hT2R43 gene allele, which encodes a protein with tryptophan in position 35, makes people very sensitive to the bitterness of the natural plant compounds aloin and aristolochic acid. People who do not possess this allele do not taste these compounds at low concentrations. The same hT2R43 gene allele makes people more sensitive to the bitterness of an artificial sweetener, saccharin. In addition, a closely related gene's (hT2R44's) allele also makes people more sensitive to the bitterness of saccharin. We also demonstrated that some people do not possess certain hT2R genes, contributing to taste variation between individuals. Our findings thus reveal new examples of variations in human taste and provide a molecular basis for them.

  16. Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Haas, Ann-Karin; Neumann, Susanne; Worth, Catherine L; Hoyer, Inna; Furkert, Jens; Rutz, Claudia; Gershengorn, Marvin C; Schülein, Ralf; Krause, Gerd

    2010-07-01

    The thyrotropin receptor [thyroid-stimulating hormone receptor (TSHR)], a G-protein-coupled receptor (GPCR), is endogenously activated by thyrotropin, which binds to the extracellular region of the receptor. We previously identified a low-molecular-weight (LMW) agonist of the TSHR and predicted its allosteric binding pocket within the receptor's transmembrane domain. Because binding of the LMW agonist probably disrupts interactions or leads to formation of new interactions among amino acid residues surrounding the pocket, we tested whether mutation of residues at these positions would lead to constitutive signaling activity. Guided by molecular modeling, we performed site-directed mutagenesis of 24 amino acids in this spatial region, followed by functional characterization of the mutant receptors in terms of expression and signaling, measured as cAMP accumulation. We found that mutations V421I, Y466A, T501A, L587V, M637C, M637W, S641A, Y643F, L645V, and Y667A located in several helices exhibit constitutive activity. Of note is mutation M637W at position 6.48 in transmembrane helix 6, which has a significant effect on the interaction of the receptor with the LMW agonist. In summary, we found that a high proportion of residues in several helices surrounding the allosteric binding site of LMW ligands in the TSHR when mutated lead to constitutively active receptors. Our findings of signaling-sensitive residues in this region of the transmembrane bundle may be of general importance as this domain appears to be evolutionarily retained among GPCRs.

  17. The confining trailing string

    CERN Document Server

    Kiritsis, E; Nitti, F

    2014-01-01

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  18. The confining trailing string

    Energy Technology Data Exchange (ETDEWEB)

    Kiritsis, Elias [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Crete Center for Theoretical Physics, Department of Physics, University of Crete,71003 Heraklion (Greece); Mazzanti, Liuba [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Nitti, Francesco [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France)

    2014-02-19

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  19. Delta-9-tetrahydrocannabinol decreases masticatory muscle sensitization in female rats through peripheral cannabinoid receptor activation.

    Science.gov (United States)

    Wong, H; Hossain, S; Cairns, B E

    2017-11-01

    This study investigated whether intramuscular injection of delta-9-tetrahydrocannabinol (THC), by acting on peripheral cannabinoid (CB) receptors, could decrease nerve growth factor (NGF)-induced sensitization in female rat masseter muscle; a model which mimics the symptoms of myofascial temporomandibular disorders. Immunohistochemistry was used to explore the peripheral expression of cannabinoid receptors in the masseter muscle while behavioural and electrophysiology experiments were employed to assess the functional effects of intramuscular injection of THC. It was found that CB1 and CB2 receptors are expressed by trigeminal ganglion neurons that innervate the masseter muscle and also on their peripheral endings. Their expression was greater in TRPV1-positive ganglion neurons. Three days after intramuscular injection of NGF, ganglion neuron expression of CB1 and CB2, but not TPRV1, was decreased. In behavioural experiments, intramuscular injection (10 μL) of THC (1 mg/mL) attenuated NGF-induced mechanical sensitization. No change in mechanical threshold was observed in the contralateral masseter muscles and no impairment of motor function was found after intramuscular injections of THC. In anaesthetized rats, the same concentration of THC increased the mechanical thresholds of masseter muscle mechanoreceptors. Co-administration of the CB1 antagonist AM251 blocked the effect of THC on masseter muscle mechanoreceptors while the CB2 antagonist AM630 had no effect. These results suggest that reduced inhibitory input from the peripheral cannabinoid system may contribute to NGF-induced local myofascial sensitization of mechanoreceptors. Peripheral application of THC may counter this effect by activating the CB1 receptors on masseter muscle mechanoreceptors to provide analgesic relief without central side effects. Our results suggest THC could reduce masticatory muscle pain through activating peripheral CB1 receptors. Peripheral application of cannabinoids could be a

  20. Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis

    International Nuclear Information System (INIS)

    Tamagiku, Yuji; Sonoda, Yoshiko; Kunisawa, Mari; Ichikawa, Daiju; Murakami, Yayoi; Aizu-Yokota, Eriko; Kasahara, Tadashi

    2004-01-01

    We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells

  1. Exploring the molecular mechanisms of glucocorticoid receptor action from sensitivity to resistance.

    Science.gov (United States)

    Ramamoorthy, Sivapriya; Cidlowski, John A

    2013-01-01

    Glucocorticoids regulate a variety of physiological processes, and are commonly used to treat disorders of inflammation, autoimmune diseases, and cancer. Glucocorticoid action is predominantly mediated through the classic glucocorticoid receptor (GR), but sensitivity to glucocorticoids varies among individuals, and even within different tissues from the same individual. The molecular basis of this phenomenon can be partially explained through understanding the process of generating bioavailable ligand and the molecular heterogeneity of the GR. The molecular mechanisms that regulate glucocorticoid action highlight the dynamic nature of hormone signaling and provide novel insights into genomic glucocorticoid actions and glucocorticoid sensitivity. Although glucocorticoids are highly effective for therapeutic purposes, long-term and/or high-dose glucocorticoid administration often leads to reduced glucocorticoid sensitivity or resistance. Here, we summarize our current understanding of the mechanisms that modulate glucocorticoid sensitivity and resistance with a focus on GR-mediated signaling. Copyright © 2013 S. Karger AG, Basel.

  2. 9th TRAIL Congress 2006, TRAIL in MOTION

    OpenAIRE

    TRAIL RESEARCH SCHOOL

    2006-01-01

    TRAIL is a Research School on Transport, Infrastructure and Logistics. TRAIL trains Ph.D. candidates and performs scientific and applied scientific research in the fields of mobility, transport, logistics, traffic, infrastructure and transport systems. TRAIL is a collaborative initiative of five Dutch universities, and is accredited as research school since 1997

  3. A Trail of Roses

    DEFF Research Database (Denmark)

    Ørum, Tania

    2015-01-01

    and reality as as well as about what is endlessly the same and endlessly different. And thus the text is seen to voice an entire ontology which, in its utter simplicity, exemplifies the poetical power and philosophical depth of Gertrude Stein’s writing. From this point Gertrude Stein’s influence is visible...... as a trail of roses through Danish 1960s art. The trail leads from Nielsen’s reading of Stein’s rose to the Danish composer Henning Christiansen, who put the sentence to music in his orchestral work A Rose for Miss Stein (1965). The chain of roses was continued by the painter and performance artist John...

  4. Allegheny County Blazed Trails Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the location of blazed trails in all Allegheny County parks. This is the same data used in the Allegheny County Parks Trails Mobile App, available for Apple...

  5. No Associations Between Single Nucleotide Polymorphisms in Corticoid Receptor Genes and Heart Rate and Cortisol Responses to a Standardized Social Stress Test in Adolescents : The TRAILS Study

    NARCIS (Netherlands)

    Bouma, Esther M. C.; Riese, Harriette; Nolte, Ilja M.; Oosterom, Elvira; Verhulst, Frank C.; Ormel, Johan; Oldehinkel, Albertine J.

    Previously, sequence variation in the glucocorticoid (GR) and mineralocorticoid (MR) receptor genes (NR3C1 and NR3C2, respectively) have been found to be associated with physiological stress responses to social stress tests in small samples of adult men and oral contraceptives (OC) using women.

  6. The plant alkaloid and anti-leukemia drug homoharringtonine sensitizes resistant human colorectal carcinoma cells to TRAIL-induced apoptosis via multiple mechanisms

    Czech Academy of Sciences Publication Activity Database

    Beranová, Lenka; Pombinho, António R.; Špegárová, Jarmila; Koc, Michal; Klánová, M.; Molinsky, J.; Klener, P.; Bartůněk, Petr; Anděra, Ladislav

    2013-01-01

    Roč. 18, č. 6 (2013), s. 739-750 ISSN 1360-8185 R&D Projects: GA ČR GAP301/10/1971; GA MŠk LH12202; GA MŠk(CZ) LC06077; GA MZd(CZ) NT13201; GA MŠk LM2011022 Grant - others:UK(CZ) P24/LF1/3; GA UK(CZ) 259211/110709; UK(CZ) UNCE 204021 Institutional support: RVO:68378050 Keywords : harringtonine * apoptosis * death receptor * cFLIP * Mcl-1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.614, year: 2013

  7. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Science.gov (United States)

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  8. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  9. The leukotriene B4 receptors BLT1 and BLT2 form an antagonistic sensitizing system in peripheral sensory neurons.

    Science.gov (United States)

    Zinn, Sebastian; Sisignano, Marco; Kern, Katharina; Pierre, Sandra; Tunaru, Sorin; Jordan, Holger; Suo, Jing; Treutlein, Elsa-Marie; Angioni, Carlo; Ferreiros, Nerea; Leffler, Andreas; DeBruin, Natasja; Offermanns, Stefan; Geisslinger, Gerd; Scholich, Klaus

    2017-04-14

    Sensitization of the heat-activated ion channel transient receptor potential vanilloid 1 (TRPV1) through lipids is a fundamental mechanism during inflammation-induced peripheral sensitization. Leukotriene B4 is a proinflammatory lipid mediator whose role in peripheral nociceptive sensitization is not well understood to date. Two major G-protein-coupled receptors for leukotriene B4 have been identified: the high-affinity receptor BLT1 and the low-affinity receptor BLT2. Transcriptional screening for the expression G-protein-coupled receptors in murine dorsal root ganglia showed that both receptors were among the highest expressed in dorsal root ganglia. Calcium imaging revealed a sensitization of TRPV1-mediated calcium increases in a relative narrow concentration range for leukotriene B4 (100-200 nm). Selective antagonists and neurons from knock-out mice demonstrated a BLT1-dependent sensitization of TRPV1-mediated calcium increases. Accordingly, leukotriene B4-induced thermal hyperalgesia was mediated through BLT1 and TRPV1 as shown using the respective knock-out mice. Importantly, higher leukotriene B4 concentrations (>0.5 μm) and BLT2 agonists abolished sensitization of the TRPV1-mediated calcium increases. Also, BLT2 activation inhibited protein kinase C- and protein kinase A-mediated sensitization processes through the phosphatase calcineurin. Consequently, a selective BLT2-receptor agonist increased thermal and mechanical withdrawal thresholds during zymosan-induced inflammation. In accordance with these data, immunohistochemical analysis showed that both leukotriene B4 receptors were expressed in peripheral sensory neurons. Thus, the data show that the two leukotriene B4 receptors have opposing roles in the sensitization of peripheral sensory neurons forming a self-restricting system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Activation of mu opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1 via β-arrestin-2-mediated cross-talk.

    Directory of Open Access Journals (Sweden)

    Matthew P Rowan

    Full Text Available The transient receptor potential family V1 channel (TRPV1 is activated by multiple stimuli, including capsaicin, acid, endovanilloids, and heat (>42C. Post-translational modifications to TRPV1 result in dynamic changes to the sensitivity of receptor activation. We have previously demonstrated that β-arrestin2 actively participates in a scaffolding mechanism to inhibit TRPV1 phosphorylation, thereby reducing TRPV1 sensitivity. In this study, we evaluated the effect of β-arrestin2 sequestration by G-protein coupled receptors (GPCRs on thermal and chemical activation of TRPV1. Here we report that activation of mu opioid receptor by either morphine or DAMGO results in β-arrestin2 recruitment to mu opioid receptor in sensory neurons, while activation by herkinorin does not. Furthermore, treatment of sensory neurons with morphine or DAMGO stimulates β-arrestin2 dissociation from TRPV1 and increased sensitivity of the receptor. Conversely, herkinorin treatment has no effect on TRPV1 sensitivity. Additional behavioral studies indicate that GPCR-driven β-arrestin2 sequestration plays an important peripheral role in the development of thermal sensitivity. Taken together, the reported data identify a novel cross-talk mechanism between GPCRs and TRPV1 that may contribute to multiple clinical conditions.

  11. Localization of quantitative changes in pulmonary beta-receptors in ovalbumin-sensitized guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Gatto, C.; Green, T.P.; Johnson, M.G.; Marchessault, R.P.; Seybold, V.; Johnson, D.E.

    1987-07-01

    Impaired beta-receptor function has been postulated as one factor contributing to airway hyperreactivity in asthmatic patients. Although numerous indirect studies have cast doubt on this theory, none of these previous investigations has been able to directly measure changes in beta-receptor number on intrapulmonary structures capable of affecting the physiologic changes seen in this disease state. To help clarify the intrapulmonary location of such changes, a model of allergic bronchoconstriction was prepared by sensitizing guinea pigs to ovalbumin intraperitoneally (ip) 2 wk prior to testing (Group S). A second group of animals was sensitized to ovalbumin, then 2 wk later partially desensitized (Group D) during a 4- to 6-wk period by repeated exposure to increasing doses of nebulized ovalbumin with epinephrine rescue. Control animals received ip administered and nebulized normal saline alone. Pulmonary function assessed by plethysmography revealed an increase in airway resistance to 294 +/- 42% (SE) of control in Group S (p less than 0.005) and a decrease in dynamic compliance to 76 +/- 8% of control in Group D and 39 +/- 10% of control in Group S (p less than 0.002) after exposure to nebulized ovalbumin. Using L-(/sup 3/H) dihydroalprenolol ((/sup 3/H) DHA), beta-receptors were autoradiographically localized and quantitated in lung sections from all 3 groups. Significant decreases (p less than 0.02) in /sup 3/H-DHA binding were noted in alveolar and conducting airway epithelium, and bronchiolar and vascular smooth muscle in ovalbumin-exposed animals.

  12. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.

  13. Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons: a sensitive target for ethanol.

    Science.gov (United States)

    Maguire, Edward P; Mitchell, Elizabeth A; Greig, Scott J; Corteen, Nicole; Balfour, David J K; Swinny, Jerome D; Lambert, Jeremy J; Belelli, Delia

    2014-04-01

    Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are implicated in ethanol's actions, with certain receptors and ion channels emerging as putative targets. The dorsal raphe (DR) nucleus is associated with the behavioral actions of alcohol, but ethanol actions on these neurons are not well understood. Here, using immunohistochemistry and electrophysiology we characterize DR inhibitory transmission and its sensitivity to ethanol. DR neurons exhibit inhibitory 'phasic' post-synaptic currents mediated primarily by synaptic GABAA receptors (GABAAR) and, to a lesser extent, by synaptic glycine receptors (GlyR). In addition to such phasic transmission mediated by the vesicular release of neurotransmitter, the activity of certain neurons may be governed by a 'tonic' conductance resulting from ambient GABA activating extrasynaptic GABAARs. However, for DR neurons extrasynaptic GABAARs exert only a limited influence. By contrast, we report that unusually the GlyR antagonist strychnine reveals a large tonic conductance mediated by extrasynaptic GlyRs, which dominates DR inhibition. In agreement, for DR neurons strychnine increases their input resistance, induces membrane depolarization, and consequently augments their excitability. Importantly, this glycinergic conductance is greatly enhanced in a strychnine-sensitive fashion, by behaviorally relevant ethanol concentrations, by drugs used for the treatment of alcohol withdrawal, and by taurine, an ingredient of certain 'energy drinks' often imbibed with ethanol. These findings identify extrasynaptic GlyRs as critical regulators of DR excitability and a novel molecular target for ethanol.

  14. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.

    Science.gov (United States)

    Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A

    2017-11-15

    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell

  15. Optimization of the cost and sensitivity of receptor- and enzyme-based assays.

    Science.gov (United States)

    Model, M A; Healy, K E

    1999-06-15

    In detecting receptor antagonists or enzyme inhibitors, there are three parameters that often affect the outcome in a predictable quantitative manner: concentrations of the receptors (enzyme), labeled ligand (substrate), and antagonist (inhibitor). The usual goal of assay optimization is to maximize the ability of the assay to detect low concentrations of the analyte. Another question of practical importance, especially in screening of large numbers of samples, would be minimization of the reagent cost. Although the mathematical theory of optimization of the receptor binding assay was developed a long time ago, the resulting formulas (in the general case of unequal affinities of ligand and competitor) were not well suited for practical use. The current availability of computational programs, such as Mathematica, makes possible an efficient solution, both for receptor- and enzyme-based assays. We use a graphical approach to assay optimization and apply it to the following problems: (1) optimization of assay sensitivity, (2) optimization of the reagent cost, and (3) analysis of the entire range of the parameter values since the mathematically optimal values may sometimes be impractical. The computation is extremely simple and the problem can sometimes be solved in several minutes. Copyright 1999 Academic Press.

  16. Thigmotaxis Mediates Trail Odour Disruption.

    Science.gov (United States)

    Stringer, Lloyd D; Corn, Joshua E; Sik Roh, Hyun; Jiménez-Pérez, Alfredo; Manning, Lee-Anne M; Harper, Aimee R; Suckling, David M

    2017-05-10

    Disruption of foraging using oversupply of ant trail pheromones is a novel pest management application under investigation. It presents an opportunity to investigate the interaction of sensory modalities by removal of one of the modes. Superficially similar to sex pheromone-based mating disruption in moths, ant trail pheromone disruption lacks an equivalent mechanistic understanding of how the ants respond to an oversupply of their trail pheromone. Since significant compromise of one sensory modality essential for trail following (chemotaxis) has been demonstrated, we hypothesised that other sensory modalities such as thigmotaxis could act to reduce the impact on olfactory disruption of foraging behaviour. To test this, we provided a physical stimulus of thread to aid trailing by Argentine ants otherwise under disruptive pheromone concentrations. Trail following success was higher using a physical cue. While trail integrity reduced under continuous over-supply of trail pheromone delivered directly on the thread, provision of a physical cue in the form of thread slightly improved trail following and mediated trail disruption from high concentrations upwind. Our results indicate that ants are able to use physical structures to reduce but not eliminate the effects of trail pheromone disruption.

  17. In vitro function of the aryl hydrocarbon receptor predicts in vivo sensitivity of oviparous vertebrates to dioxin-like compounds

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investig...

  18. Apigenin promotes TRAIL-mediated apoptosis regardless of ROS generation.

    Science.gov (United States)

    Kang, Chang-Hee; Molagoda, Ilandarage Menu Neelaka; Choi, Yung Hyun; Park, Cheol; Moon, Dong-Oh; Kim, Gi-Young

    2018-01-01

    Apigenin is a bioactive flavone in several herbs including parsley, thyme, and peppermint. Apigenin possesses anti-cancer and anti-inflammatory properties; however, whether apigenin enhances TRAIL-mediated apoptosis in cancer cells is unknown. In the current study, we found that apigenin enhanced TRAIL-induced apoptosis by promoting caspase activation and death receptor 5 (DR5) expression and a chimeric antibody against DR5 completely blocked the apoptosis. Apigenin also upregulated reactive oxygen species (ROS) generation; however, intriguingly, ROS inhibitors, glutathione (GSH) or N-acetyl-l-cysteine (NAC), moderately increased apigenin/TRAIL-induced apoptosis. Additional results showed that an autophagy inducer, rapamycin, enhanced apigenin/TRAIL-mediated apoptosis by a slight increase of ROS generation. Accordingly, NAC and GSH rather decreased apigenin-induced autophagy formation, suggesting that apigenin-induced ROS generation increased autophagy formation. However, autophagy inhibitors, bafilomycin (BAF) and 3-methyladenine (3-MA), showed different result in apigenin/TRAIL-mediated apoptosis without ROS generation. 3-MA upregulated the apoptosis but remained ROS levels; however, no changes on apoptosis and ROS generation were observed by BAF treatment. Taken together, these findings reveal that apigenin enhances TRAIL-induced apoptosis by activating apoptotic caspases by upregulating DR5 expression regardless of ROS generation, which may be a promising strategy for an adjuvant of TRAIL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. GQ-16, a Novel Peroxisome Proliferator-activated Receptor gamma (PPAR gamma) Ligand, Promotes Insulin Sensitization without Weight Gain

    NARCIS (Netherlands)

    Amato, Angelica A.; Rajagopalan, Senapathy; Lin, Jean Z.; Carvalho, Bruno M.; Figueira, Ana C. M.; Lu, Jenny; Ayers, Stephen D.; Mottin, Melina; Silveira, Rodrigo L.; Telles de Souza, Paulo; Mourao, Rosa H. V.; Saad, Mario J. A.; Togashi, Marie; Simeoni, Luiz A.; Abdalla, Dulcineia S. P.; Skaf, Munir S.; Polikparpov, Igor; Lima, Maria C. A.; Galdino, Suely L.; Brennan, Richard G.; Baxter, John D.; Pitta, Ivan R.; Webb, Paul; Phillips, Kevin J.; Neves, Francisco A. R.

    2012-01-01

    The recent discovery that peroxisome proliferator-activated receptor gamma (PPAR gamma) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report

  20. Solubilization of rat brain phencyclidine receptors in an active binding form that is sensitive to N-methyl-D-aspartate receptor ligands.

    Science.gov (United States)

    Ambar, I; Kloog, Y; Sokolovsky, M

    1988-07-01

    Phencyclidine (PCP) receptors were successfully solubilized from rat forebrain membranes with 1% sodium cholate. Approximately 58% of the initial protein and 20-30% of the high-affinity PCP binding sites were solubilized. The high affinity toward PCP-like drugs, the stereo-selectivity of the sites, and the sensitivity to N-methyl-D-aspartate (NMDA) receptor ligands were preserved. Binding of the potent PCP receptor ligand N-[3H][1-(2-thienyl)cyclohexyl] piperidine ([3H]TCP) to the soluble receptors was saturable (KD = 35 nM), and PCP-like drugs inhibited [3H]TCP binding in a rank order of potency close to that observed for the membrane-bound receptors; the most potent inhibitors were TCP (Ki = 31 nM) and the anticonvulsant MK-801 (Ki = 50 nM). The NMDA receptor antagonist 2-amino-5-phosphonovaleric acid inhibited binding of [3H]TCP to the soluble receptors; glutamate or NMDA diminished this inhibition in a dose-dependent manner. Taken together, the results indicate that the soluble PCP receptor preparation contains the glutamate recognition sites and may represent a single receptor complex for PCP and NMDA, as suggested by electrophysiological data. The successful solubilization of the PCP receptors in an active binding form should now facilitate their purification.

  1. Steroid Receptor Isoform Expression in Drosophila Nociceptor Neurons Is Required for Normal Dendritic Arbor and Sensitivity.

    Directory of Open Access Journals (Sweden)

    Aidan L McParland

    Full Text Available Steroid hormones organize many aspects of development, including that of the nervous system. Steroids also play neuromodulatory and other activational roles, including regulation of sensitivity to painful stimuli in mammals. In Drosophila, ecdysteroids are the only steroid hormones, and therefore the fly represents a simplified model system in which to explore mechanisms of steroid neuromodulation of nociception. In this report, we present evidence that ecdysteroids, acting through two isoforms of their nuclear ecdysone receptor (EcR, modulate sensitivity to noxious thermal and mechanical stimuli in the fly larva. We show that EcRA and EcRB1 are expressed by third instar larvae in the primary nociceptor neurons, known as the class IV multidendritic neurons. Suppression of EcRA by RNA interference in these cells leads to hyposensitivity to noxious stimulation. Suppression of EcRB1 leads to reduction of dendritic branching and length of nociceptor neurons. We show that specific isoforms of the ecdysone receptor play critical cell autonomous roles in modulating the sensitivity of nociceptor neurons and may indicate human orthologs that represent targets for novel analgesic drugs.

  2. Ghrelin receptor antagonism of hyperlocomotion in cocaine-sensitized mice requires βarrestin-2.

    Science.gov (United States)

    Toth, Krisztian; Slosky, Lauren M; Pack, Thomas F; Urs, Nikhil M; Boone, Peter; Mao, Lan; Abraham, Dennis; Caron, Marc G; Barak, Lawrence S

    2018-01-01

    The "brain-gut" peptide ghrelin, which mediates food-seeking behaviors, is recognized as a very strong endogenous modulator of dopamine (DA) signaling. Ghrelin binds the G protein-coupled receptor GHSR1a, and administration of ghrelin increases the rewarding properties of psychostimulants while ghrelin receptor antagonists decrease them. In addition, the GHSR1a signals through βarrestin-2 to regulate actin/stress fiber rearrangement, suggesting βarrestin-2 participation in the regulation of actin-mediated synaptic plasticity for addictive substances like cocaine. The effects of ghrelin receptor ligands on reward strongly suggest that modulation of ghrelin signaling could provide an effective strategy to ameliorate undesirable behaviors arising from addiction. To investigate this possibility, we tested the effects of ghrelin receptor antagonism in a cocaine behavioral sensitization paradigm using DA neuron-specific βarrestin-2 KO mice. Our results show that these mice sensitize to cocaine as well as wild-type littermates. The βarrestin-2 KO mice, however, no longer respond to the locomotor attenuating effects of the GHSR1a antagonist YIL781. The data presented here suggest that the separate stages of addictive behavior differ in their requirements for βarrestin-2 and show that pharmacological inhibition of βarrestin-2 function through GHSR1a antagonism is not equivalent to the loss of βarrestin-2 function achieved by genetic ablation. These data support targeting GHSR1a signaling in addiction therapy but indicate that using signaling biased compounds that modulate βarrestin-2 activity differentially from G protein activity may be required. © 2017 Wiley Periodicals, Inc.

  3. Dynamical modeling of the moth pheromone-sensitive olfactory receptor neuron within its sensillar environment.

    Directory of Open Access Journals (Sweden)

    Yuqiao Gu

    Full Text Available In insects, olfactory receptor neurons (ORNs, surrounded with auxiliary cells and protected by a cuticular wall, form small discrete sensory organs--the sensilla. The moth pheromone-sensitive sensillum is a well studied example of hair-like sensillum that is favorable to both experimental and modeling investigations. The model presented takes into account both the molecular processes of ORNs, i.e. the biochemical reactions and ionic currents giving rise to the receptor potential, and the cellular organization and compartmentalization of the organ represented by an electrical circuit. The number of isopotential compartments needed to describe the long dendrite bearing pheromone receptors was determined. The transduction parameters that must be modified when the number of compartments is increased were identified. This model reproduces the amplitude and time course of the experimentally recorded receptor potential. A first complete version of the model was analyzed in response to pheromone pulses of various strengths. It provided a quantitative description of the spatial and temporal evolution of the pheromone-dependent conductances, currents and potentials along the outer dendrite and served to determine the contribution of the various steps in the cascade to its global sensitivity. A second simplified version of the model, utilizing a single depolarizing conductance and leak conductances for repolarizing the ORN, was derived from the first version. It served to analyze the effects on the sensory properties of varying the electrical parameters and the size of the main sensillum parts. The consequences of the results obtained on the still uncertain mechanisms of olfactory transduction in moth ORNs--involvement or not of G-proteins, role of chloride and potassium currents--are discussed as well as the optimality of the sensillum organization, the dependence of biochemical parameters on the neuron spatial extension and the respective contributions

  4. Induction of potent TRAIL-mediated tumoricidal activity by hFLEX/Furin/TRAIL recombinant DNA construct.

    Science.gov (United States)

    Wu, Xiaofeng; Hui, Kam M

    2004-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to exert selectively cytotoxic activity against many tumor cells but not normal cells. On the other hand, the ligand for the receptor tyrosine kinase Fms-like tyrosine kinase 3 (Flt3L) is a growth factor for hematopoietic progenitors and is a potent stimulating factor for dendritic and NK cells. Previously, we have demonstrated that it is possible to inhibit the outgrowth of primary tumors by the administration of an hFlex (the extracellular domain of the Flt3L) and TRAIL (amino acid residues 95-281) secreted fusion protein. Here, we report that by the insertion of a linker sequence encoding the cleavage site for the Golgi-expressed endoprotease furin between the DNA sequences encoding hFlex and TRAIL, the tumoricidal activity of the cleaved TRAIL protein generated was greatly enhanced in comparison to the hFlex/TRAIL fusion protein. Furthermore, we demonstrate that intratumoral injection of the hFlex/furin/TRAIL DNA, in conjunction with cationic liposomes, significantly suppressed the outgrowth of the human CNE-2 nasopharyngeal tumor xenografts in SCID mice. In situ histological examinations confirmed the expression of TRAIL in the treated tumor nodules and the induction of apoptosis was also evidenced by the presence of numerous pyknotic nuclei.

  5. The policy trail methodology

    DEFF Research Database (Denmark)

    Holford, John; Larson, Anne; Melo, Susana

    In recent years, the “policy trail” has been proposed as a methodology appropriate to the shifting and fluid governance of lifelong learning in the late modern world (Holford et al. 2013, Holford et al. 2013, Cort 2014). The contemporary environment is marked by multi-level governance (global....../national/regional/local), but also by a diversification of types of actor (public/private; for-profit/not-for-profit). Multi-level governance has been particularly marked – and has taken specific forms – in the European context, but it is by no means limited to the EU. The policy trail method aims to capture the increased influence...... of transnational organisations and public-private networks in policymaking. The concept of policy trails sought to theorise how this widened policy space – including new and variously-sited actors – is negotiated and how power is distributed across sites (Holford & McKenzie, 2013). Cort (2014) developed the notion...

  6. Decreased Cocaine Motor Sensitization and Self-Administration in Mice Overexpressing Cannabinoid CB2 Receptors

    Science.gov (United States)

    Aracil-Fernández, Auxiliadora; Trigo, José M; García-Gutiérrez, María S; Ortega-Álvaro, Antonio; Ternianov, Alexander; Navarro, Daniela; Robledo, Patricia; Berbel, Pere; Maldonado, Rafael; Manzanares, Jorge

    2012-01-01

    The potential involvement of the cannabinoid CB2 receptors (CB2r) in the adaptive responses induced by cocaine was studied in transgenic mice overexpressing the CB2r (CB2xP) and in wild-type (WT) littermates. For this purpose, the acute and sensitized locomotor responses to cocaine, conditioned place preference, and cocaine intravenous self-administration were evaluated. In addition, we assessed whether CB2r were localized in neurons and/or astrocytes, and whether they colocalized with dopamine D1 and D2 receptors (D1Dr and D2Dr). Dopamine (DA) extracellular levels in the nucleus accumbens (NAcc), and gene expression of tyrosine hydroxylase (TH) and DA transporter (DAT) in the ventral tegmental area (VTA), and μ-opioid and cannabinoid CB1 receptors in the NAcc were also studied in both genotypes. CB2xP mice showed decreased motor response to acute administration of cocaine (10–20 mg/kg) and cocaine-induced motor sensitization compared with WT mice. CB2xP mice presented cocaine-induced conditioned place aversion and self-administered less cocaine than WT mice. CB2r were found in neurons and astrocytes and colocalized with D2Dr in the VTA and NAcc. No significant differences in extracellular DA levels in the NAcc were observed between genotypes after cocaine administration. Under baseline conditions, TH and DAT gene expression was higher and μ-opioid receptor gene expression was lower in CB2xP than in WT mice. However, both genotypes showed similar changes in TH and μ-opioid receptor gene expression after cocaine challenge independently of the pretreatment received. Importantly, the cocaine challenge decreased DAT gene expression to a lesser extent in cocaine-pretreated CB2xP than in cocaine-pretreated WT mice. These results revealed that CB2r are involved in cocaine motor responses and cocaine self-administration, suggesting that this receptor could represent a promising target to develop novel treatments for cocaine addiction. PMID:22414816

  7. Testosterone and Androgen Receptor Sensitivity in Relation to Hyperactivity Symptoms in Boys with Autism Spectrum Disorders.

    Directory of Open Access Journals (Sweden)

    Anna Pivovarciova

    Full Text Available Autism spectrum disorders (ASD and hyperactivity symptoms exhibit an incidence that is male-biased. Thus androgen activity can be considered a plausible biological risk factor for these disorders. However, there is insufficient information about the association between increased androgen activity and hyperactivity symptoms in children with ASD.In the present study, the relationship between parameters of androgenicity (plasmatic testosterone levels and androgen receptor sensitivity and hyperactivity in 60 boys (age 3-15 with ASD is investigated. Given well documented differences in parent and trained examiners ratings of symptom severity, we employed a standardized parent`s questionnaire (Nisonger Child Behavior Rating Form as well as a direct examiner`s rating (Autism diagnostic observation schedule for assessment of hyperactivity symptoms.Although it was found there was no significant association between actual plasmatic testosterone levels and hyperactivity symptoms, the number of CAG triplets was significantly negatively correlated with hyperactivity symptoms (R2 = 0.118, p = 0.007 in the sample, indicating increased androgen receptor sensitivity in association with hyperactivity symptoms. Direct trained examiner´s assessment appeared to be a relevant method for evaluating of behavioral problems in the investigation of biological underpinnings of these problems in our study.A potential ASD subtype characterized by increased rates of hyperactivity symptoms might have distinct etiopathogenesis and require a specific behavioral and pharmacological approach. We propose an increase of androgen receptor sensitivity as a biomarker for a specific ASD subtype accompanied with hyperactivity symptoms. Findings are discussed in terms of their implications for practice and future research.

  8. NMDA receptors on non-dopaminergic neurons in the VTA support cocaine sensitization.

    Directory of Open Access Journals (Sweden)

    Yu Luo

    2010-08-01

    Full Text Available The initiation of behavioral sensitization to cocaine and other psychomotor stimulants is thought to reflect N-methyl-D-aspartate receptor (NMDAR-mediated synaptic plasticity in the mesolimbic dopamine (DA circuitry. The importance of drug induced NMDAR mediated adaptations in ventral tegmental area (VTA DA neurons, and its association with drug seeking behaviors, has recently been evaluated in Cre-loxp mice lacking functional NMDARs in DA neurons expressing Cre recombinase under the control of the endogenous dopamine transporter gene (NR1(DATCre mice.Using an additional NR1(DATCre mouse transgenic model, we demonstrate that while the selective inactivation of NMDARs in DA neurons eliminates the induction of molecular changes leading to synaptic strengthening, behavioral measures such as cocaine induced locomotor sensitization and conditioned place preference remain intact in NR1(DATCre mice. Since VTA DA neurons projecting to the prefrontal cortex and amygdala express little or no detectable levels of the dopamine transporter, it has been speculated that NMDA receptors in DA neurons projecting to these brain areas may have been spared in NR1(DATCre mice. Here we demonstrate that the NMDA receptor gene is ablated in the majority of VTA DA neurons, including those exhibiting undetectable DAT expression levels in our NR1(DATCre transgenic model, and that application of an NMDAR antagonist within the VTA of NR1(DATCre animals still blocks sensitization to cocaine.These results eliminate the possibility of NMDAR mediated neuroplasticity in the different DA neuronal subpopulations in our NR1(DATCre mouse model and therefore suggest that NMDARs on non-DA neurons within the VTA must play a major role in cocaine-related addictive behavior.

  9. The TRAIL to Viral Pathogenesis: The Good, the Bad and the Ugly

    Science.gov (United States)

    Cummins, Nathan; Badley, Andrew

    2011-01-01

    Since the discovery of Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) in 1995, much has been learned about the protein, its receptors and signaling cascade to induce apoptosis and the regulation of its expression. However, the physiologic role or roles that TRAIL may play in vivo are still being explored. The expression of TRAIL on effector T cells and the ability of TRAIL to induce apoptosis in virally infected cells provided early clues that TRAIL may play an active role in the immune defense against viral infections. However, increasing evidence is emerging that TRAIL may have a dual function in the immune system, both as a means to kill virally infected cells and in the regulation of cytokine production. TRAIL has been implicated in the immune response to viral infections (good), and in the pathogenesis of multiple viral infections (bad). Furthermore, several viruses have evolved mechanisms to manipulate TRAIL signaling to increase viral replication (ugly). It is likely that whether TRAIL ultimately has a proviral or antiviral effect will be dependent on the specific virus and the overall cytokine milieu of the host. Knowledge of the factors that determine whether TRAIL is proviral or antiviral is important because the TRAIL system may become a target for development of novel antiviral therapies. PMID:19519406

  10. The metabotropic glutamate receptor subtype 5 mediates sensitivity to the sedative properties of ethanol.

    Science.gov (United States)

    Downing, Chris; Marks, Michael J; Larson, Colin; Johnson, Thomas E

    2010-09-01

    Inbred long-sleep and short-sleep mice (ILS and ISS) were selectively bred for differential sensitivity to the sedative effects of ethanol. Lines of mice derived from these progenitors have been used to identify several quantitative trait loci (QTLs) mediating loss of the righting reflex due to ethanol (LORE). This study investigated the metabotropic glutamate receptor subtype 5 (mGluR5) as a candidate gene underlying Lore7, a QTL mediating differential LORE sensitivity. We used knockout mice, a quantitative complementation test, pharmacological antagonism of mGluR5, real-time quantitative PCR, radioligand binding, DNA sequencing, and bioinformatics to examine the role of mGluR5 in ethanol-induced sedation. mGluR5 knockout mice had a significantly longer LORE duration than wildtype controls. Administration of the mGluR5 antagonist 2-methyl-6-(phenylethyl)-pyridine (MPEP) had differential effects on LORE in ILS and ISS mice. A quantitative complementation test also supported mGluR5 mediating LORE. Two intronic single-nucleotide polymorphisms in mGluR5 were highly correlated with LORE in recombinant inbred mice derived from a cross between ILS and ISS (LXS RIs). Differences in mGluR5 mRNA level and receptor density were observed between ILS and ISS in distinct brain regions. Finally, data from WebQTL showed that mGluR5 expression was highly correlated with several LORE phenotypes in the LXS RIs. Altogether, this data provides convincing evidence that mGluR5 mediates differential sensitivity to the sedative effects of ethanol. Studies from the human literature have also identified mGluR5 as a potential candidate gene for ethanol sensitivity.

  11. Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways.

    Science.gov (United States)

    Nishimoto, Mitsuhiro; Fujita, Toshiro

    2015-03-01

    Although salt is a major environmental factor in the development of hypertension, the degree of salt sensitivity varies widely among individuals. The mechanisms responsible for this variation remain to be elucidated. Recent studies have revealed the involvement of two important signaling pathways in renal tubules that play key roles in electrolyte balance and the maintenance of normal blood pressure: the β2-adrenergic stimulant-glucocorticoid receptor (GR)-with-no-lysine kinase (WNK)4-Na(+)-Cl(-) cotransporter pathway, which is active in distal convoluted tubule (DCT)1, and the Ras-related C3 botulinum toxin substrate (Rac)1-mineralocorticoid receptor (MR) pathway, which is active in DCT2, connecting tubules, and collecting ducts. β2-Adrenergic stimulation due to increased renal sympathetic activity in obesity- and salt-induced hypertension suppresses histone deacetylase 8 activity via cAMP/PKA signaling, increasing the accessibility of GRs to the negative GR response element in the WNK4 promoter. This results in the suppression of WNK4 transcription followed by the activation of Na(+)-Cl(-) cotransporters in the DCT and elevated Na(+) retention and blood pressure upon salt loading. Rac1 activates MRs, even in the absence of ligand binding, with this activity increased in the presence of ligand. In salt-sensitive animals, Rac1 activation due to salt loading activates MRs in DCT2, connecting tubules, and collecting ducts. Thus, GRs and MRs are independently involved in two pathways responsible for renal Na(+) handling and salt-sensitive hypertension. These findings suggest novel therapeutic targets and may lead to the development of diagnostic tools to determine salt sensitivity in hypertensive patients. Copyright © 2015 the American Physiological Society.

  12. Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension.

    Science.gov (United States)

    Kawarazaki, Wakako; Fujita, Toshiro

    2013-12-01

    According to Guyton's model, impaired renal sodium excretion plays a key role in the increased salt sensitivity of blood pressure (BP). Several factors contribute to impaired renal sodium excretion, including the sympathetic nervous system, the renin-angiotensin system and aldosterone. Accumulating evidence suggests that abnormalities in aldosterone and its receptor (i.e. the mineralocorticoid receptor (MR)) are involved in the development of salt-sensitive (SS) hypertension. Patients with metabolic syndrome often exhibit hyperaldosteronism and are susceptible to SS hypertension. Aldosterone secretion from the adrenal glands is not suppressed in obese hypertensive rats fed a high-salt diet because of the abundant production of adipocyte-derived aldosterone-releasing factors, which are independent of the negative feedback regulation of aldosterone secretion by the renin-angiotensin-aldosterone system. Increased plasma aldosterone levels lead to SS hypertension via MR activation in the kidney. Renal MR activity is increased in Dahl salt-sensitive rats fed a high-salt diet, despite the appropriate suppression of plasma aldosterone levels. In this rat strain, activation of MR in the distal nephron causes salt-induced hypertension. This paradoxical response of the MR to salt loading can be attributed to activation of Rac1, a small GTPase. In the presence of aldosterone, activated Rac1 synergistically and directly activates MR in a ligand-independent manner. Thus, Rac1 activation in the kidney determines the salt sensitivity of BP. Together, the available evidence suggests that the aberrant Rac1-MR pathway plays a key role in the development of SS hypertension. © 2013 Wiley Publishing Asia Pty Ltd.

  13. TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window

    NARCIS (Netherlands)

    Koschny, Ronald; Ganten, Tom M.; Sykora, Jaromir; Haas, Tobias L.; Sprick, Martin R.; Kolb, Armin; Stremmel, Wolfgang; Walczak, Henning

    2007-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a novel promising anticancer biotherapeutic. However, TRAIL-resistant tumor cells require combinatorial regimens to sensitize tumor but not normal cells for TRAIL-induced apoptosis. Here, we investigated the mechanism of the

  14. (125I)Iodoazidococaine, a photoaffinity label for the haloperidol-sensitive sigma receptor

    International Nuclear Information System (INIS)

    Kahoun, J.R.; Ruoho, A.E.

    1992-01-01

    A carrier-free radioiodinated cocaine photoaffinity label, (-)-3-( 125 I)iodo-4-azidococaine [( 125 I)IACoc], has been synthesized and used as a probe for cocaine-binding proteins. Photoaffinity labeling with 0.5 nM ( 125 I)IACoc resulted in selective derivatization of a 26-kDa polypeptide with the pharmacology of a sigma receptor in membranes derived from whole rat brain, rat liver, and human placenta. ( 125 I)IACoc labeling of the 26-kDa polypeptide was also inhibited by 10 μM imipramine, amitriptyline, fluoxetine, benztropine, and tetrabenazine. The size of the ( 125 I)I-ACoc-labeled proteins is consistent with the size of proteins photolabeled in guinea pig brain and liver membranes by using the sigma photolabel azido-[ 3 H]DTG. Kinetic analysis of ( 125 I)IACoc binding to rat liver microsomes revealed two sites with K d values of 19 and 126 pM, respectively. The presence or absence of proteolytic inhibitors during membrane preparation did not alter the size of the photolabeled sigma receptor, indicating that the 26-kDa polypeptide was not derived from a larger protein. In summary, ( 125 I)IACoc is a potent and highly specific photoaffinity label for the haloperidol-sensitive sigma receptor and will be useful for its biochemical and molecular characterization

  15. ( sup 125 I)Iodoazidococaine, a photoaffinity label for the haloperidol-sensitive sigma receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kahoun, J.R.; Ruoho, A.E. (Univ. of Wisconsin, Madison (United States))

    1992-02-15

    A carrier-free radioiodinated cocaine photoaffinity label, (-)-3-({sup 125}I)iodo-4-azidococaine (({sup 125}I)IACoc), has been synthesized and used as a probe for cocaine-binding proteins. Photoaffinity labeling with 0.5 nM ({sup 125}I)IACoc resulted in selective derivatization of a 26-kDa polypeptide with the pharmacology of a sigma receptor in membranes derived from whole rat brain, rat liver, and human placenta. ({sup 125}I)IACoc labeling of the 26-kDa polypeptide was also inhibited by 10 {mu}M imipramine, amitriptyline, fluoxetine, benztropine, and tetrabenazine. The size of the ({sup 125}I)I-ACoc-labeled proteins is consistent with the size of proteins photolabeled in guinea pig brain and liver membranes by using the sigma photolabel azido-({sup 3}H)DTG. Kinetic analysis of ({sup 125}I)IACoc binding to rat liver microsomes revealed two sites with K{sub d} values of 19 and 126 pM, respectively. The presence or absence of proteolytic inhibitors during membrane preparation did not alter the size of the photolabeled sigma receptor, indicating that the 26-kDa polypeptide was not derived from a larger protein. In summary, ({sup 125}I)IACoc is a potent and highly specific photoaffinity label for the haloperidol-sensitive sigma receptor and will be useful for its biochemical and molecular characterization.

  16. The dopamine receptor D4 gene and familial loading interact with perceived parenting in predicting externalizing behavior problems in early adolescence: the TRacking Adolescents' Individual Lives Survey (TRAILS).

    Science.gov (United States)

    Marsman, Rianne; Oldehinkel, Albertine J; Ormel, Johan; Buitelaar, Jan K

    2013-08-30

    Although externalizing behavior problems show in general a high stability over time, the course of externalizing behavior problems may vary from individual to individual. Our main goal was to investigate the predictive role of parenting on externalizing behavior problems. In addition, we investigated the potential moderating role of gender and genetic risk (operationalized as familial loading of externalizing behavior problems (FLE), and presence or absence of the dopamine receptor D4 (DRD4) 7-repeat and 4-repeat allele, respectively). Perceived parenting (rejection, emotional warmth, and overprotection) and FLE were assessed in a population-based sample of 1768 10- to 12-year-old adolescents. Externalizing behavior problems were assessed at the same age and 212 years later by parent report (CBCL) and self-report (YSR). DNA was extracted from blood samples. Parental emotional warmth predicted lower, and parental overprotection and rejection predicted higher levels of externalizing behavior problems. Whereas none of the parenting factors interacted with gender and the DRD4 7-repeat allele, we did find interaction effects with FLE and the DRD4 4-repeat allele. That is, the predictive effect of parental rejection was only observed in adolescents from low FLE families and the predictive effect of parental overprotection was stronger in adolescents not carrying the DRD4 4-repeat allele. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj

    2006-01-01

    Immunoglobulin (Ig)E-sensitized persons with positive skin prick test, but no allergy symptoms, are classified as being asymptomatic skin sensitized (AS). The allergic type 1 disease is dependant on IgE binding to the high affinity IgE-receptor (FcepsilonRI) expressed on basophils and mast cells...

  18. Strychnine-sensitive glycine receptors mediate the analgesic but not hypnotic effects of emulsified volatile anesthetics.

    Science.gov (United States)

    Chen, Yan; Dai, Ti-Jun; Zeng, Yin-Ming

    2007-01-01

    The present study was designed to investigate the role of strychnine-sensitive glycine receptors in hypnosis and analgesia induced by emulsified volatile anesthetics. After having established the mice model of hypnosis and analgesia by intraperitoneally injecting (i.p.) appropriate doses of ether, enflurane, isoflurane or sevoflurane, we intracerebroventricularly (i.c.v.) or intrathecally (i.t.) injected different doses of strychnine and then observed the effects on the sleeping time using the awaken test and the pain index in hot-plate test (HPPI) using the hot-plate test. In the awaken test, strychnine 1, 2, 4 microg (i.c.v.) had no distinctive effect on the sleeping time of the mice treated with the four emulsified inhalation anesthetics mentioned above (p > 0.05); in the hot-plate test, strychnine 0.1, 0.2, 0.4 microg (i.t.) can significantly and dose-dependently decrease the HPPI of the mice treated with emulsified ether, enflurane and sevoflurane (p strychnine 0.1 microg (i.t.) did not affect the HPPI of the mice treated with emulsified isoflurane (p > 0.05), but 0.2 and 0.4 microg (i.t.) can significantly decrease the HPPI of the mice treatedwith emulsified isoflurane (p strychnine-sensitive glycine receptors may contribute to the analgesic but not to the hypnotic effects induced by ether, enflurane, isoflurane and sevoflurane. Copyright (c) 2007 S. Karger AG, Basel.

  19. Gold nanoparticle-based exonuclease III signal amplification for highly sensitive colorimetric detection of folate receptor

    Science.gov (United States)

    Yang, Xinjian; Gao, Zhiqiang

    2014-02-01

    By combining terminal protection of small molecule (folate)-capped DNA probes, exonuclease III signal amplification and gold nanoparticles, we developed a simple and label-free colorimetric assay for highly sensitive detection of folate receptor (FR). A detection limit of 50 fM FR was obtained using UV-vis spectrometry and 10 pM FR could be visualized by the naked eye.By combining terminal protection of small molecule (folate)-capped DNA probes, exonuclease III signal amplification and gold nanoparticles, we developed a simple and label-free colorimetric assay for highly sensitive detection of folate receptor (FR). A detection limit of 50 fM FR was obtained using UV-vis spectrometry and 10 pM FR could be visualized by the naked eye. Electronic supplementary information (ESI) available: Experimental details, salt and DNA-2 effects on the stability of the AuNP solution. See DOI: 10.1039/c3nr06139f

  20. Inhibition of the CSF-1 receptor sensitizes ovarian cancer cells to cisplatin.

    Science.gov (United States)

    Yu, Rong; Jin, Hao; Jin, Congcong; Huang, Xuefeng; Lin, Jinju; Teng, Yili

    2018-03-01

    Ovarian cancer is one of the most common female malignancies, and cisplatin-based chemotherapy is routinely used in locally advanced ovarian cancer patients. Acquired or de novo cisplatin resistance remains the barrier to patient survival, and the mechanisms of cisplatin resistance are still not well understood. In the current study, we found that colony-stimulating-factor-1 receptor (CSF-1R) was upregulated in cisplatin-resistant SK-OV-3 and CaoV-3 cells. Colony-stimulating-factor-1 receptor knockdown suppressed proliferation and enhanced apoptosis in cisplatin-resistant SK-OV-3 and CaoV-3 cells. However, CSF-1R overexpression had inverse effects. While parental SK-OV-3 and CaoV-3 cells were more resistant to cisplatin after CSF-1R overexpression, CSF-1R knockdown in SK-OV-3 and CaoV-3 cells promoted cisplatin sensitivity. Overexpression and knockdown studies also showed that CSF-1R significantly promoted active AKT and ERK1/2 signalling pathways in cisplatin-resistant cells. Furthermore, a combination of cisplatin and CSF-1R inhibitor effectively inhibited tumour growth in xenografts. Taken together, our results provide the first evidence that CSF-1R inhibition can sensitize cisplatin-refractory ovarian cancer cells. This study may help to increase understanding of the molecular mechanisms underlying cisplatin resistance in tumours. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Sensitivity of depression-like behavior to glucocorticoids and antidepressants is independent of forebrain glucocorticoid receptors.

    Science.gov (United States)

    Vincent, Melanie Y; Hussain, Rifat J; Zampi, Michael E; Sheeran, Katherine; Solomon, Matia B; Herman, James P; Khan, Anum; Jacobson, Lauren

    2013-08-07

    The location of glucocorticoid receptors (GR) implicated in depression symptoms and antidepressant action remains unclear. Forebrain glucocorticoid receptor deletion on a C57B/6×129×CBA background (FBGRKO-T50) reportedly produces increased depression-like behavior and elevated glucocorticoids. We further hypothesized that forebrain GR deletion would reduce behavioral sensitivity to glucocorticoids and to antidepressants. We have tested this hypothesis in mice with calcium calmodulin kinase IIα-Cre-mediated forebrain GR deletion derived from a new founder on a pure C57BL/6 background (FBGRKO-T29-1). We measured immobility in forced swim or tail suspension tests after manipulating glucocorticoids or after dose response experiments with tricyclic or monoamine oxidase inhibitor antidepressants. Despite forebrain GR deletion that was at least as rapid and more extensive than reported in the mixed-strain FBGRKO-T50 mice (Boyle et al. 2005), and possibly because of their different founder, our FBGRKO-T29-1 mice did not exhibit increases in depression-like behavior or adrenocortical axis hormones. Nevertheless, FBGRKO-T29-1 mice were at least as sensitive as floxed GR controls to the depressive effects of glucocorticoids and the effects of two different classes of antidepressants. FBGRKO-T29-1 mice also unexpectedly exhibited increased mineralocorticoid receptor (MR) gene expression. Our results reinforce prior evidence that antidepressant action does not require forebrain GR, and suggest a correlation between the absence of depression-like phenotype and combined MR up-regulation and central amygdala GR deficiency. Our findings demonstrate that GR outside the areas targeted in FBGRKO-T29-1 mice are involved in the depressive effects of glucocorticoids, and leave open the possibility that these GR populations also contribute to antidepressant action. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. R+-methanandamide inhibits tracheal response to endogenously released acetylcholine via capsazepine-sensitive receptors.

    Science.gov (United States)

    Nieri, Paola; Martinotti, Enrica; Testai, Lara; Adinolfi, Barbara; Calderone, Vincenzo; Breschi, Maria Cristina

    2003-01-10

    The effects of cannabinoid drugs on the cholinergic response evoked by electrical field stimulation (0.2 ms pulse width, 20 V amplitude, 10 Hz, 7.5 s train duration) in guinea-pig tracheal preparations were investigated. The stable analogue of the endocannabinoid anandamide, R(+)-methanandamide (10(-7)-10(-4) M), produced a dose-dependent inhibition (up to 27+/-5% of control) of electrical field stimulation-mediated atropine-sensitive response. This effect was not blocked by the selective cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide hydrochloride (SR 141716A; 10(-6) M), and was not reproduced with the cannabinoid CB(1)/CB(2) receptor agonist R(+)-[2,3-dihydro-5-methyl-[(morpholinyl)methyl]pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-(1-naphthalenyl)methanone mesylate) (WIN 55,212-2; 10(-8)-10(-5) M) or the cannabinoid CB(2) receptor selective agonist 1-propyl-2-methyl-3-(1-naphthoyl)indole (JWH-015; 10(-8)-10(-5) M); it was, on the contrary, antagonized by the vanilloid antagonist 2-[2-(4-chlorophenyl)ethyl-amino-thiocarbonyl]-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-2 benzazepine (capsazepine; 10(-6) M). At the postjunctional level, neither R(+)-methanandamide nor WIN 55,212-2 nor JWH-015 did affect tracheal contractions induced by exogenous acetylcholine (10(-6) M). An inhibitory vanilloid receptor-mediated effect on the cholinergic response evoked by electrical stimulation was confirmed with the vanilloid agonist capsaicin, at doses (3-6 x 10(-8) M) which poorly influenced the basal smooth muscle tone of trachea. In conclusion, our data indicate that in guinea-pig trachea (a) neither CB(1) nor CB(2) cannabinoid receptor-mediated modulation of acetylcholine release occurs; (b) vanilloid VR1-like receptors appear involved in R(+)-methanandamide inhibitory activity on the cholinergic response to electrical field stimulation.

  3. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillary Johnston-Cox

    Full Text Available High fat diet (HFD-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR, an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice.

  4. BCDC Bay Trail Alignment 2009

    Data.gov (United States)

    California Natural Resource Agency — The Bay Trail provides easily accessible recreational opportunities for outdoor enthusiasts, including hikers, joggers, bicyclists and skaters. It also offers a...

  5. BCDC Bay Trail Alignment 2009

    Data.gov (United States)

    California Department of Resources — The Bay Trail provides easily accessible recreational opportunities for outdoor enthusiasts, including hikers, joggers, bicyclists and skaters. It also offers a...

  6. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint.

    Science.gov (United States)

    Burston, James J; Sagar, Devi Rani; Shao, Pin; Bai, Mingfeng; King, Emma; Brailsford, Louis; Turner, Jenna M; Hathway, Gareth J; Bennett, Andrew J; Walsh, David A; Kendall, David A; Lichtman, Aron; Chapman, Victoria

    2013-01-01

    Osteoarthritis (OA) of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies. Inhibitory cannabinoid 2 (CB2) receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy. These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation of chronic OA

  7. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint.

    Directory of Open Access Journals (Sweden)

    James J Burston

    Full Text Available Osteoarthritis (OA of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies. Inhibitory cannabinoid 2 (CB2 receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy. These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation

  8. Meteor trail spectra

    International Nuclear Information System (INIS)

    Ovezgeldyev, O.G.; Mukhamednazarov, S.; Shafiev, R.I.; Maltsev, N.V.

    1987-01-01

    Meteor radiation appears as a result of collisions between meteoroid atoms and air molecules. Depending on duration, this radiation is usually divided into the following types: radiation of the meteor head; radiation of a coma surrounding or immediately following the meteor head; radiation of a trail formed as a result of fragments lagging behind or by the afterglow; and radiation of a meteor train forming from a tail as a result of various chemical and dynamical processes. To investigate physical processes caused by each of the above types, it is necessary to obtain the corresponding experimental data. The physical processes of the radiation and the measurement of the experimental data is discussed

  9. Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors.

    Science.gov (United States)

    Itoh, K; Chiang, C-Y; Li, Z; Lee, J-C; Dostrovsky, J O; Sessle, B J

    2011-09-29

    Central sensitization is a crucial process underlying the increased neuronal excitability of nociceptive pathways following peripheral tissue injury and inflammation. Our previous findings have suggested that extracellular adenosine 5'-triphosphate (ATP) molecules acting at purinergic receptors located on presynaptic terminals (e.g., P2X2/3, P2X3 subunits) and glial cells are involved in the glutamatergic-dependent central sensitization induced in medullary dorsal horn (MDH) nociceptive neurons by application to the tooth pulp of the inflammatory irritant mustard oil (MO). Since growing evidence indicates that activation of P2X7 receptors located on glia is involved in chronic inflammatory and neuropathic pain, the aim of the present study was to test in vivo for P2X7 receptor involvement in this acute inflammatory pain model. Experiments were carried out in anesthetized Sprague-Dawley male rats. Single unit recordings were made in MDH functionally identified nociceptive neurons for which mechanoreceptive field, mechanical activation threshold and responses to noxious stimuli were tested. We found that continuous intrathecal (i.t.) superfusion over MDH of the potent P2X7 receptor antagonists brilliant blue G and periodated oxidized ATP could each significantly attenuate the MO-induced MDH central sensitization. MDH central sensitization could also be produced by i.t. superfusion of ATP and even more effectively by the P2X7 receptor agonist benzoylbenzoyl ATP. Superfusion of the microglial blocker minocycline abolished the MO-induced MDH central sensitization, consistent with reports that dorsal horn P2X7 receptors are mostly expressed on microglia. In control experiments, superfusion over MDH of vehicle did not produce any significant changes. These novel findings suggest that activation of P2X7 receptors in vivo may be involved in the development of central sensitization in an acute inflammatory pain model. Copyright © 2011 IBRO. All rights reserved.

  10. Multiple effects of TRAIL in human carcinoma cells: Induction of apoptosis, senescence, proliferation, and cytokine production

    International Nuclear Information System (INIS)

    Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard; Gorelik, Elieser; Lokshin, Anna E.

    2008-01-01

    TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blocked TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-β-gal, p21 Waf1/Cip1 , p16 INK4a , and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects

  11. Recreational Trails Reduce the Density of Ground-Dwelling Birds in Protected Areas

    Science.gov (United States)

    Thompson, Bill

    2015-05-01

    Recreational disturbance associated with trails has been identified as one of the major factors causing a decline of native biodiversity within protected areas. However, despite the negative impacts that recreation can have on biodiversity, providing public access to nature is critical for the future of the conservation of biodiversity. As such, many protected area managers are looking for tools to help maintain a balance between public access and biodiversity conservation. The objectives of this study were to examine the impacts of recreational trails on forest-dwelling bird communities in eastern North America, identify functional guilds which are particularly sensitive to recreational trails, and derive guidelines for trail design to assist in managing the impacts of recreational trails on forest-dwelling birds. Trails within 24 publicly owned natural areas were mapped, and breeding bird communities were described with the use of point count surveys. The density of forest birds, particularly of those species which nest or forage on the ground, were significantly positively influenced by the amount of trail-free refuge habitat. Although management options to control trail use in non-staffed protected areas are limited, this study suggests that protected area managers could design and maintain a trail network that would minimize impacts on resident wildlife, while providing recreational opportunities for visitors, by designing their trail network to maximize the area of trail-free habitat.

  12. Seasonal changes in cortisol sensitivity and glucocorticoid receptor affinity and number in leukocytes of coho salmon

    Science.gov (United States)

    Maule, Alec G.; Schreck, Carl B.; Sharpe, Cameron

    1993-01-01

    To determine if there were organ-specific changes in immune responses or immune-endocrine interaction, we monitored in vitro immune response, cortisol sensitivity and number and affinity of glucocorticoid receptors (GR) in leukocytes from freshwater-adapted juvenile coho salmon (Oncorhynchus kisutch) during the physiological changes that prepare them to enter the marine environment. During this period, absolute immune response declined, but splenic leukocytes generated more antibody-producing cells than did cells from anterior kidney. Splenic leukocytes were initially more sensitive to the suppressive effects of cortisol and had fewer GR than leukocytes from the anterior kidney. Leukocytes from the anterior kidney were initially insensitive to cortisol but developed sensitivity at about the same time as the dissociation constant and number of GR increased. In vitro incubation of anterior kidney leukocytes in cortisol altered GR variables when experiments were conducted during March through September but not during November through February. In some years, changes in GR or immune responses were correlated with plasma cortisol titers, but in other years there was no correlation. Thus, the exact relation between cortisol, GR and immune response in anadromous salmonids is unclear and other factors are involved.

  13. Behavioural activation system sensitivity is associated with cerebral μ-opioid receptor availability.

    Science.gov (United States)

    Karjalainen, Tomi; Tuominen, Lauri; Manninen, Sandra; Kalliokoski, Kari K; Nuutila, Pirjo; Jääskeläinen, Iiro P; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2016-08-01

    The reinforcement-sensitivity theory proposes that behavioural activation and inhibition systems (BAS and BIS, respectively) guide approach and avoidance behaviour in potentially rewarding and punishing situations. Their baseline activity presumably explains individual differences in behavioural dispositions when a person encounters signals of reward and harm. Yet, neurochemical bases of BAS and BIS have remained poorly understood. Here we used in vivo positron emission tomography with a µ-opioid receptor (MOR) specific ligand [(11)C]carfentanil to test whether individual differences in MOR availability would be associated with BAS or BIS. We scanned 49 healthy subjects and measured their BAS and BIS sensitivities using the BIS/BAS scales. BAS but not BIS sensitivity was positively associated with MOR availability in frontal cortex, amygdala, ventral striatum, brainstem, cingulate cortex and insula. Strongest associations were observed for the BAS subscale 'Fun Seeking'. Our results suggest that endogenous opioid system underlies BAS, and that differences in MOR availability could explain inter-individual differences in reward seeking behaviour. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  15. On Entropy Trail

    Science.gov (United States)

    Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn

    2015-11-01

    Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.

  16. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    Science.gov (United States)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  17. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  18. Ku70 acetylation and modulation of c-Myc/ATF4/CHOP signaling axis by SIRT1 inhibition lead to sensitization of HepG2 cells to TRAIL through induction of DR5 and down-regulation of c-FLIP

    DEFF Research Database (Denmark)

    Kim, Mi-Ju; Hong, Kyung-Soo; Kim, Hak-Bong

    2013-01-01

    In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway......-FLIP. Moreover, Ku70(-/-) MEF and Ku70-knockdown HepG2 cells showed the increased levels of c-Myc, ATF4, CHOP, and DR5 and decreased level of c-FLIP. These results were followed by increased sensitivity of Ku70(-/-) MEF cells and Ku70-knockdown HepG2 cells to TRAIL compared with their control cells....... These findings reveal for the first time that SIRT1 inhibition increases Ku70 acetylation, and the acetylated Ku70 with a decreased function mediates the induction of DR5 and the down-regulation of c-FLIP by up-regulating c-Myc/ATF4/CHOP pathway, and consequently promotes the TRAIL-induced apoptosis of HepG2...

  19. Can Pharmacological Receptor Tyrosine Kinase Inhibitors Sensitize Poor Outcome Breast Tumors to Immune-Based Therapies?

    Directory of Open Access Journals (Sweden)

    Josie eUrsini-Siegel

    2013-02-01

    Full Text Available Receptor tyrosine kinases are known to drive breast cancer progression, particularly in HER2 and basal tumors, the two worst prognosis subtypes. Tumour cells recruit host stromal components, including immune cells, which strongly influence disease progression. This has been studied in human breast cancer and translated to murine models of breast cancer. Stromal immune components including cytotoxic T lymphocytes (CTL and natural killer (NK cells, destroy cancer cells through a process termed immune surveillance. Unfortunately, clinically-detectable tumors escape these immune protective effects through their ability to limit the infiltration, activation and/or survival of CTLs in breast tumors. The immunosuppressed state of established tumors limits the success rate of immune-based therapies, and possibly other therapeutic modalities that depend on host immunity. Published studies demonstrate that receptor tyrosine kinases (RTK facilitate breast cancer progression, in part, by establishing immune suppression. This raises the intriguing possibility that pharmacological RTK inhibitors may be exploited to sensitize breast cancer patients to immune-based therapies.

  20. Parkinson’s Disease: Low-Dose Haloperidol Increases Dopamine Receptor Sensitivity and Clinical Response

    Directory of Open Access Journals (Sweden)

    Craig J. Hudson

    2014-01-01

    Full Text Available Background. It is known that ultra-low doses of haloperidol can cause dopamine supersensitivity of dopamine D2 receptors and related behaviour in animals. Objective. The objective was to determine whether a daily ultra-low dose of 40 micrograms of haloperidol could enhance the clinical action of levodopa in Parkinson’s disease patients. Method. While continuing their daily treatment with levodopa, 16 patients with Parkinson’s disease were followed weekly for six weeks. They received an add-on daily dose of 40 micrograms of haloperidol for the first two weeks only. The SPES/SCOPA scale (short scale for assessment of motor impairments and disabilities in Parkinson’s disease was administered before treatment and weekly throughout the trial. Results. The results showed a mean decrease in SPES/SCOPA scores after one week of the add-on treatment. Conclusion. SCOPA scores decreased after the addition of low-dose haloperidol to the standard daily levodopa dose. This finding is consistent with an increase in sensitivity of dopamine D2 receptors induced by haloperidol. Such treatment for Parkinson’s disease may possibly permit the levodopa dose to be reduced and, thus, delay the onset of levodopa side effects.

  1. Folate-receptor-targeted NIR-sensitive polydopamine nanoparticles for chemo-photothermal cancer therapy

    Science.gov (United States)

    Li, Hao; Jin, Zhen; Cho, Sunghoon; Jeon, Mi Jeong; Du Nguyen, Van; Park, Jong-Oh; Park, Sukho

    2017-10-01

    We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.

  2. Parkinson's disease: low-dose haloperidol increases dopamine receptor sensitivity and clinical response.

    Science.gov (United States)

    Hudson, Craig J; Seeman, Philip; Seeman, Mary V

    2014-01-01

    Background. It is known that ultra-low doses of haloperidol can cause dopamine supersensitivity of dopamine D2 receptors and related behaviour in animals. Objective. The objective was to determine whether a daily ultra-low dose of 40 micrograms of haloperidol could enhance the clinical action of levodopa in Parkinson's disease patients. Method. While continuing their daily treatment with levodopa, 16 patients with Parkinson's disease were followed weekly for six weeks. They received an add-on daily dose of 40 micrograms of haloperidol for the first two weeks only. The SPES/SCOPA scale (short scale for assessment of motor impairments and disabilities in Parkinson's disease) was administered before treatment and weekly throughout the trial. Results. The results showed a mean decrease in SPES/SCOPA scores after one week of the add-on treatment. Conclusion. SCOPA scores decreased after the addition of low-dose haloperidol to the standard daily levodopa dose. This finding is consistent with an increase in sensitivity of dopamine D2 receptors induced by haloperidol. Such treatment for Parkinson's disease may possibly permit the levodopa dose to be reduced and, thus, delay the onset of levodopa side effects.

  3. Epidermal growth factor receptor mutation in combination with expression of MIG6 alters gefitinib sensitivity

    Directory of Open Access Journals (Sweden)

    Tanaka Hiroshi

    2011-02-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR signaling plays an important role in the regulation of cell proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently overexpressed in non-small-cell lung cancer (NSCLC and EGFR mutations at specific amino acid residues in the kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However, the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived NSCLC cell lines; H1299 wild type (H1299WT, H1299 with an overexpressed wild type EGFR (H1299EGFR-WT, and H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant. Results We predicted and experimentally verified that Mig6, which is a known negative regulator of EGFR and specifically expressed in H1299L858R cells, synergized with gefitinib to suppress cellular growth. Computational analyses indicated that this inhibitory effect is amplified at the phosphorylation/dephosphorylation steps of MEK and ERK. Conclusions Thus, we showed that L858R receptor mutation in combination with expression of its negative regulator, Mig6, alters signaling outcomes and results in variable drug sensitivity.

  4. Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity.

    Science.gov (United States)

    Ohkuri, Tadahiro; Yasumatsu, Keiko; Horio, Nao; Jyotaki, Masafumi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-04-01

    Sweet taste transduction involves taste receptor type 1, member 2 (T1R2), taste receptor type 1, member 3 (T1R3), gustducin, and TRPM5. Because knockout (KO) mice lacking T1R3, gustducin's Galpha subunit (Galphagust), or TRPM5 exhibited greatly reduced, but not abolished responses of the chorda tympani (CT) nerve to sweet compounds, it is likely that multiple sweet transduction pathways exist. That gurmarin (Gur), a sweet taste inhibitor, inhibits some but not all mouse CT responses to sweet compounds supports the existence of multiple sweet pathways. Here, we investigated Gur inhibition of CT responses to sweet compounds as a function of temperature in KO mice lacking T1R3, Galphagust, or TRPM5. In T1R3-KO mice, responses to sucrose and glucose were Gur sensitive (GS) and displayed a temperature-dependent increase (TDI). In Galphagust-KO mice, responses to sucrose and glucose were Gur-insensitive (GI) and showed a TDI. In TRPM5-KO mice, responses to glucose were GS and showed a TDI. All three KO mice exhibited no detectable responses to SC45647, and their responses to saccharin displayed neither GS nor a TDI. For all three KO mice, the lingual application of pronase, another sweet response inhibitor, almost fully abolished responses to sucrose and glucose but did not affect responses to saccharin. These results provide evidence for 1) the existence of multiple transduction pathways underlying responses to sugars: a T1R3-independent GS pathway for sucrose and glucose, and a TRPM5-independent temperature sensitive GS pathway for glucose; 2) the requirement for Galphagust in GS sweet taste responses; and 3) the existence of a sweet independent pathway for saccharin, in mouse taste cells on the anterior tongue.

  5. Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.

    Science.gov (United States)

    Vasas, Vera; Hanley, Daniel; Kevan, Peter G; Chittka, Lars

    2017-04-01

    Many pollinating insects acquire their entire nutrition from visiting flowers, and they must therefore be efficient both at detecting flowers and at recognizing familiar rewarding flower types. A crucial first step in recognition is the identification of edges and the segmentation of the visual field into areas that belong together. Honeybees and bumblebees acquire visual information through three types of photoreceptors; however, they only use a single receptor type-the one sensitive to longer wavelengths-for edge detection and movement detection. Here, we show that these long-wavelength receptors (peak sensitivity at ~544 nm, i.e., green) provide the most consistent signals in response to natural objects. Using our multispectral image database of flowering plants, we found that long-wavelength receptor responses had, depending on the specific scenario, up to four times higher signal-to-noise ratios than the short- and medium-wavelength receptors. The reliability of the long-wavelength receptors emerges from an intricate interaction between flower coloration and the bee's visual system. This finding highlights the adaptive significance of bees using only long-wavelength receptors to locate flowers among leaves, before using information provided by all three receptors to distinguish the rewarding flower species through trichromatic color vision.

  6. Increasing productivity trailed scraper

    Directory of Open Access Journals (Sweden)

    Nilov V.A.

    2016-12-01

    Full Text Available Considered the issue of improving the operational characteristics of trailing scraper through the use of a combined knife system, which combines in one machine the widespread speed stab system and shovels cutting on. Requirements are formulated to knife scraper systems and the new combined knife system. It allows you to develop soil in terms of minimum energy and the free cutting of the soil. The practical possibility of obtaining a smooth face, more intense filling of the bucket, rational distribution of soil in the bucket in conditions of free cutting and filling of the bucket when the increased cutting depth of soil, without additional machines. The obtained data on the value of the coefficient of the specific resistance to cutting when the width of the free cut in the range of 1.0 to 2.2 m. The recommendations for a rational distribution of the soil in the bucket during the free cutting.

  7. Deletion of Type 2 Metabotropic Glutamate Receptor Decreases Sensitivity to Cocaine Reward in Rats.

    Science.gov (United States)

    Yang, Hong-Ju; Zhang, Hai-Ying; Bi, Guo-Hua; He, Yi; Gao, Jun-Tao; Xi, Zheng-Xiong

    2017-07-11

    Cocaine users show reduced expression of the metabotropic glutamate receptor (mGluR2), but it is not clear whether this is a predisposing trait for addiction or a consequence of drug exposure. In this study, we found that a nonsense mutation at the mGluR2 gene decreased mGluR2 expression and altered the seeking and taking of cocaine. mGluR2 mutant rats show reduced sensitivity to cocaine reward, requiring more cocaine to reach satiation when it was freely available and ceasing their drug-seeking behavior sooner than controls when the response requirement was increased. mGluR2 mutant rats also show a lower propensity to relapse after a period of cocaine abstinence, an effect associated with reduced cocaine-induced dopamine and glutamate overflow in the nucleus accumbens. These findings suggest that mGluR2 polymorphisms or reduced availability of mGluR2 might be risk factors for the initial development of cocaine use but could actually protect against addiction by reducing sensitivity to cocaine reward. Published by Elsevier Inc.

  8. Acid-sensitive polymeric vector targeting to hepatocarcinoma cells via glycyrrhetinic acid receptor-mediated endocytosis.

    Science.gov (United States)

    Yan, Tingsheng; Cheng, Jinju; Liu, Zongjun; Cheng, Feng; Wei, Xinjing; Huang, Yudong; He, Jinmei

    2018-06-01

    Liver cancer is one of the top death causing cancers, traditional treatments have not settled for the requirement of patients. In this work, a smart acid-responsive micelle based on glycyrrhetinic acid modified chitosan-polyethyleneimine-4-Hydrazinobenzoic acid-doxorubicin (GA-CS-PEI-HBA-DOX) was synthesized for targeted delivery of DOX to liver cancer. A dual pH-sensitive and receptor-mediated strategy has been exploited to enhance the delivery efficiency. The micelle possesses positive charges under pH 6.8 and can be turned into negative charges above pH 7.0, which help to be accumulated in tumor tissues (pH 6.0-7.0). In the intracellular environment (pH 4.5-6.5) of tumor cells, the pH-sensitive hydrazone bonds between DOX and GA-CS-PEI-HBA would break and release as much as 90.3% of the encapsulated payloads in 48 h. In addition, GA was modified to improve the targeting abilities. The micelles exhibited high lethality to HepG2 cells while showed much lower cytotoxicity to HUVEC cells. With high drug-loading capacity and the targeted release ability, the GA-CS-PEI-HBA-DOX micelle might be employed as a promising candidate for targeted cancer treatment. Copyright © 2018. Published by Elsevier B.V.

  9. Deletion of Type 2 Metabotropic Glutamate Receptor Decreases Sensitivity to Cocaine Reward in Rats

    Directory of Open Access Journals (Sweden)

    Hong-Ju Yang

    2017-07-01

    Full Text Available Cocaine users show reduced expression of the metabotropic glutamate receptor (mGluR2, but it is not clear whether this is a predisposing trait for addiction or a consequence of drug exposure. In this study, we found that a nonsense mutation at the mGluR2 gene decreased mGluR2 expression and altered the seeking and taking of cocaine. mGluR2 mutant rats show reduced sensitivity to cocaine reward, requiring more cocaine to reach satiation when it was freely available and ceasing their drug-seeking behavior sooner than controls when the response requirement was increased. mGluR2 mutant rats also show a lower propensity to relapse after a period of cocaine abstinence, an effect associated with reduced cocaine-induced dopamine and glutamate overflow in the nucleus accumbens. These findings suggest that mGluR2 polymorphisms or reduced availability of mGluR2 might be risk factors for the initial development of cocaine use but could actually protect against addiction by reducing sensitivity to cocaine reward.

  10. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    Directory of Open Access Journals (Sweden)

    Ilya Sukhanov

    2018-04-01

    Full Text Available Trace amine-associated receptor 1 (TAAR1 has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg. The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted.

  11. Oxytocin receptor gene polymorphisms (rs53576) and early paternal care sensitize males to distressing female vocalizations.

    Science.gov (United States)

    Truzzi, Anna; Poquérusse, Jessie; Setoh, Peipei; Shinohara, Kazuyuki; Bornstein, Marc H; Esposito, Gianluca

    2018-04-01

    The oxytocinergic system is highly involved in social bonding and early caregiver-infant interactions. Here, we hypothesize that oxytocin receptor (OXTR) gene genotype and parental bonding history interact in influencing social development. To address this question, we assessed adult males' arousal (heart rate changes) in response to different distress vocalizations (human female, human infant and bonobo). Region rs53576 of the OXTR gene was genotyped from buccal mucosa cell samples, and a self-report Parental Bonding Instrument was used (which provide information about parental care or parental overprotection). A significant gene-environment interaction between OXTR genotype and parenting style was found to influence participants' social responsivity to female cry vocalizations. Specifically, a history of appropriate paternal care in participants accentuated the heightened social sensitivity determined by G/G homozygosity, while higher versus lower paternal overprotection lead to distinct levels of physiological arousal particularly in A carriers individuals. These results add to our understanding of the dynamic interplay between genetic susceptibility and early environmental experience in shaping the development of appropriate social sensitivity in males. © 2018 Wiley Periodicals, Inc.

  12. Ca sensitivity and acetylcholine receptor currents of twitch and tonic snake muscle fibers.

    Science.gov (United States)

    Ruff, R L; Spiegel, P

    1990-12-01

    Myofibrillar Ca sensitivity and single-channel acetylcholine receptor (AChR) currents were studied in garter snake (Thamnophis sirtalis sirtalis) costocutaneous muscle fibers. Nomarski optics were used to identify tonic and fast- and slow-twitch fibers. Measurements of tension generation were made using chemically skinned fibers. The maximum tensions of the three types of fibers were similar, and the fast- and slow-twitch fibers had similar Ca sensitivities. Compared with twitch fibers, tonic fibers had lower threshold Ca concentrations for tension generation and a larger range of Ca concentrations between threshold and maximum tension. The AChR channels were studied by enzymatically removing the nerve terminals and performing patch-clamp recordings on the exposed postsynaptic membrane. Twitch fibers had only one class of end-plate channel with a conductance of approximately 51 pS. Tonic fibers had two types of synaptic channels. One AChR channel in the tonic fibers resembled the type seen in twitch fibers. The other channel in tonic fibers had a smaller conductance of approximately 33 pS and resembled extrajunctional AChRs on denervated twitch fibers.

  13. Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic α₁ - and α₂-receptors.

    Science.gov (United States)

    Berridge, Craig W; Shumsky, Jed S; Andrzejewski, Matt E; McGaughy, Jill A; Spencer, Robert C; Devilbiss, David M; Waterhouse, Barry D

    2012-03-01

    Psychostimulants improve a variety of cognitive and behavioral processes in patients with attention-deficit/hyperactivity disorder (ADHD). Limited observations suggest a potentially different dose-sensitivity of prefrontal cortex (PFC)-dependent function (narrow inverted-U-shaped dose-response curves) versus classroom/overt behavior (broad inverted U) in children with ADHD. Recent work in rodents demonstrates that methylphenidate (MPH; Ritalin) elicits a narrow inverted-U-shaped improvement in performance in PFC-dependent tests of working memory. The current studies first tested the hypothesis that PFC-dependent tasks, in general, display narrow dose sensitivity to the beneficial actions of MPH. The effects of varying doses of MPH were examined on performance of rats in two tests of PFC-dependent cognition, sustained attention and attentional set shifting. Additionally, the effect of pretreatment with the α₁-antagonist prazosin (.5 mg/kg) on MPH-induced improvement in sustained attention was examined. MPH produced a broad inverted-U-shaped facilitation of sustained attention and attentional set shifting. Prior research indicates α₁-receptors impair, whereas α₂-receptors improve, working memory. In contrast, attentional set shifting is improved with α₁-receptor activation, whereas α₂-receptors exert minimal effects in this task. Given the similar dose sensitivity of sustained attention and attentional set-shifting tasks, additional studies examined whether α₁-receptors promote sustained attention, similar to attentional set shifting. In these studies, MPH-induced improvement in sustained attention was abolished by α₁-receptor blockade. PFC-dependent processes display differential sensitivity to the cognition-enhancing actions of psychostimulants that are linked to the differential involvement of α₁- versus α₂-receptors in these processes. These observations have significant preclinical and clinical implications.

  14. Differential Sensitivity to Psychostimulants Across Prefrontal Cognitive Tasks: Differential Involvement of Noradrenergic α1- and α2-Receptors

    Science.gov (United States)

    Berridge, Craig W.; Shumsky, Jed S.; Andrzejewski, Matt E.; McGaughy, Jill A.; Spencer, Robert C.; Devilbiss, David M.; Waterhouse, Barry D.

    2011-01-01

    Background Psychostimulants improve a variety of cognitive/behavioral processes in patients with attention deficit hyperactivity disorder (ADHD). Limited observations suggest a potentially different dose-sensitivity of prefrontal cortex (PFC)-dependent function (narrow inverted-U-shaped dose-response curves) vs. classroom/overt behavior (broad inverted-U) in children with ADHD. Recent work in rodents observed that methylphenidate (MPH; Ritalin®) elicits a narrow inverted-U shaped improvement in performance in PFC-dependent tests of working memory. The current studies first tested the hypothesis that PFC-dependent tasks, in general, display narrow dose sensitivity to the beneficial actions of MPH. Methods The effects of varying doses of MPH were examined on performance of rats in two tests of PFC-dependent cognition, sustained attention and attentional set shifting. Additionally, the effect of pretreatment with the α1-antagonist, prazosin (0.5 mg/kg), on MPH-induced improvement in sustained attention was examined. Results MPH produced a broad inverted-U-shaped facilitation of sustained attention and attentional set shifting. Prior research indicates α1-receptors impair, while α2-receptors improve, working memory. In contrast, attentional set shifting is improved with α1-receptor activation, while α2-receptors exert minimal effects in this task. Given the similar dose sensitivity of sustained attention and attentional set shifting tasks, additional studies examined whether α1-receptors promote sustained attention, similar to attentional set shifting. In these studies MPH-induced improvement in sustained attention was abolished by α1-receptor blockade. Conclusions PFC-dependent processes display differential sensitivity to the cognition-enhancing actions of psychostimulants that are linked to the differential involvement of α1- vs. α2-receptors in these processes. These observations have significant preclinical and clinical implications. PMID:21890109

  15. MicroRNA-138 enhances TRAIL-induced apoptosis through interferon-stimulated gene 15 downregulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zuo, Chaohui; Sheng, Xinyi; Liu, Zhuo; Ma, Min; Xiong, Shuhan; Deng, Hongyu; Li, Sha; Yang, Darong; Wang, Xiaohong; Xiao, Hua; Quan, Hu; Xia, Man

    2017-06-01

    Hepatocellular carcinoma is a leading cause of cancer-related mortality worldwide. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a potential target for cancer therapy. However, many cancer cells are resistant to TRAIL-induced apoptosis and its mechanism is not well understood. In this study, to identify potential therapeutic targets for TRAIL-resistant cancer cells, we compared the expression levels of interferon-stimulated gene 15 in TRAIL-sensitive and TRAIL-resistant hepatocellular carcinoma cell lines. Western blot analysis showed that interferon-stimulated gene 15 expression levels were significantly higher in resistant HLCZ01and Huh7 cells than in sensitive LH86 and SMMC-7721 cells. Interferon-stimulated gene 15 knockdown in resistance cells led to TRAIL sensitivity. Conversely, interferon-stimulated gene 15 overexpression in sensitive cells resulted in TRAIL resistance. Our bioinformatics search detected a putative target sequence for microRNA miR-138 in the 3' untranslated region of the interferon-stimulated gene 15. Real-time quantitative polymerase chain reaction analysis demonstrated that miR-138 was significantly downregulated in TRAIL-resistant cells compared to TRAIL-sensitive cells. Forced expression of miR-138 in resistant cells decreased both messenger RNA and protein levels of interferon-stimulated gene 15, and when exposed to TRAIL, activated poly(adenosine diphosphate-ribose) polymerase, indicating sensitization to TRAIL. The results suggested that miR-138 regulates the interferon-stimulated gene 15 expression by directly targeting the 3' untranslated region of interferon-stimulated gene 15 and modulates the sensitivity to TRAIL-induced apoptosis. MiR-138 may be a target for therapeutic intervention in TRAIL-based drug treatments of resistant hepatocellular carcinoma or could be a biomarker to select patients who may benefit from the treatment.

  16. GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

    Science.gov (United States)

    Rosenbloom, Arlan L.; Balasubramanian, Priya; Teran, Enrique; Guevara-Aguirre, Marco; Guevara, Carolina; Procel, Patricio; Alfaras, Irene; De Cabo, Rafael; Di Biase, Stefano; Narvaez, Luis; Saavedra, Jannette

    2015-01-01

    Context: Ecuadorian subjects with GH receptor deficiency (GHRD) have not developed diabetes, despite obesity. Objective: We sought to determine the metabolic associations for this phenomenon. Design: Four studies were carried out: 1) glucose, lipid, adipocytokine concentrations; 2) metabolomics evaluation; 3) metabolic responses to a high-calorie meal; and 4) oral glucose tolerance tests. Setting: Clinical Research Institute in Quito, Ecuador. Subjects: Adults homozygous for the E180 splice mutation of the GH receptor (GHRD) were matched for age, gender, and body mass index with unaffected control relatives (C) as follows: study 1, 27 GHRD and 35 C; study 2, 10 GHRD and 10 C; study 3, seven GHRD and 11 C; and study 4, seven GHRD and seven C. Results: Although GHRD subjects had greater mean percentage body fat than controls, their fasting insulin, 2-hour blood glucose, and triglyceride levels were lower. The indicator of insulin sensitivity, homeostasis model of assessment 2%S, was greater (P < .0001), and the indicator of insulin resistance, homeostasis model of assessment 2-IR, was lower (P = .0025). Metabolomic differences between GHRD and control subjects were consistent with their differing insulin sensitivity, including postprandial decreases of branched-chain amino acids that were more pronounced in controls. High molecular weight and total adiponectin concentrations were greater in GHRD (P = .0004 and P = .0128, respectively), and leptin levels were lower (P = .02). Although approximately 65% the weight of controls, GHRD subjects consumed an identical high-calorie meal; nonetheless, their mean glucose concentrations were lower, with mean insulin levels one-third those of controls. Results of the 2-hour oral glucose tolerance test were similar. Main Outcome Measures: Measures of insulin sensitivity, adipocytokines, and energy metabolites. Conclusions: Without GH counter-regulation, GHRD is associated with insulin efficiency and obesity. Lower leptin levels

  17. Highly Sensitive NH3 Detection Based on Organic Field Effect Transistors with Tris(pentafluorophenyl)Borane as Receptor

    OpenAIRE

    Huang, Weiguo; Besar, Kalpana; LeCover, Rachel; Rule, Ana María; Breysse, Patrick N.; Katz, Howard E.

    2012-01-01

    We have increased organic field-effect transistor (OFET) NH3 response using tris-(pentafluorophenyl)borane (TPFB) as receptor. OFETs with this additive detect concentrations of 450 ppb v/v, with a limit of detection of 350 ppb, the highest sensitivity yet from semiconductor films; in comparison, when triphenylmethane (TPM) and triphenylborane (TFB) were used as an additive, no obvious improvement of sensitivity was observed. These OFETs also show considerable selectivity with respect to commo...

  18. VT Green Mountain National Forest - Long Trail and Appalachian Trail

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) GMNFTRAILS contains minor Forest Service roads and all trails within the proclamation boundary of the Green Mountain National Forest and many of...

  19. Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice

    Directory of Open Access Journals (Sweden)

    Hsu Chih W

    2010-01-01

    Full Text Available Abstract Background Caffeine, a nonselective adenosine A1 and A2A receptor antagonist, is the most widely used psychoactive substance in the world. Evidence demonstrates that caffeine and selective adenosine A2A antagonists interact with the neuronal systems involved in drug reinforcement, locomotor sensitization, and therapeutic effect in Parkinson's disease (PD. Evidence also indicates that low doses of caffeine and a selective adenosine A2A antagonist SCH58261 elicit locomotor stimulation whereas high doses of these drugs exert locomotor inhibition. Since these behavioral and therapeutic effects are mediated by the mesolimbic and nigrostriatal dopaminergic pathways which project to the striatum, we hypothesize that low doses of caffeine and SCH58261 may modulate the functions of dopaminergic neurons in the striatum. Methods In this study, we evaluated the neuroadaptations in the striatum by using reverse-phase high performance liquid chromatography (HPLC to quantitate the concentrations of striatal dopamine and its metabolites, dihydroxylphenylacetic acid (DOPAC and homovanilic acid (HVA, and using immunoblotting to measure the level of phosphorylation of tyrosine hydroxylase (TH at Ser31, following chronic caffeine and SCH58261 sensitization in mice. Moreover, to validate further that the behavior sensitization of caffeine is through antagonism at the adenosine A2A receptor, we also evaluate whether chronic pretreatment with a selective adenosine A2A antagonist SCH58261 or a selective adenosine A1 antagonist DPCPX can sensitize the locomotor stimulating effects of caffeine. Results Chronic treatments with low dose caffeine (10 mg/kg or SCH58261 (2 mg/kg increased the concentrations of dopamine, DOPAC and HVA, concomitant with increased TH phosphorylation at Ser31 and consequently enhanced TH activity in the striatal tissues in both caffeine- and SCH58261-sensitized mice. In addition, chronic caffeine or SCH58261 administration induced

  20. Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo.

    Science.gov (United States)

    Zhang, Cheng Gao; Kim, Sung-Jin

    2007-01-01

    Taurine has a variety of actions in the body such as cardiotonic, host-defensive, radioprotective and glucose-regulatory effects. However, its action in the central nervous system remains to be characterized. In the present study, we tested to see whether taurine exerts anti-anxiety effects and to explore its mechanism of anti-anxiety activity in vivo. The staircase test and elevated plus maze test were performed to test the anti-anxiety action of taurine. Convulsions induced by strychnine, picrotoxin, yohimbine and isoniazid were tested to explore the mechanism of anti-anxiety activity of taurine. The Rotarod test was performed to test muscle relaxant activity and the passive avoidance test was carried out to test memory activity in response to taurine. Taurine (200 mg/kg, p.o.) significantly reduced rearing numbers in the staircase test while it increased the time spent in the open arms as well as the number of entries to the open arms in the elevated plus maze test, suggesting that it has a significant anti-anxiety activity. Taurine's action could be due to its binding to and activating of strychnine-sensitive glycine receptor in vivo as it inhibited convulsion caused by strychnine; however, it has little effect on picrotoxin-induced convulsion, suggesting its anti-anxiety activity may not be linked to GABA receptor. It did not alter memory function and muscle activity. Taken together, these results suggest that taurine could be beneficial for the control of anxiety in the clinical situations. Copyright (c) 2007 S. Karger AG, Basel.

  1. Blockage of Peripheral NPY Y1 and Y2 Receptors Modulates Barorefex Sensitivity of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2013-03-01

    Full Text Available Background/Aims: Abnormal baroreceptor reflex sensitivity (BRS and elevated plasma neuropeptide Y (NPY are prevalent in diabetic patients. The present study was conducted to determine whether NPY Y1 receptor (Y1R and NPY Y2 receptor (Y2R contribute to the regulatin of BRS in diabetic rats. Methods: Diabetes mellitus (DM rats with hyperlipidemia were developed by an emulsion diet enriched with fat, sucrose and fructose followed by streptozocin (STZ. Y1R and Y2R specific antagonists (BIBP 3226 and BIIE 0246 were administered by a mini-osmotic pump. Systolic blood pressure (SBP, heart rate (HR, BRS and heart functions, as well as the plasma NPY and lipid level were measured after treatment for 4 weeks. Results: Both BIBP 3226 and BIIE 0246 treatment reversed the elevated total cholesterol (TC and low density lipoprotein (LDL-C level, and reduced high density lipoprotein (HDL-C level in DM rats. BIIE 0246 may attenuate the increased triglyceride (TG level in DM rats. In addition, neither BIBP 3226 nor BIIE 0246 treatment produced significant effects on BRS, SBP or HR (P>0.05 in DM rats, even after PE and SNP challenge. However, BIBP 3226 and BIIE 0246 further impaired LVSP, LVEDP, +dp/dtmax and -dp/dtmax. Conclusion: This study provided us with the evidence that the inhibition of peripheral Y1R and Y2R did not affect impaired BRS but amplified the deterioration of the compromised cardiac function in STZ-induced DM rats with hyperlipidemia.

  2. Histamine Receptor H1-Mediated Sensitization of TRPV1 Mediates Visceral Hypersensitivity and Symptoms in Patients With Irritable Bowel Syndrome

    NARCIS (Netherlands)

    Wouters, Mira M.; Balemans, Dafne; van Wanrooy, Sander; Dooley, James; Cibert-Goton, Vincent; Alpizar, Yeranddy A.; Valdez-Morales, Eduardo E.; Nasser, Yasmin; van Veldhoven, Paul P.; Vanbrabant, Winde; van der Merwe, Schalk; Mols, Raf; Ghesquière, Bart; Cirillo, Carla; Kortekaas, Inge; Carmeliet, Peter; Peetermans, Willy E.; Vermeire, Séverine; Rutgeerts, Paul; Augustijns, Patrick; Hellings, Peter W.; Belmans, Ann; Vanner, Stephen; Bulmer, David C.; Talavera, Karel; Vanden Berghe, Pieter; Liston, Adrian; Boeckxstaens, Guy E.

    2016-01-01

    Histamine sensitizes the nociceptor transient reporter potential channel V1 (TRPV1) and has been shown to contribute to visceral hypersensitivity in animals. We investigated the role of TRPV1 in irritable bowel syndrome (IBS) and evaluated if an antagonist of histamine receptor H1 (HRH1) could

  3. Negative allosteric modulation of the mGlu7 receptor reduces visceral hypersensitivity in a stress-sensitive rat strain

    Directory of Open Access Journals (Sweden)

    Rachel D. Moloney

    2015-01-01

    Full Text Available Glutamate, the main excitatory neurotransmitter in the central nervous system, exerts its effect through ionotropic and metabotropic receptors. Of these, group III mGlu receptors (mGlu 4, 6, 7, 8 are among the least studied due to a lack of pharmacological tools. mGlu7 receptors, the most highly conserved isoform, are abundantly distributed in the brain, especially in regions, such as the amygdala, known to be crucial for the emotional processing of painful stimuli. Visceral hypersensitivity is a poorly understood phenomenon manifesting as an increased sensitivity to visceral stimuli. Glutamate has long been associated with somatic pain processing leading us to postulate that crossover may exist between these two modalities. Moreover, stress has been shown to exacerbate visceral pain. ADX71743 is a novel, centrally penetrant, negative allosteric modulator of mGlu7 receptors. Thus, we used this tool to explore the possible involvement of this receptor in the mediation of visceral pain in a stress-sensitive model of visceral hypersensitivity, namely the Wistar Kyoto (WKY rat. ADX71743 reduced visceral hypersensitivity in the WKY rat as exhibited by increased visceral sensitivity threshold with concomitant reductions in total number of pain behaviours. Moreover, AD71743 increased total distance and distance travelled in the inner zone of the open field. These findings show, for what is to our knowledge, the first time, that mGlu7 receptor signalling plays a role in visceral pain processing. Thus, negative modulation of the mGlu7 receptor may be a plausible target for the amelioration of stress-induced visceral pain where there is a large unmet medical need.

  4. TRAIL-deficiency accelerates vascular calcification in atherosclerosis via modulation of RANKL.

    Directory of Open Access Journals (Sweden)

    Belinda A Di Bartolo

    Full Text Available The osteoprotegerin (OPG and receptor activator of nuclear factor-κB ligand (RANKL cytokine system, not only controls bone homeostasis, but has been implicated in regulating vascular calcification. TNF-related apoptosis-inducing ligand (TRAIL is a second ligand for OPG, and although its effect in vascular calcification in vitro is controversial, its role in vivo is not yet established. This study aimed to investigate the role of TRAIL in vascular calcification in vitro using vascular smooth muscle cells (VSMCs isolated from TRAIL(-/- and wild-type mice, as well as in vivo, in advanced atherosclerotic lesions of TRAIL(-/-ApoE(-/- mice. The involvement of OPG and RANKL in this process was also examined. TRAIL dose-dependently inhibited calcium-induced calcification of human VSMCs, while TRAIL(-/- VSMCs demonstrated accelerated calcification induced by multiple concentrations of calcium compared to wild-type cells. Consistent with this, RANKL mRNA was significantly elevated with 24 h calcium treatment, while OPG and TRAIL expression in human VSMCs was inhibited. Brachiocephalic arteries from TRAIL(-/-ApoE(-/- and ApoE(-/- mice fed a high fat diet for 12 w demonstrated increased chondrocyte-like cells in atherosclerotic plaque, as well as increased aortic collagen II mRNA expression in TRAIL(-/-ApoE(-/- mice, with significant increases in calcification observed at 20 w. TRAIL(-/-ApoE(-/- aortas also had significantly elevated RANKL, BMP-2, IL-1β, and PPAR-γ expression at 12 w. Our data provides the first evidence that TRAIL deficiency results in accelerated cartilaginous metaplasia and calcification in atherosclerosis, and that TRAIL plays an important role in the regulation of RANKL and inflammatory markers mediating bone turn over in the vasculature.

  5. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development.

    Science.gov (United States)

    Cueto, Juan Agustín; Vanrell, María Cristina; Salassa, Betiana Nebaí; Nola, Sébastien; Galli, Thierry; Colombo, María Isabel; Romano, Patricia Silvia

    2017-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development. © 2016 John Wiley & Sons Ltd.

  6. Spatial reversal learning in chronically sensitized rats and in undrugged sensitized rats with dopamine D2-like receptor agonist quinpirole

    Directory of Open Access Journals (Sweden)

    Hana eHatalova

    2014-04-01

    Full Text Available Dopamine plays a role in generating flexible adaptive responses in changing environments. Chronic administration of D2-like agonist quinpirole (QNP induces behavioral sensitization and stereotypical behaviors reminiscent of obsessive-compulsive disorder (OCD. Some of these symptoms persist even after QNP discontinuation. In QNP- sensitization, perseverative behavior has often been implicated. To test the effect of QNP- sensitization on reversal learning and its association with perseveration we selected an aversively motivated hippocampus-dependent task, active place avoidance on a Carousel. Performance was measured as the number of entrances into a to-be-avoided sector (errors. We tested separately QNP sensitized rats in QNP-drugged and QNP-undrugged state in acquisition and reversal tasks on the Carousel. In acquisition learning there were no significant differences between groups and their respective controls. In reversal, QNP-sensitized drugged rats showed a robust but transient increase in number of errors compared to controls. QNP-sensitized rats in an undrugged state were not overtly different from the control animals but displayed an altered learning manifested by more errors at the beginning compensated by quicker learning in the second session compared to control animals. Importantly performance was not associated with perseveration in neither QNP-sensitized drugged nor QNP-sensitized undrugged animals. The present results show that chronic QNP treatment induces robust reversal learning deficit only when the substance is continuously administered, and suggest that QNP animal model of OCD is also feasible model of cognitive alterations in this disorder.

  7. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release...... and locomotor sensitization were enhanced in M (5) (-/-) mice, while the effects of cocaine were similar in M (5) (-/-) and wild-type mice. RESULTS: Consistent with the behavioral results, amphetamine-, but not cocaine, -elicited dopamine release in nucleus accumbens was enhanced in M (5) (-/-) mice. DISCUSSION......: The different effects of amphetamine and cocaine in M (5) (-/-) mice may be due to the divergent pharmacological profile of the two drugs, where amphetamine, but not cocaine, is able to release intracellular stores of dopamine. In conclusion, we show here for the first time that amphetamine...

  8. Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors

    Directory of Open Access Journals (Sweden)

    A. Carpinteri

    2007-01-01

    Full Text Available Many ancient masonry towers are present in Italian territory. In some cases these structures are at risk on account of the intensity of the stresses they are subjected to due to the high level of regional seismicity. In order to preserve this inestimable cultural heritage, a sound safety assessment should take into account the evolution of damage phenomena. In this connection, acoustic emission (AE monitoring can be highly effective. This study concerns the structural stability of three medieval towers rising in the centre of Alba, a characteristic town in Piedmont (Italy. During the monitoring period a correlation between peaks of AE activity in the masonry of these towers and regional seismicity was found. Earthquakes always affect structural stability. Besides that, the towers behaved as sensitive earthquake receptors. Here a method to correlate bursts of AE activity in a masonry building and regional seismicity is proposed. In particular, this method permits to identify the premonitory signals that precede a catastrophic event on a structure, since, in most cases, these warning signs can be captured well in advance.

  9. Effects of β-estradiol on cold-sensitive receptor channel TRPM8 in ovariectomized rats.

    Science.gov (United States)

    Kubo, Takuro; Tsuji, Shunichiro; Amano, Tsukuru; Yoshino, Fumi; Niwa, Yoko; Kasahara, Kyoko; Yoshida, Saori; Mukaisho, Ken-Ichi; Sugihara, Hiroyuki; Tanaka, Sachiko; Kimura, Fuminori; Takahashi, Kentaro; Murakami, Takashi

    2017-10-30

    Transient receptor potential cation channel subfamily M member 8 (TRPM8) is associated with sensitivity to cold sensation in mammals. A previous study demonstrated that TRPM8 was overexpressed in the skin of ovariectomized (OVX) rats due to the loss of estrogen. In the present study, we investigated whether estrogen replacement restricts overexpression of the TRPM8 channel in the skin of OVX rats. We divided 15 Sprague Dawley rats into three groups: a non-operated group (NON-OPE), an ovariectomy group (OVX), and a group subjected to estrogen replacement during 4 weeks beginning 7 days after ovariectomy (OVX + E2). Five weeks later, TRPM8 channel mRNA and protein in lumbar skin were quantified by real-time RT-PCR, protein ELISA, and immunohistochemistry. The OVX + E2 group exhibited a trend for decreased expression of the TRPM8 channel in the lumbar skin in comparison with the OVX group, whereas ELISA data and immunohistochemistry data and immunohistochemistry graphs relating to TRPM8 protein did not show any obvious differences between the OVX group and the OVX + E2 group. Estrogen replacement may restrict the overexpression of TRPM8 in the dermis of OVX rats.

  10. Beta-adrenergic receptor sensitivity, autonomic balance and serotonergic activity in practitioners of Transcendental Meditation

    International Nuclear Information System (INIS)

    Hill, D.A.

    1989-01-01

    The aim of this thesis was to investigate the acute autonomic effects of the Transcendental Meditation Program (TM) and resolve the conflict arising from discrepant neurochemical and psychophysiological data. Three experimental investigations were performed. The first examined beta 2 -adrenergic receptors (AR's) on peripheral blood lymphocytes, via [I 125 ]iodocyanopindolol binding, in 10 male mediating and 10 age matched non-meditating control subjects, to test the hypothesis that the long-term practice of TM and the TM Sidhi Program (TMSP) reduces end organ sensitivity to adrenergic agonists. The second investigated respiratory sinus arrhythmia (an indirect measure of cardiac Parasympathetic Nervous System tone), and skin resistance (a measure of Sympathetic Nervous System tone) during periods of spontaneous respiratory apneusis, a phenomenon occurring during TM that is known to mark the subjective experience of transcending. The third was within subject investigation of the acute effects of the TMSP on 5-hydroxytryptamine (5-HT) activity. Platelet 5-HT was assayed by high pressure liquid chromatography with electrochemical detection, plasma prolactin (PL) and lutenizing hormone (LH) by radioimmunoassay, tryptophan by spectrofluorimetry, and alpha-1-acid glycoprotein (AGP, a modulator of 5-HT uptake) by radial immunodiffusion assay

  11. Beta-adrenergic receptor sensitivity, autonomic balance and serotonergic activity in practitioners of Transcendental Meditation

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.A.

    1989-01-01

    The aim of this thesis was to investigate the acute autonomic effects of the Transcendental Meditation Program (TM) and resolve the conflict arising from discrepant neurochemical and psychophysiological data. Three experimental investigations were performed. The first examined beta{sub 2}-adrenergic receptors (AR's) on peripheral blood lymphocytes, via (I{sup 125})iodocyanopindolol binding, in 10 male mediating and 10 age matched non-meditating control subjects, to test the hypothesis that the long-term practice of TM and the TM Sidhi Program (TMSP) reduces end organ sensitivity to adrenergic agonists. The second investigated respiratory sinus arrhythmia (an indirect measure of cardiac Parasympathetic Nervous System tone), and skin resistance (a measure of Sympathetic Nervous System tone) during periods of spontaneous respiratory apneusis, a phenomenon occurring during TM that is known to mark the subjective experience of transcending. The third was within subject investigation of the acute effects of the TMSP on 5-hydroxytryptamine (5-HT) activity. Platelet 5-HT was assayed by high pressure liquid chromatography with electrochemical detection, plasma prolactin (PL) and lutenizing hormone (LH) by radioimmunoassay, tryptophan by spectrofluorimetry, and alpha-1-acid glycoprotein (AGP, a modulator of 5-HT uptake) by radial immunodiffusion assay.

  12. Naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor?

    Science.gov (United States)

    Tsao, L I; Su, T P

    1997-02-01

    A naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein was partially purified from rat liver and rat brain membranes in an affinity chromatography originally designed to purify sigma receptors. Detergent-solubilized extracts from membranes were adsorbed to Sephadex G-25 resin containing an affinity ligand for sigma receptors: N-(2- 3,4-dichlorophenyl]ethyl)-N-(6-aminohexyl)-(2-[1-pyrrolidinyl]) ethylamine (DAPE). After eluting the resin with haloperidol, a protein that bound [3H](+)SKF-10047 was detected in the eluates. However, the protein was not the sigma receptor. [3H](+)SKF-10047 binding to the protein was inhibited by the following compounds in the order of decreasing potency: (+)pentazocine > (-) pentazocine > (+/-)cyclazocine > (-)morphine > (-)naloxone > haloperidol > (+)SKF-10047 > DADLE > (-)SKF-10047. Further, the prototypic sigma receptor ligands, such as 1,3-di-o-tolylguanidine (DTG), (+)3-PPP, and progesterone, bound poorly to the protein. Tryptic digestion and heat treatment of the affinity-purified protein abolished radioligand binding. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of the partially-purified protein from the liver revealed a major diffuse band with a molecular mass of 31 kDa, a polypeptide of 65 kDa, and another polypeptide of > 97 kDa. This study demonstrates the existence of a novel protein in the rat liver and rat brain which binds opioids, benzomorphans, and haloperidol with namomolar affinity. The protein resembles the opioid/sigma receptor originally proposed by Martin et al. [(1976): J. Pharmacol. Exp. Ther., 197:517-532.]. A high degree of purification of this protein has been achieved in the present study.

  13. Activation of the aryl hydrocarbon receptor suppresses sensitization in a mouse peanut allergy model.

    Science.gov (United States)

    Schulz, V J; Smit, J J; Willemsen, K J; Fiechter, D; Hassing, I; Bleumink, R; Boon, L; van den Berg, M; van Duursen, M B M; Pieters, R H H

    2011-10-01

    Food allergy is an increasing health problem in Western countries. Previously, it has been shown that the intensity of food allergic reactions can be regulated by regulatory T (T(reg)) cells. In addition, it has been shown that activation of the aryl hydrocarbon receptor (AhR) regulates T-cell responses by induction of T(reg) cells. Therefore, we hypothesized that activation of the AhR pathway can suppress development of food allergic responses through the induction of T(reg) cells. This was investigated by using a mouse model for peanut allergy. C3H/HeOuJ mice (AhR(b)(-2)) were sensitized to peanut by administering peanut extract (PE) by gavage in the presence of cholera toxin and were treated with the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.6, 1.7, 5, and 15 μg/kg body weight) on days 3 and 11 orally. The functional role of CD4(+)CD25(+)Foxp3(+) T(reg) cells was investigated by depleting these cells with anti-CD25 mAb during sensitization to PE. TCDD treatment dose dependently suppressed sensitization to peanut (PE-specific IgE, IgG1, and IgG2a and PE-induced IL-5, IL-10, and IL-13, respectively). The percentage, but not the number, of CD4(+)CD25(+)Foxp3(+) T(reg) cells dose dependently increased by AhR activation in both spleen and mesenteric lymph nodes. Depletion of CD4(+)CD25(+)Foxp3(+) T(reg) cells markedly reversed the suppressive effect of TCDD on PE-specific antibody levels and PE-induced IL-5, IL-10, and IL-13 cytokine production. Present data demonstrate for the first time that activation of the AhR by TCDD suppressed the development of Th2-mediated food allergic responses. A functional shift within the CD4(+) cell population toward CD4(+)CD25(+)Foxp3(+) T(reg) cells appeared to underlie this effect. This suggests that the AhR pathway might provide potential therapeutic targets to treat food allergic diseases.

  14. Neuroprotection via strychnine-sensitive glycine receptors during post-ischemic recovery of excitatory synaptic transmission in the hippocampus.

    Science.gov (United States)

    Tanabe, Mitsuo; Nitta, Azusa; Ono, Hideki

    2010-01-01

    Recent evidence indicates that strychnine-sensitive glycine receptors are located in upper brain regions including the hippocampus. Because of excitatory effects of glycine via facilitation of NMDA-receptor function, however, the net effects of increased extracellular glycine on neuronal excitability in either physiological or pathophysiological conditions are mostly unclear. Here, we addressed the potential neuroprotective effect of either exogenous application of glycine and taurine, which are both strychnine-sensitive glycine-receptor agonists, or an endogenous increase of glycine via blockade of glycine transporter 1 (GlyT1) by assessing their ability to facilitate the functional recovery of field excitatory postsynaptic potentials (fEPSPs) after termination of brief oxygen/glucose deprivation (OGD) in the CA1 region in mouse hippocampal slices. Glycine and taurine promoted restoration of the fEPSPs after reperfusion, but this was never observed in the presence of strychnine. Interestingly, glycine and taurine appeared to generate neuroprotective effects only at their optimum concentration range. By contrast, blockade of GlyT1 by N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine or sarcosine did not elicit significant neuroprotection. These results suggest that activation of strychnine-sensitive glycine receptors potentially produces neuroprotection against metabolic stress such as OGD. However, GlyT1 inhibition is unlikely to elicit a sufficient increase in the extracellular level of glycine to generate neuroprotection.

  15. Bio-nanocapsule-based scaffold improves the sensitivity and ligand-binding capacity of mammalian receptors on the sensor chip.

    Science.gov (United States)

    Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Maturana, Andrés D; Kuroda, Shun'ichi

    2016-06-01

    Mammalian receptors are recognized as target molecules for drug discovery, and chemical libraries have been screened for both potential antagonists and agonists mainly by ligand-binding assays using immobilized receptors. A bio-nanocapsule (BNC) of approximately 30 nm that displays a tandem form of the protein A-derived immunoglobulin G (IgG) Fc-binding Z domains (denoted as ZZ-BNC) has been developed for both clustering and oriented immobilization of IgGs on the solid phase of immunosensors. In this study, human IgG1 Fc-fused vascular endothelial growth factor (VEGF) receptor was immobilized through ZZ-BNC on the sensor chip of quartz crystal microbalance (ZZ-BNC-coating). When compared with direct adsorption and protein A-coating, the sensor chip showed higher sensitivity (∽46- and ∽165-fold, respectively) and larger ligand-binding capacity (∽4- and ∽18-fold, respectively). Furthermore, the number of VEGF molecules bound to its receptor increased from 0.20 (direct adsorption) to 2.06 by ZZ-BNC-coating, strongly suggesting that ZZ-BNC reduced the steric hindrance near ligand recognition sites through oriented immobilization. Similarly, the sensitivity and ligand-binding capacity of leptin and prolactin receptors were both enhanced at a level comparable to that observed for the VEGF receptor. Thus, the combination of ZZ-BNC and Fc-fused receptors could significantly improve the function of ligand-binding assays. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. AMN082, a metabotropic glutamate receptor 7 allosteric agonist, attenuates locomotor sensitization and cross-sensitization induced by cocaine and morphine in mice.

    Science.gov (United States)

    Jenda, M; Gawel, K; Marszalek, M; Komsta, L; Kotlinska, J H

    2015-03-03

    Previous studies have indicated that metabotropic glutamate receptors 7 (mGluR7s) are involved in drug addiction. However, the role of these receptors in drug-induced behavioral sensitization is unknown. The aim of the present study was to determine whether systemic injection of AMN082, a selective mGluR7 allosteric agonist, reduces the cocaine- and morphine-induced hyperactivity and the development and expression of locomotor sensitization, and also affects the reciprocal cross-sensitization to the stimulant effect of cocaine and morphine in mice. AMN082 (1.25-10.0 mg/kg, i.p.) did not have an impact on locomotion of naive mice and did not affect the acute cocaine- or morphine-induced hyperactivity, except the dose of 10 mg/kg that suppressed the locomotor effect of both drugs. Repeated exposure to cocaine or morphine (10 mg/kg, 5× every 3 days) gradually increased locomotion during induction of sensitization and after 4 (cocaine) or 7 day (morphine) withdrawal phase when challenged with cocaine (10 mg/kg, i.p.) or morphine (10 mg/kg, i.p.) on day 17 or 20, respectively. Pretreatment of animals with the lower doses of AMN082 (1.25-5.0 mg/kg, i.p.), 30 min before every cocaine or morphine injection during repeated drug administration or before cocaine or morphine challenge, dose-dependently attenuated the development, as well as the expression of cocaine or morphine locomotor sensitization. AMN082 also inhibited the reciprocal cross-sensitization between these drugs. Prior to administration of MMPIP (10 mg/kg, i.p.), a selective mGluR7 antagonist reversed the inhibitory effect of AMN082 on the development or expression of cocaine or morphine sensitization. These data indicate that AMN082 attenuated the development and expression of cocaine and morphine sensitization, and the reciprocal cross-sensitization via a mechanism that involves mGluR7s. Thus, AMN082 might have therapeutic implications not only in the treatment of cocaine or opioid addiction but also in the

  17. Activation of Wnt/β-catenin signaling increases apoptosis in melanoma cells treated with trail.

    Directory of Open Access Journals (Sweden)

    Zachary F Zimmerman

    Full Text Available While the TRAIL pathway represents a promising therapeutic target in melanoma, resistance to TRAIL-mediated apoptosis remains a barrier to its successful adoption. Since the Wnt/β-catenin pathway has been implicated in facilitating melanoma cell apoptosis, we investigated the effect of Wnt/β-catenin signaling on regulating the responses of melanoma cells to TRAIL. Co-treatment of melanoma cell lines with WNT3A-conditioned media and recombinant TRAIL significantly enhanced apoptosis compared to treatment with TRAIL alone. This apoptosis correlates with increased abundance of the pro-apoptotic proteins BCL2L11 and BBC3, and with decreased abundance of the anti-apoptotic regulator Mcl1. We then confirmed the involvement of the Wnt/β-catenin signaling pathway by demonstrating that siRNA-mediated knockdown of an intracellular β-catenin antagonist, AXIN1, or treating cells with an inhibitor of GSK-3 also enhanced melanoma cell sensitivity to TRAIL. These studies describe a novel regulation of TRAIL sensitivity in melanoma by Wnt/β-catenin signaling, and suggest that strategies to enhance Wnt/β-catenin signaling in combination with TRAIL agonists warrant further investigation.

  18. Endocrine sensitivity of the receptor-positive T61 human breast carcinoma serially grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Spang-Thomsen, M; Skovgaard Poulsen, H

    1985-01-01

    A study was made on the effect of ovariectomy, 17 beta-oestradiol, and tamoxifen on the oestrogen and progesterone receptor-positive T61 human breast carcinoma grown in nude mice. The effect of the treatment was evaluated by the specific growth delay calculated on the basis of Gompertz growth cur...... but is not a sufficiently clear marker to allow prediction of the endocrine sensitivity of individual breast tumours....

  19. Calcium-dependent displacement of haloperidol-sensitive sigma receptor binding in rat hippocampal slices following tissue depolarization.

    Science.gov (United States)

    Neumaier, J F; Chavkin, C

    1989-10-23

    To evaluate the possible existence of an endogenous ligand for the haloperidol-sensitive sigma receptor, we developed an in vitro competition assay to measure endogenous ligand release. Depolarization of in vitro hippocampal slices by either veratridine or potassium reduced [3H]ditolylguanidine binding in a calcium-dependent and transient manner. None of the drugs or iron substitutions directly affected [3H]ditolylguanidine binding to rat brain membranes. Veratridine-induced depolarization also reduced the binding of [3H](+)3-(3-hydroxyphenyl)-N-(1-propyl)piperidine, another sigma radioligand, in a calcium-dependent manner. Radioligand displacement was not associated with alteration in sigma receptor dissociation kinetics or receptor degradation in the hippocampal slice. In contrast, KC1 depolarization had no effect on [3H]ditolyguanidine binding to sigma receptors in liver slices. The results suggest that a calcium-dependent, depolarization-induced reduction in sigma receptor binding may have been caused by the release of an endogenous sigma ligand in rat hippocampal tissue.

  20. The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Marcussen, Anders Bue; Wegener, Gregers

    2009-01-01

    The 5-hydroxytryptamine (5-HT(4)) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT(4) receptor [(3)H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography...... cortices after chronic paroxetine administration, and markedly reduced in several regions after 5-HT depletion. Thus, the 5-HT(4) receptor binding was decreased in the Flinders Sensitive Line depression model and in response to chronic paroxetine administration....

  1. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    Science.gov (United States)

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  2. Recreational Trails in the State of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This file represents the locations of trails in Iowa. The original trail file was created by the Iowa Department of Transportation (IDOT), and included developed...

  3. Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats.

    Science.gov (United States)

    Ali, Quaisar; Patel, Sanket; Hussain, Tahir

    2015-06-15

    High-sodium intake is a risk factor for the pathogenesis of hypertension, especially in obesity. The present study is designed to investigate whether angiotensin type 2 receptor (AT2R) activation with selective agonist C21 prevents high-sodium diet (HSD)-induced hypertension in obese animals. Male obese rats were treated with AT2R agonist C21 (1 mg·kg(-1)·day(-1), oral) while maintained on either normal-sodium diet (NSD; 0.4%) or HSD (4%) for 2 wk. Radiotelemetric recording showed a time-dependent increase in systolic blood pressure in HSD-fed obese rats, being maximal increase (∼27 mmHg) at day 12 of the HSD regimen. C21 treatment completely prevented the increase in blood pressure of HSD-fed rats. Compared with NSD controls, HSD-fed obese rats had greater natriuresis/diuresis and urinary levels of nitrates, and these parameters were further increased by C21 treatment. Also, C21 treatment improved glomerular filtration rate in HSD-fed rats. HSD-fed rats expressed higher level of cortical ANG II, which was reduced to 50% by C21 treatment. HSD feeding and/or C21 treatment had no effects on cortical renin activity and the expression of angiotensin-converting enzyme (ACE) and chymase, which are ANG II-producing enzymes. However, ANG(1-7) concentration and ACE2 activity in the renal cortex were reduced by HSD feeding, and C21 treatment rescued both the parameters. Also, C21 treatment reduced the cortical expression of AT1R in HSD-fed rats, but had no effect of AT2R expression. We conclude that chronic treatment with the AT2R agonist C21 prevents salt-sensitive hypertension in obese rats, and a reduction in the renal ANG II/AT1R and enhanced ACE2/ANG(1-7) levels may play a potential role in this phenomenon. Copyright © 2015 the American Physiological Society.

  4. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    Science.gov (United States)

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by Helicobacter pylori in immune pathogenesis of gastric mucosal damage.

    Science.gov (United States)

    Tsai, Hwei-Fang; Hsu, Ping-Ning

    2017-02-01

    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, gastric carcinoma, and gastric mucosa-associated lymphoid tissue lymphomas. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Enhanced gastric epithelial cell apoptosis during H. pylori infection was suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells. Human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death-receptor signaling. The induction of TRAIL sensitivity by H. pylori is dependent upon the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex through downregulation of cellular FLICE-inhibitory protein. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, significant increases in CCR6 + CD3 + T cell infiltration in the gastric mucosa was observed, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These mechanisms initiate chemokine-mediated T lymphocyte trafficking into inflamed epithelium and induce mucosal injury during Helicobacter infection. This article will review recent findings on the interactions of H. pylori with host-epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation and mucosal damage. Copyright © 2016. Published by Elsevier B.V.

  6. The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway

    Czech Academy of Sciences Publication Activity Database

    Vyklická, Lenka; Boukalová, Štěpána; Mačíková, Lucie; Chvojka, Štěpán; Vlachová, Viktorie

    2017-01-01

    Roč. 292, č. 51 (2017), s. 21083-21091 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA15-15839S Institutional support: RVO:67985823 Keywords : epidermal growth factor receptor (EGFR) * extracellular-signal-regulated kinase (ERK) * keratinocyte * phosphorylation * transient receptor potential channels * TRP channels Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.125, year: 2016

  7. Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor.

    Science.gov (United States)

    Stark, Karri; Burger, Angelika; Wu, Jianmei; Shelton, Phillip; Polin, Lisa; Li, Jing

    2013-01-01

    Aminoflavone (AF) acts as a ligand of the aryl hydrocarbon receptor (AhR). Expression of estrogen receptor α (ERα) and AhR-mediated transcriptional induction of CYP1A1 can sensitize breast cancer cells to AF. The objective of this study was to investigate the combined antitumor effect of AF and the histone deacetylase inhibitor vorinostat for treating mesenchymal-like triple-negative breast cancer (TNBC) as well as the underlying mechanisms of such treatment. In vitro antiproliferative activity of AFP464 (AF prodrug) in breast cancer cell lines was evaluated by MTS assay. In vitro, the combined effect of AFP464 and vorinostat on cell proliferation was assessed by the Chou-Talalay method. In vivo, antitumor activity of AFP464, given alone and in combination with vorinostat, was studied using TNBC xenograft models. Knockdown of ERα was performed using specific, small-interfering RNA. Western blot, quantitative RT-PCR, immunofluorescence, and immunohistochemical staining were performed to study the mechanisms underlying the combined antitumor effect. Luminal and basal A subtype breast cancer cell lines were sensitive to AFP464, whereas basal B subtype or mesenchymal-like TNBC cells were resistant. Vorinostat sensitized mesenchymal-like TNBC MDA-MB-231 and Hs578T cells to AFP464. It also potentiated the antitumor activity of AFP464 in a xenograft model using MDA-MB-231 cells. In vitro and in vivo mechanistic studies suggested that vorinostat reactivated ERα expression and restored AhR-mediated transcriptional induction of CYP1A1. The response of breast cancer cells to AF or AFP464 was associated with their gene expression profile. Vorinostat sensitized mesenchymal-like TNBC to AF, at least in part, by reactivating ERα expression and restoring the responsiveness of AhR to AF.

  8. 77 FR 45721 - Consolidated Audit Trail

    Science.gov (United States)

    2012-08-01

    ... 242 Consolidated Audit Trail; Final Rule #0;#0;Federal Register / Vol. 77, No. 148 / Wednesday, August... 242 [Release No. 34-67457; File No. S7-11-10] RIN 3235-AK51 Consolidated Audit Trail AGENCY... maintain a consolidated order tracking system, or consolidated audit trail, with respect to the trading of...

  9. 75 FR 32555 - Consolidated Audit Trail

    Science.gov (United States)

    2010-06-08

    ... Part II Securities and Exchange Commission 17 CFR Part 242 Consolidated Audit Trail; Proposed Rule... 3235-AK51 Consolidated Audit Trail AGENCY: Securities and Exchange Commission. ACTION: Proposed rule... a consolidated order tracking system, or consolidated audit trail, with respect to the trading of...

  10. Global variation of meteor trail plasma turbulence

    Directory of Open Access Journals (Sweden)

    L. P. Dyrud

    2011-12-01

    Full Text Available We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere, will the resulting trail become plasma turbulent? What are the factors influencing the development of turbulence? and how do these trails vary on a global scale? Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars. Turbulence also influences the evolution of specular radar meteor trails; this fact is important for the inference of mesospheric temperatures from the trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and ionospheric plasma density have on the variability of meteor trail evolution and on the observation of non-specular meteor trails. We demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends for non-specular and specular meteor trails.

  11. Comparing the impacts of hiking, skiing and horse riding on trail and vegetation in different types of forest.

    Science.gov (United States)

    Törn, A; Tolvanen, A; Norokorpi, Y; Tervo, R; Siikamäki, P

    2009-03-01

    Nature-based tourism in protected areas has increased and diversified dramatically during the last decades. Different recreational activities have a range of impacts on natural environments. This paper reports results from a comparison of the impacts of hiking, cross-country skiing and horse riding on trail characteristics and vegetation in northern Finland. Widths and depths of existing trails, and vegetation on trails and in the neighbouring forests were monitored in two research sites during 2001 and 2002. Trail characteristics and vegetation were clearly related to the recreational activity, research site and forest type. Horse trails were as deep as hiking trails, even though the annual number of users was 150-fold higher on the hiking trails. Simultaneously, cross-country skiing had the least effect on trails due to the protective snow cover during winter. Hiking trail plots had little or no vegetation cover, horse riding trail plots had lower vegetation cover than forest plots, while skiing had no impact on total vegetation cover. On the other hand, on horse riding trails there were more forbs and grasses, many of which did not grow naturally in the forest. These species that were limited to riding trails may change the structure of adjacent plant communities in the long run. Therefore, the type of activities undertaken and the sensitivity of habitats to these activities should be a major consideration in the planning and management of nature-based tourism. Establishment of artificial structures, such as stairs, duckboards and trail cover, or complete closure of the site, may be the only way to protect the most sensitive or deteriorated sites.

  12. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Geel, Tessa M. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Meiss, Gregor [Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen (Germany); Gun, Bernardina T. van der; Kroesen, Bart Jan; Leij, Lou F. de [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Zaremba, Mindaugas; Silanskas, Arunas [Institute of Biotechnology, Vilnius LT-02241 (Lithuania); Kokkinidis, Michael [IMBB/FORTH and University of Crete/Department of Biology, GR-71409 Heraklion/Crete (Greece); Pingoud, Alfred [Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen (Germany); Ruiters, Marcel H. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Synvolux therapeutics, Groningen (Netherlands); McLaughlin, Pamela M. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Rots, Marianne G., E-mail: m.g.rots@med.umcg.nl [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands)

    2009-09-10

    TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18{sup Registered-Sign }:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.

  13. Chronic exposure to nicotine enhances insulin sensitivity through α7 nicotinic acetylcholine receptor-STAT3 pathway.

    Directory of Open Access Journals (Sweden)

    Tian-Ying Xu

    Full Text Available This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment of Sprague-Dawley rats with nicotine (3 mg/kg/day for 6 weeks reduced 43% body weight gain and 65% blood insulin level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day to antagonize peripheral nicotinic receptors except for α7 nicotinic acetylcholine receptor (α7-nAChR had no effect on the insulin sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was abrogated in α7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day, a selective α7-nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice but also in AMP-activated kinase-α2 knockout mice, an animal model of insulin resistance with no sign of inflammation. Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3 in skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating α7-nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance.

  14. The trace amine associated receptor 1 agonist RO5263397 attenuates the induction of cocaine behavioral sensitization in rats.

    Science.gov (United States)

    Thorn, David A; Zhang, Chaogui; Zhang, Yanan; Li, Jun-Xu

    2014-04-30

    The trace amine associated receptor (TAAR) 1 is a new G protein coupled receptor that critically modulates central dopaminergic system. Recently, several selective TAAR 1 ligands have been described to possess antipsychotic and antidepressant-like activities. However, it is unknown of the role of these ligands in modulating psychostimulant-induced neurobehavioral plasticity. This study examined the effects of a selective TAAR 1 agonist, RO5263397, on cocaine induced behavioral sensitization in rats, a rodent model of drug-induced behavioral plasticity. Daily treatment with 15mg/kg cocaine (i.p., 7 days) induced robust locomotor sensitization in rats. RO5263397 (1-10mg/kg, i.p.) alone did not significantly alter the locomotor activity. Acute treatment with RO5263397 (3.2 and 10mg/kg) did not significantly modify cocaine-induced hyperactivity; however, the induction of locomotor sensitization was significantly blocked after 7 days of daily RO5263397 treatment. More importantly, the expression of locomotor sensitization remained significantly attenuated when rats were re-tested 7 days after the last drug treatment. The marked attenuation of cocaine sensitization was also evidenced by the suppression of the dose-effect function (3.2-32mg/kg) of cocaine sensitization. Together, these data represent the first to report a critical modulatory role of TAAR 1 agonists in cocaine-induced behavioral plasticity, which may be indicative of its potential role for altering other long-lasting behavioral maladaptations of cocaine including drug addiction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization.

    Science.gov (United States)

    Romero, L; Zamanillo, D; Nadal, X; Sánchez-Arroyos, R; Rivera-Arconada, I; Dordal, A; Montero, A; Muro, A; Bura, A; Segalés, C; Laloya, M; Hernández, E; Portillo-Salido, E; Escriche, M; Codony, X; Encina, G; Burgueño, J; Merlos, M; Baeyens, J M; Giraldo, J; López-García, J A; Maldonado, R; Plata-Salamán, C R; Vela, J M

    2012-08-01

    The sigma-1 (σ(1) ) receptor is a ligand-regulated molecular chaperone that has been involved in pain, but there is limited understanding of the actions associated with its pharmacological modulation. Indeed, the selectivity and pharmacological properties of σ(1) receptor ligands used as pharmacological tools are unclear and the demonstration that σ(1) receptor antagonists have efficacy in reversing central sensitization-related pain sensitivity is still missing. The pharmacological properties of a novel σ(1) receptor antagonist (S1RA) were first characterized. S1RA was then used to investigate the effect of pharmacological antagonism of σ(1) receptors on in vivo nociception in sensitizing conditions and on in vitro spinal cord sensitization in mice. Drug levels and autoradiographic, ex vivo binding for σ(1) receptor occupancy were measured to substantiate behavioural data. Formalin-induced nociception (both phases), capsaicin-induced mechanical hypersensitivity and sciatic nerve injury-induced mechanical and thermal hypersensitivity were dose-dependently inhibited by systemic administration of S1RA. Occupancy of σ(1) receptors in the CNS was significantly correlated with the antinociceptive effects. No pharmacodynamic tolerance to the antiallodynic and antihyperalgesic effect developed following repeated administration of S1RA to nerve-injured mice. As a mechanistic correlate, electrophysiological recordings demonstrated that pharmacological antagonism of σ(1) receptors attenuated the wind-up responses in spinal cords sensitized by repetitive nociceptive stimulation. These findings contribute to evidence identifying the σ(1) receptor as a modulator of activity-induced spinal sensitization and pain hypersensitivity, and suggest σ(1) receptor antagonists as potential novel treatments for neuropathic pain. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  16. Involvement of β-adrenergic receptor of nucleus tractus solitarius in changing of baroreflex sensitivity by estrogen in female rats

    Directory of Open Access Journals (Sweden)

    Ali Asghar Pourshanazari

    2014-01-01

    Full Text Available Background: Arterial baroreflex (ABR is an important factor in preventing of blood pressure fluctuations that determined by baroreflex sensitivity (BRS. Estrogen is an ovarian hormone that has influence on ABR. The mechanism of this effect of estrogen unknown and may be mediated by β-adrenergic receptor of nucleus tractus solitarius (NTS, an important area in regulation of baroreflex. Therefore, in this study changing of BRS by estrogen after blockade β-adrenergic receptor of NTS in ovariectomized rats (Ovx and Ovx treated with estrogen (Est was examined. Materials and Methods: After ovariectomy, all female rats divided to Ovx and Ovx + Est groups and two series of experiments were performed. In the first experiment, phenylephrine was [intravenously, IV] injected in both the Ovx and Ovx + Est groups, and mean arterial pressure (MAP, heart rate (HR, and BRS were evaluated (n = 8 for each group. In the second experiment, each of Ovx and Ovx + Est groups divided into saline and propranolol (pro groups, saline and pro stereotaxically were microinjected into NTS, respectively. Further, phenylephrine (IV was injected in all groups and BRS was evaluated. Results: BRS significantly increased in estrogen-treated groups (Ovx + Est compared to Ovx groups (P < 0.01. The blockade β-adrenergic receptor of NTS by pro did not significantly changed BRS in both Ovx and Ovx + Est groups. Conclusion: We concluded that there aren′t any intraction between estrogen and β-adrenergic receptor of NTS in BRS.

  17. Emotional eating is associated with increased brain responses to food-cues and reduced sensitivity to GLP-1 receptor activation.

    Science.gov (United States)

    van Bloemendaal, Liselotte; Veltman, Dick J; ten Kulve, Jennifer S; Drent, Madeleine L; Barkhof, Frederik; Diamant, Michaela; IJzerman, Richard G

    2015-10-01

    The neural correlates and pathophysiology of emotional eating are insufficiently known. Glucagon-like peptide-1 (GLP-1), a postprandial hormone, plays a role in feeding behavior by signaling satiety to the brain. GLP-1 receptor agonists, used for treatment of type 2 diabetes (T2DM), promote weight loss. This study investigated the association between emotional eating and responses to food-cues in brain areas involved in satiety and reward processing, as well as GLP-1 receptor agonist-induced effects on these brain responses. T2DM patients with obesity, normoglycemic individuals with obesity, and lean individuals (n = 48) were studied in a randomized placebo-controlled crossover study. Using functional MRI, we determined the relation between emotional eating and regional brain responses to visual food stimuli and acute effects of intravenous administration of the GLP-1 receptor agonist exenatide on these responses. Emotional eating scores positively correlated with responses to food-cues in lean subjects in the insula, in normoglycemic subjects with obesity in the insula, and in T2DM patients in the amygdala, orbitofrontal cortex, and insula. Emotional eating scores negatively correlated with exenatide-induced reductions in responses to food-cues in normoglycemic subjects with obesity in the amygdala and in T2DM patients in the insula. Our findings indicate that emotional eaters have altered brain responses to food-cues and are less sensitive to the central effects of GLP-1 receptor activation. © 2015 The Obesity Society.

  18. Glucocorticoid receptor haplotypes conferring increased sensitivity (BclI and N363S) are associated with faster progression of multiple sclerosis

    DEFF Research Database (Denmark)

    Melief, Jeroen; Koper, Jan W; Endert, Erik

    2016-01-01

    As high cortisol levels are implicated in suppressed disease activity of multiple sclerosis (MS), glucocorticoid receptor (GR) polymorphisms that affect glucocorticoid (GC) sensitivity may impact on this by changing local immunomodulation or regulation of the hypothalamus-pituitary-adrenal (HPA)-...

  19. Individual differences in ethanol locomotor sensitization are associated with dopamine D1 receptor intra-cellular signaling of DARPP-32 in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Karina Possa Abrahao

    Full Text Available In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as "sensitized" and the 33% with the lowest levels as "non-sensitized". The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of

  20. The EGFR family of receptors sensitizes cancer cells towards UV light

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Neves Petersen, Teresa; Olsen, Birgitte

    2008-01-01

    disulphide bridges in proteins upon illumination of nearby aromatic amino acids was the first step that lead to the hypothesis that UV light could modulate the structure and therefore the function of these key receptor proteins. The observation that membrane receptors (EGFR) contained exactly the motifs......, 25 disulphide bridges supports the 621 amino acid extracellular protein domain scaffold (1mb6.pdb). In two cases a tryptophan is neighboring a cystein in the primary sequence, which in itself is a rare observation. Aromatic residues is observed to be spatially close to all observed 25 disulphide...... bridges. The EGF receptor is often overexpressed in cancers and other proliferative skin disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV-light treatment. The discovery that UV light can be used to open...

  1. Pore Helix Domain Is Critical to Camphor Sensitivity of Transient Receptor Potential Vanilloid 1 Channel

    Czech Academy of Sciences Publication Activity Database

    Maršáková, Lenka; Touška, Filip; Krůšek, Jan; Vlachová, Viktorie

    2012-01-01

    Roč. 116, č. 4 (2012), s. 903-917 ISSN 0003-3022 R&D Projects: GA ČR(CZ) GA305/09/0081; GA ČR(CZ) GA202/09/0806; GA ČR(CZ) GD305/08/H037; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA ČR(CZ) GBP304/12/G069 Grant - others:Univerzita Karlova(CZ) 25409 Institutional research plan: CEZ:AV0Z50110509 Keywords : vanilloid receptor * camphor * transient receptor potential Subject RIV: ED - Physiology Impact factor: 5.163, year: 2012

  2. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-12-21

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 ..mu..M and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 ..mu..M and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 ..mu..M respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D/sub 2/-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 ..mu..M. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, /sup 3/H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D/sup 1/- and D/sup 2/-dopamine receptors. 33 references, 3 figures, 2 tables.

  3. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    International Nuclear Information System (INIS)

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-01-01

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 μM and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 μM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 μM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D 2 -dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 μM. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, 3 H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D 1 - and D 2 -dopamine receptors. 33 references, 3 figures, 2 tables

  4. The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol.

    Directory of Open Access Journals (Sweden)

    Meredith J Ezak

    Full Text Available We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of G alpha signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn, but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine's effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol.

  5. Covalent labeling of a high-affinity, guanyl nucleotide sensitive parathyroid hormone receptor in canine renal cortex

    International Nuclear Information System (INIS)

    Nissenson, R.A.; Karpf, D.; Bambino, T.; Winer, J.; Canga, M.; Nyiredy, K.; Arnaud, C.D.

    1987-01-01

    Putative parathyroid hormone (PTH) receptors in canine renal membranes were affinity labeled with 125 I-bPTH(1-34) using the heterobifunctional cross-linking reagent N-hydroxysuccinimidyl 4-azido-benzoate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a major 85,000 molecular weight (M/sub r/) PTH binding component, the labeling of which was inhibited by nanomolar concentrations of unlabeled PTH and by micromolar concentrations of 5'-guanylyl imidodiphosphate [Gpp-(NH)p]. Labeling was not influenced by the unrelated peptides insulin and arginine vasopressin. Minor PTH binding components of M/sub r/ 55,000 and 130,000 were also seen, and labeling of these was likewise sensitive to unlabeled PTH and to Gpp(NH)p. Omission of protease inhibitors during the isolation of plasma membranes resulted in the loss of the M/sub r/ 85,000 PTH binding species and the appearance of an M/sub r/ 70,000 form. Several minor PTH binding components also were observed. Equilibrium binding studies showed that such membranes had an affinity for PTH indistinguishable from that in membranes isolated with protease inhibitors and displaying a major M/sub r/ 85,000 PTH binding species. The authors conclude that the major form of the adenylate cyclase coupled PTH receptor in canine renal membranes is an M/sub r/ 85,000 protein. An endogenous enzyme, probably a lysosomal cathepsin, can cleave this form to produce an M/sub r/ 70,000 receptor that retains full functional activity with respect to high-affinity, guanyl nucleotide sensitive PTH binding. The ability to covalently label the PTH receptor in high yield represents a major step toward the structural characterization of this important detector molecule

  6. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  7. Involvement of dopamine receptors on locomotor stimulation and sensitization elicited by the interaction of ethanol and mazindol in mice.

    Science.gov (United States)

    Gevaerd, M S; Takahashi, R N

    1999-07-01

    We have previously observed that the combination of ethanol (EtOH) and the anorectic drug mazindol (MZ) produces more marked effects on behavior than either substance alone. In the present study we examined whether the repeated administration of the drug combination could induce sensitization to its motor activating effects in mice and, if so, whether this response could be affected by dopamine (DA) receptors antagonists. Male Swiss albino mice were treated daily for 7 days with combined EtOH+MZ (1.2 g/kg, 5.0 mg/kg IP), EtOH (1.2 g/kg IP), MZ (5.0 mg/kg IP), or control solution coadministered with the D1 dopamine antagonist SCH-23390 (0.025 or 0.05 mg/kg IP), the mixed dopamine antagonist haloperidol (0.05 or 0.075 mg/kg IP), or vehicle. After the injections on days 1, 7, and 10, mice were assessed in activity cages at different time intervals. Repeated administration of MZ resulted in an enhancement of its locomotor activating effects, behavioral sensitization. Further, the combined EtOH+MZ treatment also resulted in sensitization to its locomotor effects. Moreover, the development of MZ and EtOH+MZ sensitization was attenuated by both SCH-23390 and haloperidol. These data demonstrate that following repeated MZ or EtOH+MZ exposure mice show locomotor sensitization through DA receptor stimulation. Also, these findings suggest that a major determinant of combined anorectic-alcohol misuse may be the increased stimulating effects produced by such combination.

  8. Activation of central angiotensin type 2 receptors by compound 21 improves arterial baroreflex sensitivity in rats with heart failure.

    Science.gov (United States)

    Gao, Juan; Zucker, Irving H; Gao, Lie

    2014-10-01

    In a previous study we demonstrated that central administration of compound 21 (C21), a nonpeptide AT2R agonist, inhibited sympathetic tone in normal rats. In this study, we hypothesized that C21 exerts a similar effect in rats with coronary ligation-induced heart failure (HF). C21 was intracerebroventricularly infused for 7 days by osmotic mini pump. Blood pressure (BP) and heart rate (HR) were recorded by radiotelemetry in the conscious state to measure spontaneous arterial baroreflex sensitivity. Urine was collected for measurement of norepinephrine excretion. On the last day of C21 treatment, renal sympathetic nerve activity, BP, and HR were directly recorded under anesthesia, and the induced arterial baroreflex sensitivity was evaluated. Protein expressions of neuronal nitric oxide synthase (nNOS) and angiotensin II type 1 receptor (AT1R) in the subfornical organ, paraventricular nucleus, rostral ventrolateral medulla, and nucleus tractus solitarius were determined by Western blot analysis. C21-treated HF rats displayed significantly less norepinephrine excretion (2,385.6 ± 121.1 vs. 3,677.3 ± 147.6 ng/24 hours; P baroreflex sensitivity and induced arterial baroreflex sensitivity. Bolus intracerebroventricular injection of angiotensin II-evoked pressor and sympatho-excitatory responses were attenuated in the C21-treated HF rats, which displayed upregulated nNOS and downregulated AT1R expression in the subfornical organ, paraventricular nucleus, and rostral ventrolateral medulla. Activation of central angiotensin II type 2 receptor AT2R by C21 suppresses sympathetic outflow in rats with HF by improving baroreflex sensitivity and may provide important benefit in the HF syndrome. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Greater Sensitivity of Blood Pressure Than Renal Toxicity to Tyrosine Kinase Receptor Inhibition With Sunitinib

    DEFF Research Database (Denmark)

    Lankhorst, Stephanie; Baelde, Hans J; Kappers, Mariëtte H W

    2015-01-01

    Hypertension and renal injury are off-target effects of sunitinib, a tyrosine kinase receptor inhibitor used for the treatment of various tumor types. Importantly, these untoward effects are accompanied by activation of the endothelin system. Here, we set up a study to explore the dose dependency...

  10. A novel first exon directs hormone-sensitive transcription of the pig prolactin receptor

    Science.gov (United States)

    Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation.We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcri...

  11. Imine-linked receptors decorated ZnO-based dye-sensitized solar cells

    Indian Academy of Sciences (India)

    able for bio-applications (bio-imaging and dentistry) [9]. A number of research papers have been studied regarding the use of ruthenium–metal complexes for DSSCs [10–16]. Polymer-decorated ZnO (with imine-linked receptors and ruthenium–metal complex) in the fabrication of DSSCs has not been investigated earlier.

  12. Expression of CNTF receptor-alpha in chick violet-sensitive cones with unique morphologic properties.

    NARCIS (Netherlands)

    Seydewitz, V.; Rothermel, A.; Fuhrmann, S.; Schneider, A.J.; Grip, W.J. de; Layer, P.G.; Hofmann, H.D.

    2004-01-01

    PURPOSE: Application of ciliary neurotrophic factor (CNTF) can rescue mature photoreceptors from lesion-induced and hereditary degeneration. In the chick retina, expression of the CNTF receptor is present in a subpopulation of photoreceptor cells. The present study was undertaken to identify the

  13. Receptor heterogeneity and its effect on sensitivity and coding range in olfactory sensory neurons

    Czech Academy of Sciences Publication Activity Database

    Lánský, Petr; Getz, W. M.

    2001-01-01

    Roč. 63, č. 5 (2001), s. 885-908 ISSN 0092-8240 R&D Projects: GA AV ČR IAA7011712 Grant - others:NSF(US) IBN9807938 Institutional research plan: CEZ:AV0Z5011922 Keywords : olfactory system * odorant-receptor Subject RIV: ED - Physiology Impact factor: 1.316, year: 2001

  14. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus).

    Science.gov (United States)

    Yoshizawa, Masato; Jeffery, William R; van Netten, Sietse M; McHenry, Matthew J

    2014-03-15

    The characid fish species Astyanax mexicanus offers a classic comparative model for the evolution of sensory systems. Populations of this species evolved in caves and became blind while others remained in streams (i.e. surface fish) and retained a functional visual system. The flow-sensitive lateral line receptors, called superficial neuromasts, are more numerous in cavefish than in surface fish, but it is unclear whether individual neuromasts differ in sensitivity between these populations. The aims of this study were to determine whether the neuromasts in cavefish impart enhanced sensitivity relative to surface fish and to test whether this aids their ability to sense flow in the absence of visual input. Sensitivity was assessed by modeling the mechanics and hydrodynamics of a flow stimulus. This model required that we measure the dimensions of the transparent cupula of a neuromast, which was visualized with fluorescent microspheres. We found that neuromasts within the eye orbit and in the suborbital region were larger and consequently about twice as sensitive in small adult cavefish as in surface fish. Behavioral experiments found that these cavefish, but not surface fish, were attracted to a 35 Hz flow stimulus. These results support the hypothesis that the large superficial neuromasts of small cavefish aid in flow sensing. We conclude that the morphology of the lateral line could have evolved in cavefish to permit foraging in a cave environment.

  15. The Offshore Bucket Trail Installation

    DEFF Research Database (Denmark)

    Nielsen, Søren Andreas; Ibsen, Lars Bo

    The Bucket Trail Installation project has gathered a substantial amount of date in a unique soil database which enable update of the used standards for penetration prediction. This update will lead to less conservative design of bucket foundations and is vital for the aim of cost reduction...... in the offshore wind business. Furthermore is serial offshore operation with the bucket concept was demonstrated with achieving full installation depth and inclination within given tolerance....

  16. Transient receptor potential (TRP) A1 activated currents in TRPV1 and cholecystokinin-sensitive cranial visceral afferent neurons.

    Science.gov (United States)

    Choi, Myung-Jin; Jin, Zhenhua; Park, Yong Seek; Rhee, Young Kyoung; Jin, Young-Ho

    2011-04-06

    Culinary use of the pungent spices has potential health benefits including a reduction in food intake. Pungent spices often contain ingredients that activate members of the transient receptor potential (TRP) family A1 and evoke pain from capsaicin-sensitive somatosensory neurons. TRPA1 channel have also been identified on cranial visceral afferent neurons but their distribution and functional contributions are poorly understood. Visceral vagal neurons transduce mechanical and chemical signals from peripheral organs to the nucleus tractus solitarii. Many capsaicin-sensitive vagal afferents participate in peripheral satiety signaling that includes cholecystokinin (CCK) sensitive neurons. To assess signaling, the TRPA1 selective agonist allyl isothiocyanate (AITC) was tested together with CCK and capsaicin (200nM), a TRPV1 specific agonist. In isolated nodose neurons, AITC (0.05-0.2mM) evoked concentration-dependent inward currents in 38% of the tested neurons. The TRPA1 specific antagonist HC-030031 (10μM) blocked AITC responses. TRPA1 responses were mixed across neurons that were capsaicin-sensitive and -insensitive. However CCK evoked inward currents only on capsaicin-sensitive neurons and 28% of the CCK-sensitive neurons expressed TRPA1. Our results indicate that TRPA1 is co-expressed with TRPV1 in CCK-sensitive nodose neurons. The findings indicate a potential mechanism by which spices can act within cranial visceral afferent pathways mediating satiety and contribute to the reduction of the food intake associated with spiced diets. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine.

    Directory of Open Access Journals (Sweden)

    Dawn Thompson

    Full Text Available BACKGROUND: Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R availability in the brain. Such a decrease consequently alters the ratio of D1R:D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified. METHODS AND FINDINGS: ETHICS STATEMENT: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT and G protein coupled receptor associated sorting protein-1 (GASP-1 knock out (KO mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine. CONCLUSIONS: Together, our data suggests that changes in the ratio of the D1:D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.

  18. Effects of Chronic Ethanol Consumption on Rat GABAA and Strychnine-sensitive Glycine Receptors Expressed by Lateral/Basolateral Amygdala Neurons

    Science.gov (United States)

    McCool, Brian A.; Frye, Gerald D.; Pulido, Marisa D.; Botting, Shaleen K.

    2010-01-01

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABAA and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABAA receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor’s response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABAA receptors composed of unique α subunits were differentially sensitive to acute ethanol. Likewise, the presence of the β subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the α2 subunit. Our results suggest that the facilitation of GABAA receptors during chronic ethanol exposure may help explain the maintenance of ethanol’s anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABAA and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure. PMID:12560122

  19. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    Science.gov (United States)

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-01-31

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  20. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    Science.gov (United States)

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  1. Brain histamine H1- and H2-receptors and histamine-sensitive adenylate cyclase: effects of antipsychotics and antidepressants

    International Nuclear Information System (INIS)

    Coupet, J.; Szuches-Myers, V.A.

    1981-01-01

    Several classes of psychoactive compounds have been investigated for their effects on histamine-sensitive adenylate cyclase in cell-free preparations from the guinea-pig cerebral cortex. Their inhibitory actions on this enzyme system have been compared with their abilities to displace [ 3 H]pyrilamine and [ 3 H]cimetidine from histamine H 1 - and H 2 -receptor sites, respectively. The results of these studies show that compounds which inhibited the histamine-sensitive cyclase were also displacers of either [ 3 H]pyrilamine or [ 3 H]cimetidine or both 3 H-ligands from their binding sites. In spite of the lack of a correlation between binding and cyclase antagonism it was observed that compounds that displace both ligands showed greater inhibition of the cyclase than those that have affinities for sites labeled by one or the other ligand. It was concluded that antihistamines, the antipsychotics and the antidepressants share a common property through their antagonism of H 1 -receptors and that may be responsible for their sedative side effect. (Auth.)

  2. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    Science.gov (United States)

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor

    Directory of Open Access Journals (Sweden)

    Jiyoon Ryu

    2014-05-01

    Full Text Available Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2 to the insulin receptor (IR is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways.

  4. The effect of a trail use intervention on urban trail use in Southern Nevada.

    Science.gov (United States)

    Clark, Sheila; Bungum, Tim; Shan, Guogen; Meacham, Mindy; Coker, Lisa

    2014-10-01

    Communities are building or improving trail networks for biking and walking to encourage physical activity, but the relationship between trail environments and physical activity is not well understood. We examined the effect of a trail use intervention in Southern Nevada. We monitored the usage of urban trails (n=10) in Southern Nevada before, during, and after an intervention which included a marketing campaign promoting trail use and the addition of way-finding and incremental distance signage to selected trails (October 2011-October 2012). Data were collected with infrared monitors placed on the trails for three periods of 7days. We compared pre-, mid-, and post-intervention usage rates on the 6 trails where signage was added to usage rates on the 4 control trails. The groups of trails experienced different patterns of increases and decreases over the 1-year study period. Mean users per hour increased 31% for the study trails and 35% for the control trails (p<0.001), but the total increase did not vary between the groups. Trail use increased about 33% during the 1-year study period for the intervention. Adding wayfinding and incremental distance signage appeared to support the increase in usage which followed the marketing campaign. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNFα expression and receptor tyrosine kinase signaling.

    Science.gov (United States)

    Bai, Longchuan; McEachern, Donna; Yang, Chao-Yie; Lu, Jianfeng; Sun, Haiying; Wang, Shaomeng

    2012-03-01

    Smac mimetics block inhibitor of apoptosis proteins to trigger TNFα-dependent apoptosis in cancer cells. However, only a small subset of cancer cells seem to be sensitive to Smac mimetics and even sensitive cells can develop resistance. Herein, we elucidated mechanisms underlying the intrinsic and acquired resistance of cancer cells to Smac mimetics. In vitro and in vivo investigations revealed that the expression of the cell surface protein LRIG1, a negative regulator of receptor tyrosine kinases (RTK), is downregulated in resistant derivatives of breast cancer cells sensitive to Smac mimetics. RNA interference-mediated downregulation of LRIG1 markedly attenuated the growth inhibitory activity of the Smac mimetic SM-164 in drug-sensitive breast and ovarian cancer cells. Furthermore, LRIG1 downregulation attenuated TNFα gene expression induced by Smac mimetics and increased the activity of multiple RTKs, including c-Met and Ron. The multitargeted tyrosine kinase inhibitors Crizotinib and GSK1363089 greatly enhanced the anticancer activity of SM-164 in all resistant cell derivatives, with the combination of SM-164 and GSK1363089 also completely inhibiting the outgrowth of resistant tumors in vivo. Together, our findings show that both upregulation of RTK signaling and attenuated TNFα expression caused by LRIG1 downregulation confers resistance to Smac mimetics, with implications for a rational combination strategy.

  6. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus

    Science.gov (United States)

    Sparks, Jackson T.; Dickens, Joseph C.

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.

  7. Quantitative antibody-free LC-MS/MS analysis of sTRAIL in sputum and saliva at the sub-ng/mL level

    NARCIS (Netherlands)

    Wilffert, Daniel; Donzelli, Riccardo; Asselman, Angela; Hermans, Jos; Govorukhina, Natalia; ten Hacken, Nick H. T.; Quax, Wim J.; Merbel, van de Nico; Bischoff, Rainer

    2016-01-01

    Soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) induces apoptosis via the extrinsic death receptor pathway and maybe a biomarker in the pathogenesis of a broad range of diseases. To investigate the role of sTRAIL in asthma, we developed a quantitative LC-MS/MS method with a

  8. Happy trails: the effect of a media campaign on urban trail use in southern Nevada.

    Science.gov (United States)

    Clark, Sheila; Bungum, Tim J; Meacham, Mindy; Coker, Lisa

    2015-01-01

    Many Americans do not meet recommendations for physical activity (PA). Communities are building trail networks to encourage PA, but the relationship between trails and PA is not well understood. We monitored usage of urban trails (N = 10) in Las Vegas, NV, before and after a promotional marketing campaign (October 2011 and April 2012). The media campaign featured print, online, and radio ads, as well as billboards and signage on gas pumps. Data were collected with infrared monitors that were placed on the trails for periods of 7 days. We compared preintervention and postintervention usage rates. Mean usage increased (P < .001) from 3.91 to 5.95 users per hour (52.17%) after the promotional campaign. We observed significant increases at 7 individual trails, significant declines at 2 trails, and no change at 1 trail. Promotional campaigns may be an effective way to increase trail usage and encourage PA.

  9. Trails at LANL - Public Meeting and Forum - July 26, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Pava, Daniel Seth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-26

    These are the slides of a meeting about trails at Los Alamos National Laboratory. The meeting goals are the folllowing: to inform and educate citizens about LANL trails management issues that include resource protection, safety, security and trails etiquette; to explain how and why LANL trails can be closed and reopened; and to understand your concerns and ideas about LANL trails use.

  10. Trails research: where do we go from here?

    Science.gov (United States)

    Michael A. Schuett; Patricia Seiser

    2002-01-01

    This paper describes a recent study focusing on trails research needs. This study was supported by American Trails. Using a Delphi technique, 86 trails experts representing a variety of federal, state and local agencies, nonprofits, and trail uses were queried by email on trails research needs. A Delphi technique is a prognostic tool for dealing with complex problems...

  11. High sensitivity and specificity in proposed clinical diagnostic criteria for anti-N-methyl-D-aspartate receptor encephalitis.

    Science.gov (United States)

    Ho, Alvin C C; Mohammad, Shekeeb S; Pillai, Sekhar C; Tantsis, Esther; Jones, Hannah; Ho, Reena; Lim, Ming; Hacohen, Yael; Vincent, Angela; Dale, Russell C

    2017-12-01

    To determine the validity of the proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in paediatric patients. The diagnostic criteria for anti-NMDAR encephalitis proposed by Graus et al. (2016) use clinical features and conventional investigations to facilitate early immunotherapy before antibody status is available. The criteria are satisfied if patients develop four out of six symptom groups within 3 months, together with at least one abnormal investigation (electroencephalography/cerebrospinal fluid) and reasonable exclusion of other disorders. We evaluated the validity of the criteria using a retrospective cohort of paediatric patients with encephalitis. Twenty-nine patients with anti-NMDAR encephalitis and 74 comparison children with encephalitis were included. As expected, the percentage of patients with anti-NMDAR encephalitis who fulfilled the clinical criteria increased over time. During the hospital inpatient admission, most patients (26/29, 90%) with anti-NMDAR encephalitis fulfilled the criteria, significantly more than the comparison group (3/74, 4%) (panti-NMDAR encephalitis was 2 weeks from first symptom onset (range 1-6). The sensitivity of the criteria was 90% (95% confidence interval 73-98) and the specificity was 96% (95% confidence interval 89-99). The proposed diagnostic criteria for anti-NMDAR encephalitis have good sensitivity and specificity. Incomplete criteria do not exclude the diagnosis. The proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis by Graus et al. (2016) have high sensitivity and specificity in paediatric patients. The median time of fulfilling the criteria in patients with anti-NMDAR was 2 weeks from first symptom onset. © 2017 Mac Keith Press.

  12. Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors.

    Science.gov (United States)

    Clifford, P Shane; Rodriguez, Juan; Schul, Destri; Hughes, Samuel; Kniffin, Tracey; Hart, Nigel; Eitan, Shoshana; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean; Wellman, Paul J

    2012-11-01

    Systemic infusions of the orexigenic peptide ghrelin (GHR) increase dopamine levels within the nucleus accumbens and augment cocaine-stimulated locomotion and conditioned place preference in rats; observations that suggest an important role for GHR and GHR receptors (GHR-Rs) in drug reinforcement. In the present studies, we examined the development of cocaine locomotor sensitization in rats, sustaining either pharmacologic antagonism or genetic ablation of GHR-Rs. In a pharmacologic study, adult male rats were injected (i.p.) with either 0, 3 or 6 mg/kg JMV 2959 (a GHR-R1 receptor antagonist), and 20 minutes later, with either vehicle or 10 mg/kg cocaine HCl on each of 7 consecutive days. Rats pretreated with JMV 2959 showed significantly attenuated cocaine-induced hyperlocomotion. In a second study, adult wild-type (WT) or mutant rats sustaining ENU-induced knockout of GHR-R [GHR-R ((-/-) )] received daily injections (i.p.) of vehicle (0.9% saline) or 10.0 mg/kg cocaine HCl for 14 successive days. GHR-R null rats treated repeatedly with cocaine showed diminished development of cocaine locomotor sensitization relative to WT rats treated with cocaine. To verify the lack of GHR-R function in the GHR-R ((-/-) ) rats, a separate feeding experiment was conducted in which WT rats, but not GHR-R ((-/-) ) rats, were noted to eat more after a systemic injection of 15 nmol GHR than after vehicle. These results suggest that GHR-R activity is required for the induction of locomotor sensitization to cocaine and complement an emerging literature implicating central GHR systems in drug reward. GHR is an orexigenic gut peptide that is transported across the blood-brain barrier and interacts with GHR-Rs located on ventral tegmental dopamine neurons. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  13. Clitocine potentiates TRAIL-mediated apoptosis in human colon cancer cells by promoting Mcl-1 degradation.

    Science.gov (United States)

    Sun, Jian-Guo; Ruan, Feng; Zeng, Xue-Li; Xiang, Jun; Li, Xia; Wu, Ping; Fung, Kwok Pui; Liu, Fei-Yan

    2016-10-01

    Among anti-cancer candidate drugs, TRAIL might be the most specific agent against cancer cells due to its low toxicity to normal cells. Unfortunately, cancer cells usually develop drug resistance to TRAIL, which is a major obstacle for its clinical application. One promising strategy is co-administrating with sensitizer to overcome cancer cells resistance to TRAIL. Clitocine, a natural amino nucleoside purified from wild mushroom, is recently demonstrated that can induce apoptosis in multidrug-resistant human cancer cells by targeting Mcl-1. In the present study,we found that pretreatment with clitocine dramatically enhances TRAIL lethality in its resistant human colon cancer cells by inducing apoptosis. More importantly, combination of clitocine and TRAIL also effectively inhibits xenograft growth and induces tumor cells apoptosis in athymic mice. The disruption of the binding between Mcl-1 and Bak as well as mitochondrial translocation of Bax mediated by clitocine are identified as the key underlying mechanisms, which leading to mitochondrial membrane permeabilization. Enforced exogenous Mcl-1 can effectively attenuate clitocine/TRAIL-induced apoptosis by suppressing the activation of intrinsic apoptotic pathway. Furthermore, clitocine regulates Mcl-1 expression at the posttranslational level as no obvious change is observed on mRNA level and proteasome inhibitor MG132 almost blocks the Mcl-1 suppression by clitocine. In fact, more ubiquitinated Mcl-1 was detected under clitocine treatment. Our findings indicate that clitocine is potentially an effective adjuvant agent in TRAIL-based cancer therapy.

  14. Establishing Global Source-Receptor Relationships for Carbonaceous Aerosol to Characterize Sensitivity of its Climate Forcing to Emission Uncertainties

    Science.gov (United States)

    Wang, H.; Rasch, P. J.; Easter, R. C.; Singh, B.; Qian, Y.; Ma, P.; Zhang, R.

    2013-12-01

    , export to emission ratio) of CA emitted from a number of predefined source regions/sectors, establish quantitative aerosol source-receptor relationships, and characterize source-to-receptor transport pathways. We can quantify the sensitivity of atmospheric CA concentrations and surface deposition in receptor regions of interest (including but not limited to the Arctic) to uncertainties in emissions of particular sources without actually perturbing the emissions, which is required by some other strategies for determining source-receptor relationships. Our study shows that the Arctic BC is much more sensitive to high-latitude local emissions than to mid-latitude major source contributors. For example, the same amount of BC emission from East Asia, which contributes about 20% to the annual mean BC loading in the Arctic, is 40 times less efficient than from the local sources to increase the Arctic BC. This indicates that the local BC sources (e.g., fires, metal smelting and gas flaring), which are highly uncertain or even missing from popular emission inventories, at least partly explain the historical under-prediction of Arctic BC in many climate models. The established source-receptor relationships will be used to assess potential climate impacts of the emission uncertainties.

  15. The Importance of G Protein-Coupled Receptor Kinase 4 (GRK4 in Pathogenesis of Salt Sensitivity, Salt Sensitive Hypertension and Response to Antihypertensive Treatment

    Directory of Open Access Journals (Sweden)

    Brian Rayner

    2015-03-01

    Full Text Available Salt sensitivity is probably caused by either a hereditary or acquired defect of salt excretion by the kidney, and it is reasonable to consider that this is the basis for differences in hypertension between black and white people. Dopamine acts in an autocrine/paracrine fashion to promote natriuresis in the proximal tubule and thick ascending loop of Henle. G-protein receptor kinases (or GRKs are serine and threonine kinases that phosphorylate G protein-coupled receptors in response to agonist stimulation and uncouple the dopamine receptor from its G protein. This results in a desensitisation process that protects the cell from repeated agonist exposure. GRK4 activity is increased in spontaneously hypertensive rats, and infusion of GRK4 antisense oligonucleotides attenuates the increase in blood pressure (BP. This functional defect is replicated in the proximal tubule by expression of GRK4 variants namely p.Arg65Leu, p.Ala142Val and p.Val486Ala, in cell lines, with the p.Ala142Val showing the most activity. In humans, GRK4 polymorphisms were shown to be associated with essential hypertension in Australia, BP regulation in young adults, low renin hypertension in Japan and impaired stress-induced Na excretion in normotensive black men. In South Africa, GRK4 polymorphisms are more common in people of African descent, associated with impaired Na excretion in normotensive African people, and predict blood pressure response to Na restriction in African patients with mild to moderate essential hypertension. The therapeutic importance of the GRK4 single nucleotide polymorphisms (SNPs was emphasised in the African American Study of Kidney Disease (AASK where African-Americans with hypertensive nephrosclerosis were randomised to receive amlodipine, ramipril or metoprolol. Men with the p.Ala142Val genotype were less likely to respond to metoprolol, especially if they also had the p.Arg65Leu variant. Furthermore, in the analysis of response to treatment in

  16. Dual orexin receptor antagonist 12 inhibits expression of proteins in neurons and glia implicated in peripheral and central sensitization.

    Science.gov (United States)

    Cady, R J; Denson, J E; Sullivan, L Q; Durham, P L

    2014-06-06

    Sensitization and activation of trigeminal nociceptors is implicated in prevalent and debilitating orofacial pain conditions including temporomandibular joint (TMJ) disorders. Orexins are excitatory neuropeptides that function to regulate many physiological processes and are reported to modulate nociception. To determine the role of orexins in an inflammatory model of trigeminal activation, the effects of a dual orexin receptor antagonist (DORA-12) on levels of proteins that promote peripheral and central sensitization and changes in nocifensive responses were investigated. In adult male Sprague-Dawley rats, mRNA for orexin receptor 1 (OX₁R) and receptor 2 (OX₂R) were detected in trigeminal ganglia and spinal trigeminal nucleus (STN). OX₁R immunoreactivity was localized primarily in neuronal cell bodies in the V3 region of the ganglion and in laminas I-II of the STN. Animals injected bilaterally with complete Freund's adjuvant (CFA) in the TMJ capsule exhibited increased expression of P-p38, P-ERK, and lba1 in trigeminal ganglia and P-ERK and lba1 in the STN at 2 days post injection. However, levels of each of these proteins in rats receiving daily oral DORA-12 were inhibited to near basal levels. Similarly, administration of DORA-12 on days 3 and 4 post CFA injection in the TMJ effectively inhibited the prolonged stimulated expression of protein kinase A, NFkB, and Iba1 in the STN on day 5 post injection. While injection of CFA mediated a nocifensive response to mechanical stimulation of the orofacial region at 2h and 3 and 5 days post injection, treatment with DORA-12 suppressed the nocifensive response on day 5. Somewhat surprisingly, nocifensive responses were again observed on day 10 post CFA stimulation in the absence of daily DORA-12 administration. Our results provide evidence that DORA-12 can inhibit CFA-induced stimulation of trigeminal sensory neurons by inhibiting expression of proteins associated with sensitization of peripheral and central

  17. Effects of kinase insert domain receptor (KDR) gene silencing on the sensitivity of A549 cells to erlotinib.

    Science.gov (United States)

    Zhu, W L; Liu, Y H

    2015-11-25

    We investigated the effects of kinase insert domain receptor (KDR) gene silencing on the proliferation of A549 cells and their sensitivity to erlotinib. A KDR small interfering RNA (siRNA) sequence was designed and synthesized; then, it was transfected into A549 cells using Lipofectamine(TM) 2000. KDR mRNA and protein expression after KDR gene silencing was detected by reverse transcription polymerase chain reaction and western blotting; the A549 cell cycle was detected by flow cytometry. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and colony formation assay were performed to determine the sensitivity of A549 cells to erlotinib after KDR gene silencing. After 48h of KDR gene silencing, there was a significant decrease in KDR gene and protein expression (P A549 cell cycle was arrested at the G0/G1 phase, and the number of cells in the S phase decreased; the difference was statistically significant (P A549 cells to erlotinib was significantly enhanced (P A549 cells, inhibit the proliferation of A549 cells, and enhance their sensitivity to erlotinib.

  18. High concentrations of morphine sensitize and activate mouse dorsal root ganglia via TRPV1 and TRPA1 receptors

    Directory of Open Access Journals (Sweden)

    Messlinger Karl

    2009-04-01

    Full Text Available Abstract Background Morphine and its derivatives are key drugs in pain control. Despite its well-known analgesic properties morphine at high concentrations may be proalgesic. Particularly, short-lasting painful sensations have been reported upon dermal application of morphine. To study a possible involvement of TRP receptors in the pro-nociceptive effects of morphine (0.3 – 10 mM, two models of nociception were employed using C57BL/6 mice and genetically related TRPV1 and TRPA1 knockout animals, which were crossed and generated double knockouts. Hindpaw skin flaps were used to investigate the release of calcitonin gene-related peptide indicative of nociceptive activation. Results Morphine induced release of calcitonin gene-related peptide and sensitized the release evoked by heat or the TRPA1 agonist acrolein. Morphine activated HEK293t cells transfected with TRPV1 or TRPA1. Activation of C57BL/6 mouse dorsal root ganglion neurons in culture was investigated with calcium imaging. Morphine induced a dose-dependent rise in intracellular calcium in neurons from wild-type animals. In neurons from TRPV1 and TRPA1 knockout animals activation by morphine was markedly reduced, in the TRPV1/A1 double knockout animals this morphine effect was abrogated. Naloxone induced an increase in calcium levels similar to morphine. The responses to both morphine and naloxone were sensitized by bradykinin. Conclusion Nociceptor activation and sensitization by morphine is conveyed by TRPV1 and TRPA1.

  19. Formation of the IGF1R/CAV1/SRC tri-complex antagonizes TRAIL-induced apoptosis in gastric cancer cells.

    Science.gov (United States)

    Guo, Tianshu; Xu, Ling; Che, Xiaofang; Zhang, Simeng; Li, Ce; Wang, Jin; Gong, Jing; Ma, Rui; Fan, Yibo; Hou, Kezuo; Zhou, Huiming; Hu, Xuejun; Liu, Yunpeng; Qu, Xiujuan

    2017-07-01

    Lipid rafts provide a biological platform for apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We previously reported that insulin-like growth factor 1 receptor (IGF1R) translocation into lipid rafts helped to explain TRAIL resistance. However, it was not clear whether TRAIL resistance was caused by the interaction of IGF1R with caveolin-1 (CAV1) and the non-receptor tyrosine kinase SRC in lipid rafts of gastric cancer cells. Here, we observed high IGF1R expression in TRAIL-resistant gastric cancer cells, and showed that IGF1R combined with both CAV1 and SRC in a native complex. TRAIL was shown to promote the formation of the IGF1R/CAV1/SRC tri-complex and the activation of these three molecules. Knockdown of IGF1R or CAV1 or inhibition of SRC activity reduced the formation of this tri-complex and enhanced TRAIL-induced apoptosis. Furthermore, the overexpression of microRNA-194 reversed TRAIL resistance by reducing IGF1R expression. In summary, TRAIL increased formation of the IGF1R/CAV1/SRC tri-complex and the activation of downstream survival pathways, leading to TRAIL resistance in gastric cancer cells. © 2017 International Federation for Cell Biology.

  20. Drug-induced caspase 8 upregulation sensitises cisplatin-resistant ovarian carcinoma cells to rhTRAIL-induced apoptosis

    NARCIS (Netherlands)

    Duiker, E. W.; Meijer, A.; van der Bilt, A. R. M.; Meersma, G. J.; Kooi, N.; van der Zee, A. G. J.; de Vries, E. G.; de Jong, S.

    2011-01-01

    BACKGROUND: Drug resistance is a major problem in ovarian cancer. Triggering apoptosis using death ligands such as tumour necrosis factor-related apoptosis inducing ligand (TRAIL) might overcome chemoresistance. METHODS: We investigated whether acquired cisplatin resistance affects sensitivity to

  1. Repeated administration of low doses of cocaine enhances the sensitivity of 5-HT2 receptor function.

    Science.gov (United States)

    Darmani, N A; Martin, B R; Glennon, R A

    1992-03-01

    The acute and chronic effects of cocaine were evaluated on the 5-hydroxytryptamine (5-HT)-receptor 5-HT2 mediated behavioral function, the head-twitch response (HTR), in mice. In a recent study, we reported that the (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI)-induced HTR was dose dependently reduced by cocaine via indirect stimulation of serotonergic 5-HT1A and adrenergic alpha 2 receptors. In the present investigation, the HTR was evoked by the nonselective 5-HT agonist 5-methoxy-N,N-dimethyltryptamine hydrogen oxolate (5-MeO-DMT). Cocaine by itself failed to produce HTR but dose dependently inhibited the 5-MeO-DMT-induced behavior. Cocaine's effects were not due to 5-HT3 antagonism since acute administration of the more potent 5-HT3 antagonist (ICS-205,930) failed to produce or modify the 5-MeO-DMT-induced behavior. During withdrawal from chronic cocaine treatment (5-20 mg/kg), 5-MeO-DMT-induced HTR was enhanced. Depending upon the cocaine dose used, the induced supersensitivity persisted up to 172 h following cessation of cocaine treatment. The mechanisms of cocaine-induced supersensitivity were further investigated using the more selective 5-HT2 agonist DOI. Withdrawal from a low-dose (0.03-1.25 mg/kg) chronic cocaine treatment caused the DOI-induced HTR to increase, whereas withdrawal from a 5- and 10-mg/kg cocaine regimen had no significant effect. The maximal effect persisted up to 36 h following termination of cocaine treatment. Relative to vehicle-exposed controls, withdrawal from cocaine treatment enhanced the inhibitory potency of the 5-HT1A agonist (+-)-8-hydroxy-2-(di-n-propylamino)tetralin HBr (8-OH-DPAT) on DOI-induced HTR.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone.

    Directory of Open Access Journals (Sweden)

    Man-Yeon Choi

    Full Text Available Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200 have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia or PBAN receptor gene (in DG expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta.

  3. Transient receptor potential A1 receptor-mediated neural cross-talk and afferent sensitization induced by oxidative stress: implication for the pathogenesis of interstitial cystitis/bladder pain syndrome.

    Science.gov (United States)

    Furuta, Akira; Suzuki, Yasuyuki; Hayashi, Norihiro; Egawa, Shin; Yoshimura, Naoki

    2012-05-01

    Although the pathogenesis of interstitial cystitis/bladder pain syndrome remains unknown, there is a significant correlation of interstitial cystitis/bladder pain syndrome with other chronic pain disorders, such as irritable bowel syndrome, endometriosis and fibromyalgia syndrome. In this review, we highlight evidence supporting neural cross-talk in the dorsal root ganglia, spinal cord and brain levels, which might play a role in the development of chronic pain disorders through central sensitization. In addition, we focus on transient receptor potential V1 and transient receptor potential A1 as the receptor targets for chronic pain conditions, because transient receptor potential V1 and transient receptor potential A1 act as a nocisensor to mediate not only an afferent signal to the dorsal horn of the spinal cord, but also an efferent signal in the periphery through secretion of inflammatory agents, such as substance P and calcitonin gene-related peptide in nociceptive sensory neurons. Furthermore, peripheral inflammation produces multiple inflammatory mediators that act on their cognate receptors to activate intracellular signal transduction pathways and thereby modify the expression and function of transient receptor potential V1 and transient receptor potential A1 (peripheral sensitization). During tissue damage and inflammation, oxidative stress, such as reactive oxygen species or reactive carbonyl species is also generated endogenously. The highly diffusible nature might account for the actions of free radical formation far from the site of injury, thereby producing systemic pain conditions without central sensitization through neural cross-talk. Because oxidative stress is considered to induce activation of transient receptor potential A1, we also discuss exogenous and endogenous oxidative stress to elucidate its role in the pathogenesis of interstitial cystitis/bladder pain syndrome and other chronic pain conditions. © 2012 The Japanese Urological

  4. Trails

    Data.gov (United States)

    Vermont Center for Geographic Information — Data was hand drawn on USGS Topographic quads by foresters of the Vermont Department of Forests, Parks, & Recreation using orthophotos, survey data, and personal...

  5. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance

    OpenAIRE

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-01-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana. Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure...

  6. Activation of PAR2 receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint

    Science.gov (United States)

    Russell, FA; Schuelert, N; Veldhoen, VE; Hollenberg, MD; McDougall, JJ

    2012-01-01

    Background and Purpose The PAR2 receptors are involved in chronic arthritis by mechanisms that are as yet unclear. Here, we examined PAR2 activation in the rat knee joint. Experimental Approach PAR2 in rat knee joint dorsal root ganglia (DRG) cells at L3-L5, retrogradely labelled with Fluoro-gold (FG) were demonstrated immunohistochemically. Electrophysiological recordings from knee joint nerve fibres in urethane anaesthetized Wistar rats assessed the effects of stimulating joint PAR2 with its activating peptide, 2-furoyl-LIGRLO-NH2 (1–100 nmol·100 μL−1, via close intra-arterial injection). Fibre firing rate was recorded during joint rotations before and 15 min after administration of PAR2 activating peptide or control peptide. Leukocyte kinetics in the synovial vasculature upon PAR2 activation were followed by intravital microscopy for 60 min after perfusion of 2-furoyl-LIGRLO-NH2 or control peptide. Roles for transient receptor potential vanilloid-1 (TRPV1) or neurokinin-1 (NK1) receptors in the PAR2 responses were assessed using the selective antagonists, SB366791 and RP67580 respectively. Key Results PAR2 were expressed in 59 ± 5% of FG-positive DRG cells; 100 nmol 2-furoyl-LIGRLO-NH2 increased joint fibre firing rate during normal and noxious rotation, maximal at 3 min (normal; 110 ± 43%, noxious; 90 ± 31%). 2-Furoyl-LIGRLO-NH2 also significantly increased leukocyte rolling and adhesion over 60 min. All these effects were blocked by pre-treatment with SB366791 and RP67580 (P knee joint via TRPV1- and NK1-dependent mechanisms involving both PAR2-mediated neuronal sensitization and leukocyte trafficking. PMID:22849826

  7. Chronic morphine selectively sensitizes the effect of D1 receptor agonist on presynaptic glutamate release in basolateral amygdala neurons that project to prelimbic cortex.

    Science.gov (United States)

    Song, Jiaojiao; Chen, Ming; Dong, Yi; Lai, Bin; Zheng, Ping

    2018-05-01

    Drug addiction is a brain disorder characterized by chronic, compulsive use of drugs. Previous studies have found a number of chronic morphine-induced changes in the brain at molecular levels. A study from our lab showed that chronic morphine-induced increase in the expression of presynaptic D1 receptors in basolateral amygdala (BLA) neurons played an important role in environmental cue-induced retrieval of morphine withdrawal memory. However, the downstream neurocircuitry of chronic morphine-induced increase presynaptic D1 receptors in the BLA remains to be elucidated. Using retrogradely labelling technique combined with whole-cell patch-clamp methods, our results showed that (1) chronic morphine sensitized the effect of D1 receptor agonist on presynaptic glutamate release in BLA neurons that projected to the prelimbic cortex (PrL), but had no influence on that in BLA neurons that projected to the nucleus accumbens (NAc) or the CA1 of the hippocampus; (2) chronic morphine sensitized the effect of D1 receptor agonist on action potential firing in BLA neurons that projected to the PrL, but without affecting the intrinsic excitability and the sensitivity of postsynaptic glutamate receptors to glutamate in BLA neurons that projected to the PrL. These results suggest that chronic morphine selectively sensitizes the effect of D1 receptor agonist on presynaptic glutamate release in BLA neurons that project to PrL and induces a sensitization of the effect of D1 receptor agonist on action potential firing in BLA neurons that project to the PrL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Nesfatin-1/NUCB2 in the amygdala influences visceral sensitivity via glucocorticoid and mineralocorticoid receptors in male maternal separation rats.

    Science.gov (United States)

    Zhou, X-P; Sha, J; Huang, L; Li, T-N; Zhang, R-R; Tang, M-D; Lin, L; Li, X-L

    2016-10-01

    Nesfatin-1, a recently identified satiety molecule derived from nucleobindin 2 (NUCB2), is associated with visceral hypersensitivity in rats and is expressed in the amygdala. We tested the hypothesis that nesfatin-1 expression in the amygdala is involved in the pathogenesis of irritable bowel syndrome (IBS) visceral hypersensitivity. An animal model of IBS-like visceral hypersensitivity was established using maternal separation (MS) during postnatal days 2-16. The role of nesfatin-1 in the amygdala on visceral sensitivity was evaluated. Rats subjected to MS showed a significantly increased mean abdominal withdrawal reflex (AWR) score and electromyographic (EMG) activity at 40, 60, and 80 mmHg colorectal distension. Plasma concentrations of nesfatin-1 and corticosterone were significantly higher than in non-handled (NH) rats. mRNA and protein expression of nesfatin-1/NUCB2 in the amygdala were increased in MS rats, but not in NH rats. In MS rats, AWR scores and EMG activity were significantly decreased after anti-nesfatin-1/NUCB2 injection. In normal rats, mean AWR score, EMG activity, and corticosterone expression were significantly increased after nesfatin-1 injection into the amygdala. Nesfatin-1-induced visceral hypersensitivity was abolished following application of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) antagonists. Elevated expression of nesfatin-1/NUCB2 in the amygdala in MS rats suggests a potential role in the pathogenesis of visceral hypersensitivity, which could potentially take place via activation of GR and MR signaling pathways. © 2016 John Wiley & Sons Ltd.

  9. Strychnine-sensitive glycine receptors mediate analgesia induced by emulsified inhalation anaesthetics in thermal nociception but not in chemical nociception.

    Science.gov (United States)

    Chen, Yan; Dai, Ti-Jun; Zeng, Yin-Ming

    2007-03-01

    The present study was designed to investigate the role of strychnine-sensitive glycine receptors in analgesia induced by emulsified inhalation anaesthetics. After having established the mice model of analgesia by intraperitoneal or subcutaneous injections of appropriate doses of ether, enflurane, isoflurane or sevoflurane, we injected different doses of strychnine intrathecally and then observed the effects on the tail-flick latency using the tail-withdrawal test and the writhing times and acetic acid-induced writhing test. In the tail-withdrawal test, all four emulsified inhalation anaesthetics (intraperitoneally) significantly increased the tail-flick latency (P strychnine. In the acetic acid-induced writhing test, writhing times inhibition induced by subcutaneous administration of four emulsified inhalation anaesthetics was not effected by intrathecal strychnine (0.1, 0.2 and 0.4 microg). The data presented in this study suggest that glycine receptors are specifically involved in mediating the analgesic effect of ether, enflurane, isoflurane and sevoflurane on thermal-induced nociception but not chemically induced nociception.

  10. JP-45/JSRP1 variants affect skeletal muscle excitation contraction coupling by decreasing the sensitivity of the dihydropyridine receptor

    Science.gov (United States)

    Yasuda, Toshimichi; Delbono, Osvaldo; Wang, Zhong-Min; Messi, Maria L.; Girard, Thierry; Urwyler, Albert; Treves, Susan; Zorzato, Francesco

    2012-01-01

    JP-45 (also JP45; encoded by JSRP1) is an integral protein constituent of the skeletal muscle sarcoplasmic reticulum junctional face membrane interacting with Cav1.1 (the α.1 subunit of the voltage sensing dihydropyridine receptor, DHPR) and the luminal calcium-binding protein calsequestrin. Two JSRP1 variants have been found in the human population: c.323C>T (p.P108L) in exon 5 and c.449G>C (p.G150A) in exon 6, but nothing is known concerning the incidence of these polymorphisms in the general population or in patients with neuromuscular diseases nor the impact of the polymorphisms on excitation-contraction coupling. In the present report we investigated the frequencies of these two JSRP1 polymorphisms in the Swiss Malignant Hyperthermia population and studied the functional impact of the variants on excitation -contraction coupling. Our results show that the polymorphisms are equally distributed among Malignant Hyperthermia Negative, Malignant Hyperthermia Equivocal and Malignant Hyperthermia Susceptible individuals. Interestingly however, the presence of either one of these JP-45 variants decreased the sensitivity of the dihydropyridine receptor to activation. The presence of a JSRP1 variant may explain the variable phenotype seen in patients with malignant hyperthermia carrying the same mutation and more importantly, may counteract the hypersensitivity of excitation-contraction coupling caused by mutations in the RYR1 gene. PMID:22927026

  11. Highly Selective and Sensitive Detection of Acetylcholine Using Receptor-Modified Single-Walled Carbon Nanotube Sensors

    Science.gov (United States)

    Xu, Shihong; Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2015-03-01

    Acetylcholine (ACh) is a neurotransmitter in a human central nervous system and is related to various neural functions such as memory, learning and muscle contractions. Dysfunctional ACh regulations in a brain can induce several neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease and myasthenia gravis. In researching such diseases, it is important to measure the concentration of ACh in the extracellular fluid of the brain. Herein, we developed a highly sensitive and selective ACh sensor based on single-walled carbon nanotube-field effect transistors (swCNT-FETs). In our work, M1 mAChR protein, an ACh receptor, was expressed in E.coli and coated on swCNT-FETs with lipid membranes. Here, the binding of ACh onto the receptors could be detected by monitoring the change of electrical currents in the underlying swCNT-FETs, allowing the real-time detection of ACh at a 100 pM concentration. Furthermore, our sensor could selectively detect ACh from other neurotransmitters. This is the first report of the real-time sensing of ACh utilizing specific binding between the ACh and M1 mAChR, and it may lead to breakthroughs in various biomedical applications such as drug screening and disease diagnosis.

  12. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Isaure Chauvot de Beauchêne

    2014-07-01

    Full Text Available Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D localized in crucial regulatory segments, the juxtamembrane region (JMR and the activation (A- loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts.

  13. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    Full Text Available Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1/ PYRL (PYR-Like/ RCAR (Regulatory Component of ABA Receptor (PYR/PYL/RCAR ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa (PtPYRLs function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  14. Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor

    Science.gov (United States)

    2014-01-01

    Glucocorticoids are pleiotropic hormones, which are involved in almost every cellular, molecular and physiologic network of the organism, and regulate a broad spectrum of physiologic functions essential for life. The cellular response to glucocorticoids displays profound variability both in magnitude and in specificity of action. Tissue sensitivity to glucocorticoids differs among individuals, within tissues of the same individual and within the same cell. The actions of glucocorticoids are mediated by the glucocorticoid receptor, a ubiquitously expressed intracellular, ligand-dependent transcription factor. Multiple mechanisms, such as pre-receptor ligand metabolism, receptor isoform expression, and receptor-, tissue-, and cell type-specific factors, exist to generate diversity as well as specificity in the response to glucocorticoids. Alterations in the molecular mechanisms of glucocorticoid receptor action impair glucocorticoid signal transduction and alter tissue sensitivity to glucocorticoids. This review summarizes the recent advances in our understanding of the molecular mechanisms determining tissue sensitivity to glucocorticoids with particular emphasis on novel mutations and new information on the circadian rhythm and ligand-induced repression of the glucocorticoid receptor. PMID:25155432

  15. Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor.

    Science.gov (United States)

    Nicolaides, Nicolas C; Charmandari, Evangelia; Chrousos, George P; Kino, Tomoshige

    2014-08-25

    Glucocorticoids are pleiotropic hormones, which are involved in almost every cellular, molecular and physiologic network of the organism, and regulate a broad spectrum of physiologic functions essential for life. The cellular response to glucocorticoids displays profound variability both in magnitude and in specificity of action. Tissue sensitivity to glucocorticoids differs among individuals, within tissues of the same individual and within the same cell. The actions of glucocorticoids are mediated by the glucocorticoid receptor, a ubiquitously expressed intracellular, ligand-dependent transcription factor. Multiple mechanisms, such as pre-receptor ligand metabolism, receptor isoform expression, and receptor-, tissue-, and cell type-specific factors, exist to generate diversity as well as specificity in the response to glucocorticoids. Alterations in the molecular mechanisms of glucocorticoid receptor action impair glucocorticoid signal transduction and alter tissue sensitivity to glucocorticoids. This review summarizes the recent advances in our understanding of the molecular mechanisms determining tissue sensitivity to glucocorticoids with particular emphasis on novel mutations and new information on the circadian rhythm and ligand-induced repression of the glucocorticoid receptor.

  16. Argon prevents the development of locomotor sensitization to amphetamine and amphetamine-induced changes in mu opioid receptor in the nucleus accumbens.

    Science.gov (United States)

    David, Hélène N; Dhilly, Martine; Poisnel, Géraldine; Degoulet, Mickael; Meckler, Cédric; Vallée, Nicolas; Blatteau, Jean-Éric; Risso, Jean-Jacques; Lemaire, Marc; Debruyne, Danièle; Abraini, Jacques H

    2014-01-01

    Systemic administration of γ-amino-butyric acid type A (GABA-A) and benzodiazepine receptor agonists has been reported to block the development of locomotor sensitization to amphetamine. Here, we investigated whether the non-anesthetic noble gas argon, shown to possess agonistic properties at these receptors, may block the acquisition of amphetamine-induced locomotor sensitization and mu opioid receptor activation in the nucleus accumbens. Rats were pretreated with saline solution or amphetamine (1 mg/kg) from day 1 to day 3 and then exposed, immediately after injection of amphetamine, to medicinal air or argon at 75 vol% (with the remainder being oxygen). After a 3-day period of withdrawal, rats were challenged with amphetamine on day 7. Rats pretreated with amphetamine and argon had lower locomotor activity (U = 5, P < 0.005) and mu opioid receptor activity in the nucleus accumbens (U = 0, P < 0.001) than rats pretreated with amphetamine and air. In contrast, argon had effect on locomotor and mu receptor activity neither in rats pretreated with saline and challenged with amphetamine (acute amphetamine) nor in rats pretreated and challenged with saline solution (controls). These results indicate that argon inhibits the development of both locomotor sensitization and mu opioid receptor activation induced by repeated administration of amphetamine.

  17. Prolactin-sensitive neurons express estrogen receptor-α and depend on sex hormones for normal responsiveness to prolactin.

    Science.gov (United States)

    Furigo, Isadora C; Kim, Ki Woo; Nagaishi, Vanessa S; Ramos-Lobo, Angela M; de Alencar, Amanda; Pedroso, João A B; Metzger, Martin; Donato, Jose

    2014-05-30

    Estrogens and prolactin share important target tissues, including the gonads, brain, liver, kidneys and some types of cancer cells. Herein, we sought anatomical and functional evidence of possible crosstalk between prolactin and estrogens in the mouse brain. First, we determined the distribution of prolactin-responsive neurons that express the estrogen receptor α (ERα). A large number of prolactin-induced pSTAT5-immunoreactive neurons expressing ERα mRNA were observed in several brain areas, including the anteroventral periventricular nucleus, medial preoptic nucleus, arcuate nucleus of the hypothalamus, ventrolateral subdivision of the ventromedial nucleus of the hypothalamus (VMH), medial nucleus of the amygdala and nucleus of the solitary tract. However, although the medial preoptic area, periventricular nucleus of the hypothalamus, paraventricular nucleus of the hypothalamus, retrochiasmatic area, dorsomedial subdivision of the VMH, lateral hypothalamic area, dorsomedial nucleus of the hypothalamus and ventral premammillary nucleus contained significant numbers of prolactin-responsive neurons, these areas showed very few pSTAT5-immunoreactive cells expressing ERα mRNA. Second, we evaluated prolactin sensitivity in ovariectomized mice and observed that sex hormones are required for a normal responsiveness to prolactin as ovariectomized mice showed a lower number of prolactin-induced pSTAT5 immunoreactive neurons in all analyzed brain nuclei compared to gonad-intact females. In addition, we performed hypothalamic gene expression analyses to determine possible post-ovariectomy changes in components of prolactin signaling. We observed no significant changes in the mRNA expression of prolactin receptor, STAT5a or STAT5b. In summary, sex hormones exert a permissive role in maintaining the brain's prolactin sensitivity, most likely through post-transcriptional mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Energy saving through trail following in a marine snail

    OpenAIRE

    Davies, Mark S; Blackwell, Janine

    2007-01-01

    Most snails and slugs locomote over a layer of mucus and although the resultant mucus trail is expensive to produce, we show that this expense can be reduced by trail following. When tracking over fresh conspecific trails, the marine intertidal snail Littorina littorea (L.) produced only approximately 27% of the mucus laid by marker snails. When tracking over weathered trails, snails adjusted their mucus production to recreate a convex trail profile of similar shape and thickness to the trail...

  19. SPAG6 regulates cell apoptosis through the TRAIL signal pathway in myelodysplastic syndromes.

    Science.gov (United States)

    Li, Xinxin; Yang, Bihui; Wang, Li; Chen, Liping; Luo, Xiaohua; Liu, Lin

    2017-05-01

    Myelodysplastic syndromes (MDSs) are a group of malignant clone hematopoietic stem-cell diseases, and the evolution and progression of MDS depend on the abnormal apoptosis of bone marrow cells. Our previous studies have indicated that sperm-associated antigen 6 (SPAG6), located in the uniparental disomy regions of myeloid cells, is overexpressed in patients with MDS as compared to controls, and SPAG6 can inhibit apoptosis of SKM-1. However, the concrete mechanism is still unclear. In the present study, it was found that the TNF-related apoptosis-inducing ligand (TRAIL)signal pathway was activated when the expression of SPAG6 was inhibited by SPAG6-shRNA lentivirus in SKM-1 cells. Additionally, the results of flow cytometry, Cell Counting Kit-8 assay and western blot analysis implied that the TRAIL signal pathway could be inhibited by a high expression of SPAG6. However, SPAG6 cannot influence the expression of TRAIL death receptors, except for FADD. Additionally the interaction between FADD and TRAIL death receptors also increased in SKM-1 cells infected with SPAG6-shRNA lentivirus. Thus, our study demonstrates that SPAG6 may regulate apoptosis in SKM-1 through the TRAIL signal pathway, indicating that SPAG6 could be a potential therapeutic target.

  20. Abnormal norepinephrine clearance and adrenergic receptor sensitivity in idiopathic orthostatic intolerance

    Science.gov (United States)

    Jacob, G.; Shannon, J. R.; Costa, F.; Furlan, R.; Biaggioni, I.; Mosqueda-Garcia, R.; Robertson, R. M.; Robertson, D.

    1999-01-01

    BACKGROUND: Chronic orthostatic intolerance (OI) is characterized by symptoms of inadequate cerebral perfusion with standing, in the absence of significant orthostatic hypotension. A heart rate increase of >/=30 bpm is typical. Possible underlying pathophysiologies include hypovolemia, partial dysautonomia, or a primary hyperadrenergic state. We tested the hypothesis that patients with OI have functional abnormalities in autonomic neurons regulating cardiovascular responses. METHODS AND RESULTS: Thirteen patients with chronic OI and 10 control subjects underwent a battery of autonomic tests. Systemic norepinephrine (NE) kinetics were determined with the patients supine and standing before and after tyramine administration. In addition, baroreflex sensitivity, hemodynamic responses to bolus injections of adrenergic agonists, and intrinsic heart rate were determined. Resting supine NE spillover and clearance were similar in both groups. With standing, patients had a greater decrease in NE clearance than control subjects (55+/-5% versus 30+/-7%, P<0.02). After tyramine, NE spillover did not change significantly in patients but increased 50+/-10% in control subjects (P<0.001). The dose of isoproterenol required to increase heart rate 25 bpm was lower in patients than in control subjects (0.5+/-0.05 versus 1.0+/-0.1 microg, P<0.005), and the dose of phenylephrine required to increase systolic blood pressure 25 mm Hg was lower in patients than control subjects (105+/-11 versus 210+/-12 microg, P<0.001). Baroreflex sensitivity was lower in patients (12+/-1 versus 18+/-2 ms/mm Hg, P<0.02), but the intrinsic heart rate was similar in both groups. CONCLUSIONS: The decreased NE clearance with standing, resistance to the NE-releasing effect of tyramine, and increased sensitivity to adrenergic agonists demonstrate dramatically disordered sympathetic cardiovascular regulation in patients with chronic OI.

  1. On coagulation process in meteor trails

    International Nuclear Information System (INIS)

    Bergkhanov, M.

    1988-01-01

    Structure of the meteors processes of collisions of paricles formd after interaction of meteoric matter with the Earth atmosphere are shortly described. Equation describing coagulation in meteor trails is obtained. Primary and secondary particles of meteor nature, representing the source of polydisperse aerosol, exist in meteor zone. Coagulation in meteor trails can be referred to Brownian one

  2. Synergistic antitumor effect of AAV-mediated TRAIL expression combined with cisplatin on head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Jiang, Minghong; Liu, Zheng; Xiang, Yang; Ma, Hong; Liu, Shilian; Liu, Yanxin; Zheng, Dexian

    2011-01-01

    Adeno-associated virus-2 (AAV-2)-mediated gene therapy is quite suitable for local or regional application in head and neck cancer squamous cell carcinoma (HNSCC). However, its low transduction efficiency has limited its further development as a therapeutic agent. DNA damaging agents have been shown to enhance AAV-mediated transgene expression. Cisplatin, one of the most effective chemotherapeutic agents, has been recognized to cause cancer cell death by apoptosis with a severe toxicity. This study aims to evaluate the role of cisplatin in AAV-mediated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and the effect on HNSCC both in vitro and in vivo. Five human HNSCC cell lines were treated with recombinant soluble TRAIL (rsTRAIL) and infected with AAV/TRAIL to estimate the sensitivity of the cancer cells to TRAIL-induced cytotoxicity. KB cells were infected with AAV/EGFP with or without cisplatin pretreatment to evaluate the effect of cisplatin on AAV-mediated gene expression. TRAIL expression was detected by ELISA and Western blot. Cytotoxicity was measured by MTT assay and Western blot analysis for caspase-3 and -8 activations. Following the in vitro experiments, TRAIL expression and its tumoricidal activity were analyzed in nude mice with subcutaneous xenografts of HNSCC. HNSCC cell lines showed different sensitivities to rsTRAIL, and KB cells possessed both highest transduction efficacy of AAV and sensitivity to TRAIL among five cell lines. Preincubation of KB cells with subtherapeutic dosage of cisplatin significantly augmented AAV-mediated transgene expression in a heparin sulfate proteoglycan (HSPG)-dependent manner. Furthermore, cisplatin enhanced the killing efficacy of AAV/TRAIL by 3-fold on KB cell line. The AAV mediated TRAIL expression was observed in the xenografted tumors and significantly enhanced by cisplatin. AAV/TRAIL suppressed the tumors growth and cisplatin augmented the tumoricidal activity by two-fold. Furthermore

  3. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    Science.gov (United States)

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex

  4. Optogenetics reveals a role for accumbal medium spiny neurons expressingdopamine D2 receptors in cocaine-induced behavioral sensitization

    Directory of Open Access Journals (Sweden)

    Shelly Sooyun eSong

    2014-10-01

    Full Text Available Long-lasting, drug-induced adaptations within the nucleus accumbens (NAc have beenproposed to contribute to drug-mediated addictive behaviors. Here we have used anoptogenetic approach to examine the role of NAc medium spiny neurons (MSNs expressingdopamine D2 receptors (D2R in cocaine-induced behavioral sensitization. Adeno-associatedviral vectors coding channelrhodopsin-2 (ChR2 were delivered into the NAc of D2R-Cretransgenic mice. This allowed us to selectively photostimulate D2R-MSNs in NAc. D2RMSNsform local inhibitory circuits, because photostimulation of D2R-MSN evokedinhibitory postsynaptic currents in neighboring MSNs. Photostimulation of NAc D2R-MSNin vivo affected neither the initiation nor the expression of cocaine-induced behavioralsensitization. However, photostimulation during the drug withdrawal period attenuatedexpression of cocaine-induced behavioral sensitization. These results show that D2R-MSNsof NAc play a key role in withdrawal-induced plasticity and may contribute to relapse aftercessation of drug abuse.

  5. Transforming growth factor beta receptor 1 is increased following abstinence from cocaine self-administration, but not cocaine sensitization.

    Directory of Open Access Journals (Sweden)

    Amy M Gancarz-Kausch

    Full Text Available The addicted phenotype is characterized as a long-lasting, chronically relapsing disorder that persists following long periods of abstinence, suggesting that the underlying molecular changes are stable and endure for long periods even in the absence of drug. Here, we investigated Transforming Growth Factor-Beta Type I receptor (TGF-β R1 expression in the nucleus accumbens (NAc following periods of withdrawal from cocaine self-administration (SA and a sensitizing regimen of non-contingent cocaine. Rats were exposed to either (i repeated systemic injections (cocaine or saline, or (ii self-administration (cocaine or saline and underwent a period of forced abstinence (either 1 or 7 days of drug cessation. Withdrawal from cocaine self-administration resulted in an increase in TGF-β R1 protein expression in the NAc compared to saline controls. This increase was specific for volitional cocaine intake as no change in expression was observed following a sensitizing regimen of experimenter-administered cocaine. These findings implicate TGF-β signaling as a novel potential therapeutic target for treating drug addiction.

  6. Trail impacts and trail impact management related to ecotourism visitation at Torres del Paine National Park, Chile

    Science.gov (United States)

    Farrell, T.A.; Marion, J.L.

    2002-01-01

    Ecotourism and protected area visitation in Central and South America are largely dependent upon a relatively undisturbed quality of natural resources. However, visitation may impact vegetation, soil, water and wildlife resources, and degrade visitor facilities such as recreation sites and trails. Findings are reported from trail impact research conducted at Torres del Paine National Park in Patagonia, Chile. The frequency and magnitude of selected trail impacts and the relative effect of the amount of use, vegetation type, trail position and trail grade are investigated. Findings differed from previous studies in that amount of use was significantly related to both trail width increases and trail erosion. Management actions to minimize trail impacts are offered.

  7. Environmental ground borne noise and vibration protection of sensitive cultural receptors along the Athens Metro Extension to Piraeus.

    Science.gov (United States)

    Vogiatzis, Konstantinos

    2012-11-15

    Attiko Metro S.A., the state company ensuring the development of the Athens Metro network, has recently initiated a new extension of 7.6 km, has planned for line 3 of Athens Metro from Haidari to Piraeus "Dimotikon Theatre" towards "University of Piraeus" (forestation), connecting the major Piraeus Port with "Eleftherios Venizelos" International Airport. The Piraeus extension consists of a Tunnel Boring Machine, 2 tracks and, tunnel sections, as well as 6 stations and a forestation (New Austrian Tunnelling Method) at the end of the alignment. In order to avoid the degradation of the urban acoustic environment from ground borne noise and vibration during metro operation, the assessment of the required track types and possible noise mitigation measures was executed, and for each section and each sensitive building, the ground borne noise and vibration levels will be numerically predicted. The calculated levels were then compared with ground borne noise and vibration level criteria. The necessary mitigation measures were defined in order to guarantee, in each location along the extension, the allowable ground borne Noise and Vibration max. levels inside nearby sensitive buildings taking into account alternative Transfer Functions for ground borne noise diffusion inside the buildings. Ground borne noise levels were proven to be higher than the criterion where special track work is present and also in the case of the sensitive receptor: "Dimotikon Theatre". In order to reduce the ground borne noise levels to allowable values in these sections, the installation of tracks and special track work on a floating slab was assessed and recommended. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Oxidative stress-induced glomerular mineralocorticoid receptor activation limits the benefit of salt reduction in Dahl salt-sensitive rats.

    Directory of Open Access Journals (Sweden)

    Kento Kitada

    Full Text Available Mineralocorticoid receptor (MR antagonists attenuate renal injury in salt-sensitive hypertensive rats with low plasma aldosterone levels. We hypothesized that oxidative stress causes MR activation in high-salt-fed Dahl salt-sensitive rats. Furthermore, we determined if MR activation persisted and induced renal injury, even after switching from a high- to a normal-salt diet.High-salt feeding for 4 weeks increased dihydroethidium fluorescence (DHE, an oxidant production marker, p22phox (a NADPH oxidase subunit and serum and glucocorticoid-regulated kinase-1 (SGK1, an MR transcript in glomeruli, compared with normal-salt feeding, and these changes persisted 4 weeks after salt withdrawal. Tempol treatment (0.5 mmol/L during high-salt feeding abolished the changes in DHE fluorescence, p22phox and SGK1. Dietary salt reduction after a 4-week high-salt diet decreased both blood pressure and proteinuria, but was associated with significantly higher proteinuria than in normal control rats at 4 weeks after salt reduction. Administration of tempol during high-salt feeding, or eplerenone, an MR antagonist (100 mg/kg/day, started after salt reduction, recovered proteinuria to normal levels at 4 weeks after salt reduction. Paraquat, a reactive oxygen species generator, enhanced MR transcriptional activity in cultured rat mesangial cells and mouse podocytes.These results suggest that oxidative stress plays an important role in glomerular MR activation in Dahl salt-sensitive rats. Persistent MR activation even after reducing salt intake could limit the beneficial effects of salt restriction.

  9. CMHX008, a novel peroxisome proliferator-activated receptor γ partial agonist, enhances insulin sensitivity in vitro and in vivo.

    Science.gov (United States)

    Ming, Yue; Hu, Xiangnan; Song, Ying; Liu, Zhiguo; Li, Jibin; Gao, Rufei; Zhang, Yuyao; Mei, Hu; Guo, Tingwang; Xiao, Ling; Wang, Bochu; Wu, Chaodong; Xiao, Xiaoqiu

    2014-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in adipocyte differentiation and insulin sensitivity. Its ligand rosiglitazone has anti-diabetic effect but is frequently accompanied with some severe unwanted effects. The aim of the current study was to compare the anti-diabetic effect of CMHX008, a novel thiazolidinedione-derivative, with rosiglitazone. A luciferase assay was used to evaluate in vitro PPARγ activation. 3T3-L1 cells were used to examine adipocyte differentiation. High fat diet (HFD) mice were used to examine in vivo insulin sensitivity. The mRNA levels were evaluated by real-time RT-PCR. Serum biochemical and hormonal variables were assessed using a clinical chemistry analyser. CMHX008 displayed a moderate PPARγ agonist activity, and promoted 3T3-L1 preadipocyte differentiation with lower activity than rosiglitazone. CMHX008 regulated the expression of PPARγ target genes in a different manner from rosiglitazone. CMHX008 increased the expression and secretion of adiponectin with the similar efficacy as rosiglitazone, but only 25% as potent as rosiglitazone for the induction of adipocyte fatty acid binding protein. Treatment of CMHX008 and rosiglitazone protected mice from high fat diet (HFD)-induced glucose intolerance, hyperinsulinemia and inflammation. CMHX008 reduced the mRNA expression of M1 macrophage markers, and significantly increased the expressions of M2 markers. In conclusion, CMHX008 shared the comparable insulin-sensitizing effects as rosiglitazone with lower adipogenic capacity and might potentially be developed into an effective agent for the treatment of diabetes and metabolic disorders.

  10. Snails and their trails: the multiple functions of trail-following in gastropods.

    Science.gov (United States)

    Ng, Terence P T; Saltin, Sara H; Davies, Mark S; Johannesson, Kerstin; Stafford, Richard; Williams, Gray A

    2013-08-01

    Snails are highly unusual among multicellular animals in that they move on a layer of costly mucus, leaving behind a trail that can be followed and utilized for various purposes by themselves or by other animals. Here we review more than 40 years of experimental and theoretical research to try to understand the ecological and evolutionary rationales for trail-following in gastropods. Data from over 30 genera are currently available, representing a broad taxonomic range living in both aquatic and terrestrial environments. The emerging picture is that the production of mucus trails, which initially was an adaptation to facilitate locomotion and/or habitat extension, has evolved to facilitate a multitude of additional functions. Trail-following supports homing behaviours, and provides simple mechanisms for self-organisation in groups of snails, promoting aggregation and thus relieving desiccation and predation pressures. In gastropods that copulate, trail-following is an important component in mate-searching, either as an alternative, or in addition to the release of water- or air-borne pheromones. In some species, this includes a capacity of males not only to identify trails of conspecifics but also to discriminate between trails laid by females and males. Notably, trail discrimination seems important as a pre-zygotic barrier to mating in some snail species. As production of a mucus trail is the most costly component of snail locomotion, it is also tempting to speculate that evolution has given rise to various ways to compensate for energy losses. Some snails, for example, increase energy intake by eating particles attached to the mucus of trails that they follow, whereas others save energy through reducing the production of their own mucus by moving over previously laid mucus trails. Trail-following to locate a prey item or a mate is also a way to save energy. While the rationale for trail-following in many cases appears clear, the basic mechanisms of trail

  11. Pheromone disruption of Argentine ant trail integrity

    Science.gov (United States)

    Suckling, D.M.; Peck, R.W.; Manning, L.M.; Stringer, L.D.; Cappadonna, J.; El-Sayed, A. M.

    2008-01-01

    Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m2) to 1- and 4-m2 plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected. ?? 2008 Springer Science+Business Media, LLC.

  12. Biological variation and reference intervals for circulating osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor kappa B ligand and high-sensitivity C-reactive protein

    DEFF Research Database (Denmark)

    Sennels, H P; Jacobsen, Søren; Jensen, T

    2007-01-01

    Objective. Monitoring inflammatory diseases and osteoclastogenesis with osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor kappa B ligand (total sRANKL) and high-sensitivity C-reactive protein (hsCRP) has recently attracted increased interest. The purpose...

  13. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  14. Calcium pathways such as cAMP modulate clothianidin action through activation of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors.

    Science.gov (United States)

    Calas-List, Delphine; List, Olivier; Quinchard, Sophie; Thany, Steeve H

    2013-07-01

    Clothianidin is a neonicotinoid insecticide developed in the early 2000s. We have recently demonstrated that it was a full agonist of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors expressed in the cockroach dorsal unpaired median neurons. Clothianidin was able to act as an agonist of imidacloprid-insensitive nAChR2 receptor and internal regulation of cAMP concentration modulated nAChR2 sensitivity to clothianidin. In the present study, we demonstrated that cAMP modulated the agonist action of clothianidin via α-bungarotoxin-sensitive and insensitive receptors. Clothianidin-induced current-voltage curves were dependent to clothianidin concentrations. At 10 μM clothianidin, increasing cAMP concentration induced a linear current-voltage curve. Clothianidin effects were blocked by 0.5 μM α-bungarotoxin suggesting that cAMP modulation occurred through α-bungarotoxin-sensitive receptors. At 1 mM clothianidin, cAMP effects were associated to α-bungarotoxin-insensitive receptors because clothianidin-induced currents were blocked by 5 μM mecamylamine and 20 μM d-tubocurarine. In addition, we found that application of 1mM clothianidin induced a strong increase of intracellular calcium concentration. These data reinforced the finding that calcium pathways including cAMP modulated clothianidin action on insect nicotinic acetylcholine receptors. We proposed that intracellular calcium pathways such as cAMP could be a target to modulate the mode of action of neonicotinoid insecticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Assessing soil erosion on trails: A comparison of techniques

    Science.gov (United States)

    Mark C. Jewell; William E. Hammitt

    2000-01-01

    Reports of trail degradation have been increasing in different wildernesses. This impact has become a common concern among managers. Deteriorating tread conditions of trails are increasing, as is concern at protected areas worldwide. In order to make objective and timely trail resource decisions, managers need to have effective and efficient methods of assessing trail...

  16. Classification of mountain bike trails using vehicle-pavement ...

    African Journals Online (AJOL)

    Various mountain bike trails exist in South Africa, but their difficulty ratings are generally unknown. By classifying the trails, risk of injury and uncertainty can be limited as information are provided on the difficulty of the trail. In creating a Trail Classification System (TCS) the principles of Vehicle-Pavement Interaction (V-PI) can ...

  17. Recreational trails as a source of negative impacts on the persistence of keystone species and facilitation.

    Science.gov (United States)

    Ballantyne, Mark; Pickering, Catherine Marina

    2015-08-15

    Hiking trails, which are among the most common forms of infrastructure created for nature-based tourism, can alter key ecological processes. Trails can damage plants that facilitate the establishment and growth of other species leading to changes in community and functional composition. This can be a particular concern in harsh alpine ecosystems where plant communities are often dominated by one or two keystone species that provide shelter to a suite of beneficiary species. We analysed how a hiking trail affects interspecific facilitation by a dominant trampling-sensitive nurse shrub in the highest National Park in Australia. First we assessed the effects of the trail on the abundance, size and density of the nurse shrub at different distances from the trail. We then compared species richness and composition between areas in, and out, of the nurse shrub's canopy at different distances from the trail. To better understand why some species may benefit from facilitation and any effects of the trail on the quality of facilitation we compared functional composition between quadrats using community trait weighted means calculated by combining plant composition with species functional traits (canopy height, leaf area, % dry weight of leaves and specific leaf area). The abundance, size and density of nurse shrubs was lower on the trail edges than further away, particularly on the leeward edge, where there was more bare ground and less shrub cover. There were differences in species richness, cover, composition and functional composition in and outside the nurse shrub canopy. The shrubs appeared to facilitate species with more competitive, but less stress tolerant traits (e.g. taller plants with leaves that were larger, had high specific leaf area and low dry matter content). However, despite reductions in nurse shrubs near the trail, where they do exist, they appear to provide the same 'quality' of facilitation as nurse shrubs further away. However, longer-term effects may

  18. TRAIL and microRNAs in the treatment of prostate cancer: therapeutic potential and role of nanotechnology.

    Science.gov (United States)

    Farooqi, Ammad Ahmad; De Rosa, Giuseppe

    2013-10-01

    Disruption of spatiotemporal behavior of intracellular signaling cascades including tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-mediated signaling in prostate cancer has gained tremendous attention in the past few years. There is an increasing effort in translating the emerging information about TRAIL-mediated signaling obtained through experimental and preclinical data to clinic. Fascinatingly, novel targeting approaches are being developed to enhance the tissue- or subcellular-specific delivery of drugs with considerable focus on prostate cancer. These applications have the potential to revolutionize prostate cancer therapeutic strategies and include the accumulation of drugs in target tissue as well as the selection of internalizing ligands for enhanced receptor-mediated uptake of drugs. In this mini-review, we outline outstanding developments in therapeutic strategies based on the regulation and/or targeting of TRAIL pathway for the treatment of prostate cancer. Moreover, microRNAs (miRNAs), with potential transcriptional and posttranscriptional regulation of gene expression, will be presented for their potential in prostate cancer treatment. Emphasis has been given to the use of delivery approaches, especially based on nanotechnology. Considerably, enhanced information regarding miRNA regulation of TRAIL-mediated signaling in prostate cancer cells may provide potential biomarkers for the characterization of patients as responders and nonresponders of TRAIL-based therapy and could provide rationalized basis for combination therapies with TRAIL death receptor-targeting drugs.

  19. Evaluation of sensitizers found in wastewater from paper recycling areas, and their activation of the aryl hydrocarbon receptor in vitro.

    Science.gov (United States)

    Terasaki, Masanori; Yasuda, Michiko; Shimoi, Kayoko; Jozuka, Kazuhiko; Makino, Masakazu; Shiraishi, Fujio; Nakajima, Daisuke

    2014-09-15

    The in vitro potential of sensitizers and related compounds (SRCs) originating from impurities in waste paper in activating the human aryl hydrocarbon receptor (AhR) α was assessed using yeast reporter gene as well as cytochrome P450 (CYP)1A1 and ethoxyresorufin O-deethylase (EROD) assays. In the yeast assay, eight compounds exhibited agonist activity, and their activity relative to β-naphthoflavone (BNF) ranged from 1.4 × 10(-4) to 8.3 × 10(-2), with the highest activity observed for benzyl 2-naphthyl ether (BNE). In the EROD assay, six compounds caused a more significant induction of CYP1A-dependent activity than did the vehicle control at 50 μM (ppaper recycling area was fractioned using solid-phase extraction (SPE) combined with a C18 disk and florisil cartridge. In gas chromatography-mass spectrometry (GC-MS) analysis, SRCs were detected in the first fraction, at a total concentration of 5.5 μg/L. This fraction also activated AhR, and its activity, expressed as a BNF equivalent value, was 0.42 nM in the yeast assay. The contribution ratio of active compounds accounted for up to 34% and 4.4% observed activity of the fraction and total samples, respectively. To our knowledge, this is the first study to show that paper industry-related compounds, namely aromatic sensitizers, activate AhR by using a yeast assay and HepG2 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chaohui, E-mail: zuochaohui@vip.sina.com [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Qiu, Xiaoxin [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Liu, Nianli; Yang, Darong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Xia, Man [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Liu, Jingshi [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Wang, Xiaohong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  1. Serotonin-Sensitive Adenylate Cyclase in Neural Tissue and Its Similarity to the Serotonin Receptor: A Possible Site of Action of Lysergic Acid Diethylamide

    Science.gov (United States)

    Nathanson, James A.; Greengard, Paul

    1974-01-01

    An adenylate cyclase (EC 4.6.1.1) that is activated specifically by low concentrations of serotonin has been identified in homogenates of the thoracic ganglia of an insect nervous system. The activation of this enzyme by serotonin was selectively inhibited by extremely low concentrations of D-lysergic acid diethylamide (LSD), 2-bromo-LSD, and cyproheptadine, agents which are known to block certain serotonin receptors in vivo. The inhibition was competitive with respect to serotonin, and the calculated inhibitory constant of LSD for this serotonin-sensitive adenylate cyclase was 5 nM. The data are consistent with a model in which the serotonin receptor of neural tissue is intimately associated with a serotonin-sensitive adenylate cyclase which mediates serotonergic neurotransmission. The results are also compatible with the possibility that some of the physiological effects of LSD may be mediated through interaction with serotonin-sensitive adenylate cyclase. PMID:4595572

  2. Where ends the TRAIL in arthritis?

    Directory of Open Access Journals (Sweden)

    Michael Hahne

    2009-10-01

    Full Text Available A hallmark of rheumatoid arthritis (RA is the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLS, as these cells invade and finally destroy the joint structure. RA FLS have been proposed therefore as a therapeutic target. The TNF-related apoptosis-inducing ligand (TRAIL has gained much attention as a possible therapeutic reagent for the treatment of tumors, as TRAIL was described originally to induce apoptosis specifically in cancer cells but not in normal cells. The fact that FLS in RA patients exhibit tumor-like features led to investigations on the effect of TRAIL on ex-vivo RA FLS. In this review we aim to summarize what is presently known on the role of TRAIL in RA.

  3. Miniature Trailing Edge Effector for Aerodynamic Control

    Science.gov (United States)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  4. VT Green Mountain National Forest - Trails

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) GMNFTRAILS contains minor Forest Service roads and all trails within the proclamation boundary of the Green Mountain National Forest and many of...

  5. Minnesota State Park Trails and Roads

    Data.gov (United States)

    Minnesota Department of Natural Resources — This shapefile covers the trails in the State of Minnesota Parks, Recreation Areas, and Waysides as designated through legislation and recognized by the Department...

  6. Prolactin Receptor-Mediated Internalization of Imaging Agents Detects Epithelial Ovarian Cancer with Enhanced Sensitivity and Specificity.

    Science.gov (United States)

    Sundaram, Karthik M; Zhang, Yilin; Mitra, Anirban K; Kouadio, Jean-Louis K; Gwin, Katja; Kossiakoff, Anthony A; Roman, Brian B; Lengyel, Ernst; Piccirilli, Joseph A

    2017-04-01

    Poor prognosis of ovarian cancer, the deadliest of the gynecologic malignancies, reflects major limitations associated with detection and diagnosis. Current methods lack high sensitivity to detect small tumors and high specificity to distinguish malignant from benign tissue, both impeding diagnosis of early and metastatic cancer stages and leading to costly and invasive surgeries. Tissue microarray analysis revealed that >98% of ovarian cancers express the prolactin receptor (PRLR), forming the basis of a new molecular imaging strategy. We fused human placental lactogen (hPL), a specific and tight binding PRLR ligand, to magnetic resonance imaging (gadolinium) and near-infrared fluorescence imaging agents. Both in tissue culture and in mouse models, these imaging bioconjugates underwent selective internalization into ovarian cancer cells via PRLR-mediated endocytosis. Compared with current clinical MRI techniques, this targeted approach yielded both enhanced signal-to-noise ratio from accumulation of signal via selective internalization and improved specificity conferred by PRLR upregulation in malignant ovarian cancer. These features endow PRLR-targeted imaging with the potential to transform ovarian cancer detection. Cancer Res; 77(7); 1684-96. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. JP-45/JSRP1 variants affect skeletal muscle excitation-contraction coupling by decreasing the sensitivity of the dihydropyridine receptor.

    Science.gov (United States)

    Yasuda, Toshimichi; Delbono, Osvaldo; Wang, Zhong-Min; Messi, Maria L; Girard, Thierry; Urwyler, Albert; Treves, Susan; Zorzato, Francesco

    2013-01-01

    JP-45 (also JP45; encoded by JSRP1) is an integral protein constituent of the skeletal muscle sarcoplasmic reticulum junctional face membrane interacting with Ca(v) 1.1 (the α.1 subunit of the voltage-sensing dihydropyridine receptor, DHPR) and the luminal calcium-binding protein calsequestrin. Two JSRP1 variants have been found in the human population: c.323C>T (p.P108L) in exon 5 and c.449G>C (p.G150A) in exon 6, but nothing is known concerning the incidence of these polymorphisms in the general population or in patients with neuromuscular diseases nor the impact of the polymorphisms on excitation-contraction (EC) coupling. In the present report, we investigated the frequencies of these two JSRP1 polymorphisms in the Swiss malignant hyperthermia population and studied the functional impact of the variants on EC coupling. Our results show that the polymorphisms are equally distributed among malignant hyperthermia negative, malignant hyperthermia equivocal, and malignant hyperthermia susceptible individuals. Interestingly, however, the presence of either one of these JP-45 variants decreased the sensitivity of the DHPR to activation. The presence of a JSRP1 variant may explain the variable phenotype seen in patients with malignant hyperthermia carrying the same mutation and, more importantly, may counteract the hypersensitivity of EC coupling caused by mutations in the RYR1 gene. © 2012 Wiley Periodicals, Inc.

  8. Estimating the economic value and impacts of recreational trails: a case study of the Virginia creeper rail trail

    Science.gov (United States)

    J. Michael Bowker; John C. Bergstrom; Joshua Gill

    2007-01-01

    Many communities are interested in developing and maintaining recreational trails to benefit trail users and as tourist attractions to stimulate economic growth. In this paper, a study is described which estimates the net economic value to trail users and the local economic impacts of the Virginia Creeper Rail Trail in south-western Virginia, USA. The monetary...

  9. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation.

    Science.gov (United States)

    Ullah, Md Ashik; Loh, Zhixuan; Gan, Wan Jun; Zhang, Vivian; Yang, Huan; Li, Jian Hua; Yamamoto, Yasuhiko; Schmidt, Ann Marie; Armour, Carol L; Hughes, J Margaret; Phipps, Simon; Sukkar, Maria B

    2014-08-01

    The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  10. Early continuous white noise exposure alters auditory spatial sensitivity and expression of GAD65 and GABAA receptor subunits in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2010-04-01

    Sensory experiences have important roles in the functional development of the mammalian auditory cortex. Here, we show how early continuous noise rearing influences spatial sensitivity in the rat primary auditory cortex (A1) and its underlying mechanisms. By rearing infant rat pups under conditions of continuous, moderate level white noise, we found that noise rearing markedly attenuated the spatial sensitivity of A1 neurons. Compared with rats reared under normal conditions, spike counts of A1 neurons were more poorly modulated by changes in stimulus location, and their preferred locations were distributed over a larger area. We further show that early continuous noise rearing induced significant decreases in glutamic acid decarboxylase 65 and gamma-aminobutyric acid (GABA)(A) receptor alpha1 subunit expression, and an increase in GABA(A) receptor alpha3 expression, which indicates a returned to the juvenile form of GABA(A) receptor, with no effect on the expression of N-methyl-D-aspartate receptors. These observations indicate that noise rearing has powerful adverse effects on the maturation of cortical GABAergic inhibition, which might be responsible for the reduced spatial sensitivity.

  11. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8

    International Nuclear Information System (INIS)

    Chacko, Alex D; Liberante, Fabio; Paul, Ian; Longley, Daniel B; Fennell, Dean A

    2010-01-01

    Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway

  12. Expression of TRAIL-splice variants in gastric carcinomas: identification of TRAIL-γ as a prognostic marker

    International Nuclear Information System (INIS)

    Krieg, Andreas; Mahotka, Csaba; Mersch, Sabrina; Wolf, Nadine; Stoecklein, Nikolas H; Verde, Pablo E; Schulte am Esch, Jan; Heikaus, Sebastian; Gabbert, Helmut E; Knoefel, Wolfram T

    2013-01-01

    TNF-related apoptosis inducing ligand (TRAIL) belongs to the TNF-superfamily that induces apoptotic cell death in a wide range of neoplastic cells in vivo as well as in vitro. We identified two alternative TRAIL-splice variants, i.e. TRAIL-β and TRAIL-γ that are characterized by the loss of their proapoptotic properties. Herein, we investigated the expression and the prognostic values of the TRAIL-splice variants in gastric carcinomas. Real time PCR for amplification of the TRAIL-splice variants was performed in tumour tissue specimens and corresponding normal tissues of 41 consecutive patients with gastric carcinoma. Differences on mRNA-expression levels of the TRAIL-isoforms were compared to histo-pathological variables and correlated with survival data. All three TRAIL-splice variants could be detected in both non-malignant and malignant tissues, irrespective of their histological staging, grading or tumour types. However, TRAIL-β exhibited a higher expression in normal gastric tissue. The proapoptotic TRAIL-α expression was increased in gastric carcinomas when compared to TRAIL-β and TRAIL-γ. In addition, overexpression of TRAIL-γ was associated with a significant higher survival rate. This is the first study that investigated the expression of TRAIL-splice variants in gastric carcinoma tissue samples. Thus, we provide first data that indicate a prognostic value for TRAIL-γ overexpression in this tumour entity

  13. Assessing mental flexibility: neuroanatomical and neuropsychological correlates of the Trail Making Test in elderly people

    NARCIS (Netherlands)

    Oosterman, J.M.; Vogels, R.L.C.; Harten, B. van; Gouw, A.A.; Poggesi, A.; Scheltens, P.; Kessels, R.P.C.; Scherder, E.J.A.

    2010-01-01

    The Trail Making Test part B (TMT-B) is highly sensitive to age-related changes in the brain and cognitive function. However, the precise contribution of periventricular hyperintensities (PVH), deep white matter hyperintensities (DWMH), and medial temporal lobe atrophy (MTA) to task performance

  14. Assessing mental flexibility: neuroanatomical and neuropsychological correlates of the Trail Making Test in elderly people.

    NARCIS (Netherlands)

    Oosterman, J.M.; Vogels, R.L.; Harten, B. van; Gouw, A.A.; Poggesi, A.; Scheltens, P.; Kessels, R.P.C.; Scherder, E.J.

    2010-01-01

    The Trail Making Test part B (TMT-B) is highly sensitive to age-related changes in the brain and cognitive function. However, the precise contribution of periventricular hyperintensities (PVH), deep white matter hyperintensities (DWMH), and medial temporal lobe atrophy (MTA) to task performance

  15. Nature Trails, Braille Trails, Foot Paths, Fragrance Gardens, Touch Museums for the Blind; Policy Statement.

    Science.gov (United States)

    American Foundation for the Blind, New York, NY.

    The policy statement by the American Foundation for the Blind deals with nature trails, braille trails, foot paths, fragrance gardens, and touch museums for the blind. It is stated that the foundation approves of services such as provision of tape recorded guides and planting of fragrant shrubs which would benefit all users while recognizing…

  16. DR4 specific TRAIL variants are more efficacious than wild-type TRAIL in pancreatic cancer

    NARCIS (Netherlands)

    Yu, Rui; Albarenque, Stella Maris; Cool, Robbert H.; Quax, Wim J.; Mohr, Andrea; Zwacka, Ralf M.

    2014-01-01

    Current treatment modalities for pancreatic carcinoma afford only modest survival benefits. TRAIL, as a potent and specific inducer of apoptosis in cancer cells, would be a promising new treatment option. However, since not all pancreatic cancer cells respond to TRAIL, further improvements and

  17. Upregulation of Coxsackie Adenovirus Receptor Sensitizes Cisplatin-Resistant Lung Cancer Cells to CRAd-Induced Inhibition.

    Science.gov (United States)

    Sakhawat, Ali; Liu, Yanan; Ma, Ling; Muhammad, Tahir; Wang, Shensen; Zhang, Lina; Cong, Xianling; Huang, Yinghui

    2017-01-01

    Objective. Conditionally replicating adenoviruses (CRAds) have been proven potent oncolytic viruses in previous studies. They selectively replicate in the tumor cells because of incorporated survivin promoter and ultimately lead to their killing with minimal side effects on normal tissue. Chemotherapy with cisplatin is commonly employed for treating tumors, but its cytotoxic effects and development of resistance remained major concerns to be dealt with. The aim of this study was to explore the anticancer potential of survivin regulated CRAd alone or in combination with cisplatin in the A549 lung cancer cell line and cisplatin-resistant lung cancer cell line, A549-DDPR. Methods. CRAd was genetically engineered in our laboratory by removing its E1B region and adding survivin promoter to control its replication. A549, H292, and H661 lung cancer cell lines were procured from the CAS-China. The anti-tumor effectiveness of combined treatment (cisplatin plus CRAd) was evaluated in vitro through MTS assays and in vivo through mouse model experimentation. RT- PCR was used to assess MDR gene and mRNA expression of coxsackie adenoviral receptor (CAR). Results. Results of in vitro studies established that A549 lung cancer cells were highly sensitive to cisplatin showing dose-dependent inhibition. The resistant cells of A549-DDPR exhibited very less sensitivity to cisplatin but were infected with CRAd more efficiently as compared to A549. A549-DDPR cells exhibited higher expression of MDR gene and CAR in the RT-PCR analysis. The nearly similar rise in the CAR expression was seen when lung cancer cell lines received cisplatin in combined treatment (cisplatin plus CRAd). Combined anti-cancer therapy (cisplatin plus oncolytic virus) proved more efficient than monotherapy in the killing of cancer cells. Results of in vivo experiments recapitulated nearly similar tumor inhibition activities. Conclusion. This study highlighted the significant role of survivin in gene therapy as it

  18. Taurine blocks ATP-sensitive potassium channels of rat skeletal muscle fibres interfering with the sulphonylurea receptor.

    Science.gov (United States)

    Tricarico, D; Barbieri, M; Camerino, D C

    2000-06-01

    Taurine is a sulphonic aminoacid present in high amounts in various tissues including cardiac and skeletal muscles showing different properties such as antioxidative, antimyotonic and anti-schaemic effects. The cellular mechanism of action of taurine is under investigation and appears to involve the interaction of the sulphonic aminoacid with several ion channels. Using the patch-clamp technique we studied the effects of taurine in rat skeletal muscle fibres on ATP-sensitive K(+) channel (K(ATP)) immediately after excision and on channels that underwent rundown. The cytoplasmic application of 20 mM of taurine reduced the K(ATP) current; this effect was reverted by washout of the drug solution. In this experimental condition the IC(50) was 20.1 mM. After rundown, taurine inhibited the K(ATP) current with similar efficacy. Competition experiments showed that taurine shifted the dose-response inhibition curve of glybenclamide to the left on the log-dose axis without significantly affecting those of ATP or Ca(2+) ion. Single channel recording revealed that taurine affects the close state of the channel prolonging it and reducing the bursts duration. Our data indicate that taurine inhibits the muscular K(ATP) channel interfering with the glybenclamide site on the sulphonylurea receptor of the channel or on the site allosterically coupled to it. During ischaemia and hypoxia, the skeletal and heart muscles undergo several changes; for example, the activation of K(ATP) channels and loss of the intracellular taurine content. The depletion of taurine during ischaemia would contribute to the early activation of K(ATP) channels and salvage the intracellular ATP content.

  19. Integration of Receptor Tyrosine Kinases Determines Sensitivity to PI3Kα-selective Inhibitors in Breast Cancer.

    Science.gov (United States)

    Xu, Yi-Chao; Wang, Xiang; Chen, Yi; Chen, Si-Meng; Yang, Xin-Ying; Sun, Yi-Ming; Geng, Mei-Yu; Ding, Jian; Meng, Ling-Hua

    2017-01-01

    PI3Kα-selective inhibitor BYL719 is currently in phase II/III clinical trial for the treatment of breast cancer, but highly variable response has been observed among patients. We sought to discover predictive biomarker for the efficacy of BYL719 by dissecting the proliferative signaling pathway mediated by PI3K in breast cancer. BYL719 concurrently inhibited the phosphorylation of AKT and ERK in PIK3CA -mutated human breast cancer cells. PI3K-regulated ERK phosphorylation was independent of canonical PDK1/AKT/mTOR pathway, while it was associated with RAF/MEK. Hyper-activation of EGFR or RAS abrogated inhibition of ERK phosphorylation by BYL719. Furthermore, hyper-activation of receptor tyrosine kinases (RTKs) including EGFR, c-MET, FGFR and HER3 but not IGF-1R restored ERK phosphorylation and cell viability suppressed by BYL719, suggesting the discriminative functions of RTKs in cell signaling and proliferation. By profiling 22 breast cancer cell lines, we found that BYL719 was more potent in cell lines where phosphorylation of both AKT and ERK was attenuated than those where only AKT phosphorylation was inhibited. The potency of BYL719 was further found to be significantly correlated with the expression profile of RTKs in breast cancer cells. Specifically, overexpression of EGFR, c-MET and/or FGFR1 forecasted resistance, while overexpression of IGF-1R and/or HER2 predicted sensitivity to BYL719 in breast cancer cells. Similar correlation between BYL719 efficacy and expression profile of RTKs was found in patient-derived xenograft models of breast cancer. Thus, inhibition of ERK phosphorylation by PI3Kα inhibitor BYL719 contributes to its antitumor efficacy and is determined by the converged signaling from RTKs. The expression profile of RTKs in breast cancer tissue could be potentially developed as a predictive biomarker for the efficacy of PI3Kα inhibitors.

  20. Energy saving through trail following in a marine snail.

    Science.gov (United States)

    Davies, Mark S; Blackwell, Janine

    2007-05-07

    Most snails and slugs locomote over a layer of mucus and although the resultant mucus trail is expensive to produce, we show that this expense can be reduced by trail following. When tracking over fresh conspecific trails, the marine intertidal snail Littorina littorea (L.) produced only approximately 27% of the mucus laid by marker snails. When tracking over weathered trails, snails adjusted their mucus production to recreate a convex trail profile of similar shape and thickness to the trail as originally laid. Maximum energy saving occurs when following recently laid trails which are little weathered. Many and diverse ecological roles for trail following have been proposed. Energy saving is the only role that applies across the Gastropoda and so may help to explain why trail following is such a well-established behaviour.

  1. Comparing impacts between formal and informal recreational trails.

    Science.gov (United States)

    Pickering, Catherine Marina; Norman, Patrick

    2017-05-15

    Globally there are hundreds of thousands of kilometres of recreational trails traversing natural areas of high conservation value: but what are their impacts and do impacts differ among trails? We compared the effects of four common types of recreational trails [(1) narrow and (2) medium width informal bare earth trails and (3) gravel and (4) tarmac/concrete formal trails] on vegetation adjacent to trails in a high conservation value plant community that is popular for mountain biking and hiking in Australia. Plant species composition was recorded in quadrats along the edge of the four types of trails and in control sites away from trails. Vegetation cover, the cover of individual growth forms, and species richness along the edges of all four types of trails were similar to the controls, although the wider trails affected plant composition, with the tarmac and gravel trails favouring different species. With very few comparative studies, more research is required to allow managers and researchers to directly compare differences in the severity and types of impacts on vegetation among trails. In the meantime, limiting damage to vegetation on the edge of hardened trails during construction, use and maintenance is important, and hardening trails may not always be appropriate. Copyright © 2016. Published by Elsevier Ltd.

  2. TRAIL causes deletions at the HPRT and TK1 loci of clonogenically competent cells

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Mark A.; Shekhar, Tanmay M. [Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria (Australia); La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria (Australia); Hall, Nathan E. [La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria (Australia); Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Melbourne, Victoria (Australia); Hawkins, Christine J., E-mail: c.hawkins@latrobe.edu.au [Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria (Australia); La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria (Australia)

    2016-05-15

    Highlights: • Treatment with TRAIL or EMS provokes mutations in clonogenically viable TK6 cells. • TRAIL is 2–5-fold less mutagenic than an equivalently lethal concentration of EMS. • EMS mainly causes transition mutations at the HPRT and TK1 loci of TK6 cells. • Most loss-of-function HPRT or TK1 mutations caused by TRAIL treatment are deletions. - Abstract: When chemotherapy and radiotherapy are effective, they function by inducing DNA damage in cancerous cells, which respond by undergoing apoptosis. Some adverse effects can result from collateral destruction of non-cancerous cells, via the same mechanism. Therapy-related cancers, a particularly serious adverse effect of anti-cancer treatments, develop due to oncogenic mutations created in non-cancerous cells by the DNA damaging therapies used to eliminate the original cancer. Physiologically achievable concentrations of direct apoptosis inducing anti-cancer drugs that target Bcl-2 and IAP proteins possess negligible mutagenic activity, however death receptor agonists like TRAIL/Apo2L can provoke mutations in surviving cells, probably via caspase-mediated activation of the nuclease CAD. In this study we compared the types of mutations sustained in the HPRT and TK1 loci of clonogenically competent cells following treatment with TRAIL or the alkylating agent ethyl methanesulfonate (EMS). As expected, the loss-of-function mutations in the HPRT or TK1 loci triggered by exposure to EMS were almost all transitions. In contrast, only a minority of the mutations identified in TRAIL-treated clones lacking HPRT or TK1 activity were substitutions. Almost three quarters of the TRAIL-induced mutations were partial or complete deletions of the HPRT or TK1 genes, consistent with sub-lethal TRAIL treatment provoking double strand breaks, which may be mis-repaired by non-homologous end joining (NHEJ). Mis-repair of double-strand breaks following exposure to chemotherapy drugs has been implicated in the pathogenesis of

  3. An extrahepatic receptor-associated protein-sensitive mechanism is involved in the metabolism of triglyceride-rich lipoproteins

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Rohlmann, A.; Page, S.T.; Bensadoun, A.; Bos, I.S.T.; Berkel, T.J.C. van; Havekes, L.M.; Herz, J.

    1999-01-01

    We have used adenovirus-mediated gene transfer in mice to investigate low density lipoprotein receptor (LDLR) and LDLR-related protein (LRP)- independent mechanisms that control the metabolism of chylomicron and very low density lipoprotein (VLDL) remnants in vivo. Overexpression of receptor-

  4. Trailing edge modifications for flatback airfoils.

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Daniel L. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.

    2008-03-01

    The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.

  5. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  6. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    Science.gov (United States)

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  7. The role of TRAIL in fatigue induced by repeated stress from radiotherapy.

    Science.gov (United States)

    Feng, Li Rebekah; Suy, Simeng; Collins, Sean P; Saligan, Leorey N

    2017-08-01

    Fatigue is one of the most common and debilitating side effects of cancer and cancer treatment, and yet its etiology remains elusive. The goal of this study is to understand the role of chronic inflammation in fatigue following repeated stress from radiotherapy. Fatigue and non-fatigue categories were assessed using ≥ 3-point change in Functional Assessment of Cancer Therapy-Fatigue questionnaire (FACT-F) administered to participants at baseline/before radiotherapy and one year post-radiotherapy. Whole genome microarray and cytokine multiplex panel were used to examine fatigue-related transcriptome and serum cytokine changes, respectively. The study included 86 subjects (discovery phase n = 40, validation phase n = 46). The sample in the discovery phase included men with prostate cancer scheduled to receive external-beam radiotherapy. A panel of 48 cytokines were measured and the significantly changed cytokine found in the discovery phase was validated using sera from a separate cohort of men two years after completing radiotherapy for prostate cancer at a different institution. Effects of the significantly changed cytokine on cell viability was quantified using the MTT assay. During the discovery phase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL decoy receptor, TNFRSF10C (TRAIL-R3), were significantly upregulated in fatigued (≥3-point decrease from baseline to 1yr-post radiotherapy) subjects (n = 15). In the validation phase, TRAIL correlated with fatigue scores 2yrs post-radiotherapy. TRAIL caused selective cytotoxicity in neuronal cells, but not in microglial and muscle cells, in vitro. Late-onset inflammation directed by TRAIL may play a role in fatigue pathogenesis post-repeated stress from irradiation. Published by Elsevier Ltd.

  8. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Watanabe, Tatsuo [Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Imai, Yasuyuki, E-mail: imai@u-shizuoka-ken.ac.jp [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan)

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  9. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    International Nuclear Information System (INIS)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-01-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  10. Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors.

    Science.gov (United States)

    Stoop, R; Surprenant, A; North, R A

    1997-10-01

    The effect of changing extracellular pH was studied on the currents induced by ATP or alphabeta-methylene-ATP in HEK293 cells transfected with different P2X receptor subunits. In cells expressing P2X1, P2X3, or P2X4 receptors, the effect of ATP was decreased by acidification. In cells expressing P2X2 receptors, acidification increased the ATP-induced current; this effect was also seen in cells expressing heteromeric P2X2 and P2X3 receptors. At P2X2 receptors, acidification caused a leftward shift in the ATP concentration-response curve, without change in maximum; the pKa for this effect was 7.3. At P2X4 receptors, acidification caused a rightward shift in the ATP concentration-response curve, without change in the maximum; the pKa for this effect was 6.8. The pH dependence of the action of ATP should be taken into account in studies of synaptic transmission, and it may provide a further tool to assign molecular identity to P2X receptors expressed by brain neurons.

  11. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect imm...... of THIP-treated cultures. This suggests that primarily low affinity GABAA-receptors are closely associated with Ca2+ channels and this may be important for the ability of these receptors to mediate an inhibitory action on transmitter release even under extreme depolarizing conditions....

  12. Neurogentics of Dopaminergic Receptor Super-sensitivity in Activation of Brain Reward Circuitry and Relapse: Proposing “Deprivation-Amplification Relapse Therapy” (DART)

    Science.gov (United States)

    Downs, B. William; Bowirrat, Abdalla; Waite, Roger L.; Braverman, Eric R.; Madigan, Margaret; Oscar-Berman, Marlene; DiNubile, Nicholas; Gold, Mark

    2013-01-01

    Background and Hypothesis It is well known that after prolonged abstinence, individuals who imbibe or use their drug of choice experience a powerful euphoria that precipitates serious relapse. While a biological explanation for this conundrum has remained elusive, we hypothesize that this clinically observed “super sensitivity” might be tied to genetic dopaminergic polymorphisms. Another therapeutic conundrum relates to the paradoxical finding that the dopaminergic agonist bromocriptine induces stronger activation of brain reward circuitry in individuals who carry the DRD2 A1 allele compared to DRD2 A2 allele carriers. Based upon the fact that carriers of the A1 allele relative to the A2 allele of the DRD2 gene have significantly lower D2 receptor density, a reduced sensitivity to dopamine agonist activity would be expected in the former. Thus, it is perplexing that with low D2 density there is an increase in reward sensitivity with the dopamine agonist bromocriptine. Moreover, under chronic or long-term therapy, the potential proliferation of D2 receptors with bromocriptine has been shown in vitro. This seems to lead to a positive outcome and significantly better treatment compliance only in A1 carriers. Proposal and Conclusion We propose that low D2 receptor density and polymorphisms of the D2 gene are associated with risk for relapse of substance abuse including alcohol dependence, heroin craving, cocaine dependence, methamphetamine abuse, nicotine sensitization, and glucose craving. With this in mind, we suggest a putative physiological mechanism that may help to explain the enhanced sensitivity following intense acute dopaminergic D2 receptor activation: “denervation supersensitivity.” Thus, the administration of dopamine D2 agonists would target D2 sensitization and attenuate relapse, especially in D2 receptor A1 allele carriers. This hypothesized mechanism is supported by clinical trials utilizing the amino-acid neurotransmitter precursors

  13. P2X3 receptors mediate visceral hypersensitivity during acute chemically-induced colitis and in the post-inflammatory phase via different mechanisms of sensitization.

    Directory of Open Access Journals (Sweden)

    Annemie Deiteren

    Full Text Available Experiments using P2X3 knock-out mice or more general P2X receptor antagonists suggest that P2X3 receptors contribute to visceral hypersensitivity. We aimed to investigate the effect of the selective P2X3 antagonist A-317491 on visceral sensitivity under physiological conditions, during acute colitis and in the post-inflammatory phase of colitis.Trinitrobenzene sulphonic-acid colitis was monitored by colonoscopy: on day 3 to confirm the presence of colitis and then every 4 days, starting from day 10, to monitor convalescence and determine the exact timepoint of endoscopic healing in each rat. Visceral sensitivity was assessed by quantifying visceromotor responses to colorectal distension in controls, rats with acute colitis and post-colitis rats. A-317491 was administered 30 min prior to visceral sensitivity testing. Expression of P2X3 receptors (RT-PCR and immunohistochemistry and the intracellular signalling molecules cdk5, csk and CASK (RT-PCR were quantified in colonic tissue and dorsal root ganglia. ATP release in response to colorectal distension was measured by luminiscence.Rats with acute TNBS-colitis displayed significant visceral hypersensitivity that was dose-dependently, but not fully, reversed by A-317491. Hypersenstivity was accompanied by an increased colonic release of ATP. Post-colitis rats also displayed visceral hypersensitivity that was dose-dependently reduced and fully normalized by A-317491 without increased release of ATP. A-317491 did not modify visceral sensitivity in controls. P2X3 mRNA and protein expression in the colon and dorsal root ganglia were similar in control, acute colitis and post-colitis groups, while colonic mRNA expression of cdk5, csk and CASK was increased in the post-colitis group only.These findings indicate that P2X3 receptors are not involved in sensory signaling under physiological conditions whereas they modulate visceral hypersensitivity during acute TNBS-colitis and even more so in the post

  14. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model.

    Science.gov (United States)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Temperature limits trail following behaviour through pheromone decay in ants

    Science.gov (United States)

    van Oudenhove, Louise; Billoir, Elise; Boulay, Raphaël; Bernstein, Carlos; Cerdá, Xim

    2011-12-01

    In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures.

  16. Variants of Osteoprotegerin Lacking TRAIL Binding for Therapeutic Bone Remodeling in Osteolytic Malignancies

    Science.gov (United States)

    Higgs, Jerome T.; Jarboe, John S.; Lee, Joo Hyoung; Chanda, Diptiman; Lee, Carnellia M.; Deivanayagam, Champion; Ponnazhagan, Selvarangan

    2015-01-01

    Osteolytic bone damage is a major cause of morbidity in several metastatic pathologies. Current therapies using bisphosphonates provide modest improvement, but cytotoxic side effects still occur prompting the need to develop more effective therapies to target aggressive osteoclastogenesis. Increased levels of Receptor Activator of Nuclear Factor Kappa B Ligand (TNFSF11/RANKL), leading to RANKL-RANK signaling, remains the key axis for osteoclast activation and bone resorption. Osteoprotegerin (TNFRSF11B/OPG), a decoy receptor for RANKL is significantly decreased in patients who present with bone lesions. Despite its potential in inhibiting osteoclast activation, OPG also binds to tumor necrosis factor related apoptosis-inducing ligand (TNFSF10/TRAIL), making tumor cells resistant to apoptosis. Towards uncoupling the events of TRAIL binding of OPG and to improve its utility for bone remodeling without inducing tumor resistance to apoptosis, OPG mutants were developed by structural homology modeling based on interactive domain identification and by superimposing models of OPG, TRAIL and its receptor DR5 (TNFRSF10B) to identify regions of OPG for rational design. The OPG mutants were purified and extensively characterized for their ability to decrease osteoclast damage without affecting tumor apoptosis pathway both in vitro and in vivo, confirming their potential in bone remodeling following cancer-induced osteolytic damage. PMID:25636966

  17. Trichoplax adhaerens reveals a network of nuclear receptors sensitive to 9-cis-retinoic acid at the base of metazoan evolution

    Directory of Open Access Journals (Sweden)

    Jan Philipp Novotný

    2017-09-01

    Full Text Available Trichoplax adhaerens, the only known species of Placozoa is likely to be closely related to an early metazoan that preceded branching of Cnidaria and Bilateria. This animal species is surprisingly well adapted to free life in the World Ocean inhabiting tidal costal zones of oceans and seas with warm to moderate temperatures and shallow waters. The genome of T. adhaerens (sp. Grell includes four nuclear receptors, namely orthologue of RXR (NR2B, HNF4 (NR2A, COUP-TF (NR2F and ERR (NR3B that show a high degree of similarity with human orthologues. In the case of RXR, the sequence identity to human RXR alpha reaches 81% in the DNA binding domain and 70% in the ligand binding domain. We show that T. adhaerens RXR (TaRXR binds 9-cis retinoic acid (9-cis-RA with high affinity, as well as high specificity and that exposure of T. adhaerens to 9-cis-RA regulates the expression of the putative T. adhaerens orthologue of vertebrate L-malate-NADP+ oxidoreductase (EC 1.1.1.40 which in vertebrates is regulated by a heterodimer of RXR and thyroid hormone receptor. Treatment by 9-cis-RA alters the relative expression profile of T. adhaerens nuclear receptors, suggesting the existence of natural ligands. Keeping with this, algal food composition has a profound effect on T. adhaerens growth and appearance. We show that nanomolar concentrations of 9-cis-RA interfere with T. adhaerens growth response to specific algal food and causes growth arrest. Our results uncover an endocrine-like network of nuclear receptors sensitive to 9-cis-RA in T. adhaerens and support the existence of a ligand-sensitive network of nuclear receptors at the base of metazoan evolution.

  18. 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner.

    Science.gov (United States)

    Meyer, E M; Tay, E T; Papke, R L; Meyers, C; Huang, G L; de Fiebre, C M

    1997-09-12

    The alpha7 nicotinic receptor agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB; GTS-21) was investigated for its ability to: (1) activate a variety of nicotinic receptor subtypes in Xenopus oocytes; (2) improve passive avoidance and spatial Morris water task performances in mecamylamine-sensitive manners in bilaterally nucleus basalis lesioned rats; and (3) elevate high-affinity [3H]acetylcholine (ACh) and high-affinity alpha-[125I]bungarotoxin binding in rat neocortex following 2 weeks of daily injections. DMXB (100 microM) activated alpha7 homo-oligomeric receptors, without significant activity at alpha2-, alpha3- and alpha4-containing subtypes. Mecamylamine blocked rat alpha7 receptors weakly if co-administered with agonist, but much more potently when pre-applied. Bilateral ibotenic acid lesions of the nucleus basalis interfered with passive avoidance and spatial memory-related behaviors. DMXB (0.5 mg/kg, i.p.) improved passive avoidance behavior in lesioned animals in a mecamylamine-sensitive manner. DMXB (0.5 mg/kg 15 min before each session) also improved performance in the training and probe components of the Morris water task. DMXB-induced improvement in the probe component but not the training phase was mecamylamine-sensitive. [3H]ACh binding was elevated after 14 days of daily i.p. injections with 0.2 mg/kg nicotine but not after 1 mg/kg DMXB. Neither drug elevated high-affinity alpha-[125I]bungarorotoxin binding over this interval.

  19. TRAIL: A Novel Therapeutic Agent for Prostate Cancer

    National Research Council Canada - National Science Library

    Li, Honglin

    2004-01-01

    This study aims to elucidate the signaling pathway of TRAIL-mediated apoptosis in prostate cancer cells, and to examine the therapeutic effect of TRAIL on prostate cancer cells in vitro and in vivo...

  20. TRAIL: A Novel Therapeutic Agent for Prostate Cancer

    National Research Council Canada - National Science Library

    Li, Honglin

    2002-01-01

    This study aims to elucidate the signaling pathway of TRAIL-mediated apoptosis in prostate cancer cells, and to examine the therapeutic effect of TRAIL on prostate cancer cells in vitro and in vivo...

  1. TRAIL: A Novel Therapeutic Agent for Prostate Cancer

    National Research Council Canada - National Science Library

    Li, Honglin

    2003-01-01

    This study aims to elucidate the signaling pathway of TRAIL-mediated apoptosis in prostate cancer cells, and to examine the therapeutic effect of TRAIL on prostate cancer cells in vitro and in vivo...

  2. Fusion proteins and select lipids cooperate as membrane receptors for the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vam7p.

    Science.gov (United States)

    Karunakaran, Vidya; Wickner, William

    2013-10-04

    Vam7p, the vacuolar soluble Qc-SNARE, is essential for yeast vacuole fusion. The large tethering complex, homotypic fusion and vacuole protein sorting complex (HOPS), and phosphoinositides, which interact with the Vam7p PX domain, have each been proposed to serve as its membrane receptors. Studies with the isolated organelle cannot determine whether these receptor elements suffice and whether ligands or mutations act directly or indirectly on Vam7p binding to the membrane. Using pure components that are active in reconstituted vacuolar fusion, we now find that Vam7p binds to membranes through its combined affinities for several vacuolar membrane constituents: HOPS, phosphatidylinositol 3-phosphate, SNAREs, and acidic phospholipids. Acidic lipids allow low concentrations of Vam7p to suffice for fusion; without acidic lipids, the block to fusion is partially bypassed by high concentrations of Vam7p.

  3. Puma and Trail/Dr5 Pathways Control Radiation-Induced Apoptosis in Distinct Populations of Testicular Progenitors

    International Nuclear Information System (INIS)

    Coureuil, M.; Tavernier, M.; Barroca, V.; Fouchet, P.; Allemand, I.; Ugolin, N.; Chevillard, S.

    2010-01-01

    Spermatogonia- stem cells and progenitors of adult spermatogenesis- are killed through a p53-regulated apoptotic process after γ-irradiation but the death effectors are still poorly characterized. Our data demonstrate that both intrinsic and extrinsic apoptotic pathways are involved, and especially that spermatogonia can be split into two main populations, according to apoptotic effectors. Following irradiation both Dr5 and Puma genes are up-regulated in the α 6 -integrin-positive Side Population (SP) fraction, which is highly enriched in spermatogonia. Flow cytometric analysis confirms an increased number of Dr5-expressing SP cells, and Puma-β isoform accumulates in α 6 -integrin positive cellular extracts, enriched in spermatogonia. Trail -/- or Puma -/- spermatogonia display a reduced sensitivity to radiation-induced apoptosis. The TUNEL kinetics strongly suggest that the extrinsic and intrinsic pathways, via Trail/Dr5 and Puma respectively, could be engaged in distinct subpopulations of spermatogonia. Indeed flow cytometric studies show that Dr5 receptor is constitutively present on more than half of the undifferentiated progenitors (Kit - α 6 + SP) and half of the differentiated ones (Kit + α 6 + SP). In addition after irradiation, Puma is not detected in the Dr5-positive cellular fraction isolated by immuno-magnetic purification, while Puma is present in the Dr5-negative cell extracts. In conclusion, adult testicular progenitors are divided into distinct sub-populations by apoptotic effectors, independently of progenitor types (immature Kit-negative versus mature Kit-positive), underscoring differential radiosensitivities characterizing the stem cell/progenitors compartment. (authors)

  4. Sensitization by pulmonary reactive oxygen species of rat vagal lung C-fibers: the roles of the TRPV1, TRPA1, and P2X receptors.

    Directory of Open Access Journals (Sweden)

    Ting Ruan

    Full Text Available Sensitization of vagal lung C-fibers (VLCFs induced by mediators contributes to the pathogenesis of airway hypersensitivity, which is characterized by exaggerated sensory and reflex responses to stimulants. Reactive oxygen species (ROS are mediators produced during airway inflammation. However, the role of ROS in VLCF-mediated airway hypersensitivity has remained elusive. Here, we report that inhalation of aerosolized 0.05% H2O2 for 90 s potentiated apneic responses to intravenous capsaicin (a TRPV1 receptor agonist, α,β-methylene-ATP (a P2X receptor agonist, and phenylbiguanide (a 5-HT3 receptor agonist in anesthetized rats. The apneic responses to these three stimulants were abolished by vagatomy or by perivagal capsaicin treatment, a procedure that blocks the neural conduction of VLCFs. The potentiating effect of H2O2 on the apneic responses to these VLCF stimulants was prevented by catalase (an enzyme that degrades H2O2 and by dimethylthiourea (a hydroxyl radical scavenger. The potentiating effect of H2O2 on the apneic responses to capsaicin was attenuated by HC-030031 (a TRPA1 receptor antagonist and by iso-pyridoxalphosphate-6-azophenyl-2',5'-disulphonate (a P2X receptor antagonist. The potentiating effect of H2O2 on the apneic responses to α,β-methylene-ATP was reduced by capsazepine (a TRPV1 receptor antagonist, and by HC-030031. The potentiating effect of H2O2 on the apneic responses to phenylbiguanide was totally abolished when all three antagonists were combined. Consistently, our electrophysiological studies revealed that airway delivery of aerosolized 0.05% H2O2 for 90 s potentiated the VLCF responses to intravenous capsaicin, α,β-methylene-ATP, and phenylbiguanide. The potentiating effect of H2O2 on the VLCF responses to phenylbiguanide was totally prevented when all antagonists were combined. Inhalation of 0.05% H2O2 indeed increased the level of ROS in the lungs. These results suggest that 1 increased lung ROS sensitizes

  5. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways.

    Directory of Open Access Journals (Sweden)

    Victoria Ifeadi

    Full Text Available BACKGROUND: Death receptors (DR of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The ability of radiation to modulate the expression of multiple death receptors (Fas/CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTβR was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTβR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fas-induced apoptosis, but not LTβR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation did reduce Bcl-X(L and c-FLIP protein expression, this reduction did not correlate with the radiation-enhanced sensitivity to Fas and/or TRAIL mediated apoptosis among the three cell types. CONCLUSIONS/SIGNIFICANCE: Irradiation of tumor cells can overcome Fas and TRAIL

  6. Tachykinin regulation of cholinergic transmission in the limbic/prefrontal territory of the rat dorsal striatum: implication of new neurokinine 1-sensitive receptor binding site and interaction with enkephalin/mu opioid receptor transmission.

    Science.gov (United States)

    Pérez, Sylvie; Tierney, Adrienne; Deniau, Jean-Michel; Kemel, Marie-Louise

    2007-12-01

    The tachykinin neurokinin 1 receptors (NK(1)Rs) regulation of acetylcholine release and its interaction with the enkephalin/mu opioid receptors (MORs) transmission was investigated in the limbic/prefrontal (PF) territory of the dorsal striatum. Using double immunohistochemistry, we first showed that in this territory, cholinergic interneurons contain tachykinin NK(1)Rs and co-express MORs in the last part of the light period (afternoon). In slices of the striatal limbic/PF territory, following suppression of the dopaminergic inhibitory control of acetylcholine release, application of the tachykinin NK(1)R antagonist, SSR240600, markedly reduced the NMDA-induced acetylcholine release in the morning but not in the afternoon when the enkephalin/MOR regulation is operational. In the afternoon, the NK(1)R antagonist response required the suppression of the enkephalin/MOR inhibitory control of acetylcholine release by betafunaltrexamine. The pharmacological profile of the tachykinin NK(1)R regulation tested by application of the receptor agonists [[Pro(9)]substance P, neurokinin A, neuropeptide K, and substance P(6-11)] and antagonists (SSR240600, GR205171, GR82334, and RP67580) indicated that the subtype of tachykinin NK(1)R implicated are the new NK(1)-sensitive receptor binding site. Therefore, in the limbic/PF territory of the dorsal striatum, endogenous tachykinin facilitates acetylcholine release via a tachykinin NK(1)R subtype. In the afternoon, the tachykinin/NK(1)R and the enkephalin/MOR transmissions interact to control cholinergic transmission.

  7. Expression of Death Receptor 4 Is Positively Regulated by MEK/ERK/AP-1 Signaling and Suppressed upon MEK Inhibition*

    Science.gov (United States)

    Yao, Weilong; Oh, You-Take; Deng, Jiusheng; Yue, Ping; Deng, Liang; Huang, Henry; Zhou, Wei; Sun, Shi-Yong

    2016-01-01

    Death receptor 4 (DR4) is a cell surface receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and triggers apoptosis upon ligation with TRAIL or aggregation. MEK/ERK signaling is a well known and the best-studied effector pathway downstream of Ras and Raf. This study focuses on determining the impact of pharmacological MEK inhibition on DR4 expression and elucidating the underlying mechanism. We found that several MEK inhibitors including MEK162, AZD6244, and PD0325901 effectively decreased DR4 protein levels including cell surface DR4 in different cancer cell lines. Accordingly, pre-treatment of TRAIL-sensitive cancer cell lines with a MEK inhibitor desensitized them to TRAIL-induced apoptosis. These results indicate that MEK inhibition negatively regulates DR4 expression and cell response to TRAIL-induced apoptosis. MEK inhibitors did not alter DR4 protein stability, rather decreased its mRNA levels, suggesting a transcriptional regulation. In contrast, enforced activation of MEK/ERK signaling by expressing ectopic B-Raf (V600E) or constitutively activated MEK1 (MEK1-CA) or MEK2 (MEK2-CA) activated ERK and increased DR4 expression; these effects were inhibited when a MEK inhibitor was present. Promoter analysis through deletion and mutation identified the AP-1 binding site as an essential response element for enhancing DR4 transactivation by MEK1-CA. Furthermore, inhibition of AP-1 by c-Jun knockdown abrogated the ability of MEK1-CA to increase DR4 promoter activity and DR4 expression. These results suggest an essential role of AP-1 in mediating MEK/ERK activation-induced DR4 expression. Our findings together highlight a previously undiscovered mechanism that positively regulates DR4 expression through activation of the MEK/ERK/AP-1 signaling pathway. PMID:27576686

  8. 21 CFR 1311.215 - Internal audit trail.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Internal audit trail. 1311.215 Section 1311.215... ORDERS AND PRESCRIPTIONS (Eff. 6-1-10) Electronic Prescriptions § 1311.215 Internal audit trail. (a) The... with audit trail functions. (6) For application service providers, attempted or successful annotation...

  9. The trail guide system as a backcountry management tool

    Science.gov (United States)

    Herbert E. Echelberger; Raymond E. Leonard; Marysewall Lindsey Hamblin

    1978-01-01

    A trail guide booklet containing a map, directional and distance data, and information about the natural and human history and management problems of a backcountry hiking trail was keyed to small, numbered, wooden markers along the trail. This system was evaluated on an 8-mile loop in the White Mountain National Forest in New Hampshire. The system may be useful for...

  10. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep.

    Science.gov (United States)

    Rétey, J V; Adam, M; Khatami, R; Luhmann, U F O; Jung, H H; Berger, W; Landolt, H-P

    2007-05-01

    Caffeine is the most widely used stimulant in Western countries. Some people voluntarily reduce caffeine consumption because it impairs the quality of their sleep. Studies in mice revealed that the disruption of sleep after caffeine is mediated by blockade of adenosine A2A receptors. Here we show in humans that (1) habitual caffeine consumption is associated with reduced sleep quality in self-rated caffeine-sensitive individuals, but not in caffeine-insensitive individuals; (2) the distribution of distinct c.1083T>C genotypes of the adenosine A2A receptor gene (ADORA2A) differs between caffeine-sensitive and -insensitive adults; and (3) the ADORA2A c.1083T>C genotype determines how closely the caffeine-induced changes in brain electrical activity during sleep resemble the alterations observed in patients with insomnia. These data demonstrate a role of adenosine A2A receptors for sleep in humans, and suggest that a common variation in ADORA2A contributes to subjective and objective responses to caffeine on sleep.

  11. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maryam Ghotbaddini

    2015-07-01

    Full Text Available The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR. TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  12. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    Science.gov (United States)

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Activation of serotonin 5-HT2C receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice

    Science.gov (United States)

    Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W.; Zhang, Gongliang

    2015-01-01

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. PMID:26375926

  14. Specific suppression of insulin sensitivity in growth hormone receptor gene-disrupted (GHR-KO) mice attenuates phenotypic features of slow aging.

    Science.gov (United States)

    Arum, Oge; Boparai, Ravneet K; Saleh, Jamal K; Wang, Feiya; Dirks, Angela L; Turner, Jeremy G; Kopchick, John J; Liu, Jun-Li; Khardori, Romesh K; Bartke, Andrzej

    2014-12-01

    In addition to their extended lifespans, slow-aging growth hormone receptor/binding protein gene-disrupted (knockout) (GHR-KO) mice are hypoinsulinemic and highly sensitive to the action of insulin. It has been proposed that this insulin sensitivity is important for their longevity and increased healthspan. We tested whether this insulin sensitivity of the GHR-KO mouse is necessary for its retarded aging by abrogating that sensitivity with a transgenic alteration that improves development and secretory function of pancreatic β-cells by expressing Igf-1 under the rat insulin promoter 1 (RIP::IGF-1). The RIP::IGF-1 transgene increased circulating insulin content in GHR-KO mice, and thusly fully normalized their insulin sensitivity, without affecting the proliferation of any non-β-cell cell types. Multiple (nonsurvivorship) longevity-associated physiological and endocrinological characteristics of these mice (namely beneficial blood glucose regulatory control, altered metabolism, and preservation of memory capabilities) were partially or completely normalized, thus supporting the causal role of insulin sensitivity for the decelerated senescence of GHR-KO mice. We conclude that a delayed onset and/or decreased pace of aging can be hormonally regulated. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. A cellular automata model for ant trails

    Indian Academy of Sciences (India)

    In this study, the unidirectional ant traffic flow with U-turn in an ant trail was investigated using one-dimensional cellular automata model. It is known that ants communicate with each other by dropping a chemical, called pheromone, on the substrate. Apart from the studies in the literature, it was considered in the model that ...

  16. Optimized horse trail design for Illinois soil

    Science.gov (United States)

    C.J. Jones; Logan O. Park

    2014-01-01

    One of the fastest growing forms of outdoor recreation is equestrian trail riding. In a study examining long-term trends of use on Forest Service lands, equestrian-based recreation was identified as one of the top five activities experiencing growth. As the numbers of horse riders rise, the economic impact of equestrian recreation can be expected to increase across the...

  17. A cellular automata model for ant trails

    Indian Academy of Sciences (India)

    It is easy to comprehend the population biology of social insect colonies [11] using the basic principles which affect the formation of the ant trails. ..... [19] M G Deborah, Ant encounters interaction networks and colony behavior (Princeton Univer- sity Press, Princeton, New Jersey, 2010). [20] K Nishinari, D Chowdhury and A ...

  18. On the Trail of George Peabody.

    Science.gov (United States)

    Parker, Franklin

    1994-01-01

    One in a collection of articles on George Peabody describes the author's experiences writing and publishing a doctoral dissertation on Peabody's educational philanthropy. The paper lists the sources to which the research trail led and gives an overview of Peabody's importance as a merchant turned international banker and educational…

  19. Influence of hiking trails on montane birds

    Science.gov (United States)

    William V. Deluca; David I. King

    2014-01-01

    Montane forests contribute significantly to regional biodiversity. Long-term monitoring data, often located along hiking trails, suggests that several indicator species of this ecosystem have declined in recent decades. Declining montane bird populations have been attributed to anthropogenic stressors such as climate change and atmospheric deposition. Several studies...

  20. Certification trails and software design for testability

    Science.gov (United States)

    Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.

    1993-01-01

    Design techniques which may be applied to make program testing easier were investigated. Methods for modifying a program to generate additional data which we refer to as a certification trail are presented. This additional data is designed to allow the program output to be checked more quickly and effectively. Certification trails were described primarily from a theoretical perspective. A comprehensive attempt to assess experimentally the performance and overall value of the certification trail method is reported. The method was applied to nine fundamental, well-known algorithms for the following problems: convex hull, sorting, huffman tree, shortest path, closest pair, line segment intersection, longest increasing subsequence, skyline, and voronoi diagram. Run-time performance data for each of these problems is given, and selected problems are described in more detail. Our results indicate that there are many cases in which certification trails allow for significantly faster overall program execution time than a 2-version programming approach, and also give further evidence of the breadth of applicability of this method.

  1. System for accurate ranging of meteor trails

    International Nuclear Information System (INIS)

    Tshebotaryov, R.P.; Sidorin, V.N.

    1970-01-01

    The necessity of precise ranging of meteor trails is emphasised possible methods are considered. A scheme with a non ius circular trace and intensity indication giving an unique for meteor radar accuracy ± 50 m is described in detail. Results are given of experimental and practical work of the system

  2. A cellular automata model for ant trails

    Indian Academy of Sciences (India)

    Abstract. In this study, the unidirectional ant traffic flow with U-turn in an ant trail was inves- tigated using one-dimensional cellular automata model. It is known that ants communicate with each other by dropping a chemical, called pheromone, on the substrate. Apart from the studies in the literature, it was considered in the ...

  3. SAHM:VisTrails (Software for Assisted Habitat Modeling for VisTrails): training course

    Science.gov (United States)

    Holcombe, Tracy

    2014-01-01

    VisTrails is an open-source management and scientific workflow system designed to integrate the best of both scientific workflow and scientific visualization systems. Developers can extend the functionality of the VisTrails system by creating custom modules for bundled VisTrails packages. The Invasive Species Science Branch of the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) and the U.S. Department of the Interior’s North Central Climate Science Center have teamed up to develop and implement such a module—the Software for Assisted Habitat Modeling (SAHM). SAHM expedites habitat modeling and helps maintain a record of the various input data, the steps before and after processing, and the modeling options incorporated in the construction of an ecological response model. There are four main advantages to using the SAHM:VisTrails combined package for species distribution modeling: (1) formalization and tractable recording of the entire modeling process; (2) easier collaboration through a common modeling framework; (3) a user-friendly graphical interface to manage file input, model runs, and output; and (4) extensibility to incorporate future and additional modeling routines and tools. In order to meet increased interest in the SAHM:VisTrails package, the FORT offers a training course twice a year. The course includes a combination of lecture, hands-on work, and discussion. Please join us and other ecological modelers to learn the capabilities of the SAHM:VisTrails package.

  4. Recreation trails in Maine and New Hampshire: A comparison of notorized, non-motorized, and non-mechanized trails

    Science.gov (United States)

    Ethel Wilkerson; Andrew. Whitman

    2010-01-01

    We sampled 112 trail segments in Maine and New Hampshire to assess the impact of motorized and non-motorized recreation on trail conditions and stream sedimentation. On each segment, we assessed physical trail conditions (width, cross-sectional area, occurrence of excessively muddy and rutted/eroded sections), presence of trash, and sedimentation at stream crossings....

  5. Hiking shared-use single-track trails: a look at hikers and hunters along the Falls Lake Trail

    Science.gov (United States)

    Christopher M. Snow; Roger L. Moore

    2007-01-01

    The Falls Lake Trail, a 26.8-mile, single-track pedestrian trail located near the Research Triangle Region of North Carolina, traverses lands managed by the United States Army Corps of Engineers; North Carolina Division of Parks and Recreation; North Carolina Division of Wildlife Resources; and Wake County Parks, Recreation and Open Space. The non-profit trail advocacy...

  6. Apoptosis-related molecular differences for response to tyrosin kinase inhibitors in drug-sensitive and drug-resistant human bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Jixia Li

    2013-01-01

    Full Text Available Context: The epidermal growth factor receptor (EGFR family is reportedly overexpressed in bladder cancer, and tyrosine kinaseinhibitors (TKIs have been suggested as treatment. Gefitinib is a selective inhibitor of the EGFR and lapatinib is a dual inhibitor of both the EGFR and HER2 (human EGFR type 2 receptor. Both compounds compete with the binding of adenosine triphosphate (ATP to the tyrosine kinase domain of the respective receptors to inhibit receptor autophosphorylation causing suppression of signal transduction. Unfortunately, resistance to these inhibitors is a major clinical problem. Aims: To compare the apoptosis signaling pathway(s induced by gefitinib and lapatinib, in UM-UC-5 (drug-sensitive and UM-UC-14 (drug-resistant bladder cancer cells and to identify molecular differences that might be useful predictors of their efficacy. Materials and Methods: Cell proliferation, cell cycle and apoptosis assay were used to detect the effect of TKIs on UM-UC-5 and UM-UC-14 cells. Molecular differences for response to TKIs were examined by protein array. Results: TKIs strongly inhibited cell proliferation and induced cell cycle G1 arrest and apoptosis in UM-UC-5 cells. Most notable apoptosis molecular differences included decreased claspin, trail, and survivin by TKIs in the sensitive cells. In contrast, TKIs had no effect on resistant cells. Conclusions: Claspin, trail, and survivin might be used to determine the sensitivity of bladder cancers to TKIs.

  7. Death receptor ligands, in particular TRAIL, to overcome drug resistance

    NARCIS (Netherlands)

    de Jong, S; Timmer, T; Heijenbrok, FJ; de Vries, EGE

    2001-01-01

    The efficacy of chemotherapeutic drugs is hampered by the occurrence of intrinsic and acquired drug resistance. A variety of mechanisms cause drug-resistance. A final common factor, however, is the reduced capacity of drug resistant cells to go into apoptosis following treatment with DNA damaging

  8. Trailing Vortex-Induced Loads During Close Encounters in Cruise

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J; Kelly, Michael J.

    2015-01-01

    The trailing vortex induced aerodynamic loads on a Falcon 20G business jet flying in the wake of a DC-8 are predicted to provide a preflight estimate of safe trail distances during flight test measurements in the wake. Static and dynamic loads on the airframe flying in the near wake are shown at a matrix of locations, and the dynamic motion of the Falcon 20G during traverses of the DC-8 primary trailing vortex is simulated. Safe trailing distances for the test flights are determined, and optimum vortex traverse schemes are identified to moderate the motion of the trailing aircraft during close encounters with the vortex wake.

  9. Involvement of the strychnine-sensitive glycine receptor in the anxiolytic effects of GlyT1 inhibitors on maternal separation-induced ultrasonic vocalization in rat pups.

    Science.gov (United States)

    Komatsu, Hiroko; Furuya, Yoshiaki; Sawada, Kohei; Asada, Takashi

    2015-01-05

    Several studies have shown that glycine transporter 1 (GlyT1) inhibitors have anxiolytic actions. There are two types of glycine receptor: the strychnine-sensitive glycine receptor (GlyA) and the strychnine-insensitive glycine receptor (GlyB); however, which receptor is the main contributor to the anxiolytic actions of GlyT1 inhibitors is yet to be determined. Here, we clarified which glycine receptor is the main contributor to the anxiolytic effects of GlyT1 inhibitors by using maternal separation-induced ultrasonic vocalization (USV) by rat pups as an index of anxiety. We confirmed that administration of the benzodiazepine diazepam or the selective serotonin reuptake inhibitor escitaloplam, which are both clinically proven anxiolytics, or the GlyT1 inhibitor SSR504734 (2-chloro-N-[(S)-phenyl[(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide), decreases USV in rat pups. In addition, we showed that another GlyT1 inhibitor, ALX5407 ((R)-N-[3-(4'-fluorophenyl)-3(4'-phenylphenoxy)propyl]sarcosine) also decreases USV in rat pups. SSR504734- or ALX5407-induced decreases in USV were dose-dependently reversed by administration of the GlyA antagonist strychnine, whereas the diazepam- or escitalopram-induced decreases in USV were not. Furthermore, GlyT1-induced decreases in USV were not reversed by administration of the GlyB antagonist L-687,414. Together, these results suggest that GlyA activation is the main contributor to the anxiolytic actions of GlyT1 inhibitors and that the anxiolytic actions of diazepam and escitalopram cannot be attributed to GlyA activation. Our findings provide new insights into the importance of the activation of GlyA in the anxiolytic effects of GlyT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A library of 7TM receptor C-terminal tails - Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP)

    DEFF Research Database (Denmark)

    Heydorn, A.; Sondergaard, B.P.; Ersbøll, Bjarne Kjær

    2004-01-01

    Adaptor and scaffolding proteins determine the cellular targeting, the spatial, and thereby the functional association of G protein-coupled seven-transmembrane receptors with co-receptors, transducers, and downstream effectors and the adaptors determine post-signaling events such as receptor......-coupled receptor-associated sorting protein bound 23 of the 59 tail proteins. Surface plasmon resonance analysis of the binding kinetics of selected hits from the glutathione S-transferase pull-down experiments, i.e. the tails of the virally encoded receptor US28 and the delta-opioid receptor, confirmed...... the expected nanomolar affinities for interaction with SNX1. Truncations of the NK1 receptor revealed that an extended binding epitope is responsible for the interaction with both SNX1 and G protein-coupled receptor-associated sorting protein as well as with N-ethylmaleimide-sensitive factor. It is concluded...

  11. A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP)

    DEFF Research Database (Denmark)

    Heydorn, Arne; Søndergaard, Birgitte P; Ersbøll, Bjarne

    2004-01-01

    Adaptor and scaffolding proteins determine the cellular targeting, the spatial, and thereby the functional association of G protein-coupled seven-transmembrane receptors with co-receptors, transducers, and downstream effectors and the adaptors determine post-signaling events such as receptor......-coupled receptor-associated sorting protein bound 23 of the 59 tail proteins. Surface plasmon resonance analysis of the binding kinetics of selected hits from the glutathione S-transferase pull-down experiments, i.e. the tails of the virally encoded receptor US28 and the delta-opioid receptor, confirmed...... the expected nanomolar affinities for interaction with SNX1. Truncations of the NK(1) receptor revealed that an extended binding epitope is responsible for the interaction with both SNX1 and G protein-coupled receptor-associated sorting protein as well as with N-ethylmaleimide-sensitive factor. It is concluded...

  12. The effect of chronic selective serotonin reuptake inhibitor treatment on serotonin(1B) receptor sensitivity and HPA axis activity

    NARCIS (Netherlands)

    Jongsma, M.E.; Bosker, F.J; Cremers, T.I.F.H.; Westerink, B.H.C.; Den Boer, J.A.

    The authors have investigated 5-HT1B receptor function in prefrontal cortex and dorsal hippocampus as well as the HPA axis response after subchronic (24 h) and chronic (15 days) treatment with the SSRI citalopram. All experiments were carried out in presence of citalopram to prevent rapid

  13. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Dana; Plachý, Jiří; Reinišová, Markéta; Šenigl, Filip; Trejbalová, Kateřina; Geryk, Josef; Hejnar, Jiří

    2013-01-01

    Roč. 87, č. 15 (2013), s. 8399-8407 ISSN 0022-538X R&D Projects: GA ČR GAP502/10/1651 Institutional support: RVO:68378050 Keywords : avian leukosis virus * ALV-J * NHE1 * host resistance * receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.648, year: 2013

  14. Endocrine sensitivity of the receptor-positive T61 human breast carcinoma serially grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Spang-Thomsen, M; Skovgaard Poulsen, H

    1985-01-01

    A study was made on the effect of ovariectomy, 17 beta-oestradiol, and tamoxifen on the oestrogen and progesterone receptor-positive T61 human breast carcinoma grown in nude mice. The effect of the treatment was evaluated by the specific growth delay calculated on the basis of Gompertz growth...

  15. Sensitization of (colon) cancer cells to death receptor related therapies A report from the FP6-ONCODEATH research consortium

    Czech Academy of Sciences Publication Activity Database

    Pintzas, A.; Zhivotovsky, B.; Workman, P.; Clarke, P.A.; Linardopoulos, S.; Martinou, J.C.; Lacal, J.C.; Robine, S.; Nasioulas, G.; Anděra, Ladislav

    2012-01-01

    Roč. 13, č. 7 (2012), s. 458-466 ISSN 1538-4047 Grant - others:EK(XE) LSHC-CT-2006-037278 Institutional support: RVO:68378050 Keywords : cancer * death receptors * kinase inhibitors * mitochondria * targeted therapies Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.287, year: 2012

  16. Emotional eating is associated with increased brain responses to food-cues and reduced sensitivity to GLP-1 receptor activation

    NARCIS (Netherlands)

    van Bloemendaal, L.; Veltman, D.J.; ten Kulve, J.S.; Drent, M.L.; Barkhof, F.; Diamant, M.; IJzerman, R.G.

    2015-01-01

    Objective The neural correlates and pathophysiology of emotional eating are insufficiently known. Glucagon-like peptide-1 (GLP-1), a postprandial hormone, plays a role in feeding behavior by signaling satiety to the brain. GLP-1 receptor agonists, used for treatment of type 2 diabetes (T2DM),

  17. Synergistic effects of rmhTRAIL and 17-AAG on the proliferation and apoptosis of multiple myeloma cells.

    Science.gov (United States)

    Wang, Jing; Li, Yun; Sun, Wei; Liu, Jing; Chen, Wenming

    2018-03-22

    This study aimed to investigate synergistic effects of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) and heat-shock protein 90 (HSP90) inhibitor (geldanamycin derivative 17 -allylamino- 17-demethoxy -geldanamycin, 17-AAG) on the proliferation and apoptosis of multiple myeloma (MM) cells. MTT assays evaluated inhibitory effects of rmhTRAIL and 17-AAG in different concentrations and treatment durations on the proliferation of RPMI8226 and U266 cells. The half maximal inhibitory concentration was calculated using OriginPro7.5. Synergistic effects of rmhTRAIL and 17-AAG on apoptosis of MM cells were detected using flow cytometry at 24 and 48 h post-treatment. To evaluate synergistic effects of rmhTRAIL and 17-AAG, the Q-value was calculated using King's formula. rmhTRAIL exhibited significant inhibitory effects on the proliferation of RPMI8226 cells in a dose- and time-dependent manner (>50%), whereas U266 cells were not sensitive to rmhTRAIL (AAG inhibited the proliferation of RPMI8226 and U266 cells in a dose-dependent manner (>80%). Significant synergistic effects of rmhTRAIL and 17-AAG on the proliferation of RPMI8226 cells were revealed (Q-value > 1.15), whereas synergistic effects were not evident on the proliferation of U266 cells (Q-value AAG exhibited significant synergistic effects on apoptosis of RPMI8226 and U266 cells (Q-value > 1.15). The combined application of rmhTRAIL and 17-AAG revealed favorable synergistic effects in the treatment of MM.

  18. Possible novel therapy for malignant gliomas with secretable trimeric TRAIL.

    Directory of Open Access Journals (Sweden)

    Moonsup Jeong

    Full Text Available Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI. Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl-1-nitrosourea (BCNU, a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas.

  19. The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature

    OpenAIRE

    Ben-Avraham, Danny; Govindaraju, Diddahally R.; Budagov, Temuri; Fradin, Delphine; Durda, Peter; Liu, Bing; Ott, Sandy; Gutman, Danielle; Sharvit, Lital; Kaplan, Robert; Bougn?res, Pierre; Reiner, Alex; Shuldiner, Alan R.; Cohen, Pinchas; Barzilai, Nir

    2017-01-01

    Although both growth hormone (GH) and insulin-like growth factor 1 (IGF-1) signaling were shown to regulate life span in lower organisms, the role of GH signaling in human longevity remains unclear. Because a GH receptor exon 3 deletion (d3-GHR) appears to modulate GH sensitivity in humans, we hypothesized that this polymorphism could play a role in human longevity. We report a linear increased prevalence of d3-GHR homozygosity with age in four independent cohorts of long-lived individuals: 8...

  20. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    DEFF Research Database (Denmark)

    Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun

    2014-01-01

    characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase......The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL...... methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST...

  1. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    International Nuclear Information System (INIS)

    Marrero, María Teresa; Estévez, Sara; Negrín, Gledy; Quintana, José; López, Mariana; Pérez, Francisco J.; Triana, Jorge; León, Francisco; Estévez, Francisco

    2012-01-01

    Highlights: ► Ayanin diacetate as apoptotic inducer in leukemia cells. ► Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x L . ► The intrinsic and the extrinsic pathways are involved in the mechanism of action. ► Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G 2 -M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x L . Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  2. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain); Lopez, Mariana; Perez, Francisco J.; Triana, Jorge [Departamento de Quimica, Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigacion del Cancer, 35017 Las Palmas de Gran Canaria (Spain); Leon, Francisco [Instituto de Productos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda. Astrofisico F. Sanchez 3, 38206 La Laguna, Tenerife (Spain); Estevez, Francisco, E-mail: festevez@dbbf.ulpgc.es [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  3. The Dual Amylin- and Calcitonin-Receptor Agonist KBP-042 Increases Insulin Sensitivity and Induces Weight Loss in Rats with Obesity

    DEFF Research Database (Denmark)

    Hjuler, Sara Toftegaard; Gydesen, Sofie; Andreassen, Kim Vietz

    2016-01-01

    Objective: In this study, KBP-042, a dual amylin- and calcitonin-receptor agonist, was investigated as a treatment of obesity and insulin resistance in five different doses (0.625 μg/kg-10 μg/kg) compared with saline-treated and pair-fed controls. Methods: Rats with obesity received daily s...... combines two highly relevant features, namely weight loss and insulin sensitivity, and is thus an excellent candidate for chronic treatment of obesity and insulin resistance........c. administrations for 56 days, and glucose tolerance was assessed after one acute injection, 3 weeks of treatment, and again after 7 weeks of treatment. To assess the effect on insulin sensitivity, rats received 5 μg/kg KBP-042 for 21 days before hyperinsulinemic-euglycemic clamp. Results: KBP-042 induced...

  4. Osteoprotegerin and osteoprotegerin/TRAIL ratio are associated with cardiovascular dysfunction and mortality among patients with renal failure.

    Science.gov (United States)

    Kuźniewski, Marek; Fedak, Danuta; Dumnicka, Paulina; Stępień, Ewa; Kuśnierz-Cabala, Beata; Cwynar, Marcin; Sułowicz, Władysław

    2016-09-01

    The high prevalence of cardiovascular morbidity and mortality among patients with chronic kidney disease (CKD) is observed especially in those undergoing dialysis. Osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been associated with cardiovascular complications. Our aim was to study their role as cardiovascular risk factors in stage 5 CKD patients. OPG, RANKL and TRAIL concentrations were measured in 69 hemodialyzed CKD patients and 35 healthy volunteers. In CKD patients, cardiovascular dysfunction was assessed with aortic pulse wave velocity (AoPWV), carotid artery intima-media thickness (CCA-IMT), coronary artery calcium score (CACS) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) serum concentrations. Cardiovascular and overall mortality data were collected during a 7-years follow-up. OPG plasma concentrations were higher in CKD patients comparing to controls. Total soluble RANKL was lower and OPG/RANKL ratio higher in patients. Soluble TRAIL concentrations did not differ between the groups and OPG/TRAIL ratio was higher in CKD patients. OPG and OPG/TRAIL positively predicted long-term mortality (all-cause and cardiovascular) in CKD patients. OPG positively correlated with AoPWV, CCA-IMT and NT-proBNP whereas OPG/TRAIL with AoPWV and NT-proBNP. Described relationships were independent of classical and non-classical cardiovascular risk factors, with exception of age. Our study confirmed the role of OPG as a biomarker of cardiovascular dysfunction and a predictor of mortality in stage 5 CKD. OPG/TRAIL ratio can be proposed as a predictor of cardiovascular dysfunction and mortality. Copyright © 2016 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Complement C3a binding to its receptor as a negative modulator of Th2 response in liver injury in trichloroethylene-sensitized mice.

    Science.gov (United States)

    Wang, Feng; Zha, Wan-sheng; Zhang, Jia-xiang; Li, Shu-long; Wang, Hui; Ye, Liang-ping; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2014-08-17

    Trichloroethylene (TCE) is a major occupational health hazard and causes occupational medicamentosa-like dermatitis (OMLDT) and liver damage. Recent evidence suggests immune response as a distinct mode of action for TCE-induced liver damage. This study aimed to explore the role of the key complement activation product C3a and its receptor C3aR in TCE-induced immune liver injury. A mouse model of skin sensitization was induced by TCE in the presence and absence of the C3aR antagonist SB 290157. Liver function was evaluated by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in conjunction with histopathological characterizations. C3a and C3aR were detected by immunohistochemistry and C5b-9 was assessed by immunofluorescence. IFN-γ and IL4 expressions were determined by flow cytometry and ELISA. The total sensitization rate was 44.1%. TCE sensitization caused liver cell necrosis and inflammatory infiltration, elevated serum ALT and AST, expression of C3a and C3aR, and deposition of C5b-9 in the liver. IFN-γ and IL-4 expressions were up-regulated in spleen mononuclear cells and their serum levels were also increased. Pretreatment with SB 290157 resulted in more inflammatory infiltration in the liver, higher levels of AST, reduced C3aR expression on Kupffer cells, and decreased IL-4 levels while IFN-γ remained unchanged. These data demonstrate that blocking of C3a binding to C3aR reduces IL4, shifts IFN-γ and IL-4 balance, and aggravates TCE-sensitization induced liver damage. These findings reveal a novel mechanism whereby modulation of Th2 response by C3a binding to C3a receptor contributes to immune-mediated liver damage by TCE exposure. Copyright © 2014. Published by Elsevier Ireland Ltd.

  6. Anabolic-androgenic steroids (AAS) increase sensitivity to uncertainty by inhibition of dopamine D1 and D2 receptors.

    Science.gov (United States)

    Wallin-Miller, Kathryn G; Kreutz, Frida; Li, Grace; Wood, Ruth I

    2018-04-01

    Anabolic-androgenic steroid abuse is implicated in maladaptive behaviors such as impaired cognition in humans. In a rat model, our lab has shown that testosterone decreases preference for a large/uncertain reward in probability discounting. Other studies have shown that androgens decrease dopamine D1 and D2 receptors in the nucleus accumbens shell, a region important for decision-making behavior in probability discounting. Thus, we attempted to restore selection of the large/uncertain reward in testosterone-treated rats by administering the D2 receptor agonist quinpirole or the D1 receptor agonist SKF81297 and testing probability discounting. Adolescent male Long-Evans rats were treated chronically with high-dose testosterone (7.5 mg/kg) or vehicle (13% cyclodextrin in water), and tested for probability discounting after injections of saline, 0.1 and 0.5 mg/kg of quinpirole or SKF81297. Rats chose between a small/certain reward (1 sugar pellet, 100% probability) and a large/uncertain reward (4 pellets, decreasing probability: 100, 75, 50, 25, 0%). Testosterone-treated rats selected the large/uncertain reward significantly less than vehicle-treated controls after saline injection. However, acute injection with 0.1 mg/kg quinpirole increased large/uncertain reward preference in testosterone-treated rats only, indicated by a testosterone × quinpirole interaction. At 0.5 mg/kg, quinpirole increased large/uncertain reward preference in all rats. Acute injection with SKF81297 at 0.1 or 0.5 mg/kg rescued large/uncertain reward preference in testosterone-treated rats by eliminating the difference between groups. It appears that altered probability discounting behavior in testosterone-treated rats is due to both decreased D1 and D2 receptor function.

  7. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin.

    Science.gov (United States)

    McCall, Jennifer R; Jacocks, Henry M; Niven, Susan C; Poli, Mark A; Baden, Daniel G; Bourdelais, Andrea J

    2014-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels.

  8. TRAIL-Based Anticancer Drug Development

    Science.gov (United States)

    2002-07-01

    145- 8. Sarr MG, Carpenter HA, Prabhakar LP, Orchard TF, Hughes SJ, van Heerden JA, DiMagno EP Clinical and pathologic correlation of 84 mucinous...several clonal cell lines that express different amount of XIAP. These cell lines will be exposed to TRAIL recombinant protein and analyzed for...hypoxia and gene expression-implications for malignant progression and therapy. Acta Oncol, 37: 561-51 A, 1998. 66. Semenza, G. L. Hypoxia, clonal

  9. Heavy water at Trail, British Columbia

    International Nuclear Information System (INIS)

    Arsenault, J.E.

    2006-01-01

    Today Canada stands on the threshold of a nuclear renaissance, based on the CANDU reactor family, which depends on heavy water as a moderator and for cooling. Canada has a long history with heavy water, with commercial interests beginning in 1934, a mere two years after its discovery. At one time Canada was the world's largest producer of heavy water. The Second World War stimulated interest in this rather rare substance, such that the worlds largest supply (185 kg) ended up in Canada in 1942 to support nuclear research work at the Montreal Laboratories of the National Research Council. A year later commercial production began at Trail, British Columbia, to support work that later became known as the P-9 project, associated with the Manhattan Project. The Trail plant produced heavy water from 1943 until 1956, when it was shut down. During the war years the project was so secret that Lesslie Thomson, Special Liaison Officer reporting on nuclear matters to C.D. Howe, Minister of Munitions and Supply, was discouraged from visiting Trail operations. Thomson never did visit the Trail facility during the war. In 2005 the remaining large, tall concrete exchange tower was demolished at a cost of about $2.4 million, about the same as it cost to construct the facility about 60 years ago. Thus no physical evidence remains of this historic facility and another important artifact from Canada's nuclear history has disappeared forever. It is planned to place a plaque at the site at some point in the future. (author)

  10. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

    Directory of Open Access Journals (Sweden)

    Ganesh Kolumam

    2015-07-01

    Full Text Available Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.

  11. Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Gui, Shun-Hua; Jiang, Hong-Bo; Xu, Li; Pei, Yu-Xia; Liu, Xiao-Qiang; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Insect tachykinin-related peptide (TRP), an ortholog of tachykinin in vertebrates, has been linked with regulation of diverse physiological processes, such as olfactory perception, locomotion, aggression, lipid metabolism and myotropic activity. In this study, we investigated the function of TRP (BdTRP) and its receptor (BdTRPR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis. BdTRPR is a typical G-protein coupled-receptor (GPCR), and it could be activated by the putative BdTRP mature peptides with the effective concentrations (EC 50 ) at the nanomolar range when expressed in Chinese hamster ovary cells. Consistent with its role as a neuromodulator, expression of BdTRP was detected in the central nervous system (CNS) of B. dorsalis, specifically in the local interneurons with cell bodies lateral to the antennal lobe. BdTRPR was found in the CNS, midgut and hindgut, but interestingly also in the antennae. To investigate the role of BdTRP and BdTRPR in olfaction behavior, adult flies were subjected to RNA interference, which led to a reduction in the antennal electrophysiological response and sensitivity to ethyl acetate in the Y-tube assay. Taken together, we demonstrate the impact of TRP/TRPR signaling on the modulation of the olfactory sensitivity in B. dorsalis. The result improve our understanding of olfactory processing in this agriculturally important pest insect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Access Control Based on Trail Inference

    Directory of Open Access Journals (Sweden)

    ALBARELO, P. C.

    2015-06-01

    Full Text Available Professionals are constantly seeking qualification and consequently increasing their knowledge in their area of expertise. Thus, it is interesting to develop a computer system that knows its users and their work history. Using this information, even in the case of professional role change, the system could allow the renewed authorization for activities, based on previously authorized use. This article proposes a model for user access control that is embedded in a context-aware environment. The model applies the concept of trails to manage access control, recording activities usage in contexts and applying this history as a criterion to grant new accesses. Despite the fact that previous related research works consider contexts, none of them uses the concept of trails. Hence, the main contribution of this work is the use of a new access control criterion, namely, the history of previous accesses (trails. A prototype was implemented and applied in an evaluation based on scenarios. The results demonstrate the feasibility of the proposal, allowing for access control systems to use an alternative way to support access rights.

  13. Toll-like receptor 9 expression is associated with breast cancer sensitivity to the growth inhibitory effects of bisphosphonates in vitro and in vivo.

    Science.gov (United States)

    Sandholm, Jouko; Lehtimäki, Jaakko; Ishizu, Tamiko; Velu, Sadanandan E; Clark, Jeremy; Härkönen, Pirkko; Jukkola-Vuorinen, Arja; Schrey, Aleksi; Harris, Kevin W; Tuomela, Johanna M; Selander, Katri S

    2016-12-27

    Bisphosphonates are standard treatments for bone metastases. When given in the adjuvant setting, they reduce breast cancer mortality and recurrence in bone but only among post-menopausal patients. Optimal drug use would require biomarker-based patient selection. Such biomarkers are not yet in clinical use. Based on the similarities in inflammatory responses to bisphosphonates and Toll-like receptor (TLR) agonists, we hypothesized that TLR9 expression may affect bisphosphonate responses in cells. We compared bisphosphonate effects in breast cancer cell lines with low or high TLR9 expression. We discovered that cells with decreased TLR9 expression are significantly more sensitive to the growth-inhibitory effects of bisphosphonates in vitro and in vivo. Furthermore, cancer growth-promoting effects seen with some bisphosphonates in some control shRNA cells were not detected in TLR9 shRNA cells. These differences were not associated with inhibition of Rap1A prenylation or p38 phosphorylation, which are known markers for bisphosphonate activity. However, TLR9 shRNA cells exhibited increased sensitivity to ApppI, a metabolite that accumulates in cells after bisphosphonate treatment. We conclude that decreased TLR9-expression sensitizes breast cancer cells to the growth inhibitory effects of bisphosphonates. Our results suggest that TLR9 should be studied as a potential biomarker for adjuvant bisphosphonate sensitivity among breast cancer patients.

  14. The Effect of Nozzle Trailing Edge Thickness on Jet Noise

    Science.gov (United States)

    Henderson, Brenda; Kinzie, Kevin; Haskin, Henry

    2004-01-01

    The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.

  15. Effects of a high-salt diet on adipocyte glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase 1 in salt-sensitive hypertensive rats.

    Science.gov (United States)

    Usukura, Mikiya; Zhu, Aoshuang; Yoneda, Takashi; Karashima, Shigehiro; Yagi, Kunimasa; Yamagishi, Masakazu; Takeda, Yoshiyu

    2009-11-01

    High-salt diets decrease insulin sensitivity in salt-sensitive hypertensive rats, and glucocorticoids promote adipocyte growth and may have pathophysiological roles in the metabolic syndrome. The aim of this study was to clarify the relationship between high-salt diet and the adipocyte glucocorticoid hormones in salt-sensitive hypertensive rats. Six-week-old Dahl salt-sensitive (DS) hypertensive rats and salt-resistant (DR) rats were fed a high-salt diet or a normal-salt diet for 4 weeks. Fasting blood glucose (FBG), serum adiponectin, plasma insulin, and corticosterone in plasma and in visceral adipose tissues, 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) activities in adipose tissues and glucose uptake in isolated muscle were measured. Animals underwent an oral glucose tolerance test (OGTT). The expression of mRNA for glucocorticoid receptor (GR), 11beta-HSD1 and tumor necrosis factor-alpha (TNF-alpha) in adipose tissues were measured using a real-time PCR. A high-salt diet did not influence FBG; however, decreased 2-deoxy glucose uptake and plasma insulin during OGTT in DS rats. The high-salt diet increased significantly adipose tissue corticosterone concentration and 11beta-HSD1 activities, gene expression for GR, 11beta-HSD1 and TNF-alpha in adipose tissues in DS rats compared with DR rats (phigh-salt diet did not influence plasma corticosterone and serum adiponectin concentration in DS and DR rats. These results suggest that changes in GR and 11beta-HSD1 in adipose tissue may contribute to insulin sensitivity in salt-sensitive hypertensive rats.

  16. Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated.

    Science.gov (United States)

    Salling, Michael C; Harrison, Neil L

    2014-09-01

    Processing of signals within the cerebral cortex requires integration of synaptic inputs and a coordination between excitatory and inhibitory neurotransmission. In addition to the classic form of synaptic inhibition, another important mechanism that can regulate neuronal excitability is tonic inhibition via sustained activation of receptors by ambient levels of inhibitory neurotransmitter, usually GABA. The purpose of this study was to determine whether this occurs in layer II/III pyramidal neurons (PNs) in the prelimbic region of the mouse medial prefrontal cortex (mPFC). We found that these neurons respond to exogenous GABA and to the α4δ-containing GABAA receptor (GABA(A)R)-selective agonist gaboxadol, consistent with the presence of extrasynaptic GABA(A)R populations. Spontaneous and miniature synaptic currents were blocked by the GABA(A)R antagonist gabazine and had fast decay kinetics, consistent with typical synaptic GABA(A)Rs. Very few layer II/III neurons showed a baseline current shift in response to gabazine, but almost all showed a current shift (15-25 pA) in response to picrotoxin. In addition to being a noncompetitive antagonist at GABA(A)Rs, picrotoxin also blocks homomeric glycine receptors (GlyRs). Application of the GlyR antagonist strychnine caused a modest but consistent shift (∼15 pA) in membrane current, without affecting spontaneous synaptic events, consistent with the tonic activation of GlyRs. Further investigation showed that these neurons respond in a concentration-dependent manner to glycine and taurine. Inhibition of glycine transporter 1 (GlyT1) with sarcosine resulted in an inward current and an increase of the strychnine-sensitive current. Our data demonstrate the existence of functional GlyRs in layer II/III of the mPFC and a role for these receptors in tonic inhibition that can have an important influence on mPFC excitability and signal processing. Copyright © 2014 the American Physiological Society.

  17. Identification of contact and respiratory sensitizers according to IL-4 receptor α expression and IL-2 production

    Energy Technology Data Exchange (ETDEWEB)

    Goutet, Michèle, E-mail: michele.goutet@inrs.fr; Pépin, Elsa; Langonné, Isabelle; Huguet, Nelly; Ban, Masarin

    2012-04-15

    Identification of allergenic chemicals is an important occupational safety issue. While several methods exist to identify contact sensitizers, there is currently no validated model to predict the potential of chemicals to act as respiratory sensitizers. Previously, we reported that cytometry analysis of the local immune responses induced in mice dermally exposed to the respiratory sensitizer trimellitic anhydride (TMA 10%) and contact sensitizer dinitrochlorobenzene (DNCB 1%) could identify divergent expression of several immune parameters. The present study confirms, first, that IgE-positive B cells, MHC class II molecules, interleukin (IL)-2, IL-4 and IL-4Rα can differentiate the allergic reactions caused by high doses of strong respiratory (TMA, phthalic anhydride and toluene diisocyanate) and contact sensitizers (DNCB, dinitrofluorobenzene and oxazolone). The second part of the study was designed to test the robustness of these markers when classing the weakly immunogenic chemicals most often encountered. Six respiratory allergens, including TMA (2.5%), five contact allergens, including DNCB (0.25%), and two irritants were compared at doses of equivalent immunogenicity. The results indicated that IL-4Rα and IL-2 can be reliably used to discriminate sensitizers. Respiratory sensitizers induced markedly higher IL-4Rα levels than contact allergens, while irritants had no effect on this parameter. Inversely, contact allergens tended to induce higher percentages of IL-2{sup +}CD8{sup +} cells than respiratory allergens. In contrast, the markers MHC-II, IgE and IL-4 were not able to classify chemicals with low immunogenic potential. In conclusion, IL-4Rα and IL-2 have the potential to be used in classifying a variety of chemical allergens. -- Highlights: ► Identification of chemical allergens is an important occupational safety issue. ► There is currently no model to predict the potential of chemicals to induce asthma. ► We analyze immune responses induced

  18. Identification of contact and respiratory sensitizers according to IL-4 receptor α expression and IL-2 production

    International Nuclear Information System (INIS)

    Goutet, Michèle; Pépin, Elsa; Langonné, Isabelle; Huguet, Nelly; Ban, Masarin

    2012-01-01

    Identification of allergenic chemicals is an important occupational safety issue. While several methods exist to identify contact sensitizers, there is currently no validated model to predict the potential of chemicals to act as respiratory sensitizers. Previously, we reported that cytometry analysis of the local immune responses induced in mice dermally exposed to the respiratory sensitizer trimellitic anhydride (TMA 10%) and contact sensitizer dinitrochlorobenzene (DNCB 1%) could identify divergent expression of several immune parameters. The present study confirms, first, that IgE-positive B cells, MHC class II molecules, interleukin (IL)-2, IL-4 and IL-4Rα can differentiate the allergic reactions caused by high doses of strong respiratory (TMA, phthalic anhydride and toluene diisocyanate) and contact sensitizers (DNCB, dinitrofluorobenzene and oxazolone). The second part of the study was designed to test the robustness of these markers when classing the weakly immunogenic chemicals most often encountered. Six respiratory allergens, including TMA (2.5%), five contact allergens, including DNCB (0.25%), and two irritants were compared at doses of equivalent immunogenicity. The results indicated that IL-4Rα and IL-2 can be reliably used to discriminate sensitizers. Respiratory sensitizers induced markedly higher IL-4Rα levels than contact allergens, while irritants had no effect on this parameter. Inversely, contact allergens tended to induce higher percentages of IL-2 + CD8 + cells than respiratory allergens. In contrast, the markers MHC-II, IgE and IL-4 were not able to classify chemicals with low immunogenic potential. In conclusion, IL-4Rα and IL-2 have the potential to be used in classifying a variety of chemical allergens. -- Highlights: ► Identification of chemical allergens is an important occupational safety issue. ► There is currently no model to predict the potential of chemicals to induce asthma. ► We analyze immune responses induced in mice

  19. Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    The present work considers incompressible flow over a 2D airfoil with a deformable trailing edge. The aerodynamic characteristics of an airfoil with a trailing edge flap is numerically investigated using computational fluid dynamics. A novel hybrid immersed boundary (IB) technique is applied...... to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...... results show that the hybrid approach is an efficient and accurate method for solving turbulent flows past airfoils with a trailing edge flap and flow control using trailing edge flap is an efficient way to regulate the aerodynamic loading on airfoils....

  20. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy

    DEFF Research Database (Denmark)

    So, Jonathan; Pasculescu, Adrian; Dai, Anna Y.

    2015-01-01

    -induced apoptosis in the colon adenocarcinoma cell line DLD-1. We classified the kinases as sensitizers or resistors or modulators, depending on the effect that knockdown and overexpression had on TRAIL-induced apoptosis. Two of these kinases that were classified as resistors were PX domain-containing serine...

  1. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj

    2006-01-01

    . However, a relationship between the AS status and FcepsilonRI has not been investigated. We aimed to characterize basophils from AS by looking at histamine release (HR) (sensitivity and reactivity) and the FcepsilonRI molecule, and compare it with nonatopic (NA) or allergic (A) persons....

  2. Seasonal dynamics of chemokine receptors and CD62L in subjects with asymptomatic skin sensitization to birch and grass pollen

    DEFF Research Database (Denmark)

    Assing, K; Bodtger, U; Poulsen, Lars K.

    2006-01-01

    Asymptomatic skin sensitization (AS) has been shown to be a risk factor for respiratory allergic disease. CCR4, CXCR1 and CD62L have all been assigned a role in the immunopathogenesis of allergy. Memory T-cell expression of CCR4, CXCR1 and CD62L has not hitherto been investigated in subjects...

  3. Chronic partial sleep deprivation reduces brain sensitivity to glutamate N-methyl-d-aspartate receptor-mediated neurotoxicity

    NARCIS (Netherlands)

    Novati, Arianna; Hulshof, Henriette J.; Granic, Ivica; Meerlo, Peter

    2012-01-01

    It has been hypothesized that insufficient sleep may compromise neuronal function and contribute to neurodegenerative processes. While sleep loss by itself may not lead to cell death directly, it may affect the sensitivity to a subsequent neurodegenerative insult. Here we examined the effects of

  4. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus)

    NARCIS (Netherlands)

    Yoshizawa, Masato; Jeffery, William R; van Netten, Sietse M; McHenry, Matthew J

    2014-01-01

    The characid fish species Astyanax mexicanus offers a classic comparative model for the evolution of sensory systems. Populations of this species evolved in caves and became blind while others remained in streams (i.e. surface fish) and retained a functional visual system. The flow-sensitive lateral

  5. Chronically Restricted Sleep Leads to Depression-Like Changes in Neurotransmitter Receptor Sensitivity and Neuroendocrine Stress Reactivity in Rats

    NARCIS (Netherlands)

    Novati, Arianna; Roman, Viktor; Cetin, Timur; Hagewoud, Roelina; den Boer, Johan A.; Luiten, Paul G.M.; Meerlo, Peter

    2008-01-01

    Study Objectives: Frequently disrupted and restricted sleep is a common problem for many people in our Western society. In the long run, insufficient sleep may have repercussions for health and may sensitize individuals to psychiatric diseases. In this context, we applied an animal model of chronic

  6. Two different avian cold-sensitive sensory neurons: Transient receptor potential melastatin 8 (TRPM8)-dependent and -independent activation mechanisms.

    Science.gov (United States)

    Yamamoto, A; Takahashi, K; Saito, S; Tominaga, M; Ohta, T

    2016-12-01

    Sensing the ambient temperature is an important function for survival in animals. Some TRP channels play important roles as detectors of temperature and irritating chemicals. There are functional differences of TRP channels among species. TRPM8 in mammals is activated by cooling compounds and cold temperature, but less information is available on the functional role of TRPM8 in avian species. Here we investigated the pharmacological properties and thermal sensitivities of chicken TRPM8 (cTRPM8) and cold-sensitive mechanisms in avian sensory neurons. In heterologously expressed cTRPM8, menthol and its derivative, WS-12 elicited [Ca 2+ ] i increases, but icilin did not. In chicken sensory neurons, icilin increased [Ca 2+ ] i, in a TRPA1-dependent manner. Icilin selectively stimulated heterologously expressed chicken TRPA1 (cTRPA1). Similar to mammalian orthologue, cTRPM8 was activated by cold. Both heterologous and endogenous expressed cTRPM8 were sensitive to mammalian TRPM8 antagonists. There are two types of cold-sensitive cells regarding menthol sensitivity in chicken sensory neurons. The temperature threshold of menthol-insensitive neurons was significantly lower than that of menthol-sensitive ones. The population of menthol-insensitive neurons was large in chicken but almost little in mammals. The cold-induced [Ca 2+ ] i increases were not abolished by the external Ca 2+ removal or by blockades of PLC-IP 3 pathways and ryanodine channels. The cold stimulation failed to evoke [Ca 2+ ] i increases after intracellular Ca 2+ store-depletion. These results indicate that cTRPM8 acts as a cold-sensor similar to mammals. It is noteworthy that TRPM8-independent cold-sensitive neurons are abundant in chicken sensory neurons. Our results suggest that most of the cold-induced [Ca 2+ ] i increases are mediated via Ca 2+ release from intracellular stores and that these mechanisms may be specific to avian species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mountain bike trail compaction relation to selected physical parameters

    Science.gov (United States)

    Jeff Hale; Rodney R. Zwick

    2002-01-01

    The purpose of this research is to explore the rates of compaction and their relation to trail contextual aspects of: soil type, slope and crown cover on a newly established mountain bike trail in the northern reach of Vermont. A random sample of 52 sites was selected for monitoring on the 1.09-mile trail. Three penetrometer readings were taken at each of the sample...

  8. Synergistic antitumor effects of CDK inhibitor SNS-032 and an oncolytic adenovirus co-expressing TRAIL and Smac in pancreatic cancer

    Science.gov (United States)

    Ge, Yun; Lei, Wen; Ma, Yingyu; Wang, Yigang; Wei, Buyun; Chen, Xiaoyi; Ru, Guoqing; He, Xianglei; Mou, Xiaozhou; Wang, Shibing

    2017-01-01

    Gene therapy using oncolytic adenoviruses is a novel approach for human cancer therapeutics. The current study aimed to investigate whether the combined use of an adenovirus expressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and second mitochondria-derived activator of caspase (Smac) upon caspase activation (ZD55-TRAIL-IETD-Smac) and cyclin-dependent kinase (CDK) inhibitor SNS-032 will synergistically reinforce their anti-pancreatic cancer activities. The experiments in vitro demonstrated that SNS-032 enhances ZD55-TRAIL-IETD-Smac-induced apoptosis and causes marked pancreatic cancer cell death. Western blot assays suggested that the SNS-032 intensified ZD55-TRAIL-IETD-Smac-induced apoptosis of pancreatic cancer cells by affecting anti-apoptotic signaling elements, including CDK-2, CDK-9, Mcl-1 and XIAP. Additionally, animal experiments further confirmed that the combination of SNS-032 and ZD55-TRAIL-IETD-Smac significantly inhibited the growth of BxPC-3 pancreatic tumor xenografts. In conclusion, the present study demonstrated that SNS-032 sensitizes human pancreatic cancer cells to ZD55-TRAIL-IETD-Smac-induced cell death in vitro and in vivo. These findings indicate that combined treatment with SNS-032 and ZD55-TRAIL-IETD-Smac could represent a rational approach for anti-pancreatic cancer therapy. PMID:28440486

  9. Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells.

    Science.gov (United States)

    Quintavalle, C; Donnarumma, E; Iaboni, M; Roscigno, G; Garofalo, M; Romano, G; Fiore, D; De Marinis, P; Croce, C M; Condorelli, G

    2013-08-22

    Glioblastoma is the most frequent brain tumor in adults and is the most lethal form of human cancer. Despite the improvements in treatments, survival of patients remains poor. To define novel pathways that regulate susceptibility to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in glioma, we have performed genome-wide expression profiling of microRNAs (miRs). We show that in TRAIL-resistant glioma cells, levels of different miRs are increased, and in particular, miR-30b/c and -21. We demonstrate that these miRs impair TRAIL-dependent apoptosis by inhibiting the expression of key functional proteins. T98G-sensitive cells treated with miR-21 or -30b/c become resistant to TRAIL. Furthermore, we demonstrate that miR-30b/c and miR-21 target respectively the 3' untranslated region of caspase-3 and TAp63 mRNAs, and that those proteins mediate some of the effects of miR-30 and -21 on TRAIL resistance, even in human glioblastoma primary cells and in lung cancer cells. In conclusion, we show that high expression levels of miR-21 and -30b/c are needed to maintain the TRAIL-resistant phenotype, thus making these miRs as promising therapeutic targets for TRAIL resistance in glioma.

  10. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1 show modestly enhanced alcohol preference and consumption.

    Directory of Open Access Journals (Sweden)

    David J Marcus

    Full Text Available We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6% but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg, morphine (10 mg/kg, and cocaine (10 mg/kg, demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.

  11. Sustainable Trail Management in Costa Rica National Parks: The use of photography for trail surfacing decisions under tropical rainforest conditions

    Directory of Open Access Journals (Sweden)

    Aguirre G., Juan A.

    2009-01-01

    Full Text Available Volcan Poas National Park (VPNP is Costa Rica’s most visited park. Its facilities, accessibility, and proximity to the major cities of the country make VPNP a preferred destination for local and foreigner visitors. Aside from its active volcanic cone, the park trails are a major asset. The extremely wet conditions prevailing throughout the year and heavy visitation made it essential to determine visitor’s trail surface preferences to guarantee park trail sustainability. The purpose of this study was to explore the feasibility of using photos in combination with a regular survey to identify the socio-demographic characteristics and other trail related variables that affect trail surface selection to guide management decisions and resource allocation related to trail design, construction, and maintenance. The study was conducted during May, June and July of 2005.

  12. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    Science.gov (United States)

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing

  13. RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    International Nuclear Information System (INIS)

    Colo, Georgina P.; Rubio, Maria F.; Alvarado, Cecilia V.; Costas, Monica A.

    2007-01-01

    RAC3 belongs to the family of p160 nuclear receptors co activators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-κB co activator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H 2 O 2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected co activator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF--κB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies. (author) [es

  14. Taurine blocks ATP-sensitive potassium channels of rat skeletal muscle fibres interfering with the sulphonylurea receptor

    OpenAIRE

    Tricarico, Domenico; Barbieri, Mariagrazia; Camerino, Diana Conte

    2000-01-01

    Taurine is a sulphonic aminoacid present in high amounts in various tissues including cardiac and skeletal muscles showing different properties such as antioxidative, antimyotonic and anti-schaemic effects. The cellular mechanism of action of taurine is under investigation and appears to involve the interaction of the sulphonic aminoacid with several ion channels.Using the patch-clamp technique we studied the effects of taurine in rat skeletal muscle fibres on ATP-sensitive K+ channel (KATP) ...

  15. The C. elegans D2-Like Dopamine Receptor DOP-3 Decreases Behavioral Sensitivity to the Olfactory Stimulus 1-Octanol

    OpenAIRE

    Ezak, Meredith J.; Ferkey, Denise M.

    2010-01-01

    We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of G alpha signaling. rgs-3 mutant animals are defective in th...

  16. The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL-induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells

    Science.gov (United States)

    NATHWANI, SEEMA-MARIA; GREENE, LISA M.; BUTINI, STEFANIA; CAMPIANI, GIUSEPPE; WILLIAMS, D. CLIVE; SAMALI, AFSHIN; SZEGEZDI, EVA; ZISTERER, DANIELA M.

    2016-01-01

    Apoptotic defects are frequently associated with poor outcome in pediatric acute lymphoblastic leukaemia (ALL) hence there is an ongoing demand for novel strategies that counteract apoptotic resistance. The death ligand TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) and its selective tumour receptor system has attracted exceptional clinical interest. However, many malignancies including ALL are resistant to TRAIL monotherapy. Tumour resistance can be overcome by drug combination therapy. TRAIL and its agonist antibodies are currently undergoing phase II clinical trials with established chemotherapeutics. Herein, we present promising therapeutic benefits in combining TRAIL with the selective anti-leukaemic agents, the pyrrolo-1,5-benzoxazepines (PBOXs) for the treatment of ALL. PBOX-15 synergistically enhanced apoptosis induced by TRAIL and a DR5-selective TRAIL variant in ALL-derived cells. PBOX-15 enhanced TRAIL-induced apoptosis by dual activation of extrinsic and intrinsic apoptotic pathways. The specific caspase-8 inhibitor, Z-IETD-FMK, identified the extrinsic pathway as the principal mode of apoptosis. We demonstrate that PBOX-15 can enhance TRAIL-induced apoptosis by upregulation of DR5, reduction of cellular mitochondrial potential, activation of the caspase cascade and downregulation of PI3K/Akt, c-FLIP, Mcl-1 and IAP survival pathways. Of note, the PI3K pathway inhibitor LY-294002 significantly enhanced the apoptotic potential of TRAIL and PBOX-15 validating the importance of Akt downregulation in the TRAIL/PBOX-15 synergistic combination. Considering the lack of cytotoxicity to normal cells and ability to downregulate several survival pathways, PBOX-15 may represent an effective agent for use in combination with TRAIL for the treatment of ALL. PMID:27176505

  17. Doxorubicin potentiates TRAIL cytotoxicity and apoptosis and can overcome TRAIL-resistance in rhabdomyosarcoma cells

    NARCIS (Netherlands)

    Komdeur, R; Meijer, C; Van Zweeden, M; De Jong, S; Wesseling, J; Hoekstra, HJ; van der Graaf, WTA

    Doxorubicin (DOX) and ifosfamide (IFO) are the most active single agents in soft tissue sarcomas (STS). Tumour necrosis factor-alpha (TNF-alpha) is used for STS in the setting of isolated limb perfusions. Like TNF-alpha, TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis. In contrast to

  18. From Ant Trails to Pedestrian Dynamics

    Directory of Open Access Journals (Sweden)

    Andreas Schadschneider

    2003-01-01

    Full Text Available This paper presents a model for the simulation of pedestrian dynamics inspired by the behaviour of ants in ant trails. Ants communicate by producing a pheromone that can be smelled by other ants. In this model, pedestrians produce a virtual pheromone that influences the motion of others. In this way all interactions are strictly local, and so even large crowds can be simulated very efficiently. Nevertheless, the model is able to reproduce the collective effects observed empirically, eg the formation of lanes in counterflow. As an application, we reproduce a surprising result found in experiments of evacuation from an aircraft.

  19. ( sup 3 H)RO15-4513 binding to cerebellar diazepam-sensitive and insensitive GABAA receptors is unchanged by one week of ethanol intake

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.W.; Chen, J.P.; Wallis, C.; Lal, H. (Texas Coll. of Osteopathic Medicine, Fort Worth (United States))

    1992-02-26

    ({sup 3}H)RO15-4513, a partial inverse agonist at GABAA receptors, binds to two sites in cerebellar membranes, one sensitive (DZ-S) and one insensitive (DZ-IS) to inhibition by diazepam. These binding sites may represent different isoforms of the GABAA receptor and may play a role in ethanol (EtOH) dependence. The authors tested the hypothesis that chronic intake of EtOH induces changes in the binding properties of one or both of these putative GABBA receptors. Rats were fed a liquid diet of 4.5% EtOH for 7 d, gavaged with a 3g/kg dose of EtOH, and then sacrificed after 2 h, 12 h, or 4.5 d. Binding of ({sup 3}H)RO15-4513 to cerebellar membranes was performed in the absence or presence of 10{mu}M diazepam (DZ-IS binding); DZ-S binding was calculated as the difference between total and DZ-IS. Nonlinear regression analysis showed that each class of binding site fit a model of mass action binding to a single, noninteractive population of sites. No significant difference was observed between any of the treatment groups in the apparent affinity (Kd) for ({sup 3}H)RO15-4513 at total, DZ-S, or DZ-IS sites following chronic EtOH intake or withdrawal. In addition, no significant difference was observed in the apparent number of DZ-S or DZ-IS binding sites or the ratio of DZ-S to DZ-IS.

  20. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance

    Science.gov (United States)

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-01-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana. Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 K372E with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. PMID:27406784

  1. Smac peptide potentiates TRAIL- or paclitaxel-mediated ovarian cancer cell death in vitro and in vivo.

    Science.gov (United States)

    Mao, Hong Luan; Pang, Yingxin; Zhang, Xiaolei; Yang, Fang; Zheng, Jingfang; Wang, Yu; Liu, Peishu

    2013-02-01

    Second mitochondria-derived activator of caspases (Smac) is a recently identified protein that is released from mitochondria in response to apoptotic stimuli and promotes apoptosis by antagonizing the inhibitor of apoptosis proteins (IAPs). Our previous study showed that ectopic overexpression of Smac sensitizes drug-resistant tumor cells to TRAIL- or paclitaxel-induced apoptosis in vitro. The present study was designed to explore the effect of the synthesized Smac N7 peptide in a human ovarian cancer cell line and xenograft model. The results showed that the single-agent Smac N7 had a non-cytotoxic effect, but it effectively enhanced TRAIL- or paclitaxel-induced inhibition of cell proliferation in a dose-dependent manner, even in TRAIL-resistant A2780 cells. When Smac N7 was combined with TRAIL or paclitaxel in treating A2780 cell tumor xenografts, synergistic anticancer effects were achieved. Furthermore, the combination therapy caused less damage in normal tissues and more apoptosis in tumor xenografts compared with TRAIL or paclitaxel alone. Increased apoptosis was associated with the downregulation of XIAP, survivin and the increased activity of caspase-3, along with an increased amount of cleaved PARP. In conclusion, this Smac N7 peptide is a promising candidate for ovarian cancer combination therapy, and Smac may be the target for the development of a novel class of anticancer drugs.

  2. Long-lasting sensitization induced by repeated risperidone treatment in adolescent Sprague-Dawley rats: A possible D2 receptor mediated phenomenon?

    Science.gov (United States)

    Zhang, Qinglin; Hu, Gang; Li, Ming

    2014-01-01

    Rationale Risperidone use in children and adolescents for the treatment of various neuropsychiatric disorders (e.g. schizophrenia, autism, disruptive behavior, etc.) has increased substantially in recent decades. However, its long-term effect on the brain and behavioral functions is not well understood. Objective The present study investigated how a short-term risperidone treatment in adolescence impacts antipsychotic response in adulthood in the conditioned avoidance response and PCP-induced hyperlocomotion tests. Methods Male adolescent Sprague-Dawley rats (postnatal days [P] 40-44 or 43-48) were first treated with risperidone (0.3, 0.5 or 1.0 mg/kg, sc) and tested in the conditioned avoidance or PCP (3.2 mg/kg, sc)-induced hyperlocomotion model daily for 5 consecutive days. After they became adults (~P 76-80), they were challenged with risperidone (0.3 mg/kg, sc) to assess their sensitivity to risperidone re-exposure. A quinpirole (a D2/3 receptor agonist, 1.0 mg/kg, sc)-induced hyperlocomotion test was later conducted to assess the risperidone-induced functional changes in D2 receptor. Results In the risperidone challenge test in adulthood, adult rats previously treated with risperidone in adolescence made significantly fewer avoidance responses and exhibited significantly lower PCP-induced hyperlocomotion than those previously treated with vehicle. They also appeared to be more hyperactive than the vehicle-pretreated ones in the quinpirole-induced hyperlocomotion test. Prepulse inhibition of acoustic startle or fear-induced 22 kHz ultrasonic vocalizations in adulthood was not altered by adolescence risperidone treatment. Conclusions Adolescent risperidone exposure induces a long-term increase in behavioral sensitivity to risperidone that persists into adulthood. This long-lasting change might be due to functional upregulation of D2-mediated neurotransmission. PMID:24363078

  3. Incidence of radiation-induced Graves' disease in patients treated with radioiodine for thyroid autonomy before and after introduction of a high-sensitivity TSH receptor antibody assay

    International Nuclear Information System (INIS)

    Dunkelmann, Simone; Wolf, Ricarda; Koch, Annedore; Kittner, Christian; Groth, Peter; Schuemichen, Carl

    2004-01-01

    Autoimmune hyperthyroidism may occur several months after radioiodine therapy (RIT) for functional thyroid autonomy. Exacerbation of pre-existing subclinical Graves' disease (GD) has been held responsible for this phenomenon. Determination of TSH receptor antibody using solubilised porcine epithelial cell membranes is insensitive and may have failed to diagnose GD in these patients before RIT. Following the introduction of a more sensitive assay, using the human TSH receptor as an antigen, it has been expected that the incidence of radiation-induced GD after RIT for functional thyroid autonomy will be reduced. In a first group of 1,428 patients treated between November 1993 and March 1997 (group I) we used the porcine TRAb assay to exclude GD, while in a second group comprising 1,408 patients treated between January 2000 and December 2001 (group II), GD was excluded using the human TRAb assay. A matched control group of 231 patients was derived from group II. In group I a total of 15 (1.05%) patients developed obvious or suspected radiation-induced GD, while in group II 17 (1.2%) did so; the interval until development of GD was 8.4 and 8.8 months, respectively, after RIT. Serum anti-thyroid peroxidase levels before RIT were elevated in 36.4% of group I patients and 47.1% of group II patients, but in only 5.6% of the control group. Other non-specific signs of mild immunopathy of the thyroid were seen retrospectively in 73.3%, 64.7% and 16.0% of the patients in these three groups, respectively. In conclusion, the introduction of a high-sensitivity TRAb assay did not reduce the incidence of autoimmune hyperthyroidism occurring late after RIT for functional thyroid autonomy, but mild immunopathy of the thyroid is seen more frequently in these patients and seems to be a predisposing factor in the development of radiation-induced GD. (orig.)

  4. Pertussis toxin-sensitive G-protein mediates the alpha 2-adrenergic receptor inhibition of melatonin release in photoreceptive chick pineal cell cultures

    International Nuclear Information System (INIS)

    Pratt, B.L.; Takahashi, J.S.