WorldWideScience

Sample records for traffic control signals

  1. Pedestrian Friendly Traffic Signal Control.

    Science.gov (United States)

    2016-01-01

    This project continues research aimed at real-time detection and use of pedestrian : traffic flow information to enhance adaptive traffic signal control in urban areas : where pedestrian traffic is substantial and must be given appropriate attention ...

  2. Simulation of traffic control signal systems

    Science.gov (United States)

    Connolly, P. J.; Concannon, P. A.; Ricci, R. C.

    1974-01-01

    In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.

  3. Distributed traffic signal control using fuzzy logic

    Science.gov (United States)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  4. A Two-Stage Fuzzy Logic Control Method of Traffic Signal Based on Traffic Urgency Degree

    OpenAIRE

    Yan Ge

    2014-01-01

    City intersection traffic signal control is an important method to improve the efficiency of road network and alleviate traffic congestion. This paper researches traffic signal fuzzy control method on a single intersection. A two-stage traffic signal control method based on traffic urgency degree is proposed according to two-stage fuzzy inference on single intersection. At the first stage, calculate traffic urgency degree for all red phases using traffic urgency evaluation module and select t...

  5. Light signals for road traffic control.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1981-01-01

    Signals for road traffic control are a major constituent of the modern traffic scene, particularly in built-up areas. A vast amount of research has been executed in the last two decennia, resulting in a fairly generally accepted view on what the requirements for effective traffic lights are. For the

  6. Delays at signalized intersections with exhaustive traffic control

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.; Winands, E.M.M.; Down, D.G.

    2012-01-01

    In this paper, we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under heavy traffic (HT) conditions.

  7. Continuous residual reinforcement learning for traffic signal control optimization

    NARCIS (Netherlands)

    Aslani, Mohammad; Seipel, Stefan; Wiering, Marco

    2018-01-01

    Traffic signal control can be naturally regarded as a reinforcement learning problem. Unfortunately, it is one of the most difficult classes of reinforcement learning problems owing to its large state space. A straightforward approach to address this challenge is to control traffic signals based on

  8. development of an electronic vehicular traffic signal controller

    African Journals Online (AJOL)

    INTRODUCTION ... The SCOOT (Split Cycle Offset Optimization Technique) signal control system implements an adaptive ... An electronic traffic signal controller is basically a sequential machine whose operation can be modeled using finite ...

  9. Urban Traffic Signal System Control Structural Optimization Based on Network Analysis

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-01-01

    Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.

  10. Adaptive Traffic Signal Control: Deep Reinforcement Learning Algorithm with Experience Replay and Target Network

    OpenAIRE

    Gao, Juntao; Shen, Yulong; Liu, Jia; Ito, Minoru; Shiratori, Norio

    2017-01-01

    Adaptive traffic signal control, which adjusts traffic signal timing according to real-time traffic, has been shown to be an effective method to reduce traffic congestion. Available works on adaptive traffic signal control make responsive traffic signal control decisions based on human-crafted features (e.g. vehicle queue length). However, human-crafted features are abstractions of raw traffic data (e.g., position and speed of vehicles), which ignore some useful traffic information and lead t...

  11. An Adaptive Traffic Signal Control in a Connected Vehicle Environment: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Peng Jing

    2017-08-01

    Full Text Available In the last few years, traffic congestion has become a growing concern due to increasing vehicle ownerships in urban areas. Intersections are one of the major bottlenecks that contribute to urban traffic congestion. Traditional traffic signal control systems cannot adjust the timing pattern depending on road traffic demand. This results in excessive delays for road users. Adaptive traffic signal control in a connected vehicle environment has shown a powerful ability to effectively alleviate urban traffic congestions to achieve desirable objectives (e.g., delay minimization. Connected vehicle technology, as an emerging technology, is a mobile data platform that enables the real-time data exchange among vehicles and between vehicles and infrastructure. Although several reviews about traffic signal control or connected vehicles have been written, a systemic review of adaptive traffic signal control in a connected vehicle environment has not been made. Twenty-six eligible studies searched from six databases constitute the review. A quality evaluation was established based on previous research instruments and applied to the current review. The purpose of this paper is to critically review the existing methods of adaptive traffic signal control in a connected vehicle environment and to compare the advantages or disadvantages of those methods. Further, a systematic framework on connected vehicle based adaptive traffic signal control is summarized to support the future research. Future research is needed to develop more efficient and generic adaptive traffic signal control methods in a connected vehicle environment.

  12. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.

    Science.gov (United States)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-14

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  13. Online Traffic Signal Control for Reducing Vehicle Carbon Dioxide Emissions

    Science.gov (United States)

    Oda, Toshihiko; Otokita, Tohru; Niikura, Satoshi

    In Japan, carbon dioxide (CO2) emissions caused by vehicles have been increasing year by year and it is well known that CO2 causes a serious global warming problem. For urban traffic control systems, there is a great demand for realization of signal control measures as soon as possible due to the urgency of the recent environmental situation. This paper describes a new traffic signal control for reducing vehicle CO2 emissions on an arterial road. First, we develop a model for estimating the emissions using the traffic delay and the number of stops a driver makes. Second, to find the optimal control parameters, we introduce a random search method with rapid convergence suitable for an online traffic control. We conduct experiments in Kawasaki to verify the effectiveness of our method. The experiments show that our approach decreases not only the emissions but also congestion and travel time significantly, compared to the method implemented in the real system.

  14. Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events

    NARCIS (Netherlands)

    Aslani, Mohammad; Mesgari, Mohammad Saadi; Wiering, Marco

    2017-01-01

    The transportation demand is rapidly growing in metropolises, resulting in chronic traffic con-gestions in dense downtown areas. Adaptive traffic signal control as the principle part of in-telligent transportation systems has a primary role to effectively reduce traffic congestion by making a

  15. An Adaptive Traffic Signal Control in a Connected Vehicle Environment: A Systematic Review

    OpenAIRE

    Peng Jing; Hao Huang; Long Chen

    2017-01-01

    In the last few years, traffic congestion has become a growing concern due to increasing vehicle ownerships in urban areas. Intersections are one of the major bottlenecks that contribute to urban traffic congestion. Traditional traffic signal control systems cannot adjust the timing pattern depending on road traffic demand. This results in excessive delays for road users. Adaptive traffic signal control in a connected vehicle environment has shown a powerful ability to effectively alleviate u...

  16. Calculation of vehicle delay at signal-controlled intersections with adaptive traffic control algorithm

    Directory of Open Access Journals (Sweden)

    Andronov Roman

    2018-01-01

    Full Text Available By widely introducing information technology tools in the field of traffic control, it is possible to increase the capacity of hubs and reduce vehicle delays. Adaptive traffic light control is one of such tools. Its effectiveness can be assessed through traffic flow simulation. The aim of this study is to create a simulation model of a signal-controlled intersection that can be used to assess the effectiveness of adaptive control in various traffic situations, including the presence or absence of pedestrian traffic through an intersection. The model is based on a numerical experiment conducted using the Monte Carlo method. As a result of the study, vehicle delays, queue length and duration of traffic light cycles are calculated subject to different intensities of incoming traffic flows, and the presence or absence of pedestrian traffic.

  17. A new traffic control design method for large networks with signalized intersections

    Science.gov (United States)

    Leininger, G. G.; Colony, D. C.; Seldner, K.

    1979-01-01

    The paper presents a traffic control design technique for application to large traffic networks with signalized intersections. It is shown that the design method adopts a macroscopic viewpoint to establish a new traffic modelling procedure in which vehicle platoons are subdivided into main stream queues and turning queues. Optimization of the signal splits minimizes queue lengths in the steady state condition and improves traffic flow conditions, from the viewpoint of the traveling public. Finally, an application of the design method to a traffic network with thirty-three signalized intersections is used to demonstrate the effectiveness of the proposed technique.

  18. Dividing traffic cluster into parts by signal control

    Science.gov (United States)

    Nagatani, Takashi

    2018-02-01

    When a cluster of vehicles with various speeds moves through the series of signals, the cluster breaks down by stopping at signals and results in smaller groups of vehicles. We present the nonlinear-map model of the motion of vehicles controlled by the signals. We study the breakup of a cluster of vehicles through the series of signals. The cluster of vehicles is divided into various groups by controlling the cycle time of signals. The vehicles within each group move with the same mean velocity. The breakup of the traffic cluster depends highly on the signal control. The dependence of dividing on both cycle time and vehicular speed is clarified. Also, we investigate the effect of the irregular interval between signals on dividing.

  19. A computerized traffic control algorithm to determine optimal traffic signal settings. Ph.D. Thesis - Toledo Univ.

    Science.gov (United States)

    Seldner, K.

    1977-01-01

    An algorithm was developed to optimally control the traffic signals at each intersection using a discrete time traffic model applicable to heavy or peak traffic. Off line optimization procedures were applied to compute the cycle splits required to minimize the lengths of the vehicle queues and delay at each intersection. The method was applied to an extensive traffic network in Toledo, Ohio. Results obtained with the derived optimal settings are compared with the control settings presently in use.

  20. Multiobjective Traffic Signal Control Model for Intersection Based on Dynamic Turning Movements Estimation

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2014-01-01

    Full Text Available The real-time traffic signal control for intersection requires dynamic turning movements as the basic input data. It is impossible to detect dynamic turning movements directly through current traffic surveillance systems, but dynamic origin-destination (O-D estimation can obtain it. However, the combined models of dynamic O-D estimation and real-time traffic signal control are rare in the literature. A framework for the multiobjective traffic signal control model for intersection based on dynamic O-D estimation (MSC-DODE is presented. A state-space model using Kalman filtering is first formulated to estimate the dynamic turning movements; then a revised sequential Kalman filtering algorithm is designed to solve the model, and the root mean square error and mean percentage error are used to evaluate the accuracy of estimated dynamic turning proportions. Furthermore, a multiobjective traffic signal control model is put forward to achieve real-time signal control parameters and evaluation indices. Finally, based on practical survey data, the evaluation indices from MSC-DODE are compared with those from Webster method. The actual and estimated turning movements are further input into MSC-DODE, respectively, and results are also compared. Case studies show that results of MSC-DODE are better than those of Webster method and are very close to unavailable actual values.

  1. SignalGuru: Leveraging mobile phones for collaborative traffic signal schedule advisory

    OpenAIRE

    Koukoumidis, Emmanouil; Peh, Li-Shiuan; Martonosi, Margaret

    2011-01-01

    While traffic signals are necessary to safely control competing flows of traffic, they inevitably enforce a stop-and-go movement pattern that increases fuel consumption, reduces traffic flow and causes traffic jams. These side effects can be alleviated by providing drivers and their onboard computational devices (e.g., vehicle computer, smartphone) with information about the schedule of the traffic signals ahead. Based on when the signal ahead will turn green, drivers can then adjust speed so...

  2. Traffic signal synchronization.

    Science.gov (United States)

    Huang, Ding-wei; Huang, Wei-neng

    2003-05-01

    The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.

  3. Traffic Congestion Evaluation and Signal Control Optimization Based on Wireless Sensor Networks: Model and Algorithms

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2012-01-01

    Full Text Available This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on the Mobile Century dataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.

  4. Multiobjective Reinforcement Learning for Traffic Signal Control Using Vehicular Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Houli Duan

    2010-01-01

    Full Text Available We propose a new multiobjective control algorithm based on reinforcement learning for urban traffic signal control, named multi-RL. A multiagent structure is used to describe the traffic system. A vehicular ad hoc network is used for the data exchange among agents. A reinforcement learning algorithm is applied to predict the overall value of the optimization objective given vehicles' states. The policy which minimizes the cumulative value of the optimization objective is regarded as the optimal one. In order to make the method adaptive to various traffic conditions, we also introduce a multiobjective control scheme in which the optimization objective is selected adaptively to real-time traffic states. The optimization objectives include the vehicle stops, the average waiting time, and the maximum queue length of the next intersection. In addition, we also accommodate a priority control to the buses and the emergency vehicles through our model. The simulation results indicated that our algorithm could perform more efficiently than traditional traffic light control methods.

  5. Intelligent Agent Based Traffic Signal Control on Isolated Intersections

    Directory of Open Access Journals (Sweden)

    Daniela Koltovska

    2014-08-01

    Full Text Available The purpose of this paper is to develop an adaptive signal control strategy on isolated urban intersections. An innovative approach to defining the set of states dependent on the actual and primarily observed parameters has been introduced. ?he Q–learning algorithm has been applied. The developed self-learning adaptive signal strategy has been tested on a re?l intersection. The intelligent agent results have been compared to those in cases of fixed-time and actuated control. Regarding the average total delay, the total number of stops and the total throughput, the best results have been obtained for unknown traffic demand and over-capacity.

  6. A new cellular automaton for signal controlled traffic flow based on driving behaviors

    Science.gov (United States)

    Wang, Yang; Chen, Yan-Yan

    2015-03-01

    The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined. Project supported by the National Basic Research Program of China (Grand No. 2012CB723303) and the Beijing Committee of Science and Technology, China (Grand No. Z1211000003120100).

  7. Examining perimeter gating control of urban traffic networkswith locally adaptive traffic signals

    NARCIS (Netherlands)

    Keyvan Ekbatani, M.; Gao, X.; Gayah, V.V.; Knoop, V.L.

    2015-01-01

    Traditionally, urban traffic is controlled by traffic lights. Recent findings of the Macroscopic or Network Fundamental Diagram (MFD or NFD) have led to the development of novel traffic control strategies that can be applied at a networkwide level. One pertinent example is perimeter flow control

  8. Randomness control of vehicular motion through a sequence of traffic signals at irregular intervals

    International Nuclear Information System (INIS)

    Nagatani, Takashi

    2010-01-01

    We study the regularization of irregular motion of a vehicle moving through the sequence of traffic signals with a disordered configuration. Each traffic signal is controlled by both cycle time and phase shift. The cycle time is the same for all signals, while the phase shift varies from signal to signal by synchronizing with intervals between a signal and the next signal. The nonlinear dynamic model of the vehicular motion is presented by the stochastic nonlinear map. The vehicle exhibits the very complex behavior with varying both cycle time and strength of irregular intervals. The irregular motion induced by the disordered configuration is regularized by adjusting the phase shift within the regularization regions.

  9. 49 CFR 236.401 - Automatic block signal system and interlocking standards applicable to traffic control systems.

    Science.gov (United States)

    2010-10-01

    ... TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.401 Automatic... 49 Transportation 4 2010-10-01 2010-10-01 false Automatic block signal system and interlocking standards applicable to traffic control systems. 236.401 Section 236.401 Transportation Other Regulations...

  10. An intelligent vehicular traffic signal control system with state flow chart design and fpga prototyping

    International Nuclear Information System (INIS)

    Solangi, U.S.; Memon, T.D.; Noonari, A.S.; Ansari, O.A.

    2017-01-01

    The problem of vehicular traffic congestion is a persistent constraint in the socio-economic development of Pakistan. This paper presents design and implementation of an intelligent traffic controller based on FPGA (Field Programmable Gate Array) to provide an efficient traffic management by optimizing functioning of traffic lights which will result in minimizing traffic congestion at intersections. The existent Traffic Signal system in Pakistan is fixed-time based and offers only Open Loop method for Traffic Control. The Intelligent Traffic Controller presented here uses feedback sensors to read the Traffic density present at a four way intersection to provide an efficient alternative for better supervisory Control of Traffic flow. The traffic density based control logic has been developed in a State Flow Chart for improved visualization of State Machine based operation, and implemented as a Subsystem in Simulink and transferred into VHDL (Hardware Description Language) code using HDL Coder for reducing development time and time to market, which are essential to capitalize Embedded Systems Market. The VHDL code is synthesized with Altera QUARTUS, simulated timing waveform is obtained to verify correctness of the algorithm for different Traffic Scenarios. For implementation purpose estimations were obtained for Cyclone-III and Stratix-III. (author)

  11. An Intelligent Vehicular Traffic Signal Control System with State Flow Chart Design and FPGA Prototyping

    Directory of Open Access Journals (Sweden)

    UMAIR SAEEDSOLANGI

    2017-04-01

    Full Text Available The problem of vehicular traffic congestion is a persistent constraint in the socio-economic development of Pakistan. This paper presents design and implementation of an intelligent traffic controller based on FPGA (Field Programmable Gate Array to provide an efficient traffic management by optimizing functioning of traffic lights which will result in minimizing traffic congestion at intersections. The existent Traffic Signal system in Pakistan is fixed-time based and offers only Open Loop method for Traffic Control. The Intelligent Traffic Controller presented here uses feedback sensors to read the Traffic density present at a four way intersection to provide an efficient alternative for better supervisory Control of Traffic flow. The traffic density based control logic has been developed in a State Flow Chart for improved visualization of State Machine based operation, and implemented as a Subsystem in Simulink and transferred into VHDL (Hardware Description Language code using HDL Coder for reducing development time and time to market, which are essential to capitalize Embedded Systems Market. The VHDL code is synthesized with Altera QUARTUS, simulated timing waveform is obtained to verify correctness of the algorithm for different Traffic Scenarios. For implementation purpose estimations were obtained for Cyclone-III and Stratix-III.

  12. Traffic signal synchronization in the saturated high-density grid road network.

    Science.gov (United States)

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.

  13. Using Automated Planning for Traffic Signals Control

    Directory of Open Access Journals (Sweden)

    Matija Gulić

    2016-08-01

    Full Text Available Solving traffic congestions represents a high priority issue in many big cities. Traditional traffic control systems are mainly based on pre-programmed, reactive and local techniques. This paper presents an autonomic system that uses automated planning techniques instead. These techniques are easily configurable and modified, and can reason about the future implications of actions that change the default traffic lights behaviour. The proposed implemented system includes some autonomic properties, since it monitors the current traffic state, detects if the system is degrading its performance, sets up new sets of goals to be achieved by the planner, triggers the planner that generates plans with control actions, and executes the selected courses of actions. The obtained results in several artificial and real world data-based simulation scenarios show that the proposed system can efficiently solve traffic congestion.

  14. Traffic flow model at fixed control signals with discrete service time distribution

    Directory of Open Access Journals (Sweden)

    Lucky I. Igbinosun

    2016-04-01

    Full Text Available Most of the models of road traffic flow at fixed-cycle controlled intersection assume stationary distributions and provide steady state results. The assumption that a constant number of vehicles can leave the system during the green phase is unrealistic in real life situations. A discrete time queuing model was developed to describe the operation of traffic flow at a road intersection with fixed-cycle signalized control and to account for the randomness in the number of vehicles that can leave the system. The results show the expected queue size in the system when the traffic is light and for a busy period, respectively. For the light period, when the traffic intensity is less than one, it takes a shorter green cycle time for vehicles to clear up than during high traffic intensity (the road junction is saturated. Increasing the number of cars that can leave the junction at the turn of the green phase reduces the number of cycle times before the queue is cleared.

  15. Traffic dispersion through a series of signals with irregular split

    Science.gov (United States)

    Nagatani, Takashi

    2016-01-01

    We study the traffic behavior of a group of vehicles moving through a sequence of signals with irregular splits on a roadway. We present the stochastic model of vehicular traffic controlled by signals. The dynamic behavior of vehicular traffic is clarified by analyzing traffic pattern and travel time numerically. The group of vehicles breaks up more and more by the irregularity of signal's split. The traffic dispersion is induced by the irregular split. We show that the traffic dispersion depends highly on the cycle time and the strength of split's irregularity. Also, we study the traffic behavior through the series of signals at the green-wave strategy. The dependence of the travel time on offset time is derived for various values of cycle time. The region map of the traffic dispersion is shown in (cycle time, offset time)-space.

  16. Exposure to lateral collision in signalized intersections with protected left turn under different traffic control strategies.

    Science.gov (United States)

    Midenet, Sophie; Saunier, Nicolas; Boillot, Florence

    2011-11-01

    This paper proposes an original definition of the exposure to lateral collision in signalized intersections and discusses the results of a real world experiment. This exposure is defined as the duration of situations where the stream that is given the right-of-way goes through the conflict zone while road users are waiting in the cross-traffic approach. This measure, obtained from video sensors, makes it possible to compare different operating conditions such as different traffic signal strategies. The data from a real world experiment is used, where the adaptive real-time strategy CRONOS (ContRol Of Networks by Optimization of Switchovers) and a time-plan strategy with vehicle-actuated ranges alternately controlled an isolated intersection near Paris. Hourly samples with similar traffic volumes are compared and the exposure to lateral collision is different in various areas of the intersection and various traffic conditions for the two strategies. The total exposure under peak hour traffic conditions drops by roughly 5 min/h with the CRONOS strategy compared to the time-plan strategy, which occurs mostly on entry streams. The results are analyzed through the decomposition of cycles in phase sequences and recommendations are made for traffic control strategies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A Hybrid Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System

    Directory of Open Access Journals (Sweden)

    S. M. Odeh

    2015-01-01

    Full Text Available This paper presents a hybrid algorithm that combines Fuzzy Logic Controller (FLC and Genetic Algorithms (GAs and its application on a traffic signal system. FLCs have been widely used in many applications in diverse areas, such as control system, pattern recognition, signal processing, and forecasting. They are, essentially, rule-based systems, in which the definition of these rules and fuzzy membership functions is generally based on verbally formulated rules that overlap through the parameter space. They have a great influence over the performance of the system. On the other hand, the Genetic Algorithm is a metaheuristic that provides a robust search in complex spaces. In this work, it has been used to adapt the decision rules of FLCs that define an intelligent traffic signal system, obtaining a higher performance than a classical FLC-based control. The simulation results yielded by the hybrid algorithm show an improvement of up to 34% in the performance with respect to a standard traffic signal controller, Conventional Traffic Signal Controller (CTC, and up to 31% in the comparison with a traditional logic controller, FLC.

  18. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. On the electric signal direction indicator for teh control of road traffic ...

    African Journals Online (AJOL)

    An electronic signal direction indicator (ESDI) for the control of road traffic has been designed, constructed and studied. The construction was done using 555 timer IC, a transistor-transistor logic compatible device that can operate in several modes as the major active element. The ESDI system circuit is reliable, satisfactorily ...

  20. Signal Control for Reducing Vehicle NOx and CO2 Emissions Based on Prediction of Arrival Traffic Flows at Intersections

    Science.gov (United States)

    Oda, Toshihiko

    Nitrogen oxide (NOx) and carbon dioxide (CO2) emissions from vehicles have been increasing every year because of the growing number of vehicles, and they cause serious environmental problems such as air pollution and global warming. To alleviate these problems, this paper proposes a new traffic signal control method for reducing vehicle NOx and CO2 emissions on arterial roads. To this end, we first model the amount of vehicle emissions as a function of the traffic delay and the number of stops at intersections. This step is necessary because it is difficult to obtain the amount of emissions directly using traffic control systems. Second, we introduce a signal control model in which the control parameters are continuously updated on the basis of predictions of arrival traffic flows at intersections. The signal timings are calculated in such a manner so as to minimize the weighted sum of the two emissions, which depend on the traffic flow. To evaluate the validity of this method, simulation experiments are carried out on an arterial road. The experiments show that the proposed method significantly outperforms existing methods in reducing both the emissions and travel time.

  1. The design of traffic signal coordinated control

    Science.gov (United States)

    Guo, Xueting; Sun, Hongsheng; Wang, Xifu

    2017-05-01

    Traffic as the tertiary industry is an important pillar industry to support the normal development of the economy. But now China's road traffic development and economic development has shown a great imbalance and fault phenomenon, which greatly inhibited the normal development of China's economy. Now in many large and medium-sized cities in China are implementing green belt construction. The so-called green band is when the road conditions to meet the conditions for the establishment of the green band, the sections of the intersection of several planning to a traffic coordination control system, so that when the driver at a specific speed can be achieved without stopping the continuous Through the intersection. Green belt can effectively reduce the delay and queuing length of vehicle driving, the normal function of urban roads and reduce the economic losses caused by traffic congestion is a great help. In this paper, the theoretical basis of the design of the coordinated control system is described. Secondly, the green time offset is calculated by the analytic method and the green band is established. And then the VISSIM software is used to simulate the traffic system before and after the improvement. Finally, the results of the two simulations are compared.

  2. CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES

    OpenAIRE

    G. R. LAI; A. CHE SOH; H. MD. SARKAN; R. Z. ABDUL RAHMAN; M. K. HASSAN

    2015-01-01

    Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS) concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala L...

  3. CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G. R. LAI

    2015-08-01

    Full Text Available Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala Lumpur, Malaysia. The aim of this research is to develop an ANFIS traffic signals controller for multilane-isolated four approaches intersections in order to ease traffic congestions at traffic intersections. The new concept to generate sample data for ANFIS training is introduced in this research. The sample data is generated based on fuzzy rules and can be analysed using tree diagram. This controller is simulated on multilane-isolated traffic intersection model developed using M/M/1 queuing theory and its performance in terms of average waiting time, queue length and delay time are compared with traditional controllers and fuzzy controller. Simulation result shows that the average waiting time, queue length, and delay time of ANFIS traffic signal controller are the lowest as compared to the other three controllers. In conclusion, the efficiency and performance of ANFIS controller are much better than that of fuzzy and traditional controllers in different traffic volumes.

  4. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals

    Directory of Open Access Journals (Sweden)

    Joshué Pérez

    2010-06-01

    Full Text Available These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS. One prime example of ITS is vehicle Cruise Control (CC, which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.

  5. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals

    Science.gov (United States)

    Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C.; de Pedro, Teresa

    2010-01-01

    These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results. PMID:22219692

  6. An RFID-based intelligent vehicle speed controller using active traffic signals.

    Science.gov (United States)

    Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C; de Pedro, Teresa

    2010-01-01

    These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver's attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.

  7. System and method for traffic signal timing estimation

    KAUST Repository

    Dumazert, Julien; Claudel, Christian G.

    2015-01-01

    A method and system for estimating traffic signals. The method and system can include constructing trajectories of probe vehicles from GPS data emitted by the probe vehicles, estimating traffic signal cycles, combining the estimates, and computing the traffic signal timing by maximizing a scoring function based on the estimates. Estimating traffic signal cycles can be based on transition times of the probe vehicles starting after a traffic signal turns green.

  8. System and method for traffic signal timing estimation

    KAUST Repository

    Dumazert, Julien

    2015-12-30

    A method and system for estimating traffic signals. The method and system can include constructing trajectories of probe vehicles from GPS data emitted by the probe vehicles, estimating traffic signal cycles, combining the estimates, and computing the traffic signal timing by maximizing a scoring function based on the estimates. Estimating traffic signal cycles can be based on transition times of the probe vehicles starting after a traffic signal turns green.

  9. Contributory factors to traffic crashes at signalized intersections in Hong Kong.

    Science.gov (United States)

    Wong, S C; Sze, N N; Li, Y C

    2007-11-01

    Efficient geometric design and signal timing not only improve operational performance at signalized intersections by expanding capacity and reducing traffic delays, but also result in an appreciable reduction in traffic conflicts, and thus better road safety. Information on the incidence of crashes, traffic flow, geometric design, road environment, and traffic control at 262 signalized intersections in Hong Kong during 2002 and 2003 are incorporated into a crash prediction model. Poisson regression and negative binomial regression are used to quantify the influence of possible contributory factors on the incidence of killed and severe injury (KSI) crashes and slight injury crashes, respectively, while possible interventions by traffic flow are controlled. The results for the incidence of slight injury crashes reveal that the road environment, degree of curvature, and presence of tram stops are significant factors, and that traffic volume has a diminishing effect on the crash risk. The presence of tram stops, number of pedestrian streams, road environment, proportion of commercial vehicles, average lane width, and degree of curvature increase the risk of KSI crashes, but the effect of traffic volume is negligible.

  10. Performance evaluation of traffic sensing and control devices.

    Science.gov (United States)

    2011-01-01

    High quality vehicle detection is essential to properly operate actuated phases at traffic signals and to facilitate effective : management of technician and engineering resources. INDOT operates over 2600 traffic signal controllers, approximately 20...

  11. Phase dynamics of complex-valued neural networks and its application to traffic signal control.

    Science.gov (United States)

    Nishikawa, Ikuko; Iritani, Takeshi; Sakakibara, Kazutoshi; Kuroe, Yasuaki

    2005-01-01

    Complex-valued Hopfield networks which possess the energy function are analyzed. The dynamics of the network with certain forms of an activation function is de-composable into the dynamics of the amplitude and phase of each neuron. Then the phase dynamics is described as a coupled system of phase oscillators with a pair-wise sinusoidal interaction. Therefore its phase synchronization mechanism is useful for the area-wide offset control of the traffic signals. The computer simulations show the effectiveness under the various traffic conditions.

  12. Fuzzy Logic Based Autonomous Traffic Control System

    Directory of Open Access Journals (Sweden)

    Muhammad ABBAS

    2012-01-01

    Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.

  13. Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [Pacific Northwest National Laboratory (PNNL); Aziz, H M Abdul [ORNL; Young, Stan [National Renewable Energy Laboratory (NREL); Patil, Sagar [Pacific Northwest National Laboratory (PNNL)

    2017-10-01

    Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections. In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.

  14. 40 CFR 93.128 - Traffic signal synchronization projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Traffic signal synchronization... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented without... include such regionally significant traffic signal synchronization projects. ...

  15. Delays at signalised intersections with exhaustive traffic control

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.; Winands, E.M.M.; Down, D.G.

    2010-01-01

    In this paper we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under Heavy Traffic (HT) conditions,

  16. Delays at signalised intersections with exhaustive traffic control

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.; Winands, E.M.M.; Down, D.G.

    2012-01-01

    In this paper, we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under heavy traffic (HT) conditions.

  17. A real-time traffic control method for the intersection with pre-signals under the phase swap sorting strategy.

    Directory of Open Access Journals (Sweden)

    Yiming Bie

    Full Text Available To deal with the conflicts between left-turn and through traffic streams and increase the discharge capacity, this paper addresses the pre-signal which is implemented at a signalized intersection. Such an intersection with pre-signal is termed as a tandem intersection. For the tandem intersection, phase swap sorting strategy is deemed as the most effective phasing scheme in view of some exclusive merits, such as easier compliance of drivers, and shorter sorting area. However, a major limitation of the phase swap sorting strategy is not considered in previous studies: if one or more vehicle is left at the sorting area after the signal light turns to red, the capacity of the approach would be dramatically dropped. Besides, previous signal control studies deal with a fixed timing plan that is not adaptive with the fluctuation of traffic flows. Therefore, to cope with these two gaps, this paper firstly takes an in-depth analysis of the traffic flow operations at the tandem intersection. Secondly, three groups of loop detectors are placed to obtain the real-time vehicle information for adaptive signalization. The lane selection behavior in the sorting area is considered to set the green time for intersection signals. With the objective of minimizing the vehicle delay, the signal control parameters are then optimized based on a dynamic programming method. Finally, numerical experiments show that average vehicle delay and maximum queue length can be reduced under all scenarios.

  18. A real-time traffic control method for the intersection with pre-signals under the phase swap sorting strategy.

    Science.gov (United States)

    Bie, Yiming; Liu, Zhiyuan; Wang, Yinhai

    2017-01-01

    To deal with the conflicts between left-turn and through traffic streams and increase the discharge capacity, this paper addresses the pre-signal which is implemented at a signalized intersection. Such an intersection with pre-signal is termed as a tandem intersection. For the tandem intersection, phase swap sorting strategy is deemed as the most effective phasing scheme in view of some exclusive merits, such as easier compliance of drivers, and shorter sorting area. However, a major limitation of the phase swap sorting strategy is not considered in previous studies: if one or more vehicle is left at the sorting area after the signal light turns to red, the capacity of the approach would be dramatically dropped. Besides, previous signal control studies deal with a fixed timing plan that is not adaptive with the fluctuation of traffic flows. Therefore, to cope with these two gaps, this paper firstly takes an in-depth analysis of the traffic flow operations at the tandem intersection. Secondly, three groups of loop detectors are placed to obtain the real-time vehicle information for adaptive signalization. The lane selection behavior in the sorting area is considered to set the green time for intersection signals. With the objective of minimizing the vehicle delay, the signal control parameters are then optimized based on a dynamic programming method. Finally, numerical experiments show that average vehicle delay and maximum queue length can be reduced under all scenarios.

  19. Standardization of light signals for road traffic control. Contribution in: Speed enforcement, visibility, and effects of traffic control measures on drivers, Transportation Research Record No. 811, p. 14-15, Transportation Research Board, National Academies of Sciences, Washington, D.C., 1981.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1981-01-01

    A recent technical report on road-traffic-control signals prepared by the International Commission on Illumination is briefly discussed. The report represents a first step toward international standardisation of traffic signal lights in order to benefit trade and transportation. The principal

  20. Traffic theory

    National Research Council Canada - National Science Library

    Gazis, Denos C

    2002-01-01

    ... of traffic signal settings The vehicle-actuated traffic signal 87 89 77 CHAPTER 3. TRAFFIC CONTROL 101 Objectives of Traffic Control 103 Single, Isolated Intersection 105 Synchronization Scheme...

  1. Changes in crash risk following re-timing of traffic signal change intervals.

    Science.gov (United States)

    Retting, Richard A; Chapline, Janella F; Williams, Allan F

    2002-03-01

    More than I million motor vehicle crashes occur annually at signalized intersections in the USA. The principal method used to prevent crashes associated with routine changes in signal indications is employment of a traffic signal change interval--a brief yellow and all-red period that follows the green indication. No universal practice exists for selecting the duration of change intervals, and little is known about the influence of the duration of the change interval on crash risk. The purpose of this study was to estimate potential crash effects of modifying the duration of traffic signal change intervals to conform with values associated with a proposed recommended practice published by the Institute of Transportation Engineers. A sample of 122 intersections was identified and randomly assigned to experimental and control groups. Of 51 eligible experimental sites, 40 (78%) needed signal timing changes. For the 3-year period following implementation of signal timing changes, there was an 8% reduction in reportable crashes at experimental sites relative to those occurring at control sites (P = 0.08). For injury crashes, a 12% reduction at experimental sites relative to those occurring at control sites was found (P = 0.03). Pedestrian and bicycle crashes at experimental sites decreased 37% (P = 0.03) relative to controls. Given these results and the relatively low cost of re-timing traffic signals, modifying the duration of traffic signal change intervals to conform with values associated with the Institute of Transportation Engineers' proposed recommended practice should be strongly considered by transportation agencies to reduce the frequency of urban motor vehicle crashes.

  2. Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic

    International Nuclear Information System (INIS)

    Kerner, Boris S; Schreckenberg, Michael; Klenov, Sergey L

    2014-01-01

    Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown. (paper)

  3. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  4. A Study on Setting of Traffic Signal

    OpenAIRE

    本多, 義明

    1981-01-01

    In this paper,effect of traffic signal setting are Studied according to regional characteristics. Firstly, regional and accident characteristics are analized by factor analysis. Secondly,88 regions in Aichi Prefecture are clustered into six clusters. Finally,effect of traffic signal setting is discussed.

  5. Regulation of VEGF signaling by membrane traffic.

    Science.gov (United States)

    Horowitz, Arie; Seerapu, Himabindu Reddy

    2012-09-01

    Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58]. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. AN AUTOMATED RAILWAY STATION TRAFFIC CONTROL SYSTEM

    African Journals Online (AJOL)

    AN AUTOMATED RAILWAY STATION TRAFFIC CONTROL SYSTEM. ... involve collision with automobiles or other vehicles and collision with other trains. ... the processed signals to control electromagnetic devices through motor drivers.

  7. A Sarsa(λ)-based control model for real-time traffic light coordination.

    Science.gov (United States)

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  8. A Sarsa(λ-Based Control Model for Real-Time Traffic Light Coordination

    Directory of Open Access Journals (Sweden)

    Xiaoke Zhou

    2014-01-01

    Full Text Available Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  9. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  10. Right-­turn traffic volume adjustment in traffic signal warrant analysis : final report.

    Science.gov (United States)

    2016-05-06

    This report was based on the research project, Right-Turn Traffic Volume Adjustment in Traffic Signal Warrants, sponsored by the Nevada Department of Transportation (NDOT) and SOLARIS. Right-turn traffic does not affect intersection performance in th...

  11. Traffic Signal Cycle Lengths

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Traffic signal location list for the town of Chapel Hill. This data set includes light cycle information as well as as intersection information.The Town of Chapel...

  12. Real-time traffic signal optimization model based on average delay time per person

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2015-10-01

    Full Text Available Real-time traffic signal control is very important for relieving urban traffic congestion. Many existing traffic control models were formulated using optimization approach, with the objective functions of minimizing vehicle delay time. To improve people’s trip efficiency, this article aims to minimize delay time per person. Based on the time-varying traffic flow data at intersections, the article first fits curves of accumulative arrival and departure vehicles, as well as the corresponding functions. Moreover, this article transfers vehicle delay time to personal delay time using average passenger load of cars and buses, employs such time as the objective function, and proposes a signal timing optimization model for intersections to achieve real-time signal parameters, including cycle length and green time. This research further implements a case study based on practical data collected at an intersection in Beijing, China. The average delay time per person and queue length are employed as evaluation indices to show the performances of the model. The results show that the proposed methodology is capable of improving traffic efficiency and is very effective for real-world applications.

  13. [The history of optical signals for traffic regulation].

    Science.gov (United States)

    Draeger, J; Harsch, V

    2008-04-01

    For signal transmission in traffic today, different optical, acoustic, or other physical or technical means are used for information. The different kinds of traffic (water navigation, road and rail, and, later air transport) made traffic regulation necessary early on. This regulation, from its very beginning in ancient times, began by means of optical signals; nowadays, this remains the most important method. From the very start, minimum requirements for the navigator's vision, color discrimination, dark adaptation, and even visual field were needed. For historical reasons, it was in seafaring medicine that these first developed. Besides the development of the different signals, methods for checking the requirements were soon developed. National and international requirements have been very different. Only within the last 50 years has international cooperation led to the acceptance of general standards for the different traffic modes. This article discusses the technical development of optical signals for the different kinds of traffic, from ancient times to the present, and explains the development of minimum requirements for the different visual functions.

  14. Safety analysis of urban signalized intersections under mixed traffic.

    Science.gov (United States)

    S, Anjana; M V L R, Anjaneyulu

    2015-02-01

    This study examined the crash causative factors of signalized intersections under mixed traffic using advanced statistical models. Hierarchical Poisson regression and logistic regression models were developed to predict the crash frequency and severity of signalized intersection approaches. The prediction models helped to develop general safety countermeasures for signalized intersections. The study shows that exclusive left turn lanes and countdown timers are beneficial for improving the safety of signalized intersections. Safety is also influenced by the presence of a surveillance camera, green time, median width, traffic volume, and proportion of two wheelers in the traffic stream. The factors that influence the severity of crashes were also identified in this study. As a practical application, the safe values of deviation of green time provided from design green time, with varying traffic volume, is presented in this study. This is a useful tool for setting the appropriate green time for a signalized intersection approach with variations in the traffic volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fuzzy Multiobjective Traffic Light Signal Optimization

    Directory of Open Access Journals (Sweden)

    N. Shahsavari Pour

    2013-01-01

    Full Text Available Traffic congestion is a major concern for many cities throughout the world. In a general traffic light controller, the traffic lights change at a constant cycle time. Hence it does not provide an optimal solution. Many traffic light controllers in current use are based on the “time-of-the-day” scheme, which use a limited number of predetermined traffic light patterns and implement these patterns depending upon the time of the day. These automated systems do not provide an optimal control for fluctuating traffic volumes. In this paper, the fuzzy traffic light controller is used to optimize the control of fluctuating traffic volumes such as oversaturated or unusual load conditions. The problem is solved by genetic algorithm, and a new defuzzification method is introduced. The performance of the new defuzzification method (NDM is compared with the centroid point defuzzification method (CPDM by using ANOVA. Finally, an illustrative example is presented to show the competency of proposed algorithm.

  16. Right-\\0xADturn traffic volume adjustment in traffic signal warrant analysis : final report.

    Science.gov (United States)

    2016-05-06

    This report was based on the research project, Right-Turn Traffic Volume Adjustment in : Traffic Signal Warrants, sponsored by the Nevada Department of Transportation (NDOT) : and SOLARIS. Right-turn traffic does not affect intersection performance i...

  17. Supervised learning from human performance at the computationally hard problem of optimal traffic signal control on a network of junctions.

    Science.gov (United States)

    Box, Simon

    2014-12-01

    Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human 'player' to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player's strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance. Experiments conducted within the simulation compare the performance of HuTMaC to two well-established traffic-responsive control systems that are widely deployed in the developed world and also to a temporal difference learning-based control method. In all experiments, HuTMaC outperforms the other control methods in terms of average delay and variance over delay. The conclusion is that these results add weight to the suggestion that HuTMaC may be a viable alternative, or supplemental method, to approximate optimization for some practical engineering control problems where the optimal strategy is computationally intractable.

  18. Performance evaluation of traffic sensing and control devices : [technical summary].

    Science.gov (United States)

    2011-01-01

    High quality sensing and control systems are essential for providing efficient signalized arterial operations. INDOT operates over 2600 traffic signal controllers, approximately 2000 of which use some form of vehicle detection. The private sector con...

  19. Traffic analysis and control using image processing

    Science.gov (United States)

    Senthilkumar, K.; Ellappan, Vijayan; Arun, A. R.

    2017-11-01

    This paper shows the work on traffic analysis and control till date. It shows an approach to regulate traffic the use of image processing and MATLAB systems. This concept uses computational images that are to be compared with original images of the street taken in order to determine the traffic level percentage and set the timing for the traffic signal accordingly which are used to reduce the traffic stoppage on traffic lights. They concept proposes to solve real life scenarios in the streets, thus enriching the traffic lights by adding image receivers like HD cameras and image processors. The input is then imported into MATLAB to be used. as a method for calculating the traffic on roads. Their results would be computed in order to adjust the traffic light timings on a particular street, and also with respect to other similar proposals but with the added value of solving a real, big instance.

  20. Multi-Modal Intelligent Traffic Signal Systems Signal Plans for Roadside Equipment

    Data.gov (United States)

    Department of Transportation — Data were collected during the Multi-Modal Intelligent Transportation Signal Systems (MMITSS) study. MMITSS is a next-generation traffic signal system that seeks to...

  1. Multi-Modal Intelligent Traffic Signal Systems GPS

    Data.gov (United States)

    Department of Transportation — Data were collected during the Multi-Modal Intelligent Transportation Signal Systems (MMITSS) study. MMITSS is a next-generation traffic signal system that seeks to...

  2. An Assessment Methodology for Emergency Vehicle Traffic Signal Priority Systems

    OpenAIRE

    McHale, Gene Michael

    2002-01-01

    Emergency vehicle traffic signal priority systems allow emergency vehicles such as fire and emergency medical vehicles to request and receive a green traffic signal indication when approaching an intersection. Such systems have been around for a number of years, however, there is little understanding of the costs and benefits of such systems once they are deployed. This research develops an improved method to assess the travel time impacts of emergency vehicle traffic signal priority system...

  3. From Goods to Traffic:First Steps Toward an Auction-based Traffic Signal Controller

    OpenAIRE

    Raphael, Jeffery; Maskell, Simon; Sklar, Elizabeth Ida

    2015-01-01

    Traffic congestion is a major issue that plagues many urban road networks large and small. Traffic engineers are now leaning towards Intelligent Traffic Systems as many physical changes to road networks are costly or infeasible. Multi-Agent Systems (MAS) have become a popular paradigm for intelligent solutions to traffic management problems. There are many MAS approaches to traffic management that utilise market mechanisms. In market-based approaches, drivers “pay” to use the roadways. Howeve...

  4. Traffic signal phasing at intersections to improve safety for alcohol-affected pedestrians.

    Science.gov (United States)

    Lenné, Michael G; Corben, Bruce F; Stephan, Karen

    2007-07-01

    Alcohol-affected pedestrians are among the highest-risk groups involved in pedestrian casualty crashes. This paper investigates the opportunities to use a modified form of traffic signal operation during high-risk periods and at high-risk locations to reduce alcohol-affected pedestrian crashes and the severity of injuries that might otherwise occur. The 'Dwell-on-Red' treatment involves displaying a red traffic signal to all vehicle directions during periods when no vehicular traffic is detected, so that drivers approach high-risk intersections at a lower speed than if a green signal were displayed. Vehicle speed data were collected before and after treatment activation at both a control and treatment site. Speed data were collected both 30 m prior to and at the intersection stop line. The treatment was associated with a reduction in mean vehicle speeds of 3.9 kph (9%) and 11.0 kph (28%) at 30 m and stop line collection points, respectively, and substantial reductions in the proportion of vehicles travelling at threatening speeds with regard to the severity of pedestrian injury. Other important road safety concerns may also benefit from this form of traffic signal modification, and it is recommended that other areas of application be explored, including the other severe trauma categories typically concentrated around signalised intersections.

  5. An external logic architecture for implementing traffic signal system control strategies.

    Science.gov (United States)

    2011-09-01

    The built-in logic functions in traffic controllers have very limited capability to store information, to analyze input data, to estimate performance measures, and to adopt control strategy decisions. These capabilities are imperative to support traf...

  6. Inter-vehicle gap statistics on signal-controlled crossroads

    International Nuclear Information System (INIS)

    Krbalek, Milan

    2008-01-01

    We investigate a microscopical structure in a chain of cars waiting at a red signal on signal-controlled crossroads. A one-dimensional space-continuous thermodynamical model leading to an excellent agreement with the data measured is presented. Moreover, we demonstrate that an inter-vehicle spacing distribution disclosed in relevant traffic data agrees with the thermal-balance distribution of particles in the thermodynamical traffic gas (discussed in [1]) with a high inverse temperature (corresponding to a strong traffic congestion). Therefore, as we affirm, such a system of stationary cars can be understood as a specific state of the traffic sample operating inside a congested traffic stream

  7. A robust algorithm to solve the signal setting problem considering different traffic assignment approaches

    Directory of Open Access Journals (Sweden)

    Adacher Ludovica

    2017-12-01

    Full Text Available In this paper we extend a stochastic discrete optimization algorithm so as to tackle the signal setting problem. Signalized junctions represent critical points of an urban transportation network, and the efficiency of their traffic signal setting influences the overall network performance. Since road congestion usually takes place at or close to junction areas, an improvement in signal settings contributes to improving travel times, drivers’ comfort, fuel consumption efficiency, pollution and safety. In a traffic network, the signal control strategy affects the travel time on the roads and influences drivers’ route choice behavior. The paper presents an algorithm for signal setting optimization of signalized junctions in a congested road network. The objective function used in this work is a weighted sum of delays caused by the signalized intersections. We propose an iterative procedure to solve the problem by alternately updating signal settings based on fixed flows and traffic assignment based on fixed signal settings. To show the robustness of our method, we consider two different assignment methods: one based on user equilibrium assignment, well established in the literature as well as in practice, and the other based on a platoon simulation model with vehicular flow propagation and spill-back. Our optimization algorithm is also compared with others well known in the literature for this problem. The surrogate method (SM, particle swarm optimization (PSO and the genetic algorithm (GA are compared for a combined problem of global optimization of signal settings and traffic assignment (GOSSTA. Numerical experiments on a real test network are reported.

  8. A Dynamic Traffic Signal Timing Model and its Algorithm for Junction of Urban Road

    DEFF Research Database (Denmark)

    Cai, Yanguang; Cai, Hao

    2012-01-01

    As an important part of Intelligent Transportation System, the scientific traffic signal timing of junction can improve the efficiency of urban transport. This paper presents a novel dynamic traffic signal timing model. According to the characteristics of the model, hybrid chaotic quantum...... evolutionary algorithm is employed to solve it. The proposed model has simple structure, and only requires traffic inflow speed and outflow speed are bounded functions with at most finite number of discontinuity points. The condition is very loose and better meets the requirements of the practical real......-time and dynamic signal control of junction. To obtain the optimal solution of the model by hybrid chaotic quantum evolutionary algorithm, the model is converted to an easily solvable form. To simplify calculation, we give the expression of the partial derivative and change rate of the objective function...

  9. A Multi-Agent Traffic Control Model Based on Distributed System

    Directory of Open Access Journals (Sweden)

    Qian WU

    2014-06-01

    Full Text Available With the development of urbanization construction, urban travel has become a quite thorny and imminent problem. Some previous researches on the large urban traffic systems easily change into NPC problems. We purpose a multi-agent inductive control model based on the distributed approach. To describe the real traffic scene, this model designs four different types of intelligent agents, i.e. we regard each lane, route, intersection and traffic region as different types of intelligent agents. Each agent can achieve the real-time traffic data from its neighbor agents, and decision-making agents establish real-time traffic signal plans through the communication between local agents and their neighbor agents. To evaluate the traffic system, this paper takes the average delay, the stopped time and the average speed as performance parameters. Finally, the distributed multi-agent is simulated on the VISSIM simulation platform, the simulation results show that the multi-agent system is more effective than the adaptive control system in solving the traffic congestion.

  10. High Performance and Energy Efficient Traffic Light Controller Design Using FPGA

    DEFF Research Database (Denmark)

    Pandey, Sujeet; Shrivastav, Vivek Kumar; Sharma, Rashmi

    2017-01-01

    and then we have analyzed power consumption for traffic light controller on different FPGA. Leakage power is in range of 97.5-99% of total power consumption by traffic light controller on Virtex-7 FPGA. Signal power, clock power and IOs power are almost negligible. Power dissipation is measured on XPOWER......In this work, Verilog is used as hardware description language for implementation of traffic light controller. It shows Red, Green and Yellow color at a predefined interval. Technology scaling is used as energy efficient technique. We have used 90nm, 65nm, 40nm and 28nm technology based FPGA...

  11. Coordinated signal control for arterial intersections using fuzzy logic

    Science.gov (United States)

    Kermanian, Davood; Zare, Assef; Balochian, Saeed

    2013-09-01

    Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.

  12. SMART VIDEO SURVEILLANCE SYSTEM FOR VEHICLE DETECTION AND TRAFFIC FLOW CONTROL

    Directory of Open Access Journals (Sweden)

    A. A. SHAFIE

    2011-08-01

    Full Text Available Traffic signal light can be optimized using vehicle flow statistics obtained by Smart Video Surveillance Software (SVSS. This research focuses on efficient traffic control system by detecting and counting the vehicle numbers at various times and locations. At present, one of the biggest problems in the main city in any country is the traffic jam during office hour and office break hour. Sometimes it can be seen that the traffic signal green light is still ON even though there is no vehicle coming. Similarly, it is also observed that long queues of vehicles are waiting even though the road is empty due to traffic signal light selection without proper investigation on vehicle flow. This can be handled by adjusting the vehicle passing time implementing by our developed SVSS. A number of experiment results of vehicle flows are discussed in this research graphically in order to test the feasibility of the developed system. Finally, adoptive background model is proposed in SVSS in order to successfully detect target objects such as motor bike, car, bus, etc.

  13. Evaluation of Intersection Traffic Control Measures through Simulation

    Science.gov (United States)

    Asaithambi, Gowri; Sivanandan, R.

    2015-12-01

    Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.

  14. Air traffic control activity increases attention capacity in air traffic controllers.

    Science.gov (United States)

    Ribas, Valdenilson Ribeiro; Martins, Hugo André de Lima; Amorim, Gutemberg Guerra; Ribas, Renata de Melo Guerra; de Almeida, Cláudia Ângela Vilela; Ribas, Valéria Ribeiro; de Vasconcelos, Carlos Augusto Carvalho; Lima, Murilo Duarte Costa; Sougey, Everton Botelho; de Castro, Raul Manhães

    2010-01-01

    Air traffic controllers simultaneously develop complex and multiple tasks in the course of their activities. In this context, concern is raised over the high level of attention needed by these professionals which can ultimately be affected by stress and fatigue. The objective of this study was to assess attention level in air traffic controllers (ATCo). 45 flight protection professionals were evaluated, comprising 30 ATCo, subdivided into ATCo with ten or more years in the profession (ATCo≥10, n=15) and ATCo with less than ten years in the profession (ATCo air traffic control activity after ten years may be associated with a high level of attention.

  15. An optimal general type-2 fuzzy controller for Urban Traffic Network

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Vafamand, Navid; Liaghat, Alireza

    2017-01-01

    Urban traffic network model is illustrated by state-charts and object-diagram. However, they have limitations to show the behavioral perspective of the Traffic Information flow. Consequently, a state space model is used to calculate the half-value waiting time of vehicles. In this study......, a combination of the general type-2 fuzzy logic sets and the Modified Backtracking Search Algorithm (MBSA) techniques are used in order to control the traffic signal scheduling and phase succession so as to guarantee a smooth flow of traffic with the least wait times and average queue length. The parameters...

  16. The influence of traffic signal solutions on self-reported road-crossing behavior.

    Science.gov (United States)

    Di Stasi, Leandro L; Megías, Alberto; Cándido, Antonio; Maldonado, Antonio; Catena, Andrés

    2015-01-07

    Injury to pedestrians is a major safety hazard in many countries. Since the beginning of the last century, modern cities have been designed around the use of motor vehicles despite the unfavourable interactions between the vehicles and pedestrians. This push towards urbanization resulted in a substantial number of crashes and fatalities involving pedestrians every day, all over the world. Thus, improving the design of urban cities and townships is a pressing issue for modern society. The study presented here provides a characterization of pedestrian safety problems, with the emphasis on signalized crosswalks (i.e. traffic signal) design solutions. We tested the impact of seven different traffic light configurations (steady [green, yellow, and red], flashing [green, yellow, and red], and light off) on pedestrian self-reported road-crossing behavior, using a 11-point scale -ranging from 0 ("I never cross in this situation") to 10 ("I always cross in this situation"). Results showed that mandatory solutions (steady green vs. steady red) are the best solutions to avoid unsafe pedestrian behaviors while crossing controlled intersections (frequency of crossing: Mgreen = 9.4 ± 1 vs. Mred = 2.6 ± 2). These findings offer important guidelines for the design of future traffic signals for encouraging a pedestrian/transit-friendly environment.

  17. Intelligent Traffic Light Based on PLC Control

    Science.gov (United States)

    Mei, Lin; Zhang, Lijian; Wang, Lingling

    2017-11-01

    The traditional traffic light system with a fixed control mode and single control function is contradicted with the current traffic section. The traditional one has been unable to meet the functional requirements of the existing flexible traffic control system. This paper research and develop an intelligent traffic light called PLC control system. It uses PLC as control core, using a sensor module for receiving real-time information of vehicles, traffic control mode for information to select the traffic lights. Of which control mode is flexible and changeable, and it also set the countdown reminder to improve the effectiveness of traffic lights, which can realize the goal of intelligent traffic diversion, intelligent traffic diversion.

  18. Modeling Left-Turn Driving Behavior at Signalized Intersections with Mixed Traffic Conditions

    Directory of Open Access Journals (Sweden)

    Hong Li

    2016-01-01

    Full Text Available In many developing countries, mixed traffic is the most common type of urban transportation; traffic of this type faces many major problems in traffic engineering, such as conflicts, inefficiency, and security issues. This paper focuses on the traffic engineering concerns on the driving behavior of left-turning vehicles caused by different degrees of pedestrian violations. The traffic characteristics of left-turning vehicles and pedestrians in the affected region at a signalized intersection were analyzed and a cellular-automata-based “following-conflict” driving behavior model that mainly addresses four basic behavior modes was proposed to study the conflict and behavior mechanisms of left-turning vehicles by mathematic methodologies. Four basic driving behavior modes were reproduced in computer simulations, and a logit model of the behavior mode choice was also developed to analyze the relative share of each behavior mode. Finally, the microscopic characteristics of driving behaviors and the macroscopic parameters of traffic flow in the affected region were all determined. These data are important reference for geometry and capacity design for signalized intersections. The simulation results show that the proposed models are valid and can be used to represent the behavior of left-turning vehicles in the case of conflicts with illegally crossing pedestrians. These results will have potential applications on improving traffic safety and traffic capacity at signalized intersections with mixed traffic conditions.

  19. Refining Lane-Based Traffic Signal Settings to Satisfy Spatial Lane Length Requirements

    Directory of Open Access Journals (Sweden)

    Yanping Liu

    2017-01-01

    Full Text Available In conventional lane-based signal optimization models, lane markings guiding road users in making turns are optimized with traffic signal settings in a unified framework to maximize the overall intersection capacity or minimize the total delay. The spatial queue requirements of road lanes should be considered to avoid overdesigns of green durations. Point queue system adopted in the conventional lane-based framework causes overflow in practice. Based on the optimization results from the original lane-based designs, a refinement is proposed to enhance the lane-based settings to ensure that spatial holding limits of the approaching traffic lanes are not exceeded. A solution heuristic is developed to modify the green start times, green durations, and cycle length by considering the vehicle queuing patterns and physical holding capacities along the approaching traffic lanes. To show the effectiveness of this traffic signal refinement, a case study of one of the busiest and most complicated intersections in Hong Kong is given for demonstration. A site survey was conducted to collect existing traffic demand patterns and existing traffic signal settings in peak periods. Results show that the proposed refinement method is effective to ensure that all vehicle queue lengths satisfy spatial lane capacity limits, including short lanes, for daily operation.

  20. The Study of Reinforcement Learning for Traffic Self-Adaptive Control under Multiagent Markov Game Environment

    Directory of Open Access Journals (Sweden)

    Lun-Hui Xu

    2013-01-01

    Full Text Available Urban traffic self-adaptive control problem is dynamic and uncertain, so the states of traffic environment are hard to be observed. Efficient agent which controls a single intersection can be discovered automatically via multiagent reinforcement learning. However, in the majority of the previous works on this approach, each agent needed perfect observed information when interacting with the environment and learned individually with less efficient coordination. This study casts traffic self-adaptive control as a multiagent Markov game problem. The design employs traffic signal control agent (TSCA for each signalized intersection that coordinates with neighboring TSCAs. A mathematical model for TSCAs’ interaction is built based on nonzero-sum markov game which has been applied to let TSCAs learn how to cooperate. A multiagent Markov game reinforcement learning approach is constructed on the basis of single-agent Q-learning. This method lets each TSCA learn to update its Q-values under the joint actions and imperfect information. The convergence of the proposed algorithm is analyzed theoretically. The simulation results show that the proposed method is convergent and effective in realistic traffic self-adaptive control setting.

  1. Control techniques for an automated mixed traffic vehicle

    Science.gov (United States)

    Meisenholder, G. W.; Johnston, A. R.

    1977-01-01

    The paper describes an automated mixed traffic vehicle (AMTV), a driverless low-speed tram designed to operate in mixed pedestrian and vehicular traffic. The vehicle is a six-passenger electric tram equipped with sensing and control which permit it to function on existing streets in an automatic mode. The design includes established wire-following techniques for steering and near-IR headway sensors. A 7-mph cruise speed is reduced to 2 mph or a complete stop in response to sensor (or passenger) inputs. The AMTV performance is evaluated by operation on a loop route and by simulation. Some necessary improvements involving sensors, sensor pattern, use of an audible signal, and control lag are discussed. It is suggested that appropriate modifications will eliminate collision incidents.

  2. The Denver region traffic signal system improvement program : planning for management and operations

    Science.gov (United States)

    2009-04-01

    The Denver Regional Council of Governments (DRCOG) works with over 30 local jurisdictions on the Traffic Signal System Improvement Program (TSSIP), a combination of management and operations strategies designed to time and coordinate traffic signals ...

  3. Multi-Modal Intelligent Traffic Signal Systems (MMITSS) Basic Safety Message

    Data.gov (United States)

    Department of Transportation — Data were collected during the Multi-Modal Intelligent Transportation Signal Systems (MMITSS) study. MMITSS is a next-generation traffic signal system that seeks to...

  4. An approach of traffic signal control based on NLRSQP algorithm

    Science.gov (United States)

    Zou, Yuan-Yang; Hu, Yu

    2017-11-01

    This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.

  5. Deployment and Field Evaluation of In-Vehicle Traffic Signal Advisory System (ITSAS

    Directory of Open Access Journals (Sweden)

    Joyoung Lee

    2017-06-01

    Full Text Available This research evaluates the impact of In-vehicle Signal Advisory System (ITSAS on signalized arterial. ITSAS provides individual drivers equipped with a mobile communication device with advisory speed information enabling to minimize the time delay and fuel consumption when crossing intersection. Given the instantaneous vehicular driving information, such as position, speed, and acceleration rate, ITSAS produces advisory speed information by taking into consideration the traffic signal changes at a downstream intersection. The advisory speed information includes not only an optimal speed range updated every 300-ft for individual drivers but also a descriptive message to warn drivers stop to ensure safety at the downstream intersection. Unlike other similar Connected Vehicles applications for intersection management, ITSAS does not require Roadside Equipment (RSE to disseminate the advisory speed information as it is designed to exploit commercial cellular network service (i.e., 3G and 4G-LTE. Thus, ITSAS can be easily plugged into existing traffic control management system to rapidly conduct its implementation without significant additional cost. This research presents the field evaluations of ITSAS on a signalized corridor in New Jersey, which discovered significant travel time savings for the equipped vehicle.

  6. Model Predictive Control for Integrating Traffic Control Measures

    NARCIS (Netherlands)

    Hegyi, A.

    2004-01-01

    Dynamic traffic control measures, such as ramp metering and dynamic speed limits, can be used to better utilize the available road capacity. Due to the increasing traffic volumes and the increasing number of traffic jams the interaction between the control measures has increased such that local

  7. Analysis of traffic signal work backlog in Louisiana : technical assistance report.

    Science.gov (United States)

    1995-07-01

    A review of Traffic Services' traffic signal work records reveals the source of the backlog. During the 1980's, the department experienced personnel cutbacks and hiring freezes that caused the number of field personnel to drop from 40 to 24. Simultan...

  8. CATS-based Air Traffic Controller Agents

    Science.gov (United States)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  9. Research on traffic flow characteristics at signal intersection

    Science.gov (United States)

    Zeng, Jun-Wei; Yu, Sen-Bin; Qian, Yong-Sheng; Wei, Xu-Ting; Feng, Xiao; Wang, Hui

    2017-09-01

    Based on the cautious driving behavior and the principle of the vehicles at left-side having priority to pass in the intersection, a two-dimensional cellular automata model for planar signalized intersection (NS-STCA) is established. The different turning vehicles are regarded as the research objects and the effect of the left-turn probability, signal cycle, vehicle flow density on traffic flow at the intersection is investigated.

  10. Traffic light control by multiagent reinforcement learning systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.; Groen, F.C.A.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  11. Traffic Light Control by Multiagent Reinforcement Learning Systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.J.H.M.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  12. Multi-Modal Intelligent Traffic Signal Systems Vehicle Trajectories for Roadside Equipment

    Data.gov (United States)

    Department of Transportation — Data were collected during the Multi-Modal Intelligent Transportation Signal Systems (MMITSS) study. MMITSS is a next-generation traffic signal system that seeks to...

  13. Controlled Traffic Farming

    OpenAIRE

    Controlled Traffic Farming Europe

    2011-01-01

    Metadata only record Controlled Traffic Farming (CTF) is a farming method used to reduce soil compaction, decrease inputs, and improve soil structure when coupled with reduced-till or no-till practices. This practices utilizes permanent traffic/wheel zones to limit soil compaction to a specific area. This website provides practical information on CTF, case studies, workshops, and links to additional resources.

  14. 30 CFR 56.9100 - Traffic control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of self-propelled...

  15. Research on the Method of Setting Waiting Area for Non-motor Vehicle at Signal Control Intersection

    Directory of Open Access Journals (Sweden)

    Wang Yun Xia

    2018-01-01

    Full Text Available Electric bicycle has become an indispensable important component of the transportation system. The fact is that traffic organization and channelizing design of signal control intersection is not intensive, which cannot adapt to the current traffic demand of non-motor vehicle, such as unclear traffic rules and poor visibility, thus the traffic safety of non-motor vehicle is not optimistic. Therefore, it is necessary to study on traffic organization method based on the demand of non-motor vehicle, which can provide certain theoretical basis for traffic administrative department to make policy and traffic design. This article focuses on the method of setting waiting area for non-motor vehicle at signal control intersection, including the advantages, disadvantages and the applicable conditions.

  16. Improvement of driving safety in road traffic system

    Science.gov (United States)

    Li, Ke-Ping; Gao, Zi-You

    2005-05-01

    A road traffic system is a complex system in which humans participate directly. In this system, human factors play a very important role. In this paper, a kind of control signal is designated at a given site (i.e., signal point) of the road. Under the effect of the control signal, the drivers will decrease their velocities when their vehicles pass the signal point. Our aim is to transit the traffic flow states from disorder to order and then improve the traffic safety. We have tested this technique for the two-lane traffic model that is based on the deterministic Nagel-Schreckenberg (NaSch) traffic model. The simulation results indicate that the traffic flow states can be transited from disorder to order. Different order states can be observed in the system and these states are safer.

  17. Efficiency of Roundabouts as Compared to Traffic Light Controlled ...

    African Journals Online (AJOL)

    Comparison is made between roundabouts with traffic light and without traffic light and signalized intersections on the basis of their performance to simplify traffic congestion. Computer simulations are used to propose critical arrival rates to separate between the three mentioned modes to decrease congestion at intersection ...

  18. Simulation of intersection of complicated information signals in air traffic control systems

    Directory of Open Access Journals (Sweden)

    Е. В. Коба

    2000-12-01

    Full Text Available Considered is the problem of complicated system simulation with customers incoming flows. Developed is an algorithm accelerated of finding probability of the superposition of complicated customers. Derived are the top and bottom estimates of damage-factor which are connected with complical customers superposition. Noticed is connection with simulation problem of air traffic control system

  19. Safety effects of traffic signing for left turn flashing yellow arrow signals.

    Science.gov (United States)

    Schattler, Kerrie L; Gulla, Cody J; Wallenfang, Travis J; Burdett, Beau A; Lund, Jessica A

    2015-02-01

    In 2010, the left turn flashing yellow arrow (FYA) signal displays were installed at signalized intersections on state routes in the Peoria, Illinois, area. Supplemental traffic signs with text "Left Turn Yield on Flashing Yellow Arrow" were mounted on the mast arm adjacent to the left turn signal at over half of the FYA installations. The purpose of this paper is to present the results of the effectiveness evaluation of the FYA supplemental sign on safety. Analyses are presented on the effects of the FYA supplemental sign for all drivers and a subset of drivers age 65 and older. A crash-based comparison of 164 FYA approaches including 90 approaches with the sign and 74 approaches without the sign showed greater crash reductions when the supplemental FYA sign was present. The results also showed that crashes involving drivers age 65 and older did not experience the same magnitudes of crash reductions as compared to all drivers. The findings of this research indicate that supplemental FYA signs may help in improving safety for left-turning vehicles during the permissive interval. Thus, it is recommended that supplemental signs be used when initially implementing the FYA, and that effort to educate the driving public on new traffic control be made to further improve safety at signalized intersections. Copyright © 2014. Published by Elsevier Ltd.

  20. THE NOISE IMMUNITY OF THE DIGITAL DEMODULATOR MFM-AM SIGNAL USED IN DATA COMMUNICATIONS SYSTEMS OF AIR TRAFFIC CONTROL WITH AUTOMATIC DEPENDENT SURVEILLANCE AGAINST A NON-GAUSSIAN NOISE

    Directory of Open Access Journals (Sweden)

    A. L. Senyavskiy

    2015-01-01

    Full Text Available The article analyzes the robustness of the digital demodulator of the signal with the lowest frequency shift keying at a subcarrier frequency with respect to non-Gaussian interference type of atmospheric, industrial noise and interfering frequency -and phase-shift keyed signals. This type of demodulator is used for the transmission of navigation data in the systems of air traffic control with automatic dependent surveillance.

  1. Air Traffic Control Tools Assessment

    Directory of Open Access Journals (Sweden)

    Tomáš Noskievič

    2017-04-01

    Full Text Available Undoubtedly air transport in today’s world wouldn’t be able to exist without any air traffic control service. As the air transport has been coming through major changes and it has been expanding, it is assumed that its volume will be doubled in the next 15 years. Air traffic control uses strictly organised procedures to ensure safe course of air operations. With the skies covered with more airplanes every year, new tools must be introduced to allow the controllers to manage this rising amount of flying aircraft and to keep the air transport safe. This paper provides a comprehensive and organized material, which describes the newest tools and systems used by air traffic control officers. It proposes improvements for further research and development of ATC tools.

  2. Fixed Point Learning Based Intelligent Traffic Control System

    Science.gov (United States)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  3. Traffic control concepts for incident clearance

    Science.gov (United States)

    2009-01-01

    This document discusses various aspects of traffic control for incidents with the focus on the traffic control roles and responsibilities of the responders as well as the safety of the responders and the motoring public. It also recognizes that activ...

  4. Best response game of traffic on road network of non-signalized intersections

    Science.gov (United States)

    Yao, Wang; Jia, Ning; Zhong, Shiquan; Li, Liying

    2018-01-01

    This paper studies the traffic flow in a grid road network with non-signalized intersections. The nature of the drivers in the network is simulated such that they play an iterative snowdrift game with other drivers. A cellular automata model is applied to study the characteristics of the traffic flow and the evolution of the behaviour of the drivers during the game. The drivers use best-response as their strategy to update rules. Three major findings are revealed. First, the cooperation rate in simulation experiences staircase-shaped drop as cost to benefit ratio r increases, and cooperation rate can be derived analytically as a function of cost to benefit ratio r. Second, we find that higher cooperation rate corresponds to higher average speed, lower density and higher flow. This reveals that defectors deteriorate the efficiency of traffic on non-signalized intersections. Third, the system experiences more randomness when the density is low because the drivers will not have much opportunity to update strategy when the density is low. These findings help to show how the strategy of drivers in a traffic network evolves and how their interactions influence the overall performance of the traffic system.

  5. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  6. NEW POSSIBILITIES OF RAILWAY TRAFFIC CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Lionginas LIUDVINAVIČIUS

    2016-06-01

    Full Text Available This article analyses the train traffic control systems in 1435 mm and 1520 mm gauge railways. The article analyses the aspects of train traffic control and locomotive energy saving by using the coordinates of track profile change that have been received from GPS. In the article, achievements of Lithuanian railways (LG in the area of train traffic control optimisation are presented.

  7. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street.

    Science.gov (United States)

    Panaggio, Mark J; Ottino-Löffler, Bertand J; Hu, Peiguang; Abrams, Daniel M

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green-wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  8. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street

    Science.gov (United States)

    Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  9. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic.

    Science.gov (United States)

    Marat, Andrea L; Haucke, Volker

    2016-03-15

    Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network. © 2016 The Authors.

  10. Traffic background level and signal duration effects on aircraft noise judgment

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, G W; Haasz, A A

    1977-04-22

    The effects of background traffic noise level and signal duration on perceived aircraft noise levels during a flyover event are investigated. Tapes of traffic noise at different levels on which aircraft flyover noise events of different durations were superimposed were played to groups of observers in a room simulating indoor conditions. It is found that the presence of steady background traffic noise reduces the perceived noisiness of aircraft flyovers provided that the duration of the flyover event is sufficiently short in relation to flyover time. For a given event level, a reduction of 21 dB(A) in background noise level leads to the perception of a 5.5 dB(A) increase in peak event level. Regressions of observer response with the noise pollution index show a lower correlation than those with variables based on background noise level and peak signal level, although the data are found to exhibit a number of significant trends associated with noise pollution index variations.

  11. Light Emitting Diode (LED) circular traffic signal lifetime management system.

    Science.gov (United States)

    2011-02-01

    The objective of this research is to build lifetime curves for red, yellow, and green LED circular traffic signals through 20,000-hr. accelerated stress testing of samples operating under Louisianas environmental conditions.

  12. Modeling traffic accidents at signalized intersections in the city of Norfolk, VA.

    Science.gov (United States)

    2010-12-31

    This study was an attempt to apply a proactive approach using traffic pattern and signalized intersection characteristics to predict accident rates at signalized intersections in a citys arterial network. An earlier analysis of accident data at se...

  13. Hierarchical Colored Petri Nets for Modeling and Analysis of Transit Signal Priority Control Systems

    Directory of Open Access Journals (Sweden)

    Yisheng An

    2018-01-01

    Full Text Available In this paper, we consider the problem of developing a model for traffic signal control with transit priority using Hierarchical Colored Petri nets (HCPN. Petri nets (PN are useful for state analysis of discrete event systems due to their powerful modeling capability and mathematical formalism. This paper focuses on their use to formalize the transit signal priority (TSP control model. In a four-phase traffic signal control model, the transit detection and two kinds of transit priority strategies are integrated to obtain the HCPN-based TSP control models. One of the advantages to use these models is the clear presentation of traffic light behaviors in terms of conditions and events that cause the detection of a priority request by a transit vehicle. Another advantage of the resulting models is that the correctness and reliability of the proposed strategies are easily analyzed. After their full reachable states are generated, the boundness, liveness, and fairness of the proposed models are verified. Experimental results show that the proposed control model provides transit vehicles with better effectiveness at intersections. This work helps advance the state of the art in the design of signal control models related to the intersection of roadways.

  14. Green Wave Traffic Optimization - A Survey

    DEFF Research Database (Denmark)

    Warberg, Andreas; Larsen, Jesper; Jørgensen, Rene Munk

    The objective of this survey is to cover the research in the area of adaptive traffic control with emphasis on the applied optimization methods. The problem of optimizing traffic signals can be viewed in various ways, depending on political, economic and ecological goals. The survey highlights some...... important conflicts, which support the notion that traffic signal optimization is a multi-objective problem, and relates this to the most common measures of effectiveness. A distinction can be made between classical systems, which operate with a common cycle time, and the more flexible, phase......-based, approach, which is shown to be more suitable for adaptive traffic control. To support this claim three adaptive systems, which use alternatives to the classical optimization procedures, are described in detail....

  15. Metering with Traffic Signal Control : Development and Evaluation of an Algorithm

    NARCIS (Netherlands)

    Taale, H.; Hoogendoorn, S.P.; Legius, P.

    2015-01-01

    For some on-ramps, which cause congestion on the motorway, it is not possible to install a ramp metering system for geometric or other reasons. But sometimes it is possible to meter traffic with the traffic lights of nearby intersections in such a way that the situation on the motorway improves and

  16. Improving traffic signal management and operations : a basic service model.

    Science.gov (United States)

    2009-12-01

    This report provides a guide for achieving a basic service model for traffic signal management and : operations. The basic service model is based on simply stated and defensible operational objectives : that consider the staffing level, expertise and...

  17. Safety Impacts of the Actuated Signal Control at Urban Intersections

    Directory of Open Access Journals (Sweden)

    Sang Hyuk Lee

    2016-02-01

    Full Text Available To reduce travel time, the actuated signal controls have been implemented at urban intersections. However, the safety impacts of actuated signal controls thus far have rarely been examined. In this assessment of the safety impact of urban intersections with semi-actuated signal controls, the safety performance functions and EB approaches were applied. The semi-actuated signal controls have increased injuries and total crashes in all crash types by around 5.9% and 3.8%, respectively. Regarding the most common crash types, such as angle, sideswipe & rear-end, and head-on crashes, semi-actuated signal controls have been seen to decrease injuries by 7.7%. Total crashes have been reduced by over 9.2% through the use of semi-actuated signal controls. This may be result of optimal signal timings considering traffic conditions during peak time periods. In conclusion, safety impact factors which have been established in this study can be used to improve safety and minimize travel times using semi-actuated signal controls.

  18. IMPACTS OF GROUP-BASED SIGNAL CONTROL POLICY ON DRIVER BEHAVIOR AND INTERSECTION SAFETY

    Directory of Open Access Journals (Sweden)

    Keshuang TANG

    2008-01-01

    Full Text Available Unlike the typical stage-based policy commonly applied in Japan, the group-based control (often called movement-based in the traffic control industry in Japan refers to such a control pattern that the controller is capable of separately allocating time to each signal group instead of stage based on traffic demand. In order to investigate its applicability at signalized intersections in Japan, an intersection located in Yokkaichi City of Mie Prefecture was selected as an experimental application site by the Japan Universal Traffic Management Society (UTMS. Based on the data collected at the intersection before and after implementing the group-based control policy respectively, this study evaluated the impacts of such a policy on driver behavior and intersection safety. To specify those impacts, a few models utilizing cycle-based data were first developed to interpret the occurrence probability and rate of red-light-running (RLR. Furthermore, analyses were performed on the yellow-entry time (Ye of the last cleared vehicle and post encroachment time (PET during the phase switching. Conclusions supported that the group-based control policy, along with certain other factors, directly or indirectly influenced the RLR behavior of through and right-turn traffics. Meanwhile, it has potential safety benefits as well, indicated by the declined Ye and increased PET values.

  19. The Combined Effect of Signal Strength and Background Traffic Load on Speech Quality in IEEE 802.11 WLAN

    Directory of Open Access Journals (Sweden)

    P. Pocta

    2011-04-01

    Full Text Available This paper deals with measurements of the combined effect of signal strength and background traffic load on speech quality in IEEE 802.11 WLAN. The ITU-T G.729AB encoding scheme is deployed in this study and the Distributed Internet Traffic Generator (D-ITG is used for the purpose of background traffic generation. The speech quality and background traffic load are assessed by means of the accomplished PESQ algorithm and Wireshark network analyzer, respectively. The results show that background traffic load has a bit higher impact on speech quality than signal strength when both effects are available together. Moreover, background traffic load also partially masks the impact of signal strength. The reasons for those findings are particularly discussed. The results also suggest some implications for designers of wireless networks providing VoIP service.

  20. Automobile control technology and traffic control

    Energy Technology Data Exchange (ETDEWEB)

    Takaba, Sadao [Univ. of Tokyo (Japan)

    1988-09-05

    In the field of automobile control technology, electronic was first adopted for the electronic fuel control as an answer to the exhaust gas regulations. The operations of the driving system, frame system or the automobile itself which is the combination of the two were optimized by adding sensors, computers, actuators, etc. to alleviate the burden of the driver, offering easier drivability and confortableness. For local driving control, measurement of distance up to obstacle has been practiced using the ultrasonic radar sensor. Research and development of microwave radar sensor have been carried out for years. Automatic driving has been a dream technology, and the study for the technology was started since early times. Remarkable progress was made recently in the navigation system for traffic control in wide area. New automobile traffic information communication and other systems are being developed. Historical description is made on the control and information systems for road transportation, dividing the period into the 1st, 2nd and 3rd generations. 10 references.

  1. Traffic analysis and signal processing in optical packet switched networks

    DEFF Research Database (Denmark)

    Fjelde, Tina

    2002-01-01

    /s optical packet switched network exploiting the best of optics and electronics, is used as a thread throughout the thesis. An overview of the DAVID network architecture is given, focussing on the MAN and WAN architecture as well as the MPLS-based network hierarchy. Subsequently, the traffic performance...... of the DAVID core optical packet router, which exploits wavelength conversion and fibre delay-line buffers for contention resolution, is analysed using a numerical model developed for that purpose. The robustness of the shared recirculating loop buffer with respect to´bursty traffic is demonstrated...... the injection of an additional clock signal into the IWC is presented. Results show very good transmission capabilities combined with a high-speed response. It is argued that signal regeneration is an inherent attribute of the IWC employed as a wavelength converter due to the sinusoidal transfer function...

  2. MODELS OF AIR TRAFFIC CONTROLLERS ERRORS PREVENTION IN TERMINAL CONTROL AREAS UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.

  3. Intelligent Traffic Control System Implementation for Traffic Violation Control, Congestion Control and Stolen Vehicle Detection

    Directory of Open Access Journals (Sweden)

    Swarup Suresh Kulkarni

    2017-07-01

    Full Text Available Traffic is significant issue in our nation, particularly in urban ranges. Aftereffect of this, activity clog issue happens. Crisis vehicle like rescue vehicle, fire unit, squad cars confront bunches of issue to achieve their goal on account of congested driving conditions, coming about loss of human lives. To minimize this issue we approach new idea name as ”Traffic control framework for blockage control and stolen Vehicle location”. In this framework activity freedom done by transforming Red flag into Green flag. We demonstrate idea of what is called ”Green wave”. Alongside this, we distinguish stolen vehicle by utilizing extremely advantageous RFID innovation. In the event that stolen vehicle is been distinguished, the framework gives ready sign through ringer. Framework sends Message with the assistance of GSM to Police station. In this framework we Use diverse RFID labels for recognizing rescue vehicle, stolen Vehicles. On the off chance that Red flag is on and IR sensor is initiated, then framework gives ringer alarm to movement police. This is novel framework which encourage great answer for comprehend traffic clog.

  4. SOME EMPIRICAL RELATIONS BETWEEN TRAVEL SPEED, TRAFFIC VOLUME AND TRAFFIC COMPOSITION IN URBAN ARTERIALS

    Directory of Open Access Journals (Sweden)

    Eleni I. VLAHOGIANNI, Ph.D.

    2007-01-01

    Full Text Available The effects of traffic mix (the percentage of cars, trucks, buses and so on are of particular interest in the speed-volume relationship in urban signalized arterials under various geometric and control characteristics. The paper presents some empirical observations on the relation between travel speed, traffic volume and traffic composition in urban signalized arterials. A methodology based on emerging self-organizing structures of neural networks to identify regions in the speed-volume relationship with respect to traffic composition and Bayesian networks to evaluate the effect of different types of motorized vehicles on prevailing traffic conditions is proposed. Results based on data from a large urban network indicate that the variability in traffic conditions can be described by eight regions in speed-volume relationship with respect to traffic composition. Further evaluation of the effect of motorized vehicles in each region separately indicates that the effect of traffic composition decreases with the onset of congestion. Moreover, taxis and motorcycles are the primary affecting parameter of the form of the speed-volume relationship in urban arterials.

  5. A knowledge-based system for controlling automobile traffic

    Science.gov (United States)

    Maravas, Alexander; Stengel, Robert F.

    1994-01-01

    Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.

  6. Generalized sample entropy analysis for traffic signals based on similarity measure

    Science.gov (United States)

    Shang, Du; Xu, Mengjia; Shang, Pengjian

    2017-05-01

    Sample entropy is a prevailing method used to quantify the complexity of a time series. In this paper a modified method of generalized sample entropy and surrogate data analysis is proposed as a new measure to assess the complexity of a complex dynamical system such as traffic signals. The method based on similarity distance presents a different way of signals patterns match showing distinct behaviors of complexity. Simulations are conducted over synthetic data and traffic signals for providing the comparative study, which is provided to show the power of the new method. Compared with previous sample entropy and surrogate data analysis, the new method has two main advantages. The first one is that it overcomes the limitation about the relationship between the dimension parameter and the length of series. The second one is that the modified sample entropy functions can be used to quantitatively distinguish time series from different complex systems by the similar measure.

  7. Fiber fault location utilizing traffic signal in optical network.

    Science.gov (United States)

    Zhao, Tong; Wang, Anbang; Wang, Yuncai; Zhang, Mingjiang; Chang, Xiaoming; Xiong, Lijuan; Hao, Yi

    2013-10-07

    We propose and experimentally demonstrate a method for fault location in optical communication network. This method utilizes the traffic signal transmitted across the network as probe signal, and then locates the fault by correlation technique. Compared with conventional techniques, our method has a simple structure and low operation expenditure, because no additional device is used, such as light source, modulator and signal generator. The correlation detection in this method overcomes the tradeoff between spatial resolution and measurement range in pulse ranging technique. Moreover, signal extraction process can improve the location result considerably. Experimental results show that we achieve a spatial resolution of 8 cm and detection range of over 23 km with -8-dBm mean launched power in optical network based on synchronous digital hierarchy protocols.

  8. Traffic Predictive Control: Case Study and Evaluation

    Science.gov (United States)

    2017-06-26

    This project developed a quantile regression method for predicting future traffic flow at a signalized intersection by combining both historical and real-time data. The algorithm exploits nonlinear correlations in historical measurements and efficien...

  9. Development and Evaluation of a Control System for Regional Traffic Management

    Directory of Open Access Journals (Sweden)

    John L. McLin

    2011-01-01

    Full Text Available Traffic congestion is a worsening problem in metropolitan areas which will require integrated regional traffic control systems to improve traffic conditions. This paper presents a regional traffic control system which can detect incident conditions and provide integrated traffic management during nonrecurrent congestion events. The system combines advanced artificial intelligence techniques with a traffic performance model based on HCM equations. Preliminary evaluation of the control system using traffic microsimulation demonstrates that it has the potential to improve system conditions during traffic incidents. In addition, several enhancements were identified which will make the system more robust in a real traffic control setting. An assessment of the control system elements indicates that there are no substantial technical barriers in implementing this system in a large traffic network.

  10. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks.

    Science.gov (United States)

    Artuñedo, Antonio; Del Toro, Raúl M; Haber, Rodolfo E

    2017-04-26

    Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller ( TLC ) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

  11. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks

    Directory of Open Access Journals (Sweden)

    Antonio Artuñedo

    2017-04-01

    Full Text Available Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller (TLC network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

  12. U18 : Traffic signal safety (phase B).

    Science.gov (United States)

    2009-08-01

    Efficiently scheduling traffic, particularly heavy vehicles, remains a key challenge in transportation engineering. This project has focused on the development of a novel trafficsignal-control methodology to improve the safety of heavy vehicles on...

  13. Fuzzy Traffic Control with Vehicle-to-Everything Communication.

    Science.gov (United States)

    Salman, Muntaser A; Ozdemir, Suat; Celebi, Fatih V

    2018-01-27

    Traffic signal control (TSC) with vehicle-to everything (V2X) communication can be a very efficient solution to traffic congestion problem. Ratio of vehicles equipped with V2X communication capability in the traffic to the total number of vehicles (called penetration rate PR) is still low, thus V2X based TSC systems need to be supported by some other mechanisms. PR is the major factor that affects the quality of TSC process along with the evaluation interval. Quality of the TSC in each direction is a function of overall TSC quality of an intersection. Hence, quality evaluation of each direction should follow the evaluation of the overall intersection. Computational intelligence, more specifically swarm algorithm, has been recently used in this field in a European Framework Program FP7 supported project called COLOMBO. In this paper, using COLOMBO framework, further investigations have been done and two new methodologies using simple and fuzzy logic have been proposed. To evaluate the performance of our proposed methods, a comparison with COLOMBOs approach has been realized. The results reveal that TSC problem can be solved as a logical problem rather than an optimization problem. Performance of the proposed approaches is good enough to be suggested for future work under realistic scenarios even under low PR.

  14. Emergency automatic signalling system using time scheduling

    Science.gov (United States)

    Rayavel, P.; Surenderanath, S.; Rathnavel, P.; Prakash, G.

    2018-04-01

    It is difficult to handle traffic congestion and maintain roads during traffic mainly in India. As the people migrate from rural to urban and sub-urban areas, it becomes still more critical. Presently Roadways is a standout amongst the most vital transportation. At the point when a car crash happens, crisis vehicles, for example, ambulances and fire trucks must rush to the mischance scene. There emerges a situation where a portion of the crisis vehicles may cause another car crash. Therefore it becomes still more difficult for emergency vehicle to reach the destination within a predicted time. To avoid that kind of problem we have come out with an effective idea which can reduce the potential in the traffic system. The traffic system is been modified using a wireless technology and high speed micro controller to provide smooth and clear flow of traffic for ambulance to reach the destination on time. This is achieved by using RFID Tag at the ambulance and RFID Reader at the traffic system i.e., traffic signal. This mainly deals with identifying the emergency vehicle and providing a green signal to traffic signal at time of traffic jam. — By assigning priorities to various traffic movements, we can control the traffic jam. In some moments like ambulance emergency, high delegates arrive people facing lot of trouble. To overcome this problem in this paper we propose a time priority based traffic system achieved by using RFID transmitter at the emergency vehicle and RFID receiver at the traffic system i.e., traffic signal. The signal from the emergency vehicle is sent to traffic system which after detecting it sends it to microcontroller which controls the traffic signal. If any emergency vehicle is detected the system goes to emergency system mode where signal switch to green and if it is not detected normal system mode.

  15. Sensor for a traffic response system and traffic control system using a sensor

    NARCIS (Netherlands)

    Heijningen, A.W.P. van; Kleijweg, J.C.M.

    2007-01-01

    Traffic is sensed using a signal from a wave reflection detection device to classify road users into different types. Classification is performed dependent on statistical properties of reflections. Preferably reflections are resolved into reflections for different combinations of position and speed,

  16. 5 CFR 842.207 - Air traffic controllers.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers. 842.207 Section 842.207 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers. (a) An employee who separates from...

  17. The Use of Adaptive Traffic Signal Systems Based on Floating Car Data

    Directory of Open Access Journals (Sweden)

    Vittorio Astarita

    2017-01-01

    Full Text Available This paper presents a simple concept which has not been, up to now, thoroughly explored in scientific research: the use of information coming from the network of Internet connected mobile devices (on vehicles to regulate traffic light systems. Three large-scale changes are going to shape the future of transportation and could lead to the regulation of traffic signal system based on floating car data (FCD: (i the implementation of Internet connected cars with global navigation satellite (GNSS system receivers and the autonomous car revolution; (ii the spreading of mobile cooperative Web 2.0 and the extension to connected vehicles; (iii an increasing need for sustainability of transportation in terms of energy efficiency, traffic safety, and environmental issues. Up to now, the concept of floating car data (FCD has only been extensively used to obtain traffic information and estimate traffic parameters. Traffic lights regulation based on FCD technology has not been fully researched since the implementation requires new ideas and algorithms. This paper intends to provide a seminal insight into the important issue of adaptive traffic light based on FCD by presenting ideas that can be useful to researchers and engineers in the long-term task of developing new algorithms and systems that may revolutionize the way traffic lights are regulated.

  18. Task Analysis Assessment on Intrastate Bus Traffic Controllers

    Science.gov (United States)

    Yen Bin, Teo; Azlis-Sani, Jalil; Nur Annuar Mohd Yunos, Muhammad; Ismail, S. M. Sabri S. M.; Tajedi, Noor Aqilah Ahmad

    2016-11-01

    Public transportation acts as social mobility and caters the daily needs of the society for passengers to travel from one place to another. This is true for a country like Malaysia where international trade has been growing significantly over the past few decades. Task analysis assessment was conducted with the consideration of cognitive ergonomic view towards problem related to human factors. Conducting research regarding the task analysis on bus traffic controllers had allowed a better understanding regarding the nature of work and the overall monitoring activities of the bus services. This paper served to study the task analysis assessment on intrastate bus traffic controllers and the objectives of this study include to conduct task analysis assessment on the bus traffic controllers. Task analysis assessment for the bus traffic controllers was developed via Hierarchical Task Analysis (HTA). There are a total of five subsidiary tasks on level one and only two were able to be further broken down in level two. Development of HTA allowed a better understanding regarding the work and this could further ease the evaluation of the tasks conducted by the bus traffic controllers. Thus, human error could be reduced for the safety of all passengers and increase the overall efficiency of the system. Besides, it could assist in improving the operation of the bus traffic controllers by modelling or synthesizing the existing tasks if necessary.

  19. An Improved Algebraic Method for Transit Signal Priority Scheme and Its Impact on Traffic Emission

    OpenAIRE

    Ji, Yanjie; Hu, Bo; Han, Jing; Tang, Dounan

    2014-01-01

    Transit signal priority has a positive effect on improving traffic congestion and reducing transit delay and also has an influence on traffic emission. In this paper, an optimal transit signal priority scheme based on an improved algebraic method was developed and its impact on vehicle emission was evaluated as well. The improved algebraic method was proposed on the basis of classical algebraic method and has improvements in three aspects. First, the calculation rules of split loss are more r...

  20. Traffic Efficiency Evaluation of Elliptical Roundabout Compared with Modern and Turbo Roundabouts Considering Traffic Signal Control

    Directory of Open Access Journals (Sweden)

    Hadi Hatami

    2017-02-01

    Full Text Available This paper compared the performance of elliptical roundabout with turbo and modern roundabouts. It considers the effects of increasing the central island radius and speed limit on delay and capacity. Three types of roundabouts (modern, turbo and elliptical roundabouts with different numbers of lanes (single lane, two-lane and three-lane were designed. Unsignalized and signalized controls were applied for these roundabouts. The robustness of the designed roundabouts was investigated for saturated and unsaturated flow conditions. Based on the obtained results, increasing the central island radius had both positive and negative effects on delay and capacity. However, a positive effect on these variables was observed in all roundabouts when increasing the speed limit. In unsignalized and signalized control under unsaturated flow conditions, a modern roundabout had lower delay time than an elliptical roundabout. Moreover, in saturated flow, the elliptical roundabout had the best performance in terms of delay. Overall, in comparison with the turbo roundabouts, modern and elliptical roundabouts had the highest capacities in unsignalized and signalized controls. This study can provide useful information for engineers who decide to design a roundabout.

  1. Emergency vehicle traffic signal preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  2. Saturation flow versus green time at two-stage signal controlled intersections

    Directory of Open Access Journals (Sweden)

    A. Boumediene

    2009-12-01

    Full Text Available Intersections are the key components of road networks considerably affecting capacity. As flow levels and experience have increased over the years, methods and means have been developed to cope with growing demand for traffic at road junctions. Among various traffic control devices and techniques developed to cope with conflicting movements, traffic signals create artificial gaps to accommodate the impeded traffic streams. The majority of parameters that govern signalised intersection control and operations such as a degree of saturation, delays, queue lengths, the level of service etc. are very sensitive to saturation flow. Therefore, it is essential to reliably evaluate saturation flow for correctly setting traffic signals to avoid unnecessary delays and conflicts. Generally, almost all guidelines support the constancy of saturation flow irrespective of green time duration. This paper presents the results of field studies carried out to enable the performance of signalised intersections to be compared at different green time durations. It was found that saturation flow decreased slightly with growing green time. Reduction corresponded to between 2 and 5 pcus/gh per second of green time. However, the analyses of the discharge rate during the successive time intervals of 6-seconds showed a substantial reduction of 10% to 13% in saturation flow levels after 36 seconds of green time compared to those relating to 6–36 seconds range. No reduction in saturation flow levels was detected at the sites where only green periods of 44 seconds or less were implemented.

  3. Remotely Accessed Vehicle Traffic Management System

    Science.gov (United States)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  4. Proactive Traffic Information Control in Emergency Evacuation Network

    Directory of Open Access Journals (Sweden)

    Zhengfeng Huang

    2015-01-01

    Full Text Available Traffic demand in emergency evacuation is usually too large to be effectively managed with reactive traffic information control methods. These methods adapt to the road traffic passively by publishing real-time information without consideration of the routing behavior feedback produced by evacuees. Other remedy measures have to be prepared in case of nonrecurring congestion under these methods. To use the network capacity fully to mitigate near-future evacuation traffic congestion, we propose proactive traffic information control (PTIC model. Based on the mechanism between information and routing behavior feedback, this model can change the route choice of evacuees in advance by dissipating strategic traffic information. Generally, the near-future traffic condition is difficult to accurately predict because it is uncertain in evacuation. Assume that the value of traffic information obeys certain distribution within a range, and then real-time traffic information may reflect the most-likely near-future traffic condition. Unlike the real-time information, the proactive traffic information is a selection within the range to achieve a desired level of the road network performance index (total system travel time. In the aspect of the solution algorithm, differential equilibrium decomposed optimization (D-EDO is proposed to compare with other heuristic methods. A field study on a road network around a large stadium is used to validate the PTIC.

  5. Control mechanism to prevent correlated message arrivals from degrading signaling no. 7 network performance

    Science.gov (United States)

    Kosal, Haluk; Skoog, Ronald A.

    1994-04-01

    Signaling System No. 7 (SS7) is designed to provide a connection-less transfer of signaling messages of reasonable length. Customers having access to user signaling bearer capabilities as specified in the ANSI T1.623 and CCITT Q.931 standards can send bursts of correlated messages (e.g., by doing a file transfer that results in the segmentation of a block of data into a number of consecutive signaling messages) through SS7 networks. These message bursts with short interarrival times could have an adverse impact on the delay performance of the SS7 networks. A control mechanism, Credit Manager, is investigated in this paper to regulate incoming traffic to the SS7 network by imposing appropriate time separation between messages when the incoming stream is too bursty. The credit manager has a credit bank where credits accrue at a fixed rate up to a prespecified credit bank capacity. When a message arrives, the number of octets in that message is compared to the number of credits in the bank. If the number of credits is greater than or equal to the number of octets, then the message is accepted for transmission and the number of credits in the bank is decremented by the number of octets. If the number of credits is less than the number of octets, then the message is delayed until enough credits are accumulated. This paper presents simulation results showing delay performance of the SS7 ISUP and TCAP message traffic with a range of correlated message traffic, and control parameters of the credit manager (i.e., credit generation rate and bank capacity) are determined that ensure the traffic entering the SS7 network is acceptable. The results show that control parameters can be set so that for any incoming traffic stream there is no detrimental impact on the SS7 ISUP and TCAP message delay, and the credit manager accepts a wide range of traffic patterns without causing significant delay.

  6. 10 CFR 431.224 - Uniform test method for the measurement of energy consumption for traffic signal modules and...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy consumption for traffic signal modules and pedestrian modules. 431.224 Section 431.224 Energy DEPARTMENT OF... measurement of energy consumption for traffic signal modules and pedestrian modules. (a) Scope. This section...

  7. A Network Traffic Control Enhancement Approach over Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2003-01-01

    This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated solu...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well......This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...

  8. TCP/IP Communication System for Controlling a Vehicular Traffic Intersection

    Directory of Open Access Journals (Sweden)

    Pedraza-Martínez Luis Fernando

    2013-10-01

    Full Text Available This paper describes the development of a prototype of a vehicular traffic controller, whose system of communication is based on the TCP/IP protocol, in order to re- motely monitor and control the operation of traffic lights for a vehicular intersection. The results show the times of communication between the central and the traffic controller. The conclusions highlight the importance of using the TCP/IP protocol in traffic light systems.

  9. The Use of Audible Traffic Signals in the United States.

    Science.gov (United States)

    Peck, A. F.; Uslan, M.

    1990-01-01

    This paper discusses audible traffic signals (ATS) and their use by visually impaired pedestrians in the United States and other countries. Areas of concern are noted, including the types of intersections at which ATS should be installed, the locations of poles and buttons for activating the system, and the specific type of device used.…

  10. The Traffic Signal Acquisition System Based on GPS and SD Card Storage

    Directory of Open Access Journals (Sweden)

    LIU Chang-yuan

    2017-06-01

    Full Text Available In terms of the issues where traffic lights’ positions and traffic status information cannot be managed automatically,in this system,STC12C5A60S2 microcontroller can be used as the master chip in conjunction with the GPS position module,Neo-5Q. The wireless transceiver module,PT2262 /2272 and the portable installing SD card are used to design a new type of real-time information acquisition solution for positions of traffic lights and signal status. And the system can determine the traffic lights’ positions and the process of lighting in a real time. Then the data will be stored in SD card by the SD card module. Furthermore,the equipment can be implemented on existing facilities with a simple circuit. According to the result of experiments,the system contains a convenient storage,works in a real time and it is also advisable to help with the data reading and analysis. Thus, implementation of the system is of great significance to acquire and analyze the traffic status information in recent times.

  11. A study of pedestrian compliance with traffic signals for exclusive and concurrent phasing.

    Science.gov (United States)

    Ivan, John N; McKernan, Kevin; Zhang, Yaohua; Ravishanker, Nalini; Mamun, Sha A

    2017-01-01

    This paper describes a comparison of pedestrian compliance at traffic signals with two types of pedestrian phasing: concurrent, where both pedestrians and vehicular traffic are directed to move in the same directions at the same time, and exclusive, where pedestrians are directed to move during their own dedicated phase while all vehicular traffic is stopped. Exclusive phasing is usually perceived to be safer, especially by senior and disabled advocacy groups, although these safety benefits depend upon pedestrians waiting for the walk signal. This paper investigates whether or not there are differences between pedestrian compliance at signals with exclusive pedestrian phasing and those with concurrent phasing and whether these differences continue to exist when compliance at exclusive phasing signals is evaluated as if they had concurrent phasing. Pedestrian behavior was observed at 42 signalized intersections in central Connecticut with both concurrent and exclusive pedestrian phasing. Binary regression models were estimated to predict pedestrian compliance as a function of the pedestrian phasing type and other intersection characteristics, such as vehicular and pedestrian volume, crossing distance and speed limit. We found that pedestrian compliance is significantly higher at intersections with concurrent pedestrian phasing than at those with exclusive pedestrian phasing, but this difference is not significant when compliance at exclusive phase intersections is evaluated as if it had concurrent phasing. This suggests that pedestrians treat exclusive phase intersections as though they have concurrent phasing, rendering the safety benefits of exclusive pedestrian phasing elusive. No differences were observed for senior or non-senior pedestrians. Published by Elsevier Ltd.

  12. Air Traffic ControL : FAA Order 7110.65K

    Science.gov (United States)

    1997-07-17

    This order prescribes air traffic control procedures and phraseology for use by : personnel providing air traffic control services. Controllers are required to : be familiar with the provisions of this order that pertain to their operational : respon...

  13. A novel solution for car traffic control based on radiometric microwave devices

    Science.gov (United States)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  14. Microscopic Control Delay Modeling at Signalized Arterials Using Bluetooth Technology

    OpenAIRE

    Rajasekhar, Lakshmi

    2011-01-01

    Real-time control delay estimation is an important performance measure for any intersection to improve the signal timing plans dynamically in real-time and hence improve the overall system performance. Control delay estimates helps to determine the level-of-service (LOS) characteristics of various approaches at an intersection and takes into account deceleration delay, stopped delay and acceleration delay. All kinds of traffic delay calculation especially control delay calculation has always ...

  15. Human performance interfaces in air traffic control.

    Science.gov (United States)

    Chang, Yu-Hern; Yeh, Chung-Hsing

    2010-01-01

    This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.

  16. Towards Signalling Maintenance Scheduling for European Railway Traffic Management System

    DEFF Research Database (Denmark)

    M. Pour, Shahrzad

    signalling system. Therefore, the entire maintenance system needs to change from the previous system to the newest system, and hence, new optimisation techniques need to be established so as to facilitate managers in creating ideal maintenance strategies. The aim of this thesis is to develop new maintenance......The European Railway Traffic Management System (ERTMS) is the newest signalling standard that has been introduced in the railway industry. The aim of ERTMS is to ensure better signalling communication amongst various train systems, and hence, to help in attaining improved connectivity and commuting...... between European countries. In various countries across the world, there is a gradual shift from the current signalling systems to ERTMS. Amongst the European countries, Denmark was the first country to commence a full upgrading of its signalling system to ERTMS. A variety of maintenance requirements...

  17. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila.

    Science.gov (United States)

    Deshpande, Mugdha; Rodal, Avital A

    2016-02-01

    Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. SIMULATION MODELS OF HEAVY TRUCKS TRAFFIC CONTROL WITH ELECTRIC DC DRIVE

    Directory of Open Access Journals (Sweden)

    N. N. Hurski

    2015-01-01

    Full Text Available A model of the straight course of movement of the mobile machine with a traction electric motor DC. Traffic management controller provides a closed classical scheme with feedback. The mathematical model of the electric DC motor with the energy dissipation in the rotor bearings. Design scheme of mobile machines include speed dial controller, traction electric motor, gearbox, transmission and progressively moving mass on the elastic­dissipative wheel. The results of the simulation of the machine in the form of temporary processes of change control signals, voltage and current in the windings of the motor and traction power developed on the wheel.

  19. Cognitive process modelling of controllers in en route air traffic control.

    Science.gov (United States)

    Inoue, Satoru; Furuta, Kazuo; Nakata, Keiichi; Kanno, Taro; Aoyama, Hisae; Brown, Mark

    2012-01-01

    In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes. This research focuses on an experimental study to gain a better understanding of controllers' cognitive processes in air traffic control. We conducted ethnographic observations and then analysed the data to develop a model of controllers' cognitive process. This analysis revealed that strategic routines are applicable to decision making.

  20. Brazilian air traffic controllers exhibit excessive sleepiness.

    Science.gov (United States)

    Ribas, Valdenilson Ribeiro; de Almeida, Cláudia Ângela Vilela; Martins, Hugo André de Lima; Alves, Carlos Frederico de Oliveira; Alves, Marcos José Pinheiro Cândido; Carneiro, Severino Marcos de Oliveira; Ribas, Valéria Ribeiro; de Vasconcelos, Carlos Augusto Carvalho; Sougey, Everton Botelho; de Castro, Raul Manhães

    2011-01-01

    Excessive sleepiness (ES) is an increased tendency to initiate involuntary sleep for naps at inappropriate times. The objective of this study was to assess ES in air traffic controllers (ATCo). 45 flight protection professionals were evaluated, comprising 30 ATCo, subdivided into ATCo with ten or more years in the profession (ATCo≥10, n=15) and ATCo with less than ten years in the profession (ATCoair traffic controllers exhibit excessive sleepiness.

  1. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.

    Science.gov (United States)

    Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F

    2016-01-01

    In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. © 2016 Elsevier B.V. All rights reserved.

  2. A hierarchical framework for air traffic control

    Science.gov (United States)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation

  3. Traffic improvement and transportation pollution control in Xiamen

    Energy Technology Data Exchange (ETDEWEB)

    Dongxing Yuan; Zilin, Wu

    1996-12-31

    in this paper, the urban traffic improvement and transportation control in Xiamen are highlighted. Xiamen is a port city and an economical special zone of China. As the economy grows, the transportation is developing dramatically and becoming the key for further economic development. The air quality is threatened by the rapid growth of the vehicles in the city. The most urgent task in improving urban traffic is to establish a sound traffic system. The municipal government takes great effort to improve the traffic condition, as well as to reduce green house gases and protect air environment. Some management and technical measures are carried out. Those management measures are mainly as follows: (1) systematic planning of the city arrangement and city functional division, and integrated planning of the urban roads system, (2) putting great emphasis on tail gas monitoring and management, and (3) establishing optimized utilization of motor vehicles. Those included in the main technical measures are (1) making the roads clear, (2) enlarging traffic capacity, and (3) developing the public transport. The most urgent task in improving urban traffic is to establish a sound traffic system. The city municipal government and Transportation Management Bureau plan to make a series of reforms to improve the urban traffic condition, such as building high quality road around the city, reducing the number of one way roads and replacing gasoline buses with electric buses. An optimized traffic system of Xiamen, taking public transport as the main means, is the key to meet the needs of both traffic improvement and urban transportation pollution control.

  4. Synaptic membrane rafts: traffic lights for local neurotrophin signaling?

    Science.gov (United States)

    Zonta, Barbara; Minichiello, Liliana

    2013-10-18

    Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signaling, plasticity, and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signaling. The tyrosine kinase neurotrophin receptors (Trk) and the low-affinity p75 neurotrophin receptor (p75(NTR)) are enriched in neuronal lipid rafts together with the intermediates of downstream signaling pathways, suggesting a possible role of rafts in neurotrophin signaling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  5. Synaptic membrane rafts: traffic lights for local neurotrophin signalling?

    Directory of Open Access Journals (Sweden)

    Barbara eZonta

    2013-10-01

    Full Text Available Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signalling, plasticity and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signalling. The tyrosine kinase neurotrophin receptors (Trk and the low-affinity p75 neurotrophin receptor (p75NTR are enriched in neuronal lipid rafts together with the intermediates of downstream signalling pathways, suggesting a possible role of rafts in neurotrophin signalling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  6. Traffic signal design and simulation for vulnerable road users safety and bus preemption

    International Nuclear Information System (INIS)

    Lo, Shih-Ching; Huang, Hsieh-Chu

    2015-01-01

    Mostly, pedestrian car accidents occurred at a signalized interaction is because pedestrians cannot across the intersection safely within the green light. From the viewpoint of pedestrian, there might have two reasons. The first one is pedestrians cannot speed up to across the intersection, such as the elders. The other reason is pedestrians do not sense that the signal phase is going to change and their right-of-way is going to be lost. Developing signal logic to protect pedestrian, who is crossing an intersection is the first purpose of this study. In addition, to improve the reliability and reduce delay of public transportation service is the second purpose. Therefore, bus preemption is also considered in the designed signal logic. In this study, the traffic data of the intersection of Chong-Qing North Road and Min-Zu West Road, Taipei, Taiwan, is employed to calibrate and validate the signal logic by simulation. VISSIM 5.20, which is a microscopic traffic simulation software, is employed to simulate the signal logic. From the simulated results, the signal logic presented in this study can protect pedestrians crossing the intersection successfully. The design of bus preemption can reduce the average delay. However, the pedestrian safety and bus preemption signal will influence the average delay of cars largely. Thus, whether applying the pedestrian safety and bus preemption signal logic to an intersection or not should be evaluated carefully

  7. Traffic signal design and simulation for vulnerable road users safety and bus preemption

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Shih-Ching; Huang, Hsieh-Chu [Department of Transportation Technology and Logistics Management, Chung Hua University, No. 707, Sec. 2, WuFu Rd., Hsinchu, 300, Taiwan (China)

    2015-01-22

    Mostly, pedestrian car accidents occurred at a signalized interaction is because pedestrians cannot across the intersection safely within the green light. From the viewpoint of pedestrian, there might have two reasons. The first one is pedestrians cannot speed up to across the intersection, such as the elders. The other reason is pedestrians do not sense that the signal phase is going to change and their right-of-way is going to be lost. Developing signal logic to protect pedestrian, who is crossing an intersection is the first purpose of this study. In addition, to improve the reliability and reduce delay of public transportation service is the second purpose. Therefore, bus preemption is also considered in the designed signal logic. In this study, the traffic data of the intersection of Chong-Qing North Road and Min-Zu West Road, Taipei, Taiwan, is employed to calibrate and validate the signal logic by simulation. VISSIM 5.20, which is a microscopic traffic simulation software, is employed to simulate the signal logic. From the simulated results, the signal logic presented in this study can protect pedestrians crossing the intersection successfully. The design of bus preemption can reduce the average delay. However, the pedestrian safety and bus preemption signal will influence the average delay of cars largely. Thus, whether applying the pedestrian safety and bus preemption signal logic to an intersection or not should be evaluated carefully.

  8. Signal optimization in urban transport: A totally asymmetric simple exclusion process with traffic lights.

    Science.gov (United States)

    Arita, Chikashi; Foulaadvand, M Ebrahim; Santen, Ludger

    2017-03-01

    We consider the exclusion process on a ring with time-dependent defective bonds at which the hopping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore basic properties of the system, in particular dependence of the vehicular flow on the parameters of signalization as well as the system size and the car density. We investigate various types of the spatial distribution of the vehicular density, and show existence of a shock profile. We also measure waiting time behind traffic lights, and examine its relationship with the traffic flow.

  9. Measurement of Temporal Awareness in Air Traffic Control

    Science.gov (United States)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  10. Intersection signal control multi-objective optimization based on genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhanhong Zhou

    2014-04-01

    Full Text Available A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at an intersection. The optimization method combined the Paramics microscopic traffic simulation software, Comprehensive Modal Emissions Model (CMEM, and genetic algorithm. An intersection in Haizhu District, Guangzhou, was taken for a case study. The result of the case study shows the optimal timing scheme obtained from this method is better than the Webster timing scheme.

  11. Multiagent reinforcement learning for urban traffic control using coordination graphs

    NARCIS (Netherlands)

    Kuyer, L.; Whiteson, S.; Bakker, B.; Vlassis, N.

    2008-01-01

    Since traffic jams are ubiquitous in the modern world, optimizing the behavior of traffic lights for efficient traffic flow is a critically important goal. Though most current traffic lights use simple heuristic protocols, more efficient controllers can be discovered automatically via multiagent

  12. Road Artery Traffic Light Optimization with Use of the Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Rok Marsetič

    2014-04-01

    Full Text Available The basic principle of optimal traffic control is the appropriate real-time response to dynamic traffic flow changes. Signal plan efficiency depends on a large number of input parameters. An actuated signal system can adjust very well to traffic conditions, but cannot fully adjust to stochastic traffic volume oscillation. Due to the complexity of the problem analytical methods are not applicable for use in real time, therefore the purpose of this paper is to introduce heuristic method suitable for traffic light optimization in real time. With the evolution of artificial intelligence new possibilities for solving complex problems have been introduced. The goal of this paper is to demonstrate that the use of the Q learning algorithm for traffic lights optimization is suitable. The Q learning algorithm was verified on a road artery with three intersections. For estimation of the effectiveness and efficiency of the proposed algorithm comparison with an actuated signal plan was carried out. The results (average delay per vehicle and the number of vehicles that left road network show that Q learning algorithm outperforms the actuated signal controllers. The proposed algorithm converges to the minimal delay per vehicle regardless of the stochastic nature of traffic. In this research the impact of the model parameters (learning rate, exploration rate, influence of communication between agents and reward type on algorithm effectiveness were analysed as well.

  13. Road Impedance Model Study under the Control of Intersection Signal

    Directory of Open Access Journals (Sweden)

    Yunlin Luo

    2015-01-01

    Full Text Available Road traffic impedance model is a difficult and critical point in urban traffic assignment and route guidance. The paper takes a signalized intersection as the research object. On the basis of traditional traffic wave theory including the implementation of traffic wave model and the analysis of vehicles’ gathering and dissipating, the road traffic impedance model is researched by determining the basic travel time and waiting delay time. Numerical example results have proved that the proposed model in this paper has received better calculation performance compared to existing model, especially in flat hours. The values of mean absolute percentage error (MAPE and mean absolute deviation (MAD are separately reduced by 3.78% and 2.62 s. It shows that the proposed model has feasibility and availability in road traffic impedance under intersection signal.

  14. Design and Operational Evaluation of the Traffic Management Advisor at the Ft. Worth Air Route Traffic Control Center

    Science.gov (United States)

    Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)

    1997-01-01

    NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.

  15. Evaluating the Effects of Traffic on Driver Stopping and Turn Signal Use at a Stop Sign: A Systematic Replication

    Science.gov (United States)

    Lebbon, Angela R.; Austin, John; Van Houten, Ron; Malenfant, Louis E.

    2007-01-01

    The current analyses of observational data found that oncoming traffic substantially affected driver stopping patterns and turn signal use at the target stop sign. The percentage of legal stops and turn signal use by drivers in the presence and absence of traffic was analyzed using a multi-element design. The results showed that legal stops were…

  16. Decentralized Traffic Management: A Synchronization-Based Intersection Control --- Extended Version

    OpenAIRE

    Tlig , Mohamed; Buffet , Olivier; Simonin , Olivier

    2014-01-01

    Controlling the vehicle traffic in large networks remains an important challenge in urban environments and transportation systems. Autonomous vehicles are today considered as a promising approach to deal with traffic control. In this paper, we propose a synchronization-based intersection control mechanism to allow the autonomous vehicle-agents to cross without stopping, i.e., in order to avoid congestions (delays) and energy loss. We decentralize the problem by managing the traffic of each in...

  17. Development of Traffic Accidents Control System

    Directory of Open Access Journals (Sweden)

    Andrey Borisovich Nikolaev

    2015-05-01

    Full Text Available Proposed a structure of traffic accidents control system included three main parts: pre-processing, decision support and monitoring. For decision support systems we propose a method that allows to make decisions on the basis of fuzzy situational management. The advantage of the method: it allows to formalize a set of typical traffic situations, using the theory of fuzzy sets and to carry out selection of the desired management action.

  18. Estimation of red-light running frequency using high-resolution traffic and signal data.

    Science.gov (United States)

    Chen, Peng; Yu, Guizhen; Wu, Xinkai; Ren, Yilong; Li, Yueguang

    2017-05-01

    Red-light-running (RLR) emerges as a major cause that may lead to intersection-related crashes and endanger intersection safety. To reduce RLR violations, it's critical to identify the influential factors associated with RLR and estimate RLR frequency. Without resorting to video camera recordings, this study investigates this important issue by utilizing high-resolution traffic and signal event data collected from loop detectors at five intersections on Trunk Highway 55, Minneapolis, MN. First, a simple method is proposed to identify RLR by fully utilizing the information obtained from stop bar detectors, downstream entrance detectors and advance detectors. Using 12 months of event data, a total of 6550 RLR cases were identified. According to a definition of RLR frequency as the conditional probability of RLR on a certain traffic or signal condition (veh/1000veh), the relationships between RLR frequency and some influential factors including arriving time at advance detector, approaching speed, headway, gap to the preceding vehicle on adjacent lane, cycle length, geometric characteristics and even snowing weather were empirically investigated. Statistical analysis shows good agreement with the traffic engineering practice, e.g., RLR is most likely to occur on weekdays during peak periods under large traffic demands and longer signal cycles, and a total of 95.24% RLR events occurred within the first 1.5s after the onset of red phase. The findings confirmed that vehicles tend to run the red light when they are close to intersection during phase transition, and the vehicles following the leading vehicle with short headways also likely run the red light. Last, a simplified nonlinear regression model is proposed to estimate RLR frequency based on the data from advance detector. The study is expected to helpbetter understand RLR occurrence and further contribute to the future improvement of intersection safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. ATC-lab(Advanced): an air traffic control simulator with realism and control.

    Science.gov (United States)

    Fothergill, Selina; Loft, Shayne; Neal, Andrew

    2009-02-01

    ATC-lab(Advanced) is a new, publicly available air traffic control (ATC) simulation package that provides both realism and experimental control. ATC-lab(Advanced) simulations are realistic to the extent that the display features (including aircraft performance) and the manner in which participants interact with the system are similar to those used in an operational environment. Experimental control allows researchers to standardize air traffic scenarios, control levels of realism, and isolate specific ATC tasks. Importantly, ATC-lab(Advanced) also provides the programming control required to cost effectively adapt simulations to serve different research purposes without the need for technical support. In addition, ATC-lab(Advanced) includes a package for training participants and mathematical spreadsheets for designing air traffic events. Preliminary studies have demonstrated that ATC-lab(Advanced) is a flexible tool for applied and basic research.

  20. Dynamic Traffic Congestion Simulation and Dissipation Control Based on Traffic Flow Theory Model and Neural Network Data Calibration Algorithm

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-01-01

    Full Text Available Traffic congestion is a common problem in many countries, especially in big cities. At present, China’s urban road traffic accidents occur frequently, the occurrence frequency is high, the accident causes traffic congestion, and accidents cause traffic congestion and vice versa. The occurrence of traffic accidents usually leads to the reduction of road traffic capacity and the formation of traffic bottlenecks, causing the traffic congestion. In this paper, the formation and propagation of traffic congestion are simulated by using the improved medium traffic model, and the control strategy of congestion dissipation is studied. From the point of view of quantitative traffic congestion, the paper provides the fact that the simulation platform of urban traffic integration is constructed, and a feasible data analysis, learning, and parameter calibration method based on RBF neural network is proposed, which is used to determine the corresponding decision support system. The simulation results prove that the control strategy proposed in this paper is effective and feasible. According to the temporal and spatial evolution of the paper, we can see that the network has been improved on the whole.

  1. Comparision by Simulation of Different Approaches to the Urban Traffic Control

    Czech Academy of Sciences Publication Activity Database

    Přikryl, Jan; Tichý, T.; Bělinová, Z.; Kapitán, J.

    2012-01-01

    Roč. 5, č. 4 (2012), s. 26-30 ISSN 1899-8208 R&D Projects: GA TA ČR TA01030603 Institutional support: RVO:67985556 Keywords : traffic * ITS * telematics * urban traffic control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/prikryl-comparision by simulation of different approaches to the urban traffic control.pdf

  2. Traffic noise control of a city

    International Nuclear Information System (INIS)

    Ahmed, A.; Khan, J.A.; Lakhani, A.H.; Hyder, F.G.; Shamsuddin, S.A.

    2003-01-01

    Long exposure to noise due to traffic affects our health and comfort. A noise level up to 45 dB is acceptable for the buildings in the city. A traffic noise study was conducted in Karachi at places of high traffic flow. The noise level was between 75-85 dB. Residential and commercial buildings had sound level up to 79 dB. Reducing vehicle noise by using proper muffler and acoustic treatment should first control traffic noise. Then noise can be reduced by 10-15 dB by constructing barriers of wood or concrete along roadside. Barrier height for sound attenuation can be found from Fresnel Number. The barrier reduces noise better if width at the top is increased and an inward bend of 60 degree is placed at the top. Where feasible a 4-5 meter high concrete barrier is recommended otherwise the nearby buildings from the road should be insulated and acoustically treated. (author)

  3. Breakdowns in Coordination Between Air Traffic Controllers

    Science.gov (United States)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  4. Engineering Social Justice into Traffic Control for Self-Driving Vehicles?

    Science.gov (United States)

    Mladenovic, Milos N; McPherson, Tristram

    2016-08-01

    The convergence of computing, sensing, and communication technology will soon permit large-scale deployment of self-driving vehicles. This will in turn permit a radical transformation of traffic control technology. This paper makes a case for the importance of addressing questions of social justice in this transformation, and sketches a preliminary framework for doing so. We explain how new forms of traffic control technology have potential implications for several dimensions of social justice, including safety, sustainability, privacy, efficiency, and equal access. Our central focus is on efficiency and equal access as desiderata for traffic control design. We explain the limitations of conventional traffic control in meeting these desiderata, and sketch a preliminary vision for a next-generation traffic control tailored to address better the demands of social justice. One component of this vision is cooperative, hierarchically distributed self-organization among vehicles. Another component of this vision is a priority system enabling selection of priority levels by the user for each vehicle trip in the network, based on the supporting structure of non-monetary credits.

  5. Ecological Interface Design : Sensor Failure Diagnosis in Air Traffic Control

    NARCIS (Netherlands)

    Bijsterbosch, V.A.; Borst, C.; Mulder, M.; van Paassen, M.M.

    2016-01-01

    Future air traffic control will have to rely on more advanced automation in order to support controllers in their job of safely controlling increased traffic volumes. A prerequisite for the success of such automation is that the underlying data driving it is reliable. Current technology, however,

  6. Efficient Algorithms for Network-Wide Road Traffic Control

    NARCIS (Netherlands)

    van de Weg, G.S.

    2017-01-01

    Controlling road traffic networks is a complex problem. One of the difficulties is the coordination of actuators, such as traffic lights, variables speed limits, ramp metering and route guidance, with the aim to improve the network performance over a near-future time horizon. This dissertation

  7. Freeway Traffic Density and On-Ramp Queue Control via ILC Approach

    Directory of Open Access Journals (Sweden)

    Ronghu Chi

    2014-01-01

    Full Text Available A new queue length information fused iterative learning control approach (QLIF-ILC is presented for freeway traffic ramp metering to achieve a better performance by utilizing the error information of the on-ramp queue length. The QLIF-ILC consists of two parts, where the iterative feedforward part updates the control input signal by learning from the past control data in previous trials, and the current feedback part utilizes the tracking error of the current learning iteration to stabilize the controlled plant. These two parts are combined in a complementary manner to enhance the robustness of the proposed QLIF-ILC. A systematic approach is developed to analyze the convergence and robustness of the proposed learning scheme. The simulation results are further given to demonstrate the effectiveness of the proposed QLIF-ILC.

  8. design and implementation of a density-based traffic light control

    African Journals Online (AJOL)

    HOD

    sensors, a new traffic light control system was developed to ease the flow of traffic at a particular ... of traffic on each lane at the intersection triggered when a vehicle comes between the ... change the sequence back to the normal sequence.

  9. Basic Investigations of Dynamic Travel Time Estimation Model for Traffic Signals Control Using Information from Optical Beacons

    Science.gov (United States)

    Okutani, Iwao; Mitsui, Tatsuro; Nakada, Yusuke

    In this paper put forward are neuron-type models, i.e., neural network model, wavelet neuron model and three layered wavelet neuron model(WV3), for estimating traveling time between signalized intersections in order to facilitate adaptive setting of traffic signal parameters such as green time and offset. Model validation tests using simulated data reveal that compared to other models, WV3 model works very fast in learning process and can produce more accurate estimates of travel time. Also, it is exhibited that up-link information obtainable from optical beacons, i.e., travel time observed during the former cycle time in this case, makes a crucial input variable to the models in that there isn't any substantial difference between the change of estimated and simulated travel time with the change of green time or offset when up-link information is employed as input while there appears big discrepancy between them when not employed.

  10. Occupant traffic estimation through structural vibration sensing

    Science.gov (United States)

    Pan, Shijia; Mirshekari, Mostafa; Zhang, Pei; Noh, Hae Young

    2016-04-01

    The number of people passing through different indoor areas is useful in various smart structure applications, including occupancy-based building energy/space management, marketing research, security, etc. Existing approaches to estimate occupant traffic include vision-, sound-, and radio-based (mobile) sensing methods, which have placement limitations (e.g., requirement of line-of-sight, quiet environment, carrying a device all the time). Such limitations make these direct sensing approaches difficult to deploy and maintain. An indirect approach using geophones to measure floor vibration induced by footsteps can be utilized. However, the main challenge lies in distinguishing multiple simultaneous walkers by developing features that can effectively represent the number of mixed signals and characterize the selected features under different traffic conditions. This paper presents a method to monitor multiple persons. Once the vibration signals are obtained, features are extracted to describe the overlapping vibration signals induced by multiple footsteps, which are used for occupancy traffic estimation. In particular, we focus on analysis of the efficiency and limitations of the four selected key features when used for estimating various traffic conditions. We characterize these features with signals collected from controlled impulse load tests as well as from multiple people walking through a real-world sensing area. In our experiments, the system achieves the mean estimation error of +/-0.2 people for different occupant traffic conditions (from one to four) using k-nearest neighbor classifier.

  11. Traffic Modelling for Moving-Block Train Control System

    International Nuclear Information System (INIS)

    Tang Tao; Li Keping

    2007-01-01

    This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.

  12. Optimal Control of Hybrid Systems in Air Traffic Applications

    Science.gov (United States)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  13. Traffic

    International Nuclear Information System (INIS)

    Lichtblau, G.

    2001-01-01

    This chapter deals with passenger and freight traffic, public and private transportation, traffic related environmental impacts, future developments, traffic indicators, regional traffic planning, health costs due to road traffic related air pollution, noise pollution, measures and regulations for traffic control and fuels for traffic. In particular energy consumption, energy efficiency, pollutant emissions ( CO 2 , SO 2 , NO x , HC, CO, N 2 O, NH 3 and particulates) and environmental effects of the different types of traffic and different types of fuels are compared and studied. Legal regulations and measures for an effective traffic control are discussed. (a.n.)

  14. Estimation Trajectory of the Low-Frequency Floating Car Considering the Traffic Control

    Directory of Open Access Journals (Sweden)

    Zhijian Wang

    2013-01-01

    Full Text Available Floating car equipped with GPS to detect traffic flow has been widely used in ITS research and applications. The trajectory estimation is the most critical and complex part in the floating vehicle information processing system. However, the trajectory estimation would be more difficult when using the low-frequency data sampling because of the high communication cost and the numerous data. Specifically, the ordinary algorithm cannot determine the specific vehicle paths with two anchor points across multiple intersections. Considering the accuracy in map matching, this paper used a delay matching algorithm and studied the trajectory estimation algorithm focusing on the issue of existence of a small road network between two anchor points. A method considering the three multiobjective factors of signal control and driving distance and number of intersections was developed. Firstly, an optimal solution set was acquired according to multiobjective decision theory and Pareto optimal principles in game theory. Then, the optimal solution set was evaluated synthetically based on the fuzzy set theory. Finally, the candidate trajectory which is the core evaluation factor was identified as the best possible travel path. The algorithm was validated by using the real traffic data in Wangjing area of Beijing. The results showed that the algorithm can get a better trajectory estimation and provide more traffic information to traffic management department.

  15. Traffic Route Modelling and Assignment with Intelligent Transport System

    Directory of Open Access Journals (Sweden)

    Kunicina Nadezhda

    2014-12-01

    Full Text Available The development of signal transmitting environment for multimodal traffic control will enhance the integration of emergency and specialized transport routing tools in usual traffic control paradigms - it is one of the opportunities offered by modern intelligent traffic control systems. The improvement of effective electric power use in public transport system is an advantage of Intelligent Transport System (ITS. The research is connected with the improvement of on-line traffic control and adaptation of special traffic lighting alternatives by ITS. The assignment of the nearest appropriate transport will be done by passenger request, but unlike information system, the transport planning is done on demand. The task can be solved with the help of modern technical methods and equipment, as well as by applying control paradigms of the distributed systems. The problem is solved with the help of calculations hyper-graph and scheduling theory. The goal of the research is to develop methods, which support scheduling of the emergency transport, using high performance computing.

  16. Communication efficiency and congestion of signal traffic in large-scale brain networks.

    Science.gov (United States)

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.

  17. Road crossing behavior under traffic light conflict: Modulating effects of green light duration and signal congruency.

    Science.gov (United States)

    Lange, Florian; Haiduk, Michael; Boos, Moritz; Tinschert, Peter; Schwarze, Anke; Eggert, Frank

    2016-10-01

    A large number of pedestrians and cyclists regularly ignore the traffic lights to cross the road illegally. In a recent analysis, illegal road crossing behavior has been shown to be enhanced in the presence of incongruent stimulus configurations. Pedestrians and cyclists are more likely to cross against a red light when exposed to an irrelevant conflicting green light. Here, we present experimental and observational data on the factors moderating the risk associated with incongruent traffic lights. In an observational study, we demonstrated that the conflict-related increase in illegal crossing rates is reduced when pedestrian and cyclist green light periods are long. In a laboratory experiment, we manipulated the color of the irrelevant signals to expose participants to different degrees of incongruency. Results revealed that individuals' performance gradually varied as a function of incongruency, suggesting that the negative impact of a conflicting green light can be reduced by slightly adjusting its color. Our findings highlight that the observation of real-world behavior at intersections and the experimental analysis of psychological processes under controlled laboratory conditions can complement each other in identifying risk factors of risky road crossing behavior. Based on this combination, our study elaborates on promising measures to improve safety at signalized intersections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Robust, Optimal, Predictive, and Integrated Road Traffic Control : Research proposal

    NARCIS (Netherlands)

    Van de Weg, G.S.; Hegyi, A.; Hoogendoorn, S.P.

    2014-01-01

    The development of control strategies for traffic lights, ramp metering installations, and variable speed limits to improve the throughput of road traffic networks can contribute to a more efficient use of road networks. In this project, a hierarchical controller will be developed for the

  19. An Optimization Model of Multi-Intersection Signal Control for Trunk Road under Collaborative Information

    Directory of Open Access Journals (Sweden)

    Xun Li

    2017-01-01

    Full Text Available We proposed a signal control optimization model for urban main trunk line intersections. Four-phase intersection was analyzed and modeled based on the Cell Transmission Model (CTM. CTM and signal control model in our study had both been improved for multi-intersections by three-phase theory and information-exchanging. To achieve a real-time application, an improved genetic algorithm (GA was proposed finally, the DISCO traffic simulation software was used for numerical simulation experiment, and comparisons with the standard GA and CTM were reported in this paper. Experimental results indicate that our searching time is less than that of SGA by 38%, and our method needs only 1/3 iteration time of SGA. According to our DISCO traffic simulation processing, compared with SGA, if the input traffic flow is changed from free phase to synchronized phase, for example, less than 900 vel/h, the delay time can reduce to 87.99% by our method, and the minimum delay time is 77.76% of existing method. Furthermore, if input traffic volume is increased to 1200 vel/h or more at the synchronized phase, the summary and minimum values of average delay time are reduced to 81.16% and 75.83%, respectively, and the average delay time is reduced to 17.72 seconds.

  20. Synchronized flow in oversaturated city traffic.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  1. Optimization of traffic light control system of an intersection using ...

    African Journals Online (AJOL)

    This paper considers an automated static road traffic control system of an intersection for the purpose of minimizing the effects of traffic jam and hence its attendant consequences such as prolonged waiting time, emission of toxic hydrocarbons from automobiles, etc. Using real-time road traffic data, a dynamic round-robin ...

  2. Learning-based traffic signal control algorithms with neighborhood information sharing: An application for sustainable mobility

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, H. M. Abdul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhu, Feng [Purdue University, West Lafayette, IN (United States). Lyles School of Civil Engineering; Ukkusuri, Satish V. [Purdue University, West Lafayette, IN (United States). Lyles School of Civil Engineering

    2017-10-04

    Here, this research applies R-Markov Average Reward Technique based reinforcement learning (RL) algorithm, namely RMART, for vehicular signal control problem leveraging information sharing among signal controllers in connected vehicle environment. We implemented the algorithm in a network of 18 signalized intersections and compare the performance of RMART with fixed, adaptive, and variants of the RL schemes. Results show significant improvement in system performance for RMART algorithm with information sharing over both traditional fixed signal timing plans and real time adaptive control schemes. Additionally, the comparison with reinforcement learning algorithms including Q learning and SARSA indicate that RMART performs better at higher congestion levels. Further, a multi-reward structure is proposed that dynamically adjusts the reward function with varying congestion states at the intersection. Finally, the results from test networks show significant reduction in emissions (CO, CO2, NOx, VOC, PM10) when RL algorithms are implemented compared to fixed signal timings and adaptive schemes.

  3. State-Space Equations and the First-Phase Algorithm for Signal Control of Single Intersections

    Institute of Scientific and Technical Information of China (English)

    LI Jinyuan; PAN Xin; WANG Xiqin

    2007-01-01

    State-space equations were applied to formulate the queuing and delay of traffic at a single intersection in this paper. The signal control of a single intersection was then modeled as a discrete-time optimal control problem, with consideration of the constraints of stream conflicts, saturation flow rate, minimum green time, and maximum green time. The problem cannot be solved directly due to the nonlinear constraints.However, the results of qualitative analysis were used to develop a first-phase signal control algorithm. Simulation results show that the algorithm substantially reduces the total delay compared to fixed-time control.

  4. Multi-Agent Based Microscopic Simulation Modeling for Urban Traffic Flow

    Directory of Open Access Journals (Sweden)

    Xianyan Kuang

    2014-10-01

    Full Text Available Traffic simulation plays an important role in the evaluation of traffic decisions. The movement of vehicles essentially is the operating process of drivers, in order to reproduce the urban traffic flow from the micro-aspect on computer, this paper establishes an urban traffic flow microscopic simulation system (UTFSim based on multi-agent. The system is seen as an intelligent virtual environment system (IVES, and the four-layer structure of it is built. The road agent, vehicle agent and signal agent are modeled. The concept of driving trajectory which is divided into LDT (Lane Driving Trajectory and VDDT (Vehicle Dynamic Driving Trajectory is introduced. The “Link-Node” road network model is improved. The driving behaviors including free driving, following driving, lane changing, slowing down, vehicle stop, etc. are analyzed. The results of the signal control experiments utilizing the UTFSim developed in the platform of Visual Studio. NET indicates that it plays a good performance and can be used in the evaluation of traffic management and control.

  5. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    Science.gov (United States)

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  6. LaGuardia air traffic control tower.

    Science.gov (United States)

    2011-01-01

    To celebrate FAA and its LaGuardia Airport employees past, : present, and future this booklet outlines the airports history and accomplishments and includes copies of some of the photographs in the : air traffic control towers history g...

  7. The Conception Approach to the Traffic Control in Czech Cities - Examples from Prague

    Science.gov (United States)

    Tichý, Tomáš; Krajčír, Dušan

    Modern and economic development of contemporary towns is without question highly dependent upon traffic infrastructure progress. Automobile transport intensity is dramatically rising in large towns and other Czech and European cities. At the same time number of traffic congestions and accidents is increasing, standing times are becoming longer and ecological stress is also escalated. To solve this situation seems to be the most effective solution to design intelligent traffic light intersection control system, variable message signs, preference of public transportation, road line traffic control and next telematics subsystems. This control system and subsystems should improve permeability of traffic road network with a respect for all demands on recent trends of traffic development in towns and regions.

  8. The Preventive Signaling Maintenance Crew Scheduling Problem for European Railway Traffic Management system (ERTMS)

    DEFF Research Database (Denmark)

    M. Pour, Shahrzad; Stidsen, Thomas Jacob Riis; Rasmussen, Kourosh Marjani

    , the western part of Denmark. This case is particularly interesting, since the entire railway signalling system is currently being upgraded to the new European Railway Traffic Management System (ERTMS) standard. The new signals need continuous maintenance and in this article we plan the distribution of crew......A railway system is a large and complex infrastructure, which requires continuous maintenance in order to function correctly. Proper maintenance is critical but can also be costly. In this paper we consider the practical case of planning the preventive maintenance of railway signals in Jutland...

  9. Effects of Long-Term Speech-in-Noise Training in Air Traffic Controllers and High Frequency Suppression. A Control Group Study.

    Science.gov (United States)

    Pérez Zaballos, María Teresa; Ramos de Miguel, Ángel; Pérez Plasencia, Daniel; Zaballos González, María Luisa; Ramos Macías, Ángel

    2015-12-01

    To evaluate 1) if air traffic controllers (ATC) perform better than non-air traffic controllers in an open-set speech-in-noise test because of their experience with radio communications, and 2) if high-frequency information (>8000 Hz) substantially improves speech-in-noise perception across populations. The control group comprised 28 normal-hearing subjects, and the target group comprised 48 ATCs aged between 19 and 55 years who were native Spanish speakers. The hearing -in-noise abilities of the two groups were characterized under two signal conditions: 1) speech tokens and white noise sampled at 44.1 kHz (unfiltered condition) and 2) speech tokens plus white noise, each passed through a 4th order Butterworth filter with 70 and 8000 Hz low and high cutoffs (filtered condition). These tests were performed at signal-to-noise ratios of +5, 0, and -5-dB SNR. The ATCs outperformed the control group in all conditions. The differences were statistically significant in all cases, and the largest difference was observed under the most difficult conditions (-5 dB SNR). Overall, scores were higher when high-frequency components were not suppressed for both groups, although statistically significant differences were not observed for the control group at 0 dB SNR. The results indicate that ATCs are more capable of identifying speech in noise. This may be due to the effect of their training. On the other hand, performance seems to decrease when the high frequency components of speech are removed, regardless of training.

  10. Physics of traffic gridlock in a city.

    Science.gov (United States)

    Kerner, Boris S

    2011-10-01

    Based on simulations of stochastic three-phase and two-phase traffic flow models, we reveal that at a signalized city intersection under small link inflow rates at which a vehicle queue developed during the red phase of the light signal dissolves fully during the green phase, i.e., no traffic gridlock should be expected, nevertheless, spontaneous traffic breakdown with subsequent city gridlock occurs with some probability after a random time delay. In most cases, this traffic breakdown is initiated by a phase transition from free flow to a synchronized flow occurring upstream of the queue at the light signal. The probability of traffic breakdown at the light signal is an increasing function of the link inflow rate and duration of the red phase of the light signal.

  11. Traffic control on a railway crossing with elements of utility theory

    Directory of Open Access Journals (Sweden)

    Abramova L.S.

    2016-08-01

    Full Text Available An approach to the management of vehicles at a railway crossing in order to improve the road safety is considered. To do this, it is suggested to introduce the dynamic motion control modes on the road, which consist in reducing the speed at a certain distance from the railway crossing and depends on its condition. The value of the recommended speed is displayed on the managed road signs and is calculated in real-time traffic controller at the railway crossing control point. The mark location is determined based on traffic intensity equalization that affects both the traffic intensity of the railway crossing and the road section on the approach to it. To analyze such events directed to improve the traffic on level crossings it is suggested to use the elements of utility theory to further develop the traffic control algorithm. For this purpose there was built a decision tree for the existing conditions at the railway crossing and at the introduction of the dynamic management, which indicates the result of decision taken by the change in the selected criteria of efficiency of traffic management at the railway crossing. Such an approach can reduce the number of road accidents and to increase the capacity of vehicular traffic at a particular road section to the technical means of attracting the driver's attention to the complex road by forced reduction in speed not only before the railway crossing, but also in at the approach to it.

  12. Controlling traffic jams by time modulating the safety distance

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Gorria, C.; Berkemer, R.

    2013-01-01

    The possibility of controlling traffic dynamics by applying high-frequency time modulation of traffic flow parameters is studied. It is shown that the region of the car density where the uniform (free) flow is unstable changes in the presence of time modulation compared with the unmodulated case....

  13. Traffic noise and vehicle movement at a controlled intersection

    NARCIS (Netherlands)

    Salomons, E.M.

    2014-01-01

    Traffic noise at an intersection controlled by traffic lights shows noise level variations due to the alternating green and red lights for the different trafficstreams. Noise peaks caused by automobiles pulling up or passing by at highspeed may be quite annoying for people living near the

  14. In-Trail Procedure Air Traffic Control Procedures Validation Simulation Study

    Science.gov (United States)

    Chartrand, Ryan C.; Hewitt, Katrin P.; Sweeney, Peter B.; Graff, Thomas J.; Jones, Kenneth M.

    2012-01-01

    In August 2007, Airservices Australia (Airservices) and the United States National Aeronautics and Space Administration (NASA) conducted a validation experiment of the air traffic control (ATC) procedures associated with the Automatic Dependant Surveillance-Broadcast (ADS-B) In-Trail Procedure (ITP). ITP is an Airborne Traffic Situation Awareness (ATSA) application designed for near-term use in procedural airspace in which ADS-B data are used to facilitate climb and descent maneuvers. NASA and Airservices conducted the experiment in Airservices simulator in Melbourne, Australia. Twelve current operational air traffic controllers participated in the experiment, which identified aspects of the ITP that could be improved (mainly in the communication and controller approval process). Results showed that controllers viewed the ITP as valid and acceptable. This paper describes the experiment design and results.

  15. The Use of the Dynamic Solution Space to Assess Air Traffic Controller Workload

    NARCIS (Netherlands)

    D'Engelbronner, J.G.; Mulder, M.; Van Paassen, M.M.; De Stigter, S.; Huisman, H.

    2010-01-01

    Air traffic capacity is mainly bound by air traffic controller workload. In order to effectively find solutions for this problem, off-line pre-experimental workload assessment methods are desirable. In order to better understand the workload associated with air traffic control, previous research

  16. A Signal Coordination Control Based on Traversing Empty between Mid-Block Street Crossing and Intersection

    Directory of Open Access Journals (Sweden)

    Changjiang Zheng

    2012-01-01

    Full Text Available To solve the problem in pedestrian Mid-Block street crossing, the method of signal coordination control between mid-block street crossing and intersection is researched in this paper. The paper proposes to use “distance-flow rate-time” graph as the tool for building coordination control system model which is for different situations of traffic control. Through alternating the linear optimization model, the system outputs the distribution of signal timing and system operational factors (delays in vehicles and mid-block street crossing. Finally, taking one section on the Taiping North Road in Nanjing as an example, the signal coordination control is carried out. And the results which are delays in the vehicles and mid-block street crossing are compared to those in the current distribution of signal timing.

  17. Traffic Flow Visualization and Control

    National Research Council Canada - National Science Library

    Larson, Robert

    1999-01-01

    .... Air Force Research Laboratory. It is a video-camera-based, wide-area, traffic surveillance and detection system that provides real-time traffic information to traffic management center operators...

  18. Flight to the future : human factors in air traffic control

    Science.gov (United States)

    1997-01-01

    The nation's air traffic control system is responsible for managing a complex : mixture of air traffic from commercial, general, corporate, and military : aviation. Despite a strong safety record, the system does suffer occasional : serious disruptio...

  19. TASAR Flight Trial 2: Assessment of Air Traffic Controller Acceptability of TASAR Requests

    Science.gov (United States)

    Idris, Husni; Enea, Gabriele

    2016-01-01

    In support of the Flight Trial (FT-2) of NASA's prototype of the Traffic Aware Strategic Aircrew Requests (TASAR) concept, observations were conducted at the air traffic facilities to identify and assess the main factors that affect the acceptability of pilot requests by air traffic controllers. Two observers shadowed air traffic controllers at the Atlanta (ZTL) and Jacksonville (ZJX) air traffic control centers as the test flight pilot made pre-scripted requests to invoke acceptability issues and then they interviewed the observed and other controllers voluntarily. Fifty controllers were interviewed with experience ranging from one to thirty-five years. All interviewed controllers were enthusiastic about the technology and accounting for sector boundaries in pilot requests, particularly if pilots can be made aware of high workload situations. All interviewed controllers accept more than fifty percent of pilot requests; forty percent of them reject less than ten percent of requests. The most common reason for rejecting requests is conflicting with traffic followed by violating letters of agreement (LOAs) and negatively impacting neighboring sector workload, major arrival and departure flows and flow restrictions. Thirty-six requests were made during the test, eight of which were rejected due to: the aircraft already handed off to another sector, violating LOA, opposing traffic, intruding into an active special use airspace (SUA), intruding into another center, weather, and unfamiliarity with the requested waypoint. Nine requests were accepted with delay mostly because the controller needed to locate unfamiliar waypoints or to coordinate with other controllers.

  20. The Effectiveness of Yoga on Spiritual Intelligence in Air Traffic Controllers of Tehran Flight Control Center

    Science.gov (United States)

    Safara, Maryam; Ghasemi, Pejman

    2017-01-01

    The aim of this study was to evaluate the efficacy of yoga on spiritual intelligence in air traffic controllers in Tehran flight control center. This was a quasi-experimental research and the study population includes all air traffic controllers in Tehran flight control center. The sample consisted of 40 people of the study population that were…

  1. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    Science.gov (United States)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  2. Automated mixed traffic vehicle control and scheduling study

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  3. A sensemaking perspective on framing the mental picture of air traffic controllers.

    Science.gov (United States)

    Malakis, Stathis; Kontogiannis, Tom

    2013-03-01

    It has long been recognized that controller strategies are based on a 'mental picture' or representation of traffic situations. Earlier studies indicated that controllers tend to maintain a selective representation of traffic flows based on a few salient traffic features that point out to interesting events (e.g., potential conflicts). A field study is presented in this paper that examines salient features or 'knowledge variables' that constitute the building blocks of controller mental pictures. Verbal reports from participants, a field experiment and observations of real-life scenarios provided insights into the cognitive processes that shape and reframe the mental pictures of controllers. Several cognitive processes (i.e., problem detection, elaboration, reframing and replanning) have been explored within a particular framework of sensemaking stemming from the data/frame theory (Klein et al., 2007). Cognitive maps, representing standard and non-standard air traffic flows, emerged as an explanatory framework for making sense of traffic patterns and for reframing mental pictures. The data/frame theory proved to be a useful theoretical tool for investigating complex cognitive phenomena. The findings of the study have implications for the design of training curricula and decision support systems in air traffic control systems. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  5. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    International Nuclear Information System (INIS)

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  6. Congestion and flow control in signaling system no. 7: Impacts of intelligent networks and new services

    Science.gov (United States)

    Zepf, Joachim; Rufa, Gerhard

    1994-04-01

    This paper focuses on the transient performance analysis of the congestion and flow control mechanisms in CCITT Signaling System No. 7 (SS7). Special attention is directed to the impacts of the introduction of intelligent services and new applications, e.g., Freephone, credit card services, user-to-user signaling, etc. In particular, we show that signaling traffic characteristics like signaling scenarios or signaling message length as well as end-to-end signaling capabilities have a significant influence on the congestion and flow control and, therefore, on the real-time signaling performance. One important result of our performance studies is that if, e.g., intelligent services are introduced, the SS7 congestion and flow control does not work correctly. To solve this problem, some reinvestigations into these mechanisms would be necessary. Therefore, some approaches, e.g., modification of the Signaling Connection Control Part (SCCP) congestion control, usage of the SCCP relay function, or a redesign of the MTP flow control procedures are discussed in order to guarantee the efficacy of the congestion and flow control mechanisms also in the future.

  7. Reducing Downlink Signaling Traffic in Wireless Systems Using Mobile-Assisted Scheduling

    OpenAIRE

    Moosavi, Reza; Larsson, Erik G.

    2010-01-01

    We present an idea to reduce the part of the downlink signaling traffic in wireless multiple access systems that contains scheduling information. The theoretical basis of the scheme is that the scheduling decisions made by the base station are correlated with the CSI reports from the mobiles. This correlation can be exploited by the source coding scheme that is used to compress the scheduling maps before they are sent to the mobiles. In the proposed scheme, this idea is implemented by letting...

  8. Theoretical Aspects of Erroneous Actions During the Process of Decision Making by Air Traffic Control

    Directory of Open Access Journals (Sweden)

    Andersone Silva

    2017-08-01

    Full Text Available The Theoretical Aspects of Erroneous Actions During the Process of Decision Making by Air Traffic Control evaluates the factors affecting the operational decision-making of a human air traffic controller, interacting in a dynamic environment with the flight crew, surrounding aircraft traffic and environmental conditions of the airspace. This article reviews the challenges of air traffic control in different conditions, ranging from normal and complex to emergency and catastrophic. Workload factors and operating conditions make an impact on air traffic controllers’ decision-making. The proposed model compares various operating conditions within an assumed air traffic control environment subsequently comparing them against a theoretically “perfect” air traffic control system. A mathematical model of flight safety assessment has been proposed for the quantitative assessment of various hazards arising during the process of Air Traffic Control. The model assumes events of various severity and probability ranging from high frequency and low severity up to less likely and catastrophic ones. Certain limitations of the model have been recognised and further improvements for effective hazard evaluation have been suggested.

  9. Control de tráfico vehicular usando ANFIS Vehicular traffic control using ANFIS

    Directory of Open Access Journals (Sweden)

    Luis Fernando Pedraza

    2012-04-01

    Full Text Available Diferentes estrategias para el control del tráfico urbano se han presentado a lo largo del tiempo. Este artículo presenta el diseño de un modelo de tráfico vehicular, el cual examina el tráfico existente en una vía a través de una serie de semáforos. A partir de este modelo se sincronizan los tiempos de duración y de desfase de los semáforos, utilizando para ello el Sistema de Inferencia Difusa Basado en Redes Adaptativas (ANFIS. El modelo es simulado y los resultados se evalúan a nivel macroscópico con el modelo de tiempos fijos, que funciona actualmente en Bogotá-Colombia.Different strategies for urban traffic control have been presented over time. This paper presents the design of a vehicular traffic model, examining the existing traffic through a serie of traffic lights on a road. From this model the times of duration and phase of the traffic lights are synchronized, using the Adaptive Network Based Fuzzy Inference Systems (ANFIS. The model is simulated and the results are evaluated at macroscopic level with the fixed time model, currently operating in Bogota-Colombia.

  10. SIGNAL CONTROLLED JUNCTIONS CALCULATIONS IN TRAFFIC-CAPACITY ASSESSMENT - AIMSUN, OMNITRANS, WEBSTER AND TP 10/2010 RESULTS COMPARISON

    Directory of Open Access Journals (Sweden)

    Ľubomír ČERNICKÝ

    2016-03-01

    Full Text Available Every increase in traffic volume on road network in towns can lead to overcrowding of road network. This results in undesirable external costs such as traffic congestions, which cause high loses in time during transportation, increased fuel consumption and thus higher production of greenhouse gases and noise. This all ultimately reduces the attractiveness of the area. The increase of traffic volume and therefrom derived traffic problems are needed to be solved during traffic-capacity assessment of every larger investment. The software can help to assess increased traffic in solved area and thus help authorities to make a right decision during approving of the investment plan. This article is focused on comparison of two software – Aimsun and OmniTrans, and calculations according to Webster and technical regulations for assessing junction capacity in the Slovak Republic. The packages outputs are also compared to the measured data at the assessed junction in this article. The analysis showed that outputs of various tools differ, generally all packages showed higher delays compared to measured data at the main road and lower delays compared to measured data at the side roads.

  11. Pilot visual acquisition of traffic : operational communications from air traffic control operational communication.

    Science.gov (United States)

    2001-05-01

    Avionics devices designed to provide pilots with graphically displayed traffic information will enable pilots to acquire and verify the identity of any intruder aircraft within the general area, either before or in accordance with a controller-issued...

  12. Detection of Botnet Command and Control Traffic by the Multistage Trust Evaluation of Destination Identifiers

    Directory of Open Access Journals (Sweden)

    Pieter Burghouwt

    2015-10-01

    Full Text Available Network-based detection of botnet Command and Control communication is a difficult task if the traffic has a relatively low volume and if popular protocols, such as HTTP, are used to resemble normal traffic. We present a new network-based detection approach that is capable of detecting this type of Command and Control traffic in an enterprise network by estimating the trustworthiness of the traffic destinations. If the destination identifier of a traffic flow origins directly from: human input, prior traffic from a trusted destination, or a defined set of legitimate applications, the destination is trusted and its associated traffic is classified as normal. Advantages of this approach are: the ability of zero day malicious traffic detection, low exposure to malware by passive host-external traffic monitoring, and the applicability for real-time filtering. Experimental evaluation demonstrates successful detection of diverse types of Command and Control Traffic.

  13. How to reduce workload--augmented reality to ease the work of air traffic controllers.

    Science.gov (United States)

    Hofmann, Thomas; König, Christina; Bruder, Ralph; Bergner, Jörg

    2012-01-01

    In the future the air traffic will rise--the workload of the controllers will do the same. In the BMWi research project, one of the tasks is, how to ensure safe air traffic, and a reasonable workload for the air traffic controllers. In this project it was the goal to find ways how to reduce the workload (and stress) for the controllers to allow safe air traffic, esp. at huge hub-airports by implementing augmented reality visualization and interaction.

  14. AN AUTOMATED RAILWAY STATION TRAFFIC CONTROL SYSTEM

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... Software simulation was carried out using the Proteus virtual system modeling ... system which helps in track switching and level crossing gate traffic control is capable of improving reliability, speed, .... Lane Switching Network.

  15. Dynamic control of traffic lights

    NARCIS (Netherlands)

    Haijema, Rene; Hendrix, Eligius M.T.; Wal, van der Jan

    2017-01-01

    Traffic lights are put in place to dynamically change priority between traffic participants. Commonly, the duration of green intervals and the grouping, and ordering in which traffic flows are served are pre-fixed. In this chapter, the problem of minimizing vehicle delay at isolated intersections is

  16. ROLE OF PEDAGOGY COMPETENCE OF A CONTROLLER-TRAINER IN SIMU-TRAINING OF AIR TRAFFIC CONTROLLERS

    Directory of Open Access Journals (Sweden)

    О. Петращук

    2012-04-01

    Full Text Available The article focuses on the issue of pedagogy competence of an ATCO-trainer as a constituent of hisoverall professional competency/capacity to provide quality SIMU- training of the air traffic controllers. Thecurrent University curriculum for abinitio controllers does not provide developing of the pedagogicalcompetence. But it is requested very much when an air traffic controller is employed as a controller-trainerfor SIMU-training. It is suggested to include pedagogical science as a course in the University programme

  17. Cellular automata model for urban road traffic flow considering pedestrian crossing street

    Science.gov (United States)

    Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu

    2016-11-01

    In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.

  18. Traffic Control Device Evaluation Program : FY 2017

    Science.gov (United States)

    2018-03-01

    This report presents findings on the activities conducted in the Traffic Control Device Evaluation Program during the 2017 fiscal year. The research on sponsored changeable message signs (continued from the previous year) was terminated by the Federa...

  19. Air traffic controllers' long-term speech-in-noise training effects: A control group study.

    Science.gov (United States)

    Zaballos, Maria T P; Plasencia, Daniel P; González, María L Z; de Miguel, Angel R; Macías, Ángel R

    2016-01-01

    Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and -5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=-5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions.

  20. Intelligent Control in Automation Based on Wireless Traffic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2007-08-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  1. Intelligent Control in Automation Based on Wireless Traffic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2007-09-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  2. Using spatial context to support prospective memory in simulated air traffic control.

    Science.gov (United States)

    Loft, Shayne; Finnerty, Dannielle; Remington, Roger W

    2011-12-01

    The aim was to examine whether prospective memory error and response costs to ongoing tasks in an air traffic control simulation could be reduced by providing spatial context. Prospective memory refers to remembering to perform an intended action at an appropriate point in the future. Failures of prospective memory can occur in air traffic control. For this study, three conditions of participants performed an air traffic control task that required them to accept and hand off aircraft and to prevent conflicts. The prospective memory task required participants to remember to press an alternative key rather than the routine key when accepting target aircraft. A red line separated the display into upper and lower regions. Participants in the context condition were told that the prospective memory instruction would apply only to aircraft approaching from one region (upper or lower). Those in the standard condition were not provided this information. In the control condition, participants did not have to perform the prospective memory task. In the context condition, participants made fewer prospective memory errors than did those in the standard condition and made faster acceptance decisions for aircraft approaching from irrelevant compared with relevant regions. Costs to hand-off decision time were also reduced in the context condition. Spatial context provided no benefit to conflict detection. Participants could partially localize their allocation of attentional resources to the prospective memory task to relevant display regions. The findings are potentially applicable to air traffic control, whereby regularities in airspace structure and standard traffic flows allow controllers to anticipate the location of specific air traffic events.

  3. Study on Driver Visual Physiological Characteristics in Urban Traffic

    Directory of Open Access Journals (Sweden)

    Fengyuan Wang

    2014-01-01

    Full Text Available In the integrated traffic environment, human factor is always a main factor of the three elementary factors, besides the vehicle and road factor. The driver physiological and psychological characteristics have an important impact especially on traffic safety in urban road traffic conditions. Some typical traffic scenes in condition of urban road, such as light signal control at intersection, overtaking, and passing, are selected for condition analysis. An eye movement apparatus was used to obtain driver eye closure, blink frequency, and other visual physiological indicators in the traffic conditions of urban road. The regular patterns of driver visual characteristics in the corresponding scenes were analyzed in detail to provide data and theoretical support for the further research on traffic safety of urban environment from the viewpoint of driver psychology and behavior.

  4. Taking Over Control From Highly Automated Vehicles in Complex Traffic Situations: The Role of Traffic Density.

    Science.gov (United States)

    Gold, Christian; Körber, Moritz; Lechner, David; Bengler, Klaus

    2016-06-01

    The aim of this study was to quantify the impact of traffic density and verbal tasks on takeover performance in highly automated driving. In highly automated vehicles, the driver has to occasionally take over vehicle control when approaching system limits. To ensure safety, the ability of the driver to regain control of the driving task under various driving situations and different driver states needs to be quantified. Seventy-two participants experienced takeover situations requiring an evasive maneuver on a three-lane highway with varying traffic density (zero, 10, and 20 vehicles per kilometer). In a between-subjects design, half of the participants were engaged in a verbal 20-Questions Task, representing speaking on the phone while driving in a highly automated vehicle. The presence of traffic in takeover situations led to longer takeover times and worse takeover quality in the form of shorter time to collision and more collisions. The 20-Questions Task did not influence takeover time but seemed to have minor effects on the takeover quality. For the design and evaluation of human-machine interaction in takeover situations of highly automated vehicles, the traffic state seems to play a major role, compared to the driver state, manipulated by the 20-Questions Task. The present results can be used by developers of highly automated systems to appropriately design human-machine interfaces and to assess the driver's time budget for regaining control. © 2016, Human Factors and Ergonomics Society.

  5. Traffic Accident Propagation Properties and Control Measures for Urban Links Based on Cellular Automata

    Directory of Open Access Journals (Sweden)

    Xian-sheng Li

    2013-01-01

    Full Text Available With the rapid development of urban transport and the sharp increase in vehicle population, traffic accidents form one of the most important causes of urban traffic congestion other than the imbalance between traffic supply and demand. Traffic congestion causes severe problems, such as environment contamination and energy dissipation. Therefore, it would be useful to analyze the congestion propagation characteristics after traffic accidents. Numerical analysis and computer simulation were two of the typical methods used at present to study the traffic congestion propagation properties. The latter was more widespread as it is more consistent with the actual traffic flow and more visual than the former. In this paper, an improved cellular automata (CA model was presented to analyze traffic congestion propagation properties and to evaluate control strategies. In order to apply them to urban traffic flow simulation, the CA models have been improved and expanded on. Computer simulations were built for congestion not only extending to the upstream intersection, but also the upstream intersection and the entire road network, respectively. Congestion propagation characteristics after road traffic accidents were obtained, and controls of different severities and durations were analyzed. The results provide the theoretical foundation and practical means for the control of congestion.

  6. Lane Changing Control to Reduce Traffic Load Effect on Long-Span Bridges

    OpenAIRE

    Caprani, Colin C; Enright, Bernard; Carey, Colm

    2012-01-01

    Long span bridges are critical parts of a nation’s infrastructure network and congested traffic loading is the governing form of traffic loading. Groups of trucks travelling in conveys are created when fast-er moving vehicles, such as cars, change lane. In this research the authors investigate how the control of these lane-changing events can help reduce the traffic load effects on long span bridges. Real traffic data is used to simulate a traffic stream on a virtual road and bridge using a m...

  7. Automated Conflict Resolution For Air Traffic Control

    Science.gov (United States)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  8. Simulating and evaluating an adaptive and integrated traffic lights control system for smart city application

    Science.gov (United States)

    Djuana, E.; Rahardjo, K.; Gozali, F.; Tan, S.; Rambung, R.; Adrian, D.

    2018-01-01

    A city could be categorized as a smart city when the information technology has been developed to the point that the administration could sense, understand, and control every resource to serve its people and sustain the development of the city. One of the smart city aspects is transportation and traffic management. This paper presents a research project to design an adaptive traffic lights control system as a part of the smart system for optimizing road utilization and reducing congestion. Research problems presented include: (1) Congestion in one direction toward an intersection due to dynamic traffic condition from time to time during the day, while the timing cycles in traffic lights system are mostly static; (2) No timing synchronization among traffic lights in adjacent intersections that is causing unsteady flows; (3) Difficulties in traffic condition monitoring on the intersection and the lack of facility for remotely controlling traffic lights. In this research, a simulator has been built to model the adaptivity and integration among different traffic lights controllers in adjacent intersections, and a case study consisting of three sets of intersections along Jalan K. H. Hasyim Ashari has been simulated. It can be concluded that timing slots synchronization among traffic lights is crucial for maintaining a steady traffic flow.

  9. Effects of traffic noise on tree frog stress levels, immunity, and color signaling.

    Science.gov (United States)

    Troïanowski, Mathieu; Mondy, Nathalie; Dumet, Adeline; Arcanjo, Caroline; Lengagne, Thierry

    2017-10-01

    During the last decade, many studies have focused on the detrimental effects of noise pollution on acoustic communication. Surprisingly, although it is known that noise exposure strongly influences health in humans, studies on wildlife remain scarce. In order to gain insight into the consequences of traffic noise exposure, we experimentally manipulated traffic noise exposure as well as the endocrine status of animals to investigate physiological and phenotypic consequences of noise pollution in an anuran species. We showed that noise exposure increased stress hormone level and induced an immunosuppressive effect. In addition, both traffic noise exposure and stress hormone application negatively impacted H. arborea vocal sac coloration. Moreover, our results suggest profound changes in sexual selection processes because the best quality males with initial attractive vocal sac coloration were the most impacted by noise. Hence, our study suggests that the recent increases in anthropogenic noise worldwide might affect a broader range of animal species than previously thought, because of alteration of visual signals and immunity. Generalizing these results to other taxa is crucial for the conservation of biodiversity in an increasingly noisy world. © 2017 Society for Conservation Biology.

  10. Connected variable speed limits control and vehicle acceleration control to resolve moving jams

    NARCIS (Netherlands)

    Wang, M.; Daamen, W.; Hoogendoorn, S.P.; Van Arem, B.

    2015-01-01

    The vision of intelligent vehicles traveling in road networks has prompted numerous concepts to control future traffic flow, one of which is the in-vehicle actuation of traffic control signals. The key of this concept is using intelligent vehicles as actuators for traffic control systems, replacing

  11. Right-Turn Traffic Volume Adjustments in Traffic Signal Warrant Analysis

    Science.gov (United States)

    2015-01-01

    To accomplish this research, a comprehensive literature review of existing guidelines and findings based on national and local studies was conducted. Ultimately, guidelines for consistent application for adjusting right-turn traffic volumes were deve...

  12. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    Science.gov (United States)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  13. Physics of traffic gridlock in a city

    OpenAIRE

    Kerner, Boris S.

    2011-01-01

    Based of simulations of a stochastic three-phase traffic flow model, we reveal that at a signalized city intersection under small link inflow rates at which a vehicle queue developed during the red phase of light signal dissolves fully during the green phase, i.e., no traffic gridlock should be expected, nevertheless, traffic breakdown with the subsequent city gridlock occurs with some probability after a random time delay. This traffic breakdown is initiated by a first-order phase transition...

  14. Hoarseness and vocal tract discomfort and associated risk factors in air traffic controllers.

    Science.gov (United States)

    Korn, Gustavo Polacow; Villar, Anna Carolina; Azevedo, Renata Rangel

    2018-04-05

    An air traffic controller is a professional who performs air traffic control functions in air traffic control units and is responsible for controlling the various stages of a flight. To compare hoarseness and vocal tract discomfort and their risk factors among air traffic controllers in the approach control of São Paulo. In a cross-sectional survey, a voice self-evaluation adapted from to self-evaluation prepared by the Brazilian Ministry of Labor for teachers was administered to 76 air traffic controllers at approach control of São Paulo, Brazil. The percentage of hoarseness and vocal tract discomfort was 19.7% and 38.2%, respectively. In relation to air pollution, the percentages of hoarseness and vocal tract discomfort were higher among those who consider their working environment to be intolerable than among those in a comfortable or disturbing environment. The percentage of hoarseness was higher among those who seek medical advice due to vocal complaints and among those who experience difficulty using their voice at work than among those who experience mild or no difficulty. The percentage of vocal tract discomfort was higher among those in a very tense and stressful environment than among those who consider their work environment to be mild or moderately tense and stressful. The percentage of vocal tract discomfort was higher among those who describe themselves as very tense and stressed or tense and stressed than among those who describe themselves as calm. Additionally, the percentage of vocal tract discomfort was higher among those who care about their health. Among air traffic controllers, the percentage of vocal tract discomfort was almost twice that of hoarseness. Both symptoms are prevalent among air traffic controllers who considered their workplace intolerable in terms of air pollution. Vocal tract discomfort was related to a tense and stressful environment, and hoarseness was related to difficulty using the voice at work. Copyright © 2018 Associa

  15. Adaptive Traffic Control Systems in a medium-sized Scandinavian city

    DEFF Research Database (Denmark)

    Agerholm, Niels; Olesen, Anne Vingaard

    2018-01-01

    Adaptive Traffic Control Systems (ATCS) are aimed at reducing congestion. ATCS adapt to approaching traffic to continuously optimise the traffic flows in question. ATCS have been implemented in many locations, including the Scandinavian countries, with various effects. Due to congestion problems......, and GPS data from a range of cars driving on the ring road formed the basis for the study. The result of ATCS implementation was a significant 17% reduction in transportation time on the ring road in the most congested period, the afternoon peak. Less significant effects were found regarding the morning...

  16. Web-based Traffic Noise Control Support System for Sustainable Transportation

    Science.gov (United States)

    Fan, Lisa; Dai, Liming; Li, Anson

    Traffic noise is considered as one of the major pollutions that will affect our communities in the future. This paper presents a framework of web-based traffic noise control support system (WTNCSS) for a sustainable transportation. WTNCSS is to provide the decision makers, engineers and publics a platform to efficiently access the information, and effectively making decisions related to traffic control. The system is based on a Service Oriented Architecture (SOA) which takes the advantages of the convenience of World Wide Web system with the data format of XML. The whole system is divided into different modules such as the prediction module, ontology-based expert module and dynamic online survey module. Each module of the system provides a distinct information service to the decision support center through the HTTP protocol.

  17. An LTE implementation based on a road traffic density model

    OpenAIRE

    Attaullah, Muhammad

    2013-01-01

    The increase in vehicular traffic has created new challenges in determining the behavior of performance of data and safety measures in traffic. Hence, traffic signals on intersection used as cost effective and time saving tools for traffic management in urban areas. But on the other hand the signalized intersections in congested urban areas are the key source of high traffic density and slow traffic. High traffic density causes the slow network traffic data rate between vehicle to vehicle and...

  18. Processes mediating expertise in air traffic control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; De Bock, Jeano; Kirschner, Paul A.

    2011-01-01

    Van Meeuwen, L. W., Jarodzka, H., Brand-Gruwel, S., Van Merriënboer, J. J. G., De Bock, J. J. P. R., & Kirschner, P. A. (2010, September). Processes mediating expertise in air traffic control. Poster presented at the European Association for Aviation Psychology Conference, Budapest.

  19. Creating a systems engineering approach for the manual on uniform traffic control devices.

    Science.gov (United States)

    2011-03-01

    The Manual on Uniform Traffic Control Devices (MUTCD) provides basic principles for use of traffic : control devices (TCD). However, most TCDs are not explicitly required, and the decision to use a given : TCD in a given situation is typically made b...

  20. Controlling Air Traffic (Simulated) in the Presence of Automation (CATS PAu) 1995: A Study of Measurement Techniques for Situation Awareness in Air Traffic Control

    Science.gov (United States)

    French, Jennifer R.

    1995-01-01

    As automated systems proliferate in aviation systems, human operators are taking on less and less of an active role in the jobs they once performed, often reducing what should be important jobs to tasks barely more complex than monitoring machines. When operators are forced into these roles, they risk slipping into hazardous states of awareness, which can lead to reduced skills, lack of vigilance, and the inability to react quickly and competently when there is a machine failure. Using Air Traffic Control (ATC) as a model, the present study developed tools for conducting tests focusing on levels of automation as they relate to situation awareness. Subjects participated in a two-and-a-half hour experiment that consisted of a training period followed by a simulation of air traffic control similar to the system presently used by the FAA, then an additional simulation employing automated assistance. Through an iterative design process utilizing numerous revisions and three experimental sessions, several measures for situational awareness in a simulated Air Traffic Control System were developed and are prepared for use in future experiments.

  1. Study on the Road Traffic Survey System Based on Micro-ferromagnetic Induction Coil Sensor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2014-05-01

    Full Text Available Road traffic information is the basis of road traffic management and control. Due to the special design of the sensor coil and ferromagnetic core, traffic survey system which uses micro ferromagnetic inductive coil vehicle detector, not only has the features of small size, simple installation and little road surface damage, but also has the advantages of output signal strength, simple signal processing circuit and obvious characteristics for output waveform corresponding vehicle feature. Based on the introduction of the sensor working principle, the construction of hardware and signal processing circuit for the traffic survey system is described in detail in the paper. Combined with the characteristics of the sensor output waveform, adaptive nearest neighbor clustering RBF neural network algorithm used to classify the vehicles is proposed and verified by experimental method. The result has a high vehicle classification rate and demonstrates the feasibility of the system.

  2. Air Traffic Controllers' Control Strategies in the Terminal Area Under Off-Nominal Conditions

    Science.gov (United States)

    Martin, Lynne; Mercer, Joey; Callantine, Todd; Kupfer, Michael; Cabrall, Christopher

    2012-01-01

    A human-in-the-loop simulation investigated the robustness of a schedule-based terminal-area air traffic management concept, and its supporting controller tools, to off-nominal events - events that led to situations in which runway arrival schedules required adjustments and controllers could no longer use speed control alone to impose the necessary delays. The main research question was exploratory: to assess whether controllers could safely resolve and control the traffic during off-nominal events. A focus was the role of the supervisor - how he managed the schedules, how he assisted the controllers, what strategies he used, and which combinations of tools he used. Observations and questionnaire responses revealed supervisor strategies for resolving events followed a similar pattern: a standard approach specific to each type of event often resolved to a smooth conclusion. However, due to the range of factors influencing the event (e.g., environmental conditions, aircraft density on the schedule, etc.), sometimes the plan required revision and actions had a wide-ranging effect.

  3. How do Air Traffic Controllers Use Automation and Tools Differently During High Demand Situations?

    Science.gov (United States)

    Kraut, Joshua M.; Mercer, Joey; Morey, Susan; Homola, Jeffrey; Gomez, Ashley; Prevot, Thomas

    2013-01-01

    In a human-in-the-loop simulation, two air traffic controllers managed identical airspace while burdened with higher than average workload, and while using advanced tools and automation designed to assist with scheduling aircraft on multiple arrival flows to a single meter fix. This paper compares the strategies employed by each controller, and investigates how the controllers' strategies change while managing their airspace under more normal workload conditions and a higher workload condition. Each controller engaged in different methods of maneuvering aircraft to arrive on schedule, and adapted their strategies to cope with the increased workload in different ways. Based on the conclusions three suggestions are made: that quickly providing air traffic controllers with recommendations and information to assist with maneuvering and scheduling aircraft when burdened with increased workload will improve the air traffic controller's effectiveness, that the tools should adapt to the strategy currently employed by a controller, and that training should emphasize which traffic management strategies are most effective given specific airspace demands.

  4. Proposal of Wireless Traffic Control Schemes for Wireless LANs

    Science.gov (United States)

    Hiraguri, Takefumi; Ichikawa, Takeo; Iizuka, Masataka; Kubota, Shuji

    This paper proposes two traffic control schemes to support the communication quality of multimedia streaming services such as VoIP and audio/video over IEEE 802.11 wireless LAN systems. The main features of the proposed scheme are bandwidth control for each flow of the multimedia streaming service and load balancing between access points (APs) of the wireless LAN by using information of data link, network and transport layers. The proposed schemes are implemented on a Linux machine which is called the wireless traffic controller (WTC). The WTC connects a high capacity backbone network and an access network to which the APs are attached. We evaluated the performance of the proposed WTC and confirmed that the communication quality of the multimedia streaming would be greatly improved by using this technique.

  5. Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study.

    Science.gov (United States)

    Fallahi, Majid; Motamedzade, Majid; Heidarimoghadam, Rashid; Soltanian, Ali Reza; Miyake, Shinji

    2016-01-01

    This study evaluated operators' mental workload while monitoring traffic density in a city traffic control center. To determine the mental workload, physiological signals (ECG, EMG) were recorded and the NASA-Task Load Index (TLX) was administered for 16 operators. The results showed that the operators experienced a larger mental workload during high traffic density than during low traffic density. The traffic control center stressors caused changes in heart rate variability features and EMG amplitude, although the average workload score was significantly higher in HTD conditions than in LTD conditions. The findings indicated that increasing traffic congestion had a significant effect on HR, RMSSD, SDNN, LF/HF ratio, and EMG amplitude. The results suggested that when operators' workload increases, their mental fatigue and stress level increase and their mental health deteriorate. Therefore, it maybe necessary to implement an ergonomic program to manage mental health. Furthermore, by evaluating mental workload, the traffic control center director can organize the center's traffic congestion operators to sustain the appropriate mental workload and improve traffic control management. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Information Presentation and Control in a Modern Air Traffic Control Tower Simulator

    Science.gov (United States)

    Haines, Richard F.; Doubek, Sharon; Rabin, Boris; Harke, Stanton

    1996-01-01

    The proper presentation and management of information in America's largest and busiest (Level V) air traffic control towers calls for an in-depth understanding of many different human-computer considerations: user interface design for graphical, radar, and text; manual and automated data input hardware; information/display output technology; reconfigurable workstations; workload assessment; and many other related subjects. This paper discusses these subjects in the context of the Surface Development and Test Facility (SDTF) currently under construction at NASA's Ames Research Center, a full scale, multi-manned, air traffic control simulator which will provide the "look and feel" of an actual airport tower cab. Special emphasis will be given to the human-computer interfaces required for the different kinds of information displayed at the various controller and supervisory positions and to the computer-aided design (CAD) and other analytic, computer-based tools used to develop the facility.

  7. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Directory of Open Access Journals (Sweden)

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  8. Reverse Stackelberg Games : Theory and Applications in Traffic Control

    NARCIS (Netherlands)

    Groot, N.B.

    2013-01-01

    One of the major challenges in optimization-based control of large-scale intelligent infrastructural networks such as traffic networks is to find efficient multilevel optimization schemes through which decisions can be made by agents or controllers of different interacting layers. The hierarchical

  9. Processes mediating expertise in air traffic control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; De Bock, Jeano; Kirschner, Paul A.

    2010-01-01

    Van Meeuwen, L., Jarodzka, H., Brand-Gruwel, S., Van Merriënboer, J. J. G., De Bock, J. J. P. R., & Kirschner, P. A. (2010, August). Processes mediating expertise in air traffic control. Meeting of the EARLI SIG6/7 Instructional Design and Learning and Instruction with Computers, Ulm, Germany.

  10. Complex motion of a vehicle through a series of signals controlled by power-law phase

    Science.gov (United States)

    Nagatani, Takashi

    2017-07-01

    We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.

  11. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Air Traffic Control System Emergency Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60...

  12. Air Traffic Control Officer AFSC 13MX OSSN 2335

    National Research Council Canada - National Science Library

    1999-01-01

    The Air Traffic Control Officer utilization field was surveyed to better understand the utilization of AFSC 1 3MX personnel, validate training requirements, empirically determine career progression...

  13. A Cooperative Traffic Control of Vehicle–Intersection (CTCVI) for the Reduction of Traffic Delays and Fuel Consumption

    Science.gov (United States)

    Li, Jinjian; Dridi, Mahjoub; El-Moudni, Abdellah

    2016-01-01

    The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I). This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP) to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes. PMID:27999333

  14. A Cooperative Traffic Control of Vehicle–Intersection (CTCVI for the Reduction of Traffic Delays and Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Jinjian Li

    2016-12-01

    Full Text Available The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I. This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes.

  15. Data mining of air traffic control operational errors

    Science.gov (United States)

    2006-01-01

    In this paper we present the results of : applying data mining techniques to identify patterns and : anomalies in air traffic control operational errors (OEs). : Reducing the OE rate is of high importance and remains a : challenge in the aviation saf...

  16. Desain Sistem Kontrol Traffic Light Adaptif Pada Persimpangan Empat Berbasis PLC Siemens

    Directory of Open Access Journals (Sweden)

    Zulfikar

    2015-03-01

    Full Text Available Nowadays, traffic lights are using a fixed time as on-off light signal controller. However this system has many disadveantages, such as vehicles have to queue long time in certain road section (lane at rush hour. As a consequence, it reguires a traffic light control system that can prioritize a more dense lane. Adaptive traffic light control detects the number of queues of vehicles on the lane. Sensors detect the vehicle queue’s length. There are three sensors that will detect queues’s length of vehicles on each lane. When the queue of vehicles reached the first sensor, the green light will be on longer 5 seconds compare to the normal traffic. When the queue of vehicles reaches the second sensor, the green light provide 10 seconds more compare to the normal traffic and if the queue of vehicles reaches the third sensor, the green light will be longer which is about 20 seconds compare. In this adaptive traffic light control system, there are two jam sensors installed in the middle of the intersection that will turn on all the red lights when there is an unexpected problems happened. This adaptive traffic light control system will provide the longest queuing time 92 seconds, when all sensors on all lanes active and the fastest time is 47 seconds which is the time when the normal system.

  17. Relative position vectors: an alternative approach to conflict detection in air traffic control.

    Science.gov (United States)

    Vuckovic, Anita; Sanderson, Penelope; Neal, Andrew; Gaukrodger, Stephen; Wong, B L William

    2013-10-01

    We explore whether the visual presentation of relative position vectors (RPVs) improves conflict detection in conditions representing some aspects of future airspace concepts. To help air traffic controllers manage increasing traffic, new tools and systems can automate more cognitively demanding processes, such as conflict detection. However, some studies reveal adverse effects of such tools, such as reduced situation awareness and increased workload. New displays are needed that help air traffic controllers handle increasing traffic loads. A new display tool based on the display of RPVs, the Multi-Conflict Display (MCD), is evaluated in a series of simulated conflict detection tasks. The conflict detection performance of air traffic controllers with the MCD plus a conventional plan-view radar display is compared with their performance with a conventional plan-view radar display alone. Performance with the MCD plus radar was better than with radar alone in complex scenarios requiring controllers to find all actual or potential conflicts, especially when the number of aircraft on the screen was large. However performance with radar alone was better for static scenarios in which conflicts for a target aircraft, or target pair of aircraft, were the focus. Complementing the conventional plan-view display with an RPV display may help controllers detect conflicts more accurately with extremely high aircraft counts. We provide an initial proof of concept that RPVs may be useful for supporting conflict detection in situations that are partially representative of conditions in which controllers will be working in the future.

  18. 32 CFR 245.17 - U.S. civil and military air traffic control facilities.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false U.S. civil and military air traffic control facilities. 245.17 Section 245.17 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) Procedures for Implementation of ESCAT §...

  19. TRAFFIC SIMULATION FOR MIXED TRAFFIC SYSTEMS

    African Journals Online (AJOL)

    EGETE

    2012-05-04

    May 4, 2012 ... Traffic problem is classified into single and mixed, especially in most developing countries, where motorbikes are ..... The traffic light control system presented by its location on ... multi-destination dynamic routing and real-time.

  20. Simulation of queue length and vehicle delays on signal-controlled intersection

    Directory of Open Access Journals (Sweden)

    Leverents Evgeny

    2018-01-01

    Full Text Available The extensive use of information technology in the field of traffic control will increase the traffic capacity of intersection points and transports. To assess the efficacy of changing options for the road traffic organization or the reorganization of intersection points, you need to know the average delay in vehicles and the length of the queue. The adaptive traffic light control is one of such tools. Simulation modeling of traffic flows use for the definition of its work. The aim of this work is to create a simulation model of controlled intersection, which can evaluate the efficiency of the application the adaptive regulation in various traffic situations, including the availability or deficiency of pedestrian traffic through the intersection. The numerical experiment in in the model pass with using of the Monte Carlo method, which can to draw a conclusion about the calculated parameter on the basis of the result of the reproduction of the calculation model.

  1. Estimation and Control of Networked Distributed Parameter Systems: Application to Traffic Flow

    KAUST Repository

    Canepa, Edward

    2016-11-01

    The management of large-scale transportation infrastructure is becoming a very complex task for the urban areas of this century which are covering bigger geographic spaces and facing the inclusion of connected and self-controlled vehicles. This new system paradigm can leverage many forms of sensing and interaction, including a high-scale mobile sensing approach. To obtain a high penetration sensing system on urban areas more practical and scalable platforms are needed, combined with estimation algorithms suitable to the computational capabilities of these platforms. The purpose of this work was to develop a transportation framework that is able to handle different kinds of sensing data (e.g., connected vehicles, loop detectors) and optimize the traffic state on a defined traffic network. The framework estimates the traffic on road networks modeled by a family of Lighthill-Whitham-Richards equations. Based on an equivalent formulation of the problem using a Hamilton-Jacobi equation and using a semi-analytic formula, I will show that the model constraints resulting from the Hamilton-Jacobi equation are linear, albeit with unknown integer variables. This general framework solve exactly a variety of problems arising in transportation networks: traffic estimation, traffic control (including robust control), cybersecurity and sensor fault detection, or privacy analysis of users in probe-based traffic monitoring systems. This framework is very flexible, fast, and yields exact results. The recent advances in sensors (GPS, inertial measurement units) and microprocessors enable the development low-cost dedicated devices for traffic sensing in cities, 5 which are highly scalable, providing a feasible solution to cover large urban areas. However, one of the main problems to address is the privacy of the users of the transportation system, the framework presented here is a viable option to guarantee the privacy of the users by design.

  2. Analysis of learning curves in the on-the-job training of air traffic controllers

    NARCIS (Netherlands)

    Oprins, E.A.P.B.; Bruggraaff, E.; Roe, R.

    2011-01-01

    This chapter describes a competence-based assessment system, called CBAS, for air traffic control (ATC) simulator and on-the-job training (OJT), developed at Air Traffic Control The Netherlands (LVNL). In contrast with simulator training, learning processes in OJT are difficult to assess, because

  3. A Traffic Prediction Algorithm for Street Lighting Control Efficiency

    Directory of Open Access Journals (Sweden)

    POPA Valentin

    2013-01-01

    Full Text Available This paper presents the development of a traffic prediction algorithm that can be integrated in a street lighting monitoring and control system. The prediction algorithm must enable the reduction of energy costs and improve energy efficiency by decreasing the light intensity depending on the traffic level. The algorithm analyses and processes the information received at the command center based on the traffic level at different moments. The data is collected by means of the Doppler vehicle detection sensors integrated within the system. Thus, two methods are used for the implementation of the algorithm: a neural network and a k-NN (k-Nearest Neighbor prediction algorithm. For 500 training cycles, the mean square error of the neural network is 9.766 and for 500.000 training cycles the error amounts to 0.877. In case of the k-NN algorithm the error increases from 8.24 for k=5 to 12.27 for a number of 50 neighbors. In terms of a root means square error parameter, the use of a neural network ensures the highest performance level and can be integrated in a street lighting control system.

  4. Area-wide traffic calming for preventing traffic related injuries.

    Science.gov (United States)

    Bunn, F; Collier, T; Frost, C; Ker, K; Roberts, I; Wentz, R

    2003-01-01

    It is estimated that by 2020 road traffic crashes will have moved from ninth to third in the world disease burden ranking, as measured in disability adjusted life years, and second in developing countries. The identification of effective strategies for the prevention of traffic related injuries is of global health importance. Area-wide traffic calming schemes that discourage through traffic on residential roads is one such strategy. To evaluate the effectiveness of area-wide traffic calming in preventing traffic related crashes, injuries, and deaths. We searched the following electronic databases: Cochrane Injuries Group's Specialised Register, Cochrane Controlled Trials Register, MEDLINE, EMBASE and TRANSPORT (NTIS, TRIS, TRANSDOC). We searched the web sites of road safety organisations, handsearched conference proceedings, checked reference lists of relevant papers and contacted experts in the area. The search was not restricted by language or publication status. Randomised controlled trials, and controlled before-after studies of area-wide traffic calming schemes. Two reviewers independently extracted data on type of study, characteristics of intervention and control areas, and length of data collection periods. Before and after data were collected on the total number of road traffic crashes, all road user deaths and injuries, pedestrian-motor vehicle collisions and road user deaths. The statistical package STATA was used to calculate rate ratios for each study, which were then pooled to give an overall estimate using a random effects model. We found no randomised controlled trials, but 16 controlled before-after trials met our inclusion criteria. Seven studies were done in Germany, six in the UK, two in Australia and one in the Netherlands. There were no studies in low or middle income countries. Eight trials reported the number of road traffic crashes resulting in deaths. The pooled rate ratio was 0.63 (0.14, 2.59 95% CI). Sixteen studies reported the number

  5. Air Traffic Controller Training at the FAA Academy

    Science.gov (United States)

    Cummings, Roy J.

    1970-01-01

    Describes air traffic controller training by discussing: (1) job description, (2) centralized training, (3) method of training, (4) laboratory arrangement, (5) staffing, (6) curriculum development, (7) staff training, (8) student reaction, and (9) training results and suggested improvements. Training Technology is a quarterly supplement to…

  6. Impacts of temporary traffic control measures on vehicular emissions during the Asian games in Guangzhou, China.

    Science.gov (United States)

    Yao, Zhiliang; Zhang, Yingzhi; Shen, Xianbao; Wang, Xintong; Wu, Ye; He, Kebin

    2013-01-01

    To guarantee good traffic and air quality during the 16th Asian Games in Guangzhou, China, the government carried out two traffic control Drills before the Games and adopted traffic control measures during the Games. Vehicle activities before and during the first and second Drills, and during the Games, were surveyed. Based on the data under investigation, the impacts of control measures on traffic volumes and driving characteristics were analyzed during the first and second Drills, and the Games. The emission reduction of traffic control measures was also evaluated during the three stages using the MOBILE-China model. The results show that there were significant effects of implementing temporary traffic control measures on transportation activity and vehicular emissions. During the first and second Drills, and the Games, the average traffic volumes in monitored roads decreased, and the average speed of vehicles increased significantly The co-effects of traffic flow reduction, traffic congestion improvement, and the banning of high-emitting vehicles helped to greatly reduce the estimated emissions from motor vehicles in Guangzhou during the first and second Drills, and the Games. Estimated vehicular emissions were reduced by 38-52% during the first Drill and 28-36% for the second Drill. During the Asian Games, vehicular emissions of carbon monoxide (CO), hydrocarbon (HC), oxides of nitrogen (NO), and particulate matter with an aerodynamic diameter vehicular emissions of CO, HC, NOx, and PM10. Motor vehicles have become the most prevalent source of emissions and subsequently air pollution within Chinese cities. Understanding the impacts that different control measures have on vehicular emissions is very important in order to be able to control vehicle emissions. The results of this study will be very helpful for the further control of vehicle emissions in Guangzhou in the future. In addition, the effects of temporary transportation control measures will provide

  7. Learning styles: The learning methods of air traffic control students

    Science.gov (United States)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  8. Discrete events simulation of a route with traffic lights through automated control in real time

    Directory of Open Access Journals (Sweden)

    Rodrigo César Teixeira Baptista

    2013-03-01

    Full Text Available This paper presents the integration and communication in real-time of a discrete event simulation model with an automatic control system. The simulation model of an intersection with roads having traffic lights was built in the Arena environment. The integration and communication have been made via network, and the control system was operated by a programmable logic controller. Scenarios were simulated for the free, regular and congested traffic situations. The results showed the average number of vehicles that entered in the system and that were retained and also the total average time of the crossing of the vehicles on the road. In general, the model allowed evaluating the behavior of the traffic in each of the ways and the commands from the controller to activation and deactivation of the traffic lights.

  9. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    Science.gov (United States)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  10. Evolutionary design optimization of traffic signals applied to Quito city.

    Science.gov (United States)

    Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi

    2017-01-01

    This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.

  11. Cognitive Task Analysis of Prioritization in Air Traffic Control.

    Science.gov (United States)

    Redding, Richard E.; And Others

    A cognitive task analysis was performed to analyze the key cognitive components of the en route air traffic controllers' jobs. The goals were to ascertain expert mental models and decision-making strategies and to identify important differences in controller knowledge, skills, and mental models as a function of expertise. Four groups of…

  12. The high risk HPV16 L2 minor capsid protein has multiple transport signals that mediate its nucleocytoplasmic traffic

    International Nuclear Information System (INIS)

    Mamoor, Shahan; Onder, Zeynep; Karanam, Balasubramanyam; Kwak, Kihyuck; Bordeaux, Jennifer; Crosby, Lauren; Roden, Richard B.S.; Moroianu, Junona

    2012-01-01

    In this study we examined the transport signals contributing to HPV16 L2 nucleocytoplasmic traffic using confocal microscopy analysis of enhanced green fluorescent protein—L2 (EGFP-L2) fusions expressed in HeLa cells. We confirmed that both nuclear localization signals (NLSs), the nNLS (1MRHKRSAKRTKR12) and cNLS (456RKRRKR461), previously characterized in vitro (Darshan et al., 2004), function independently in vivo. We discovered that a middle region rich in arginine residues (296SRRTGIRYSRIGNKQTLRTRS316) functions as a nuclear retention sequence (NRS), as mutagenesis of critical arginine residues within this NRS reduced the fraction of L2 in the nucleus despite the presence of both NLSs. Significantly, the infectivity of HPV16 pseudoviruses containing either RR297AA or RR297EE within the L2 NRS was strongly reduced both in HaCaT cells and in a murine challenge model. Experiments using Ratjadone A nuclear export inhibitor and mutation-localization analysis lead to the discovery of a leucine-rich nuclear export signal ( 462 LPYFFSDVSL) mediating 16L2 nuclear export. These data indicate that HPV16 L2 nucleocytoplasmic traffic is dependent on multiple functional transport signals.

  13. The high risk HPV16 L2 minor capsid protein has multiple transport signals that mediate its nucleocytoplasmic traffic

    Energy Technology Data Exchange (ETDEWEB)

    Mamoor, Shahan; Onder, Zeynep [Biology Department, Boston College, Chestnut Hill, MA 02467 (United States); Karanam, Balasubramanyam; Kwak, Kihyuck [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231 (United States); Bordeaux, Jennifer; Crosby, Lauren [Biology Department, Boston College, Chestnut Hill, MA 02467 (United States); Roden, Richard B.S. [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231 (United States); Moroianu, Junona, E-mail: moroianu@bc.edu [Biology Department, Boston College, Chestnut Hill, MA 02467 (United States)

    2012-01-20

    In this study we examined the transport signals contributing to HPV16 L2 nucleocytoplasmic traffic using confocal microscopy analysis of enhanced green fluorescent protein-L2 (EGFP-L2) fusions expressed in HeLa cells. We confirmed that both nuclear localization signals (NLSs), the nNLS (1MRHKRSAKRTKR12) and cNLS (456RKRRKR461), previously characterized in vitro (Darshan et al., 2004), function independently in vivo. We discovered that a middle region rich in arginine residues (296SRRTGIRYSRIGNKQTLRTRS316) functions as a nuclear retention sequence (NRS), as mutagenesis of critical arginine residues within this NRS reduced the fraction of L2 in the nucleus despite the presence of both NLSs. Significantly, the infectivity of HPV16 pseudoviruses containing either RR297AA or RR297EE within the L2 NRS was strongly reduced both in HaCaT cells and in a murine challenge model. Experiments using Ratjadone A nuclear export inhibitor and mutation-localization analysis lead to the discovery of a leucine-rich nuclear export signal ({sub 462}LPYFFSDVSL) mediating 16L2 nuclear export. These data indicate that HPV16 L2 nucleocytoplasmic traffic is dependent on multiple functional transport signals.

  14. 75 FR 74128 - Manual on Uniform Traffic Control Devices (MUTCD) Compliance Dates

    Science.gov (United States)

    2010-11-30

    ... existing non-compliant devices based on what it believes to be a reasonable balance of the safety benefits... public works agencies, that State and local governments must balance with highway safety and traffic... service life of sign sheeting materials. \\7\\ D. Ripley. Quantifying the Safety Benefits of Traffic Control...

  15. Air Traffic Control: Observations on FAA's Air Traffic Control Modernization Program

    National Research Council Canada - National Science Library

    1999-01-01

    In 1981, FAA began a multibillion-dollar modernization effort to improve the safety, capacity, and efficiency of this system to meet the increasing demand for air traffic services and to replace aging equipment...

  16. A Survey on Urban Traffic Management System Using Wireless Sensor Networks

    Science.gov (United States)

    Nellore, Kapileswar; Hancke, Gerhard P.

    2016-01-01

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research. PMID:26828489

  17. V2I-based startup assistance system at signalized intersections

    Directory of Open Access Journals (Sweden)

    Jianqiang Wang

    2015-08-01

    Full Text Available Traffic delays are caused by unskilled vehicle operation and driver distraction during the startup process at signalized intersections. To address this issue, we propose a V2I-based driver assistance system that can acquire the current traffic signal status and provide drivers with startup assistance. This article presents the proposed system’s architecture and an assistance algorithm, which contains two types of driver assistance methods: startup prompting and automatic startup control. The automatic startup control method, based on fuzzy logic control, is validated in simulation tests. We also implement startup prompting using a prototype system and validate its performance in field tests. The test results suggest that the proposed assistance algorithm can help drivers start up their vehicles with less delay, which will significantly improve traffic efficiency.

  18. Traffic Control Models Based on Cellular Automata for At-Grade Intersections in Autonomous Vehicle Environment

    OpenAIRE

    Wei Wu; Yang Liu; Yue Xu; Quanlun Wei; Yi Zhang

    2017-01-01

    Autonomous vehicle is able to facilitate road safety and traffic efficiency and has become a promising trend of future development. With a focus on highways, existing literatures studied the feasibility of autonomous vehicle in continuous traffic flows and the controllability of cooperative driving. However, rare efforts have been made to investigate the traffic control strategies in autonomous vehicle environment on urban roads, especially in urban intersections. In autonomous vehicle enviro...

  19. Traffic Responsive Control of Intersections with Predicted Arrival Times: A Markovian Approach

    NARCIS (Netherlands)

    Haijema, R.; Hendrix, E.M.T.

    2014-01-01

    The dynamic adaptive control of traffic lights can be formulated as a Markov decision problem (MDP). This framework is hardly used, as solving an MDP can be very time-consuming and is only possible for simple infrastructures with a small number of traffic flows. Nevertheless, we show that the MDP

  20. Automated mixed traffic transit vehicle microprocessor controller

    Science.gov (United States)

    Marks, R. A.; Cassell, P.; Johnston, A. R.

    1981-01-01

    An improved Automated Mixed Traffic Vehicle (AMTV) speed control system employing a microprocessor and transistor chopper motor current controller is described and its performance is presented in terms of velocity versus time curves. The on board computer hardware and software systems are described as is the software development system. All of the programming used in this controller was implemented using FORTRAN. This microprocessor controller made possible a number of safety features and improved the comfort associated with starting and shopping. In addition, most of the vehicle's performance characteristics can be altered by simple program parameter changes. A failure analysis of the microprocessor controller was generated and the results are included. Flow diagrams for the speed control algorithms and complete FORTRAN code listings are also included.

  1. Dimensions of Air Traffic Control Tower Information Needs: From Information Requests to Display Design

    Science.gov (United States)

    Durso, Francis T.; Johnson, Brian R.; Crutchfield, Jerry M.

    2010-01-01

    In an effort to determine the information needs of tower air traffic controllers, instructors from the Federal Aviation Administration's Academy in Oklahoma City were asked to control traffic in a high-fidelity tower cab simulator. Information requests were made apparent by eliminating access to standard tower information sources. Instead,…

  2. Cubesat Constellation Design for Air Traffic Monitoring

    Science.gov (United States)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  3. Methodology for neural networks prototyping. Application to traffic control

    Energy Technology Data Exchange (ETDEWEB)

    Belegan, I.C.

    1998-07-01

    The work described in this report was carried out in the context of the European project ASTORIA (Advanced Simulation Toolbox for Real-World Industrial Application in Passenger Management and Adaptive Control), and concerns the development of an advanced toolbox for complex transportation systems. Our work was focused on the methodology for prototyping a set of neural networks corresponding to specific strategies for traffic control and congestion management. The tool used for prototyping is SNNS (Stuggart Neural Network Simulator), developed at the University of Stuggart, Institute for Parallel and Distributed High Performance Systems, and the real data from the field were provided by ZELT. This report is structured into six parts. The introduction gives some insights about traffic control and its approaches. The second chapter discusses the various control strategies existing. The third chapter is an introduction to the field of neural networks. The data analysis and pre-processing is described in the fourth chapter. In the fifth chapter, the methodology for prototyping the neural networks is presented. Finally, conclusions and further work are presented. (author) 14 refs.

  4. ANALYSIS OF AIR TRAFFIC CONTROL MANAGEMENT AT AIRPORTS WITH LOW FLIGHT INTENSITY IN FOREIGN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Evgenii E. Nechaev

    2017-01-01

    Full Text Available This article discusses various options for air traffic management at low flight intensity airports and airports located remotely in the North, where air traffic control service is not necessary.There are some examples of already implemented concepts in foreign countries: such as remote control tower, which allows to control air traffic, being at a considerable distance from the airport. Such a remote control tower is already put into operation at the Örnsköldsvik airport (Sweden. The prospects of this system development in other countries are observed in this article. A remote control tower will also appear in the United States in the nearest future. Also the paper considers the pros and cons of this system and its effect on flight safety.Moreover, there are given the examples of using non-towered and uncontrolled airports, where air traffic control service is not provided. This kind of airports is partly used in the USA and in New Zealand. The article describes flight procedures in the area of uncontrolled airports, including visual flight rules and instrument flight rules.We also analyze the possibilities of remote control towers and uncontrolled airports adaptation in the Russian Federation. It is a very important problem for Russia because most airports do not provide more than 10 movements per day. But air traffic control service exists in all airports.

  5. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic

  6. Traffic Management by Using Admission Control Methods in Multiple Node IMS Network

    Directory of Open Access Journals (Sweden)

    Filip Chamraz

    2016-01-01

    Full Text Available The paper deals with Admission Control methods (AC as a possible solution for traffic management in IMS networks (IP Multimedia Subsystem - from the point of view of an efficient redistribution of the available network resources and keeping the parameters of Quality of Service (QoS. The paper specifically aims at the selection of the most appropriate method for the specific type of traffic and traffic management concept using AC methods on multiple nodes. The potential benefit and disadvantage of the used solution is evaluated.

  7. Pulmonary function test in traffic police personnel in Pondicherry.

    Science.gov (United States)

    Pal, Pravati; John, Robert A; Dutta, T K; Pal, G K

    2010-01-01

    Traffic policemen working in the busy traffic signal areas get exposed to the vehicular emissions for years together. The fumes, chemicals and particles present in the emission are reported to be damaging to the lung functions of these individuals. Since there were no data available on the PFT parameters of traffic police personnel of Pondicherry, this study was taken up to assess the effect of traffic air pollution on their pulmonary functions. PFT parameters were recorded in age- and BMI-matched 30 traffic police personnel (study group) and 30 general police personnel (control group) of male gender. As chronic smoking is known to be a critical factor in altering lung function, PFT parameters were compared between the smokers as well as nonsmokers of both the groups. In nonsmokers, there was significant decrease in VC (P traffic police personnel compared to the general police personnel. This may be due to exposure to vehicular pollution for several hours in a day for many years causing decreased functional capacity of the lungs and chronic smoking worsens the condition.

  8. Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents

    Science.gov (United States)

    Pang, Ming-bao; Zheng, Sha-sha; Cai, Zhang-hui

    2015-09-01

    The aim of this work is to investigate the traffic impact of low visibility weather on a freeway including the fraction of real vehicle rear-end accidents and road traffic capacity. Based on symmetric two-lane Nagel-Schreckenberg (STNS) model, a cellular automaton model of three-lane freeway mainline with the real occurrence of rear-end accidents in low visibility weather, which considers delayed reaction time and deceleration restriction, was established with access to real-time traffic information of intelligent transportation system (ITS). The characteristics of traffic flow in different visibility weather were discussed via the simulation experiments. The results indicate that incoming flow control (decreasing upstream traffic volume) and inputting variable speed limits (VSL) signal are effective in accident reducing and road actual traffic volume's enhancing. According to different visibility and traffic demand the appropriate control strategies should be adopted in order to not only decrease the probability of vehicle accidents but also avoid congestion.

  9. The Evaluation of Traffic Control in Changsha City

    NARCIS (Netherlands)

    Lu, S.; Li, J.; Van Zuylen, H.

    2012-01-01

    Different aspects of the traffic control system in the CBD of Changsha have been evaluated. A general issue is the safety conditions, which are evaluated qualitatively. The second issue is the low saturation flow observed on the intersections, that appear to be 20 to 30% lower than the ones in

  10. Residential traffic noise exposure and vestibular schwannoma - a Danish case-control study.

    Science.gov (United States)

    Roswall, Nina; Stangerup, Sven-Eric; Cayé-Thomasen, Per; Schüz, Joachim; Johansen, Christoffer; Jensen, Steen Solvang; Raaschou-Nielsen, Ole; Sørensen, Mette

    2017-10-01

    Few risk factors for sporadic vestibular schwannoma (VS) are known. Several studies have proposed an increased risk with occupational noise exposure, whereas no studies have investigated residential traffic noise exposure as a risk factor. The present study investigated if residential traffic noise was associated with vestibular schwannoma in a large, population-based Danish case-control study. We identified 1454 VS cases, age above 30 years at diagnosis, between 1990 and 2007. For each case, we selected two random population controls, matched on sex and year of birth. Road and railway traffic noise at the residence was calculated for all present and historical addresses between 1987 and index date. Associations between traffic noise and risk for VS were estimated using conditional logistic regression, adjusted for education, disposable personal income, cohabitation status, railway noise exposure, municipal population density, and municipal income. A two-year time-weighted mean road traffic noise exposure was associated with an adjusted odds ratio of 0.92 (0.82-1.03) for developing VS, per 10 dB increment. There was no clear trend in categorical analyses. Similarly, linear and categorical analyses of residential railway noise did not suggest an association. We found no interaction with demographics, year of diagnosis, individual and municipal socioeconomic variables, and railway noise exposure. The results did not differ by tumor side, spread or size. The present study does not suggest an association between residential traffic noise and VS.

  11. Web traffic and firm performance

    DEFF Research Database (Denmark)

    Farooq, Omar; Aguenaou, Samir

    2013-01-01

    Does the traffic generated by websites of firms signal anything to stock market participants? Does higher web-traffic translate into availability of more information and therefore lower agency problems? And if answers to above questions are in affirmative, does higher web-traffic traffic translate...... into better firm performance? This paper aims to answer these questions by documenting a positive relationship between the extent of web-traffic and firm performance in the MENA region during the 2010. We argue that higher web-traffic lowers the agency problems in firms by disseminating more information...... to stock market participants. Consequently, lower agency problems translate into better performance. Furthermore, we also show that agency reducing role of web-traffic is more pronounced in regimes where information environment is already bad. For example, our results show stronger impact of web...

  12. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  13. Data mining tools for the support of traffic signal timing plan development in arterial networks

    Science.gov (United States)

    2001-05-01

    Intelligent transportation systems (ITS) include large numbers of traffic sensors that collect enormous quantities of data. The data provided by ITS is necessary for advanced forms of control; however, basic forms of control, primarily time-of-day (T...

  14. BER and FER Prediction of Control and Traffic Channels for a GSM type of interface

    DEFF Research Database (Denmark)

    Wigard, Jeroen; Nielsen, Thomas Toftegaard; Michaelsen, Per Henrik

    1998-01-01

    in a network simulator, but without having to simulate every single link, since this would be to time consuming. In this paper a method is presented to find the BER and FER from the signal to interference (C/I) values for a GSM type of air-interface, which can be used for integration of link aspects...... in a network simulator. The accuracy is within 0.2 dB in case of the BER and 0.5 for the FER. Both traffic and control channels are studied and the method is independent of hopping sequences and speed...

  15. Integrated and Real-Time Anticipatory Control of Road Networks

    NARCIS (Netherlands)

    Taale, H.

    2014-01-01

    Dynamic traffic management is an important approach to minimise the negative effects of increasing congestion. Measures such as ramp metering and route information, but also the traditional traffic signal control is used. The focus in designing traffic control plans has always been on local control.

  16. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic.

    Science.gov (United States)

    Ishikura, S; Koshkina, A; Klip, A

    2008-01-01

    Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.

  17. Multilevel Control & Optimization of Future Air Traffic Systems via Managem

    Data.gov (United States)

    National Aeronautics and Space Administration — We investigate solutions to problems of air traffic control subject to real-world limitations on the computational/communication cost of finding that solution. The...

  18. Choice of the control variables of an isolated intersection by graph colouring

    Directory of Open Access Journals (Sweden)

    Batanović Vladan

    2015-01-01

    Full Text Available This paper deals with the problem of grouping the traffic streams into some groups - signal groups on a signalized intersection. The fact that more traffic streams, which are not in a conflict, can be controlled by one sequence of traffic lights means that one control variable can be assigned to one signal group. Determination of the complete sets of signal groups, i.e. the groups of traffic streams on one intersection, controlled by one control variable is defined in this paper as a graphcoloring problem. The complete sets of signal groups are obtained by coloring the complement of the graph of identical indications. It is shown that the minimal number of signal groups in the complete set of signal groups is equal to the chromatic number of the complement of the graph with identical indications. The problem of finding all complete sets of signal groups with minimal cardinality, which is equal to the chromatic number, is formulated as a linear programming problem where the values of variables belong to set {0,1}.

  19. AVL and Monitoring for Massive Traffic Control System over DDS

    Directory of Open Access Journals (Sweden)

    Basem Almadani

    2015-01-01

    Full Text Available This paper proposes a real-time Automatic Vehicle Location (AVL and monitoring system for traffic control of pilgrims coming towards the city of Makkah in Saudi Arabia based on Data Distribution Service (DDS specified by the Object Management Group (OMG. DDS based middleware employs Real-Time Publish/Subscribe (RTPS protocol that implements many-to-many communication paradigm suitable in massive traffic control applications. Using this middleware approach, we are able to locate and track huge number of mobile vehicles and identify all passengers in real-time who are coming to perform annual Hajj. For validation of our proposed framework, various performance matrices are examined over WLAN using DDS. Results show that DDS based middleware can meet real-time requirements in large-scale AVL environment.

  20. Visual and auditory reaction time for air traffic controllers using quantitative electroencephalograph (QEEG) data.

    Science.gov (United States)

    Abbass, Hussein A; Tang, Jiangjun; Ellejmi, Mohamed; Kirby, Stephen

    2014-12-01

    The use of quantitative electroencephalograph in the analysis of air traffic controllers' performance can reveal with a high temporal resolution those mental responses associated with different task demands. To understand the relationship between visual and auditory correct responses, reaction time, and the corresponding brain areas and functions, air traffic controllers were given an integrated visual and auditory continuous reaction task. Strong correlations were found between correct responses to the visual target and the theta band in the frontal lobe, the total power in the medial of the parietal lobe and the theta-to-beta ratio in the left side of the occipital lobe. Incorrect visual responses triggered activations in additional bands including the alpha band in the medial of the frontal and parietal lobes, and the Sensorimotor Rhythm in the medial of the parietal lobe. Controllers' responses to visual cues were found to be more accurate but slower than their corresponding performance on auditory cues. These results suggest that controllers are more susceptible to overload when more visual cues are used in the air traffic control system, and more errors are pruned as more auditory cues are used. Therefore, workload studies should be carried out to assess the usefulness of additional cues and their interactions with the air traffic control environment.

  1. Problems in air traffic management. VII., Job training performance of air traffic control specialists - measurement, structure, and prediction.

    Science.gov (United States)

    1965-07-01

    A statistical study of training- and job-performance measures of several hundred Air Traffic Control Specialists (ATCS) representing Enroute, Terminal, and Flight Service Station specialties revealed that training-performance measures reflected: : 1....

  2. Design and development of an improved traffic light control system using hybrid lighting system

    Directory of Open Access Journals (Sweden)

    Michael Osigbemeh

    2017-02-01

    Full Text Available The deployment of light emitting diodes (LEDs based traffic system control created the problem of dim displays when ambient light is similar to traffic lights. It causes some drivers' disability of seeing and obeying traffic signs. This makes drivers violate traffic rules. In this paper, an attempt to use hybrid lighting technology to mitigate this problem was developed. Incandescent lightings with deployed halogen bulbs provided an instantaneous source of highly efficacious illumination which is brighter than the drivers' ambient lights (both daylight, electrical lights and their reflections, which can help drivers get access to enough warning and help them initiate traffic safety warning as necessary. The halogen lightings also offered the required high current draw needed in electrical circuitry to help brighten the LED displays. The problem of heat generated was eliminated by aerating the T-junction traffic light control unit designed for this technology. The result of hybrid lighting system design was found to be high luminosity and capability of gaining driver attention in real-time. It also allowed enhanced sign's image detection and processing for smart based technologies by providing the “light punch” needed for a wide range of visual concerns.

  3. Development of an interactive GIS based work zone traffic control tool.

    Science.gov (United States)

    2013-08-01

    The purpose of this study was to include consideration for intersections into the previously created GIS traffic control planning tool. Available data for making intersection control calculations were collected and integrated into the design of the t...

  4. The employment of a spoken language computer applied to an air traffic control task.

    Science.gov (United States)

    Laveson, J. I.; Silver, C. A.

    1972-01-01

    Assessment of the merits of a limited spoken language (56 words) computer in a simulated air traffic control (ATC) task. An airport zone approximately 60 miles in diameter with a traffic flow simulation ranging from single-engine to commercial jet aircraft provided the workload for the controllers. This research determined that, under the circumstances of the experiments carried out, the use of a spoken-language computer would not improve the controller performance.

  5. Traffic Generator (TrafficGen) Version 1.4.2: Users Guide

    Science.gov (United States)

    2016-06-01

    the network with Transmission Control Protocol and User Datagram Protocol Internet Protocol traffic. Each node generating network traffic in an...TrafficGen Graphical User Interface (GUI) 3 3.1 Anatomy of the User Interface 3 3.2 Scenario Configuration and MGEN Files 4 4. Working with...for public release; distribution is unlimited. vi List of Figures Fig. 1 TrafficGen user interface

  6. Environmental risk factors contributing to traffic accidents in children: a case-control study.

    Science.gov (United States)

    Jamshidi, Ensiyeh; Moradi, Ali; Majdzadeh, Reza

    2017-09-01

    The aim of this study is to identify environmental risk factors related to road accidents in children of Tehran. This case-control study was performed in 2013. The cases were injured pedestrians aged 5-15 who were admitted to major hospitals supervised by Tehran University of Medical Sciences. The sample size for the cases was 273 and for the control group was 546. For the completeness of the clusters, 7 extra persons in case (total = 280) and 14 persons (total = 560) in control group were included. The interference of confounding variables assessed through forward conditional logistic regression. Result shows occurrence of traffic accidents was significantly associate with the width of the alleys or (traffic congestion (OR = 4.1, 95% CI: 2.6-6.4), traffic speed (OR = 2.1, 95% CI: 1.3-3.2) and existence of pedestrian bridges(OR = 4.2, 95% CI: 2.6-6.8). In the light of the important role of environmental factors in the occurrence of child traffic accidents, alleviating structural risk factors in addition to education and enforcement need more systematic efforts and planning by policymakers and urban planners to attain pedestrian safety goals.

  7. A Course in English for Air Traffic Controllers.

    Science.gov (United States)

    McCann, Paul; Thompson, Lesley

    A description is provided of a course, developed by the British Council in Madrid, Spain, to improve the English language training for trainee air traffic services personnel as a result of an increased demand for trained controllers over the next few years. The course aims to teach students in the areas of standard radiotelephony, non-routine…

  8. Adaptive Automation Based on Air Traffic Controller Decision-Making

    NARCIS (Netherlands)

    IJtsma (Student TU Delft), Martijn; Borst, C.; Mercado Velasco, G.A.; Mulder, M.; van Paassen, M.M.; Tsang, P.S.; Vidulich, M.A.

    2017-01-01

    Through smart scheduling and triggering of automation support, adaptive automation has the potential to balance air traffic controller workload. The challenge in the design of adaptive automation systems is to decide how and when the automation should provide support. This paper describes the design

  9. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation.

    Science.gov (United States)

    Klip, Amira; Sun, Yi; Chiu, Tim Ting; Foley, Kevin P

    2014-05-15

    Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays ("software") that engage structural/mechanical elements ("hardware") to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane. Copyright © 2014 the American Physiological Society.

  10. Modeling and Analyzing Transient Military Air Traffic Control

    Science.gov (United States)

    2010-12-01

    arrive and be serviced. In general, for n flights, the number of ways that flights can enter and leave the ATC is given by the nth Catalan number ...collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE DEC 2010 2. REPORT TYPE 3. DATES COVERED 00-00...2010 to 00-00-2010 4. TITLE AND SUBTITLE Modeling and Analyzing Transient Military Air Traffic Control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  11. Estimation of Bimodal Urban Link Travel Time Distribution and Its Applications in Traffic Analysis

    Directory of Open Access Journals (Sweden)

    Yuxiong Ji

    2015-01-01

    Full Text Available Vehicles travelling on urban streets are heavily influenced by traffic signal controls, pedestrian crossings, and conflicting traffic from cross streets, which would result in bimodal travel time distributions, with one mode corresponding to travels without delays and the other travels with delays. A hierarchical Bayesian bimodal travel time model is proposed to capture the interrupted nature of urban traffic flows. The travel time distributions obtained from the proposed model are then considered to analyze traffic operations and estimate travel time distribution in real time. The advantage of the proposed bimodal model is demonstrated using empirical data, and the results are encouraging.

  12. Minimizing the disruptive effects of prospective memory in simulated air traffic control.

    Science.gov (United States)

    Loft, Shayne; Smith, Rebekah E; Remington, Roger W

    2013-09-01

    Prospective memory refers to remembering to perform an intended action in the future. Failures of prospective memory can occur in air traffic control. In two experiments, we examined the utility of external aids for facilitating air traffic management in a simulated air traffic control task with prospective memory requirements. Participants accepted and handed-off aircraft and detected aircraft conflicts. The prospective memory task involved remembering to deviate from a routine operating procedure when accepting target aircraft. External aids that contained details of the prospective memory task appeared and flashed when target aircraft needed acceptance. In Experiment 1, external aids presented either adjacent or nonadjacent to each of the 20 target aircraft presented over the 40-min test phase reduced prospective memory error by 11% compared with a condition without external aids. In Experiment 2, only a single target aircraft was presented a significant time (39-42 min) after presentation of the prospective memory instruction, and the external aids reduced prospective memory error by 34%. In both experiments, costs to the efficiency of nonprospective memory air traffic management (nontarget aircraft acceptance response time, conflict detection response time) were reduced by nonadjacent aids compared with no aids or adjacent aids. In contrast, in both experiments, the efficiency of the prospective memory air traffic management (target aircraft acceptance response time) was facilitated by adjacent aids compared with nonadjacent aids. Together, these findings have potential implications for the design of automated alerting systems to maximize multitask performance in work settings where operators monitor and control demanding perceptual displays. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Air traffic control : FAA enhanced the controller-in-charge program, but more comprehensive evaluation is needed

    Science.gov (United States)

    2001-10-01

    In negotiating its 1998 collective bargaining agreement with its controllers' union (the National Air Traffic Controllers Association, or NATCA), the Federal Aviation Administration (FAA) agreed to a national plan that would reduce by attrition the n...

  14. Analysis of the work of air traffic controllers of the approach control area (APP) of Porto Alegre, Brazil.

    Science.gov (United States)

    Vargas, C V; Guimarães, L B de M; Sant'Anna, A M O

    2012-01-01

    This article presents a study on the activities of the air traffic controllers of the Approach Control Area (APP) of Porto Alegre, Brazil, in different real scenarios. Based on interviews, questionnaires and the analysis of film of real scenes, the following were identified and analyzed: i) the perceptions of risk and complexity of the different air traffic scenes observed; ii) the cognitive factors (knowledge, strategy and attention dynamics) involved in the task and iii) the perception of the controller's workload. The results showed that the task complexity depends on the weather conditions, the number and type of aircraft in observation and that the controllers perceive the scenes in a similar way irrespective of their time in the profession and the type of control (radar or coordination). Attention is the cognitive factor with the greatest impact on the work and mental demand has the greatest impact on workload followed by time demand. The literature on the controllers work in Brazil is scarce and, therefore, this study aimed to contribute to the understanding of the work in one APP in order to promote future changes in the very problematic Brazilian air traffic system.

  15. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  16. Vehicular traffic flow at an intersection with the possibility of turning

    International Nuclear Information System (INIS)

    Foulaadvand, M Ebrahim; Belbasi, Somayyeh

    2011-01-01

    We have developed a Nagel-Schreckenberg cellular automata model for describing a vehicular traffic flow at a single intersection. A set of traffic lights operating in a fixed-time scheme controls the traffic flow. An open boundary condition is applied to the streets each of which conducts a unidirectional flow. Streets are single lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flow dependence on signalization parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exists a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.

  17. Congestion Control and Traffic Scheduling for Collaborative Crowdsourcing in SDN Enabled Mobile Wireless Networks

    Directory of Open Access Journals (Sweden)

    Dawei Shen

    2018-01-01

    Full Text Available Currently, a number of crowdsourcing-based mobile applications have been implemented in mobile networks and Internet of Things (IoT, targeted at real-time services and recommendation. The frequent information exchanges and data transmissions in collaborative crowdsourcing are heavily injected into the current communication networks, which poses great challenges for Mobile Wireless Networks (MWN. This paper focuses on the traffic scheduling and load balancing problem in software-defined MWN and designs a hybrid routing forwarding scheme as well as a congestion control algorithm to achieve the feasible solution. The traffic scheduling algorithm first sorts the tasks in an ascending order depending on the amount of tasks and then solves it using a greedy scheme. In the proposed congestion control scheme, the traffic assignment is first transformed into a multiknapsack problem, and then the Artificial Fish Swarm Algorithm (AFSA is utilized to solve this problem. Numerical results on practical network topology reveal that, compared with the traditional schemes, the proposed congestion control and traffic scheduling schemes can achieve load balancing, reduce the probability of network congestion, and improve the network throughput.

  18. Air Traffic Control: Weak Computer Security Practices Jeopardize Flight Safety

    Science.gov (United States)

    1998-05-01

    Given the paramount importance of computer security of Air Traffic Control (ATC) systems, Congress asked the General Accounting Office to determine (1) whether the Fedcral Aviation Administration (FAA) is effectively managing physical security at ATC...

  19. Traffic data for local emissions monitoring at a signalized intersection

    NARCIS (Netherlands)

    Bigazzi, A.; Lint, J.W.C. van; Klunder, G.; Stelwagen, U.; Ligterink, N.E.

    2010-01-01

    In order to assist planning efforts for air pollution-responsive dynamic traffic management (DTM) systems, this research assesses the accuracy of local emissions monitoring based on traffic data and models. The study quantifies the benefits of increased data resolution for short-term emissions

  20. Transit-Based Emergency Evacuation with Transit Signal Priority in Sudden-Onset Disaster

    Directory of Open Access Journals (Sweden)

    Ciyun Lin

    2016-01-01

    Full Text Available This study presents methods of transit signal priority without transit-only lanes for a transit-based emergency evacuation in a sudden-onset disaster. Arterial priority signal coordination is optimized when a traffic signal control system provides priority signals for transit vehicles along an evacuation route. Transit signal priority is determined by “transit vehicle arrival time estimation,” “queuing vehicle dissipation time estimation,” “traffic signal status estimation,” “transit signal optimization,” and “arterial traffic signal coordination for transit vehicle in evacuation route.” It takes advantage of the large capacities of transit vehicles, reduces the evacuation time, and evacuates as many evacuees as possible. The proposed methods were tested on a simulation platform with Paramics V6.0. To evaluate and compare the performance of transit signal priority, three scenarios were simulated in the simulator. The results indicate that the methods of this study can reduce the travel times of transit vehicles along an evacuation route by 13% and 10%, improve the standard deviation of travel time by 16% and 46%, and decrease the average person delay at a signalized intersection by 22% and 17% when the traffic flow saturation along an evacuation route is 0.81.0, respectively.

  1. Impact of Automation Support on the Conflict Resolution Task in a Human-in-the-Loop Air Traffic Control Simulation

    Science.gov (United States)

    Mercer, Joey; Gomez, Ashley; Gabets, Cynthia; Bienert, Nancy; Edwards, Tamsyn; Martin, Lynne; Gujral, Vimmy; Homola, Jeffrey

    2016-01-01

    To determine the capabilities and limitations of human operators and automation in separation assurance roles, the second of three Human-in-the-Loop (HITL) part-task studies investigated air traffic controllers ability to detect and resolve conflicts under varying task sets, traffic densities, and run lengths. Operations remained within a single sector, staffed by a single controller, and explored, among other things, the controllers responsibility for conflict resolution with or without their involvement in the conflict detection task. Furthermore, these conditions were examined across two different traffic densities; 1x (current-day traffic) and a 20 increase above current-day traffic levels (1.2x). Analyses herein offer an examination of the conflict resolution strategies employed by controllers. In particular, data in the form of elapsed time between conflict detection and conflict resolution are used to assess if, and how, the controllers involvement in the conflict detection task affected the way in which they resolved traffic conflicts.

  2. Training of U.S. Air Traffic Controllers. (IDA Report No. R-206).

    Science.gov (United States)

    Henry, James H.; And Others

    The report reviews the evolution of existing national programs for air traffic controller training, estimates the number of persons requiring developmental and supplementary training, examines present controller selection and training programs, investigates performance measurement methods, considers standardization and quality control, discusses…

  3. Controller recovery from equipment failures in air traffic control: A framework for the quantitative assessment of the recovery context

    International Nuclear Information System (INIS)

    Subotic, Branka; Schuster, Wolfgang; Majumdar, Arnab; Ochieng, Washington

    2014-01-01

    Air Traffic Control (ATC) involves a complex interaction of human operators (primarily air traffic controllers), equipment and procedures. On the rare occasions when equipment malfunctions, controllers play a crucial role in the recovery process of the ATC system for continued safe operation. Research on human performance in other safety critical industries using human reliability assessment techniques has shown that the context in which recovery from failures takes place has a significant influence on the outcome of the process. This paper investigates the importance of context in which air traffic controller recovery from equipment failures takes place, defining it in terms of 20 Recovery Influencing Factors (RIFs). The RIFs are used to develop a novel approach for the quantitative assessment of the recovery context based on a metric referred to as the Recovery Context Indicator (RCI). The method is validated by a series of simulation exercises conducted at a specific ATC Centre. The proposed method is useful to assess recovery enhancement approaches within ATC centres

  4. Detecting Distributed Network Traffic Anomaly with Network-Wide Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yang Dan

    2008-12-01

    Full Text Available Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation. The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a network-wide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their network-wide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.

  5. Ecological interface design : supporting fault diagnosis of automated advice in a supervisory air traffic control task

    NARCIS (Netherlands)

    Borst, C.; Bijsterbosch, V.A.; van Paassen, M.M.; Mulder, M.

    2017-01-01

    Future air traffic control will have to rely on more advanced automation to support human controllers in their job of safely handling increased traffic volumes. A prerequisite for the success of such automation is that the data driving it are reliable. Current technology, however, still warrants

  6. Indicators for successful learning in air traffic control training

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; De Bock, Jeano; Kirschner, Paul A.

    2011-01-01

    Van Meeuwen, L. W., Brand-Gruwel, S., Van Merriënboer, J. J. G., De Bock, J. J. P. R., & Kirschner, P. A. (2010, August). Indicators for successful learning in air traffic control training. Paper presented at the 5th EARLI SIG 14 Learning and Professional Development Conference. Munich, Germany.

  7. A Harmony Search Algorithm approach for optimizing traffic signal timings

    Directory of Open Access Journals (Sweden)

    Mauro Dell'Orco

    2013-07-01

    Full Text Available In this study, a bi-level formulation is presented for solving the Equilibrium Network Design Problem (ENDP. The optimisation of the signal timing has been carried out at the upper-level using the Harmony Search Algorithm (HSA, whilst the traffic assignment has been carried out through the Path Flow Estimator (PFE at the lower level. The results of HSA have been first compared with those obtained using the Genetic Algorithm, and the Hill Climbing on a two-junction network for a fixed set of link flows. Secondly, the HSA with PFE has been applied to the medium-sized network to show the applicability of the proposed algorithm in solving the ENDP. Additionally, in order to test the sensitivity of perceived travel time error, we have used the HSA with PFE with various level of perceived travel time. The results showed that the proposed method is quite simple and efficient in solving the ENDP.

  8. Traffic flow behavior at un-signalized intersection with crossings pedestrians

    Science.gov (United States)

    Khallouk, A.; Echab, H.; Ez-Zahraouy, H.; Lakouari, N.

    2018-02-01

    Mixed traffic flux composed of crossing pedestrians and vehicles extensively exists in cities. To study the characteristics of the interference traffic flux, we develop a pedestrian-vehicle cellular automata model to present the interaction behaviors on a simple cross road. By realizing the fundamental parameters (i.e. injecting rates α1, α2, the extracting rate β and the pedestrian arrival rate αP), simulations are carried out. The vehicular traffic flux is calculated in terms of rates. The effect of the crosswalk can be regarded as a dynamic impurity. The system phase diagrams in the (α1 ,αP) plane are built. It is found that the phase diagrams consist essentially of four phases namely Free Flow, Congested, Maximal Current and Gridlock. The value of the Maximal current phase depends on the extracting rate β, while the Gridlock phase is achieved only when the pedestrians generating rate is higher than a critical value. Furthermore, the effect of vehicles changing lane (Pch1 ,Pch2) and the location of the crosswalk XP on the dynamic characteristics of vehicles flow are investigated. It is found that traffic situation in the system is slightly enhanced if the location of the crosswalks XP is far from the intersection. However, when Pch1, Pch2 increase, the traffic becomes congested and the Gridlock phase enlarges.

  9. Visual problem solving and self-regulation in training air traffic control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo

    2013-01-01

    Van Meeuwen, L. W. (2013). Visual problem solving and self-regulation in training air traffic control (Unpublished doctoral dissertation). Centre for Learning Sciences and Technologies, Open Universiteit, Heerlen, The Netherlands.

  10. Visual Problem Solving and Self‐regulation in Training Air Traffic Control

    NARCIS (Netherlands)

    Meeuwen van, Ludo

    2015-01-01

    Van Meeuwen, L. W. (2013). Visual problem solving and self-regulation in training air traffic control (Unpublished doctoral dissertation). Centre for Learning Sciences and Technologies, Open Universiteit, Heerlen, The Netherlands.

  11. Application of the user-centred design process according ISO 9241-210 in air traffic control.

    Science.gov (United States)

    König, Christina; Hofmann, Thomas; Bruder, Ralph

    2012-01-01

    Designing a usable human machine interface for air traffic control is challenging and should follow approved methods. The ISO 9241-210 standard promises high usability of products by integrating future users and following an iterative process. This contribution describes the proceeding and first results of the analysis and application of ISO 9241-210 to develop a planning tool for air traffic controllers.

  12. Determining treatment frequency for controlling weeds on traffic islands using chemical and non-chemical weed control

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Larsen, S.U.; Andreasen, Christian

    2013-01-01

    Many public authorities rely on the use of non-chemical weed control methods, due to stringent restrictions on herbicide use in urban areas. However, these methods usually require more repeated treatments than chemical weed management, resulting in increased costs of weed management. In order...... of treatments per year were required: glyphosate 2.5, hot water 3, flames 5, hot air/flames 5.5 and steam 5.5 treatments. The results demonstrate that the weed control should be adjusted to the prescribed quality for the traffic islands by regularly assessing the need for weed control. They also show...... to investigate the efficacy of four non-chemical weed control methods and glyphosate treatment, experiments were carried out on traffic islands in the growing seasons 2005 and 2006. Three trial sites were each divided into six treatment areas, which were either treated with glyphosate, flame, steam, hot air...

  13. ON THE ARRIVAL TRAFFIC FLOW ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Nikita A. Assorov

    2017-01-01

    Full Text Available This article is about air traffic flow organization, ICAO regulations describe the organizing of traffic flow as one of the purposes of air traffic control, but they don’t state exactly at what point the flow has to be organized and metered. The flight phase, where air traffic controller interferes with his instructions in order to begin organizing of all aircraft landing at a certain airport depends on the actual traffic volume per hour, airspace capacity and design.The example of air traffic situation in Moscow Domodedovo airport is described in the article, with runway 32 right in use, no significant weather, real usage of STARs, considering all the ICAO and Russian Federation regulations regarding speed control with the restrictions mentioned in AIP of Moscow Domodedovo. The purpose of the experiment is to prove the need of metering the air traffic flow on the entry points in Moscow TMA, because in case of unorganized air traffic flow approach controllers will have additional unnecessary workload.The conducted calculations show, that only 3 aircraft entering TMA on the same distance from initial approach point can be handled using only speed control and existing standard arrival procedures, in all other cases vectoring or holding areas should be used.In order to avoid such situations and increase the number of the aircraft that can be handled by the approach controller with less instructions, all the traffic arriving on the TMA entry point has to be metered by area control centre, because the air traffic control unit has much more space and time for long term speed control modifications, e.g. ±0,02 Mach. In conclusion a simple rule comes to mind – the bigger inbound traffic is, the earlier one has to organize it, in order to do it speed control, radar vectors, miles-in-trail can be used. Also new equipment and technology can help air traffic controller with this task, e.g. AMAN (arrival manager, in addition to this, the experience of

  14. Automation of Data Traffic Control on DSM Architecture

    Science.gov (United States)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2001-01-01

    The design of distributed shared memory (DSM) computers liberates users from the duty to distribute data across processors and allows for the incremental development of parallel programs using, for example, OpenMP or Java threads. DSM architecture greatly simplifies the development of parallel programs having good performance on a few processors. However, to achieve a good program scalability on DSM computers requires that the user understand data flow in the application and use various techniques to avoid data traffic congestions. In this paper we discuss a number of such techniques, including data blocking, data placement, data transposition and page size control and evaluate their efficiency on the NAS (NASA Advanced Supercomputing) Parallel Benchmarks. We also present a tool which automates the detection of constructs causing data congestions in Fortran array oriented codes and advises the user on code transformations for improving data traffic in the application.

  15. Game Theory Model of Traffic Participants within Amber Time at Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Weiwei Qi

    2014-01-01

    Full Text Available The traffic light scheme is composed of red, green, and amber lights, and it has been defined clearly for the traffic access of red and green lights; however, the definition of that for the amber light is indistinct, which leads to the appearance of uncertainty factors and serious traffic conflicts during the amber light. At present, the traffic administrations are faced with the decision of whether to forbid passing or not during the amber light in the cities of China. On one hand, it will go against the purpose of setting amber lights if forbidding passing; on the other hand, it may lead to a mess of traffic flow running if not. And meanwhile the drivers are faced with the decision of passing the intersection or stopping during the amber light as well. So the decision-making behavior of traffic administrations and drivers can be converted into a double game model. And through quantification of their earnings in different choice conditions, the optimum decision-making plan under specific conditions could be solved via the Nash equilibrium solution concept. Thus the results will provide a basis for the formulation of the traffic management strategy.

  16. Game Theory Model of Traffic Participants within Amber Time at Signalized Intersection

    Science.gov (United States)

    Qi, Weiwei; Wen, Huiying; Fu, Chuanyun; Song, Mo

    2014-01-01

    The traffic light scheme is composed of red, green, and amber lights, and it has been defined clearly for the traffic access of red and green lights; however, the definition of that for the amber light is indistinct, which leads to the appearance of uncertainty factors and serious traffic conflicts during the amber light. At present, the traffic administrations are faced with the decision of whether to forbid passing or not during the amber light in the cities of China. On one hand, it will go against the purpose of setting amber lights if forbidding passing; on the other hand, it may lead to a mess of traffic flow running if not. And meanwhile the drivers are faced with the decision of passing the intersection or stopping during the amber light as well. So the decision-making behavior of traffic administrations and drivers can be converted into a double game model. And through quantification of their earnings in different choice conditions, the optimum decision-making plan under specific conditions could be solved via the Nash equilibrium solution concept. Thus the results will provide a basis for the formulation of the traffic management strategy. PMID:25580108

  17. Air Traffic Controllers’ Long-Term Speech-in-Noise Training Effects: A Control Group Study

    Science.gov (United States)

    Zaballos, María T.P.; Plasencia, Daniel P.; González, María L.Z.; de Miguel, Angel R.; Macías, Ángel R.

    2016-01-01

    Introduction: Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. Subjects and Methods: 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and −5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Results: Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=−5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. Discussion: ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Conclusion: Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions. PMID:27991470

  18. Modeling the heterogeneous traffic correlations in urban road systems using traffic-enhanced community detection approach

    Science.gov (United States)

    Lu, Feng; Liu, Kang; Duan, Yingying; Cheng, Shifen; Du, Fei

    2018-07-01

    A better characterization of the traffic influence among urban roads is crucial for traffic control and traffic forecasting. The existence of spatial heterogeneity imposes great influence on modeling the extent and degree of road traffic correlation, which is usually neglected by the traditional distance based method. In this paper, we propose a traffic-enhanced community detection approach to spatially reveal the traffic correlation in city road networks. First, the road network is modeled as a traffic-enhanced dual graph with the closeness between two road segments determined not only by their topological connection, but also by the traffic correlation between them. Then a flow-based community detection algorithm called Infomap is utilized to identify the road segment clusters. Evaluated by Moran's I, Calinski-Harabaz Index and the traffic interpolation application, we find that compared to the distance based method and the community based method, our proposed traffic-enhanced community based method behaves better in capturing the extent of traffic relevance as both the topological structure of the road network and the traffic correlations among urban roads are considered. It can be used in more traffic-related applications, such as traffic forecasting, traffic control and guidance.

  19. Risk Assessment on the Transition Program for Air Traffic Control Automation System Upgrade

    Directory of Open Access Journals (Sweden)

    Li Dong Bin

    2016-01-01

    Full Text Available We analyzed the safety risks of the transition program for Air Traffic Control (ATC automation system upgrade by using the event tree analysis method in this paper. We decomposed the occurrence progress of the three transition phase and built the event trees corresponding to the three stages, and then we determined the probability of success of each factor and calculated probability of success of the air traffic control automation system upgrade transition. In the conclusion, we illustrate the transition program safety risk according to the results.

  20. Manpower Requirements for Air Traffic Control and Flight Service Specialists in Indiana.

    Science.gov (United States)

    Purdue Univ., Lafayette, IN. Office of Manpower Studies.

    As of January 1, 1968 the Federal Aviation Administration (FAA) of the United States Department of Transportation employed 6,963 controllers in airport towers, 7,617 controllers in Air Route Traffic Control Centers, and 4,459 flight service specialists at airport locations. Projected needs are as follows: (1) Controllers in airport towers:…

  1. Efficiency of Roundabouts as Compared to Traffic Light Controlled ...

    African Journals Online (AJOL)

    Bheema

    controlled intersection and multi-lane roundabouts to maximize flow along the system. Thus ... double-lane roundabout two vehicles can approach a roundabout at a time. ..... light color changes that used to permit traffic to flow or to deny. .... also view this comparison in terms of the queue length formed at the entrance of an ...

  2. IMPACT OF POLY-LINGUISTIC LOAD ON AIR TRAFFIC CONTROL AND MONITORING QUALITY

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2012-09-01

    Full Text Available  We have defined the structure and basic characteristics of the poly-linguistic audio-acoustic channel within the framework of controller – pilot communication, and set limits of poly-linguistic load impact on air traffic control.

  3. Model petri net of adaptive traffic lights and its collaboration with a special event

    Directory of Open Access Journals (Sweden)

    Tristono Tomi

    2018-01-01

    Full Text Available Traffic lights have an important role as the system control of vehicles flow on the urban network. Commonly, most countries still using fixed time strategy. Our research proposes the adaptive traffic lights model to response the traffic demand. It uses basic Petri net as a general modeling framework. Foractuating method of minimum and maximum green signal time interval, the green traffic lights have three-time extension units. Next, we collaborate on a case of the existence of railways that crosses on the southern arm of an intersection. We introduce both of collaboration model design of traffic lights and the railway's gate which always closes while a train passing. Verification and validation of the model are based on the simulation result of vehicles queue. The collaboration model design of traffic lights has excellent performance, and it can resolve the congestion problem better than conventional schedule.

  4. Pedestrian signalization and the risk of pedestrian-motor vehicle collisions in Lima, Peru.

    Science.gov (United States)

    Quistberg, D Alex; Koepsell, Thomas D; Boyle, Linda Ng; Miranda, J Jaime; Johnston, Brian D; Ebel, Beth E

    2014-09-01

    Safe walking environments are essential for protecting pedestrians and promoting physical activity. In Peru, pedestrians comprise over three-quarters of road fatality victims. Pedestrian signalization plays an important role managing pedestrian and vehicle traffic and may help improve pedestrian safety. We examined the relationship between pedestrian-motor vehicle collisions and the presence of visible traffic signals, pedestrian signals, and signal timing to determine whether these countermeasures improved pedestrian safety. A matched case-control design was used where the units of study were crossing locations. We randomly sampled 97 control-matched collisions (weighted N=1134) at intersections occurring from October, 2010 to January, 2011 in Lima. Each case-control pair was matched on proximity, street classification, and number of lanes. Sites were visited between February, 2011 and September, 2011. Each analysis accounted for sampling weight and matching and was adjusted for vehicle and pedestrian traffic flow, crossing width, and mean vehicle speed. Collisions were more common where a phased pedestrian signal (green or red-light signal) was present compared to no signalization (odds ratio [OR] 8.88, 95% Confidence Interval [CI] 1.32-59.6). A longer pedestrian-specific signal duration was associated with collision risk (OR 5.31, 95% CI 1.02-9.60 per 15-s interval). Collisions occurred more commonly in the presence of any signalization visible to pedestrians or pedestrian-specific signalization, though these associations were not statistically significant. Signalization efforts were not associated with lower risk for pedestrians; rather, they were associated with an increased risk of pedestrian-vehicle collisions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Ant colony optimization algorithm for signal coordination of oversaturated traffic networks.

    Science.gov (United States)

    2010-05-01

    Traffic congestion is a daily and growing problem of the modern era in mostly all major cities in the world. : Increasing traffic demand strains the existing transportation system, leading to oversaturated network : conditions, especially at peak hou...

  6. Droplet Traffic Control at a simple T junction

    Science.gov (United States)

    Panizza, Pascal; Engl, Wilfried; Colin, Annie; Ajdari, Armand

    2006-03-01

    A basic yet essential element of every traffic flow control is the effect of a junction where the flow is separated into several streams. How do pedestrians, vehicles or blood cells divide when they reach a junction? How does the outcome depend on their density? Similar fundamental questions hold for much simpler systems: in this paper, we have studied the behaviour of periodic trains of water droplets flowing in oil through a channel as they reach a simple, locally symmetric, T junction. Depending on their dilution, we observe that the droplets are either alternately partitioned between both outlets or sorted exclusively into the shortest one. We show that this surprising behaviour results from the hydrodynamic feed-back of drops in the two outlets on the selection process occurring at the junction. Our results offer a first guide for the design and modelling of droplet traffic in complex branched networks, a necessary step towards parallelized droplet-based ``lab-on-chip'' devices.

  7. Development and Validation in Air Traffic Control by Means of Real-Time Simulations

    Directory of Open Access Journals (Sweden)

    Stephan Herr

    2009-02-01

    Full Text Available The airspace in Central Europe is already one of the busiest airspaces in the world and the forecasts predict further traffic increases. The current air transport system is reaching its capacity limits, not only at airports but also in parts of the en-route area. This is mainly due to the workload constraints of air traffic controllers. In the past, many technical system functionalities were developed with the aim of reducing controller workload and thus enabling the safe handling of the predicted traffic growth. But these new functionalities alone will not provide adequate relief to air traffic controllers. Their working procedures and the airspace structure will have to be adapted accordingly. In order to obtain real operational benefits, these technical innovations must be integrated into an overall concept which – in addition to the above-mentioned factors – also takes account of ergonomic aspects and human-machine interfaces. When developing such an overall concept, additional evaluation and validation measures are indispensable to ensure that the desired operational benefits are achieved. This is why DFS has for many years used fast- and real-time simulations to assess and optimise any changes to be made to the air traffic control system. The working methods of DFS in this context are in keeping with the European Operational Concept Validation Methodology of 2007, in short E-OCVM. This paper outlines the development and validation activities of DFS using the MSP D/L project as an example. The project deals with the introduction of the new role of air traffic controllers as multi-sector planners (MSP and new system functionalities, such as air/ground data link (D/L. The project included the development of an operational concept for using the new functionalities as well as for defining working procedures and the airspace structure. This concept was subsequently evaluated by means of a fast-time simulation and two real-time simulations

  8. Transit signal priority with connected vehicle technology.

    Science.gov (United States)

    2014-01-01

    A new TSP logic was proposed, taking advantage of the resources provided by Connected Vehicle (CV) : technology, including two-way communication between the bus and the traffic signal controller, accurate bus : location detection and prediction, and ...

  9. A Congestion Control System Based on VANET for Small Length Roads

    Directory of Open Access Journals (Sweden)

    Ruchin Jain

    2018-01-01

    Full Text Available As vehicle population has been increasing on a daily basis, this leads towards increased number of accidents. To overcome this issue, Vehicular Ad Hoc Network (VANET has come up with lot of novel ideas such as vehicular communication, navigation and traffic controlling. In this study, the main focus is on congestion control at the intersections which result from unclear ahead. For this purpose, a city lane and intersection model has been proposed to manage vehicle mobility. It shows the actual vehicle to vehicle and vehicle to traffic infrastructure communication. The experiment was conducted using Network Simulator 2 (NS 2. The implementation required modelling the road side unit, traffic control unit, and on-board unit along the roadside. In the simulation, including traffic volume, the distance between two signals, end-to-end delay, packet delivery ratio, throughput and packet lost were taken into consideration. These parameters ensure efficient communication between the traffic signals. This results in improved congestion control and road safety, since the vehicles will be signalled not to enter the junction box and information about other vehicles.

  10. A simulation study of the effects of communication delay on air traffic control

    Science.gov (United States)

    1990-09-01

    This study was conducted to examine the impacts of voice communications delays : characteristic of Voice Switching and Control System (VSCS) and satellite : communications systems on air traffic system performance, controller stress : and workload, a...

  11. Optimal and Robust Switching Control Strategies : Theory, and Applications in Traffic Management

    NARCIS (Netherlands)

    Hajiahmadi, M.

    2015-01-01

    Macroscopic modeling, predictive and robust control and route guidance for large-scale freeway and urban traffic networks are the main focus of this thesis. In order to increase the efficiency of our control strategies, we propose several mathematical and optimization techniques. Moreover, in the

  12. A Longitudinal Study of Myers-Briggs Personality Types in Air Traffic Controllers

    National Research Council Canada - National Science Library

    Dollar, Carolyn S; Schroeder, David J

    2004-01-01

    .... The study investigated the relationship between MBTI types and initial success in the Air Traffic Control Academy Screen Program, subsequent field training outcomes, and transition to a supervisory...

  13. EMPLOYMENT OF ATMS TRAFFIC CONTROL DEVICE DATA TO ASSIST IN IDENTIFICATION OF CRASH-PRONE INTERSECTIONS

    Directory of Open Access Journals (Sweden)

    Kevin P. HWANG

    2008-01-01

    Full Text Available This paper employs information from the advanced traffic management system (ATMS of Kaohsiung, Taiwan to help differentiate those crash-prone intersections by discriminant analysis. From the 25,604 records of 2005, 1977 crashes that occurred at 119 intersections with traffic exposure data were compiled to calibrate and validate the model. The road attributes of crash records, traffic control devices and movement exposure are the three types of data used as predicting variables. The correct ratios for model calibration and validation range from 78.33% to 67.80%. if traffic movements are removed, the correct ratios become slightly lowered to 76.67% to 66.10%. Research findings reveal that with or without inclusion of exposure data in identifying high crash-prone intersections for an urban environment does not make a significant difference. in addition, layout and traffic control devices could possibly explain about 66.10 ∼ 78.33% of the possibility that an intersection will become a high crash intersection. it suggests that the developed approach could be a countermeasure for budget constraints and difficulties in continuation of exposure data collection, and the information of ATMS could help identify crash-prone urban intersections.

  14. Expertise differences in air traffic control: An eye-tracking study

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Kirschner, Paul A.; De Bock, Jeano; Van Merriënboer, Jeroen

    2012-01-01

    Van Meeuwen, L. W., Jarodzka, H., Brand-Gruwel, S., Kirschner, P. A., De Bock, J. J. P. R., & Van Merriënboer, J. J. G. (2012, April). Expertise differences in air traffic control: An eye-tracking study. Paper presented at the American Educational Research Association Annual Meeting 2012, Vancouver,

  15. Convergence of Vehicle and Infrastructure Data for Traffic and Demand Management

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley E.

    2015-11-16

    The increasing availability of highly granular, vehicle trajectory data combined with ever increasing stores of roadway sensor data has provided unparalleled observability into the operation of our urban roadway networks. These data sources are quickly moving from research and prototype environments into full-scale commercial deployment and data offerings. The observability gained allows for increased control opportunities to enhance transportation mobility, safety and energy efficiency. The National Renewable Energy Laboratory (NREL) is involved in three initiatives to leverage these data for positive outcomes: 1) In 2015 NREL, in cooperation with industry and university partners, was awarded an ARPA-E research grant to research a control architecture to incentivize individual travelers toward more sustainable travel behavior. Based on real-time data on the traveler's destination and state of the system, the traveler is presented with route and/or mode choices and offered incentives to accept sustainable alternatives over less-sustainable ones. The project tests the extent to which small incentives can influence, or tip the balance toward more sustainable travel behavior. 2) Although commercial sources of travel time and speed have emerged in recent years based on vehicle probe data, volume estimates continue to rely primarily on historical count data factored for the time of day, day of week, and season of year. Real-time volume flows would enable better tools, simulation in the loop, and ultimately more effective control outcomes. NREL in cooperation with the University of Maryland and industry traffic data providers (INRIX, HERE and TomTom), are attempting to accelerate the timeframe to a viable real-time vehicle volume data feed based on probe data. 3) Signal control on urban arterials for years has had to rely on models rather than measured data to assess performance. High-resolution controller data and low-cost re-identification data now allows for

  16. Airport Surface Traffic Control Visual Ground Aids Engineering and Development Plan

    Science.gov (United States)

    1977-01-01

    The plan described in this document supports the overall program at the Transportation Systems Center to define, design, develop, and evaluate systems that meet the requirements of airport surface traffic control. This plan is part of documentation s...

  17. Traffic flow wide-area surveillance system definition

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  18. Traffic jam driving with NMV avoidance

    Science.gov (United States)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  19. Air Traffic Control: Status of FAA's Implementation of the Display System Replacement Project

    National Research Council Canada - National Science Library

    1999-01-01

    ...) implementation of the Display System Replacement (DSR) project. DSR, which replaces the controllers' workstations and other equipment in the nation's en route centers, is one of FAA's major projects under the air traffic control modernization program...

  20. Traffic flow impacts of adaptive cruise control deactivation and (Re)activation with cooperative driver behavior

    NARCIS (Netherlands)

    Klunder, G.; Li, M.; Minderhoud, M.

    2009-01-01

    In 2006 in the Netherlands, a field operational test was carried out to study the effect of adaptive cruise control (ACC) and lane departure warning on driver behavior and traffic flow in real traffic. To estimate the effect for larger penetration rates, simulations were needed. For a reliable

  1. Vehicle-class Specific Control of Freeway Traffic

    NARCIS (Netherlands)

    Schreiter, T.

    2013-01-01

    The increase of mobility of the past decades has led to substantial congestion on the freeways. Traffic jams emerge both on a daily basis at the same location, as well as during accidents when a part of the freeways is temporarily blocked. In those cases, traffic management centers intervene into

  2. Planes, Politics and Oral Proficiency: Testing International Air Traffic Controllers

    Science.gov (United States)

    Moder, Carol Lynn; Halleck, Gene B.

    2009-01-01

    This study investigates the variation in oral proficiency demonstrated by 14 Air Traffic Controllers across two types of testing tasks: work-related radio telephony-based tasks and non-specific English tasks on aviation topics. Their performance was compared statistically in terms of level ratings on the International Civil Aviation Organization…

  3. Hematological and immunological effects of stress of air traffic controllers in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Valdenilson Ribeiro Ribas

    2011-06-01

    Full Text Available BACKGROUND: Several studies have shown that stress and emotional reactions can affect immune responses in animals and humans. OBJECTIVE: The aim of this study was to evaluate hematological and immunological effects of stress on air traffic controllers. METHODS: Thirty air traffic controllers and 15 aeronautical information service operators were evaluated. The groups were divided as information service operators with 10 years or more of experience (AIS>10 and with less than 10 years in the profession (AIS10 and with less than 10 years in the profession (ATCo10 group presented a significantly lower phagocytosis rate of monocytes at 2:00 p.m. compared to 8:00 a.m. Moreover, the ATCo>10 group presented lower hemoglobin, mean corpuscular hemoglobin concentration, platelet and leukocyte levels, and increased cortisol concentrations at 8:00 a.m. compared to the other groups. Additionally, this group had lower phagocytosis rate of monocytes, and hemoglobin, platelet, leukocyte, basophils and nitric oxide levels at 2:00 p.m. compared to the other groups. CONCLUSION: Stress seems to greatly affect immune responses of air traffic controllers with more than ten years of experience.

  4. Variable cycle control model for intersection based on multi-source information

    Science.gov (United States)

    Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan

    2018-05-01

    In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.

  5. Trajectory Specification for Automation of Terminal Air Traffic Control

    Science.gov (United States)

    Paielli, Russell A.

    2016-01-01

    "Trajectory specification" is the explicit bounding and control of aircraft tra- jectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft nav- igation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) sys- tem or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents ATC algorithms and software for achieving a specified delay of runway arrival time.

  6. Fugitive dust control experiments using soil fixatives on vehicle traffic surfaces

    International Nuclear Information System (INIS)

    Winberg, M.R.; Wixom, V.E.

    1992-08-01

    This report presents the results of engineering scale dust control experiments using soil fixative for contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of soil fixatives to control generation of fugitive dusts during vehicle traffic operations. Previous experiments conducted in FY 1990 included testing of the soil fixative, ENTAC. These experiments showed that ENTAC was effective in controlling dust generation but had several undesirable properties such as slow cure times and clogged the pumps and application nozzles. Therefore, other products would have to be evaluated to find a suitable candidate. As a result, two soil fixatives were tested in these present experiments, COHEREX-PM, an asphalt emulsion product manufactured by Witco Corporation and FLAMBINDER, a calcium lignosulfonate product manufactured by Flambeau Corporation. The results of the experiments include product performance and recommended application methods for application in a field deployable contamination control unit to be built in FY 1993

  7. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  8. A cost-effective traffic data collection system based on the iDEN mobile telecommunication network.

    Science.gov (United States)

    2008-10-01

    This report describes a cost-effective data collection system for Caltrans 170 traffic signal : controller. The data collection system is based on TCP/IP communication over existing : low-cost mobile communication networks and Motorola iDEN1 mobile...

  9. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J.; Reuter, U. [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1995-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  10. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J; Reuter, U [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1996-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  11. Impacts of Traffic Noise and Traffic Volume on Birds of Roadside Habitats

    Directory of Open Access Journals (Sweden)

    Kirsten M. Parris

    2009-06-01

    Full Text Available Roadside habitats are important for a range of taxa including plants, insects, mammals, and birds, particularly in developed countries in which large expanses of native vegetation have been cleared for agriculture or urban development. Although roadside vegetation may provide suitable habitat for many species, resident animals can be exposed to high levels of traffic noise, visual disturbance from passing vehicles, and the risk of collision with cars and trucks. Traffic noise can reduce the distance over which acoustic signals such as song can be detected, an effect known as acoustic interference or masking. Studies from the northern hemisphere show that the singing behavior of birds changes in the presence of traffic noise. We investigated the impact of traffic noise and traffic volume on two species of birds, the Grey Shrike-thrush (Colluricincla harmonica and the Grey Fantail (Rhipidura fuliginosa, at 58 roadside sites on the Mornington Peninsula, southeastern Australia. The lower singing Grey Shrike-thrush sang at a higher frequency in the presence of traffic noise, with a predicted increase in dominant frequency of 5.8 Hz/dB of traffic noise, and a total effect size of 209 Hz. In contrast, the higher singing Grey Fantail did not appear to change its song in traffic noise. The probability of detecting each species on a visit to a site declined substantially with increasing traffic noise and traffic volume, with several lines of evidence supporting a larger effect of traffic noise. Traffic noise could hamper detection of song by conspecifics, making it more difficult for birds to establish and maintain territories, attract mates and maintain pair bonds, and possibly leading to reduced breeding success in noisy roadside habitats. Closing key roads during the breeding season is a potential, but untested, management strategy to protect threatened bird species from traffic noise and collision with vehicles at the time of year when they are most

  12. Complexity and Automation Displays of Air Traffic Control: Literature Review and Analysis

    National Research Council Canada - National Science Library

    Xing, Jing; Manning, Carol A

    2005-01-01

    This report reviewed a number of measures of complexity associated with visual displays and analyzed the potential to apply these methods to assess the complexity of air traffic control (ATC) displays...

  13. Traffic days '95 at AUC. Conference report. Vol. 1

    International Nuclear Information System (INIS)

    Lohmann-Hansen, A.

    1995-01-01

    Volume one of Traffic days '95 at AUC (Aalborg University, Denmark) contains 28 papers presented at the conference held on August 21 - 22, 1995, at Aalborg University in Jutland, Denmark. The papers in this volume are ranged under the general headings of: The road to sustainable transport, the evaluation of traffic and infrastructure planning - decision-making procedures, traffic and the environment in towns, railways, traffic information + signals, and environmental conditions relative to shipping

  14. Trainer Interventions as Instructional Strategies in Air Traffic Control Training

    Science.gov (United States)

    Koskela, Inka; Palukka, Hannele

    2011-01-01

    Purpose: This paper aims to identify methods of guidance and supervision used in air traffic control training. It also aims to show how these methods facilitate trainee participation in core work activities. Design/methodology/approach: The paper applies the tools of conversation analysis and ethnomethodology to explore the ways in which trainers…

  15. Photonics approach to traffic signs

    Science.gov (United States)

    Litwin, Dariusz; Galas, Jacek; CzyŻewski, Adam; Rymsza, Barbara; Kornalewski, Leszek; Kryszczyński, Tadeusz; Mikucki, Jerzy; Wikliński, Piotr; Daszkiewicz, Marek; Malasek, Jacek

    2016-12-01

    The automotive industry has been always a driving force for all economies. Despite of its beneficial meaning to every society it brings also many issues including wide area of road safety. The latter has been enforced by the increasing number of cars and the dynamic development of the traffic as a whole. Road signs and traffic lights are crucial in context of good traffic arrangement and its fluency. Traffic designers are used to treat horizontal road signs independently of vertical signs. However, modern light sources and growing flexibility in shaping optical systems create opportunity to design more advanced and smart solutions. In this paper we present an innovative, multidisciplinary approach that consists in tight interdependence of different traffic signals. We describe new optical systems together with their influence on the perception of the road user. The analysis includes maintenance and visibility in different weather conditions. A special attention has been focused on intersections of complex geometry.

  16. Simulation of load traffic and steeped speed control of conveyor

    Science.gov (United States)

    Reutov, A. A.

    2017-10-01

    The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.

  17. Traffic calming for the prevention of road traffic injuries: systematic review and meta-analysis.

    Science.gov (United States)

    Bunn, F; Collier, T; Frost, C; Ker, K; Roberts, I; Wentz, R

    2003-09-01

    To assess whether area-wide traffic calming schemes can reduce road crash related deaths and injuries. Systematic review and meta-analysis. Cochrane Injuries Group Specialised Register, Cochrane Central Register of Controlled Trials, Medline, EMBASE, Sociological Abstracts Science (and social science) citation index, National Technical Information service, Psychlit, Transport Research Information Service, International Road Research Documentation, and Transdoc, and web sites of road safety organisation were searched; experts were contacted, conference proceedings were handsearched, and relevant reference lists were checked. Randomised controlled trials, and controlled before/after studies of area-wide traffic calming schemes designed to discourage and slow down through traffic on residential roads. Data were collected on road user deaths, injuries, and traffic crashes. For each study rate ratios were calculated, the ratio of event rates before and after intervention in the traffic calmed area divided by the corresponding ratio of event rates in the control area, which were pooled to give an overall estimate using a random effects model. Sixteen controlled before/after studies met our inclusion criteria. Eight studies reported the number of road user deaths: pooled rate ratio 0.63 (95% confidence interval (CI) 0.14 to 2.59). Sixteen studies reported the number of injuries (fatal and non-fatal): pooled rate ratio 0.89 (95% CI 0.80 to 1.00). All studies were in high income countries. Area-wide traffic calming in towns and cities has the potential to reduce road traffic injuries. However, further rigorous evaluations of this intervention are needed, especially in low and middle income countries.

  18. Impact of Vehicular Countdown Signals on Driving Psychologies and Behaviors: Taking China as an Example

    Directory of Open Access Journals (Sweden)

    Fuquan Pan

    2017-01-01

    Full Text Available Countdown signal control is a relatively new control mode that can inform a driver in advance about the remaining time to pass through intersections or the time needed to wait for other drivers and pedestrians. At present, few countries apply vehicular countdown signals. However, in China, some cities have applied vehicular countdown signals for years, though it is unclear how and how much such signals influence driving psychologies and behaviors compared with non-countdown signal controls. The present work aims to clarify the impact of vehicular countdown signals on driving psychologies and behaviors on the cognitive level. A questionnaire survey with 32 questions about driving psychologies and behaviors was designed, and an online survey was conducted. A total of 1051 valid questionnaires were received. The survey data were analyzed, and the main results indicate that most of the surveyed drivers prefer countdown signal controls and think that such controls can improve not only traffic safety but also traffic operational efficiency. The surveyed drivers also think that countdown signal controls have an impact on driving psychologies and behaviors and the survey results have demonstrated that the driving behaviors of female drivers surveyed are not conservative under the clear conditions of green countdown signal control. Further studies and methods concerning the effects of countdown signals on driving psychologies and behaviors are discussed.

  19. Video Demo: Deep Reinforcement Learning for Coordination in Traffic Light Control

    NARCIS (Netherlands)

    van der Pol, E.; Oliehoek, F.A.; Bosse, T.; Bredeweg, B.

    2016-01-01

    This video demonstration contrasts two approaches to coordination in traffic light control using reinforcement learning: earlier work, based on a deconstruction of the state space into a linear combination of vehicle states, and our own approach based on the Deep Q-learning algorithm.

  20. Benefits of Imperfect Conflict Resolution Advisory Aids for Future Air Traffic Control.

    Science.gov (United States)

    Trapsilawati, Fitri; Wickens, Christopher D; Qu, Xingda; Chen, Chun-Hsien

    2016-11-01

    The aim of this study was to examine the human-automation interaction issues and the interacting factors in the context of conflict detection and resolution advisory (CRA) systems. The issues of imperfect automation in air traffic control (ATC) have been well documented in previous studies, particularly in conflict-alerting systems. The extent to which the prior findings can be applied to an integrated conflict detection and resolution system in future ATC remains unknown. Twenty-four participants were evenly divided into two groups corresponding to a medium- and a high-traffic density condition, respectively. In each traffic density condition, participants were instructed to perform simulated ATC tasks under four automation conditions, including reliable, unreliable with short time allowance to secondary conflict (TAS), unreliable with long TAS, and manual conditions. Dependent variables accounted for conflict resolution performance, workload, situation awareness, and trust in and dependence on the CRA aid, respectively. Imposing the CRA automation did increase performance and reduce workload as compared with manual performance. The CRA aid did not decrease situation awareness. The benefits of the CRA aid were manifest even when it was imperfectly reliable and were apparent across traffic loads. In the unreliable blocks, trust in the CRA aid was degraded but dependence was not influenced, yet the performance was not adversely affected. The use of CRA aid would benefit ATC operations across traffic densities. CRA aid offers benefits across traffic densities, regardless of its imperfection, as long as its reliability level is set above the threshold of assistance, suggesting its application for future ATC. © 2016, Human Factors and Ergonomics Society.

  1. Long-Range Emergency Preemption of Traffic Lights

    Science.gov (United States)

    Bachelder, Aaron

    2005-01-01

    A forwarding system could prove beneficial as an addition to an electronic communication-and-control system that automatically modifies the switching of traffic lights to give priority to emergency vehicles. A system to which the forwarding system could be added could be any of a variety of emergency traffic-signal-preemption systems: these include systems now used in some municipalities as well as advanced developmental systems described in several NASA Tech Briefs articles in recent years. Because of a variety of physical and design limitations, emergency traffic-signal- preemption systems now in use are often limited in range to only one intersection at a time: in a typical system, only the next, closest intersection is preempted for an emergency vehicle. Simulations of gridlock have shown that such systems offer minimal advantages and can even cause additional delays. In analogy to what happens in fluid dynamics, the forwarding system insures that flow at a given location is sustained by guaranteeing downstream flow along the predicted route (typically a main artery) and intersecting routes (typically, side streets). In simplest terms, the forwarding system starts by taking note of any preemption issued by the preemption system to which it has been added. The forwarding system predicts which other intersections could be encountered by the emergency vehicle downstream of the newly preempted intersection. The system then forwards preemption triggers to those intersections. Beyond affording a right of way for the emergency vehicle at every intersection that lies ahead along any likely route from the current position of the vehicle, the forwarding system also affords the benefit of clearing congested roads far ahead of the vehicle. In a metropolitan environment with heavy road traffic, forwarding of preemption triggers could greatly enhance the performance of a pre-existing preemption system.

  2. Dynamic access control for two-direction shared traffic lanes

    NARCIS (Netherlands)

    Ebben, Mark; van der Zee, D.J.; van der Heijden, Matthijs C.

    2001-01-01

    In specific traffic situations, a single lane is available for traffic from two directions. Examples are traffic accidents or road maintenance reducing the number of available lanes on a road or, as we faced in a project on underground freight transportation, construction of a single lane for two

  3. Emotional and cognitive influences in air traffic controller tasks: An investigation using a virtual environment?

    Science.gov (United States)

    Truschzinski, Martina; Betella, Alberto; Brunnett, Guido; Verschure, Paul F M J

    2018-05-01

    Air traffic controllers are required to perform complex tasks which require attention and high precision. This study investigates how the difficulty of such tasks influences emotional states, cognitive workload and task performance. We use quantitative and qualitative measurements, including the recording of pupil dilation and changes in affect using questionnaires. Participants were required to perform a number of air traffic control tasks using the immersive human accessible Virtual Reality space in the "eXperience Induction Machine". Based on the data collected, we developed and validated a model which integrates personality, workload and affective theories. Our results indicate that the difficulty of an air traffic control task has a direct influence on cognitive workload as well as on the self-reported mood; whereas both mood and workload seem to change independently. In addition, we show that personality, in particular neuroticism, affects both mood and performance of the participants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Task-Oriented and Relationship-Building Communications between Air Traffic Controllers and Pilots

    Directory of Open Access Journals (Sweden)

    Inwon Kang

    2017-09-01

    Full Text Available By questioning the lopsided attention on task-oriented factors in air traffic controller-pilot communication, the current study places an equal weighting on both task-oriented and relationship-building communications, and investigates how each type of communication influences sustainable performance in airline operation team. Results show that both task-oriented and relationship-building communications in terms of sustainability of team process predicted greater communication satisfaction at work. Also, both task interdependence and shared leadership influenced both types of air traffic controller-pilot communication. However, only relationship-building communication had a direct influence on perceived work performance whereas task-oriented communication had not. Along with task-oriented factors, this study raises the relationship-oriented factors as important resources for the sustainable team performance in airline industry.

  5. Air Traffic Control: Immature Software Acquisition Processes Increase FAA System Acquisition Risks

    Science.gov (United States)

    1997-03-01

    The General Accounting Office (GAO) at the request of Congress reviewed (1) : the maturity of Federal Aviation Administration's (FAA's) Air Traffic Control : (ATC) modernization software acquisition processes, and (2) the steps/actions : FAA has unde...

  6. A new intelligent approach for air traffic control using gravitational ...

    Indian Academy of Sciences (India)

    Therefore, poor management of this congestion may lead to a lot of flight delays, increase of operational errors by air traffic control personnel ... the PLT [8–11], and decreasing the duration of scheduling. [12, 13]. Hansen [3], Hu ...... [14] Hu X-B and Paolo E D 2009 An efficient genetic algorithm with uniform crossover for air ...

  7. Performance of an Automated System for Control of Traffic in Terminal Airspace

    Science.gov (United States)

    Nikoleris, Tasos; Erzberger, Heinz; Paielli, Russell A.; Chu, Yung-Cheng

    2016-01-01

    This paper examines the performance of a system that performs automated conflict resolution and arrival scheduling for aircraft in the terminal airspace around major airports. Such a system has the potential to perform separation assurance and arrival sequencing tasks that are currently handled manually by human controllers. The performance of the system is tested against several simulated traffic scenarios that are characterized by the rate at which air traffic is metered into the terminal airspace. For each traffic scenario, the levels of performance that are examined include: number of conflicts predicted to occur, types of resolution maneuver used to resolve predicted conflicts, and the amount of delay for all flights. The simulation results indicate that the percentage of arrivals that required a maneuver that changes the flight's horizontal route ranged between 11% and 15% in all traffic scenarios. That finding has certain implications if this automated system were to be implemented simply as a decision support tool. It is also found that arrival delay due to purely wake vortex separation requirements on final approach constituted only between 29% and 35% of total arrival delay, while the remaining major portion of it is mainly due to delay back propagation effects.

  8. Simulation-based robust optimization for signal timing and setting.

    Science.gov (United States)

    2009-12-30

    The performance of signal timing plans obtained from traditional approaches for : pre-timed (fixed-time or actuated) control systems is often unstable under fluctuating traffic : conditions. This report develops a general approach for optimizing the ...

  9. The predictive validity of personality tests in air traffic controller selection

    NARCIS (Netherlands)

    Roe, R.A.; Oprins, E.A.P.B.; Geven, E.

    2012-01-01

    A brief historical review of test methods used for selecting air traffic controllers (ATCOs) shows that in contrast to e.g. ability tests and job samples, personality tests have been used rather infrequently. The lesser popularity of personality tests may be explained from the belief that

  10. Attentional costs and failures in air traffic control notifications.

    Science.gov (United States)

    Imbert, Jean-Paul; Hodgetts, Helen M; Parise, Robert; Vachon, François; Dehais, Frédéric; Tremblay, Sébastien

    2014-01-01

    Large display screens are common in supervisory tasks, meaning that alerts are often perceived in peripheral vision. Five air traffic control notification designs were evaluated in their ability to capture attention during an ongoing supervisory task, as well as their impact on the primary task. A range of performance measures, eye-tracking and subjective reports showed that colour, even animated, was less effective than movement, and notifications sometimes went unnoticed. Designs that drew attention to the notified aircraft by a pulsating box, concentric circles or the opacity of the background resulted in faster perception and no missed notifications. However, the latter two designs were intrusive and impaired primary task performance, while the simpler animated box captured attention without an overhead cognitive cost. These results highlight the need for a holistic approach to evaluation, achieving a balance between the benefits for one aspect of performance against the potential costs for another. Practitioner summary: We performed a holistic examination of air traffic control notification designs regarding their ability to capture attention during an ongoing supervisory task. The combination of performance, eye-tracking and subjective measurements demonstrated that the best design achieved a balance between attentional power and the overhead cognitive cost to primary task performance.

  11. A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadia Adnan Shiltagh

    2015-11-01

    Full Text Available Wireless Multimedia Sensor Networks (WMSNs are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC. The Modify Spike Neural Network controller (MSNC can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC algorithm shows that the (MSNTLP with EWBPRC is more efficient than (FTLP with EWBPRC algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC and EWBPRC with fixed traffic load parameter (µ shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2 in a computer having the following properties: windows 7 (64-bit, core i7, RAM 8GB, hard 1TB.

  12. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    Energy Technology Data Exchange (ETDEWEB)

    Vismari, Lucio Flavio, E-mail: lucio.vismari@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil); Batista Camargo Junior, Joao, E-mail: joaocamargo@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil)

    2011-07-15

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  13. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    Vismari, Lucio Flavio; Batista Camargo Junior, Joao

    2011-01-01

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  14. Some indices of bodily reaction of traffic controllers to atmospheric pollution by automobile exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Partsef, D.P.; Bessonova, N.A.

    1976-12-01

    The authors studied pollution of the atmospheric air at 20 posts on Moscow streets with various intensity of auto traffic. They sampled for carbon monoxide, hydrocarbons, nitrogen dioxide, dust, acrolein, oxidants, and ozone and found that the concentration of these substances was a direct function of the intensity of auto flow and a reverse function of the width of the highway. Traffic controllers exhibited increased carboxyhemoglobin blood levels, decrease in bactericidal properties and increase in number of colonies of skin microorganisms. The controller complained in weariness, cardiovascular and gastrointestinal disturbances.

  15. Traffic simulation for mixed traffic systems | Mbam | Global Journal of ...

    African Journals Online (AJOL)

    Traffic problem is classified into single and mixed, especially in most developing countries, where motorbikes are used as the most popular transportation system. The aim of this paper is to introduce the motorbike symbol into the traffic light control system to separate cars/lorries indicator from that of motorbike. This is likely ...

  16. Detecting air traffic controller interventions in recorded air transportation system data

    Science.gov (United States)

    Kwon, Yul

    In this study, I propose a systematic method of detecting aircraft deviation due to air traffic controller (ATC) intervention. The aircraft deviations associated with ATC interventions are detected using a heuristic algorithm developed from analyzing the actual positions of an aircraft to its filed flight plan when the aircraft trajectories were identified as having an encounter in a loss-of-separation incident. An actual (closed-loop) flight trajectory of the Cleveland Air Route Traffic Control Center (ZOB ARTCC) was collected from the FlightAware database. This was compared with the corresponding planned (open-loop) trajectory dataset generated by the Microsoft(c) Flight Simulator X (FSX). I implemented a conflict-detection algorithm in Matlab to identify open-loop flight trajectories that encounters in loss-of-separation. I analyzed the differences between the closed-loop and open-loop flight trajectories of aircrafts that were identified to have encounters in loss of separation. The analysis identified operationally significant deviations in the closed-loop trajectory data with respect to the horizontal paths of the aircrafts. I then developed and validated a heuristic algorithm, the ATC intervention detection algorithm, based on the findings from the analysis. When used with a test dataset to validate the algorithm, it achieved an 85.7% detection rate in detecting horizontal deviations made by the ATC in resolving identified conflicts, and a false-alarm rate of 68%. In addition to the ATC intervention detection algorithm, I present in this paper an analysis of deviated flight trajectories in an effort to display how the presented methodology can be utilized to provide insight into air traffic controller resolution strategies.

  17. Traffic Flow at Sags : Theory, Modeling and Control

    NARCIS (Netherlands)

    Goni-Ros, B.

    2016-01-01

    Sag vertical curves (sags) are roadway sections along which the gradient increases gradually in the direction of traffic. Empirical observations show that, on freeways, traffic congestion often occurs at sags; actually, in some countries (e.g., Japan), sags are one of the most common types of

  18. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses.

    Science.gov (United States)

    Soares, Helena; Lasserre, Rémi; Alcover, Andrés

    2013-11-01

    Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Effects of turning and through lane sharing on traffic performance at intersections

    Science.gov (United States)

    Li, Xiang; Sun, Jian-Qiao

    2016-02-01

    Turning vehicles strongly influence traffic flows at intersections. Effective regulation of turning vehicles is important to achieve better traffic performance. This paper studies the impact of lane sharing and turning signals on traffic performance at intersections by using cellular automata. Both right-turn and left-turn lane sharing are studied. Interactions between vehicles and pedestrians are considered. The transportation efficiency, road safety and energy economy are the traffic performance metrics. Extensive simulations are carried out to study the traffic performance indices. It is observed that shared turning lanes and permissive left-turn signal improve the transportation efficiency and reduce the fuel consumption in most cases, but the safety is usually sacrificed. It is not always beneficial for the through vehicles when they are allowed to be in the turning lanes.

  20. Scheduling and control strategies for the departure problem in air traffic control

    Science.gov (United States)

    Bolender, Michael Alan

    Two problems relating to the departure problem in air traffic control automation are examined. The first problem that is addressed is the scheduling of aircraft for departure. The departure operations at a major US hub airport are analyzed, and a discrete event simulation of the departure operations is constructed. Specifically, the case where there is a single departure runway is considered. The runway is fed by two queues of aircraft. Each queue, in turn, is fed by a single taxiway. Two salient areas regarding scheduling are addressed. The first is the construction of optimal departure sequences for the aircraft that are queued. Several greedy search algorithms are designed to minimize the total time to depart a set of queued aircraft. Each algorithm has a different set of heuristic rules to resolve situations within the search space whenever two branches of the search tree with equal edge costs are encountered. These algorithms are then compared and contrasted with a genetic search algorithm in order to assess the performance of the heuristics. This is done in the context of a static departure problem where the length of the departure queue is fixed. A greedy algorithm which deepens the search whenever two branches of the search tree with non-unique costs are encountered is shown to outperform the other heuristic algorithms. This search strategy is then implemented in the discrete event simulation. A baseline performance level is established, and a sensitivity analysis is performed by implementing changes in traffic mix, routing, and miles-in-trail restrictions for comparison. It is concluded that to minimize the average time spent in the queue for different traffic conditions, a queue assignment algorithm is needed to maintain an even balance of aircraft in the queues. A necessary consideration is to base queue assignment upon traffic management restrictions such as miles-in-trail constraints. The second problem addresses the technical challenges associated

  1. Complaints of Poor Sleep and Risk of Traffic Accidents: A Population-Based Case-Control Study.

    Science.gov (United States)

    Philip, Pierre; Chaufton, Cyril; Orriols, Ludivine; Lagarde, Emmanuel; Amoros, Emmanuelle; Laumon, Bernard; Akerstedt, Torbjorn; Taillard, Jacques; Sagaspe, Patricia

    2014-01-01

    This study aimed to determine the sleepiness-related factors associated with road traffic accidents. A population based case-control study was conducted in 2 French agglomerations. 272 road accident cases hospitalized in emergency units and 272 control drivers matched by time of day and randomly stopped by police forces were included in the study. Odds ratios were calculated for the risk of road traffic accidents. As expected, the main predictive factor for road traffic accidents was having a sleep episode at the wheel just before the accident (OR 9.97, CI 95%: 1.57-63.50, ptraffic accidents was 3.35 times higher in subjects who reported very poor quality sleep during the last 3 months (CI 95%: 1.30-8.63, ptraffic accidents. Physicians should be attentive to complaints of poor sleep quality and quantity, symptoms of anxiety-nervousness and/or drug consumption in regular car drivers.

  2. Statistical analysis of traversal behavior under different types of traffic lights

    Science.gov (United States)

    Wang, Boran; Wang, Ziyang; Li, Zhiyin

    2017-12-01

    According to the video observation, it is found that the traffic signal type signal has a significant effect on the illegal crossing behavior of pedestrians at the intersection. Through the method of statistical analysis and variance analysis, the difference between the violation rate and the waiting position of pedestrians at different intersecting lights is compared, and the influence of traffic signal type on pedestrian crossing behavior is evaluated. The results show that the violation rate of the intersection of the static pedestrian lights is significantly higher than that of the countdown signal lights. There are significant differences in the waiting position of the intersection of different signal lights.

  3. Effects of an alternating work shift on air traffic controllers and the relationship with excessive daytime sleepiness and stress.

    Science.gov (United States)

    Freitas, Ângela M; Portuguez, Mirna Wetters; Russomano, Thaís; Freitas, Marcos de; Silvello, Silvio Luis da Silva; Costa, Jaderson Costa da

    2017-10-01

    To evaluate symptoms of stress and excessive daytime sleepiness (EDS) in air traffic control (ATC) officers in Brazil. Fifty-two ATC officers participated, based at three air traffic control units, identified as A, B and C. Stress symptoms were assessed using the Lipp Inventory of Stress Symptoms for Adults, and EDS by the Epworth Sleepiness Scale. The sample mean age was 37 years, 76.9% of whom were male. Excessive daytime sleepiness was identified in 25% of the ATC officers, with 84.6% of these based at air traffic control unit A, which has greater air traffic flow, operating a 24-hour alternating work shift schedule. A total of 16% of the ATC officers had stress symptoms, and of these, 62% showed a predominance of physical symptoms. The high percentage of ATC officers with EDS identified in group A may be related to chronodisruption due to night work and alternating shifts.

  4. Model of large scale man-machine systems with an application to vessel traffic control

    NARCIS (Netherlands)

    Wewerinke, P.H.; van der Ent, W.I.; ten Hove, D.

    1989-01-01

    Mathematical models are discussed to deal with complex large-scale man-machine systems such as vessel (air, road) traffic and process control systems. Only interrelationships between subsystems are assumed. Each subsystem is controlled by a corresponding human operator (HO). Because of the

  5. Low Emissions and Delay Optimization for an Isolated Signalized Intersection Based on Vehicular Trajectories.

    Science.gov (United States)

    Lin, Ciyun; Gong, Bowen; Qu, Xin

    2015-01-01

    A traditional traffic signal control system is established based on vehicular delay, queue length, saturation and other indicators. However, due to the increasing severity of urban environmental pollution issues and the development of a resource-saving and environmentally friendly social philosophy, the development of low-carbon and energy-efficient urban transport is required. This paper first defines vehicular trajectories and the calculation of vehicular emissions based on VSP. Next, a regression analysis method is used to quantify the relationship between vehicular emissions and delay, and a traffic signal control model is established to reduce emissions and delay using the enumeration method combined with saturation constraints. Finally, one typical intersection of Changchun is selected to verify the model proposed in this paper; its performance efficiency is also compared using simulations in VISSIM. The results of this study show that the proposed model can significantly reduce vehicle delay and traffic emissions simultaneously.

  6. Stochastic control of traffic patterns

    DEFF Research Database (Denmark)

    Gaididei, Yuri B.; Gorria, Carlos; Berkemer, Rainer

    2013-01-01

    A stochastic modulation of the safety distance can reduce traffic jams. It is found that the effect of random modulation on congestive flow formation depends on the spatial correlation of the noise. Jam creation is suppressed for highly correlated noise. The results demonstrate the advantage of h...

  7. Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution

    Science.gov (United States)

    Hwang, Inseok

    The continued growth of air travel and recent advances in new technologies for navigation, surveillance, and communication have led to proposals by the Federal Aviation Administration (FAA) to provide reliable and efficient tools to aid Air Traffic Control (ATC) in performing their tasks. In this dissertation, we address four problems frequently encountered in air traffic surveillance and control; multiple target tracking and identity management, conflict detection, conflict resolution, and safety verification. We develop a set of algorithms and tools to aid ATC; These algorithms have the provable properties of safety, computational efficiency, and convergence. Firstly, we develop a multiple-maneuvering-target tracking and identity management algorithm which can keep track of maneuvering aircraft in noisy environments and of their identities. Secondly, we propose a hybrid probabilistic conflict detection algorithm between multiple aircraft which uses flight mode estimates as well as aircraft current state estimates. Our algorithm is based on hybrid models of aircraft, which incorporate both continuous dynamics and discrete mode switching. Thirdly, we develop an algorithm for multiple (greater than two) aircraft conflict avoidance that is based on a closed-form analytic solution and thus provides guarantees of safety. Finally, we consider the problem of safety verification of control laws for safety critical systems, with application to air traffic control systems. We approach safety verification through reachability analysis, which is a computationally expensive problem. We develop an over-approximate method for reachable set computation using polytopic approximation methods and dynamic optimization. These algorithms may be used either in a fully autonomous way, or as supporting tools to increase controllers' situational awareness and to reduce their work load.

  8. The impact of transit signal priority: case study in Dubai, UAE

    Directory of Open Access Journals (Sweden)

    Al Khateeb Hadeel

    2017-01-01

    Full Text Available Abdulfatah & Alkhateeb proposes on this paper one of the Intelligent Transportation Systems- ITS, the Transit Signal Priority- TSP, which involves real time tracking. The United States is considered one of the lead countries in implementing this strategy since decades ago. Europe and Germany have also implemented TSP quite extensively to improve rider-ship and buses efficiency. TSP is a strategy that supports the transit system through easing the movement of the service. The operational technique used for TSP is controlling the signal system at the intersections. A detector system must be integrated in the implementation stage. It will detect the preference of public buses among the other vehicles in the traffic queue. Determining of optimal detector location for the TSP with queued lanes is the main feature. It must be studied and decided on before starting different signalization proposals for the intersection. Controlling traffic signal in favor of the public bus system will improve reliability and efficiency for buses. Meanwhile, the extreme impact of the TSP on general traffic as well as on public buses became the basis for many recent studies and thesis tested by many authors. The scope of the project as addressed in this paper is to report the delivered results of different scenarios tested, and then compare these proposed scenarios to select the best signal consideration, which has a potential impact on bus and traffic performance. After applying TSP, the results show that the impact of actuating traffic signals in Al Mussallah / Al Maktoum corridor after extending green time for bus approach (15 sec through minimum reduction on average travel time for busses by 7.04%and tremendous increase in travel time for cars by 38.68%. A reduction in cars Avg. Speed by 28.04% in comparison to 35.52% buses Avg. Speed. On the other hand, a reduction in buses delay received by 14.11% and a decrease in Avg. Stopped delay per bus of about 18.56%, while

  9. Waiting Endurance Time Estimation of Electric Two-Wheelers at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Mei Huan

    2014-01-01

    Full Text Available The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders’ waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities.

  10. Waiting endurance time estimation of electric two-wheelers at signalized intersections.

    Science.gov (United States)

    Huan, Mei; Yang, Xiao-bao

    2014-01-01

    The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders' waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities.

  11. Real-time bicycle detection at signalized intersections using thermal imaging technology

    Science.gov (United States)

    Collaert, Robin

    2013-02-01

    More and more governments and authorities around the world are promoting the use of bicycles in cities, as this is healthy for the bicyclist and improves the quality of life in general. Safety and efficiency of bicyclists has become a major focus. To achieve this, there is a need for a smarter approach towards the control of signalized intersections. Various traditional detection technologies, such as video, microwave radar and electromagnetic loops, can be used to detect vehicles at signalized intersections, but none of these can consistently separate bikes from other traffic, day and night and in various weather conditions. As bikes should get a higher priority and also require longer green time to safely cross the signalized intersection, traffic managers are looking for alternative detection systems that can make the distinction between bicycles and other vehicles near the stop bar. In this paper, the drawbacks of a video-based approach are presented, next to the benefits of a thermal-video-based approach for vehicle presence detection with separation of bicycles. Also, the specific technical challenges are highlighted in developing a system that combines thermal image capturing, image processing and output triggering to the traffic light controller in near real-time and in a single housing.

  12. Traffic Flow Wide-Area Surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.

    1994-09-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  13. Traffic flow wide-area surveillance system

    Science.gov (United States)

    Allgood, Glenn O.; Ferrell, Regina K.; Kercel, Stephen W.; Abston, Ruth A.

    1995-01-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a traffic flow wide-area surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  14. Building the Brain's "Air Traffic Control" System: How Early Experiences Shape the Development of Executive Function. Working Paper 11

    Science.gov (United States)

    National Scientific Council on the Developing Child, 2011

    2011-01-01

    Being able to focus, hold, and work with information in mind, filter distractions, and switch gears is like having an air traffic control system at a busy airport to manage the arrivals and departures of dozens of planes on multiple runways. In the brain, this air traffic control mechanism is called executive functioning, a group of skills that…

  15. Algorithm for Public Electric Transport Schedule Control for Intelligent Embedded Devices

    Science.gov (United States)

    Alps, Ivars; Potapov, Andrey; Gorobetz, Mikhail; Levchenkov, Anatoly

    2010-01-01

    In this paper authors present heuristics algorithm for precise schedule fulfilment in city traffic conditions taking in account traffic lights. The algorithm is proposed for programmable controller. PLC is proposed to be installed in electric vehicle to control its motion speed and signals of traffic lights. Algorithm is tested using real controller connected to virtual devices and real functional models of real tram devices. Results of experiments show high precision of public transport schedule fulfilment using proposed algorithm.

  16. Distributed Traffic Control for Reduced Fuel Consumption and Travel Time in Transportation Networks

    Science.gov (United States)

    2018-04-01

    Current technology in traffic control is limited to a centralized approach that has not paid appropriate attention to efficiency of fuel consumption and is subject to the scale of transportation networks. This project proposes a transformative approa...

  17. Urban Road Traffic Simulation Techniques

    Directory of Open Access Journals (Sweden)

    Ana Maria Nicoleta Mocofan

    2011-09-01

    Full Text Available For achieving a reliable traffic control system it is necessary to first establish a network parameter evaluation system and also a simulation system for the traffic lights plan. In 40 years of history, the computer aided traffic simulation has developed from a small research group to a large scale technology for traffic systems planning and development. In the following thesis, a presentation of the main modeling and simulation road traffic applications will be provided, along with their utility, as well as the practical application of one of the models in a case study.

  18. Determination of traffic intensity from camera images using image processing and pattern recognition techniques

    Science.gov (United States)

    Mehrübeoğlu, Mehrübe; McLauchlan, Lifford

    2006-02-01

    The goal of this project was to detect the intensity of traffic on a road at different times of the day during daytime. Although the work presented utilized images from a section of a highway, the results of this project are intended for making decisions on the type of intervention necessary on any given road at different times for traffic control, such as installation of traffic signals, duration of red, green and yellow lights at intersections, and assignment of traffic control officers near school zones or other relevant locations. In this project, directional patterns are used to detect and count the number of cars in traffic images over a fixed area of the road to determine local traffic intensity. Directional patterns are chosen because they are simple and common to almost all moving vehicles. Perspective vision effects specific to each camera orientation has to be considered, as they affect the size and direction of patterns to be recognized. In this work, a simple and fast algorithm has been developed based on horizontal directional pattern matching and perspective vision adjustment. The results of the algorithm under various conditions are presented and compared in this paper. Using the developed algorithm, the traffic intensity can accurately be determined on clear days with average sized cars. The accuracy is reduced on rainy days when the camera lens contains raindrops, when there are very long vehicles, such as trucks or tankers, in the view, and when there is very low light around dusk or dawn.

  19. Heart Rate Variability as a Measure of Airport Ramp-Traffic Controllers Workload

    Science.gov (United States)

    Hayashi, Miwa; Dulchinos, Victoria Lee

    2016-01-01

    Heart Rate Variability (HRV) has been reported to reflect the person's cognitive and emotional stress levels, and may offer an objective measure of human-operator's workload levels, which are recorded continuously and unobtrusively to the task performance. The present paper compares the HRV data collected during a human-in-the-loop simulation of airport ramp-traffic control operations with the controller participants' own verbal self-reporting ratings of their workload.

  20. Complaints of Poor Sleep and Risk of Traffic Accidents: A Population-Based Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Pierre Philip

    Full Text Available This study aimed to determine the sleepiness-related factors associated with road traffic accidents.A population based case-control study was conducted in 2 French agglomerations. 272 road accident cases hospitalized in emergency units and 272 control drivers matched by time of day and randomly stopped by police forces were included in the study. Odds ratios were calculated for the risk of road traffic accidents.As expected, the main predictive factor for road traffic accidents was having a sleep episode at the wheel just before the accident (OR 9.97, CI 95%: 1.57-63.50, p<0.05. The increased risk of traffic accidents was 3.35 times higher in subjects who reported very poor quality sleep during the last 3 months (CI 95%: 1.30-8.63, p<0.05, 1.69 times higher in subjects reporting sleeping 6 hours or fewer per night during the last 3 months (CI 95%: 1.00-2.85, p<0.05, 2.02 times higher in subjects reporting symptoms of anxiety or nervousness in the previous day (CI 95%: 1.03-3.97, p<0.05, and 3.29 times higher in subjects reporting taking more than 2 medications in the last 24 h (CI 95%: 1.14-9.44, p<0.05. Chronic daytime sleepiness measured by the Epworth Sleepiness Scale, expressed heavy snoring and nocturnal leg movements did not explain traffic accidents.Physicians should be attentive to complaints of poor sleep quality and quantity, symptoms of anxiety-nervousness and/or drug consumption in regular car drivers.

  1. A Fully-Distributed Heuristic Algorithm for Control of Autonomous Vehicle Movements at Isolated Intersections

    OpenAIRE

    Abdallah A. Hassan; Hesham A. Rakha

    2014-01-01

    Optimizing autonomous vehicle movements through roadway intersections is a challenging problem. It has been demonstrated in the literature that traditional traffic control, such as traffic signal and stop sign control are not optimal especially for heavy traffic demand levels. Alternatively, centralized autonomous vehicle control strategies are costly and not scalable given that the ability of a central controller to track and schedule the movement of hundreds of vehicles in real-time is ques...

  2. A neurophysiological training evaluation metric for air traffic management.

    Science.gov (United States)

    Borghini, G; Aricò, P; Ferri, F; Graziani, I; Pozzi, S; Napoletano, L; Imbert, J P; Granger, G; Benhacene, R; Babiloni, F

    2014-01-01

    The aim of this work was to analyze the possibility to apply a neuroelectrical cognitive metrics for the evaluation of the training level of subjects during the learning of a task employed by Air Traffic Controllers (ATCos). In particular, the Electroencephalogram (EEG), the Electrocardiogram (ECG) and the Electrooculogram (EOG) signals were gathered from a group of students during the execution of an Air Traffic Management (ATM) task, proposed at three different levels of difficulty. The neuroelectrical results were compared with the subjective perception of the task difficulty obtained by the NASA-TLX questionnaires. From these analyses, we suggest that the integration of information derived from the power spectral density (PSD) of the EEG signals, the heart rate (HR) and the eye-blink rate (EBR) return important quantitative information about the training level of the subjects. In particular, by focusing the analysis on the direct and inverse correlation of the frontal PSD theta (4-7 (Hz)) and HR, and of the parietal PSD alpha (10-12 (Hz)) and EBR, respectively, with the degree of mental and emotive engagement, it is possible to obtain useful information about the training improvement across the training sessions.

  3. Low Emissions and Delay Optimization for an Isolated Signalized Intersection Based on Vehicular Trajectories.

    Directory of Open Access Journals (Sweden)

    Ciyun Lin

    Full Text Available A traditional traffic signal control system is established based on vehicular delay, queue length, saturation and other indicators. However, due to the increasing severity of urban environmental pollution issues and the development of a resource-saving and environmentally friendly social philosophy, the development of low-carbon and energy-efficient urban transport is required. This paper first defines vehicular trajectories and the calculation of vehicular emissions based on VSP. Next, a regression analysis method is used to quantify the relationship between vehicular emissions and delay, and a traffic signal control model is established to reduce emissions and delay using the enumeration method combined with saturation constraints. Finally, one typical intersection of Changchun is selected to verify the model proposed in this paper; its performance efficiency is also compared using simulations in VISSIM. The results of this study show that the proposed model can significantly reduce vehicle delay and traffic emissions simultaneously.

  4. Using Historical Data to Automatically Identify Air-Traffic Control Behavior

    Science.gov (United States)

    Lauderdale, Todd A.; Wu, Yuefeng; Tretto, Celeste

    2014-01-01

    This project seeks to develop statistical-based machine learning models to characterize the types of errors present when using current systems to predict future aircraft states. These models will be data-driven - based on large quantities of historical data. Once these models are developed, they will be used to infer situations in the historical data where an air-traffic controller intervened on an aircraft's route, even when there is no direct recording of this action.

  5. Micro-simulation of vehicle conflicts involving right-turn vehicles at signalized intersections based on cellular automata.

    Science.gov (United States)

    Chai, C; Wong, Y D

    2014-02-01

    At intersection, vehicles coming from different directions conflict with each other. Improper geometric design and signal settings at signalized intersection will increase occurrence of conflicts between road users and results in a reduction of the safety level. This study established a cellular automata (CA) model to simulate vehicular interactions involving right-turn vehicles (as similar to left-turn vehicles in US). Through various simulation scenarios for four case cross-intersections, the relationships between conflict occurrences involving right-turn vehicles with traffic volume and right-turn movement control strategies are analyzed. Impacts of traffic volume, permissive right-turn compared to red-amber-green (RAG) arrow, shared straight-through and right-turn lane as well as signal setting are estimated from simulation results. The simulation model is found to be able to provide reasonable assessment of conflicts through comparison of existed simulation approach and observed accidents. Through the proposed approach, prediction models for occurrences and severity of vehicle conflicts can be developed for various geometric layouts and traffic control strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Validation of the Federal Aviation Administration Air Traffic Control Specialist Pre-Training Screen.

    Science.gov (United States)

    1994-02-01

    Two formal validation studies of the Air Traffic Control Specialist Pre Training Screen (ATCS/PTS), a 5 day computer administered test battery, are described. The ATCS/PTS was designed to replace the 9 week US Federal Aviation Administration (FAA) Ac...

  7. Angry Apps: The Impact of Network Timer Selection on Power Consumption, Signalling Load, and Web QoE

    Directory of Open Access Journals (Sweden)

    Christian Schwartz

    2013-01-01

    Full Text Available The popularity of smartphones and mobile applications has experienced a considerable growth during the recent years, and this growth is expected to continue in the future. Since smartphones have only very limited energy resources, battery efficiency is one of the determining factors for a good user experience. Therefore, some smartphones tear down connectionsto the mobile network soon after a completed data transmission to reduce the power consumption of their transmission unit. However, frequent connection reestablishments caused by apps which send or receive small amounts of data often lead to a heavy signalling load within the mobile network. One of the major contributions of this paper is the investigation of the resulting tradeoff between energy consumption at the smartphone and the generated signalling traffic in the mobile network. We explain that this tradeoff can be controlled by the connection release timeout and study the impact of this parameter for a number of popular apps that cover a wide range of traffic characteristics in terms of bandwidth requirements and resulting signalling traffic. Finally, we study the impact of the timer settings on Quality of Experience (QoE for web traffic. This is an important aspect since connection establishments not only lead to signalling traffic but also increase the load time of web pages.

  8. Traffic control and intelligent vehicle highway systems: a survey

    NARCIS (Netherlands)

    Baskar, L.D.; Schutter, B. de; Hellendoorn, J.; Papp, Z.

    2011-01-01

    Traffic congestion in highway networks is one of the main issues to be addressed by today's traffic management schemes. Automation combined with the increasing market penetration of on-line communication, navigation and advanced driver assistance systems will ultimately result in intelligent vehicle

  9. THE REMOTE AND MOBILE AIR TRAFFIC CONTROL TOWER AND ITS POSSIBLE APPLICATION TO THE OPERATIONAL AREA

    Directory of Open Access Journals (Sweden)

    Tímea VAS

    2014-10-01

    Full Text Available The concept of remote and mobile Air Traffic Control Tower (ATC TWR and its development has started in Europe, Australia and also in the USA, in order to improve the efficiency of Air Traffic Management (ATM systems in terms of air transportation safety. These new technologies are applicable in many countries in peace time, but on mobility reasons these are promoted to achieve commitments in the operational area. This article describes the devices and range of equipment of mobile and remote tower, and their specifications, which can even serve a medium sized airport, furthermore examines, whether how can those provide the air traffic services at an operational airfield.

  10. Screening Air Traffic Control Specialists for Psychopathology Using the Minnesota Multiphasic Personality Inventory-2

    National Research Council Canada - National Science Library

    King, Raymond E; Schroeder, David J; Manning, Carol A; Retzlaff, Paul D; Williams, Clara A

    2008-01-01

    ...) as a psychological screening tool for conditionally selected FAA Air Traffic Control Specialists (ATCSs). A sample of 1,014 ATCSs in training voluntarily completed the MMPI-2 as part of a research program...

  11. Signal Timing Optimization Based on Fuzzy Compromise Programming for Isolated Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Dexin Yu

    2016-01-01

    Full Text Available In order to optimize the signal timing for isolated intersection, a new method based on fuzzy programming approach is proposed in this paper. Considering the whole operation efficiency of the intersection comprehensively, traffic capacity, vehicle cycle delay, cycle stops, and exhaust emission are chosen as optimization goals to establish a multiobjective function first. Then fuzzy compromise programming approach is employed to give different weight coefficients to various optimization objectives for different traffic flow ratios states. And then the multiobjective function is converted to a single objective function. By using genetic algorithm, the optimized signal cycle and effective green time can be obtained. Finally, the performance of the traditional method and new method proposed in this paper is compared and analyzed through VISSIM software. It can be concluded that the signal timing optimized in this paper can effectively reduce vehicle delays and stops, which can improve traffic capacity of the intersection as well.

  12. Abnormal traffic flow data detection based on wavelet analysis

    Directory of Open Access Journals (Sweden)

    Xiao Qian

    2016-01-01

    Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.

  13. Evaluating lane-by-lane gap-out based signal control for isolated intersection under stop-line, single and multiple advance detection systems

    Directory of Open Access Journals (Sweden)

    Chandan Keerthi Kancharla

    2016-12-01

    Full Text Available In isolated intersection’s actuated signal control, inductive loop detector layout plays a crucial role in providingthe vehicle information to the signal controller. Based on vehicle actuations at the detector, the green time is extended till a pre-defined threshold gap-out occurs. The Federal Highway Administration (FHWA proposed various guidelines for detec-tor layouts on low-speed and high-speed approaches. This paper proposes single and multiple advance detection schemes for low-speed traffic movements, that utilizes vehicle actuations from advance detectors located upstream of the stop-line, which are able to detect spill-back queues. The proposed detection schemes operate with actuated signal control based on lane-by-lane gap-out criteria. The performance of the proposed schemes is compared with FHWA’s stop-line and single advance detection schemes in the VISSIM simulation tool. Results have shown that the proposed single advance detection schemes showed improved performance in reducing travel time delay and average number of stops per vehicle under low volumes while the multiple advance detection scheme performed well under high volumes.

  14. From crisis to development--analysis of air traffic control work processes.

    Science.gov (United States)

    Teperi, Anna-Maria; Leppänen, Anneli

    2011-03-01

    In this study an intervention to improve work processes in air traffic control (ATC) is evaluated. The background was the Finnish air traffic controllers' strike of 1999. The old ways of thinking and acting did not support development of ATC prompting a need for a new kind of working culture in the organisation. Several actions were started. In one of these, ATC work processes were modelled by personnel and development plans concerning work were delivered to top management. Different actors (management, trade union, stakeholders) were interviewed before (n=16) and after the project (n=7). The intervention supported systematic co-operation between different actors in the organisation. However, a follow-up revealed that only a few participants had adopted the idea of continuous work development. Mastery of human factors is crucial in a high reliability work environment such as ATC. But how is the analytical and co-operative aspect kept alive in an organisation that is run by strict international regulation and has a strong technical competence, but is not that strong in collaborative and human aspects? Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Admission Control for Multiservices Traffic in Hierarchical Mobile IPv6 Networks by Using Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Jung-Shyr Wu

    2012-01-01

    Full Text Available CAC (Call Admission Control plays a significant role in providing QoS (Quality of Service in mobile wireless networks. In addition to much research that focuses on modified Mobile IP to get better efficient handover performance, CAC should be introduced to Mobile IP-based network to guarantee the QoS for users. In this paper, we propose a CAC scheme which incorporates multiple traffic types and adjusts the admission threshold dynamically using fuzzy control logic to achieve better usage of resources. The method can provide QoS in Mobile IPv6 networks with few modifications on MAP (Mobility Anchor Point functionality and slight change in BU (Binding Update message formats. According to the simulation results, the proposed scheme presents good performance of voice and video traffic at the expenses of poor performance on data traffic. It is evident that these CAC schemes can reduce the probability of the handoff dropping and the cell overload and limit the probability of the new call blocking.

  16. Satellite-aided coastal zone monitoring and vessel traffic system

    Science.gov (United States)

    Baker, J. L.

    1981-01-01

    The development and demonstration of a coastal zone monitoring and vessel traffic system is described. This technique uses a LORAN-C navigational system and relays signals via the ATS-3 satellite to a computer driven color video display for real time control. Multi-use applications of the system to search and rescue operations, coastal zone management and marine safety are described. It is emphasized that among the advantages of the system are: its unlimited range; compatibility with existing navigation systems; and relatively inexpensive cost.

  17. Strategic Deconfliction of 4D Trajectory and Perturbation Analysis for Air Traffic Control and Automation System

    Directory of Open Access Journals (Sweden)

    Xinmin Tang

    2016-01-01

    Full Text Available Strategic 4D trajectory conflict-free planning is recognized as one of the core technologies of next-generation air traffic control and automation systems. To resolve potential conflicts during strategic 4D conflict-free trajectory planning, a protection-zone conflict-control model based on air traffic control separation constraints was proposed, in which relationships between expected arrival time and adjusted arrival time at conflicting waypoints for aircraft queues were built and transformed into dynamic linear equations under the definition of max-plus algebra. A method for strategic deconfliction of 4D trajectory was then proposed using two strategies: arrival time adjustment and departure time adjustment. In addition, departure time and flight duration perturbations were introduced to analyze the sensitivity of the planned strategic conflict-free 4D trajectories, and a robustness index for the conflict-free 4D trajectories was calculated. Finally, the proposed method was tested for the Shanghai air traffic control terminal area. The outcomes demonstrated that the planned strategic conflict-free 4D trajectories could avoid potential conflicts, and the slack time could be used to indicate their robustness. Complexity analysis demonstrated that deconfliction using max-plus algebra is more suitable for deconfliction of 4D trajectory with random sampling period in fix air route.

  18. Traffic flow behavior at a single-lane urban roundabout

    Science.gov (United States)

    Lakouari, N.; Oubram, O.; Ez-Zahraouy, H.; Cisneros-Villalobos, L.; Velásquez-Aguilar, J. G.

    In this paper, we propose a stochastic cellular automata model to study the traffic behavior at a single-lane roundabout. Vehicles can enter the interior lane or exit from it via N intersecting lane, the boundary conditions are stochastic. The traffic is controlled by a self-organized scheme. It has turned out that depending on the rules of insertion to the roundabout, five distinct traffic phases can appear, namely, free flow, congestion, maximum current, jammed and gridlock. The transition between the free flow and the gridlock is forbidden. The density profiles are used to study the traffic pattern at the interior lane of the roundabout. In order to quantify the interactions between vehicles in the interior lane of the roundabout, the velocity correlation coefficient (VCC) is also studied. Besides, the spatiotemporal diagrams corresponding to the entry/exit lanes are derived numerically. Furthermore, we have investigated the effect of displaying signal (PIn), as the PIn decreases, the maximum current increases at the expense of the free flow and the jamming phase. Finally, we have investigated the effect of the braking probability P on the interior lane of the roundabout. We have found that the increase of P raises the spontaneous jam formation on the ring. Thus, enlarges the maximum current and the jamming phase while the free flow phase decreases.

  19. CubeSat constellation design for air traffic monitoring

    Science.gov (United States)

    Nag, Sreeja; Rios, Joseph L.; Gerhardt, David; Pham, Camvu

    2016-11-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring. It thereby provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data were obtained from NASA's Future ATM Concepts Evaluation Tool, for the Alaskan airspace over one day. The results presented were driven by MATLAB and the satellites propagated and coverage calculated using AGI's Satellite Tool. While Ad-hoc and precession spread constellations have been quantitatively evaluated, Walker constellations show the best performance in simulation. Sixteen satellites in two perpendicular orbital planes are shown to provide more than 99% coverage over representative Alaskan airspace and the maximum time gap where any airplane in Alaska is not covered is six minutes, therefore meeting the standard set by the International Civil Aviation Organization to monitor every airplane at least once every fifteen minutes. In spite of the risk of signal collision when multiple packets arrive at the satellite receiver, the proposed constellation shows 99% cumulative probability of reception within four minutes when the airplanes are transmitting every minute, and at 100% reception probability if transmitting every second. Data downlink can be performed using any of the three ground stations of NASA Earth Network in Alaska.

  20. Traffic Flow Prediction Using MI Algorithm and Considering Noisy and Data Loss Conditions: An Application to Minnesota Traffic Flow Prediction

    Directory of Open Access Journals (Sweden)

    Seyed Hadi Hosseini

    2014-10-01

    Full Text Available Traffic flow forecasting is useful for controlling traffic flow, traffic lights, and travel times. This study uses a multi-layer perceptron neural network and the mutual information (MI technique to forecast traffic flow and compares the prediction results with conventional traffic flow forecasting methods. The MI method is used to calculate the interdependency of historical traffic data and future traffic flow. In numerical case studies, the proposed traffic flow forecasting method was tested against data loss, changes in weather conditions, traffic congestion, and accidents. The outcomes were highly acceptable for all cases and showed the robustness of the proposed flow forecasting method.

  1. MOE-Analysis for Oversaturated Flow with Interrupted Facility and Heterogeneous Traffic for Urban Roads

    Directory of Open Access Journals (Sweden)

    Hemant Kumar Sharma

    2012-09-01

    Full Text Available Speed-flow functions have been developed by several transportation experts to predict accurately the speed of urban road networks. HCM Speed-Flow Curve, BPR Curve, MTC Speed-Flow Curve, Akçelik Speed-Flow Curve are some extraordinary efforts to define the shape of speed-flow curves. However, the complexity of driver's behaviour, interactions among different type of vehicles, lateral clearance, co-relation of driver's psychology with vehicular characteristics and interdependence of various variables of traffic has led to continuous development and refinement of speed-flow curves. The problem gets more difficult in the case of urban roads with heterogeneous traffic, oversaturated flow and signalized network (which includes some unsignalized intersections as well. This paper presents analysis for various measures of effectiveness (MOE for urban roads with interrupted flow comprising heterogeneous traffic. Model has been developed for heterogeneous traffic under constraints of roadway geometry, vehicle characteristics, driving behaviour and traffic controls. The model developed in this paper predicts speed, delay, average queue and maximum queue estimates for urban roads and quantifies congestion for oversaturated conditions. The investigation details the oversaturated portion of flow in particular.

  2. Synthesis study of Texas signal control systems : technical report.

    Science.gov (United States)

    2012-09-01

    In recent years, several versions of traffic control systems have been established across the United States and within the state of Texas. There is a growing need to identify the various versions of these systems that exist, including the system hard...

  3. Evaluation of diversion strategies in the context of advanced traffic management systems (ATMS) for an urban traffic corridor with heterogeneous traffic

    Energy Technology Data Exchange (ETDEWEB)

    Korlapati, D.R.

    2007-07-01

    Due to urbanization and accelerated growth in vehicular traffic, most big cities in India face problems related to traffic management resulting in severe congestion, pollution, and a high rate of accidents during peak hours. Lane blocking incidents on arterials or urban traffic corridors cause major disruption to traffic flow. Peak hour congestion with low average speeds and high accident rates are commonly associated with traffic in major cities in India. The situation is deteriorating further as creation of new facilities are almost impossible, with resource and space constraints. In such scenarios, application of advanced technologies seems to offer hope. One such application area is Advanced Traffic Management Systems (ATMS), a component of intelligent transportation system (ITS). Due to the unique traffic characteristics prevailing in India, the application of such systems needs to first be evaluated before implementation. This paper proposed a research methodology for the evaluation of diversion strategies in the context of ATMS for an urban corridor in India. The evaluation framework combined several relevant modules related to various aspects of traffic control, surveillance and advisory. As part of this study, a simulation model and a simulation optimization model were developed. The simulation model was microscopic in nature and captured the driver behaviour and traffic characteristics realistically by modeling the complex interactions among vehicles traversing a corridor. It was concluded that the results and observations were useful indicators to gauge the potential success of diversion plans. 10 refs., 1 tab., 2 figs.

  4. Post-licence driver education for the prevention of road traffic crashes: a systematic review of randomised controlled trials.

    Science.gov (United States)

    Ker, Katharine; Roberts, Ian; Collier, Timothy; Beyer, Fiona; Bunn, Frances; Frost, Chris

    2005-03-01

    The effectiveness of post-licence driver education for preventing road traffic crashes was quantified using a systematic review and meta-analyses of randomised controlled trials. Searches of appropriate electronic databases, the Internet and reference lists of relevant papers were conducted. The searches were not restricted by language or publication status. Data were pooled from 21 randomised controlled trials, including over 300,000 full licence-holding drivers of all ages. Nineteen trials reported subsequent traffic offences, with a pooled relative risk of 0.96 (95% confidence interval 0.94, 0.98). Fifteen trials reported traffic crashes with a pooled relative risk of 0.98 (0.96, 1.01). Four trials reported injury crashes with a pooled relative risk of 1.12 (0.88, 1.41). The results provide no evidence that post-licence driver education is effective in preventing road injuries or crashes. Although the results are compatible with a small reduction in the occurrence of traffic crashes, this may be due to selection biases or bias in the included trials.

  5. Quality of Life, Sleep, and Health of Air Traffic Controllers With Rapid Counterclockwise Shift Rotation.

    Science.gov (United States)

    Sonati, Jaqueline Girnos; De Martino, Milva Maria Figueiredo; Vilarta, Roberto; da Silva Maciel, Érika; Sonati, Renato José Ferreira; Paduan, Paulo Cézar

    2016-08-01

    Rotating shiftwork is common for air traffic controllers and usually causes sleep deprivation, biological adaptations, and life changes for these workers. This study assessed quality of life, the sleep, and the health of 30 air traffic controllers employed at an international airport in Brazil. The objective was to identify health and quality of life concerns of these professionals. The results identified physical inactivity, overweight, excess body fat, low scores for physical and social relationships, and sleep deprivation for workers in all four workshifts. In conclusion, these workers are at risk for chronic non-transmittable diseases and compromised work performance, suggesting the need for more rest time before working nightshifts and work environments that stimulate physical activity and healthy diets. © 2016 The Author(s).

  6. 49 CFR 236.777 - Operator, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operator, control. 236.777 Section 236.777..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.777 Operator, control. An employee assigned to operate the control machine of a traffic control system. ...

  7. 49 CFR 236.814 - Station, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Station, control. 236.814 Section 236.814..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.814 Station, control. The place where the control machine of a traffic control system is located. ...

  8. Optimization Method of Intersection Signal Coordinated Control Based on Vehicle Actuated Model

    Directory of Open Access Journals (Sweden)

    Chen Zhao-Meng

    2015-01-01

    Full Text Available Traditional timing green wave control with predetermined cycle, split, and offset cannot adapt for dynamic real-time traffic flow. This paper proposes a coordinated control method for variable cycle time green wave bandwidth optimization integrated with traffic-actuated control. In the coordinated control, green split is optimized in real time by the measured presence of arriving and/or standing vehicles in each intersection and simultaneously green waves along arterials are guaranteed. Specifically, the dynamic bound of green wave is firstly determined, and then green early-start and green late-start algorithms are presented respectively to accommodate the fluctuations in vehicle arrival rates in each phase. Numerical examples show that the proposed method improves green time, expands green wave bandwidth, and reduces queuing.

  9. Towards reducing traffic congestion using cooperative adaptive cruise control on a freeway with a ramp

    Directory of Open Access Journals (Sweden)

    Georges Arnaout

    2011-12-01

    Full Text Available Purpose: In this paper, the impact of Cooperative Adaptive Cruise Control (CACC systems on traffic performance is examined using microscopic agent-based simulation. Using a developed traffic simulation model of a freeway with an on-ramp - created to induce perturbations and to trigger stop-and-go traffic, the CACC system’s effect on the traffic performance is studied. The previously proposed traffic simulation model is extended and validated. By embedding CACC vehicles in different penetration levels, the results show significance and indicate the potential of CACC systems to improve traffic characteristics and therefore can be used to reduce traffic congestion. The study shows that the impact of CACC is positive but is highly dependent on the CACC market penetration. The flow rate of the traffic using CACC is proportional to the market penetration rate of CACC equipped vehicles and the density of the traffic.Design/methodology/approach: This paper uses microscopic simulation experiments followed by a quantitative statistical analysis. Simulation enables researchers manipulating the system variables to straightforwardly predict the outcome on the overall system, giving researchers the unique opportunity to interfere and make improvements to performance. Thus with simulation, changes to variables that might require excessive time, or be unfeasible to carry on real systems, are often completed within seconds.Findings: The findings of this paper are summarized as follow:•\tProvide and validate a platform (agent-based microscopic traffic simulator in which any CACC algorithm (current or future may be evaluated.•\tProvide detailed analysis associated with implementation of CACC vehicles on freeways.•\tInvestigate whether embedding CACC vehicles on freeways has a significant positive impact or not.Research limitations/implications: The main limitation of this research is that it has been conducted solely in a computer laboratory. Laboratory

  10. Some Considerations on the Problem of Non-Steady State Traffic Flow Optimization

    Science.gov (United States)

    2007-01-01

    Poor traffic signal timing accounts for an estimated 10 percent of all traffic delay about 300 million vehicle-hours on major roadways alone. Americans agree that this is a problem: one U.S. Department of Transportation (DOT) survey found tha...

  11. Air Traffic Management: Civil/Military Systems and Technologies.

    Science.gov (United States)

    1980-02-01

    THE SELECTION AND SCREENING OF AIR TRAFFIC CONTROLLERS James 0. Boone, Ph.D. Chief, Selection & Testing Research Unit Aviation Psychology Laboratory...Intermittent Positive Control (IPC), later renamed Automatic Traffic Advisory and Resolution Service ( ATARS ). The specific surveillance needs identified...in Clementon, New Jersey. Coincident with DABS development is the Automatic Traffic Advisory and Pesolution Service ( ATARS )--a ground-based collision

  12. Self-directed learning skills in air-traffic control; A cued retrospective reporting study

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; Kirschner, Paul A.; De Bock, Jeano

    2011-01-01

    Van Meeuwen, L. W., Brand-Gruwel, S., Van Merriënboer, J. J. G., Kirschner, P. A., & De Bock, J. J. P. R. (2010, May). Self-directed learning skills in air-traffic control; A cued retrospective reporting study. Presented at the Scandinavian Workshop on Applied Eye-tracking. Lund, Sweden.

  13. Self-directed learning skills in air-traffic control training; An eye-tracking approach

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; Bock, Jeano; Kirschner, Paul A.

    2011-01-01

    Van Meeuwen, L. W., Brand-Gruwel, S., De Bock, J. J. P. R., Kirschner, P. A., & Van Merriënboer, J. J. G. (2010, September). Self-directed Learning Skills in Air-traffic Control Training; An Eye-tracking Approach. Paper presented at the European Association for Aviation Psychology, Budapest.

  14. Design and Operational Evaluation of the Traffic Management Advisor at the Fort Worth Air Route Traffic Control Center

    Science.gov (United States)

    1997-06-19

    NASA and the Federal Aviation Administration (FAA) have designed and developed an automation tool known as the Traffic Management Advisor (TMA). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators (TMCs) and ...

  15. DEVELOPMENT OF THE AUTOMATED ROAD TRAFFIC CONTROL SYSTEMS IN MINSK AS PART OF THE INTELLECTUAL CITY TRANSPORT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Kapskiy

    2017-01-01

    Full Text Available The results of the analysis of Minsk city transport system performance. It is shown that the growth of car ownership has caused a number of problems, among which the low-speed communication, bad driving modes, the presence of elevated levels of congestion and accidents. The corresponding figures for accidents in Minsk and some cities in the world that allow to characterize the transport system of the city of Minsk, as satisfactory. To improve the system and improve the quality of traffic necessary to create intelligent transport system of the city of Minsk. Intelligent Transportation System, being a global trend, enables dramatically improve road quality. Automated traffic control system and other subsystems as part of the Intelligent Transportation Systems are tools for achieving the goals for improving the safety and comfort of road users. It is proposed as a base for its creation to choose an automated traffic control system, which has a corresponding functional, structural, organizational and institutional provisions for its development. The technological requirements for the functioning of an integrated system, which relate to the level of efficiency, including accidents on sections of the road network included in the created system. Modernization of the automated traffic control system and its transformation into an intelligent transport system will reduce emergency, economic and environmental, and social costs in the road traffic is not less than 15 % from their current level, despite the steady growth of car ownership in the city. It is planned to create a complete intelligent transportation system.

  16. Automatic Data Traffic Control on DSM Architecture

    Science.gov (United States)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry; Kwak, Dochan (Technical Monitor)

    2000-01-01

    We study data traffic on distributed shared memory machines and conclude that data placement and grouping improve performance of scientific codes. We present several methods which user can employ to improve data traffic in his code. We report on implementation of a tool which detects the code fragments causing data congestions and advises user on improvements of data routing in these fragments. The capabilities of the tool include deduction of data alignment and affinity from the source code; detection of the code constructs having abnormally high cache or TLB misses; generation of data placement constructs. We demonstrate the capabilities of the tool on experiments with NAS parallel benchmarks and with a simple computational fluid dynamics application ARC3D.

  17. Systemic Approach to Traffic Evaluation of Mostar Airport

    Directory of Open Access Journals (Sweden)

    Eldo Raguž

    2005-11-01

    Full Text Available The attempt of this work is to systematically find solutionsfor Mostar Airport development through technical and technologicalharmonization of traffic processes undertaken in twoseparate organizations - airport and air traffic control and coordinationbetween other traffic branches. The work uses theindicators of traffic flows and tourist trends in the region, andtogether with the mentioned simulations it attempts to evaluatethe traffic potentials in the region by affecting the change in thecurrent negative traffic flows at Mostar Airport.

  18. A Data-Driven Control Design Approach for Freeway Traffic Ramp Metering with Virtual Reference Feedback Tuning

    Directory of Open Access Journals (Sweden)

    Shangtai Jin

    2014-01-01

    Full Text Available ALINEA is a simple, efficient, and easily implemented ramp metering strategy. Virtual reference feedback tuning (VRFT is most suitable for many practical systems since it is a “one-shot” data-driven control design methodology. This paper presents an application of VRFT to a ramp metering problem of freeway traffic system. When there is not enough prior knowledge of the controlled system to select a proper parameter of ALINEA, the VRFT approach is used to optimize the ALINEA's parameter by only using a batch of input and output data collected from the freeway traffic system. The extensive simulations are built on both the macroscopic MATLAB platform and the microscopic PARAMICS platform to show the effectiveness and applicability of the proposed data-driven controller tuning approach.

  19. UAS Air Traffic Controller Acceptability Study-2: Effects of Communications Delays and Winds in Simulation

    Science.gov (United States)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2016-01-01

    This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.

  20. Performance analysis of SS7 congestion controls under sustained overload

    Science.gov (United States)

    Manfield, David R.; Millsteed, Gregory K.; Zukerman, Moshe

    1994-04-01

    Congestion controls are a key factor in achieving the robust performance required of common channel signaling (CCS) networks in the face of partial network failures and extreme traffic loads, especially as networks become large and carry high traffic volume. The CCITT recommendations define a number of types of congestion control, and the parameters of the controls must be well set in order to ensure their efficacy under transient and sustained signalling network overload. The objective of this paper is to present a modeling approach to the determination of the network parameters that govern the performance of the SS7 congestion controls under sustained overload. Results of the investigation by simulation are presented and discussed.