WorldWideScience

Sample records for traffic control automation

  1. AN AUTOMATED RAILWAY STATION TRAFFIC CONTROL SYSTEM

    African Journals Online (AJOL)

    AN AUTOMATED RAILWAY STATION TRAFFIC CONTROL SYSTEM. ... involve collision with automobiles or other vehicles and collision with other trains. ... the processed signals to control electromagnetic devices through motor drivers.

  2. Automated Conflict Resolution For Air Traffic Control

    Science.gov (United States)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  3. Adaptive Automation Based on Air Traffic Controller Decision-Making

    NARCIS (Netherlands)

    IJtsma (Student TU Delft), Martijn; Borst, C.; Mercado Velasco, G.A.; Mulder, M.; van Paassen, M.M.; Tsang, P.S.; Vidulich, M.A.

    2017-01-01

    Through smart scheduling and triggering of automation support, adaptive automation has the potential to balance air traffic controller workload. The challenge in the design of adaptive automation systems is to decide how and when the automation should provide support. This paper describes the design

  4. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    Science.gov (United States)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  5. Using Automated Planning for Traffic Signals Control

    Directory of Open Access Journals (Sweden)

    Matija Gulić

    2016-08-01

    Full Text Available Solving traffic congestions represents a high priority issue in many big cities. Traditional traffic control systems are mainly based on pre-programmed, reactive and local techniques. This paper presents an autonomic system that uses automated planning techniques instead. These techniques are easily configurable and modified, and can reason about the future implications of actions that change the default traffic lights behaviour. The proposed implemented system includes some autonomic properties, since it monitors the current traffic state, detects if the system is degrading its performance, sets up new sets of goals to be achieved by the planner, triggers the planner that generates plans with control actions, and executes the selected courses of actions. The obtained results in several artificial and real world data-based simulation scenarios show that the proposed system can efficiently solve traffic congestion.

  6. Taking Over Control From Highly Automated Vehicles in Complex Traffic Situations: The Role of Traffic Density.

    Science.gov (United States)

    Gold, Christian; Körber, Moritz; Lechner, David; Bengler, Klaus

    2016-06-01

    The aim of this study was to quantify the impact of traffic density and verbal tasks on takeover performance in highly automated driving. In highly automated vehicles, the driver has to occasionally take over vehicle control when approaching system limits. To ensure safety, the ability of the driver to regain control of the driving task under various driving situations and different driver states needs to be quantified. Seventy-two participants experienced takeover situations requiring an evasive maneuver on a three-lane highway with varying traffic density (zero, 10, and 20 vehicles per kilometer). In a between-subjects design, half of the participants were engaged in a verbal 20-Questions Task, representing speaking on the phone while driving in a highly automated vehicle. The presence of traffic in takeover situations led to longer takeover times and worse takeover quality in the form of shorter time to collision and more collisions. The 20-Questions Task did not influence takeover time but seemed to have minor effects on the takeover quality. For the design and evaluation of human-machine interaction in takeover situations of highly automated vehicles, the traffic state seems to play a major role, compared to the driver state, manipulated by the 20-Questions Task. The present results can be used by developers of highly automated systems to appropriately design human-machine interfaces and to assess the driver's time budget for regaining control. © 2016, Human Factors and Ergonomics Society.

  7. Automated mixed traffic vehicle control and scheduling study

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  8. Ecological interface design : supporting fault diagnosis of automated advice in a supervisory air traffic control task

    NARCIS (Netherlands)

    Borst, C.; Bijsterbosch, V.A.; van Paassen, M.M.; Mulder, M.

    2017-01-01

    Future air traffic control will have to rely on more advanced automation to support human controllers in their job of safely handling increased traffic volumes. A prerequisite for the success of such automation is that the data driving it are reliable. Current technology, however, still warrants

  9. Control techniques for an automated mixed traffic vehicle

    Science.gov (United States)

    Meisenholder, G. W.; Johnston, A. R.

    1977-01-01

    The paper describes an automated mixed traffic vehicle (AMTV), a driverless low-speed tram designed to operate in mixed pedestrian and vehicular traffic. The vehicle is a six-passenger electric tram equipped with sensing and control which permit it to function on existing streets in an automatic mode. The design includes established wire-following techniques for steering and near-IR headway sensors. A 7-mph cruise speed is reduced to 2 mph or a complete stop in response to sensor (or passenger) inputs. The AMTV performance is evaluated by operation on a loop route and by simulation. Some necessary improvements involving sensors, sensor pattern, use of an audible signal, and control lag are discussed. It is suggested that appropriate modifications will eliminate collision incidents.

  10. Risk Assessment on the Transition Program for Air Traffic Control Automation System Upgrade

    Directory of Open Access Journals (Sweden)

    Li Dong Bin

    2016-01-01

    Full Text Available We analyzed the safety risks of the transition program for Air Traffic Control (ATC automation system upgrade by using the event tree analysis method in this paper. We decomposed the occurrence progress of the three transition phase and built the event trees corresponding to the three stages, and then we determined the probability of success of each factor and calculated probability of success of the air traffic control automation system upgrade transition. In the conclusion, we illustrate the transition program safety risk according to the results.

  11. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    Science.gov (United States)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  12. Automated mixed traffic transit vehicle microprocessor controller

    Science.gov (United States)

    Marks, R. A.; Cassell, P.; Johnston, A. R.

    1981-01-01

    An improved Automated Mixed Traffic Vehicle (AMTV) speed control system employing a microprocessor and transistor chopper motor current controller is described and its performance is presented in terms of velocity versus time curves. The on board computer hardware and software systems are described as is the software development system. All of the programming used in this controller was implemented using FORTRAN. This microprocessor controller made possible a number of safety features and improved the comfort associated with starting and shopping. In addition, most of the vehicle's performance characteristics can be altered by simple program parameter changes. A failure analysis of the microprocessor controller was generated and the results are included. Flow diagrams for the speed control algorithms and complete FORTRAN code listings are also included.

  13. Controlling Air Traffic (Simulated) in the Presence of Automation (CATS PAu) 1995: A Study of Measurement Techniques for Situation Awareness in Air Traffic Control

    Science.gov (United States)

    French, Jennifer R.

    1995-01-01

    As automated systems proliferate in aviation systems, human operators are taking on less and less of an active role in the jobs they once performed, often reducing what should be important jobs to tasks barely more complex than monitoring machines. When operators are forced into these roles, they risk slipping into hazardous states of awareness, which can lead to reduced skills, lack of vigilance, and the inability to react quickly and competently when there is a machine failure. Using Air Traffic Control (ATC) as a model, the present study developed tools for conducting tests focusing on levels of automation as they relate to situation awareness. Subjects participated in a two-and-a-half hour experiment that consisted of a training period followed by a simulation of air traffic control similar to the system presently used by the FAA, then an additional simulation employing automated assistance. Through an iterative design process utilizing numerous revisions and three experimental sessions, several measures for situational awareness in a simulated Air Traffic Control System were developed and are prepared for use in future experiments.

  14. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  15. Classification of Automated Search Traffic

    Science.gov (United States)

    Buehrer, Greg; Stokes, Jack W.; Chellapilla, Kumar; Platt, John C.

    As web search providers seek to improve both relevance and response times, they are challenged by the ever-increasing tax of automated search query traffic. Third party systems interact with search engines for a variety of reasons, such as monitoring a web site’s rank, augmenting online games, or possibly to maliciously alter click-through rates. In this paper, we investigate automated traffic (sometimes referred to as bot traffic) in the query stream of a large search engine provider. We define automated traffic as any search query not generated by a human in real time. We first provide examples of different categories of query logs generated by automated means. We then develop many different features that distinguish between queries generated by people searching for information, and those generated by automated processes. We categorize these features into two classes, either an interpretation of the physical model of human interactions, or as behavioral patterns of automated interactions. Using the these detection features, we next classify the query stream using multiple binary classifiers. In addition, a multiclass classifier is then developed to identify subclasses of both normal and automated traffic. An active learning algorithm is used to suggest which user sessions to label to improve the accuracy of the multiclass classifier, while also seeking to discover new classes of automated traffic. Performance analysis are then provided. Finally, the multiclass classifier is used to predict the subclass distribution for the search query stream.

  16. Intelligent Control in Automation Based on Wireless Traffic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2007-08-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  17. Intelligent Control in Automation Based on Wireless Traffic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2007-09-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  18. Defining the drivers for accepting decision making automation in air traffic management.

    Science.gov (United States)

    Bekier, Marek; Molesworth, Brett R C; Williamson, Ann

    2011-04-01

    Air Traffic Management (ATM) operators are under increasing pressure to improve the efficiency of their operation to cater for forecasted increases in air traffic movements. One solution involves increasing the utilisation of automation within the ATM system. The success of this approach is contingent on Air Traffic Control Operators' (ATCOs) willingness to accept increased levels of automation. The main aim of the present research was to examine the drivers underpinning ATCOs' willingness to accept increased utilisation of automation within their role. Two fictitious scenarios involving the application of two new automated decision-making tools were created. The results of an online survey revealed traditional predictors of automation acceptance such as age, trust and job satisfaction explain between 4 and 7% of the variance. Furthermore, these predictors varied depending on the purpose in which the automation was to be employed. These results are discussed from an applied and theoretical perspective. STATEMENT OF RELEVANCE: Efficiency improvements in ATM are required to cater for forecasted increases in air traffic movements. One solution is to increase the utilisation of automation within Air Traffic Control. The present research examines the drivers underpinning air traffic controllers' willingness to accept increased levels of automation in their role.

  19. Automation of Data Traffic Control on DSM Architecture

    Science.gov (United States)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2001-01-01

    The design of distributed shared memory (DSM) computers liberates users from the duty to distribute data across processors and allows for the incremental development of parallel programs using, for example, OpenMP or Java threads. DSM architecture greatly simplifies the development of parallel programs having good performance on a few processors. However, to achieve a good program scalability on DSM computers requires that the user understand data flow in the application and use various techniques to avoid data traffic congestions. In this paper we discuss a number of such techniques, including data blocking, data placement, data transposition and page size control and evaluate their efficiency on the NAS (NASA Advanced Supercomputing) Parallel Benchmarks. We also present a tool which automates the detection of constructs causing data congestions in Fortran array oriented codes and advises the user on code transformations for improving data traffic in the application.

  20. Performance of an Automated System for Control of Traffic in Terminal Airspace

    Science.gov (United States)

    Nikoleris, Tasos; Erzberger, Heinz; Paielli, Russell A.; Chu, Yung-Cheng

    2016-01-01

    This paper examines the performance of a system that performs automated conflict resolution and arrival scheduling for aircraft in the terminal airspace around major airports. Such a system has the potential to perform separation assurance and arrival sequencing tasks that are currently handled manually by human controllers. The performance of the system is tested against several simulated traffic scenarios that are characterized by the rate at which air traffic is metered into the terminal airspace. For each traffic scenario, the levels of performance that are examined include: number of conflicts predicted to occur, types of resolution maneuver used to resolve predicted conflicts, and the amount of delay for all flights. The simulation results indicate that the percentage of arrivals that required a maneuver that changes the flight's horizontal route ranged between 11% and 15% in all traffic scenarios. That finding has certain implications if this automated system were to be implemented simply as a decision support tool. It is also found that arrival delay due to purely wake vortex separation requirements on final approach constituted only between 29% and 35% of total arrival delay, while the remaining major portion of it is mainly due to delay back propagation effects.

  1. How do Air Traffic Controllers Use Automation and Tools Differently During High Demand Situations?

    Science.gov (United States)

    Kraut, Joshua M.; Mercer, Joey; Morey, Susan; Homola, Jeffrey; Gomez, Ashley; Prevot, Thomas

    2013-01-01

    In a human-in-the-loop simulation, two air traffic controllers managed identical airspace while burdened with higher than average workload, and while using advanced tools and automation designed to assist with scheduling aircraft on multiple arrival flows to a single meter fix. This paper compares the strategies employed by each controller, and investigates how the controllers' strategies change while managing their airspace under more normal workload conditions and a higher workload condition. Each controller engaged in different methods of maneuvering aircraft to arrive on schedule, and adapted their strategies to cope with the increased workload in different ways. Based on the conclusions three suggestions are made: that quickly providing air traffic controllers with recommendations and information to assist with maneuvering and scheduling aircraft when burdened with increased workload will improve the air traffic controller's effectiveness, that the tools should adapt to the strategy currently employed by a controller, and that training should emphasize which traffic management strategies are most effective given specific airspace demands.

  2. Design of automation tools for management of descent traffic

    Science.gov (United States)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational

  3. Transitioning to future air traffic management: effects of imperfect automation on controller attention and performance.

    Science.gov (United States)

    Rovira, Ericka; Parasuraman, Raja

    2010-06-01

    This study examined whether benefits of conflict probe automation would occur in a future air traffic scenario in which air traffic service providers (ATSPs) are not directly responsible for freely maneuvering aircraft but are controlling other nonequipped aircraft (mixed-equipage environment). The objective was to examine how the type of automation imperfection (miss vs. false alarm) affects ATSP performance and attention allocation. Research has shown that the type of automation imperfection leads to differential human performance costs. Participating in four 30-min scenarios were 12 full-performance-level ATSPs. Dependent variables included conflict detection and resolution performance, eye movements, and subjective ratings of trust and self confidence. ATSPs detected conflicts faster and more accurately with reliable automation, as compared with manual performance. When the conflict probe automation was unreliable, conflict detection performance declined with both miss (25% conflicts detected) and false alarm automation (50% conflicts detected). When the primary task of conflict detection was automated, even highly reliable yet imperfect automation (miss or false alarm) resulted in serious negative effects on operator performance. The further in advance that conflict probe automation predicts a conflict, the greater the uncertainty of prediction; thus, designers should provide users with feedback on the state of the automation or other tools that allow for inspection and analysis of the data underlying the conflict probe algorithm.

  4. Trajectory Specification for Automation of Terminal Air Traffic Control

    Science.gov (United States)

    Paielli, Russell A.

    2016-01-01

    "Trajectory specification" is the explicit bounding and control of aircraft tra- jectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft nav- igation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) sys- tem or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents ATC algorithms and software for achieving a specified delay of runway arrival time.

  5. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety.

    Science.gov (United States)

    Jeong, Eunbi; Oh, Cheol; Lee, Seolyoung

    2017-07-01

    Automated driving systems (ADSs) are expected to prevent traffic accidents caused by driver carelessness on freeways. There is no doubt regarding this safety benefit if all vehicles in the transportation system were equipped with ADSs; however, it is implausible to expect that ADSs will reach 100% market penetration rate (MPR) in the near future. Therefore, the following question arises: 'Can ADSs, which consider only situations in the vicinity of an equipped vehicle, really contribute to a significant reduction in traffic accidents?' To address this issue, the interactions between equipped and unequipped vehicles must be investigated, which is the purpose of this study. This study evaluated traffic safety at different MPRs based on a proposed index to represent the overall rear-end crash risk of the traffic stream. Two approaches were evaluated for adjusting longitudinal vehicle maneuvers: vehicle safety-based maneuvering (VSM), which considers the crash risk of an equipped vehicle and its neighboring vehicles, and traffic safety-based maneuvering (TSM), which considers the overall crash risk in the traffic stream. TSM assumes that traffic operational agencies are able to monitor all the vehicles and to intervene in vehicle maneuvering. An optimization process, which attempts to obtain vehicle maneuvering control parameters to minimize the overall crash risk, is integrated into the proposed evaluation framework. The main purpose of employing the optimization process for vehicle maneuvering in this study is to identify opportunities to improve traffic safety through effective traffic management rather than developing a vehicle control algorithm that can be implemented in practice. The microscopic traffic simulator VISSIM was used to simulate the freeway traffic stream and to conduct systematic evaluations based on the proposed methodology. Both TSM and VSM achieved significant reductions in the potential for rear-end crashes. However, TSM obtained much greater

  6. Will Automated Vehicles Negatively Impact Traffic Flow?

    Directory of Open Access Journals (Sweden)

    S. C. Calvert

    2017-01-01

    Full Text Available With low-level vehicle automation already available, there is a necessity to estimate its effects on traffic flow, especially if these could be negative. A long gradual transition will occur from manual driving to automated driving, in which many yet unknown traffic flow dynamics will be present. These effects have the potential to increasingly aid or cripple current road networks. In this contribution, we investigate these effects using an empirically calibrated and validated simulation experiment, backed up with findings from literature. We found that low-level automated vehicles in mixed traffic will initially have a small negative effect on traffic flow and road capacities. The experiment further showed that any improvement in traffic flow will only be seen at penetration rates above 70%. Also, the capacity drop appeared to be slightly higher with the presence of low-level automated vehicles. The experiment further investigated the effect of bottleneck severity and truck shares on traffic flow. Improvements to current traffic models are recommended and should include a greater detail and understanding of driver-vehicle interaction, both in conventional and in mixed traffic flow. Further research into behavioural shifts in driving is also recommended due to limited data and knowledge of these dynamics.

  7. DEVELOPMENT OF THE AUTOMATED ROAD TRAFFIC CONTROL SYSTEMS IN MINSK AS PART OF THE INTELLECTUAL CITY TRANSPORT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Kapskiy

    2017-01-01

    Full Text Available The results of the analysis of Minsk city transport system performance. It is shown that the growth of car ownership has caused a number of problems, among which the low-speed communication, bad driving modes, the presence of elevated levels of congestion and accidents. The corresponding figures for accidents in Minsk and some cities in the world that allow to characterize the transport system of the city of Minsk, as satisfactory. To improve the system and improve the quality of traffic necessary to create intelligent transport system of the city of Minsk. Intelligent Transportation System, being a global trend, enables dramatically improve road quality. Automated traffic control system and other subsystems as part of the Intelligent Transportation Systems are tools for achieving the goals for improving the safety and comfort of road users. It is proposed as a base for its creation to choose an automated traffic control system, which has a corresponding functional, structural, organizational and institutional provisions for its development. The technological requirements for the functioning of an integrated system, which relate to the level of efficiency, including accidents on sections of the road network included in the created system. Modernization of the automated traffic control system and its transformation into an intelligent transport system will reduce emergency, economic and environmental, and social costs in the road traffic is not less than 15 % from their current level, despite the steady growth of car ownership in the city. It is planned to create a complete intelligent transportation system.

  8. Ecological Interface Design : Sensor Failure Diagnosis in Air Traffic Control

    NARCIS (Netherlands)

    Bijsterbosch, V.A.; Borst, C.; Mulder, M.; van Paassen, M.M.

    2016-01-01

    Future air traffic control will have to rely on more advanced automation in order to support controllers in their job of safely controlling increased traffic volumes. A prerequisite for the success of such automation is that the underlying data driving it is reliable. Current technology, however,

  9. Impact of Automation Support on the Conflict Resolution Task in a Human-in-the-Loop Air Traffic Control Simulation

    Science.gov (United States)

    Mercer, Joey; Gomez, Ashley; Gabets, Cynthia; Bienert, Nancy; Edwards, Tamsyn; Martin, Lynne; Gujral, Vimmy; Homola, Jeffrey

    2016-01-01

    To determine the capabilities and limitations of human operators and automation in separation assurance roles, the second of three Human-in-the-Loop (HITL) part-task studies investigated air traffic controllers ability to detect and resolve conflicts under varying task sets, traffic densities, and run lengths. Operations remained within a single sector, staffed by a single controller, and explored, among other things, the controllers responsibility for conflict resolution with or without their involvement in the conflict detection task. Furthermore, these conditions were examined across two different traffic densities; 1x (current-day traffic) and a 20 increase above current-day traffic levels (1.2x). Analyses herein offer an examination of the conflict resolution strategies employed by controllers. In particular, data in the form of elapsed time between conflict detection and conflict resolution are used to assess if, and how, the controllers involvement in the conflict detection task affected the way in which they resolved traffic conflicts.

  10. Physics of automated driving in framework of three-phase traffic theory.

    Science.gov (United States)

    Kerner, Boris S

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  11. Physics of automated driving in framework of three-phase traffic theory

    Science.gov (United States)

    Kerner, Boris S.

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  12. Automated mixed traffic vehicle design AMTV 2

    Science.gov (United States)

    Johnston, A. R.; Marks, R. A.; Cassell, P. L.

    1982-01-01

    The design of an improved and enclosed Automated Mixed Traffic Transit (AMTT) vehicle is described. AMTT is an innovative concept for low-speed tram-type transit in which suitable vehicles are equipped with sensors and controls to permit them to operate in an automated mode on existing road or walkway surfaces. The vehicle chassis and body design are presented in terms of sketches and photographs. The functional design of the sensing and control system is presented, and modifications which could be made to the baseline design for improved performance, in particular to incorporate a 20-mph capability, are also discussed. The vehicle system is described at the block-diagram-level of detail. Specifications and parameter values are given where available.

  13. THE QUESTION OF DEVELOPMENT OF AUTOMATED SYSTEMS FOR TRAFFIC MANAGEMENT

    Directory of Open Access Journals (Sweden)

    V. Shirin

    2015-12-01

    Full Text Available The current systems and methods for automated traffic management in cities are analyzed. The management in cities is analyzed. The management levels are specified. There were fermulated the general requirements, objectives and funnctions of the automated sistems for traffic management with regard to the modern transport problems as well as proposed their aditional managemrnt and infor-maton functions. A phased approach to the implementation of projects on creation of automated sys-tems of traffic management is offered.

  14. Automated Systems for Road Safety control in a Developing World ...

    African Journals Online (AJOL)

    An Automated system was finally designed and developed for road safety control. This Automated system is believed to have the capacity to minimize or eliminate the problems identified in this study on traffic control in a developing world. Key words: drivers, traffic situation information, accident causation, FRSC ...

  15. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  16. Automated Big Traffic Analytics for Cyber Security

    OpenAIRE

    Miao, Yuantian; Ruan, Zichan; Pan, Lei; Wang, Yu; Zhang, Jun; Xiang, Yang

    2018-01-01

    Network traffic analytics technology is a cornerstone for cyber security systems. We demonstrate its use through three popular and contemporary cyber security applications in intrusion detection, malware analysis and botnet detection. However, automated traffic analytics faces the challenges raised by big traffic data. In terms of big data's three characteristics --- volume, variety and velocity, we review three state of the art techniques to mitigate the key challenges including real-time tr...

  17. 4D Trajectory Estimation for Air Traffic Control Automation System Based on Hybrid System Theory

    Directory of Open Access Journals (Sweden)

    Xin-Min Tang

    2012-03-01

    Full Text Available To resolve the problem of future airspace management under great traffic flow and high density condition, 4D trajectory estimation has become one of the core technologies of the next new generation air traffic control automation system. According to the flight profile and the dynamics models of different aircraft types under different flight conditions, a hybrid system model that switches the aircraft from one flight stage to another with aircraft state changing continuously in one state is constructed. Additionally, air temperature and wind speed are used to modify aircraft true airspeed as well as ground speed, and the hybrid system evolution simulation is used to estimate aircraft 4D trajectory. The case study proves that 4D trajectory estimated through hybrid system model can image the flight dynamic states of aircraft and satisfy the needs of the planned flight altitude profile.KEY WORDSair traffic management, 4D trajectory estimation, hybrid system model, aircraft dynamic model

  18. Automation warning system against driver falling asleep in-traffic

    Directory of Open Access Journals (Sweden)

    Dymov I. S.

    2017-12-01

    Full Text Available The paper is devoted to the development of a new automation recognition and warning system against driver falling asleep in-traffic. The issue of the physical condition control of professional drivers on the voyage has been considered both on the part of efficiency and quality of its determination, and in terms of improving overall road safety. The existing and widely used devices for determining the transition to the stage of sleep of drivers being in-traffic have been analyzed. Their advantages and disadvantages have been detected. It has been established that the main negative factor preventing the mass introduction of pre-existing warning systems is the need to wear one or another monitoring device before starting the movement. Carried out project research work has proposed a complex monitoring of the physical and physiological condition of driving person as a new warning method against falling asleep in-traffic. The proposed variations of algorithmic implementations can be used in long-distance trucks and passenger vehicles. Two different versions of the automatic control status of the driver physical condition have been considered. The first approach has proposed the use of sensors of the biometric parameters of body, pulsus, body temperature, and hands on wheel pressure sensors. The second one has proposed using the tracking cameras. Both for the first and second versions of the automation system a toolset of control devices is being installed inside the vehicle and have no physical, so irritating action on the driver. Software approach for the false operation rejection of the devices has been developed. The paper considers the flow diagrams of the automatic systems and logical structure of analysis and decision-making. The set of impacts intended for driver's awakening has been proposed. The conclusion about the engineering perspectives of the proposed approach of projected automation systems has been made.

  19. Strategic Deconfliction of 4D Trajectory and Perturbation Analysis for Air Traffic Control and Automation System

    Directory of Open Access Journals (Sweden)

    Xinmin Tang

    2016-01-01

    Full Text Available Strategic 4D trajectory conflict-free planning is recognized as one of the core technologies of next-generation air traffic control and automation systems. To resolve potential conflicts during strategic 4D conflict-free trajectory planning, a protection-zone conflict-control model based on air traffic control separation constraints was proposed, in which relationships between expected arrival time and adjusted arrival time at conflicting waypoints for aircraft queues were built and transformed into dynamic linear equations under the definition of max-plus algebra. A method for strategic deconfliction of 4D trajectory was then proposed using two strategies: arrival time adjustment and departure time adjustment. In addition, departure time and flight duration perturbations were introduced to analyze the sensitivity of the planned strategic conflict-free 4D trajectories, and a robustness index for the conflict-free 4D trajectories was calculated. Finally, the proposed method was tested for the Shanghai air traffic control terminal area. The outcomes demonstrated that the planned strategic conflict-free 4D trajectories could avoid potential conflicts, and the slack time could be used to indicate their robustness. Complexity analysis demonstrated that deconfliction using max-plus algebra is more suitable for deconfliction of 4D trajectory with random sampling period in fix air route.

  20. AN AUTOMATED RAILWAY STATION TRAFFIC CONTROL SYSTEM

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... Software simulation was carried out using the Proteus virtual system modeling ... system which helps in track switching and level crossing gate traffic control is capable of improving reliability, speed, .... Lane Switching Network.

  1. A knowledge-based system for controlling automobile traffic

    Science.gov (United States)

    Maravas, Alexander; Stengel, Robert F.

    1994-01-01

    Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.

  2. Optimization of traffic light control system of an intersection using ...

    African Journals Online (AJOL)

    This paper considers an automated static road traffic control system of an intersection for the purpose of minimizing the effects of traffic jam and hence its attendant consequences such as prolonged waiting time, emission of toxic hydrocarbons from automobiles, etc. Using real-time road traffic data, a dynamic round-robin ...

  3. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    Science.gov (United States)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  4. Building Strategic Conformal Automation for Air Traffic Control Using Machine Learning

    NARCIS (Netherlands)

    Regtuit, Robert; Borst, C.; van Kampen, E.; van Paassen, M.M.

    2018-01-01

    Acceptance of automation has been a bottleneck for successful introduction of automation in Air Trac Control. Strategic conformal automation has been proven to increase automation acceptance, by creating a better match between automation and operator decision-making. In this paper strategic

  5. Advanced Air Traffic Management Research (Human Factors and Automation): NASA Research Initiatives in Human-Centered Automation Design in Airspace Management

    Science.gov (United States)

    Corker, Kevin M.; Condon, Gregory W. (Technical Monitor)

    1996-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. The core processes of control and the distribution of decision making in that control are undergoing extensive analysis. From our perspective, the human operators and the procedures by which they interact are the fundamental determinants of the safe, efficient, and flexible operation of the system. In that perspective, we have begun to explore what our experience has taught will be the most challenging aspects of designing and integrating human-centered automation in the advanced system. We have performed a full mission simulation looking at the role shift to self-separation on board the aircraft with the rules of the air guiding behavior and the provision of a cockpit display of traffic information and an on-board traffic alert system that seamlessly integrates into the TCAS operations. We have performed and initial investigation of the operational impact of "Dynamic Density" metrics on controller relinquishing and reestablishing full separation authority. (We follow the assumption that responsibility at all times resides with the controller.) This presentation will describe those efforts as well as describe the process by which we will guide the development of error tolerant systems that are sensitive to shifts in operator work load levels and dynamic shifts in the operating point of air traffic management.

  6. Human Factors of Automated Driving : Predicting the Effects of Authority Transitions on Traffic Flow Efficiency

    NARCIS (Netherlands)

    Varotto, S.F.; Hoogendoorn, R.G.; Van Arem, B.; Hoogendoorn, S.P.

    2014-01-01

    Automated driving potentially has a significant impact on traffic flow efficiency. Automated vehicles, which possess cooperative capabilities, are expected to reduce congestion levels for instance by increasing road capacity, by anticipating traffic conditions further downstream and also by

  7. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    Science.gov (United States)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  8. Automated Traffic and the Finite Size Resonance

    Science.gov (United States)

    Veerman, J. J. P.; Stošić, B. D.; Tangerman, F. M.

    2009-10-01

    We investigate in detail what one might call the canonical (automated) traffic problem: A long string of N+1 cars (numbered from 0 to N) moves along a one-lane road "in formation" at a constant velocity and with a unit distance between successive cars. Each car monitors the relative velocity and position of only its neighboring cars. This information is then fed back to its own engine which decelerates (brakes) or accelerates according to the information it receives. The question is: What happens when due to an external influence—a traffic light turning green—the `zero'th' car (the "leader") accelerates? As a first approximation, we analyze linear(ized) equations and show that in this scenario the traffic flow has a tendency to be stop-and-go. We give approximate solutions for the global traffic as function of all the relevant parameters (the feed back parameters as well as cruise velocity and so on). We discuss general design principles for these algorithms, that is: how does the choice of parameters influence the performance.

  9. Benefits of Imperfect Conflict Resolution Advisory Aids for Future Air Traffic Control.

    Science.gov (United States)

    Trapsilawati, Fitri; Wickens, Christopher D; Qu, Xingda; Chen, Chun-Hsien

    2016-11-01

    The aim of this study was to examine the human-automation interaction issues and the interacting factors in the context of conflict detection and resolution advisory (CRA) systems. The issues of imperfect automation in air traffic control (ATC) have been well documented in previous studies, particularly in conflict-alerting systems. The extent to which the prior findings can be applied to an integrated conflict detection and resolution system in future ATC remains unknown. Twenty-four participants were evenly divided into two groups corresponding to a medium- and a high-traffic density condition, respectively. In each traffic density condition, participants were instructed to perform simulated ATC tasks under four automation conditions, including reliable, unreliable with short time allowance to secondary conflict (TAS), unreliable with long TAS, and manual conditions. Dependent variables accounted for conflict resolution performance, workload, situation awareness, and trust in and dependence on the CRA aid, respectively. Imposing the CRA automation did increase performance and reduce workload as compared with manual performance. The CRA aid did not decrease situation awareness. The benefits of the CRA aid were manifest even when it was imperfectly reliable and were apparent across traffic loads. In the unreliable blocks, trust in the CRA aid was degraded but dependence was not influenced, yet the performance was not adversely affected. The use of CRA aid would benefit ATC operations across traffic densities. CRA aid offers benefits across traffic densities, regardless of its imperfection, as long as its reliability level is set above the threshold of assistance, suggesting its application for future ATC. © 2016, Human Factors and Ergonomics Society.

  10. Design and Operational Evaluation of the Traffic Management Advisor at the Ft. Worth Air Route Traffic Control Center

    Science.gov (United States)

    Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)

    1997-01-01

    NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.

  11. Cooperative automated driving for various traffic scenarios : experimental validation in the GCDC 2016

    NARCIS (Netherlands)

    Dolk, Victor; Ouden, Jos Den; Steeghs, Sander; Devanesan, Jason Gideon; Badshah, Irfan; Sudhakaran, Adityen; Elferink, Koos; Chakraborty, Debayan

    2018-01-01

    Cooperative automated driving is a promising technology to improve road safety, fuel consumption, and traffic throughput without the need to expand the current infrastructure. To accelerate the developments in cooperative driving toward deployment in realistic traffic, the second grand cooperative

  12. Discrete events simulation of a route with traffic lights through automated control in real time

    Directory of Open Access Journals (Sweden)

    Rodrigo César Teixeira Baptista

    2013-03-01

    Full Text Available This paper presents the integration and communication in real-time of a discrete event simulation model with an automatic control system. The simulation model of an intersection with roads having traffic lights was built in the Arena environment. The integration and communication have been made via network, and the control system was operated by a programmable logic controller. Scenarios were simulated for the free, regular and congested traffic situations. The results showed the average number of vehicles that entered in the system and that were retained and also the total average time of the crossing of the vehicles on the road. In general, the model allowed evaluating the behavior of the traffic in each of the ways and the commands from the controller to activation and deactivation of the traffic lights.

  13. Forced versus free traffic in an automated milking system

    DEFF Research Database (Denmark)

    Munksgaard, Lene; Rushen, J.; de Passillé, A.M.

    2011-01-01

    Cows in automated milking systems with free access to feeders sometimes show a reduced use of the robotic milkers, while forced traffic where cows have to pass through the robot to reach the feeders may reduce feeding time and frequency. We examined two groups of 35 lactating cows. For 21 d, one...

  14. Pilot and Controller Evaluations of Separation Function Allocation in Air Traffic Management

    Science.gov (United States)

    Wing, David; Prevot, Thomas; Morey, Susan; Lewis, Timothy; Martin, Lynne; Johnson, Sally; Cabrall, Christopher; Como, Sean; Homola, Jeffrey; Sheth-Chandra, Manasi; style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20130014930'); toggleEditAbsImage('author_20130014930_show'); toggleEditAbsImage('author_20130014930_hide'); "> style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20130014930_show"> style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20130014930_hide">

    2013-01-01

    Two human-in-the-loop simulation experiments were conducted in coordinated fashion to investigate the allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). Ground-based separation was provided by air traffic controllers without automation tools, with tools, or by ground-based automation with controllers in a managing role. Airborne self-separation was provided by airline pilots using self-separation automation enabled by airborne surveillance technology. The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations, assuming the starting point of current-day operations and modeling an emergence of NextGen technologies and procedures. In the controller-focused experiment, the impact of mixed operations on controller performance was assessed at four stages of NextGen implementation. In the pilot-focused experiment, the limits to which pilots with automation tools could take full responsibility for separation from ground-controlled aircraft were tested. Results indicate that the presence of self-separating aircraft had little impact on the controllers' ability to provide separation services for ground-controlled aircraft. Overall performance was best in the most automated environment in which all aircraft were data communications equipped, ground-based separation was highly automated, and self-separating aircraft had access to trajectory intent information for all aircraft. In this environment, safe, efficient, and highly acceptable operations could be achieved for twice today's peak airspace throughput. In less automated environments, reduced trajectory intent exchange and manual air traffic control limited the safely achievable airspace throughput and

  15. Aviation safety/automation program overview

    Science.gov (United States)

    Morello, Samuel A.

    1990-01-01

    The goal is to provide a technology base leading to improved safety of the national airspace system through the development and integration of human-centered automation technologies for aircraft crews and air traffic controllers. Information on the problems, specific objectives, human-automation interaction, intelligent error-tolerant systems, and air traffic control/cockpit integration is given in viewgraph form.

  16. Information Presentation and Control in a Modern Air Traffic Control Tower Simulator

    Science.gov (United States)

    Haines, Richard F.; Doubek, Sharon; Rabin, Boris; Harke, Stanton

    1996-01-01

    The proper presentation and management of information in America's largest and busiest (Level V) air traffic control towers calls for an in-depth understanding of many different human-computer considerations: user interface design for graphical, radar, and text; manual and automated data input hardware; information/display output technology; reconfigurable workstations; workload assessment; and many other related subjects. This paper discusses these subjects in the context of the Surface Development and Test Facility (SDTF) currently under construction at NASA's Ames Research Center, a full scale, multi-manned, air traffic control simulator which will provide the "look and feel" of an actual airport tower cab. Special emphasis will be given to the human-computer interfaces required for the different kinds of information displayed at the various controller and supervisory positions and to the computer-aided design (CAD) and other analytic, computer-based tools used to develop the facility.

  17. Driver Response Times when Resuming Manual Control from Highly Automated Driving in Truck Platooning Scenarios.

    NARCIS (Netherlands)

    Zhang, Bo; Wilschut, Ellen; Willemsen, D.; Martens, Marieke

    2017-01-01

    Automated platooning of trucks is getting increasing interest for its potentially beneficial effects on fuel consumption, driver workload, traffic flow efficiency and safety. Nevertheless, one major challenge lies in the safe and comfortable transitions of control from the automated system back to

  18. Complexity and Automation Displays of Air Traffic Control: Literature Review and Analysis

    National Research Council Canada - National Science Library

    Xing, Jing; Manning, Carol A

    2005-01-01

    This report reviewed a number of measures of complexity associated with visual displays and analyzed the potential to apply these methods to assess the complexity of air traffic control (ATC) displays...

  19. Launching automated rotary parking system: Towards traffic congestion free Dhaka city

    Science.gov (United States)

    Islam, Mohummad Shariful; Tithi, Afshana Morshed; Hossain, Farzad; Shetu, Rifat Sultana; Amin, S. M. Abdullah Al; Chowdhury, Shakia Zannatul Ferdous

    2017-12-01

    Bangladesh is the most densely populated city in the whole world, which is visible more in the capital city Dhaka. People have to suffer and valuable times are being wasted for this chronic quandary. Lack of proper planning of the city, different speed vehicles on the same road, over population, inadequate road space, unplanned stoppage or parking etc. are responsible for causing the traffic congestion in Dhaka City. Among those insufficient/unplanned parking system is one of the main reasons for causing traffic congestion. The automated rotary car parking system is the best and suitable because of its less utilization of space compared to other systems. It is a friendly parking system due to the non-utilization of noise/pollution related mechanism. The aim of this paper is to develop an automated car parking system with a minimum cost for reducing congestion in Dhaka city.

  20. Safely towards self-driving vehicles : new opportunities new risks and new challenges during the automation of the traffic system.

    NARCIS (Netherlands)

    Nes, C.N. van & Duivenvoorden, C.W.A.E.

    2017-01-01

    There are more and more systems on the market to support the driver in his vehicle. Step by step the automation of our vehicles increases, the traffic system is in a transition towards self-driving vehicles. The automation offers opportunities to make our traffic safer, cleaner and more efficient.

  1. Varying Levels of Automation on UAS Operator Responses to Traffic Resolution Advisories in Civil Airspace

    Science.gov (United States)

    Kenny, Caitlin; Fern, Lisa

    2012-01-01

    Continuing demand for the use of Unmanned Aircraft Systems (UAS) has put increasing pressure on operations in civil airspace. The need to fly UAS in the National Airspace System (NAS) in order to perform missions vital to national security and defense, emergency management, and science is increasing at a rapid pace. In order to ensure safe operations in the NAS, operators of unmanned aircraft, like those of manned aircraft, may be required to maintain separation assurance and avoid loss of separation with other aircraft while performing their mission tasks. This experiment investigated the effects of varying levels of automation on UAS operator performance and workload while responding to conflict resolution instructions provided by the Tactical Collision Avoidance System II (TCAS II) during a UAS mission in high-density airspace. The purpose of this study was not to investigate the safety of using TCAS II on UAS, but rather to examine the effect of automation on the ability of operators to respond to traffic collision alerts. Six licensed pilots were recruited to act as UAS operators for this study. Operators were instructed to follow a specified mission flight path, while maintaining radio contact with Air Traffic Control and responding to TCAS II resolution advisories. Operators flew four, 45 minute, experimental missions with four different levels of automation: Manual, Knobs, Management by Exception, and Fully Automated. All missions included TCAS II Resolution Advisories (RAs) that required operator attention and rerouting. Operator compliance and reaction time to RAs was measured, and post-run NASA-TLX ratings were collected to measure workload. Results showed significantly higher compliance rates, faster responses to TCAS II alerts, as well as less preemptive operator actions when higher levels of automation are implemented. Physical and Temporal ratings of workload were significantly higher in the Manual condition than in the Management by Exception and

  2. Traffic control and intelligent vehicle highway systems: a survey

    NARCIS (Netherlands)

    Baskar, L.D.; Schutter, B. de; Hellendoorn, J.; Papp, Z.

    2011-01-01

    Traffic congestion in highway networks is one of the main issues to be addressed by today's traffic management schemes. Automation combined with the increasing market penetration of on-line communication, navigation and advanced driver assistance systems will ultimately result in intelligent vehicle

  3. Human factors assessment of conflict resolution aid reliability and time pressure in future air traffic control.

    Science.gov (United States)

    Trapsilawati, Fitri; Qu, Xingda; Wickens, Chris D; Chen, Chun-Hsien

    2015-01-01

    Though it has been reported that air traffic controllers' (ATCos') performance improves with the aid of a conflict resolution aid (CRA), the effects of imperfect automation on CRA are so far unknown. The main objective of this study was to examine the effects of imperfect automation on conflict resolution. Twelve students with ATC knowledge were instructed to complete ATC tasks in four CRA conditions including reliable, unreliable and high time pressure, unreliable and low time pressure, and manual conditions. Participants were able to resolve the designated conflicts more accurately and faster in the reliable versus unreliable CRA conditions. When comparing the unreliable CRA and manual conditions, unreliable CRA led to better conflict resolution performance and higher situation awareness. Surprisingly, high time pressure triggered better conflict resolution performance as compared to the low time pressure condition. The findings from the present study highlight the importance of CRA in future ATC operations. Practitioner Summary: Conflict resolution aid (CRA) is a proposed automation decision aid in air traffic control (ATC). It was found in the present study that CRA was able to promote air traffic controllers' performance even when it was not perfectly reliable. These findings highlight the importance of CRA in future ATC operations.

  4. Design and Operational Evaluation of the Traffic Management Advisor at the Fort Worth Air Route Traffic Control Center

    Science.gov (United States)

    1997-06-19

    NASA and the Federal Aviation Administration (FAA) have designed and developed an automation tool known as the Traffic Management Advisor (TMA). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators (TMCs) and ...

  5. Altering user' acceptance of automation through prior automation exposure.

    Science.gov (United States)

    Bekier, Marek; Molesworth, Brett R C

    2017-06-01

    Air navigation service providers worldwide see increased use of automation as one solution to overcome the capacity constraints imbedded in the present air traffic management (ATM) system. However, increased use of automation within any system is dependent on user acceptance. The present research sought to determine if the point at which an individual is no longer willing to accept or cooperate with automation can be manipulated. Forty participants underwent training on a computer-based air traffic control programme, followed by two ATM exercises (order counterbalanced), one with and one without the aid of automation. Results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation ('tipping point') decreased; suggesting it is indeed possible to alter automation acceptance. Practitioner Summary: This paper investigates whether the point at which a user of automation rejects automation (i.e. 'tipping point') is constant or can be manipulated. The results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation decreased; suggesting it is possible to alter automation acceptance.

  6. A hierarchical framework for air traffic control

    Science.gov (United States)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation

  7. THE APPLICABILITY OF EXISTING COMPUTER TECHNOLOGY TO AUTOMATE FUZZY SYNTHESIS OF TRAFFIC LIGHT UAV IN ADVERSE WEATHER CONDITIONS

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2014-01-01

    Full Text Available The results of the analysis of the applicability of known application software systems for automated synthesis of fuzzy control traffic light UAV during its flight in adverse weather conditions. The solution is based on a previously formulated and put into consideration the principle of permissible limited a priori estimation of the uncertainty of aerodynamic characteristics of UAVs.

  8. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment.

    Science.gov (United States)

    Aricò, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Colosimo, Alfredo; Bonelli, Stefano; Golfetti, Alessia; Pozzi, Simone; Imbert, Jean-Paul; Granger, Géraud; Benhacene, Raïlane; Babiloni, Fabio

    2016-01-01

    Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under - and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (É cole Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload.

  9. Air traffic control activity increases attention capacity in air traffic controllers.

    Science.gov (United States)

    Ribas, Valdenilson Ribeiro; Martins, Hugo André de Lima; Amorim, Gutemberg Guerra; Ribas, Renata de Melo Guerra; de Almeida, Cláudia Ângela Vilela; Ribas, Valéria Ribeiro; de Vasconcelos, Carlos Augusto Carvalho; Lima, Murilo Duarte Costa; Sougey, Everton Botelho; de Castro, Raul Manhães

    2010-01-01

    Air traffic controllers simultaneously develop complex and multiple tasks in the course of their activities. In this context, concern is raised over the high level of attention needed by these professionals which can ultimately be affected by stress and fatigue. The objective of this study was to assess attention level in air traffic controllers (ATCo). 45 flight protection professionals were evaluated, comprising 30 ATCo, subdivided into ATCo with ten or more years in the profession (ATCo≥10, n=15) and ATCo with less than ten years in the profession (ATCo air traffic control activity after ten years may be associated with a high level of attention.

  10. Allocation of Functions in a Far-Term Air Traffic Control Environment

    Science.gov (United States)

    Homola, Jeffrey; Martin, Lynne; Mercer, Joey; Cabrall, Christopher; Prevot, Thomas

    2011-01-01

    A human-in-the-loop exploration of a ground-based automated separation assurance concept was conducted that involved the allocation of certain functions between humans and automation. This exploration included operations that were sustained for prolonged periods of time with high levels of traffic in the presence of convective weather and scheduling constraints. An investigation into the acceptability of the defined roles and performance of tasks was conducted where it was found that the participants rated the concept and allocation of functions with a high level of acceptability. However, issues were encountered with the automation related to the detection of and response to tactical conflicts. Lower ratings were given on account of these concerns, and it was found that a key contributor to the underlying problems was transitioning aircraft and the uncertainty of their trajectories. Stemming from those results, participants responded that they would rather have direct control over aircraft transitions as well as more control over the tactical conflict resolution automation. In contrast, participants responded that they would rather have the automation place aircraft back on trajectory, and perform weather avoidance and scheduling tasks.

  11. Fuzzy Multiobjective Traffic Light Signal Optimization

    Directory of Open Access Journals (Sweden)

    N. Shahsavari Pour

    2013-01-01

    Full Text Available Traffic congestion is a major concern for many cities throughout the world. In a general traffic light controller, the traffic lights change at a constant cycle time. Hence it does not provide an optimal solution. Many traffic light controllers in current use are based on the “time-of-the-day” scheme, which use a limited number of predetermined traffic light patterns and implement these patterns depending upon the time of the day. These automated systems do not provide an optimal control for fluctuating traffic volumes. In this paper, the fuzzy traffic light controller is used to optimize the control of fluctuating traffic volumes such as oversaturated or unusual load conditions. The problem is solved by genetic algorithm, and a new defuzzification method is introduced. The performance of the new defuzzification method (NDM is compared with the centroid point defuzzification method (CPDM by using ANOVA. Finally, an illustrative example is presented to show the competency of proposed algorithm.

  12. Intelligent Traffic Light Based on PLC Control

    Science.gov (United States)

    Mei, Lin; Zhang, Lijian; Wang, Lingling

    2017-11-01

    The traditional traffic light system with a fixed control mode and single control function is contradicted with the current traffic section. The traditional one has been unable to meet the functional requirements of the existing flexible traffic control system. This paper research and develop an intelligent traffic light called PLC control system. It uses PLC as control core, using a sensor module for receiving real-time information of vehicles, traffic control mode for information to select the traffic lights. Of which control mode is flexible and changeable, and it also set the countdown reminder to improve the effectiveness of traffic lights, which can realize the goal of intelligent traffic diversion, intelligent traffic diversion.

  13. Automated Traffic Management System and Method

    Science.gov (United States)

    Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)

    2000-01-01

    A data management system and method that enables acquisition, integration, and management of real-time data generated at different rates, by multiple heterogeneous incompatible data sources. The system achieves this functionality by using an expert system to fuse data from a variety of airline, airport operations, ramp control, and air traffic control tower sources, to establish and update reference data values for every aircraft surface operation. The system may be configured as a real-time airport surface traffic management system (TMS) that electronically interconnects air traffic control, airline data, and airport operations data to facilitate information sharing and improve taxi queuing. In the TMS operational mode, empirical data shows substantial benefits in ramp operations for airlines, reducing departure taxi times by about one minute per aircraft in operational use, translating as $12 to $15 million per year savings to airlines at the Atlanta, Georgia airport. The data management system and method may also be used for scheduling the movement of multiple vehicles in other applications, such as marine vessels in harbors and ports, trucks or railroad cars in ports or shipping yards, and railroad cars in switching yards. Finally, the data management system and method may be used for managing containers at a shipping dock, stock on a factory floor or in a warehouse, or as a training tool for improving situational awareness of FAA tower controllers, ramp and airport operators, or commercial airline personnel in airfield surface operations.

  14. Relative position vectors: an alternative approach to conflict detection in air traffic control.

    Science.gov (United States)

    Vuckovic, Anita; Sanderson, Penelope; Neal, Andrew; Gaukrodger, Stephen; Wong, B L William

    2013-10-01

    We explore whether the visual presentation of relative position vectors (RPVs) improves conflict detection in conditions representing some aspects of future airspace concepts. To help air traffic controllers manage increasing traffic, new tools and systems can automate more cognitively demanding processes, such as conflict detection. However, some studies reveal adverse effects of such tools, such as reduced situation awareness and increased workload. New displays are needed that help air traffic controllers handle increasing traffic loads. A new display tool based on the display of RPVs, the Multi-Conflict Display (MCD), is evaluated in a series of simulated conflict detection tasks. The conflict detection performance of air traffic controllers with the MCD plus a conventional plan-view radar display is compared with their performance with a conventional plan-view radar display alone. Performance with the MCD plus radar was better than with radar alone in complex scenarios requiring controllers to find all actual or potential conflicts, especially when the number of aircraft on the screen was large. However performance with radar alone was better for static scenarios in which conflicts for a target aircraft, or target pair of aircraft, were the focus. Complementing the conventional plan-view display with an RPV display may help controllers detect conflicts more accurately with extremely high aircraft counts. We provide an initial proof of concept that RPVs may be useful for supporting conflict detection in situations that are partially representative of conditions in which controllers will be working in the future.

  15. Concepts and algorithms for terminal-area traffic management

    Science.gov (United States)

    Erzberger, H.; Chapel, J. D.

    1984-01-01

    The nation's air-traffic-control system is the subject of an extensive modernization program, including the planned introduction of advanced automation techniques. This paper gives an overview of a concept for automating terminal-area traffic management. Four-dimensional (4D) guidance techniques, which play an essential role in the automated system, are reviewed. One technique, intended for on-board computer implementation, is based on application of optimal control theory. The second technique is a simplified approach to 4D guidance intended for ground computer implementation. It generates advisory messages to help the controller maintain scheduled landing times of aircraft not equipped with on-board 4D guidance systems. An operational system for the second technique, recently evaluated in a simulation, is also described.

  16. Highway traffic simulation on multi-processor computers

    Energy Technology Data Exchange (ETDEWEB)

    Hanebutte, U.R.; Doss, E.; Tentner, A.M.

    1997-04-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high level of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway traffic system and allows for the use of Intelligent Transportation System (ITS) technologies such as an Automated Intelligent Cruise Control (AICC). The structure of the computer model facilitates the use of parallel computers for the highway traffic simulation, since domain decomposition techniques can be applied in a straight forward fashion. In this model, the highway system (i.e. a network of road links) is divided into multiple regions; each region is controlled by a separate link manager residing on an individual processor. A graphical user interface augments the computer model kv allowing for real-time interactive simulation control and interaction with each individual vehicle and road side infrastructure element on each link. Average speed and traffic volume data is collected at user-specified loop detector locations. Further, as a measure of safety the so- called Time To Collision (TTC) parameter is being recorded.

  17. Simulation of traffic control signal systems

    Science.gov (United States)

    Connolly, P. J.; Concannon, P. A.; Ricci, R. C.

    1974-01-01

    In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.

  18. Designing Scenarios for Controller-in-the-Loop Air Traffic Simulations

    Science.gov (United States)

    Kupfer, Michael; Mercer, Joey; Cabrall, Chris; Homola, Jeff; Callantine, Todd

    2013-01-01

    Within the Human Factors Division at NASA Ames Research Center the Airspace Operations Laboratory (AOL) is developing advanced automation concepts that help to transform the National Airspace System into NextGen, the Next Generation Air Transportation System. High-fidelity human-in-the-loop (HITL) simulations are used as a means to investigate and develop roles, responsibilities, support tools, and requirements for human operators and automation. This paper describes the traffic scenario design process and strategies as used by AOL researchers. Details are presented on building scenarios for specific simulation objectives using various design strategies. A focus is set on creating scenarios based on recorded real world traffic for terminal-area simulations.

  19. Exploiting street-level panoramic images for large-scale automated surveying of traffic sign

    NARCIS (Netherlands)

    Hazelhoff, L.; Creusen, I.M.; With, de P.H.N.

    2014-01-01

    Accurate and up-to-date inventories of traffic signs contribute to efficient road maintenance and a high road safety. This paper describes a system for the automated surveying of road signs from street-level images. This is an extremely challenging task, as the involved capturings are non-densely

  20. Model Predictive Control for Integrating Traffic Control Measures

    NARCIS (Netherlands)

    Hegyi, A.

    2004-01-01

    Dynamic traffic control measures, such as ramp metering and dynamic speed limits, can be used to better utilize the available road capacity. Due to the increasing traffic volumes and the increasing number of traffic jams the interaction between the control measures has increased such that local

  1. Optimal Airport Surface Traffic Planning Using Mixed-Integer Linear Programming

    NARCIS (Netherlands)

    Roling, P.C.; Visser, H.G.

    2008-01-01

    We describe an ongoing research effort pertaining to the development of a surface traffic automation system that will help controllers to better coordinate surface traffic movements related to arrival and departure traffic. More specifically, we describe the concept for a taxi-planning support tool

  2. Examining perimeter gating control of urban traffic networkswith locally adaptive traffic signals

    NARCIS (Netherlands)

    Keyvan Ekbatani, M.; Gao, X.; Gayah, V.V.; Knoop, V.L.

    2015-01-01

    Traditionally, urban traffic is controlled by traffic lights. Recent findings of the Macroscopic or Network Fundamental Diagram (MFD or NFD) have led to the development of novel traffic control strategies that can be applied at a networkwide level. One pertinent example is perimeter flow control

  3. A measure theoretic approach to traffic flow optimization on networks

    OpenAIRE

    Cacace, Simone; Camilli, Fabio; De Maio, Raul; Tosin, Andrea

    2018-01-01

    We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective isto minimise/maximise macroscopic quantities, such as traffic volume or average speed,controlling few agents, for example smart traffic lights and automated cars. The measuretheoretic approach allows to study in a same setting local and nonlocal drivers interactionsand to consider the control variables as additional measures interacting ...

  4. Pedestrian Friendly Traffic Signal Control.

    Science.gov (United States)

    2016-01-01

    This project continues research aimed at real-time detection and use of pedestrian : traffic flow information to enhance adaptive traffic signal control in urban areas : where pedestrian traffic is substantial and must be given appropriate attention ...

  5. CATS-based Air Traffic Controller Agents

    Science.gov (United States)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  6. Transitioning Resolution Responsibility between the Controller and Automation Team in Simulated NextGen Separation Assurance

    Science.gov (United States)

    Cabrall, C.; Gomez, A.; Homola, J.; Hunt, S..; Martin, L.; Merccer, J.; Prevott, T.

    2013-01-01

    As part of an ongoing research effort on separation assurance and functional allocation in NextGen, a controller- in-the-loop study with ground-based automation was conducted at NASA Ames' Airspace Operations Laboratory in August 2012 to investigate the potential impact of introducing self-separating aircraft in progressively advanced NextGen timeframes. From this larger study, the current exploratory analysis of controller-automation interaction styles focuses on the last and most far-term time frame. Measurements were recorded that firstly verified the continued operational validity of this iteration of the ground-based functional allocation automation concept in forecast traffic densities up to 2x that of current day high altitude en-route sectors. Additionally, with greater levels of fully automated conflict detection and resolution as well as the introduction of intervention functionality, objective and subjective analyses showed a range of passive to active controller- automation interaction styles between the participants. Not only did the controllers work with the automation to meet their safety and capacity goals in the simulated future NextGen timeframe, they did so in different ways and with different attitudes of trust/use of the automation. Taken as a whole, the results showed that the prototyped controller-automation functional allocation framework was very flexible and successful overall.

  7. Design of an Ecological Flow-based Interface for 4D Trajectory Management in Air Traffic Control

    NARCIS (Netherlands)

    Pinto, J.; Klomp, R.E.; Borst, C.; Van Paassen, M.M.; Mulder, M.

    2015-01-01

    The concept of trajectory-based operations as proposed by SESAR and NextGen seeks to increase airspace efficiency and capacity by introducing time as an explicit control variable. Such form of operations lean heavily on the introduction of higher levels of automation to support the human air traffic

  8. Traffic light control by multiagent reinforcement learning systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.; Groen, F.C.A.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  9. Traffic Light Control by Multiagent Reinforcement Learning Systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.J.H.M.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  10. Controlled Traffic Farming

    OpenAIRE

    Controlled Traffic Farming Europe

    2011-01-01

    Metadata only record Controlled Traffic Farming (CTF) is a farming method used to reduce soil compaction, decrease inputs, and improve soil structure when coupled with reduced-till or no-till practices. This practices utilizes permanent traffic/wheel zones to limit soil compaction to a specific area. This website provides practical information on CTF, case studies, workshops, and links to additional resources.

  11. Conflict Resolution Automation and Pilot Situation Awareness

    Science.gov (United States)

    Dao, Arik-Quang V.; Brandt, Summer L.; Bacon, Paige; Kraut, Josh; Nguyen, Jimmy; Minakata, Katsumi; Raza, Hamzah; Rozovski, David; Johnson, Walter W.

    2010-01-01

    This study compared pilot situation awareness across three traffic management concepts. The Concepts varied in terms of the allocation of traffic avoidance responsibility between the pilot on the flight deck, the air traffic controllers, and a conflict resolution automation system. In Concept 1, the flight deck was equipped with conflict resolution tools that enable them to fully handle the responsibility of weather avoidance and maintaining separation between ownship and surrounding traffic. In Concept 2, pilots were not responsible for traffic separation, but were provided tools for weather and traffic avoidance. In Concept 3, flight deck tools allowed pilots to deviate for weather, but conflict detection tools were disabled. In this concept pilots were dependent on ground based automation for conflict detection and resolution. Situation awareness of the pilots was measured using online probes. Results showed that individual situation awareness was highest in Concept 1, where the pilots were most engaged, and lowest in Concept 3, where automation was heavily used. These findings suggest that for conflict resolution tasks, situation awareness is improved when pilots remain in the decision-making loop.

  12. 30 CFR 56.9100 - Traffic control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of self-propelled...

  13. A Two-Stage Fuzzy Logic Control Method of Traffic Signal Based on Traffic Urgency Degree

    OpenAIRE

    Yan Ge

    2014-01-01

    City intersection traffic signal control is an important method to improve the efficiency of road network and alleviate traffic congestion. This paper researches traffic signal fuzzy control method on a single intersection. A two-stage traffic signal control method based on traffic urgency degree is proposed according to two-stage fuzzy inference on single intersection. At the first stage, calculate traffic urgency degree for all red phases using traffic urgency evaluation module and select t...

  14. Eye metrics for task-dependent automation

    NARCIS (Netherlands)

    Imants, P.; Greef, T.E. de

    2014-01-01

    Future air traffic is expected to grow increasingly, opening up a gap for task dependent automation and adaptive interfaces, helping the Air Traffic Controller to cope with fluctuating workloads. One of the challenging factors in the application of such intelligent systems concerns the question what

  15. Eye Metrics for Task-Dependent Automation

    NARCIS (Netherlands)

    Imants, P.; de Greef, T.F.A.

    2014-01-01

    Future air traffic is expected to grow increasingly, opening up a gap for task dependent automation and adaptive interfaces, helping the Air Traffic Controller to cope with fluctuating workloads. One of the challenging factors in the application of such intelligent systems concerns the question what

  16. Modelling and experimental study for automated congestion driving

    NARCIS (Netherlands)

    Urhahne, Joseph; Piastowski, P.; van der Voort, Mascha C.; Bebis, G; Boyle, R.; Parvin, B.; Koracin, D.; Pavlidis, I.; Feris, R.; McGraw, T.; Elendt, M.; Kopper, R.; Ragan, E.; Ye, Z.; Weber, G.

    2015-01-01

    Taking a collaborative approach in automated congestion driving with a Traffic Jam Assist system requires the driver to take over control in certain traffic situations. In order to warn the driver appropriately, warnings are issued (“pay attention” vs. “take action”) due to a control transition

  17. Human-Automation Cooperation for Separation Assurance in Future NextGen Environments

    Science.gov (United States)

    Mercer, Joey; Homola, Jeffrey; Cabrall, Christopher; Martin, Lynne; Morey, Susan; Gomez, Ashley; Prevot, Thomas

    2014-01-01

    A 2012 Human-In-The-Loop air traffic control simulation investigated a gradual paradigm-shift in the allocation of functions between operators and automation. Air traffic controllers staffed five adjacent high-altitude en route sectors, and during the course of a two-week experiment, worked traffic under different function-allocation approaches aligned with four increasingly mature NextGen operational environments. These NextGen time-frames ranged from near current-day operations to nearly fully-automated control, in which the ground systems automation was responsible for detecting conflicts, issuing strategic and tactical resolutions, and alerting the controller to exceptional circumstances. Results indicate that overall performance was best in the most automated NextGen environment. Safe operations were achieved in this environment for twice todays peak airspace capacity, while being rated by the controllers as highly acceptable. However, results show that sector operations were not always safe; separation violations did in fact occur. This paper will describe in detail the simulation conducted, as well discuss important results and their implications.

  18. Minimizing the disruptive effects of prospective memory in simulated air traffic control.

    Science.gov (United States)

    Loft, Shayne; Smith, Rebekah E; Remington, Roger W

    2013-09-01

    Prospective memory refers to remembering to perform an intended action in the future. Failures of prospective memory can occur in air traffic control. In two experiments, we examined the utility of external aids for facilitating air traffic management in a simulated air traffic control task with prospective memory requirements. Participants accepted and handed-off aircraft and detected aircraft conflicts. The prospective memory task involved remembering to deviate from a routine operating procedure when accepting target aircraft. External aids that contained details of the prospective memory task appeared and flashed when target aircraft needed acceptance. In Experiment 1, external aids presented either adjacent or nonadjacent to each of the 20 target aircraft presented over the 40-min test phase reduced prospective memory error by 11% compared with a condition without external aids. In Experiment 2, only a single target aircraft was presented a significant time (39-42 min) after presentation of the prospective memory instruction, and the external aids reduced prospective memory error by 34%. In both experiments, costs to the efficiency of nonprospective memory air traffic management (nontarget aircraft acceptance response time, conflict detection response time) were reduced by nonadjacent aids compared with no aids or adjacent aids. In contrast, in both experiments, the efficiency of the prospective memory air traffic management (target aircraft acceptance response time) was facilitated by adjacent aids compared with nonadjacent aids. Together, these findings have potential implications for the design of automated alerting systems to maximize multitask performance in work settings where operators monitor and control demanding perceptual displays. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. Air Traffic Control Tools Assessment

    Directory of Open Access Journals (Sweden)

    Tomáš Noskievič

    2017-04-01

    Full Text Available Undoubtedly air transport in today’s world wouldn’t be able to exist without any air traffic control service. As the air transport has been coming through major changes and it has been expanding, it is assumed that its volume will be doubled in the next 15 years. Air traffic control uses strictly organised procedures to ensure safe course of air operations. With the skies covered with more airplanes every year, new tools must be introduced to allow the controllers to manage this rising amount of flying aircraft and to keep the air transport safe. This paper provides a comprehensive and organized material, which describes the newest tools and systems used by air traffic control officers. It proposes improvements for further research and development of ATC tools.

  20. A Control of Collision and Deadlock Avoidance for Automated Guided Vehicles with a Fault-Tolerance Capability

    Directory of Open Access Journals (Sweden)

    Qin Li

    2016-04-01

    Full Text Available Based on a novel discrete-event zone-control model, in our previous papers [1, 2], we presented a time-efficient traffic control for automated guided vehicle (AGV systems to exclude inter-vehicle collisions and system deadlocks, together with a case study on container terminals. The traffic control allows each vehicle in an AGV system to freely choose its routes for any finite sequence of zone-to-zone transportation tasks and the routes can be constructed in an online fashion. In this paper, we extended our previous results with two practical goals: (1 to increase the utilization of the workspace area by reducing the minimally allowed area of each zone; (2 to avoid vehicle collisions and deadlocks with the occurrence of vehicle breakdowns. To achieve the first goal, we include one extra vehicle event that allows each vehicle to probe further ahead while it is moving on the guide-path. This leads to an extension of our previous discrete-event model and traffic control rules, which are presented in the first part of the paper. The second part of the paper concerns the second goal, for which an emergency traffic control scheme is designed as supplementary to the normal traffic control rules. As in our previous papers, the improved model and traffic control are applied to a simulation of quayside container transshipment at container terminals; our simulation results are compared with those from two interesting works in the literature.

  1. Fixed Point Learning Based Intelligent Traffic Control System

    Science.gov (United States)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  2. Traffic control concepts for incident clearance

    Science.gov (United States)

    2009-01-01

    This document discusses various aspects of traffic control for incidents with the focus on the traffic control roles and responsibilities of the responders as well as the safety of the responders and the motoring public. It also recognizes that activ...

  3. NEW POSSIBILITIES OF RAILWAY TRAFFIC CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Lionginas LIUDVINAVIČIUS

    2016-06-01

    Full Text Available This article analyses the train traffic control systems in 1435 mm and 1520 mm gauge railways. The article analyses the aspects of train traffic control and locomotive energy saving by using the coordinates of track profile change that have been received from GPS. In the article, achievements of Lithuanian railways (LG in the area of train traffic control optimisation are presented.

  4. THE AUTOMATED TRAFFIC MANAGEMENT ON ROAD TRANSPORT IN THE CITIES OF UKRAINE

    Directory of Open Access Journals (Sweden)

    V. S. Naumov

    2009-03-01

    Full Text Available The mathematic model of a cross-roads for projecting local automatic system of traffic control has been given. The software realization of model used in a module of automatic system of traffic control has been considered.

  5. Light signals for road traffic control.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1981-01-01

    Signals for road traffic control are a major constituent of the modern traffic scene, particularly in built-up areas. A vast amount of research has been executed in the last two decennia, resulting in a fairly generally accepted view on what the requirements for effective traffic lights are. For the

  6. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  7. Calculation of vehicle delay at signal-controlled intersections with adaptive traffic control algorithm

    Directory of Open Access Journals (Sweden)

    Andronov Roman

    2018-01-01

    Full Text Available By widely introducing information technology tools in the field of traffic control, it is possible to increase the capacity of hubs and reduce vehicle delays. Adaptive traffic light control is one of such tools. Its effectiveness can be assessed through traffic flow simulation. The aim of this study is to create a simulation model of a signal-controlled intersection that can be used to assess the effectiveness of adaptive control in various traffic situations, including the presence or absence of pedestrian traffic through an intersection. The model is based on a numerical experiment conducted using the Monte Carlo method. As a result of the study, vehicle delays, queue length and duration of traffic light cycles are calculated subject to different intensities of incoming traffic flows, and the presence or absence of pedestrian traffic.

  8. Automobile control technology and traffic control

    Energy Technology Data Exchange (ETDEWEB)

    Takaba, Sadao [Univ. of Tokyo (Japan)

    1988-09-05

    In the field of automobile control technology, electronic was first adopted for the electronic fuel control as an answer to the exhaust gas regulations. The operations of the driving system, frame system or the automobile itself which is the combination of the two were optimized by adding sensors, computers, actuators, etc. to alleviate the burden of the driver, offering easier drivability and confortableness. For local driving control, measurement of distance up to obstacle has been practiced using the ultrasonic radar sensor. Research and development of microwave radar sensor have been carried out for years. Automatic driving has been a dream technology, and the study for the technology was started since early times. Remarkable progress was made recently in the navigation system for traffic control in wide area. New automobile traffic information communication and other systems are being developed. Historical description is made on the control and information systems for road transportation, dividing the period into the 1st, 2nd and 3rd generations. 10 references.

  9. MODELS OF AIR TRAFFIC CONTROLLERS ERRORS PREVENTION IN TERMINAL CONTROL AREAS UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.

  10. Intelligent Traffic Control System Implementation for Traffic Violation Control, Congestion Control and Stolen Vehicle Detection

    Directory of Open Access Journals (Sweden)

    Swarup Suresh Kulkarni

    2017-07-01

    Full Text Available Traffic is significant issue in our nation, particularly in urban ranges. Aftereffect of this, activity clog issue happens. Crisis vehicle like rescue vehicle, fire unit, squad cars confront bunches of issue to achieve their goal on account of congested driving conditions, coming about loss of human lives. To minimize this issue we approach new idea name as ”Traffic control framework for blockage control and stolen Vehicle location”. In this framework activity freedom done by transforming Red flag into Green flag. We demonstrate idea of what is called ”Green wave”. Alongside this, we distinguish stolen vehicle by utilizing extremely advantageous RFID innovation. In the event that stolen vehicle is been distinguished, the framework gives ready sign through ringer. Framework sends Message with the assistance of GSM to Police station. In this framework we Use diverse RFID labels for recognizing rescue vehicle, stolen Vehicles. On the off chance that Red flag is on and IR sensor is initiated, then framework gives ringer alarm to movement police. This is novel framework which encourage great answer for comprehend traffic clog.

  11. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  12. Traffic Aware Strategic Aircrew Requests (TASAR) Concept of Operations

    Science.gov (United States)

    Henderson, Jeffrey

    2013-01-01

    Aircrews submit trajectory change requests to air traffic control (ATC) to better achieve the operator's preferred business trajectory. Requests are currently made with limited information and are often denied because the change is not compatible with traffic. Also, request opportunities can be overlooked due to lack of automation that advises aircrews of trajectory changes that improve flight time, fuel burn, and other objectives. The Traffic Aware Strategic Aircrew Requests (TASAR) concept leverages Automatic Dependent Surveillance-Broadcast (ADS-B) surveillance information to advise the aircrew of beneficial trajectory changes that are probed for traffic compatibility prior to issuing the request to ATC. This document describes the features, benefits, and limitations of TASAR automation hosted on an Electronic Flight Bag. TASAR has two modes: (1) auto mode that continuously assesses opportunities for improving the performance of the flight and (2) manual mode that probes trajectory changes entered by aircrews for conflicts and performance objectives. The roles and procedures of the aircrew and ATC remain unchanged under TASAR.

  13. Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace

    Science.gov (United States)

    Coopenbarger, Richard A.

    2010-01-01

    Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.

  14. Management by Trajectory Trade Study of Roles and Responsibilities Between Participants and Automation Report

    Science.gov (United States)

    Fernandes, Alicia D.; Kaler, Curt; Leiden, Kenneth; Atkins, Stephen; Bell, Alan; Kilbourne, Todd; Evans, Mark

    2017-01-01

    This report describes a trade study of roles and responsibilities associated with the Management by Trajectory (MBT) concept. The MBT concept describes roles, responsibilities, and information and automation requirements for providing air traffic controllers and managers the ability to quickly generate, evaluate and implement changes to an aircraft's trajectory. In addition, the MBT concept describes mechanisms for imposing constraints on flight operator preferred trajectories only to the extent necessary to maintain safe and efficient traffic flows, and the concept provides a method for the exchange of trajectory information between ground automation systems and the aircraft that allows for trajectory synchronization and trajectory negotiation. The participant roles considered in this trade study include: airline dispatcher, flight crew, radar controller, traffic manager, and Air Traffic Control System Command Center (ATCSCC) traffic management specialists. The proposed allocation of roles and responsibilities was based on analysis of several use cases that were developed for this purpose as well as for walking through concept elements. The resulting allocation of roles and responsibilities reflects both increased automation capability to support many aviation functions, as well as increased flexibility to assign responsibilities to different participants - in many cases afforded by the increased automation capabilities. Note that the selection of participants to consider for allocation of each function is necessarily rooted in the current environment, in that MBT is envisioned as an evolution of the National Airspace System (NAS), and not a revolution. A key feature of the MBT allocations is a vision for the traffic management specialist to take on a greater role. This is facilitated by the vision that separation management functions, in addition to traffic management functions, will be carried out as trajectory management functions. This creates an opportunity

  15. Application of Real-Time Automated Traffic Incident Response Plan Management System: A Web Structure for the Regional Highway Network in China

    Directory of Open Access Journals (Sweden)

    Yongfeng Ma

    2014-01-01

    Full Text Available Traffic incidents, caused by various factors, may lead to heavy traffic delay and be harmful to traffic capacity of downstream sections. Traffic incident management (TIM systems have been developed widely to respond to traffic incidents intelligently and reduce the losses. Traffic incident response plans, as an important component of TIM, can effectively guide responders as to what and how to do in traffic incidents. In the paper, a real-time automated traffic incident response plan management system was developed, which could generate and manage traffic incident response plans timely and automatically. A web application structure and a physical structure were designed to implement and show these functions. A standard framework of data storage was also developed to save information about traffic incidents and generated response plans. Furthermore, a conformation survey and case-based reasoning (CBR were introduced to identify traffic incident and generate traffic incident response plans automatically, respectively. Twenty-three traffic crash-related incidents were selected and three indicators were used to measure the system performance. Results showed that 20 of 23 cases could be retrieved effectively and accurately. The system is practicable to generate traffic incident response plans and has been implemented in China.

  16. Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events

    NARCIS (Netherlands)

    Aslani, Mohammad; Mesgari, Mohammad Saadi; Wiering, Marco

    2017-01-01

    The transportation demand is rapidly growing in metropolises, resulting in chronic traffic con-gestions in dense downtown areas. Adaptive traffic signal control as the principle part of in-telligent transportation systems has a primary role to effectively reduce traffic congestion by making a

  17. Development and Evaluation of a Control System for Regional Traffic Management

    Directory of Open Access Journals (Sweden)

    John L. McLin

    2011-01-01

    Full Text Available Traffic congestion is a worsening problem in metropolitan areas which will require integrated regional traffic control systems to improve traffic conditions. This paper presents a regional traffic control system which can detect incident conditions and provide integrated traffic management during nonrecurrent congestion events. The system combines advanced artificial intelligence techniques with a traffic performance model based on HCM equations. Preliminary evaluation of the control system using traffic microsimulation demonstrates that it has the potential to improve system conditions during traffic incidents. In addition, several enhancements were identified which will make the system more robust in a real traffic control setting. An assessment of the control system elements indicates that there are no substantial technical barriers in implementing this system in a large traffic network.

  18. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks.

    Science.gov (United States)

    Artuñedo, Antonio; Del Toro, Raúl M; Haber, Rodolfo E

    2017-04-26

    Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller ( TLC ) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

  19. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks

    Directory of Open Access Journals (Sweden)

    Antonio Artuñedo

    2017-04-01

    Full Text Available Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller (TLC network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

  20. Delays at signalised intersections with exhaustive traffic control

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.; Winands, E.M.M.; Down, D.G.

    2010-01-01

    In this paper we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under Heavy Traffic (HT) conditions,

  1. Delays at signalized intersections with exhaustive traffic control

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.; Winands, E.M.M.; Down, D.G.

    2012-01-01

    In this paper, we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under heavy traffic (HT) conditions.

  2. Delays at signalised intersections with exhaustive traffic control

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.; Winands, E.M.M.; Down, D.G.

    2012-01-01

    In this paper, we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under heavy traffic (HT) conditions.

  3. CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G. R. LAI

    2015-08-01

    Full Text Available Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala Lumpur, Malaysia. The aim of this research is to develop an ANFIS traffic signals controller for multilane-isolated four approaches intersections in order to ease traffic congestions at traffic intersections. The new concept to generate sample data for ANFIS training is introduced in this research. The sample data is generated based on fuzzy rules and can be analysed using tree diagram. This controller is simulated on multilane-isolated traffic intersection model developed using M/M/1 queuing theory and its performance in terms of average waiting time, queue length and delay time are compared with traditional controllers and fuzzy controller. Simulation result shows that the average waiting time, queue length, and delay time of ANFIS traffic signal controller are the lowest as compared to the other three controllers. In conclusion, the efficiency and performance of ANFIS controller are much better than that of fuzzy and traditional controllers in different traffic volumes.

  4. Distributed traffic signal control using fuzzy logic

    Science.gov (United States)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  5. 5 CFR 842.207 - Air traffic controllers.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers. 842.207 Section 842.207 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers. (a) An employee who separates from...

  6. Urban Traffic Signal System Control Structural Optimization Based on Network Analysis

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-01-01

    Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.

  7. Task Analysis Assessment on Intrastate Bus Traffic Controllers

    Science.gov (United States)

    Yen Bin, Teo; Azlis-Sani, Jalil; Nur Annuar Mohd Yunos, Muhammad; Ismail, S. M. Sabri S. M.; Tajedi, Noor Aqilah Ahmad

    2016-11-01

    Public transportation acts as social mobility and caters the daily needs of the society for passengers to travel from one place to another. This is true for a country like Malaysia where international trade has been growing significantly over the past few decades. Task analysis assessment was conducted with the consideration of cognitive ergonomic view towards problem related to human factors. Conducting research regarding the task analysis on bus traffic controllers had allowed a better understanding regarding the nature of work and the overall monitoring activities of the bus services. This paper served to study the task analysis assessment on intrastate bus traffic controllers and the objectives of this study include to conduct task analysis assessment on the bus traffic controllers. Task analysis assessment for the bus traffic controllers was developed via Hierarchical Task Analysis (HTA). There are a total of five subsidiary tasks on level one and only two were able to be further broken down in level two. Development of HTA allowed a better understanding regarding the work and this could further ease the evaluation of the tasks conducted by the bus traffic controllers. Thus, human error could be reduced for the safety of all passengers and increase the overall efficiency of the system. Besides, it could assist in improving the operation of the bus traffic controllers by modelling or synthesizing the existing tasks if necessary.

  8. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  9. Human factors issues in the use of artificial intelligence in air traffic control. October 1990 Workshop

    Science.gov (United States)

    Hockaday, Stephen; Kuhlenschmidt, Sharon (Editor)

    1991-01-01

    The objective of the workshop was to explore the role of human factors in facilitating the introduction of artificial intelligence (AI) to advanced air traffic control (ATC) automation concepts. AI is an umbrella term which is continually expanding to cover a variety of techniques where machines are performing actions taken based upon dynamic, external stimuli. AI methods can be implemented using more traditional programming languages such as LISP or PROLOG, or they can be implemented using state-of-the-art techniques such as object-oriented programming, neural nets (hardware or software), and knowledge based expert systems. As this technology advances and as increasingly powerful computing platforms become available, the use of AI to enhance ATC systems can be realized. Substantial efforts along these lines are already being undertaken at the FAA Technical Center, NASA Ames Research Center, academic institutions, industry, and elsewhere. Although it is clear that the technology is ripe for bringing computer automation to ATC systems, the proper scope and role of automation are not at all apparent. The major concern is how to combine human controllers with computer technology. A wide spectrum of options exists, ranging from using automation only to provide extra tools to augment decision making by human controllers to turning over moment-by-moment control to automated systems and using humans as supervisors and system managers. Across this spectrum, it is now obvious that the difficulties that occur when tying human and automated systems together must be resolved so that automation can be introduced safely and effectively. The focus of the workshop was to further explore the role of injecting AI into ATC systems and to identify the human factors that need to be considered for successful application of the technology to present and future ATC systems.

  10. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  11. Traffic analysis and control using image processing

    Science.gov (United States)

    Senthilkumar, K.; Ellappan, Vijayan; Arun, A. R.

    2017-11-01

    This paper shows the work on traffic analysis and control till date. It shows an approach to regulate traffic the use of image processing and MATLAB systems. This concept uses computational images that are to be compared with original images of the street taken in order to determine the traffic level percentage and set the timing for the traffic signal accordingly which are used to reduce the traffic stoppage on traffic lights. They concept proposes to solve real life scenarios in the streets, thus enriching the traffic lights by adding image receivers like HD cameras and image processors. The input is then imported into MATLAB to be used. as a method for calculating the traffic on roads. Their results would be computed in order to adjust the traffic light timings on a particular street, and also with respect to other similar proposals but with the added value of solving a real, big instance.

  12. A computerized traffic control algorithm to determine optimal traffic signal settings. Ph.D. Thesis - Toledo Univ.

    Science.gov (United States)

    Seldner, K.

    1977-01-01

    An algorithm was developed to optimally control the traffic signals at each intersection using a discrete time traffic model applicable to heavy or peak traffic. Off line optimization procedures were applied to compute the cycle splits required to minimize the lengths of the vehicle queues and delay at each intersection. The method was applied to an extensive traffic network in Toledo, Ohio. Results obtained with the derived optimal settings are compared with the control settings presently in use.

  13. CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES

    OpenAIRE

    G. R. LAI; A. CHE SOH; H. MD. SARKAN; R. Z. ABDUL RAHMAN; M. K. HASSAN

    2015-01-01

    Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS) concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala L...

  14. Proactive Traffic Information Control in Emergency Evacuation Network

    Directory of Open Access Journals (Sweden)

    Zhengfeng Huang

    2015-01-01

    Full Text Available Traffic demand in emergency evacuation is usually too large to be effectively managed with reactive traffic information control methods. These methods adapt to the road traffic passively by publishing real-time information without consideration of the routing behavior feedback produced by evacuees. Other remedy measures have to be prepared in case of nonrecurring congestion under these methods. To use the network capacity fully to mitigate near-future evacuation traffic congestion, we propose proactive traffic information control (PTIC model. Based on the mechanism between information and routing behavior feedback, this model can change the route choice of evacuees in advance by dissipating strategic traffic information. Generally, the near-future traffic condition is difficult to accurately predict because it is uncertain in evacuation. Assume that the value of traffic information obeys certain distribution within a range, and then real-time traffic information may reflect the most-likely near-future traffic condition. Unlike the real-time information, the proactive traffic information is a selection within the range to achieve a desired level of the road network performance index (total system travel time. In the aspect of the solution algorithm, differential equilibrium decomposed optimization (D-EDO is proposed to compare with other heuristic methods. A field study on a road network around a large stadium is used to validate the PTIC.

  15. Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [Pacific Northwest National Laboratory (PNNL); Aziz, H M Abdul [ORNL; Young, Stan [National Renewable Energy Laboratory (NREL); Patil, Sagar [Pacific Northwest National Laboratory (PNNL)

    2017-10-01

    Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections. In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.

  16. Future Control and Automation : Proceedings of the 2nd International Conference on Future Control and Automation

    CERN Document Server

    2012-01-01

    This volume Future Control and Automation- Volume 2 includes best papers from 2012 2nd International Conference on Future Control and Automation (ICFCA 2012) held on July 1-2, 2012, Changsha, China. Future control and automation is the use of control systems and information technologies to reduce the need for human work in the production of goods and services. This volume can be divided into six sessions on the basis of the classification of manuscripts considered, which is listed as follows: Mathematical Modeling, Analysis and Computation, Control Engineering, Reliable Networks Design, Vehicular Communications and Networking, Automation and Mechatronics.

  17. A Sarsa(λ)-based control model for real-time traffic light coordination.

    Science.gov (United States)

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  18. A Sarsa(λ-Based Control Model for Real-Time Traffic Light Coordination

    Directory of Open Access Journals (Sweden)

    Xiaoke Zhou

    2014-01-01

    Full Text Available Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  19. 1st workshop on situational awareness in semi-Automated vehicles

    NARCIS (Netherlands)

    McCall, R.; Baumann, M.; Politis, I.; Borojeni, S.S.; Alvarez, I.; Mirnig, A.; Meschtscherjakov, A.; Tscheligi, M.; Chuang, L.; Terken, J.M.B.

    2016-01-01

    This workshop will focus on the problem of occupant and vehicle situational awareness with respect to automated vehicles when the driver must take over control. It will explore the future of fully automated and mixed traffic situations where vehicles are assumed to be operating at level 3 or above.

  20. Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    Science.gov (United States)

    Johnston, A. R.; Peng, T. K. C.; Vivian, H. C.; Wang, P. K.

    1978-01-01

    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard.

  1. Characterization of Visual Scanning Patterns in Air Traffic Control.

    Science.gov (United States)

    McClung, Sarah N; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process.

  2. A Network Traffic Control Enhancement Approach over Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2003-01-01

    This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated solu...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well......This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...

  3. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  4. TCP/IP Communication System for Controlling a Vehicular Traffic Intersection

    Directory of Open Access Journals (Sweden)

    Pedraza-Martínez Luis Fernando

    2013-10-01

    Full Text Available This paper describes the development of a prototype of a vehicular traffic controller, whose system of communication is based on the TCP/IP protocol, in order to re- motely monitor and control the operation of traffic lights for a vehicular intersection. The results show the times of communication between the central and the traffic controller. The conclusions highlight the importance of using the TCP/IP protocol in traffic light systems.

  5. Air Traffic ControL : FAA Order 7110.65K

    Science.gov (United States)

    1997-07-17

    This order prescribes air traffic control procedures and phraseology for use by : personnel providing air traffic control services. Controllers are required to : be familiar with the provisions of this order that pertain to their operational : respon...

  6. Human performance interfaces in air traffic control.

    Science.gov (United States)

    Chang, Yu-Hern; Yeh, Chung-Hsing

    2010-01-01

    This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.

  7. Evaluation of Intersection Traffic Control Measures through Simulation

    Science.gov (United States)

    Asaithambi, Gowri; Sivanandan, R.

    2015-12-01

    Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.

  8. Future Control and Automation : Proceedings of the 2nd International Conference on Future Control and Automation

    CERN Document Server

    2012-01-01

    This volume Future Control and Automation- Volume 1 includes best papers selected from 2012 2nd International Conference on Future Control and Automation (ICFCA 2012) held on July 1-2, 2012, Changsha, China. Future control and automation is the use of control systems and information technologies to reduce the need for human work in the production of goods and services. This volume can be divided into five sessions on the basis of the classification of manuscripts considered, which is listed as follows: Identification and Control, Navigation, Guidance and Sensor, Simulation Technology, Future Telecommunications and Control

  9. Cognitive process modelling of controllers in en route air traffic control.

    Science.gov (United States)

    Inoue, Satoru; Furuta, Kazuo; Nakata, Keiichi; Kanno, Taro; Aoyama, Hisae; Brown, Mark

    2012-01-01

    In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes. This research focuses on an experimental study to gain a better understanding of controllers' cognitive processes in air traffic control. We conducted ethnographic observations and then analysed the data to develop a model of controllers' cognitive process. This analysis revealed that strategic routines are applicable to decision making.

  10. Brazilian air traffic controllers exhibit excessive sleepiness.

    Science.gov (United States)

    Ribas, Valdenilson Ribeiro; de Almeida, Cláudia Ângela Vilela; Martins, Hugo André de Lima; Alves, Carlos Frederico de Oliveira; Alves, Marcos José Pinheiro Cândido; Carneiro, Severino Marcos de Oliveira; Ribas, Valéria Ribeiro; de Vasconcelos, Carlos Augusto Carvalho; Sougey, Everton Botelho; de Castro, Raul Manhães

    2011-01-01

    Excessive sleepiness (ES) is an increased tendency to initiate involuntary sleep for naps at inappropriate times. The objective of this study was to assess ES in air traffic controllers (ATCo). 45 flight protection professionals were evaluated, comprising 30 ATCo, subdivided into ATCo with ten or more years in the profession (ATCo≥10, n=15) and ATCo with less than ten years in the profession (ATCoair traffic controllers exhibit excessive sleepiness.

  11. Control and automation systems

    International Nuclear Information System (INIS)

    Schmidt, R.; Zillich, H.

    1986-01-01

    A survey is given of the development of control and automation systems for energy uses. General remarks about control and automation schemes are followed by a description of modern process control systems along with process control processes as such. After discussing the particular process control requirements of nuclear power plants the paper deals with the reliability and availability of process control systems and refers to computerized simulation processes. The subsequent paragraphs are dedicated to descriptions of the operating floor, ergonomic conditions, existing systems, flue gas desulfurization systems, the electromagnetic influences on digital circuits as well as of light wave uses. (HAG) [de

  12. Optimal Control of Connected and Automated Vehicles at Roundabouts

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liuhui [University of Delaware; Malikopoulos, Andreas [ORNL; Rios-Torres, Jackeline [ORNL

    2018-01-01

    Connectivity and automation in vehicles provide the most intriguing opportunity for enabling users to better monitor transportation network conditions and make better operating decisions to improve safety and reduce pollution, energy consumption, and travel delays. This study investigates the implications of optimally coordinating vehicles that are wirelessly connected to each other and to an infrastructure in roundabouts to achieve a smooth traffic flow without stop-and-go driving. We apply an optimization framework and an analytical solution that allows optimal coordination of vehicles for merging in such traffic scenario. The effectiveness of the efficiency of the proposed approach is validated through simulation and it is shown that coordination of vehicles can reduce total travel time by 3~49% and fuel consumption by 2~27% with respect to different traffic levels. In addition, network throughput is improved by up to 25% due to elimination of stop-and-go driving behavior.

  13. Traffic improvement and transportation pollution control in Xiamen

    Energy Technology Data Exchange (ETDEWEB)

    Dongxing Yuan; Zilin, Wu

    1996-12-31

    in this paper, the urban traffic improvement and transportation control in Xiamen are highlighted. Xiamen is a port city and an economical special zone of China. As the economy grows, the transportation is developing dramatically and becoming the key for further economic development. The air quality is threatened by the rapid growth of the vehicles in the city. The most urgent task in improving urban traffic is to establish a sound traffic system. The municipal government takes great effort to improve the traffic condition, as well as to reduce green house gases and protect air environment. Some management and technical measures are carried out. Those management measures are mainly as follows: (1) systematic planning of the city arrangement and city functional division, and integrated planning of the urban roads system, (2) putting great emphasis on tail gas monitoring and management, and (3) establishing optimized utilization of motor vehicles. Those included in the main technical measures are (1) making the roads clear, (2) enlarging traffic capacity, and (3) developing the public transport. The most urgent task in improving urban traffic is to establish a sound traffic system. The city municipal government and Transportation Management Bureau plan to make a series of reforms to improve the urban traffic condition, such as building high quality road around the city, reducing the number of one way roads and replacing gasoline buses with electric buses. An optimized traffic system of Xiamen, taking public transport as the main means, is the key to meet the needs of both traffic improvement and urban transportation pollution control.

  14. Aviation Safety/Automation Program Conference

    Science.gov (United States)

    Morello, Samuel A. (Compiler)

    1990-01-01

    The Aviation Safety/Automation Program Conference - 1989 was sponsored by the NASA Langley Research Center on 11 to 12 October 1989. The conference, held at the Sheraton Beach Inn and Conference Center, Virginia Beach, Virginia, was chaired by Samuel A. Morello. The primary objective of the conference was to ensure effective communication and technology transfer by providing a forum for technical interchange of current operational problems and program results to date. The Aviation Safety/Automation Program has as its primary goal to improve the safety of the national airspace system through the development and integration of human-centered automation technologies for aircraft crews and air traffic controllers.

  15. Measurement of Temporal Awareness in Air Traffic Control

    Science.gov (United States)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  16. Performance evaluation of traffic sensing and control devices.

    Science.gov (United States)

    2011-01-01

    High quality vehicle detection is essential to properly operate actuated phases at traffic signals and to facilitate effective : management of technician and engineering resources. INDOT operates over 2600 traffic signal controllers, approximately 20...

  17. Multiagent reinforcement learning for urban traffic control using coordination graphs

    NARCIS (Netherlands)

    Kuyer, L.; Whiteson, S.; Bakker, B.; Vlassis, N.

    2008-01-01

    Since traffic jams are ubiquitous in the modern world, optimizing the behavior of traffic lights for efficient traffic flow is a critically important goal. Though most current traffic lights use simple heuristic protocols, more efficient controllers can be discovered automatically via multiagent

  18. The design of traffic signal coordinated control

    Science.gov (United States)

    Guo, Xueting; Sun, Hongsheng; Wang, Xifu

    2017-05-01

    Traffic as the tertiary industry is an important pillar industry to support the normal development of the economy. But now China's road traffic development and economic development has shown a great imbalance and fault phenomenon, which greatly inhibited the normal development of China's economy. Now in many large and medium-sized cities in China are implementing green belt construction. The so-called green band is when the road conditions to meet the conditions for the establishment of the green band, the sections of the intersection of several planning to a traffic coordination control system, so that when the driver at a specific speed can be achieved without stopping the continuous Through the intersection. Green belt can effectively reduce the delay and queuing length of vehicle driving, the normal function of urban roads and reduce the economic losses caused by traffic congestion is a great help. In this paper, the theoretical basis of the design of the coordinated control system is described. Secondly, the green time offset is calculated by the analytic method and the green band is established. And then the VISSIM software is used to simulate the traffic system before and after the improvement. Finally, the results of the two simulations are compared.

  19. Decentralized Traffic Management: A Synchronization-Based Intersection Control --- Extended Version

    OpenAIRE

    Tlig , Mohamed; Buffet , Olivier; Simonin , Olivier

    2014-01-01

    Controlling the vehicle traffic in large networks remains an important challenge in urban environments and transportation systems. Autonomous vehicles are today considered as a promising approach to deal with traffic control. In this paper, we propose a synchronization-based intersection control mechanism to allow the autonomous vehicle-agents to cross without stopping, i.e., in order to avoid congestions (delays) and energy loss. We decentralize the problem by managing the traffic of each in...

  20. Remotely Operated Aircraft (ROA) Impact on the National Airspace System (NAS) Work Package: Automation Impacts of ROA's in the NAS

    Science.gov (United States)

    2005-01-01

    The purpose of this document is to analyze the impact of Remotely Operated Aircraft (ROA) operations on current and planned Air Traffic Control (ATC) automation systems in the En Route, Terminal, and Traffic Flow Management domains. The operational aspects of ROA flight, while similar, are not entirely identical to their manned counterparts and may not have been considered within the time-horizons of the automation tools. This analysis was performed to determine if flight characteristics of ROAs would be compatible with current and future NAS automation tools. Improvements to existing systems / processes are recommended that would give Air Traffic Controllers an indication that a particular aircraft is an ROA and modifications to IFR flight plan processing algorithms and / or designation of airspace where an ROA will be operating for long periods of time.

  1. Development of Traffic Accidents Control System

    Directory of Open Access Journals (Sweden)

    Andrey Borisovich Nikolaev

    2015-05-01

    Full Text Available Proposed a structure of traffic accidents control system included three main parts: pre-processing, decision support and monitoring. For decision support systems we propose a method that allows to make decisions on the basis of fuzzy situational management. The advantage of the method: it allows to formalize a set of typical traffic situations, using the theory of fuzzy sets and to carry out selection of the desired management action.

  2. Continuous residual reinforcement learning for traffic signal control optimization

    NARCIS (Netherlands)

    Aslani, Mohammad; Seipel, Stefan; Wiering, Marco

    2018-01-01

    Traffic signal control can be naturally regarded as a reinforcement learning problem. Unfortunately, it is one of the most difficult classes of reinforcement learning problems owing to its large state space. A straightforward approach to address this challenge is to control traffic signals based on

  3. ATC-lab(Advanced): an air traffic control simulator with realism and control.

    Science.gov (United States)

    Fothergill, Selina; Loft, Shayne; Neal, Andrew

    2009-02-01

    ATC-lab(Advanced) is a new, publicly available air traffic control (ATC) simulation package that provides both realism and experimental control. ATC-lab(Advanced) simulations are realistic to the extent that the display features (including aircraft performance) and the manner in which participants interact with the system are similar to those used in an operational environment. Experimental control allows researchers to standardize air traffic scenarios, control levels of realism, and isolate specific ATC tasks. Importantly, ATC-lab(Advanced) also provides the programming control required to cost effectively adapt simulations to serve different research purposes without the need for technical support. In addition, ATC-lab(Advanced) includes a package for training participants and mathematical spreadsheets for designing air traffic events. Preliminary studies have demonstrated that ATC-lab(Advanced) is a flexible tool for applied and basic research.

  4. Dynamic Traffic Congestion Simulation and Dissipation Control Based on Traffic Flow Theory Model and Neural Network Data Calibration Algorithm

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-01-01

    Full Text Available Traffic congestion is a common problem in many countries, especially in big cities. At present, China’s urban road traffic accidents occur frequently, the occurrence frequency is high, the accident causes traffic congestion, and accidents cause traffic congestion and vice versa. The occurrence of traffic accidents usually leads to the reduction of road traffic capacity and the formation of traffic bottlenecks, causing the traffic congestion. In this paper, the formation and propagation of traffic congestion are simulated by using the improved medium traffic model, and the control strategy of congestion dissipation is studied. From the point of view of quantitative traffic congestion, the paper provides the fact that the simulation platform of urban traffic integration is constructed, and a feasible data analysis, learning, and parameter calibration method based on RBF neural network is proposed, which is used to determine the corresponding decision support system. The simulation results prove that the control strategy proposed in this paper is effective and feasible. According to the temporal and spatial evolution of the paper, we can see that the network has been improved on the whole.

  5. Comparision by Simulation of Different Approaches to the Urban Traffic Control

    Czech Academy of Sciences Publication Activity Database

    Přikryl, Jan; Tichý, T.; Bělinová, Z.; Kapitán, J.

    2012-01-01

    Roč. 5, č. 4 (2012), s. 26-30 ISSN 1899-8208 R&D Projects: GA TA ČR TA01030603 Institutional support: RVO:67985556 Keywords : traffic * ITS * telematics * urban traffic control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/prikryl-comparision by simulation of different approaches to the urban traffic control.pdf

  6. The Challenges of Field Testing the Traffic Management Advisor (TMA) in an Operational Air Traffic Control Facility

    Science.gov (United States)

    Hoang, Ty; Swenson, Harry N.

    1997-01-01

    The Traffic Management Advisor (TMA), the sequence and schedule tool of the Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center (ZFW) in the summer of 1996. This paper describes the challenges encountered during the various phases of the TMA field evaluation, which included system (hardware and software) installation, personnel training, and data collection. Operational procedures were developed and applied to the evaluation process that would ensure air safety. The five weeks of field evaluation imposed minimal impact on the hosting facility and provided valuable engineering and human factors data. The collection of data was very much an opportunistic affair, due to dynamic traffic conditions. One measure of the success of the TMA evaluation is that, rather than remove TMA after the evaluation until it could be fully implemented, the prototype TMA is in continual use at ZFW as the fully operational version is readied for implementation.

  7. Traffic noise control of a city

    International Nuclear Information System (INIS)

    Ahmed, A.; Khan, J.A.; Lakhani, A.H.; Hyder, F.G.; Shamsuddin, S.A.

    2003-01-01

    Long exposure to noise due to traffic affects our health and comfort. A noise level up to 45 dB is acceptable for the buildings in the city. A traffic noise study was conducted in Karachi at places of high traffic flow. The noise level was between 75-85 dB. Residential and commercial buildings had sound level up to 79 dB. Reducing vehicle noise by using proper muffler and acoustic treatment should first control traffic noise. Then noise can be reduced by 10-15 dB by constructing barriers of wood or concrete along roadside. Barrier height for sound attenuation can be found from Fresnel Number. The barrier reduces noise better if width at the top is increased and an inward bend of 60 degree is placed at the top. Where feasible a 4-5 meter high concrete barrier is recommended otherwise the nearby buildings from the road should be insulated and acoustically treated. (author)

  8. Breakdowns in Coordination Between Air Traffic Controllers

    Science.gov (United States)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  9. Engineering Social Justice into Traffic Control for Self-Driving Vehicles?

    Science.gov (United States)

    Mladenovic, Milos N; McPherson, Tristram

    2016-08-01

    The convergence of computing, sensing, and communication technology will soon permit large-scale deployment of self-driving vehicles. This will in turn permit a radical transformation of traffic control technology. This paper makes a case for the importance of addressing questions of social justice in this transformation, and sketches a preliminary framework for doing so. We explain how new forms of traffic control technology have potential implications for several dimensions of social justice, including safety, sustainability, privacy, efficiency, and equal access. Our central focus is on efficiency and equal access as desiderata for traffic control design. We explain the limitations of conventional traffic control in meeting these desiderata, and sketch a preliminary vision for a next-generation traffic control tailored to address better the demands of social justice. One component of this vision is cooperative, hierarchically distributed self-organization among vehicles. Another component of this vision is a priority system enabling selection of priority levels by the user for each vehicle trip in the network, based on the supporting structure of non-monetary credits.

  10. Adaptive Traffic Signal Control: Deep Reinforcement Learning Algorithm with Experience Replay and Target Network

    OpenAIRE

    Gao, Juntao; Shen, Yulong; Liu, Jia; Ito, Minoru; Shiratori, Norio

    2017-01-01

    Adaptive traffic signal control, which adjusts traffic signal timing according to real-time traffic, has been shown to be an effective method to reduce traffic congestion. Available works on adaptive traffic signal control make responsive traffic signal control decisions based on human-crafted features (e.g. vehicle queue length). However, human-crafted features are abstractions of raw traffic data (e.g., position and speed of vehicles), which ignore some useful traffic information and lead t...

  11. Fuzzy Logic Based Autonomous Traffic Control System

    Directory of Open Access Journals (Sweden)

    Muhammad ABBAS

    2012-01-01

    Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.

  12. A Multi-Agent Traffic Control Model Based on Distributed System

    Directory of Open Access Journals (Sweden)

    Qian WU

    2014-06-01

    Full Text Available With the development of urbanization construction, urban travel has become a quite thorny and imminent problem. Some previous researches on the large urban traffic systems easily change into NPC problems. We purpose a multi-agent inductive control model based on the distributed approach. To describe the real traffic scene, this model designs four different types of intelligent agents, i.e. we regard each lane, route, intersection and traffic region as different types of intelligent agents. Each agent can achieve the real-time traffic data from its neighbor agents, and decision-making agents establish real-time traffic signal plans through the communication between local agents and their neighbor agents. To evaluate the traffic system, this paper takes the average delay, the stopped time and the average speed as performance parameters. Finally, the distributed multi-agent is simulated on the VISSIM simulation platform, the simulation results show that the multi-agent system is more effective than the adaptive control system in solving the traffic congestion.

  13. Future Computer, Communication, Control and Automation

    CERN Document Server

    2011 International Conference on Computer, Communication, Control and Automation

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume topics covered include wireless communications, advances in wireless video, wireless sensors networking, security in wireless networks, network measurement and management, hybrid and discrete-event systems, internet analytics and automation, robotic system and applications, reconfigurable automation systems, machine vision in automation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.

  14. Efficient Algorithms for Network-Wide Road Traffic Control

    NARCIS (Netherlands)

    van de Weg, G.S.

    2017-01-01

    Controlling road traffic networks is a complex problem. One of the difficulties is the coordination of actuators, such as traffic lights, variables speed limits, ramp metering and route guidance, with the aim to improve the network performance over a near-future time horizon. This dissertation

  15. Modeling Increased Complexity and the Reliance on Automation: FLightdeck Automation Problems (FLAP) Model

    Science.gov (United States)

    Ancel, Ersin; Shih, Ann T.

    2014-01-01

    This paper highlights the development of a model that is focused on the safety issue of increasing complexity and reliance on automation systems in transport category aircraft. Recent statistics show an increase in mishaps related to manual handling and automation errors due to pilot complacency and over-reliance on automation, loss of situational awareness, automation system failures and/or pilot deficiencies. Consequently, the aircraft can enter a state outside the flight envelope and/or air traffic safety margins which potentially can lead to loss-of-control (LOC), controlled-flight-into-terrain (CFIT), or runway excursion/confusion accidents, etc. The goal of this modeling effort is to provide NASA's Aviation Safety Program (AvSP) with a platform capable of assessing the impacts of AvSP technologies and products towards reducing the relative risk of automation related accidents and incidents. In order to do so, a generic framework, capable of mapping both latent and active causal factors leading to automation errors, is developed. Next, the framework is converted into a Bayesian Belief Network model and populated with data gathered from Subject Matter Experts (SMEs). With the insertion of technologies and products, the model provides individual and collective risk reduction acquired by technologies and methodologies developed within AvSP.

  16. Review on Driverless Traffic from Management Perspective

    Directory of Open Access Journals (Sweden)

    Chen Tingting

    2017-01-01

    Full Text Available The move towards automated driving is gaining ground. This paper reviews the development process of self-driving technology and discusses the safety and efficiency advantages of autonomous vehicles. The discussion shows that the existing traffic management system, including transport infrastructures and regulations, should be changed accordingly to maximize the advantages of autonomous driving. Thus, this paper subsequently gives an insight of the traffic management from three aspects: fully self-driving traffic infrastructures, mixed traffic infrastructures and regulations. First, it is summarized in detail what should be adjusted in intersections, parking lots, pedestrian crossings, ramps, signs and markings. With the transformation of traffic infrastructures, the advantages of driverless car will be more pronounced on account of increased capacity, reduced delay and land use. Also, this paper indicates that the implementations of strict product liability for self-driving car manufacturers and no-fault tort liability for users are applicable to automated vehicle accidents.

  17. Automated Subsystem Control for Life Support System (ASCLSS)

    Science.gov (United States)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support Systems (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of space station subsystems. The automation system features a hierarchical and distributed real-time control architecture which places maximum controls authority at the lowest or process control level which enhances system autonomy. The ASCLSS demonstration system pioneered many automation and control concepts currently being considered in the space station data management system (DMS). Heavy emphasis is placed on controls hardware and software commonality implemented in accepted standards. The approach demonstrates successfully the application of real-time process and accountability with the subsystem or process developer. The ASCLSS system completely automates a space station subsystem (air revitalization group of the ASCLSS) which moves the crew/operator into a role of supervisory control authority. The ASCLSS program developed over 50 lessons learned which will aide future space station developers in the area of automation and controls..

  18. Shockwave-Based Automated Vehicle Longitudinal Control Algorithm for Nonrecurrent Congestion Mitigation

    Directory of Open Access Journals (Sweden)

    Liuhui Zhao

    2017-01-01

    Full Text Available A shockwave-based speed harmonization algorithm for the longitudinal movement of automated vehicles is presented in this paper. In the advent of Connected/Automated Vehicle (C/AV environment, the proposed algorithm can be applied to capture instantaneous shockwaves constructed from vehicular speed profiles shared by individual equipped vehicles. With a continuous wavelet transform (CWT method, the algorithm detects abnormal speed drops in real-time and optimizes speed to prevent the shockwave propagating to the upstream traffic. A traffic simulation model is calibrated to evaluate the applicability and efficiency of the proposed algorithm. Based on 100% C/AV market penetration, the simulation results show that the CWT-based algorithm accurately detects abnormal speed drops. With the improved accuracy of abnormal speed drop detection, the simulation results also demonstrate that the congestion can be mitigated by reducing travel time and delay up to approximately 9% and 18%, respectively. It is also found that the shockwave caused by nonrecurrent congestion is quickly dissipated even with low market penetration.

  19. design and implementation of a density-based traffic light control

    African Journals Online (AJOL)

    HOD

    sensors, a new traffic light control system was developed to ease the flow of traffic at a particular ... of traffic on each lane at the intersection triggered when a vehicle comes between the ... change the sequence back to the normal sequence.

  20. Traffic Modelling for Moving-Block Train Control System

    International Nuclear Information System (INIS)

    Tang Tao; Li Keping

    2007-01-01

    This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.

  1. An Adaptive Traffic Signal Control in a Connected Vehicle Environment: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Peng Jing

    2017-08-01

    Full Text Available In the last few years, traffic congestion has become a growing concern due to increasing vehicle ownerships in urban areas. Intersections are one of the major bottlenecks that contribute to urban traffic congestion. Traditional traffic signal control systems cannot adjust the timing pattern depending on road traffic demand. This results in excessive delays for road users. Adaptive traffic signal control in a connected vehicle environment has shown a powerful ability to effectively alleviate urban traffic congestions to achieve desirable objectives (e.g., delay minimization. Connected vehicle technology, as an emerging technology, is a mobile data platform that enables the real-time data exchange among vehicles and between vehicles and infrastructure. Although several reviews about traffic signal control or connected vehicles have been written, a systemic review of adaptive traffic signal control in a connected vehicle environment has not been made. Twenty-six eligible studies searched from six databases constitute the review. A quality evaluation was established based on previous research instruments and applied to the current review. The purpose of this paper is to critically review the existing methods of adaptive traffic signal control in a connected vehicle environment and to compare the advantages or disadvantages of those methods. Further, a systematic framework on connected vehicle based adaptive traffic signal control is summarized to support the future research. Future research is needed to develop more efficient and generic adaptive traffic signal control methods in a connected vehicle environment.

  2. Optimal Control of Hybrid Systems in Air Traffic Applications

    Science.gov (United States)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  3. Online Traffic Signal Control for Reducing Vehicle Carbon Dioxide Emissions

    Science.gov (United States)

    Oda, Toshihiko; Otokita, Tohru; Niikura, Satoshi

    In Japan, carbon dioxide (CO2) emissions caused by vehicles have been increasing year by year and it is well known that CO2 causes a serious global warming problem. For urban traffic control systems, there is a great demand for realization of signal control measures as soon as possible due to the urgency of the recent environmental situation. This paper describes a new traffic signal control for reducing vehicle CO2 emissions on an arterial road. First, we develop a model for estimating the emissions using the traffic delay and the number of stops a driver makes. Second, to find the optimal control parameters, we introduce a random search method with rapid convergence suitable for an online traffic control. We conduct experiments in Kawasaki to verify the effectiveness of our method. The experiments show that our approach decreases not only the emissions but also congestion and travel time significantly, compared to the method implemented in the real system.

  4. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  5. Automated controlled-potential coulometric determination of uranium

    International Nuclear Information System (INIS)

    Knight, C.H.; Clegg, D.E.; Wright, K.D.; Cassidy, R.M.

    1982-06-01

    A controlled-potential coulometer has been automated in our laboratory for routine determination of uranium in solution. The CRNL-designed automated system controls degassing, prereduction, and reduction of the sample. The final result is displayed on a digital coulometer readout. Manual and automated modes of operation are compared to show the precision and accuracy of the automated system. Results are also shown for the coulometric titration of typical uranium-aluminum alloy samples

  6. Scheduling and control strategies for the departure problem in air traffic control

    Science.gov (United States)

    Bolender, Michael Alan

    Two problems relating to the departure problem in air traffic control automation are examined. The first problem that is addressed is the scheduling of aircraft for departure. The departure operations at a major US hub airport are analyzed, and a discrete event simulation of the departure operations is constructed. Specifically, the case where there is a single departure runway is considered. The runway is fed by two queues of aircraft. Each queue, in turn, is fed by a single taxiway. Two salient areas regarding scheduling are addressed. The first is the construction of optimal departure sequences for the aircraft that are queued. Several greedy search algorithms are designed to minimize the total time to depart a set of queued aircraft. Each algorithm has a different set of heuristic rules to resolve situations within the search space whenever two branches of the search tree with equal edge costs are encountered. These algorithms are then compared and contrasted with a genetic search algorithm in order to assess the performance of the heuristics. This is done in the context of a static departure problem where the length of the departure queue is fixed. A greedy algorithm which deepens the search whenever two branches of the search tree with non-unique costs are encountered is shown to outperform the other heuristic algorithms. This search strategy is then implemented in the discrete event simulation. A baseline performance level is established, and a sensitivity analysis is performed by implementing changes in traffic mix, routing, and miles-in-trail restrictions for comparison. It is concluded that to minimize the average time spent in the queue for different traffic conditions, a queue assignment algorithm is needed to maintain an even balance of aircraft in the queues. A necessary consideration is to base queue assignment upon traffic management restrictions such as miles-in-trail constraints. The second problem addresses the technical challenges associated

  7. Traffic

    International Nuclear Information System (INIS)

    Lichtblau, G.

    2001-01-01

    This chapter deals with passenger and freight traffic, public and private transportation, traffic related environmental impacts, future developments, traffic indicators, regional traffic planning, health costs due to road traffic related air pollution, noise pollution, measures and regulations for traffic control and fuels for traffic. In particular energy consumption, energy efficiency, pollutant emissions ( CO 2 , SO 2 , NO x , HC, CO, N 2 O, NH 3 and particulates) and environmental effects of the different types of traffic and different types of fuels are compared and studied. Legal regulations and measures for an effective traffic control are discussed. (a.n.)

  8. The Automated System for Identification of License Plates of Cars

    Directory of Open Access Journals (Sweden)

    FRATAVCHAN, V.

    2008-04-01

    Full Text Available The paper focuses on the automated traffic rule control system. It examines the basic scheme of the system, basic constituents, principles of constituent interactions, search methods of moving objects, localization, and identification of the license plate.

  9. Robust, Optimal, Predictive, and Integrated Road Traffic Control : Research proposal

    NARCIS (Netherlands)

    Van de Weg, G.S.; Hegyi, A.; Hoogendoorn, S.P.

    2014-01-01

    The development of control strategies for traffic lights, ramp metering installations, and variable speed limits to improve the throughput of road traffic networks can contribute to a more efficient use of road networks. In this project, a hierarchical controller will be developed for the

  10. GIS-based methods for establishing the datafoundation for traffic models

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker

    1997-01-01

    Traffic models demand large amounts of data - some of which are: Traffic network topology, traffic network data, zone-data and trip matrices. GIS is a natural tool for handling most of these data as it can ease the work process and improve the quality control. However, traffic models demand a com......-plex topology not very well covered by the traditional GIS-topology. The paper describes a number of applications where ARC/INFO and ArcView have been used to automate the process of building a traffic network topology. The methodology has been used on a number of full-scale models, from medium sized urban...... areas to metropolitan areas (Copenhagen, Denmark and Bandung, Indonesia). The paper covers key subjects in the work process which has been eased considerably by using AML and Avenue scripts or by using the information from ARC/INFO in external applications:· Semi-automatic procedures for attaching zones...

  11. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Hwisoo Eom

    2015-06-01

    Full Text Available A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  12. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    Science.gov (United States)

    Eom, Hwisoo; Lee, Sang Hun

    2015-06-12

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  13. Simulations of Continuous Descent Operations with Arrival-management Automation and Mixed Flight-deck Interval Management Equipage

    Science.gov (United States)

    Callantine, Todd J.; Kupfer, Michael; Martin, Lynne Hazel; Prevot, Thomas

    2013-01-01

    Air traffic management simulations conducted in the Airspace Operations Laboratory at NASA Ames Research Center have addressed the integration of trajectory-based arrival-management automation, controller tools, and Flight-Deck Interval Management avionics to enable Continuous Descent Operations (CDOs) during periods of sustained high traffic demand. The simulations are devoted to maturing the integrated system for field demonstration, and refining the controller tools, clearance phraseology, and procedures specified in the associated concept of operations. The results indicate a variety of factors impact the concept's safety and viability from a controller's perspective, including en-route preconditioning of arrival flows, useable clearance phraseology, and the characteristics of airspace, routes, and traffic-management methods in use at a particular site. Clear understanding of automation behavior and required shifts in roles and responsibilities is important for controller acceptance and realizing potential benefits. This paper discusses the simulations, drawing parallels with results from related European efforts. The most recent study found en-route controllers can effectively precondition arrival flows, which significantly improved route conformance during CDOs. Controllers found the tools acceptable, in line with previous studies.

  14. Investigating the Complexity of Transitioning Separation Assurance Tools into NextGen Air Traffic Control

    Science.gov (United States)

    Gomez, Ashley Nicole; Martin, Lynne Hazel; Homola, Jeffrey; Morey, Susan; Cabrall, Christopher; Mercer, Joey; Prevot, Thomas

    2013-01-01

    In a study, that introduced ground-based separation assurance automation through a series of envisioned transitional phases of concept maturity, it was found that subjective responses to scales of workload, situation awareness, and acceptability in a post run questionnaire revealed as-predicted results for three of the four study conditions but not for the third, Moderate condition. The trend continued for losses of separation (LOS) where the number of LOS events were far greater than expected in the Moderate condition. To offer an account of why the Moderate condition was perceived to be more difficult to manage than predicted, researchers examined the increase in amount and complexity of traffic, increase in communication load, and increased complexities as a result of the simulation's mix of aircraft equipage. Further analysis compared the tools presented through the phases, finding that controllers took advantage of the informational properties of the tools presented but shied away from using their decision support capabilities. Taking into account similar findings from other studies, it is suggested that the Moderate condition represented the first step into a "shared control" environment, which requires the controller to use the automation as a decision making partner rather than just a provider of information. Viewed in this light, the combination of tools offered in the Moderate condition was reviewed and some tradeoffs that may offset the identified complexities were suggested.

  15. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.

    Science.gov (United States)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-14

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  16. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    Science.gov (United States)

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  17. LaGuardia air traffic control tower.

    Science.gov (United States)

    2011-01-01

    To celebrate FAA and its LaGuardia Airport employees past, : present, and future this booklet outlines the airports history and accomplishments and includes copies of some of the photographs in the : air traffic control towers history g...

  18. The Conception Approach to the Traffic Control in Czech Cities - Examples from Prague

    Science.gov (United States)

    Tichý, Tomáš; Krajčír, Dušan

    Modern and economic development of contemporary towns is without question highly dependent upon traffic infrastructure progress. Automobile transport intensity is dramatically rising in large towns and other Czech and European cities. At the same time number of traffic congestions and accidents is increasing, standing times are becoming longer and ecological stress is also escalated. To solve this situation seems to be the most effective solution to design intelligent traffic light intersection control system, variable message signs, preference of public transportation, road line traffic control and next telematics subsystems. This control system and subsystems should improve permeability of traffic road network with a respect for all demands on recent trends of traffic development in towns and regions.

  19. An Adaptive Traffic Signal Control in a Connected Vehicle Environment: A Systematic Review

    OpenAIRE

    Peng Jing; Hao Huang; Long Chen

    2017-01-01

    In the last few years, traffic congestion has become a growing concern due to increasing vehicle ownerships in urban areas. Intersections are one of the major bottlenecks that contribute to urban traffic congestion. Traditional traffic signal control systems cannot adjust the timing pattern depending on road traffic demand. This results in excessive delays for road users. Adaptive traffic signal control in a connected vehicle environment has shown a powerful ability to effectively alleviate u...

  20. Analysis of Malicious Traffic in Modbus/TCP Communications

    Science.gov (United States)

    Kobayashi, Tiago H.; Batista, Aguinaldo B.; Medeiros, João Paulo S.; Filho, José Macedo F.; Brito, Agostinho M.; Pires, Paulo S. Motta

    This paper presents the results of our analysis about the influence of Information Technology (IT) malicious traffic on an IP-based automation environment. We utilized a traffic generator, called MACE (Malicious trAffic Composition Environment), to inject malicious traffic in a Modbus/TCP communication system and a sniffer to capture and analyze network traffic. The realized tests show that malicious traffic represents a serious risk to critical information infrastructures. We show that this kind of traffic can increase latency of Modbus/TCP communication and that, in some cases, can put Modbus/TCP devices out of communication.

  1. Traffic theory

    National Research Council Canada - National Science Library

    Gazis, Denos C

    2002-01-01

    ... of traffic signal settings The vehicle-actuated traffic signal 87 89 77 CHAPTER 3. TRAFFIC CONTROL 101 Objectives of Traffic Control 103 Single, Isolated Intersection 105 Synchronization Scheme...

  2. Survey about pedestrian safety and attitudes toward automated traffic enforcement in Washington, D.C.

    Science.gov (United States)

    Cicchino, Jessica B; Wells, Joann K; McCartt, Anne T

    2014-01-01

    Pedestrians represent more than one third of all traffic deaths in Washington, D.C. The District plans to expand its long-standing automated traffic enforcement program in 2013 from speed and red light cameras to cameras to enforce pedestrian right-of-way laws at crosswalks and stop sign laws. This study collected information on the opinions, behaviors, and knowledge of D.C. residents related to camera enforcement and pedestrian safety issues. A telephone survey of 801 adult D.C. residents was conducted in November 2012 with approximately equal numbers of respondents in each of D.C.'s eight wards. Quotas were used to ensure that the sample was representative of the demographic characteristics of adults in each ward. For analyses combining responses across the wards, data were weighted to correspond with the demographic characteristics of adults in the city. Most respondents believed that drivers speeding, running red lights, running stop signs, and not stopping for pedestrians are serious threats to their safety. Respondents strongly supported the speed and red light camera programs, with 76 percent of respondents favoring speed cameras and 87 percent favoring red light cameras. Support was more limited for the camera enforcement that was not yet in place at the time of the survey, with 50 percent of respondents favoring stop sign cameras and 47 percent of respondents favoring crosswalk cameras. Twenty-four percent of respondents had not driven a car in D.C. in the past month, and higher proportions of these nondrivers favored speed cameras (90%), stop sign cameras (67%), and crosswalk cameras (59%) than respondents who drove in D.C. in the past month. Respondents who supported camera enforcement cited safety as their main reason. More than 9 in 10 respondents knew that D.C. law requires drivers to stop for pedestrians crossing the street in marked crosswalks at intersections without traffic signals and midblock, but only 54 percent knew that drivers must stop for

  3. Multiobjective Reinforcement Learning for Traffic Signal Control Using Vehicular Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Houli Duan

    2010-01-01

    Full Text Available We propose a new multiobjective control algorithm based on reinforcement learning for urban traffic signal control, named multi-RL. A multiagent structure is used to describe the traffic system. A vehicular ad hoc network is used for the data exchange among agents. A reinforcement learning algorithm is applied to predict the overall value of the optimization objective given vehicles' states. The policy which minimizes the cumulative value of the optimization objective is regarded as the optimal one. In order to make the method adaptive to various traffic conditions, we also introduce a multiobjective control scheme in which the optimization objective is selected adaptively to real-time traffic states. The optimization objectives include the vehicle stops, the average waiting time, and the maximum queue length of the next intersection. In addition, we also accommodate a priority control to the buses and the emergency vehicles through our model. The simulation results indicated that our algorithm could perform more efficiently than traditional traffic light control methods.

  4. Modeling take-over performance in level 3 conditionally automated vehicles.

    Science.gov (United States)

    Gold, Christian; Happee, Riender; Bengler, Klaus

    2017-11-28

    Taking over vehicle control from a Level 3 conditionally automated vehicle can be a demanding task for a driver. The take-over determines the controllability of automated vehicle functions and thereby also traffic safety. This paper presents models predicting the main take-over performance variables take-over time, minimum time-to-collision, brake application and crash probability. These variables are considered in relation to the situational and driver-related factors time-budget, traffic density, non-driving-related task, repetition, the current lane and driver's age. Regression models were developed using 753 take-over situations recorded in a series of driving simulator experiments. The models were validated with data from five other driving simulator experiments of mostly unrelated authors with another 729 take-over situations. The models accurately captured take-over time, time-to-collision and crash probability, and moderately predicted the brake application. Especially the time-budget, traffic density and the repetition strongly influenced the take-over performance, while the non-driving-related tasks, the lane and drivers' age explained a minor portion of the variance in the take-over performances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Traffic control on a railway crossing with elements of utility theory

    Directory of Open Access Journals (Sweden)

    Abramova L.S.

    2016-08-01

    Full Text Available An approach to the management of vehicles at a railway crossing in order to improve the road safety is considered. To do this, it is suggested to introduce the dynamic motion control modes on the road, which consist in reducing the speed at a certain distance from the railway crossing and depends on its condition. The value of the recommended speed is displayed on the managed road signs and is calculated in real-time traffic controller at the railway crossing control point. The mark location is determined based on traffic intensity equalization that affects both the traffic intensity of the railway crossing and the road section on the approach to it. To analyze such events directed to improve the traffic on level crossings it is suggested to use the elements of utility theory to further develop the traffic control algorithm. For this purpose there was built a decision tree for the existing conditions at the railway crossing and at the introduction of the dynamic management, which indicates the result of decision taken by the change in the selected criteria of efficiency of traffic management at the railway crossing. Such an approach can reduce the number of road accidents and to increase the capacity of vehicular traffic at a particular road section to the technical means of attracting the driver's attention to the complex road by forced reduction in speed not only before the railway crossing, but also in at the approach to it.

  6. Controlling traffic jams by time modulating the safety distance

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Gorria, C.; Berkemer, R.

    2013-01-01

    The possibility of controlling traffic dynamics by applying high-frequency time modulation of traffic flow parameters is studied. It is shown that the region of the car density where the uniform (free) flow is unstable changes in the presence of time modulation compared with the unmodulated case....

  7. Traffic noise and vehicle movement at a controlled intersection

    NARCIS (Netherlands)

    Salomons, E.M.

    2014-01-01

    Traffic noise at an intersection controlled by traffic lights shows noise level variations due to the alternating green and red lights for the different trafficstreams. Noise peaks caused by automobiles pulling up or passing by at highspeed may be quite annoying for people living near the

  8. In-Trail Procedure Air Traffic Control Procedures Validation Simulation Study

    Science.gov (United States)

    Chartrand, Ryan C.; Hewitt, Katrin P.; Sweeney, Peter B.; Graff, Thomas J.; Jones, Kenneth M.

    2012-01-01

    In August 2007, Airservices Australia (Airservices) and the United States National Aeronautics and Space Administration (NASA) conducted a validation experiment of the air traffic control (ATC) procedures associated with the Automatic Dependant Surveillance-Broadcast (ADS-B) In-Trail Procedure (ITP). ITP is an Airborne Traffic Situation Awareness (ATSA) application designed for near-term use in procedural airspace in which ADS-B data are used to facilitate climb and descent maneuvers. NASA and Airservices conducted the experiment in Airservices simulator in Melbourne, Australia. Twelve current operational air traffic controllers participated in the experiment, which identified aspects of the ITP that could be improved (mainly in the communication and controller approval process). Results showed that controllers viewed the ITP as valid and acceptable. This paper describes the experiment design and results.

  9. The Use of the Dynamic Solution Space to Assess Air Traffic Controller Workload

    NARCIS (Netherlands)

    D'Engelbronner, J.G.; Mulder, M.; Van Paassen, M.M.; De Stigter, S.; Huisman, H.

    2010-01-01

    Air traffic capacity is mainly bound by air traffic controller workload. In order to effectively find solutions for this problem, off-line pre-experimental workload assessment methods are desirable. In order to better understand the workload associated with air traffic control, previous research

  10. Traffic Flow Visualization and Control

    National Research Council Canada - National Science Library

    Larson, Robert

    1999-01-01

    .... Air Force Research Laboratory. It is a video-camera-based, wide-area, traffic surveillance and detection system that provides real-time traffic information to traffic management center operators...

  11. Flight to the future : human factors in air traffic control

    Science.gov (United States)

    1997-01-01

    The nation's air traffic control system is responsible for managing a complex : mixture of air traffic from commercial, general, corporate, and military : aviation. Despite a strong safety record, the system does suffer occasional : serious disruptio...

  12. development of an electronic vehicular traffic signal controller

    African Journals Online (AJOL)

    INTRODUCTION ... The SCOOT (Split Cycle Offset Optimization Technique) signal control system implements an adaptive ... An electronic traffic signal controller is basically a sequential machine whose operation can be modeled using finite ...

  13. TASAR Flight Trial 2: Assessment of Air Traffic Controller Acceptability of TASAR Requests

    Science.gov (United States)

    Idris, Husni; Enea, Gabriele

    2016-01-01

    In support of the Flight Trial (FT-2) of NASA's prototype of the Traffic Aware Strategic Aircrew Requests (TASAR) concept, observations were conducted at the air traffic facilities to identify and assess the main factors that affect the acceptability of pilot requests by air traffic controllers. Two observers shadowed air traffic controllers at the Atlanta (ZTL) and Jacksonville (ZJX) air traffic control centers as the test flight pilot made pre-scripted requests to invoke acceptability issues and then they interviewed the observed and other controllers voluntarily. Fifty controllers were interviewed with experience ranging from one to thirty-five years. All interviewed controllers were enthusiastic about the technology and accounting for sector boundaries in pilot requests, particularly if pilots can be made aware of high workload situations. All interviewed controllers accept more than fifty percent of pilot requests; forty percent of them reject less than ten percent of requests. The most common reason for rejecting requests is conflicting with traffic followed by violating letters of agreement (LOAs) and negatively impacting neighboring sector workload, major arrival and departure flows and flow restrictions. Thirty-six requests were made during the test, eight of which were rejected due to: the aircraft already handed off to another sector, violating LOA, opposing traffic, intruding into an active special use airspace (SUA), intruding into another center, weather, and unfamiliarity with the requested waypoint. Nine requests were accepted with delay mostly because the controller needed to locate unfamiliar waypoints or to coordinate with other controllers.

  14. High Performance and Energy Efficient Traffic Light Controller Design Using FPGA

    DEFF Research Database (Denmark)

    Pandey, Sujeet; Shrivastav, Vivek Kumar; Sharma, Rashmi

    2017-01-01

    and then we have analyzed power consumption for traffic light controller on different FPGA. Leakage power is in range of 97.5-99% of total power consumption by traffic light controller on Virtex-7 FPGA. Signal power, clock power and IOs power are almost negligible. Power dissipation is measured on XPOWER......In this work, Verilog is used as hardware description language for implementation of traffic light controller. It shows Red, Green and Yellow color at a predefined interval. Technology scaling is used as energy efficient technique. We have used 90nm, 65nm, 40nm and 28nm technology based FPGA...

  15. The Effectiveness of Yoga on Spiritual Intelligence in Air Traffic Controllers of Tehran Flight Control Center

    Science.gov (United States)

    Safara, Maryam; Ghasemi, Pejman

    2017-01-01

    The aim of this study was to evaluate the efficacy of yoga on spiritual intelligence in air traffic controllers in Tehran flight control center. This was a quasi-experimental research and the study population includes all air traffic controllers in Tehran flight control center. The sample consisted of 40 people of the study population that were…

  16. An intelligent vehicular traffic signal control system with state flow chart design and fpga prototyping

    International Nuclear Information System (INIS)

    Solangi, U.S.; Memon, T.D.; Noonari, A.S.; Ansari, O.A.

    2017-01-01

    The problem of vehicular traffic congestion is a persistent constraint in the socio-economic development of Pakistan. This paper presents design and implementation of an intelligent traffic controller based on FPGA (Field Programmable Gate Array) to provide an efficient traffic management by optimizing functioning of traffic lights which will result in minimizing traffic congestion at intersections. The existent Traffic Signal system in Pakistan is fixed-time based and offers only Open Loop method for Traffic Control. The Intelligent Traffic Controller presented here uses feedback sensors to read the Traffic density present at a four way intersection to provide an efficient alternative for better supervisory Control of Traffic flow. The traffic density based control logic has been developed in a State Flow Chart for improved visualization of State Machine based operation, and implemented as a Subsystem in Simulink and transferred into VHDL (Hardware Description Language) code using HDL Coder for reducing development time and time to market, which are essential to capitalize Embedded Systems Market. The VHDL code is synthesized with Altera QUARTUS, simulated timing waveform is obtained to verify correctness of the algorithm for different Traffic Scenarios. For implementation purpose estimations were obtained for Cyclone-III and Stratix-III. (author)

  17. An Intelligent Vehicular Traffic Signal Control System with State Flow Chart Design and FPGA Prototyping

    Directory of Open Access Journals (Sweden)

    UMAIR SAEEDSOLANGI

    2017-04-01

    Full Text Available The problem of vehicular traffic congestion is a persistent constraint in the socio-economic development of Pakistan. This paper presents design and implementation of an intelligent traffic controller based on FPGA (Field Programmable Gate Array to provide an efficient traffic management by optimizing functioning of traffic lights which will result in minimizing traffic congestion at intersections. The existent Traffic Signal system in Pakistan is fixed-time based and offers only Open Loop method for Traffic Control. The Intelligent Traffic Controller presented here uses feedback sensors to read the Traffic density present at a four way intersection to provide an efficient alternative for better supervisory Control of Traffic flow. The traffic density based control logic has been developed in a State Flow Chart for improved visualization of State Machine based operation, and implemented as a Subsystem in Simulink and transferred into VHDL (Hardware Description Language code using HDL Coder for reducing development time and time to market, which are essential to capitalize Embedded Systems Market. The VHDL code is synthesized with Altera QUARTUS, simulated timing waveform is obtained to verify correctness of the algorithm for different Traffic Scenarios. For implementation purpose estimations were obtained for Cyclone-III and Stratix-III.

  18. Simulation of Random Events for Air Traffic Applications

    Directory of Open Access Journals (Sweden)

    Stéphane Puechmorel

    2018-05-01

    Full Text Available Resilience to uncertainties must be ensured in air traffic management. Unexpected events can either be disruptive, like thunderstorms or the famous volcano ash cloud resulting from the Eyjafjallajökull eruption in Iceland, or simply due to imprecise measurements or incomplete knowledge of the environment. While human operators are able to cope with such situations, it is generally not the case for automated decision support tools. Important examples originate from the numerous attempts made to design algorithms able to solve conflicts between aircraft occurring during flights. The STARGATE (STochastic AppRoach for naviGATion functions in uncertain Environment project was initiated in order to study the feasibility of inherently robust automated planning algorithms that will not fail when submitted to random perturbations. A mandatory first step is the ability to simulate the usual stochastic phenomenons impairing the system: delays due to airport platforms or air traffic control (ATC and uncertainties on the wind velocity. The work presented here will detail algorithms suitable for the simulation task.

  19. Logistic control in automated transportation networks

    NARCIS (Netherlands)

    Ebben, Mark

    2001-01-01

    Increasing congestion problems lead to a search for alternative transportation systems. Automated transportation networks, possibly underground, are an option. Logistic control systems are essential for future implementations of such automated transportation networks. This book contributes to the

  20. A sensemaking perspective on framing the mental picture of air traffic controllers.

    Science.gov (United States)

    Malakis, Stathis; Kontogiannis, Tom

    2013-03-01

    It has long been recognized that controller strategies are based on a 'mental picture' or representation of traffic situations. Earlier studies indicated that controllers tend to maintain a selective representation of traffic flows based on a few salient traffic features that point out to interesting events (e.g., potential conflicts). A field study is presented in this paper that examines salient features or 'knowledge variables' that constitute the building blocks of controller mental pictures. Verbal reports from participants, a field experiment and observations of real-life scenarios provided insights into the cognitive processes that shape and reframe the mental pictures of controllers. Several cognitive processes (i.e., problem detection, elaboration, reframing and replanning) have been explored within a particular framework of sensemaking stemming from the data/frame theory (Klein et al., 2007). Cognitive maps, representing standard and non-standard air traffic flows, emerged as an explanatory framework for making sense of traffic patterns and for reframing mental pictures. The data/frame theory proved to be a useful theoretical tool for investigating complex cognitive phenomena. The findings of the study have implications for the design of training curricula and decision support systems in air traffic control systems. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. A time-based concept for terminal-area traffic management

    Science.gov (United States)

    Erzberger, Heinz; Tobias, Leonard

    1986-01-01

    An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four-dimensional (4D) guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing time provided by the scheduler is uplinked to equipped aircraft and translated into the appropriate 4D trajectory by the-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of 4D-equipped and unequipped, as well as low- and high-performance, aircraft. Piloted simulations of profiles flown with the aid of advisories have verified the ability to meet specified descent times with prescribed accuracy.

  2. Theoretical Aspects of Erroneous Actions During the Process of Decision Making by Air Traffic Control

    Directory of Open Access Journals (Sweden)

    Andersone Silva

    2017-08-01

    Full Text Available The Theoretical Aspects of Erroneous Actions During the Process of Decision Making by Air Traffic Control evaluates the factors affecting the operational decision-making of a human air traffic controller, interacting in a dynamic environment with the flight crew, surrounding aircraft traffic and environmental conditions of the airspace. This article reviews the challenges of air traffic control in different conditions, ranging from normal and complex to emergency and catastrophic. Workload factors and operating conditions make an impact on air traffic controllers’ decision-making. The proposed model compares various operating conditions within an assumed air traffic control environment subsequently comparing them against a theoretically “perfect” air traffic control system. A mathematical model of flight safety assessment has been proposed for the quantitative assessment of various hazards arising during the process of Air Traffic Control. The model assumes events of various severity and probability ranging from high frequency and low severity up to less likely and catastrophic ones. Certain limitations of the model have been recognised and further improvements for effective hazard evaluation have been suggested.

  3. Control de tráfico vehicular usando ANFIS Vehicular traffic control using ANFIS

    Directory of Open Access Journals (Sweden)

    Luis Fernando Pedraza

    2012-04-01

    Full Text Available Diferentes estrategias para el control del tráfico urbano se han presentado a lo largo del tiempo. Este artículo presenta el diseño de un modelo de tráfico vehicular, el cual examina el tráfico existente en una vía a través de una serie de semáforos. A partir de este modelo se sincronizan los tiempos de duración y de desfase de los semáforos, utilizando para ello el Sistema de Inferencia Difusa Basado en Redes Adaptativas (ANFIS. El modelo es simulado y los resultados se evalúan a nivel macroscópico con el modelo de tiempos fijos, que funciona actualmente en Bogotá-Colombia.Different strategies for urban traffic control have been presented over time. This paper presents the design of a vehicular traffic model, examining the existing traffic through a serie of traffic lights on a road. From this model the times of duration and phase of the traffic lights are synchronized, using the Adaptive Network Based Fuzzy Inference Systems (ANFIS. The model is simulated and the results are evaluated at macroscopic level with the fixed time model, currently operating in Bogota-Colombia.

  4. Aviation safety and automation technology for subsonic transports

    Science.gov (United States)

    Albers, James A.

    1991-01-01

    Discussed here are aviation safety human factors and air traffic control (ATC) automation research conducted at the NASA Ames Research Center. Research results are given in the areas of flight deck and ATC automations, displays and warning systems, crew coordination, and crew fatigue and jet lag. Accident investigation and an incident reporting system that is used to guide the human factors research is discussed. A design philosophy for human-centered automation is given, along with an evaluation of automation on advanced technology transports. Intelligent error tolerant systems such as electronic checklists are discussed along with design guidelines for reducing procedure errors. The data on evaluation of Crew Resource Management (CRM) training indicates highly significant positive changes in appropriate flight deck behavior and more effective use of available resources for crew members receiving the training.

  5. Pilot visual acquisition of traffic : operational communications from air traffic control operational communication.

    Science.gov (United States)

    2001-05-01

    Avionics devices designed to provide pilots with graphically displayed traffic information will enable pilots to acquire and verify the identity of any intruder aircraft within the general area, either before or in accordance with a controller-issued...

  6. Automated Conflict Resolution, Arrival Management and Weather Avoidance for ATM

    Science.gov (United States)

    Erzberger, H.; Lauderdale, Todd A.; Chu, Yung-Cheng

    2010-01-01

    The paper describes a unified solution to three types of separation assurance problems that occur in en-route airspace: separation conflicts, arrival sequencing, and weather-cell avoidance. Algorithms for solving these problems play a key role in the design of future air traffic management systems such as NextGen. Because these problems can arise simultaneously in any combination, it is necessary to develop integrated algorithms for solving them. A unified and comprehensive solution to these problems provides the foundation for a future air traffic management system that requires a high level of automation in separation assurance. The paper describes the three algorithms developed for solving each problem and then shows how they are used sequentially to solve any combination of these problems. The first algorithm resolves loss-of-separation conflicts and is an evolution of an algorithm described in an earlier paper. The new version generates multiple resolutions for each conflict and then selects the one giving the least delay. Two new algorithms, one for sequencing and merging of arrival traffic, referred to as the Arrival Manager, and the other for weather-cell avoidance are the major focus of the paper. Because these three problems constitute a substantial fraction of the workload of en-route controllers, integrated algorithms to solve them is a basic requirement for automated separation assurance. The paper also reviews the Advanced Airspace Concept, a proposed design for a ground-based system that postulates redundant systems for separation assurance in order to achieve both high levels of safety and airspace capacity. It is proposed that automated separation assurance be introduced operationally in several steps, each step reducing controller workload further while increasing airspace capacity. A fast time simulation was used to determine performance statistics of the algorithm at up to 3 times current traffic levels.

  7. Detection of Botnet Command and Control Traffic by the Multistage Trust Evaluation of Destination Identifiers

    Directory of Open Access Journals (Sweden)

    Pieter Burghouwt

    2015-10-01

    Full Text Available Network-based detection of botnet Command and Control communication is a difficult task if the traffic has a relatively low volume and if popular protocols, such as HTTP, are used to resemble normal traffic. We present a new network-based detection approach that is capable of detecting this type of Command and Control traffic in an enterprise network by estimating the trustworthiness of the traffic destinations. If the destination identifier of a traffic flow origins directly from: human input, prior traffic from a trusted destination, or a defined set of legitimate applications, the destination is trusted and its associated traffic is classified as normal. Advantages of this approach are: the ability of zero day malicious traffic detection, low exposure to malware by passive host-external traffic monitoring, and the applicability for real-time filtering. Experimental evaluation demonstrates successful detection of diverse types of Command and Control Traffic.

  8. Application Filters for TCP/IP Industrial Automation Protocols

    Science.gov (United States)

    Batista, Aguinaldo B.; Kobayashi, Tiago H.; Medeiros, João Paulo S.; Brito, Agostinho M.; Motta Pires, Paulo S.

    The use of firewalls is a common approach usually meant to secure Automation Technology (AT) from Information Technology (TI) networks. This work proposes a filtering system for TCP/IP-based automation networks in which only certain kind of industrial traffic is permitted. All network traffic which does not conform with a proper industrial protocol pattern or with specific rules for its actions is supposed to be abnormal and must be blocked. As a case study, we developed a seventh layer firewall application with the ability of blocking spurious traffic, using an IP packet queueing engine and a regular expression library.

  9. How to reduce workload--augmented reality to ease the work of air traffic controllers.

    Science.gov (United States)

    Hofmann, Thomas; König, Christina; Bruder, Ralph; Bergner, Jörg

    2012-01-01

    In the future the air traffic will rise--the workload of the controllers will do the same. In the BMWi research project, one of the tasks is, how to ensure safe air traffic, and a reasonable workload for the air traffic controllers. In this project it was the goal to find ways how to reduce the workload (and stress) for the controllers to allow safe air traffic, esp. at huge hub-airports by implementing augmented reality visualization and interaction.

  10. Traffic Congestion Evaluation and Signal Control Optimization Based on Wireless Sensor Networks: Model and Algorithms

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2012-01-01

    Full Text Available This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on the Mobile Century dataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.

  11. Automation of a T-intersection using virtual platoons of cooperative autonomous vehicles

    NARCIS (Netherlands)

    Morales Medina, Alejandro; van de Wouw, N.; Nijmeijer, H.

    2015-01-01

    Both traffic throughput and the vehicle passenger safety can be increased by automating road intersections. We propose the virtual platooning concept to ensure a smooth, efficient and safe traffic flow through an automated intersection. The virtual platoon is formed by defining a virtual

  12. Procedure for Marine Traffic Simulation with AIS Data

    Directory of Open Access Journals (Sweden)

    Rina Miyake

    2015-03-01

    Full Text Available It is essential to evaluate safety of marine traffic for the improvement of efficiency and safety of marine traffic. Spread of AIS makes observation of actual marine traffic more easily and faster than before. Besides, description of collision avoidance behaviours of ships are indispensable to simulate a realistic marine traffic. It is important to develop and implement an algorithm of collision avoidance corresponding to a target traffic or target area into the marine traffic simulation because actual actions for collision avoidance depend on circumstances where ships are sailing. The authors developed an automated marine traffic simulation system with AIS data. And in this paper, we proposed a series of systematic procedures for marine traffic simulation including analysing for collision avoidance behaviours using AIS data.

  13. Research on the Reliability Testing of Electrical Automation Control Equipment

    OpenAIRE

    Yongjie Luo

    2014-01-01

    According to the author’s many years’ work experience, this paper first discusses the concepts of electrical automation control equipment reliability testing, and then analyzes the test method of electrical automation control equipment reliability testing, finally, on this basis, this article discusses how to determine the reliability test method of electrical automation control equipment. Results of this study will provide a useful reference for electrical automation control equipment reliab...

  14. Dynamic control of traffic lights

    NARCIS (Netherlands)

    Haijema, Rene; Hendrix, Eligius M.T.; Wal, van der Jan

    2017-01-01

    Traffic lights are put in place to dynamically change priority between traffic participants. Commonly, the duration of green intervals and the grouping, and ordering in which traffic flows are served are pre-fixed. In this chapter, the problem of minimizing vehicle delay at isolated intersections is

  15. ROLE OF PEDAGOGY COMPETENCE OF A CONTROLLER-TRAINER IN SIMU-TRAINING OF AIR TRAFFIC CONTROLLERS

    Directory of Open Access Journals (Sweden)

    О. Петращук

    2012-04-01

    Full Text Available The article focuses on the issue of pedagogy competence of an ATCO-trainer as a constituent of hisoverall professional competency/capacity to provide quality SIMU- training of the air traffic controllers. Thecurrent University curriculum for abinitio controllers does not provide developing of the pedagogicalcompetence. But it is requested very much when an air traffic controller is employed as a controller-trainerfor SIMU-training. It is suggested to include pedagogical science as a course in the University programme

  16. Application of magnetic sensors in automation control

    Energy Technology Data Exchange (ETDEWEB)

    Hou Chunhong [AMETEK Inc., Paoli, PA 19301 (United States); Qian Zhenghong, E-mail: zqian@hdu.edu.cn [Center For Integrated Spintronic Devices (CISD), Hangzhou Dianzi University, Hangzhou, ZJ 310018 (China)

    2011-01-01

    Controls in automation need speed and position feedback. The feedback device is often referred to as encoder. Feedback technology includes mechanical, optical, and magnetic, etc. All advance with new inventions and discoveries. Magnetic sensing as a feedback technology offers certain advantages over other technologies like optical one. With new discoveries like GMR (Giant Magneto-Resistance), TMR (Tunneling Magneto-Resistance) becoming feasible for commercialization, more and more applications will be using advanced magnetic sensors in automation. This paper offers a general review on encoder and applications of magnetic sensors in automation control.

  17. Traffic Control Device Evaluation Program : FY 2017

    Science.gov (United States)

    2018-03-01

    This report presents findings on the activities conducted in the Traffic Control Device Evaluation Program during the 2017 fiscal year. The research on sponsored changeable message signs (continued from the previous year) was terminated by the Federa...

  18. Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment

    Science.gov (United States)

    Williams, David H.; Green, Steven M.

    1993-01-01

    Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept.

  19. Automated Cryocooler Monitor and Control System Software

    Science.gov (United States)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  20. Safety of mechanical devices. Safety of automation systems

    International Nuclear Information System (INIS)

    Pahl, G.; Schweizer, G.; Kapp, K.

    1985-01-01

    The paper deals with the classic procedures of safety engineering in the sectors mechanical engineering, electrical and energy engineering, construction and transport, medicine technology and process technology. Particular stress is laid on the safety of automation systems, control technology, protection of mechanical devices, reactor safety, mechanical constructions, transport systems, railway signalling devices, road traffic and protection at work in chemical plans. (DG) [de

  1. Using spatial context to support prospective memory in simulated air traffic control.

    Science.gov (United States)

    Loft, Shayne; Finnerty, Dannielle; Remington, Roger W

    2011-12-01

    The aim was to examine whether prospective memory error and response costs to ongoing tasks in an air traffic control simulation could be reduced by providing spatial context. Prospective memory refers to remembering to perform an intended action at an appropriate point in the future. Failures of prospective memory can occur in air traffic control. For this study, three conditions of participants performed an air traffic control task that required them to accept and hand off aircraft and to prevent conflicts. The prospective memory task required participants to remember to press an alternative key rather than the routine key when accepting target aircraft. A red line separated the display into upper and lower regions. Participants in the context condition were told that the prospective memory instruction would apply only to aircraft approaching from one region (upper or lower). Those in the standard condition were not provided this information. In the control condition, participants did not have to perform the prospective memory task. In the context condition, participants made fewer prospective memory errors than did those in the standard condition and made faster acceptance decisions for aircraft approaching from irrelevant compared with relevant regions. Costs to hand-off decision time were also reduced in the context condition. Spatial context provided no benefit to conflict detection. Participants could partially localize their allocation of attentional resources to the prospective memory task to relevant display regions. The findings are potentially applicable to air traffic control, whereby regularities in airspace structure and standard traffic flows allow controllers to anticipate the location of specific air traffic events.

  2. Work Practice Simulation of Complex Human-Automation Systems in Safety Critical Situations: The Brahms Generalized berlingen Model

    Science.gov (United States)

    Clancey, William J.; Linde, Charlotte; Seah, Chin; Shafto, Michael

    2013-01-01

    The transition from the current air traffic system to the next generation air traffic system will require the introduction of new automated systems, including transferring some functions from air traffic controllers to on­-board automation. This report describes a new design verification and validation (V&V) methodology for assessing aviation safety. The approach involves a detailed computer simulation of work practices that includes people interacting with flight-critical systems. The research is part of an effort to develop new modeling and verification methodologies that can assess the safety of flight-critical systems, system configurations, and operational concepts. The 2002 Ueberlingen mid-air collision was chosen for analysis and modeling because one of the main causes of the accident was one crew's response to a conflict between the instructions of the air traffic controller and the instructions of TCAS, an automated Traffic Alert and Collision Avoidance System on-board warning system. It thus furnishes an example of the problem of authority versus autonomy. It provides a starting point for exploring authority/autonomy conflict in the larger system of organization, tools, and practices in which the participants' moment-by-moment actions take place. We have developed a general air traffic system model (not a specific simulation of Überlingen events), called the Brahms Generalized Ueberlingen Model (Brahms-GUeM). Brahms is a multi-agent simulation system that models people, tools, facilities/vehicles, and geography to simulate the current air transportation system as a collection of distributed, interactive subsystems (e.g., airports, air-traffic control towers and personnel, aircraft, automated flight systems and air-traffic tools, instruments, crew). Brahms-GUeM can be configured in different ways, called scenarios, such that anomalous events that contributed to the Überlingen accident can be modeled as functioning according to requirements or in an

  3. Traffic Accident Propagation Properties and Control Measures for Urban Links Based on Cellular Automata

    Directory of Open Access Journals (Sweden)

    Xian-sheng Li

    2013-01-01

    Full Text Available With the rapid development of urban transport and the sharp increase in vehicle population, traffic accidents form one of the most important causes of urban traffic congestion other than the imbalance between traffic supply and demand. Traffic congestion causes severe problems, such as environment contamination and energy dissipation. Therefore, it would be useful to analyze the congestion propagation characteristics after traffic accidents. Numerical analysis and computer simulation were two of the typical methods used at present to study the traffic congestion propagation properties. The latter was more widespread as it is more consistent with the actual traffic flow and more visual than the former. In this paper, an improved cellular automata (CA model was presented to analyze traffic congestion propagation properties and to evaluate control strategies. In order to apply them to urban traffic flow simulation, the CA models have been improved and expanded on. Computer simulations were built for congestion not only extending to the upstream intersection, but also the upstream intersection and the entire road network, respectively. Congestion propagation characteristics after road traffic accidents were obtained, and controls of different severities and durations were analyzed. The results provide the theoretical foundation and practical means for the control of congestion.

  4. Automation facilities for agricultural machinery control

    Directory of Open Access Journals (Sweden)

    A. Yu. Izmaylov

    2017-01-01

    Full Text Available The possibility of use of the automation equipment for agricultural machinery control is investigated. The authors proposed solutions on creation of the centralized unified automated information system for mobile aggregates management. In accordance with the modern requirements this system should be open, integrated into the general schema of agricultural enterprise control. Standard hardware, software and communicative features should be realized in tasks of monitoring and control. Therefore the schema should be get with use the unified modules and Russian standards. The complex multivariate unified automated control system for different objects of agricultural purpose based on block and modular creation should correspond to the following principles: high reliability, simplicity of service, low expenses in case of operation, the short payback period connected to increase in productivity, the reduced losses when harvesting, postharvest processing and storage, the improved energetic indices. Technological processes control in agricultural production is exercised generally with feedback. The example without feedback is program control by temperature in storage in case of the cooling mode. Feedback at technological processes control in agricultural production allows to optimally solve a problem of rational distribution of functions in man-distributed systems and forming the intelligent ergonomic interfaces, consistent with professional perceptions of decision-makers. The negative feedback created by the control unit allows to support automatically a quality index of technological process at the set level. The quantitative analysis of a production situation base itself upon deeply formalized basis of computer facilities that promotes making of the optimal solution. Information automated control system introduction increases labor productivity by 40 percent, reduces energetic costs by 25 percent. Improvement of quality of the executed technological

  5. Lane Changing Control to Reduce Traffic Load Effect on Long-Span Bridges

    OpenAIRE

    Caprani, Colin C; Enright, Bernard; Carey, Colm

    2012-01-01

    Long span bridges are critical parts of a nation’s infrastructure network and congested traffic loading is the governing form of traffic loading. Groups of trucks travelling in conveys are created when fast-er moving vehicles, such as cars, change lane. In this research the authors investigate how the control of these lane-changing events can help reduce the traffic load effects on long span bridges. Real traffic data is used to simulate a traffic stream on a virtual road and bridge using a m...

  6. Multi-Center Traffic Management Advisor Operational Field Test Results

    Science.gov (United States)

    Farley, Todd; Landry, Steven J.; Hoang, Ty; Nickelson, Monicarol; Levin, Kerry M.; Rowe, Dennis W.

    2005-01-01

    The Multi-Center Traffic Management Advisor (McTMA) is a research prototype system which seeks to bring time-based metering into the mainstream of air traffic control (ATC) operations. Time-based metering is an efficient alternative to traditional air traffic management techniques such as distance-based spacing (miles-in-trail spacing) and managed arrival reservoirs (airborne holding). While time-based metering has demonstrated significant benefit in terms of arrival throughput and arrival delay, its use to date has been limited to arrival operations at just nine airports nationally. Wide-scale adoption of time-based metering has been hampered, in part, by the limited scalability of metering automation. In order to realize the full spectrum of efficiency benefits possible with time-based metering, a much more modular, scalable time-based metering capability is required. With its distributed metering architecture, multi-center TMA offers such a capability.

  7. Simulating and evaluating an adaptive and integrated traffic lights control system for smart city application

    Science.gov (United States)

    Djuana, E.; Rahardjo, K.; Gozali, F.; Tan, S.; Rambung, R.; Adrian, D.

    2018-01-01

    A city could be categorized as a smart city when the information technology has been developed to the point that the administration could sense, understand, and control every resource to serve its people and sustain the development of the city. One of the smart city aspects is transportation and traffic management. This paper presents a research project to design an adaptive traffic lights control system as a part of the smart system for optimizing road utilization and reducing congestion. Research problems presented include: (1) Congestion in one direction toward an intersection due to dynamic traffic condition from time to time during the day, while the timing cycles in traffic lights system are mostly static; (2) No timing synchronization among traffic lights in adjacent intersections that is causing unsteady flows; (3) Difficulties in traffic condition monitoring on the intersection and the lack of facility for remotely controlling traffic lights. In this research, a simulator has been built to model the adaptivity and integration among different traffic lights controllers in adjacent intersections, and a case study consisting of three sets of intersections along Jalan K. H. Hasyim Ashari has been simulated. It can be concluded that timing slots synchronization among traffic lights is crucial for maintaining a steady traffic flow.

  8. Spaceport Command and Control System Automation Testing

    Science.gov (United States)

    Hwang, Andrew

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  9. Spaceport Command and Control System Automated Testing

    Science.gov (United States)

    Stein, Meriel

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  10. Contribution to intelligent vehicle platoon control

    OpenAIRE

    Zhao , Jin

    2010-01-01

    This PhD thesis is dedicated to the control strategies for intelligent vehicle platoon in highway with the main aims of alleviating traffic congestion and improving traffic safety. After a review of the different existing automated driving systems, the vehicle longitudinal and lateral dynamic models are derived. Then, the longitudinal control and lateral control strategies are studied respectively. At first, the longitudinal control system is designed to be hierarchical with an upper level co...

  11. Controls and automation in the SPIRAL project

    International Nuclear Information System (INIS)

    Bothner, U.; Boulot, A.; Maherault, J.; Martial, L.

    1999-01-01

    The control and automation team of the R and D of Accelerator-Exotic Beam Department has had in the framework of SPIRAL collaboration the following tasks: 1. automation of the resonator high frequency equipment of the CIME cyclotron; 2. automation of the vacuum equipment, i.e. the low energy line (TBE), the CIME cyclotron, the low energy line (BE); 3. automation of load safety for power supply; 4. for each of these tasks a circuitry file based on the SCHEMA software has been worked out. The programs required in the automation of load safety for power supply (STEP5, PROTOOL, DESIGNER 4.1) were developed and implemented for PC

  12. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    Science.gov (United States)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  13. Hoarseness and vocal tract discomfort and associated risk factors in air traffic controllers.

    Science.gov (United States)

    Korn, Gustavo Polacow; Villar, Anna Carolina; Azevedo, Renata Rangel

    2018-04-05

    An air traffic controller is a professional who performs air traffic control functions in air traffic control units and is responsible for controlling the various stages of a flight. To compare hoarseness and vocal tract discomfort and their risk factors among air traffic controllers in the approach control of São Paulo. In a cross-sectional survey, a voice self-evaluation adapted from to self-evaluation prepared by the Brazilian Ministry of Labor for teachers was administered to 76 air traffic controllers at approach control of São Paulo, Brazil. The percentage of hoarseness and vocal tract discomfort was 19.7% and 38.2%, respectively. In relation to air pollution, the percentages of hoarseness and vocal tract discomfort were higher among those who consider their working environment to be intolerable than among those in a comfortable or disturbing environment. The percentage of hoarseness was higher among those who seek medical advice due to vocal complaints and among those who experience difficulty using their voice at work than among those who experience mild or no difficulty. The percentage of vocal tract discomfort was higher among those in a very tense and stressful environment than among those who consider their work environment to be mild or moderately tense and stressful. The percentage of vocal tract discomfort was higher among those who describe themselves as very tense and stressed or tense and stressed than among those who describe themselves as calm. Additionally, the percentage of vocal tract discomfort was higher among those who care about their health. Among air traffic controllers, the percentage of vocal tract discomfort was almost twice that of hoarseness. Both symptoms are prevalent among air traffic controllers who considered their workplace intolerable in terms of air pollution. Vocal tract discomfort was related to a tense and stressful environment, and hoarseness was related to difficulty using the voice at work. Copyright © 2018 Associa

  14. Adaptive Traffic Control Systems in a medium-sized Scandinavian city

    DEFF Research Database (Denmark)

    Agerholm, Niels; Olesen, Anne Vingaard

    2018-01-01

    Adaptive Traffic Control Systems (ATCS) are aimed at reducing congestion. ATCS adapt to approaching traffic to continuously optimise the traffic flows in question. ATCS have been implemented in many locations, including the Scandinavian countries, with various effects. Due to congestion problems......, and GPS data from a range of cars driving on the ring road formed the basis for the study. The result of ATCS implementation was a significant 17% reduction in transportation time on the ring road in the most congested period, the afternoon peak. Less significant effects were found regarding the morning...

  15. Web-based Traffic Noise Control Support System for Sustainable Transportation

    Science.gov (United States)

    Fan, Lisa; Dai, Liming; Li, Anson

    Traffic noise is considered as one of the major pollutions that will affect our communities in the future. This paper presents a framework of web-based traffic noise control support system (WTNCSS) for a sustainable transportation. WTNCSS is to provide the decision makers, engineers and publics a platform to efficiently access the information, and effectively making decisions related to traffic control. The system is based on a Service Oriented Architecture (SOA) which takes the advantages of the convenience of World Wide Web system with the data format of XML. The whole system is divided into different modules such as the prediction module, ontology-based expert module and dynamic online survey module. Each module of the system provides a distinct information service to the decision support center through the HTTP protocol.

  16. Towards full automation of accelerators through computer control

    CERN Document Server

    Gamble, J; Kemp, D; Keyser, R; Koutchouk, Jean-Pierre; Martucci, P P; Tausch, Lothar A; Vos, L

    1980-01-01

    The computer control system of the Intersecting Storage Rings (ISR) at CERN has always laid emphasis on two particular operational aspects, the first being the reproducibility of machine conditions and the second that of giving the operators the possibility to work in terms of machine parameters such as the tune. Already certain phases of the operation are optimized by the control system, whilst others are automated with a minimum of manual intervention. The authors describe this present control system with emphasis on the existing automated facilities and the features of the control system which make it possible. It then discusses the steps needed to completely automate the operational procedure of accelerators. (7 refs).

  17. Towards full automation of accelerators through computer control

    International Nuclear Information System (INIS)

    Gamble, J.; Hemery, J.-Y.; Kemp, D.; Keyser, R.; Koutchouk, J.-P.; Martucci, P.; Tausch, L.; Vos, L.

    1980-01-01

    The computer control system of the Intersecting Storage Rings (ISR) at CERN has always laid emphasis on two particular operational aspects, the first being the reproducibility of machine conditions and the second that of giving the operators the possibility to work in terms of machine parameters such as the tune. Already certain phases of the operation are optimized by the control system, whilst others are automated with a minimum of manual intervention. The paper describes this present control system with emphasis on the existing automated facilities and the features of the control system which make it possible. It then discusses the steps needed to completely automate the operational procedure of accelerators. (Auth.)

  18. Processes mediating expertise in air traffic control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; De Bock, Jeano; Kirschner, Paul A.

    2011-01-01

    Van Meeuwen, L. W., Jarodzka, H., Brand-Gruwel, S., Van Merriënboer, J. J. G., De Bock, J. J. P. R., & Kirschner, P. A. (2010, September). Processes mediating expertise in air traffic control. Poster presented at the European Association for Aviation Psychology Conference, Budapest.

  19. An optimal general type-2 fuzzy controller for Urban Traffic Network

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Vafamand, Navid; Liaghat, Alireza

    2017-01-01

    Urban traffic network model is illustrated by state-charts and object-diagram. However, they have limitations to show the behavioral perspective of the Traffic Information flow. Consequently, a state space model is used to calculate the half-value waiting time of vehicles. In this study......, a combination of the general type-2 fuzzy logic sets and the Modified Backtracking Search Algorithm (MBSA) techniques are used in order to control the traffic signal scheduling and phase succession so as to guarantee a smooth flow of traffic with the least wait times and average queue length. The parameters...

  20. Automated data acquisition technology development:Automated modeling and control development

    Science.gov (United States)

    Romine, Peter L.

    1995-01-01

    This report documents the completion of, and improvements made to, the software developed for automated data acquisition and automated modeling and control development on the Texas Micro rackmounted PC's. This research was initiated because a need was identified by the Metal Processing Branch of NASA Marshall Space Flight Center for a mobile data acquisition and data analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC based system was chosen. The Welding Measurement System (WMS), is a dedicated instrument strickly for use of data acquisition and data analysis. In addition to the data acquisition functions described in this thesis, WMS also supports many functions associated with process control. The hardware and software requirements for an automated acquisition system for welding process parameters, welding equipment checkout, and welding process modeling were determined in 1992. From these recommendations, NASA purchased the necessary hardware and software. The new welding acquisition system is designed to collect welding parameter data and perform analysis to determine the voltage versus current arc-length relationship for VPPA welding. Once the results of this analysis are obtained, they can then be used to develop a RAIL function to control welding startup and shutdown without torch crashing.

  1. A new traffic control design method for large networks with signalized intersections

    Science.gov (United States)

    Leininger, G. G.; Colony, D. C.; Seldner, K.

    1979-01-01

    The paper presents a traffic control design technique for application to large traffic networks with signalized intersections. It is shown that the design method adopts a macroscopic viewpoint to establish a new traffic modelling procedure in which vehicle platoons are subdivided into main stream queues and turning queues. Optimization of the signal splits minimizes queue lengths in the steady state condition and improves traffic flow conditions, from the viewpoint of the traveling public. Finally, an application of the design method to a traffic network with thirty-three signalized intersections is used to demonstrate the effectiveness of the proposed technique.

  2. Creating a systems engineering approach for the manual on uniform traffic control devices.

    Science.gov (United States)

    2011-03-01

    The Manual on Uniform Traffic Control Devices (MUTCD) provides basic principles for use of traffic : control devices (TCD). However, most TCDs are not explicitly required, and the decision to use a given : TCD in a given situation is typically made b...

  3. Complete automation of nuclear reactors control

    International Nuclear Information System (INIS)

    Weill, J.

    1955-01-01

    The use of nuclear reactor for energy production induces the installation of automatic control systems which need to be safe enough and can adapt to the industrial scale of energy production. These automatic control systems have to insure the constancy of power level and adjust the power produced to the energy demand. Two functioning modes are considered: nuclear plant connected up to other electric production systems as hydraulic or thermic plants or nuclear plants functioning on an independent network. For nuclear plants connected up with other production plants, xenon poisoning and operating cost lead to keep working at maximum power the nuclear reactors. Thus, the power modulation control system will not be considered and only start-up control, safety control, and control systems will be automated. For nuclear power plants working on an independent network, the power modulation control system is needed to economize fuel. It described the automated control system for reactors functioning with constant power: a power measurement system constituted of an ionization chamber and a direct-current amplifier will control the steadfastness of the power produced. For reactors functioning with variable power, the automated power control system will allow to change the power and maintain it steady with all the necessary safety and will control that working conditions under P max and R max (maximum power and maximum reactivity). The effects of temperature and xenon poisoning will also be discussed. Safety systems will be added to stop completely the functioning of the reactor if P max is reached. (M.P.)

  4. Levels of automation and user control - evaluation of a turbine automation interface

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jonas (Chalmers Univ. of Technology (Sweden))

    2008-10-15

    The study was performed during the annual operator training at the Studsvik nuclear power plant simulator facility in Nykoeping, Sweden. The participating operators came from the Oskarshamn 3 nuclear power plant. In the study, seven nuclear power plant turbine operators were interviewed concerning their use of the automatic turbine system. A field study approach together with a heuristic usability evaluation was made to assess how the operators are affected by use of automation in the control room setting. The purpose of the study was to examine how operator performance is affected by varying levels of automation in nuclear power plant turbine operation. The Automatic Turbine System (ATS) was evaluated to clarify how the ATS interface design supports the operators work. The results show that during manual control the operators experience loss of speed and accuracy in performing actions together with difficulty of dividing attention between performing a task and overall monitoring, as the major problems. The positive aspects of manual operations lie in increased feeling of being in control when performing actions by hand. With higher levels of automation the problems shift to issues concerning difficulty of following the automatic sequences and loosing track in procedures. As the level of automation gets higher, the need of feedback increases which means that information presentation also becomes more important. The use of the semiautomatic, step-mode is often preferred by the operators since it combines the speed and accuracy of the automation with the ability of maintaining the feeling of being in control. Further, a number of usability related concerns was found in the ATS interface. The operators especially experience the presentation of the conditions that manage the automatic sequences as difficult to perceive. (author)

  5. Levels of automation and user control - evaluation of a turbine automation interface

    International Nuclear Information System (INIS)

    Andersson, Jonas

    2008-10-01

    The study was performed during the annual operator training at the Studsvik nuclear power plant simulator facility in Nykoeping, Sweden. The participating operators came from the Oskarshamn 3 nuclear power plant. In the study, seven nuclear power plant turbine operators were interviewed concerning their use of the automatic turbine system. A field study approach together with a heuristic usability evaluation was made to assess how the operators are affected by use of automation in the control room setting. The purpose of the study was to examine how operator performance is affected by varying levels of automation in nuclear power plant turbine operation. The Automatic Turbine System (ATS) was evaluated to clarify how the ATS interface design supports the operators work. The results show that during manual control the operators experience loss of speed and accuracy in performing actions together with difficulty of dividing attention between performing a task and overall monitoring, as the major problems. The positive aspects of manual operations lie in increased feeling of being in control when performing actions by hand. With higher levels of automation the problems shift to issues concerning difficulty of following the automatic sequences and loosing track in procedures. As the level of automation gets higher, the need of feedback increases which means that information presentation also becomes more important. The use of the semiautomatic, step-mode is often preferred by the operators since it combines the speed and accuracy of the automation with the ability of maintaining the feeling of being in control. Further, a number of usability related concerns was found in the ATS interface. The operators especially experience the presentation of the conditions that manage the automatic sequences as difficult to perceive. (au)

  6. Air Traffic Controllers' Control Strategies in the Terminal Area Under Off-Nominal Conditions

    Science.gov (United States)

    Martin, Lynne; Mercer, Joey; Callantine, Todd; Kupfer, Michael; Cabrall, Christopher

    2012-01-01

    A human-in-the-loop simulation investigated the robustness of a schedule-based terminal-area air traffic management concept, and its supporting controller tools, to off-nominal events - events that led to situations in which runway arrival schedules required adjustments and controllers could no longer use speed control alone to impose the necessary delays. The main research question was exploratory: to assess whether controllers could safely resolve and control the traffic during off-nominal events. A focus was the role of the supervisor - how he managed the schedules, how he assisted the controllers, what strategies he used, and which combinations of tools he used. Observations and questionnaire responses revealed supervisor strategies for resolving events followed a similar pattern: a standard approach specific to each type of event often resolved to a smooth conclusion. However, due to the range of factors influencing the event (e.g., environmental conditions, aircraft density on the schedule, etc.), sometimes the plan required revision and actions had a wide-ranging effect.

  7. Multiobjective Traffic Signal Control Model for Intersection Based on Dynamic Turning Movements Estimation

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2014-01-01

    Full Text Available The real-time traffic signal control for intersection requires dynamic turning movements as the basic input data. It is impossible to detect dynamic turning movements directly through current traffic surveillance systems, but dynamic origin-destination (O-D estimation can obtain it. However, the combined models of dynamic O-D estimation and real-time traffic signal control are rare in the literature. A framework for the multiobjective traffic signal control model for intersection based on dynamic O-D estimation (MSC-DODE is presented. A state-space model using Kalman filtering is first formulated to estimate the dynamic turning movements; then a revised sequential Kalman filtering algorithm is designed to solve the model, and the root mean square error and mean percentage error are used to evaluate the accuracy of estimated dynamic turning proportions. Furthermore, a multiobjective traffic signal control model is put forward to achieve real-time signal control parameters and evaluation indices. Finally, based on practical survey data, the evaluation indices from MSC-DODE are compared with those from Webster method. The actual and estimated turning movements are further input into MSC-DODE, respectively, and results are also compared. Case studies show that results of MSC-DODE are better than those of Webster method and are very close to unavailable actual values.

  8. Proposal of Wireless Traffic Control Schemes for Wireless LANs

    Science.gov (United States)

    Hiraguri, Takefumi; Ichikawa, Takeo; Iizuka, Masataka; Kubota, Shuji

    This paper proposes two traffic control schemes to support the communication quality of multimedia streaming services such as VoIP and audio/video over IEEE 802.11 wireless LAN systems. The main features of the proposed scheme are bandwidth control for each flow of the multimedia streaming service and load balancing between access points (APs) of the wireless LAN by using information of data link, network and transport layers. The proposed schemes are implemented on a Linux machine which is called the wireless traffic controller (WTC). The WTC connects a high capacity backbone network and an access network to which the APs are attached. We evaluated the performance of the proposed WTC and confirmed that the communication quality of the multimedia streaming would be greatly improved by using this technique.

  9. From Goods to Traffic:First Steps Toward an Auction-based Traffic Signal Controller

    OpenAIRE

    Raphael, Jeffery; Maskell, Simon; Sklar, Elizabeth Ida

    2015-01-01

    Traffic congestion is a major issue that plagues many urban road networks large and small. Traffic engineers are now leaning towards Intelligent Traffic Systems as many physical changes to road networks are costly or infeasible. Multi-Agent Systems (MAS) have become a popular paradigm for intelligent solutions to traffic management problems. There are many MAS approaches to traffic management that utilise market mechanisms. In market-based approaches, drivers “pay” to use the roadways. Howeve...

  10. Reverse Stackelberg Games : Theory and Applications in Traffic Control

    NARCIS (Netherlands)

    Groot, N.B.

    2013-01-01

    One of the major challenges in optimization-based control of large-scale intelligent infrastructural networks such as traffic networks is to find efficient multilevel optimization schemes through which decisions can be made by agents or controllers of different interacting layers. The hierarchical

  11. Processes mediating expertise in air traffic control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; De Bock, Jeano; Kirschner, Paul A.

    2010-01-01

    Van Meeuwen, L., Jarodzka, H., Brand-Gruwel, S., Van Merriënboer, J. J. G., De Bock, J. J. P. R., & Kirschner, P. A. (2010, August). Processes mediating expertise in air traffic control. Meeting of the EARLI SIG6/7 Instructional Design and Learning and Instruction with Computers, Ulm, Germany.

  12. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Air Traffic Control System Emergency Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60...

  13. Air Traffic Control Officer AFSC 13MX OSSN 2335

    National Research Council Canada - National Science Library

    1999-01-01

    The Air Traffic Control Officer utilization field was surveyed to better understand the utilization of AFSC 1 3MX personnel, validate training requirements, empirically determine career progression...

  14. A Cooperative Traffic Control of Vehicle–Intersection (CTCVI) for the Reduction of Traffic Delays and Fuel Consumption

    Science.gov (United States)

    Li, Jinjian; Dridi, Mahjoub; El-Moudni, Abdellah

    2016-01-01

    The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I). This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP) to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes. PMID:27999333

  15. A Cooperative Traffic Control of Vehicle–Intersection (CTCVI for the Reduction of Traffic Delays and Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Jinjian Li

    2016-12-01

    Full Text Available The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I. This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes.

  16. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    Science.gov (United States)

    Rios, Joseph

    2016-01-01

    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated

  17. Traffic flow model at fixed control signals with discrete service time distribution

    Directory of Open Access Journals (Sweden)

    Lucky I. Igbinosun

    2016-04-01

    Full Text Available Most of the models of road traffic flow at fixed-cycle controlled intersection assume stationary distributions and provide steady state results. The assumption that a constant number of vehicles can leave the system during the green phase is unrealistic in real life situations. A discrete time queuing model was developed to describe the operation of traffic flow at a road intersection with fixed-cycle signalized control and to account for the randomness in the number of vehicles that can leave the system. The results show the expected queue size in the system when the traffic is light and for a busy period, respectively. For the light period, when the traffic intensity is less than one, it takes a shorter green cycle time for vehicles to clear up than during high traffic intensity (the road junction is saturated. Increasing the number of cars that can leave the junction at the turn of the green phase reduces the number of cycle times before the queue is cleared.

  18. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S

    2013-03-01

    Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.

  19. Data mining of air traffic control operational errors

    Science.gov (United States)

    2006-01-01

    In this paper we present the results of : applying data mining techniques to identify patterns and : anomalies in air traffic control operational errors (OEs). : Reducing the OE rate is of high importance and remains a : challenge in the aviation saf...

  20. MODELLING OF DYNAMIC SPEED LIMITS USING THE MODEL PREDICTIVE CONTROL

    Directory of Open Access Journals (Sweden)

    Andrey Borisovich Nikolaev

    2017-09-01

    Full Text Available The article considers the issues of traffic management using intelligent system “Car-Road” (IVHS, which consist of interacting intelligent vehicles (IV and intelligent roadside controllers. Vehicles are organized in convoy with small distances between them. All vehicles are assumed to be fully automated (throttle control, braking, steering. Proposed approaches for determining speed limits for traffic cars on the motorway using a model predictive control (MPC. The article proposes an approach to dynamic speed limit to minimize the downtime of vehicles in traffic.

  1. Automated subsystems control development. [for life support systems of space station

    Science.gov (United States)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  2. Performance evaluation of traffic sensing and control devices : [technical summary].

    Science.gov (United States)

    2011-01-01

    High quality sensing and control systems are essential for providing efficient signalized arterial operations. INDOT operates over 2600 traffic signal controllers, approximately 2000 of which use some form of vehicle detection. The private sector con...

  3. 32 CFR 245.17 - U.S. civil and military air traffic control facilities.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false U.S. civil and military air traffic control facilities. 245.17 Section 245.17 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) Procedures for Implementation of ESCAT §...

  4. TRAFFIC SIMULATION FOR MIXED TRAFFIC SYSTEMS

    African Journals Online (AJOL)

    EGETE

    2012-05-04

    May 4, 2012 ... Traffic problem is classified into single and mixed, especially in most developing countries, where motorbikes are ..... The traffic light control system presented by its location on ... multi-destination dynamic routing and real-time.

  5. Estimation and Control of Networked Distributed Parameter Systems: Application to Traffic Flow

    KAUST Repository

    Canepa, Edward

    2016-11-01

    The management of large-scale transportation infrastructure is becoming a very complex task for the urban areas of this century which are covering bigger geographic spaces and facing the inclusion of connected and self-controlled vehicles. This new system paradigm can leverage many forms of sensing and interaction, including a high-scale mobile sensing approach. To obtain a high penetration sensing system on urban areas more practical and scalable platforms are needed, combined with estimation algorithms suitable to the computational capabilities of these platforms. The purpose of this work was to develop a transportation framework that is able to handle different kinds of sensing data (e.g., connected vehicles, loop detectors) and optimize the traffic state on a defined traffic network. The framework estimates the traffic on road networks modeled by a family of Lighthill-Whitham-Richards equations. Based on an equivalent formulation of the problem using a Hamilton-Jacobi equation and using a semi-analytic formula, I will show that the model constraints resulting from the Hamilton-Jacobi equation are linear, albeit with unknown integer variables. This general framework solve exactly a variety of problems arising in transportation networks: traffic estimation, traffic control (including robust control), cybersecurity and sensor fault detection, or privacy analysis of users in probe-based traffic monitoring systems. This framework is very flexible, fast, and yields exact results. The recent advances in sensors (GPS, inertial measurement units) and microprocessors enable the development low-cost dedicated devices for traffic sensing in cities, 5 which are highly scalable, providing a feasible solution to cover large urban areas. However, one of the main problems to address is the privacy of the users of the transportation system, the framework presented here is a viable option to guarantee the privacy of the users by design.

  6. Optimization-based Method for Automated Road Network Extraction

    International Nuclear Information System (INIS)

    Xiong, D

    2001-01-01

    Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction

  7. Automating quantum experiment control

    Science.gov (United States)

    Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.

    2017-03-01

    The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.

  8. Launch Control System Software Development System Automation Testing

    Science.gov (United States)

    Hwang, Andrew

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This system requires high quality testing that will measure and test the capabilities of the system. For the past two years, the Exploration and Operations Division at Kennedy Space Center (KSC) has assigned a group including interns and full-time engineers to develop automated tests to save the project time and money. The team worked on automating the testing process for the SCCS GUI that would use streamed simulated data from the testing servers to produce data, plots, statuses, etc. to the GUI. The software used to develop automated tests included an automated testing framework and an automation library. The automated testing framework has a tabular-style syntax, which means the functionality of a line of code must have the appropriate number of tabs for the line to function as intended. The header section contains either paths to custom resources or the names of libraries being used. The automation library contains functionality to automate anything that appears on a desired screen with the use of image recognition software to detect and control GUI components. The data section contains any data values strictly created for the current testing file. The body section holds the tests that are being run. The function section can include any number of functions that may be used by the current testing file or any other file that resources it. The resources and body section are required for all test files; the data and function sections can be left empty if the data values and functions being used are from a resourced library or another file. To help equip the automation team with better tools, the Project Lead of the Automated Testing Team, Jason Kapusta, assigned the task to install and train an optical character recognition (OCR

  9. Analysis of learning curves in the on-the-job training of air traffic controllers

    NARCIS (Netherlands)

    Oprins, E.A.P.B.; Bruggraaff, E.; Roe, R.

    2011-01-01

    This chapter describes a competence-based assessment system, called CBAS, for air traffic control (ATC) simulator and on-the-job training (OJT), developed at Air Traffic Control The Netherlands (LVNL). In contrast with simulator training, learning processes in OJT are difficult to assess, because

  10. A Traffic Prediction Algorithm for Street Lighting Control Efficiency

    Directory of Open Access Journals (Sweden)

    POPA Valentin

    2013-01-01

    Full Text Available This paper presents the development of a traffic prediction algorithm that can be integrated in a street lighting monitoring and control system. The prediction algorithm must enable the reduction of energy costs and improve energy efficiency by decreasing the light intensity depending on the traffic level. The algorithm analyses and processes the information received at the command center based on the traffic level at different moments. The data is collected by means of the Doppler vehicle detection sensors integrated within the system. Thus, two methods are used for the implementation of the algorithm: a neural network and a k-NN (k-Nearest Neighbor prediction algorithm. For 500 training cycles, the mean square error of the neural network is 9.766 and for 500.000 training cycles the error amounts to 0.877. In case of the k-NN algorithm the error increases from 8.24 for k=5 to 12.27 for a number of 50 neighbors. In terms of a root means square error parameter, the use of a neural network ensures the highest performance level and can be integrated in a street lighting control system.

  11. Area-wide traffic calming for preventing traffic related injuries.

    Science.gov (United States)

    Bunn, F; Collier, T; Frost, C; Ker, K; Roberts, I; Wentz, R

    2003-01-01

    It is estimated that by 2020 road traffic crashes will have moved from ninth to third in the world disease burden ranking, as measured in disability adjusted life years, and second in developing countries. The identification of effective strategies for the prevention of traffic related injuries is of global health importance. Area-wide traffic calming schemes that discourage through traffic on residential roads is one such strategy. To evaluate the effectiveness of area-wide traffic calming in preventing traffic related crashes, injuries, and deaths. We searched the following electronic databases: Cochrane Injuries Group's Specialised Register, Cochrane Controlled Trials Register, MEDLINE, EMBASE and TRANSPORT (NTIS, TRIS, TRANSDOC). We searched the web sites of road safety organisations, handsearched conference proceedings, checked reference lists of relevant papers and contacted experts in the area. The search was not restricted by language or publication status. Randomised controlled trials, and controlled before-after studies of area-wide traffic calming schemes. Two reviewers independently extracted data on type of study, characteristics of intervention and control areas, and length of data collection periods. Before and after data were collected on the total number of road traffic crashes, all road user deaths and injuries, pedestrian-motor vehicle collisions and road user deaths. The statistical package STATA was used to calculate rate ratios for each study, which were then pooled to give an overall estimate using a random effects model. We found no randomised controlled trials, but 16 controlled before-after trials met our inclusion criteria. Seven studies were done in Germany, six in the UK, two in Australia and one in the Netherlands. There were no studies in low or middle income countries. Eight trials reported the number of road traffic crashes resulting in deaths. The pooled rate ratio was 0.63 (0.14, 2.59 95% CI). Sixteen studies reported the number

  12. Air Traffic Controller Training at the FAA Academy

    Science.gov (United States)

    Cummings, Roy J.

    1970-01-01

    Describes air traffic controller training by discussing: (1) job description, (2) centralized training, (3) method of training, (4) laboratory arrangement, (5) staffing, (6) curriculum development, (7) staff training, (8) student reaction, and (9) training results and suggested improvements. Training Technology is a quarterly supplement to…

  13. Impacts of temporary traffic control measures on vehicular emissions during the Asian games in Guangzhou, China.

    Science.gov (United States)

    Yao, Zhiliang; Zhang, Yingzhi; Shen, Xianbao; Wang, Xintong; Wu, Ye; He, Kebin

    2013-01-01

    To guarantee good traffic and air quality during the 16th Asian Games in Guangzhou, China, the government carried out two traffic control Drills before the Games and adopted traffic control measures during the Games. Vehicle activities before and during the first and second Drills, and during the Games, were surveyed. Based on the data under investigation, the impacts of control measures on traffic volumes and driving characteristics were analyzed during the first and second Drills, and the Games. The emission reduction of traffic control measures was also evaluated during the three stages using the MOBILE-China model. The results show that there were significant effects of implementing temporary traffic control measures on transportation activity and vehicular emissions. During the first and second Drills, and the Games, the average traffic volumes in monitored roads decreased, and the average speed of vehicles increased significantly The co-effects of traffic flow reduction, traffic congestion improvement, and the banning of high-emitting vehicles helped to greatly reduce the estimated emissions from motor vehicles in Guangzhou during the first and second Drills, and the Games. Estimated vehicular emissions were reduced by 38-52% during the first Drill and 28-36% for the second Drill. During the Asian Games, vehicular emissions of carbon monoxide (CO), hydrocarbon (HC), oxides of nitrogen (NO), and particulate matter with an aerodynamic diameter vehicular emissions of CO, HC, NOx, and PM10. Motor vehicles have become the most prevalent source of emissions and subsequently air pollution within Chinese cities. Understanding the impacts that different control measures have on vehicular emissions is very important in order to be able to control vehicle emissions. The results of this study will be very helpful for the further control of vehicle emissions in Guangzhou in the future. In addition, the effects of temporary transportation control measures will provide

  14. Learning styles: The learning methods of air traffic control students

    Science.gov (United States)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  15. Developing a New HSR Switching Node (SwitchBox for Improving Traffic Performance in HSR Networks

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien

    2016-01-01

    Full Text Available High availability is crucial for industrial Ethernet networks as well as Ethernet-based control systems such as automation networks and substation automation systems (SAS. Since standard Ethernet does not support fault tolerance capability, the high availability of Ethernet networks can be increased by using redundancy protocols. Various redundancy protocols for Ethernet networks have been developed and standardized, such as rapid spanning tree protocol (RSTP, media redundancy protocol (MRP, parallel redundancy protocol (PRP, high-availability seamless redundancy (HSR and others. RSTP and MRP have switchover delay drawbacks. PRP provides zero recovery time, but requires a duplicate network infrastructure. HSR operation is similar to PRP, but HSR uses a single network. However, the standard HSR protocol is mainly applied to ring-based topologies and generates excessively unnecessary redundant traffic in the network. In this paper, we develop a new switching node for the HSR protocol, called SwitchBox, which is used in HSR networks in order to support any network topology and significantly reduce redundant network traffic, including unicast, multicast and broadcast traffic, compared with standard HSR. By using the SwitchBox, HSR not only provides seamless communications with zero switchover time in case of failure, but it is also easily applied to any network topology and significantly reduces unnecessary redundant traffic in HSR networks.

  16. Cognitive Task Analysis of Prioritization in Air Traffic Control.

    Science.gov (United States)

    Redding, Richard E.; And Others

    A cognitive task analysis was performed to analyze the key cognitive components of the en route air traffic controllers' jobs. The goals were to ascertain expert mental models and decision-making strategies and to identify important differences in controller knowledge, skills, and mental models as a function of expertise. Four groups of…

  17. Optimal Airport Surface Traffic Planning Using Mixed-Integer Linear Programming

    Directory of Open Access Journals (Sweden)

    P. C. Roling

    2008-01-01

    Full Text Available We describe an ongoing research effort pertaining to the development of a surface traffic automation system that will help controllers to better coordinate surface traffic movements related to arrival and departure traffic. More specifically, we describe the concept for a taxi-planning support tool that aims to optimize the routing and scheduling of airport surface traffic in such a way as to deconflict the taxi plans while optimizing delay, total taxi-time, or some other airport efficiency metric. Certain input parameters related to resource demand, such as the expected landing times and the expected pushback times, are rather difficult to predict accurately. Due to uncertainty in the input data driving the taxi-planning process, the taxi-planning tool is designed such that it produces solutions that are robust to uncertainty. The taxi-planning concept presented herein, which is based on mixed-integer linear programming, is designed such that it is able to adapt to perturbations in these input conditions, as well as to account for failure in the actual execution of surface trajectories. The capabilities of the tool are illustrated in a simple hypothetical airport.

  18. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways.

    Science.gov (United States)

    Li, Ye; Li, Zhibin; Wang, Hao; Wang, Wei; Xing, Lu

    2017-07-01

    Adaptive cruise control (ACC) has been considered one of the critical components of automated driving. ACC adjusts vehicle speeds automatically by measuring the status of the ego-vehicle and leading vehicle. Current commercial ACCs are designed to be comfortable and convenient driving systems. Little attention is paid to the safety impacts of ACC, especially in traffic oscillations when crash risks are the highest. The primary objective of this study was to evaluate the impacts of ACC parameter settings on rear-end collisions on freeways. First, the occurrence of a rear-end collision in a stop-and-go wave was analyzed. A car-following model in an integrated ACC was developed for a simulation analysis. The time-to-collision based factors were calculated as surrogate safety measures of the collision risk. We also evaluated different market penetration rates considering that the application of ACC will be a gradual process. The results showed that the safety impacts of ACC were largely affected by the parameters. Smaller time delays and larger time gaps improved safety performance, but inappropriate parameter settings increased the collision risks and caused traffic disturbances. A higher reduction of the collision risk was achieved as the ACC vehicle penetration rate increased, especially in the initial stage with penetration rates of less than 30%. This study also showed that in the initial stage, the combination of ACC and a variable speed limit achieved better safety improvements on congested freeways than each single technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 75 FR 74128 - Manual on Uniform Traffic Control Devices (MUTCD) Compliance Dates

    Science.gov (United States)

    2010-11-30

    ... existing non-compliant devices based on what it believes to be a reasonable balance of the safety benefits... public works agencies, that State and local governments must balance with highway safety and traffic... service life of sign sheeting materials. \\7\\ D. Ripley. Quantifying the Safety Benefits of Traffic Control...

  20. Air Traffic Control: Observations on FAA's Air Traffic Control Modernization Program

    National Research Council Canada - National Science Library

    1999-01-01

    In 1981, FAA began a multibillion-dollar modernization effort to improve the safety, capacity, and efficiency of this system to meet the increasing demand for air traffic services and to replace aging equipment...

  1. Traffic Control Models Based on Cellular Automata for At-Grade Intersections in Autonomous Vehicle Environment

    OpenAIRE

    Wei Wu; Yang Liu; Yue Xu; Quanlun Wei; Yi Zhang

    2017-01-01

    Autonomous vehicle is able to facilitate road safety and traffic efficiency and has become a promising trend of future development. With a focus on highways, existing literatures studied the feasibility of autonomous vehicle in continuous traffic flows and the controllability of cooperative driving. However, rare efforts have been made to investigate the traffic control strategies in autonomous vehicle environment on urban roads, especially in urban intersections. In autonomous vehicle enviro...

  2. webPOISONCONTROL: can poison control be automated?

    Science.gov (United States)

    Litovitz, Toby; Benson, Blaine E; Smolinske, Susan

    2016-08-01

    A free webPOISONCONTROL app allows the public to determine the appropriate triage of poison ingestions without calling poison control. If accepted and safe, this alternative expands access to reliable poison control services to those who prefer the Internet over the telephone. This study assesses feasibility, safety, and user-acceptance of automated online triage of asymptomatic, nonsuicidal poison ingestion cases. The user provides substance name, amount, age, and weight in an automated online tool or downloadable app, and is given a specific triage recommendation to stay home, go to the emergency department, or call poison control for further guidance. Safety was determined by assessing outcomes of consecutive home-triaged cases with follow-up and by confirming the correct application of algorithms. Case completion times and user perceptions of speed and ease of use were measures of user-acceptance. Of 9256 cases, 73.3% were triaged to home, 2.1% to an emergency department, and 24.5% directed to call poison control. Children younger than 6 years were involved in 75.2% of cases. Automated follow-up was done in 31.2% of home-triaged cases; 82.3% of these had no effect. No major or fatal outcomes were reported. More than 91% of survey respondents found the tool quick and easy to use. Median case completion time was 4.1 minutes. webPOISONCONTROL augments traditional poison control services by providing automated, accurate online access to case-specific triage and first aid guidance for poison ingestions. It is safe, quick, and easy to use. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Developing an Onboard Traffic-Aware Flight Optimization Capability for Near-Term Low-Cost Implementation

    Science.gov (United States)

    Wing, David J.; Ballin, Mark G.; Koczo, Stefan, Jr.; Vivona, Robert A.; Henderson, Jeffrey M.

    2013-01-01

    The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines Automatic Dependent Surveillance Broadcast (ADS-B) IN and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of Air Traffic Control (ATC) approval for the resulting trajectory change request. TASAR is designed as a near-term application to improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting ATC. Previous work has indicated the potential for significant benefits for each TASAR-equipped aircraft. This paper will discuss the approach to minimizing TASAR's cost for implementation and accelerating readiness for near-term implementation.

  4. The Study of Reinforcement Learning for Traffic Self-Adaptive Control under Multiagent Markov Game Environment

    Directory of Open Access Journals (Sweden)

    Lun-Hui Xu

    2013-01-01

    Full Text Available Urban traffic self-adaptive control problem is dynamic and uncertain, so the states of traffic environment are hard to be observed. Efficient agent which controls a single intersection can be discovered automatically via multiagent reinforcement learning. However, in the majority of the previous works on this approach, each agent needed perfect observed information when interacting with the environment and learned individually with less efficient coordination. This study casts traffic self-adaptive control as a multiagent Markov game problem. The design employs traffic signal control agent (TSCA for each signalized intersection that coordinates with neighboring TSCAs. A mathematical model for TSCAs’ interaction is built based on nonzero-sum markov game which has been applied to let TSCAs learn how to cooperate. A multiagent Markov game reinforcement learning approach is constructed on the basis of single-agent Q-learning. This method lets each TSCA learn to update its Q-values under the joint actions and imperfect information. The convergence of the proposed algorithm is analyzed theoretically. The simulation results show that the proposed method is convergent and effective in realistic traffic self-adaptive control setting.

  5. Traffic Responsive Control of Intersections with Predicted Arrival Times: A Markovian Approach

    NARCIS (Netherlands)

    Haijema, R.; Hendrix, E.M.T.

    2014-01-01

    The dynamic adaptive control of traffic lights can be formulated as a Markov decision problem (MDP). This framework is hardly used, as solving an MDP can be very time-consuming and is only possible for simple infrastructures with a small number of traffic flows. Nevertheless, we show that the MDP

  6. Dimensions of Air Traffic Control Tower Information Needs: From Information Requests to Display Design

    Science.gov (United States)

    Durso, Francis T.; Johnson, Brian R.; Crutchfield, Jerry M.

    2010-01-01

    In an effort to determine the information needs of tower air traffic controllers, instructors from the Federal Aviation Administration's Academy in Oklahoma City were asked to control traffic in a high-fidelity tower cab simulator. Information requests were made apparent by eliminating access to standard tower information sources. Instead,…

  7. Methodology for neural networks prototyping. Application to traffic control

    Energy Technology Data Exchange (ETDEWEB)

    Belegan, I.C.

    1998-07-01

    The work described in this report was carried out in the context of the European project ASTORIA (Advanced Simulation Toolbox for Real-World Industrial Application in Passenger Management and Adaptive Control), and concerns the development of an advanced toolbox for complex transportation systems. Our work was focused on the methodology for prototyping a set of neural networks corresponding to specific strategies for traffic control and congestion management. The tool used for prototyping is SNNS (Stuggart Neural Network Simulator), developed at the University of Stuggart, Institute for Parallel and Distributed High Performance Systems, and the real data from the field were provided by ZELT. This report is structured into six parts. The introduction gives some insights about traffic control and its approaches. The second chapter discusses the various control strategies existing. The third chapter is an introduction to the field of neural networks. The data analysis and pre-processing is described in the fourth chapter. In the fifth chapter, the methodology for prototyping the neural networks is presented. Finally, conclusions and further work are presented. (author) 14 refs.

  8. ANALYSIS OF AIR TRAFFIC CONTROL MANAGEMENT AT AIRPORTS WITH LOW FLIGHT INTENSITY IN FOREIGN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Evgenii E. Nechaev

    2017-01-01

    Full Text Available This article discusses various options for air traffic management at low flight intensity airports and airports located remotely in the North, where air traffic control service is not necessary.There are some examples of already implemented concepts in foreign countries: such as remote control tower, which allows to control air traffic, being at a considerable distance from the airport. Such a remote control tower is already put into operation at the Örnsköldsvik airport (Sweden. The prospects of this system development in other countries are observed in this article. A remote control tower will also appear in the United States in the nearest future. Also the paper considers the pros and cons of this system and its effect on flight safety.Moreover, there are given the examples of using non-towered and uncontrolled airports, where air traffic control service is not provided. This kind of airports is partly used in the USA and in New Zealand. The article describes flight procedures in the area of uncontrolled airports, including visual flight rules and instrument flight rules.We also analyze the possibilities of remote control towers and uncontrolled airports adaptation in the Russian Federation. It is a very important problem for Russia because most airports do not provide more than 10 movements per day. But air traffic control service exists in all airports.

  9. NIF ICCS Test Controller for Automated and Manual Testing

    International Nuclear Information System (INIS)

    Zielinski, J S

    2007-01-01

    The National Ignition Facility (NIF) Integrated Computer Control System (ICCS) is a large (1.5 MSLOC), hierarchical, distributed system that controls all aspects of the NIF laser [1]. The ICCS team delivers software updates to the NIF facility throughout the year to support shot operations and commissioning activities. In 2006, there were 48 releases of ICCS: 29 full releases, 19 patches. To ensure the quality of each delivery, thousands of manual and automated tests are performed using the ICCS Test Controller test infrastructure. The TestController system provides test inventory management, test planning, automated test execution and manual test logging, release testing summaries and test results search, all through a web browser interface. Automated tests include command line based frameworks server tests and Graphical User Interface (GUI) based Java tests. Manual tests are presented as a checklist-style web form to be completed by the tester. The results of all tests, automated and manual, are kept in a common repository that provides data to dynamic status reports. As part of the 3-stage ICCS release testing strategy, the TestController system helps plan, evaluate and track the readiness of each release to the NIF facility

  10. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic

  11. Traffic Management by Using Admission Control Methods in Multiple Node IMS Network

    Directory of Open Access Journals (Sweden)

    Filip Chamraz

    2016-01-01

    Full Text Available The paper deals with Admission Control methods (AC as a possible solution for traffic management in IMS networks (IP Multimedia Subsystem - from the point of view of an efficient redistribution of the available network resources and keeping the parameters of Quality of Service (QoS. The paper specifically aims at the selection of the most appropriate method for the specific type of traffic and traffic management concept using AC methods on multiple nodes. The potential benefit and disadvantage of the used solution is evaluated.

  12. STRAW - An Integrated Mobility and Traffic Model for VANETs

    National Research Council Canada - National Science Library

    Choffnes, David R; Bustamante, Fabian E

    2005-01-01

    Ad-hoc wireless communication among highly dynamic, mobile nodes in a urban network is a critical capability for a wide range of important applications including automated vehicles, real-time traffic...

  13. Traffic Aware Strategic Aircrew Requests (TASAR)

    Science.gov (United States)

    Wing, David J.

    2014-01-01

    The Traffic Aware Strategic Aircrew Request (TASAR) concept offers onboard automation for the purpose of advising the pilot of traffic compatible trajectory changes that would be beneficial to the flight. A fast-time simulation study was conducted to assess the benefits of TASAR to Alaska Airlines. The simulation compares historical trajectories without TASAR to trajectories developed with TASAR and evaluated by controllers against their objectives. It was estimated that between 8,000 and 12,000 gallons of fuel and 900 to 1,300 minutes could be saved annually per aircraft. These savings were applied fleet-wide to produce an estimated annual cost savings to Alaska Airlines in excess of $5 million due to fuel, maintenance, and depreciation cost savings. Switching to a more wind-optimal trajectory was found to be the use case that generated the highest benefits out of the three TASAR use cases analyzed. Alaska TASAR requests peaked at four to eight requests per hour in high-altitude Seattle center sectors south of Seattle-Tacoma airport..

  14. The Evaluation of Traffic Control in Changsha City

    NARCIS (Netherlands)

    Lu, S.; Li, J.; Van Zuylen, H.

    2012-01-01

    Different aspects of the traffic control system in the CBD of Changsha have been evaluated. A general issue is the safety conditions, which are evaluated qualitatively. The second issue is the low saturation flow observed on the intersections, that appear to be 20 to 30% lower than the ones in

  15. Residential traffic noise exposure and vestibular schwannoma - a Danish case-control study.

    Science.gov (United States)

    Roswall, Nina; Stangerup, Sven-Eric; Cayé-Thomasen, Per; Schüz, Joachim; Johansen, Christoffer; Jensen, Steen Solvang; Raaschou-Nielsen, Ole; Sørensen, Mette

    2017-10-01

    Few risk factors for sporadic vestibular schwannoma (VS) are known. Several studies have proposed an increased risk with occupational noise exposure, whereas no studies have investigated residential traffic noise exposure as a risk factor. The present study investigated if residential traffic noise was associated with vestibular schwannoma in a large, population-based Danish case-control study. We identified 1454 VS cases, age above 30 years at diagnosis, between 1990 and 2007. For each case, we selected two random population controls, matched on sex and year of birth. Road and railway traffic noise at the residence was calculated for all present and historical addresses between 1987 and index date. Associations between traffic noise and risk for VS were estimated using conditional logistic regression, adjusted for education, disposable personal income, cohabitation status, railway noise exposure, municipal population density, and municipal income. A two-year time-weighted mean road traffic noise exposure was associated with an adjusted odds ratio of 0.92 (0.82-1.03) for developing VS, per 10 dB increment. There was no clear trend in categorical analyses. Similarly, linear and categorical analyses of residential railway noise did not suggest an association. We found no interaction with demographics, year of diagnosis, individual and municipal socioeconomic variables, and railway noise exposure. The results did not differ by tumor side, spread or size. The present study does not suggest an association between residential traffic noise and VS.

  16. About development of automation control systems

    Science.gov (United States)

    Myshlyaev, L. P.; Wenger, K. G.; Ivushkin, K. A.; Makarov, V. N.

    2018-05-01

    The shortcomings of approaches to the development of modern control automation systems and ways of their improvement are given: the correct formation of objects for study and optimization; a joint synthesis of control objects and control systems, an increase in the structural diversity of the elements of control systems. Diagrams of control systems with purposefully variable structure of their elements are presented. Structures of control algorithms for an object with a purposefully variable structure are given.

  17. Explicit control of adaptive automation under different levels of environmental stress.

    Science.gov (United States)

    Sauer, Jürgen; Kao, Chung-Shan; Wastell, David; Nickel, Peter

    2011-08-01

    This article examines the effectiveness of three different forms of explicit control of adaptive automation under low- and high-stress conditions, operationalised by different levels of noise. In total, 60 participants were assigned to one of three types of automation design (free, prompted and forced choice). They were trained for 4 h on a highly automated simulation of a process control environment, called AutoCAMS. This was followed by a 4-h testing session under noise exposure and quiet conditions. Measures of performance, psychophysiology and subjective reactions were taken. The results showed that all three modes of explicit control of adaptive automation modes were able to attenuate the negative effects of noise. This was partly due to the fact that operators opted for higher levels of automation under noise. It also emerged that forced choice showed marginal advantages over the two other automation modes. Statement of Relevance: This work is relevant to the design of adaptive automation since it emphasises the need to consider the impact of work-related stressors during task completion. During the presence of stressors, different forms of operator support through automation may be required than under more favourable working conditions.

  18. A new cellular automaton for signal controlled traffic flow based on driving behaviors

    Science.gov (United States)

    Wang, Yang; Chen, Yan-Yan

    2015-03-01

    The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined. Project supported by the National Basic Research Program of China (Grand No. 2012CB723303) and the Beijing Committee of Science and Technology, China (Grand No. Z1211000003120100).

  19. Driving Performance After Self-Regulated Control Transitions in Highly Automated Vehicles.

    Science.gov (United States)

    Eriksson, Alexander; Stanton, Neville A

    2017-12-01

    This study aims to explore whether driver-paced, noncritical transitions of control may counteract some of the aftereffects observed in the contemporary literature, resulting in higher levels of vehicle control. Research into control transitions in highly automated driving has focused on urgent scenarios where drivers are given a relatively short time span to respond to a request to resume manual control, resulting in seemingly scrambled control when manual control is resumed. Twenty-six drivers drove two scenarios with an automated driving feature activated. Drivers were asked to read a newspaper or monitor the system and relinquish or resume control from the automation when prompted by vehicle systems. Driving performance in terms of lane positioning and steering behavior was assessed for 20 seconds post resuming control to capture the resulting level of control. It was found that lane positioning was virtually unaffected for the duration of the 20-second time span in both automated conditions compared to the manual baseline when drivers resumed manual control; however, significant increases in the standard deviation of steering input were found for both automated conditions compared to baseline. No significant differences were found between the two automated conditions. The results indicate that when drivers self-paced the transfer back to manual control they exhibit less of the detrimental effects observed in system-paced conditions. It was shown that self-paced transitions could reduce the risk of accidents near the edge of the operational design domain. Vehicle manufacturers must consider these benefits when designing contemporary systems.

  20. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  1. Understanding the context of network traffic alerts

    NARCIS (Netherlands)

    Cappers, B.C.M.; van Wijk, J.J.; Best, D.M.; Staheli, D.; Prigent, N.; Engle, S.; Harrison, L.

    2016-01-01

    For the protection of critical infrastructures against complex virus attacks, automated network traffic analysis and deep packet inspection are unavoidable. However, even with the use of network intrusion detection systems, the number of alerts is still too large to analyze manually. In addition,

  2. SMART VIDEO SURVEILLANCE SYSTEM FOR VEHICLE DETECTION AND TRAFFIC FLOW CONTROL

    Directory of Open Access Journals (Sweden)

    A. A. SHAFIE

    2011-08-01

    Full Text Available Traffic signal light can be optimized using vehicle flow statistics obtained by Smart Video Surveillance Software (SVSS. This research focuses on efficient traffic control system by detecting and counting the vehicle numbers at various times and locations. At present, one of the biggest problems in the main city in any country is the traffic jam during office hour and office break hour. Sometimes it can be seen that the traffic signal green light is still ON even though there is no vehicle coming. Similarly, it is also observed that long queues of vehicles are waiting even though the road is empty due to traffic signal light selection without proper investigation on vehicle flow. This can be handled by adjusting the vehicle passing time implementing by our developed SVSS. A number of experiment results of vehicle flows are discussed in this research graphically in order to test the feasibility of the developed system. Finally, adoptive background model is proposed in SVSS in order to successfully detect target objects such as motor bike, car, bus, etc.

  3. Automatic road traffic safety management system in urban areas

    Directory of Open Access Journals (Sweden)

    Oskarbski Jacek

    2017-01-01

    Full Text Available Traffic incidents and accidents contribute to decreasing levels of transport system reliability and safety. Traffic management and emergency systems on the road, using, among others, automatic detection, video surveillance, communication technologies and institutional solutions improve the organization of the work of various departments involved in traffic and safety management. Automation of incident management helps to reduce the time of a rescue operation as well as of the normalization of the flow of traffic after completion of a rescue operation, which also affects the reduction of the risk of secondary accidents and contributes to reducing their severity. The paper presents the possibility of including city traffic departments in the process of incident management. The results of research on the automatic incident detection in cities are also presented.

  4. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  5. String Stability of Heterogeneous Platoons with Non-connected Automated Vehicles

    NARCIS (Netherlands)

    Wang, M.; Li, Honghai; GAO, Jian; Huang, Zichao; li, Bin; van Arem, B.

    2017-01-01

    It is expected that automated vehicles will gradually penetrate on public roads, resulting in mixed traffic in the next decades. This can impact traffic flow operations, especially the roadway capacity and flow stability. It is of paramount
    importance to understand and predict the implications

  6. Instrumentation, controls and automation in the power industry

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The year 1991 will be remembered as the year EPRI joined with the ISA Power Division to present an outstanding group to technical papers at the First Annual ISA/EPRI Joint Controls and Automation Conference. All papers met the theme for the conference namely Innovative Instrumentation, Controls, and Automation Techniques for the Power Generation Industry and cover a myriad of application ranging from nuclear to conventional fossil to co-generation plants involving nuclear, conventional BTG, and combined cycle equipment applications

  7. 49 CFR 236.401 - Automatic block signal system and interlocking standards applicable to traffic control systems.

    Science.gov (United States)

    2010-10-01

    ... TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.401 Automatic... 49 Transportation 4 2010-10-01 2010-10-01 false Automatic block signal system and interlocking standards applicable to traffic control systems. 236.401 Section 236.401 Transportation Other Regulations...

  8. Development of design principles for automated systems in transport control.

    Science.gov (United States)

    Balfe, Nora; Wilson, John R; Sharples, Sarah; Clarke, Theresa

    2012-01-01

    This article reports the results of a qualitative study investigating attitudes towards and opinions of an advanced automation system currently used in UK rail signalling. In-depth interviews were held with 10 users, key issues associated with automation were identified and the automation's impact on the signalling task investigated. The interview data highlighted the importance of the signallers' understanding of the automation and their (in)ability to predict its outputs. The interviews also covered the methods used by signallers to interact with and control the automation, and the perceived effects on their workload. The results indicate that despite a generally low level of understanding and ability to predict the actions of the automation system, signallers have developed largely successful coping mechanisms that enable them to use the technology effectively. These findings, along with parallel work identifying desirable attributes of automation from the literature in the area, were used to develop 12 principles of automation which can be used to help design new systems which better facilitate cooperative working. The work reported in this article was completed with the active involvement of operational rail staff who regularly use automated systems in rail signalling. The outcomes are currently being used to inform decisions on the extent and type of automation and user interfaces in future generations of rail control systems.

  9. Multilevel Control & Optimization of Future Air Traffic Systems via Managem

    Data.gov (United States)

    National Aeronautics and Space Administration — We investigate solutions to problems of air traffic control subject to real-world limitations on the computational/communication cost of finding that solution. The...

  10. A Robust Longitudinal Control Strategy of Platoons under Model Uncertainties and Time Delays

    NARCIS (Netherlands)

    Chen, N.; Wang, M.; Alkim, Tom; van Arem, B.

    2018-01-01

    Automated vehicles are designed to free drivers from driving tasks and are expected to improve traffic safety and efficiency when connected via vehicle-to-vehicle communication, that is, connected automated vehicles (CAVs). The time delays and model uncertainties in vehicle control systems pose

  11. An external logic architecture for implementing traffic signal system control strategies.

    Science.gov (United States)

    2011-09-01

    The built-in logic functions in traffic controllers have very limited capability to store information, to analyze input data, to estimate performance measures, and to adopt control strategy decisions. These capabilities are imperative to support traf...

  12. AVL and Monitoring for Massive Traffic Control System over DDS

    Directory of Open Access Journals (Sweden)

    Basem Almadani

    2015-01-01

    Full Text Available This paper proposes a real-time Automatic Vehicle Location (AVL and monitoring system for traffic control of pilgrims coming towards the city of Makkah in Saudi Arabia based on Data Distribution Service (DDS specified by the Object Management Group (OMG. DDS based middleware employs Real-Time Publish/Subscribe (RTPS protocol that implements many-to-many communication paradigm suitable in massive traffic control applications. Using this middleware approach, we are able to locate and track huge number of mobile vehicles and identify all passengers in real-time who are coming to perform annual Hajj. For validation of our proposed framework, various performance matrices are examined over WLAN using DDS. Results show that DDS based middleware can meet real-time requirements in large-scale AVL environment.

  13. Visual and auditory reaction time for air traffic controllers using quantitative electroencephalograph (QEEG) data.

    Science.gov (United States)

    Abbass, Hussein A; Tang, Jiangjun; Ellejmi, Mohamed; Kirby, Stephen

    2014-12-01

    The use of quantitative electroencephalograph in the analysis of air traffic controllers' performance can reveal with a high temporal resolution those mental responses associated with different task demands. To understand the relationship between visual and auditory correct responses, reaction time, and the corresponding brain areas and functions, air traffic controllers were given an integrated visual and auditory continuous reaction task. Strong correlations were found between correct responses to the visual target and the theta band in the frontal lobe, the total power in the medial of the parietal lobe and the theta-to-beta ratio in the left side of the occipital lobe. Incorrect visual responses triggered activations in additional bands including the alpha band in the medial of the frontal and parietal lobes, and the Sensorimotor Rhythm in the medial of the parietal lobe. Controllers' responses to visual cues were found to be more accurate but slower than their corresponding performance on auditory cues. These results suggest that controllers are more susceptible to overload when more visual cues are used in the air traffic control system, and more errors are pruned as more auditory cues are used. Therefore, workload studies should be carried out to assess the usefulness of additional cues and their interactions with the air traffic control environment.

  14. Problems in air traffic management. VII., Job training performance of air traffic control specialists - measurement, structure, and prediction.

    Science.gov (United States)

    1965-07-01

    A statistical study of training- and job-performance measures of several hundred Air Traffic Control Specialists (ATCS) representing Enroute, Terminal, and Flight Service Station specialties revealed that training-performance measures reflected: : 1....

  15. Design and development of an improved traffic light control system using hybrid lighting system

    Directory of Open Access Journals (Sweden)

    Michael Osigbemeh

    2017-02-01

    Full Text Available The deployment of light emitting diodes (LEDs based traffic system control created the problem of dim displays when ambient light is similar to traffic lights. It causes some drivers' disability of seeing and obeying traffic signs. This makes drivers violate traffic rules. In this paper, an attempt to use hybrid lighting technology to mitigate this problem was developed. Incandescent lightings with deployed halogen bulbs provided an instantaneous source of highly efficacious illumination which is brighter than the drivers' ambient lights (both daylight, electrical lights and their reflections, which can help drivers get access to enough warning and help them initiate traffic safety warning as necessary. The halogen lightings also offered the required high current draw needed in electrical circuitry to help brighten the LED displays. The problem of heat generated was eliminated by aerating the T-junction traffic light control unit designed for this technology. The result of hybrid lighting system design was found to be high luminosity and capability of gaining driver attention in real-time. It also allowed enhanced sign's image detection and processing for smart based technologies by providing the “light punch” needed for a wide range of visual concerns.

  16. A control system verifier using automated reasoning software

    International Nuclear Information System (INIS)

    Smith, D.E.; Seeman, S.E.

    1985-08-01

    An on-line, automated reasoning software system for verifying the actions of other software or human control systems has been developed. It was demonstrated by verifying the actions of an automated procedure generation system. The verifier uses an interactive theorem prover as its inference engine with the rules included as logical axioms. Operation of the verifier is generally transparent except when the verifier disagrees with the actions of the monitored software. Testing with an automated procedure generation system demonstrates the successful application of automated reasoning software for verification of logical actions in a diverse, redundant manner. A higher degree of confidence may be placed in the verified actions of the combined system

  17. Intelligent control and automation technology for nuclear application

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Eom, Heung Sub; Kim, Ko Ryu; Lee, Jae Cheol; Choi, You Rak; Lee, Soo Cheol

    1996-06-01

    Using recent technologies on a mobile robot and computer science, we developed an automatic inspection system for weld lines of the reactor pressure vessel. The ultrasonic inspection of the reactor pressure vessel is currently performed by commercialized robot manipulators. Since, however, the conventional fixed type robot manipulator is very huge, heavy and expensive, it needs long inspection time and is hard to handle and maintain. In order to resolve these problems, we developed a new inspection automation system using a small mobile robot crawling on the vertical wall. According to the conceptual design studied in the first year, we developed the inspection automation system including an underwater inspection robot, a laser position control subsystem and a main control subsystem. And we carried out underwater experiments on the reactor vessel mockup. After finishing this project successfully, we have a plan to commercialize our inspection system. Using this system, we can expect much reduction of the inspection time, performance enhancement, automatic management of inspection history, etc. In the economic point of view, we can also expect import substitution more than 5 million dollars. The established essential technologies for intelligent control and automation are expected to be synthetically applied to the automation of similar systems in nuclear power plants. 4 tabs., 37 figs., 6 refs. (Author)

  18. Development of an interactive GIS based work zone traffic control tool.

    Science.gov (United States)

    2013-08-01

    The purpose of this study was to include consideration for intersections into the previously created GIS traffic control planning tool. Available data for making intersection control calculations were collected and integrated into the design of the t...

  19. The employment of a spoken language computer applied to an air traffic control task.

    Science.gov (United States)

    Laveson, J. I.; Silver, C. A.

    1972-01-01

    Assessment of the merits of a limited spoken language (56 words) computer in a simulated air traffic control (ATC) task. An airport zone approximately 60 miles in diameter with a traffic flow simulation ranging from single-engine to commercial jet aircraft provided the workload for the controllers. This research determined that, under the circumstances of the experiments carried out, the use of a spoken-language computer would not improve the controller performance.

  20. Traffic Generator (TrafficGen) Version 1.4.2: Users Guide

    Science.gov (United States)

    2016-06-01

    the network with Transmission Control Protocol and User Datagram Protocol Internet Protocol traffic. Each node generating network traffic in an...TrafficGen Graphical User Interface (GUI) 3 3.1 Anatomy of the User Interface 3 3.2 Scenario Configuration and MGEN Files 4 4. Working with...for public release; distribution is unlimited. vi List of Figures Fig. 1 TrafficGen user interface

  1. Automated control system for the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Labik, V.

    1990-01-01

    Instrumentation of the automated control system of the Temelin nuclear power plant in the section of the main production unit and of the major auxiliary equipment is described, the results of testing are reported, and the present status of design activities is assessed. The suitability of application of Czechoslovak automation facilities to the instrumentation of the automated control system of the power plant was confirmed by the Soviet designer and supplier based on favorable results of polygonal testing. Capacity problems in the development of the designs and user software are alleviated by extensive cooperation. It is envisaged that all tasks will be fulfilled as planned. (P.A.). 1 fig., 5 refs

  2. Environmental risk factors contributing to traffic accidents in children: a case-control study.

    Science.gov (United States)

    Jamshidi, Ensiyeh; Moradi, Ali; Majdzadeh, Reza

    2017-09-01

    The aim of this study is to identify environmental risk factors related to road accidents in children of Tehran. This case-control study was performed in 2013. The cases were injured pedestrians aged 5-15 who were admitted to major hospitals supervised by Tehran University of Medical Sciences. The sample size for the cases was 273 and for the control group was 546. For the completeness of the clusters, 7 extra persons in case (total = 280) and 14 persons (total = 560) in control group were included. The interference of confounding variables assessed through forward conditional logistic regression. Result shows occurrence of traffic accidents was significantly associate with the width of the alleys or (traffic congestion (OR = 4.1, 95% CI: 2.6-6.4), traffic speed (OR = 2.1, 95% CI: 1.3-3.2) and existence of pedestrian bridges(OR = 4.2, 95% CI: 2.6-6.8). In the light of the important role of environmental factors in the occurrence of child traffic accidents, alleviating structural risk factors in addition to education and enforcement need more systematic efforts and planning by policymakers and urban planners to attain pedestrian safety goals.

  3. A Course in English for Air Traffic Controllers.

    Science.gov (United States)

    McCann, Paul; Thompson, Lesley

    A description is provided of a course, developed by the British Council in Madrid, Spain, to improve the English language training for trainee air traffic services personnel as a result of an increased demand for trained controllers over the next few years. The course aims to teach students in the areas of standard radiotelephony, non-routine…

  4. 12th International Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Gusikhin, Oleg; Madani, Kurosh; Sasiadek, Jurek

    2016-01-01

    The present book includes a set of selected extended papers from the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2014), held in Vienna, Austria, from 1 to 3 September 2014. The conference brought together researchers, engineers and practitioners interested in the application of informatics to Control, Automation and Robotics. Four simultaneous tracks will be held, covering Intelligent Control Systems, Optimization, Robotics, Automation, Signal Processing, Sensors, Systems Modelling and Control, and Industrial Engineering, Production and Management. Informatics applications are pervasive in many areas of Control, Automation and Robotics. ICINCO 2014 received 301 submissions, from 49 countries, in all continents. After a double blind paper review performed by the Program Committee, 20% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, ba...

  5. 12th International Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Madani, Kurosh; Gusikhin, Oleg; Sasiadek, Jurek

    2016-01-01

    The present book includes a set of selected extended papers from the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2015), held in Colmar, France, from 21 to 23 July 2015. The conference brought together researchers, engineers and practitioners interested in the application of informatics to Control, Automation and Robotics. Four simultaneous tracks will be held, covering Intelligent Control Systems, Optimization, Robotics, Automation, Signal Processing, Sensors, Systems Modelling and Control, and Industrial Engineering, Production and Management. Informatics applications are pervasive in many areas of Control, Automation and Robotics. ICINCO 2015 received 214 submissions, from 42 countries, in all continents. After a double blind paper review performed by the Program Committee, 14% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based ...

  6. Suitability of Synthetic Driving Profiles from Traffic Micro-Simulation for Real-World Energy Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yunfei; Wood, Eric; Burton, Evan; Gonder, Jeffrey

    2015-10-14

    A shift towards increased levels of driving automation is generally expected to result in improved safety and traffic congestion outcomes. However, little empirical data exists to estimate the impact that automated driving could have on energy consumption and greenhouse gas emissions. In the absence of empirical data on differences between drive cycles from present day vehicles (primarily operated by humans) and future vehicles (partially or fully operated by computers) one approach is to model both situations over identical traffic conditions. Such an exercise requires traffic micro-simulation to not only accurately model vehicle operation under high levels of automation, but also (and potentially more challenging) vehicle operation under present day human drivers. This work seeks to quantify the ability of a commercial traffic micro-simulation program to accurately model real-world drive cycles in vehicles operated primarily by humans in terms of driving speed, acceleration, and simulated fuel economy. Synthetic profiles from models of freeway and arterial facilities near Atlanta, Georgia, are compared to empirical data collected from real-world drivers on the same facilities. Empirical and synthetic drive cycles are then simulated in a powertrain efficiency model to enable comparison on the basis of fuel economy. Synthetic profiles from traffic micro-simulation were found to exhibit low levels of transient behavior relative to the empirical data. Even with these differences, the synthetic and empirical data in this study agree well in terms of driving speed and simulated fuel economy. The differences in transient behavior between simulated and empirical data suggest that larger stochastic contributions in traffic micro-simulation (relative to those present in the traffic micro-simulation tool used in this study) are required to fully capture the arbitrary elements of human driving. Interestingly, the lack of stochastic contributions from models of human drivers

  7. Modeling and Analyzing Transient Military Air Traffic Control

    Science.gov (United States)

    2010-12-01

    arrive and be serviced. In general, for n flights, the number of ways that flights can enter and leave the ATC is given by the nth Catalan number ...collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE DEC 2010 2. REPORT TYPE 3. DATES COVERED 00-00...2010 to 00-00-2010 4. TITLE AND SUBTITLE Modeling and Analyzing Transient Military Air Traffic Control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  8. Air traffic control : FAA enhanced the controller-in-charge program, but more comprehensive evaluation is needed

    Science.gov (United States)

    2001-10-01

    In negotiating its 1998 collective bargaining agreement with its controllers' union (the National Air Traffic Controllers Association, or NATCA), the Federal Aviation Administration (FAA) agreed to a national plan that would reduce by attrition the n...

  9. Analysis of the work of air traffic controllers of the approach control area (APP) of Porto Alegre, Brazil.

    Science.gov (United States)

    Vargas, C V; Guimarães, L B de M; Sant'Anna, A M O

    2012-01-01

    This article presents a study on the activities of the air traffic controllers of the Approach Control Area (APP) of Porto Alegre, Brazil, in different real scenarios. Based on interviews, questionnaires and the analysis of film of real scenes, the following were identified and analyzed: i) the perceptions of risk and complexity of the different air traffic scenes observed; ii) the cognitive factors (knowledge, strategy and attention dynamics) involved in the task and iii) the perception of the controller's workload. The results showed that the task complexity depends on the weather conditions, the number and type of aircraft in observation and that the controllers perceive the scenes in a similar way irrespective of their time in the profession and the type of control (radar or coordination). Attention is the cognitive factor with the greatest impact on the work and mental demand has the greatest impact on workload followed by time demand. The literature on the controllers work in Brazil is scarce and, therefore, this study aimed to contribute to the understanding of the work in one APP in order to promote future changes in the very problematic Brazilian air traffic system.

  10. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  11. Building control automation for retirement homes :a therapeutic opportunity for the elderly

    OpenAIRE

    Avila, Melinda Plaza

    1993-01-01

    The therapeutic opportunity for the elderly due to building control automation use in a retirement home was investigated. Previous research suggests that a basic understanding of elderly functional needs and building control automation capabilities is required Ifn order to secure the opportunity for maintaining existing elderly functional abilities. This study explores the extent to which building control automation can be applied in retirement homes. The research questions gen...

  12. Congestion Control and Traffic Scheduling for Collaborative Crowdsourcing in SDN Enabled Mobile Wireless Networks

    Directory of Open Access Journals (Sweden)

    Dawei Shen

    2018-01-01

    Full Text Available Currently, a number of crowdsourcing-based mobile applications have been implemented in mobile networks and Internet of Things (IoT, targeted at real-time services and recommendation. The frequent information exchanges and data transmissions in collaborative crowdsourcing are heavily injected into the current communication networks, which poses great challenges for Mobile Wireless Networks (MWN. This paper focuses on the traffic scheduling and load balancing problem in software-defined MWN and designs a hybrid routing forwarding scheme as well as a congestion control algorithm to achieve the feasible solution. The traffic scheduling algorithm first sorts the tasks in an ascending order depending on the amount of tasks and then solves it using a greedy scheme. In the proposed congestion control scheme, the traffic assignment is first transformed into a multiknapsack problem, and then the Artificial Fish Swarm Algorithm (AFSA is utilized to solve this problem. Numerical results on practical network topology reveal that, compared with the traditional schemes, the proposed congestion control and traffic scheduling schemes can achieve load balancing, reduce the probability of network congestion, and improve the network throughput.

  13. Air Traffic Control: Weak Computer Security Practices Jeopardize Flight Safety

    Science.gov (United States)

    1998-05-01

    Given the paramount importance of computer security of Air Traffic Control (ATC) systems, Congress asked the General Accounting Office to determine (1) whether the Fedcral Aviation Administration (FAA) is effectively managing physical security at ATC...

  14. Evaluation of Automated Flagger Assistance Devices

    Science.gov (United States)

    2018-02-01

    Automated flagger assistance devices (AFADs) are designed to improve worker safety by replacing flaggers who are typically located near traffic approaching a work zone. In this study, a new AFAD developed by the Missouri Department of Transportation ...

  15. Cockpit automation - In need of a philosophy

    Science.gov (United States)

    Wiener, E. L.

    1985-01-01

    Concern has been expressed over the rapid development and deployment of automatic devices in transport aircraft, due mainly to the human interface and particularly the role of automation in inducing human error. The paper discusses the need for coherent philosophies of automation, and proposes several approaches: (1) flight management by exception, which states that as long as a crew stays within the bounds of regulations, air traffic control and flight safety, it may fly as it sees fit; (2) exceptions by forecasting, where the use of forecasting models would predict boundary penetration, rather than waiting for it to happen; (3) goal-sharing, where a computer is informed of overall goals, and subsequently has the capability of checking inputs and aircraft position for consistency with the overall goal or intentions; and (4) artificial intelligence and expert systems, where intelligent machines could mimic human reason.

  16. A novel solution for car traffic control based on radiometric microwave devices

    Science.gov (United States)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  17. A Projection of Automated Book Production Control

    Directory of Open Access Journals (Sweden)

    Mario Barisic

    2006-12-01

    Full Text Available The paper elaborates on the recommendation of systematic introducing of XML technologies as a standard and integral factor in publishing and graphic business activities and as a further improvement of the existing PostScript graphic production platform. Procedures are proposed for applying norm setting in respect to production processes through related connections organized databases under XML technology in a hierarchical way, as well as a book production norm setting system. The proposal for work processes automation in the domain of printing business control is elaborated under the CIP4-JDF automating system. Operation results are used as guidelines for setting the elements of automated business operations in the book production domain, with integrated elements of new technologies, compatible with global trends.

  18. Training of U.S. Air Traffic Controllers. (IDA Report No. R-206).

    Science.gov (United States)

    Henry, James H.; And Others

    The report reviews the evolution of existing national programs for air traffic controller training, estimates the number of persons requiring developmental and supplementary training, examines present controller selection and training programs, investigates performance measurement methods, considers standardization and quality control, discusses…

  19. Automated Greenhouse : Temperature and soil moisture control

    OpenAIRE

    Attalla, Daniela; Tannfelt Wu, Jennifer

    2015-01-01

    In this thesis an automated greenhouse was built with the purpose of investigating the watering system’s reliability and if a desired range of temperatures can be maintained. The microcontroller used to create the automated greenhouse was an Arduino UNO. This project utilizes two different sensors, a soil moisture sensor and a temperature sensor. The sensors are controlling the two actuators which are a heating fan and a pump. The heating fan is used to change the temperature and the pump is ...

  20. Fuzzy Traffic Control with Vehicle-to-Everything Communication.

    Science.gov (United States)

    Salman, Muntaser A; Ozdemir, Suat; Celebi, Fatih V

    2018-01-27

    Traffic signal control (TSC) with vehicle-to everything (V2X) communication can be a very efficient solution to traffic congestion problem. Ratio of vehicles equipped with V2X communication capability in the traffic to the total number of vehicles (called penetration rate PR) is still low, thus V2X based TSC systems need to be supported by some other mechanisms. PR is the major factor that affects the quality of TSC process along with the evaluation interval. Quality of the TSC in each direction is a function of overall TSC quality of an intersection. Hence, quality evaluation of each direction should follow the evaluation of the overall intersection. Computational intelligence, more specifically swarm algorithm, has been recently used in this field in a European Framework Program FP7 supported project called COLOMBO. In this paper, using COLOMBO framework, further investigations have been done and two new methodologies using simple and fuzzy logic have been proposed. To evaluate the performance of our proposed methods, a comparison with COLOMBOs approach has been realized. The results reveal that TSC problem can be solved as a logical problem rather than an optimization problem. Performance of the proposed approaches is good enough to be suggested for future work under realistic scenarios even under low PR.

  1. Controller recovery from equipment failures in air traffic control: A framework for the quantitative assessment of the recovery context

    International Nuclear Information System (INIS)

    Subotic, Branka; Schuster, Wolfgang; Majumdar, Arnab; Ochieng, Washington

    2014-01-01

    Air Traffic Control (ATC) involves a complex interaction of human operators (primarily air traffic controllers), equipment and procedures. On the rare occasions when equipment malfunctions, controllers play a crucial role in the recovery process of the ATC system for continued safe operation. Research on human performance in other safety critical industries using human reliability assessment techniques has shown that the context in which recovery from failures takes place has a significant influence on the outcome of the process. This paper investigates the importance of context in which air traffic controller recovery from equipment failures takes place, defining it in terms of 20 Recovery Influencing Factors (RIFs). The RIFs are used to develop a novel approach for the quantitative assessment of the recovery context based on a metric referred to as the Recovery Context Indicator (RCI). The method is validated by a series of simulation exercises conducted at a specific ATC Centre. The proposed method is useful to assess recovery enhancement approaches within ATC centres

  2. 76 FR 81986 - Honeywell International, Inc., Automation and Control Solutions Division, Including On-Site...

    Science.gov (United States)

    2011-12-29

    ..., Inc., Automation and Control Solutions Division, Including On-Site Leased Workers From Manpower...., Automation and Control Solutions Division. The Department has determined that these workers were sufficiently...., Automation and Control Solutions Division, including on-site leased workers from Manpower, Spherion...

  3. The Automation Control System Design of Walking Beam Heating Furnace

    OpenAIRE

    Hong-Yu LIU; Jun-Qing LIU; Jun-Jie XI

    2014-01-01

    Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distributio...

  4. Microcomputer control of automated TLD reader

    International Nuclear Information System (INIS)

    Bjarland, Bert.

    1979-10-01

    The interfacing electronics, the control algorithms and the developed programs of a 6800 microcomputer controlled automated TLD reader are described. The TL reading system is implemented with a photomultiplier tube and a charge-to-pulse converter. The gain of the TL reading system is controlled through the use of a temperature compensated LED reference light source. Automatic compensation of PM tube dark current is optional. The short term stability of TL readings is better than 3 %. (author)

  5. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.

    Science.gov (United States)

    Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F

    2016-01-01

    In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. © 2016 Elsevier B.V. All rights reserved.

  6. Transfusion management using a remote-controlled, automated blood storage.

    Science.gov (United States)

    Pagliaro, Pasqualepaolo; Turdo, Rosalia

    2008-04-01

    Generally, the safety of transfusion terapies for patients depends in part on the distribution of the blood products. The prevention of adverse events can be aided by technological means, which, besides improving the traceability of the process, make errors less likely. In this context, the latest frontier in automation and computerisation is the remote-controlled, automated refrigerator for blood storage. Computer cross-matching is an efficient and safe method for assigning blood components, based on Information Technology applied to typing and screening. This method can be extended to the management of an automated blood refrigerator, the programme of which is interfaced with the Transfusion Service's information system. The connection we made in our Service between EmoNet and Hemosafe enables real-time, remote-controlled management of the following aspects of blood component distribution: a) release of autologous and allogeneic units already allocated to a patient, b) release of available units, which can be allocated by remote-control to known patients, in the presence of a valid computer cross-match, c) release of O-negative units of blood for emergencies. Our system combines an information database, which enables computer cross-matching, with an automated refrigerator for blood storage with controlled access managed remotely by the Transfusion Service. The effectiveness and safety of the system were validated during the 4 months of its routine use in the Transfusion Service's outpatient department. The safety and efficiency of the distribution of blood products can and must be increased by the use of technological innovations. With the EmoNet/Hemosafe system, the responsibility for the remote-controlled distribution of red blood cell concentrates remains with the chief of the Transfusion Services, through the use of automated computer procedures and supported by continuous training of technicians and nursing staff.

  7. Automated Incident Detection Using Real-Time Floating Car Data

    Directory of Open Access Journals (Sweden)

    Maarten Houbraken

    2017-01-01

    Full Text Available The aim of this paper is to demonstrate the feasibility of a live Automated Incident Detection (AID system using only Floating Car Data (FCD in one of the first large-scale FCD AID field trials. AID systems detect traffic events and alert upcoming drivers to improve traffic safety without human monitoring. These automated systems traditionally rely on traffic monitoring sensors embedded in the road. FCD allows for finer spatial granularity of traffic monitoring. However, low penetration rates of FCD probe vehicles and the data latency have historically hindered FCD AID deployment. We use a live country-wide FCD system monitoring an estimated 5.93% of all vehicles. An FCD AID system is presented and compared to the installed AID system (using loop sensor data on 2 different highways in Netherlands. Our results show the FCD AID can adequately monitor changing traffic conditions and follow the AID benchmark. The presented FCD AID is integrated with the road operator systems as part of an innovation project, making this, to the best of our knowledge, the first full chain technical feasibility trial of an FCD-only AID system. Additionally, FCD allows for AID on roads without installed sensors, allowing road safety improvements at low cost.

  8. Control and automation of the Pegasus multi-point Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Bodner, G. M., E-mail: gbodner@wisc.edu; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rodriguez Sanchez, C.; Schlossberg, D. J. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  9. Indicators for successful learning in air traffic control training

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; De Bock, Jeano; Kirschner, Paul A.

    2011-01-01

    Van Meeuwen, L. W., Brand-Gruwel, S., Van Merriënboer, J. J. G., De Bock, J. J. P. R., & Kirschner, P. A. (2010, August). Indicators for successful learning in air traffic control training. Paper presented at the 5th EARLI SIG 14 Learning and Professional Development Conference. Munich, Germany.

  10. Automated reasoning in man-machine control systems

    International Nuclear Information System (INIS)

    Stratton, R.C.; Lusk, E.L.

    1983-01-01

    This paper describes a project being undertaken at Argonne National Laboratory to demonstrate the usefulness of automated reasoning techniques in the implementation of a man-machine control system being designed at the EBR-II nuclear power plant. It is shown how automated reasoning influences the choice of optimal roles for both man and machine in the system control process, both for normal and off-normal operation. In addition, the requirements imposed by such a system for a rigorously formal specification of operating states, subsystem states, and transition procedures have a useful impact on the analysis phase. The definitions and rules are discussed for a prototype system which is physically simple yet illustrates some of the complexities inherent in real systems

  11. Advances in Computer, Communication, Control and Automation

    CERN Document Server

    011 International Conference on Computer, Communication, Control and Automation

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume  topics covered include signal and Image processing, speech and audio Processing, video processing and analysis, artificial intelligence, computing and intelligent systems, machine learning, sensor and neural networks, knowledge discovery and data mining, fuzzy mathematics and Applications, knowledge-based systems, hybrid systems modeling and design, risk analysis and management, system modeling and simulation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.

  12. Low Speed Automation, a French Initiative

    OpenAIRE

    Sébastien, Glaser; Maurice, Cour; Lydie, Nouveliere; Alain, Lambert; Fawzi, Nashashibi; Jean-Christophe, Popieul; Benjamin, Mourllion

    2012-01-01

    International audience; Nowadays, vehicle safety is constantly increasing thanks to the improvement of vehicle passive and active safety. However, on a daily usage of the car, traffic jams remains a problem. With limited space for road infrastructure, automation of the driving task on specific situation seems to be a possible solution. The French project ABV, which stands for low speed automation, tries to demonstrate the feasibility of the concept and to prove the benefits. In this article, ...

  13. Exposure to lateral collision in signalized intersections with protected left turn under different traffic control strategies.

    Science.gov (United States)

    Midenet, Sophie; Saunier, Nicolas; Boillot, Florence

    2011-11-01

    This paper proposes an original definition of the exposure to lateral collision in signalized intersections and discusses the results of a real world experiment. This exposure is defined as the duration of situations where the stream that is given the right-of-way goes through the conflict zone while road users are waiting in the cross-traffic approach. This measure, obtained from video sensors, makes it possible to compare different operating conditions such as different traffic signal strategies. The data from a real world experiment is used, where the adaptive real-time strategy CRONOS (ContRol Of Networks by Optimization of Switchovers) and a time-plan strategy with vehicle-actuated ranges alternately controlled an isolated intersection near Paris. Hourly samples with similar traffic volumes are compared and the exposure to lateral collision is different in various areas of the intersection and various traffic conditions for the two strategies. The total exposure under peak hour traffic conditions drops by roughly 5 min/h with the CRONOS strategy compared to the time-plan strategy, which occurs mostly on entry streams. The results are analyzed through the decomposition of cycles in phase sequences and recommendations are made for traffic control strategies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Visual problem solving and self-regulation in training air traffic control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo

    2013-01-01

    Van Meeuwen, L. W. (2013). Visual problem solving and self-regulation in training air traffic control (Unpublished doctoral dissertation). Centre for Learning Sciences and Technologies, Open Universiteit, Heerlen, The Netherlands.

  15. Visual Problem Solving and Self‐regulation in Training Air Traffic Control

    NARCIS (Netherlands)

    Meeuwen van, Ludo

    2015-01-01

    Van Meeuwen, L. W. (2013). Visual problem solving and self-regulation in training air traffic control (Unpublished doctoral dissertation). Centre for Learning Sciences and Technologies, Open Universiteit, Heerlen, The Netherlands.

  16. Application of the user-centred design process according ISO 9241-210 in air traffic control.

    Science.gov (United States)

    König, Christina; Hofmann, Thomas; Bruder, Ralph

    2012-01-01

    Designing a usable human machine interface for air traffic control is challenging and should follow approved methods. The ISO 9241-210 standard promises high usability of products by integrating future users and following an iterative process. This contribution describes the proceeding and first results of the analysis and application of ISO 9241-210 to develop a planning tool for air traffic controllers.

  17. Determining treatment frequency for controlling weeds on traffic islands using chemical and non-chemical weed control

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Larsen, S.U.; Andreasen, Christian

    2013-01-01

    Many public authorities rely on the use of non-chemical weed control methods, due to stringent restrictions on herbicide use in urban areas. However, these methods usually require more repeated treatments than chemical weed management, resulting in increased costs of weed management. In order...... of treatments per year were required: glyphosate 2.5, hot water 3, flames 5, hot air/flames 5.5 and steam 5.5 treatments. The results demonstrate that the weed control should be adjusted to the prescribed quality for the traffic islands by regularly assessing the need for weed control. They also show...... to investigate the efficacy of four non-chemical weed control methods and glyphosate treatment, experiments were carried out on traffic islands in the growing seasons 2005 and 2006. Three trial sites were each divided into six treatment areas, which were either treated with glyphosate, flame, steam, hot air...

  18. ON THE ARRIVAL TRAFFIC FLOW ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Nikita A. Assorov

    2017-01-01

    Full Text Available This article is about air traffic flow organization, ICAO regulations describe the organizing of traffic flow as one of the purposes of air traffic control, but they don’t state exactly at what point the flow has to be organized and metered. The flight phase, where air traffic controller interferes with his instructions in order to begin organizing of all aircraft landing at a certain airport depends on the actual traffic volume per hour, airspace capacity and design.The example of air traffic situation in Moscow Domodedovo airport is described in the article, with runway 32 right in use, no significant weather, real usage of STARs, considering all the ICAO and Russian Federation regulations regarding speed control with the restrictions mentioned in AIP of Moscow Domodedovo. The purpose of the experiment is to prove the need of metering the air traffic flow on the entry points in Moscow TMA, because in case of unorganized air traffic flow approach controllers will have additional unnecessary workload.The conducted calculations show, that only 3 aircraft entering TMA on the same distance from initial approach point can be handled using only speed control and existing standard arrival procedures, in all other cases vectoring or holding areas should be used.In order to avoid such situations and increase the number of the aircraft that can be handled by the approach controller with less instructions, all the traffic arriving on the TMA entry point has to be metered by area control centre, because the air traffic control unit has much more space and time for long term speed control modifications, e.g. ±0,02 Mach. In conclusion a simple rule comes to mind – the bigger inbound traffic is, the earlier one has to organize it, in order to do it speed control, radar vectors, miles-in-trail can be used. Also new equipment and technology can help air traffic controller with this task, e.g. AMAN (arrival manager, in addition to this, the experience of

  19. THE METHOD OF FORMING THE PIGGYBACK TECHNOLOGIES USING THE AUTOMATED HEURISTIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Ye. Nahornyi

    2015-07-01

    Full Text Available In order to choose a rational piggyback technology there was offered a method that envisages the automated system improvement by giving it a heuristic nature. The automated system is based on a set of methods, techniques and strategies aimed at creating optimal resource saving technologies, which makes it possible to take into account with maximum efficiency the interests of all the participants of the delivery process. When organizing the piggyback traffic there is presupposed the coordination of operations between the piggyback traffic participants to minimize the cargo travel time.

  20. Automated procedure execution for space vehicle autonomous control

    Science.gov (United States)

    Broten, Thomas A.; Brown, David A.

    1990-01-01

    Increased operational autonomy and reduced operating costs have become critical design objectives in next-generation NASA and DoD space programs. The objective is to develop a semi-automated system for intelligent spacecraft operations support. The Spacecraft Operations and Anomaly Resolution System (SOARS) is presented as a standardized, model-based architecture for performing High-Level Tasking, Status Monitoring and automated Procedure Execution Control for a variety of spacecraft. The particular focus is on the Procedure Execution Control module. A hierarchical procedure network is proposed as the fundamental means for specifying and representing arbitrary operational procedures. A separate procedure interpreter controls automatic execution of the procedure, taking into account the current status of the spacecraft as maintained in an object-oriented spacecraft model.

  1. Modeling the heterogeneous traffic correlations in urban road systems using traffic-enhanced community detection approach

    Science.gov (United States)

    Lu, Feng; Liu, Kang; Duan, Yingying; Cheng, Shifen; Du, Fei

    2018-07-01

    A better characterization of the traffic influence among urban roads is crucial for traffic control and traffic forecasting. The existence of spatial heterogeneity imposes great influence on modeling the extent and degree of road traffic correlation, which is usually neglected by the traditional distance based method. In this paper, we propose a traffic-enhanced community detection approach to spatially reveal the traffic correlation in city road networks. First, the road network is modeled as a traffic-enhanced dual graph with the closeness between two road segments determined not only by their topological connection, but also by the traffic correlation between them. Then a flow-based community detection algorithm called Infomap is utilized to identify the road segment clusters. Evaluated by Moran's I, Calinski-Harabaz Index and the traffic interpolation application, we find that compared to the distance based method and the community based method, our proposed traffic-enhanced community based method behaves better in capturing the extent of traffic relevance as both the topological structure of the road network and the traffic correlations among urban roads are considered. It can be used in more traffic-related applications, such as traffic forecasting, traffic control and guidance.

  2. Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations

    Science.gov (United States)

    Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy

    2011-01-01

    This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.

  3. Manpower Requirements for Air Traffic Control and Flight Service Specialists in Indiana.

    Science.gov (United States)

    Purdue Univ., Lafayette, IN. Office of Manpower Studies.

    As of January 1, 1968 the Federal Aviation Administration (FAA) of the United States Department of Transportation employed 6,963 controllers in airport towers, 7,617 controllers in Air Route Traffic Control Centers, and 4,459 flight service specialists at airport locations. Projected needs are as follows: (1) Controllers in airport towers:…

  4. Research on Congestion Pricing in Multimode Traffic considering Delay and Emission

    Directory of Open Access Journals (Sweden)

    Hongna Dai

    2015-01-01

    Full Text Available Rapid development of urbanization and automation has resulted in serious urban traffic congestion and air pollution problems in many Chinese cities recently. As a traffic demand management strategy, congestion pricing is acknowledged to be effective in alleviating the traffic congestion and improving the efficiency of traffic system. This paper proposes an urban traffic congestion pricing model based on the consideration of transportation network efficiency and environment effects. First, the congestion pricing problem under multimode (i.e., car mode and bus mode urban traffic network condition is investigated. Second, a traffic congestion pricing model based on bilevel programming is formulated for a dual-mode urban transportation network, in which the delay and emission of vehicles are considered. Third, an improved mathematical algorithm combining successive average method with the genetic algorithm is proposed to solve the bilevel programming problem. Finally, a numerical experiment based on a hypothetical network is performed to validate the proposed congestion pricing model and algorithm.

  5. Efficiency of Roundabouts as Compared to Traffic Light Controlled ...

    African Journals Online (AJOL)

    Bheema

    controlled intersection and multi-lane roundabouts to maximize flow along the system. Thus ... double-lane roundabout two vehicles can approach a roundabout at a time. ..... light color changes that used to permit traffic to flow or to deny. .... also view this comparison in terms of the queue length formed at the entrance of an ...

  6. IMPACT OF POLY-LINGUISTIC LOAD ON AIR TRAFFIC CONTROL AND MONITORING QUALITY

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2012-09-01

    Full Text Available  We have defined the structure and basic characteristics of the poly-linguistic audio-acoustic channel within the framework of controller – pilot communication, and set limits of poly-linguistic load impact on air traffic control.

  7. A Framework for Evaluating Energy and Emissions of Connected and Automated Vehicles through Traffic Microsimulations

    Science.gov (United States)

    2018-01-07

    Connected and automated vehicles (CAV) are poised to transform surface transportation systems in the United States. Near-term CAV technologies like cooperative adaptive cruise control (CACC) have the potential to deliver energy efficiency and air qua...

  8. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  9. Design and control of automated guided vehicle systems: A case study

    NARCIS (Netherlands)

    Li, Q.; Adriaansen, A.C.; Udding, J.T.; Pogromski, A.Y.

    2011-01-01

    In this paper, we study the design and control of automated guided vehicle (AGV) systems, with the focus on the quayside container transport in an automated container terminal. We first set up an event-driven model for an AGV system in the zone control framework. Then a number of layouts of the road

  10. Automated sampling and control of gaseous simulations

    KAUST Repository

    Huang, Ruoguan; Keyser, John

    2013-01-01

    In this work, we describe a method that automates the sampling and control of gaseous fluid simulations. Several recent approaches have provided techniques for artists to generate high-resolution simulations based on a low-resolution simulation

  11. Droplet Traffic Control at a simple T junction

    Science.gov (United States)

    Panizza, Pascal; Engl, Wilfried; Colin, Annie; Ajdari, Armand

    2006-03-01

    A basic yet essential element of every traffic flow control is the effect of a junction where the flow is separated into several streams. How do pedestrians, vehicles or blood cells divide when they reach a junction? How does the outcome depend on their density? Similar fundamental questions hold for much simpler systems: in this paper, we have studied the behaviour of periodic trains of water droplets flowing in oil through a channel as they reach a simple, locally symmetric, T junction. Depending on their dilution, we observe that the droplets are either alternately partitioned between both outlets or sorted exclusively into the shortest one. We show that this surprising behaviour results from the hydrodynamic feed-back of drops in the two outlets on the selection process occurring at the junction. Our results offer a first guide for the design and modelling of droplet traffic in complex branched networks, a necessary step towards parallelized droplet-based ``lab-on-chip'' devices.

  12. Development and Validation in Air Traffic Control by Means of Real-Time Simulations

    Directory of Open Access Journals (Sweden)

    Stephan Herr

    2009-02-01

    Full Text Available The airspace in Central Europe is already one of the busiest airspaces in the world and the forecasts predict further traffic increases. The current air transport system is reaching its capacity limits, not only at airports but also in parts of the en-route area. This is mainly due to the workload constraints of air traffic controllers. In the past, many technical system functionalities were developed with the aim of reducing controller workload and thus enabling the safe handling of the predicted traffic growth. But these new functionalities alone will not provide adequate relief to air traffic controllers. Their working procedures and the airspace structure will have to be adapted accordingly. In order to obtain real operational benefits, these technical innovations must be integrated into an overall concept which – in addition to the above-mentioned factors – also takes account of ergonomic aspects and human-machine interfaces. When developing such an overall concept, additional evaluation and validation measures are indispensable to ensure that the desired operational benefits are achieved. This is why DFS has for many years used fast- and real-time simulations to assess and optimise any changes to be made to the air traffic control system. The working methods of DFS in this context are in keeping with the European Operational Concept Validation Methodology of 2007, in short E-OCVM. This paper outlines the development and validation activities of DFS using the MSP D/L project as an example. The project deals with the introduction of the new role of air traffic controllers as multi-sector planners (MSP and new system functionalities, such as air/ground data link (D/L. The project included the development of an operational concept for using the new functionalities as well as for defining working procedures and the airspace structure. This concept was subsequently evaluated by means of a fast-time simulation and two real-time simulations

  13. Development of automated controller system for controlling reactivity by using FPGA in research reactor application

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib

    2012-01-01

    The scope for this research paper is to produce a detail design for Development of Automated Controller System for Controlling Reactivity by using FPGA in Research Reactor Application for high safety nuclear operation. The development of this project including design, purchasing, fabrication, installation, testing and validation and verification for one prototype automated controller system for controlling reactivity in industry local technology for human capacity and capability development towards the first Nuclear Power Programme (NPP) in Malaysia. The specific objectives of this research paper are to Development of Automated Controller System for Controlling Reactivity (ACSCR) in Research Reactor Application (PUSPATI TRIGA Reactor) by using simultaneous movement method; To design, fabricate and produce the accuracy of Control Rods Drive Mechanism to 0.1 mm resolution using a stepper motor as an actuator; To design, install and produce the system response to be more faster by using Field Programmable Gate Array (FPGA) and High Speed Computer; and to improve the Safety Level of the Research Reactor in high safety nuclear operation condition. (author)

  14. Analysis And Control System For Automated Welding

    Science.gov (United States)

    Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne

    1994-01-01

    Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.

  15. System analysis of automated speed enforcement implementation.

    Science.gov (United States)

    2016-04-01

    Speeding is a major factor in a large proportion of traffic crashes, injuries, and fatalities in the United States. Automated Speed Enforcement (ASE) is one of many approaches shown to be effective in reducing speeding violations and crashes. However...

  16. Automated washing of FTA Card punches and PCR setup for reference samples using a LIMS-controlled Sias Xantus automated liquid handler

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Olsen, Addie Nina; Frøslev, Tobias G.

    2009-01-01

    We have implemented and validated automated methods for washing FTA Card punches containing buccal samples and subsequent PCR setup using a Sias Xantus automated liquid handler. The automated methods were controlled by worklists generated by our LabWare Laboratory Information Management System...

  17. Automated system for calibration and control of the CHSPP-800 multichannel γ detector parameters

    International Nuclear Information System (INIS)

    Avvakumov, N.A.; Belikov, N.I.; Goncharenko, Yu.M.

    1987-01-01

    An automated system for adjustment, calibration and control of total absorption Cherenkov spectrometer is described. The system comprises a mechanical platform, capable of moving in two mutually perpendicular directions; movement detectors and limit switches; power unit, automation unit with remote control board. The automated system can operate both in manual control regime with coordinate control by a digital indicator, and in operation regime with computer according to special programs. The platform mounting accuracy is ± 0.1 mm. Application of the automated system has increased the rate of the course of the counter adjustment works 3-5 times

  18. Automation inflicted differences on operator performance in nuclear power plant control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jonas; Osvalder, A.L. [Chalmers Univ. of Technology, Dept. of Product and Producton Development (Sweden)

    2007-03-15

    Today it is possible to automate almost any function in a human-machine system. Therefore it is important to find a balance between automation level and the prerequisites for the operator to maintain safe operation. Different human factors evaluation methods can be used to find differences between automatic and manual operations that have an effect on operator performance; e.g. Predictive Human Error Analysis (PHEA), NASA Task Load Index (NASA-TLX), Halden Questionnaire, and Human Error Assessment and Reduction Technique (HEART). Results from an empirical study concerning automation levels, made at Ringhals power plant, showed that factors as time pressure and criticality of the work situation influenced the operator's performance and mental workload more than differences in level of automation. The results indicate that the operator's attention strategies differ between the manual and automatic sequences. Independently of level of automation, it is essential that the operator retains control and situational understanding. When performing a manual task, the operator is 'closer' to the process and in control with sufficient situational understanding. When the level of automation increases, the demands on information presentation increase to ensure safe plant operation. The need for control can be met by introducing 'control gates' where the operator has to accept that the automatic procedures are continuing as expected. Situational understanding can be established by clear information about process status and by continuous feedback. A conclusion of the study was that a collaborative control room environment is important. Rather than allocating functions to either the operator or the system, a complementary strategy should be used. Key parameters to consider when planning the work in the control room are time constraints and task criticality and how they affect the performance of the joint cognitive system.However, the examined working

  19. Automation inflicted differences on operator performance in nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Andersson, Jonas; Osvalder, A.L.

    2007-03-01

    Today it is possible to automate almost any function in a human-machine system. Therefore it is important to find a balance between automation level and the prerequisites for the operator to maintain safe operation. Different human factors evaluation methods can be used to find differences between automatic and manual operations that have an effect on operator performance; e.g. Predictive Human Error Analysis (PHEA), NASA Task Load Index (NASA-TLX), Halden Questionnaire, and Human Error Assessment and Reduction Technique (HEART). Results from an empirical study concerning automation levels, made at Ringhals power plant, showed that factors as time pressure and criticality of the work situation influenced the operator's performance and mental workload more than differences in level of automation. The results indicate that the operator's attention strategies differ between the manual and automatic sequences. Independently of level of automation, it is essential that the operator retains control and situational understanding. When performing a manual task, the operator is 'closer' to the process and in control with sufficient situational understanding. When the level of automation increases, the demands on information presentation increase to ensure safe plant operation. The need for control can be met by introducing 'control gates' where the operator has to accept that the automatic procedures are continuing as expected. Situational understanding can be established by clear information about process status and by continuous feedback. A conclusion of the study was that a collaborative control room environment is important. Rather than allocating functions to either the operator or the system, a complementary strategy should be used. Key parameters to consider when planning the work in the control room are time constraints and task criticality and how they affect the performance of the joint cognitive system.However, the examined working situations were too different

  20. A simulation study of the effects of communication delay on air traffic control

    Science.gov (United States)

    1990-09-01

    This study was conducted to examine the impacts of voice communications delays : characteristic of Voice Switching and Control System (VSCS) and satellite : communications systems on air traffic system performance, controller stress : and workload, a...

  1. Optimal and Robust Switching Control Strategies : Theory, and Applications in Traffic Management

    NARCIS (Netherlands)

    Hajiahmadi, M.

    2015-01-01

    Macroscopic modeling, predictive and robust control and route guidance for large-scale freeway and urban traffic networks are the main focus of this thesis. In order to increase the efficiency of our control strategies, we propose several mathematical and optimization techniques. Moreover, in the

  2. Automated quality control in a file-based broadcasting workflow

    Science.gov (United States)

    Zhang, Lina

    2014-04-01

    Benefit from the development of information and internet technologies, television broadcasting is transforming from inefficient tape-based production and distribution to integrated file-based workflows. However, no matter how many changes have took place, successful broadcasting still depends on the ability to deliver a consistent high quality signal to the audiences. After the transition from tape to file, traditional methods of manual quality control (QC) become inadequate, subjective, and inefficient. Based on China Central Television's full file-based workflow in the new site, this paper introduces an automated quality control test system for accurate detection of hidden troubles in media contents. It discusses the system framework and workflow control when the automated QC is added. It puts forward a QC criterion and brings forth a QC software followed this criterion. It also does some experiments on QC speed by adopting parallel processing and distributed computing. The performance of the test system shows that the adoption of automated QC can make the production effective and efficient, and help the station to achieve a competitive advantage in the media market.

  3. SWOT Analysis of Automation for Cash and Accounts Control in Construction

    OpenAIRE

    Mariya Deriy

    2013-01-01

    The possibility has been analyzed as to computerization of control over accounting and information systems data in terms of cash and payments in company practical activity provided that the problem is solved of the existence of well-functioning single computer network between different units of a developing company. Current state of the control organization and possibility of its automation has been observed. SWOT analysis of control automation to identify its strengths and weaknesses, obstac...

  4. A Longitudinal Study of Myers-Briggs Personality Types in Air Traffic Controllers

    National Research Council Canada - National Science Library

    Dollar, Carolyn S; Schroeder, David J

    2004-01-01

    .... The study investigated the relationship between MBTI types and initial success in the Air Traffic Control Academy Screen Program, subsequent field training outcomes, and transition to a supervisory...

  5. EMPLOYMENT OF ATMS TRAFFIC CONTROL DEVICE DATA TO ASSIST IN IDENTIFICATION OF CRASH-PRONE INTERSECTIONS

    Directory of Open Access Journals (Sweden)

    Kevin P. HWANG

    2008-01-01

    Full Text Available This paper employs information from the advanced traffic management system (ATMS of Kaohsiung, Taiwan to help differentiate those crash-prone intersections by discriminant analysis. From the 25,604 records of 2005, 1977 crashes that occurred at 119 intersections with traffic exposure data were compiled to calibrate and validate the model. The road attributes of crash records, traffic control devices and movement exposure are the three types of data used as predicting variables. The correct ratios for model calibration and validation range from 78.33% to 67.80%. if traffic movements are removed, the correct ratios become slightly lowered to 76.67% to 66.10%. Research findings reveal that with or without inclusion of exposure data in identifying high crash-prone intersections for an urban environment does not make a significant difference. in addition, layout and traffic control devices could possibly explain about 66.10 ∼ 78.33% of the possibility that an intersection will become a high crash intersection. it suggests that the developed approach could be a countermeasure for budget constraints and difficulties in continuation of exposure data collection, and the information of ATMS could help identify crash-prone urban intersections.

  6. United States Department of Energy Automated Transportation Management System

    International Nuclear Information System (INIS)

    Portsmouth, J.H.

    1992-01-01

    At the US Department of Energy (DOE) 80 transportation facilities, each contractor's transportation management operation has different internal and site specific procedures, and reports to a DOE regional Field Office Traffic Manager (FOTM). The DOE Transportation Management Program (TMP) has the responsibility to manage a transportation program for safe, efficient, and economical transportation of DOE-owned materials. The TMP develops and administers transportation/traffic operations management policies and programs for materials; including radioactive materials, other hazardous materials, hazardous substances, and hazardous wastes, pursuant to applicable federal regulations, such as the Code of Federal Register, Sections 40 and 49. Transportation management has become an increasingly critical primarily because of transportation issues regarding the shipment of radioactive materials and hazardous wastes that are frequently the focus of public concerns. A large shipments and requiring millions of business transactions necessitates the establishment of automated systems, programs, procedures, and controls to ensure that the transportation management process in being handled in a safe, efficient, and economical manner. As the mission of many DOE facilities changes from production of special nuclear materials for defense purposes to environmental restoration and waste management, the role of transportation management will become even more important to the safe and efficient movement of waste materials to prescribed locations. In support of this role, the Automated Transportation Management System (ATMS) was conceived to assist the DOE and its contractors in the performance of their day-to-day transportation management activities. The ATMS utilizes the latest in technology and will supply state-of-the-art automated transportation management for current and future DOE transportation requirements

  7. NextGen Technologies on the FAA's Standard Terminal Automation Replacement System

    Science.gov (United States)

    Witzberger, Kevin; Swenson, Harry; Martin, Lynne; Lin, Melody; Cheng, Jinn-Hwei

    2014-01-01

    This paper describes the integration, evaluation, and results from a high-fidelity human-in-the-loop (HITL) simulation of key NASA Air Traffic Management Technology Demonstration - 1 (ATD- 1) technologies implemented in an enhanced version of the FAA's Standard Terminal Automation Replacement System (STARS) platform. These ATD-1 technologies include: (1) a NASA enhanced version of the FAA's Time-Based Flow Management, (2) a NASA ground-based automation technology known as controller-managed spacing (CMS), and (3) a NASA advanced avionics airborne technology known as flight-deck interval management (FIM). These ATD-1 technologies have been extensively tested in large-scale HITL simulations using general-purpose workstations to study air transportation technologies. These general purpose workstations perform multiple functions and are collectively referred to as the Multi-Aircraft Control System (MACS). Researchers at NASA Ames Research Center and Raytheon collaborated to augment the STARS platform by including CMS and FIM advisory tools to validate the feasibility of integrating these automation enhancements into the current FAA automation infrastructure. NASA Ames acquired three STARS terminal controller workstations, and then integrated the ATD-1 technologies. HITL simulations were conducted to evaluate the ATD-1 technologies when using the STARS platform. These results were compared with the results obtained when the ATD-1 technologies were tested in the MACS environment. Results collected from the numerical data show acceptably minor differences, and, together with the subjective controller questionnaires showing a trend towards preferring STARS, validate the ATD-1/STARS integration.

  8. Expertise differences in air traffic control: An eye-tracking study

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Kirschner, Paul A.; De Bock, Jeano; Van Merriënboer, Jeroen

    2012-01-01

    Van Meeuwen, L. W., Jarodzka, H., Brand-Gruwel, S., Kirschner, P. A., De Bock, J. J. P. R., & Van Merriënboer, J. J. G. (2012, April). Expertise differences in air traffic control: An eye-tracking study. Paper presented at the American Educational Research Association Annual Meeting 2012, Vancouver,

  9. Airport Surface Traffic Control Visual Ground Aids Engineering and Development Plan

    Science.gov (United States)

    1977-01-01

    The plan described in this document supports the overall program at the Transportation Systems Center to define, design, develop, and evaluate systems that meet the requirements of airport surface traffic control. This plan is part of documentation s...

  10. Traffic flow wide-area surveillance system definition

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  11. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals

    Directory of Open Access Journals (Sweden)

    Joshué Pérez

    2010-06-01

    Full Text Available These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS. One prime example of ITS is vehicle Cruise Control (CC, which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.

  12. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals

    Science.gov (United States)

    Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C.; de Pedro, Teresa

    2010-01-01

    These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results. PMID:22219692

  13. An RFID-based intelligent vehicle speed controller using active traffic signals.

    Science.gov (United States)

    Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C; de Pedro, Teresa

    2010-01-01

    These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver's attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.

  14. Automation of the control scheme for IUAC Linac

    International Nuclear Information System (INIS)

    Sahu, B.K.; Dutt, R.N.; Antony, J.; Mathuria, D.S.; Pandey, A.; Singh, K.; Ahuja, R.; Chowdhury, G.K.; Rai, A.; Patra, P.; Ghosh, S.; Ajithkumar, B.P.; Kanjilal, D.; Roy, A.

    2011-01-01

    Improvement of the Linac control scheme is undertaken for automation with minimum human intervention during beam acceleration. Python language interface with the present control scheme is used in writing automation routines to monitor the status of the phase/amplitude lock during operation and shut-down the locking mechanism to reduce the RF power, if required. Simultaneous pulse conditioning of the resonators is made possible by using dedicated hardware interfaced and Python based client interface. Movement of the drive coupler is enabled from operation console with position read back. The manual control of the slow-tuner electronics module to bring the frequency close to reference during phase locking is interfaced with the present control scheme for remote operation. Monitoring of amplitude and absolute phase of each cavity is made possible from operation console. An alternate tuning mechanism using piezoelectric actuator and stepper motor combination has been successfully tested in the test cryostat. (author)

  15. Development of an automated vehicle stop system for cardiac emergencies

    Directory of Open Access Journals (Sweden)

    Tung T. Nguyen

    2017-06-01

    Full Text Available This paper describes the concept and configuration of a novel automated safety vehicle stop system, and a future prospect of the study. Intrinsic sudden death may cause traffic accident since such accidents sometimes involve not only the driver but also other traffic users such as passengers and pedestrians. Cardiovascular disease (CVD is considered as a serious driving risk factor. The pain and others effects of cardiac events degrade driver’s performance, and CVD causes ischemia brought by the CVD induces incapacity of driving. In the automated safety vehicle stop system, which our research group has developed, steer-sensors collects bio-signals and a camera captures the driver’s posture to monitor driver’s incapability. When the driver loses his or her driving capability, the system takes over the maneuver of the vehicle and automatically drives to a safety spot by observing the traffic environment. An emergency scenario was used to demonstrate the system verifying its potential.

  16. Air Traffic Control: Status of FAA's Implementation of the Display System Replacement Project

    National Research Council Canada - National Science Library

    1999-01-01

    ...) implementation of the Display System Replacement (DSR) project. DSR, which replaces the controllers' workstations and other equipment in the nation's en route centers, is one of FAA's major projects under the air traffic control modernization program...

  17. Traffic Analysis for Real-Time Communication Networks onboard Ships

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Jørgensen, N.

    1998-01-01

    The paper presents a novel method for establishing worst case estimates of queue lenghts and transmission delays in networks of interconnected segments each of ring topology as defined by the ATOMOS project for marine automation. A non probalistic model for describing traffic is introduced as well...

  18. Traffic Analysis for Real-Time Communication Networks onboard Ships

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Jørgensen, N.

    The paper presents a novel method for establishing worst case estimates of queue lenghts and transmission delays in networks of interconnected segments each of ring topology as defined by the ATOMOS project for marine automation. A non probalistic model for describing traffic is introduced as well...

  19. Traffic flow impacts of adaptive cruise control deactivation and (Re)activation with cooperative driver behavior

    NARCIS (Netherlands)

    Klunder, G.; Li, M.; Minderhoud, M.

    2009-01-01

    In 2006 in the Netherlands, a field operational test was carried out to study the effect of adaptive cruise control (ACC) and lane departure warning on driver behavior and traffic flow in real traffic. To estimate the effect for larger penetration rates, simulations were needed. For a reliable

  20. Vehicle-class Specific Control of Freeway Traffic

    NARCIS (Netherlands)

    Schreiter, T.

    2013-01-01

    The increase of mobility of the past decades has led to substantial congestion on the freeways. Traffic jams emerge both on a daily basis at the same location, as well as during accidents when a part of the freeways is temporarily blocked. In those cases, traffic management centers intervene into

  1. Takeover Time in Highly Automated Vehicles: Noncritical Transitions to and From Manual Control.

    Science.gov (United States)

    Eriksson, Alexander; Stanton, Neville A

    2017-06-01

    The aim of this study was to review existing research into driver control transitions and to determine the time it takes drivers to resume control from a highly automated vehicle in noncritical scenarios. Contemporary research has moved from an inclusive design approach to adhering only to mean/median values when designing control transitions in automated driving. Research into control transitions in highly automated driving has focused on urgent scenarios where drivers are given a relatively short time span to respond to a request to resume manual control. We found a paucity in research into more frequent scenarios for control transitions, such as planned exits from highway systems. Twenty-six drivers drove two scenarios with an automated driving feature activated. Drivers were asked to read a newspaper, or to monitor the system, and to relinquish, or resume, control from the automation when prompted by vehicle systems. Significantly longer control transition times were found between driving with and without secondary tasks. Control transition times were substantially longer than those reported in the peer-reviewed literature. We found that drivers take longer to resume control when under no time pressure compared with that reported in the literature. Moreover, we found that drivers occupied by a secondary task exhibit larger variance and slower responses to requests to resume control. Workload scores implied optimal workload. Intra- and interindividual differences need to be accommodated by vehicle manufacturers and policy makers alike to ensure inclusive design of contemporary systems and safety during control transitions.

  2. Planes, Politics and Oral Proficiency: Testing International Air Traffic Controllers

    Science.gov (United States)

    Moder, Carol Lynn; Halleck, Gene B.

    2009-01-01

    This study investigates the variation in oral proficiency demonstrated by 14 Air Traffic Controllers across two types of testing tasks: work-related radio telephony-based tasks and non-specific English tasks on aviation topics. Their performance was compared statistically in terms of level ratings on the International Civil Aviation Organization…

  3. Hematological and immunological effects of stress of air traffic controllers in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Valdenilson Ribeiro Ribas

    2011-06-01

    Full Text Available BACKGROUND: Several studies have shown that stress and emotional reactions can affect immune responses in animals and humans. OBJECTIVE: The aim of this study was to evaluate hematological and immunological effects of stress on air traffic controllers. METHODS: Thirty air traffic controllers and 15 aeronautical information service operators were evaluated. The groups were divided as information service operators with 10 years or more of experience (AIS>10 and with less than 10 years in the profession (AIS10 and with less than 10 years in the profession (ATCo10 group presented a significantly lower phagocytosis rate of monocytes at 2:00 p.m. compared to 8:00 a.m. Moreover, the ATCo>10 group presented lower hemoglobin, mean corpuscular hemoglobin concentration, platelet and leukocyte levels, and increased cortisol concentrations at 8:00 a.m. compared to the other groups. Additionally, this group had lower phagocytosis rate of monocytes, and hemoglobin, platelet, leukocyte, basophils and nitric oxide levels at 2:00 p.m. compared to the other groups. CONCLUSION: Stress seems to greatly affect immune responses of air traffic controllers with more than ten years of experience.

  4. Fugitive dust control experiments using soil fixatives on vehicle traffic surfaces

    International Nuclear Information System (INIS)

    Winberg, M.R.; Wixom, V.E.

    1992-08-01

    This report presents the results of engineering scale dust control experiments using soil fixative for contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of soil fixatives to control generation of fugitive dusts during vehicle traffic operations. Previous experiments conducted in FY 1990 included testing of the soil fixative, ENTAC. These experiments showed that ENTAC was effective in controlling dust generation but had several undesirable properties such as slow cure times and clogged the pumps and application nozzles. Therefore, other products would have to be evaluated to find a suitable candidate. As a result, two soil fixatives were tested in these present experiments, COHEREX-PM, an asphalt emulsion product manufactured by Witco Corporation and FLAMBINDER, a calcium lignosulfonate product manufactured by Flambeau Corporation. The results of the experiments include product performance and recommended application methods for application in a field deployable contamination control unit to be built in FY 1993

  5. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  6. Dividing traffic cluster into parts by signal control

    Science.gov (United States)

    Nagatani, Takashi

    2018-02-01

    When a cluster of vehicles with various speeds moves through the series of signals, the cluster breaks down by stopping at signals and results in smaller groups of vehicles. We present the nonlinear-map model of the motion of vehicles controlled by the signals. We study the breakup of a cluster of vehicles through the series of signals. The cluster of vehicles is divided into various groups by controlling the cycle time of signals. The vehicles within each group move with the same mean velocity. The breakup of the traffic cluster depends highly on the signal control. The dependence of dividing on both cycle time and vehicular speed is clarified. Also, we investigate the effect of the irregular interval between signals on dividing.

  7. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J.; Reuter, U. [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1995-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  8. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J; Reuter, U [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1996-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  9. A Toolchain for Home Automation Controller Development

    DEFF Research Database (Denmark)

    Dalsgaard, Peter H.; Le Guilly, Thibaut; Middelhede, Daniel

    2013-01-01

    Home Automation systems provide a large number of devices to control diverse appliances. Taking advantage of this diversity to create efficient and intelligent environments requires well designed, validated, and implemented controllers. However, designing and deploying such controllers is a complex...... and error prone process. This paper presents a tool chain that transforms a design in the form of communicating state machines to an executable controller that interfaces to appliances through a service oriented middleware. Design and validation is supported by integrated model checking and simulation...

  10. Financial and environmental costs of manual versus automated control of end-tidal gas concentrations.

    Science.gov (United States)

    Tay, S; Weinberg, L; Peyton, P; Story, D; Briedis, J

    2013-01-01

    Emerging technologies that reduce the economic and environmental costs of anaesthesia have had limited assessment. We hypothesised that automated control of end-tidal gases, a new feature in anaesthesia machines, will consistently reduce volatile agent consumption cost and greenhouse gas emissions. As part of the planned replacement of anaesthesia machines in a tertiary hospital, we performed a prospective before and after study comparing the cost and greenhouse gas emissions of isoflurane, sevoflurane and desflurane when using manual versus automated control of end-tidal gases. We analysed 3675 general anaesthesia cases with inhalational agents: 1865 using manual control and 1810 using automated control. Volatile agent cost was $18.87/hour using manual control and $13.82/hour using automated control: mean decrease $5.05/hour (95% confidence interval: $0.88-9.22/hour, P=0.0243). The 100-year global warming potential decreased from 23.2 kg/hour of carbon dioxide equivalents to 13.0 kg/hour: mean decrease 10.2 kg/hour (95% confidence interval: 2.7-17.7 kg/hour, P=0.0179). Automated control reduced costs by 27%. Greenhouse gas emissions decreased by 44%, a greater than expected decrease facilitated by a proportional reduction in desflurane use. Automated control of end-tidal gases increases participation in low flow anaesthesia with economic and environmental benefits.

  11. Report of the workshop on Aviation Safety/Automation Program

    Science.gov (United States)

    Morello, Samuel A. (Editor)

    1990-01-01

    As part of NASA's responsibility to encourage and facilitate active exchange of information and ideas among members of the aviation community, an Aviation Safety/Automation workshop was organized and sponsored by the Flight Management Division of NASA Langley Research Center. The one-day workshop was held on October 10, 1989, at the Sheraton Beach Inn and Conference Center in Virginia Beach, Virginia. Participants were invited from industry, government, and universities to discuss critical questions and issues concerning the rapid introduction and utilization of advanced computer-based technology into the flight deck and air traffic controller workstation environments. The workshop was attended by approximately 30 discipline experts, automation and human factors researchers, and research and development managers. The goal of the workshop was to address major issues identified by the NASA Aviation Safety/Automation Program. Here, the results of the workshop are documented. The ideas, thoughts, and concepts were developed by the workshop participants. The findings, however, have been synthesized into a final report primarily by the NASA researchers.

  12. Semi-Automated Discovery of Application Session Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, J.; Jung, J.; Paxson, V.; Koksal, C.

    2006-09-07

    While the problem of analyzing network traffic at the granularity of individual connections has seen considerable previous work and tool development, understanding traffic at a higher level---the structure of user-initiated sessions comprised of groups of related connections---remains much less explored. Some types of session structure, such as the coupling between an FTP control connection and the data connections it spawns, have prespecified forms, though the specifications do not guarantee how the forms appear in practice. Other types of sessions, such as a user reading email with a browser, only manifest empirically. Still other sessions might exist without us even knowing of their presence, such as a botnet zombie receiving instructions from its master and proceeding in turn to carry them out. We present algorithms rooted in the statistics of Poisson processes that can mine a large corpus of network connection logs to extract the apparent structure of application sessions embedded in the connections. Our methods are semi-automated in that we aim to present an analyst with high-quality information (expressed as regular expressions) reflecting different possible abstractions of an application's session structure. We develop and test our methods using traces from a large Internet site, finding diversity in the number of applications that manifest, their different session structures, and the presence of abnormal behavior. Our work has applications to traffic characterization and monitoring, source models for synthesizing network traffic, and anomaly detection.

  13. Trainer Interventions as Instructional Strategies in Air Traffic Control Training

    Science.gov (United States)

    Koskela, Inka; Palukka, Hannele

    2011-01-01

    Purpose: This paper aims to identify methods of guidance and supervision used in air traffic control training. It also aims to show how these methods facilitate trainee participation in core work activities. Design/methodology/approach: The paper applies the tools of conversation analysis and ethnomethodology to explore the ways in which trainers…

  14. The implementation of the situational control concept of information security in automated training systems

    Directory of Open Access Journals (Sweden)

    A. M. Chernih

    2016-01-01

    Full Text Available The main approaches to ensuring security of information in the automated training systems are considered, need of application of situational management of security of information for the automated training systems is proved, the mathematical model and a problem definition of situational control is offered, the technique of situational control of security of information is developed.The purpose of the study. The aim of the study is to base the application of situational control of information security by subsystem of the control and protection of information in automated learning systems and to develop implementation methods of the situational control concept.Materials and methods. It is assumed that the automated learning system is a fragment of a larger information system that contains several information paths, each of them treats different information in the protection degree from information, containing constituting state secrets, to open access information.It is considered that the technical methods, measures and means of information protection in automated learning systems implement less than half (30% functions of subsystems of control and protection information. The main part of the functions of this subsystem are organizational measures to protect information. It is obvious that the task of ensuring the security of information in automated learning systems associated with the adoption of decisions on rational selection and proper combination of technical methods and institutional arrangements. Conditions of practical application of automated learning systems change over time and transform the situation of such a decision, and this leads to the use of situational control methods.When situational control is implementing, task of the protection of information in automated learning system is solved by the subsystem control and protection of information by distributing the processes ensuring the security of information and resources of

  15. Simulation of load traffic and steeped speed control of conveyor

    Science.gov (United States)

    Reutov, A. A.

    2017-10-01

    The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.

  16. Traffic calming for the prevention of road traffic injuries: systematic review and meta-analysis.

    Science.gov (United States)

    Bunn, F; Collier, T; Frost, C; Ker, K; Roberts, I; Wentz, R

    2003-09-01

    To assess whether area-wide traffic calming schemes can reduce road crash related deaths and injuries. Systematic review and meta-analysis. Cochrane Injuries Group Specialised Register, Cochrane Central Register of Controlled Trials, Medline, EMBASE, Sociological Abstracts Science (and social science) citation index, National Technical Information service, Psychlit, Transport Research Information Service, International Road Research Documentation, and Transdoc, and web sites of road safety organisation were searched; experts were contacted, conference proceedings were handsearched, and relevant reference lists were checked. Randomised controlled trials, and controlled before/after studies of area-wide traffic calming schemes designed to discourage and slow down through traffic on residential roads. Data were collected on road user deaths, injuries, and traffic crashes. For each study rate ratios were calculated, the ratio of event rates before and after intervention in the traffic calmed area divided by the corresponding ratio of event rates in the control area, which were pooled to give an overall estimate using a random effects model. Sixteen controlled before/after studies met our inclusion criteria. Eight studies reported the number of road user deaths: pooled rate ratio 0.63 (95% confidence interval (CI) 0.14 to 2.59). Sixteen studies reported the number of injuries (fatal and non-fatal): pooled rate ratio 0.89 (95% CI 0.80 to 1.00). All studies were in high income countries. Area-wide traffic calming in towns and cities has the potential to reduce road traffic injuries. However, further rigorous evaluations of this intervention are needed, especially in low and middle income countries.

  17. Spacecraft control center automation using the generic inferential executor (GENIE)

    Science.gov (United States)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  18. Video Demo: Deep Reinforcement Learning for Coordination in Traffic Light Control

    NARCIS (Netherlands)

    van der Pol, E.; Oliehoek, F.A.; Bosse, T.; Bredeweg, B.

    2016-01-01

    This video demonstration contrasts two approaches to coordination in traffic light control using reinforcement learning: earlier work, based on a deconstruction of the state space into a linear combination of vehicle states, and our own approach based on the Deep Q-learning algorithm.

  19. Remotely Accessed Vehicle Traffic Management System

    Science.gov (United States)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  20. Efficiency of Roundabouts as Compared to Traffic Light Controlled ...

    African Journals Online (AJOL)

    Comparison is made between roundabouts with traffic light and without traffic light and signalized intersections on the basis of their performance to simplify traffic congestion. Computer simulations are used to propose critical arrival rates to separate between the three mentioned modes to decrease congestion at intersection ...

  1. Control and automation, and energy system engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tai-hoon [Hannam Univ., Daejeon (Korea, Republic of); Adeli, Hojjat [Ohio State Univ., Columbus, OH (United States); Stoica, Adrian [Jet Propulsion Laboratory, Pasadena, CA (United States); Kang, Byeong-Ho (eds.) [Tasmania Univ., Hobart, TAS (Australia)

    2011-07-01

    This book comprises selected papers of the International Conferences, CA and CES3 2011, held as Part of the Future Generation Information Technology Conference, FGIT 2011, in Conjunction with GDC 2011, Jeju Island, Korea, in December 2011. The papers presented were carefully reviewed and selected from numerous submissions and focused on the various aspects of control and automation, and circuits, control, communication, electricity, electronics, energy, system, signal and simulation. (orig.)

  2. Dynamic access control for two-direction shared traffic lanes

    NARCIS (Netherlands)

    Ebben, Mark; van der Zee, D.J.; van der Heijden, Matthijs C.

    2001-01-01

    In specific traffic situations, a single lane is available for traffic from two directions. Examples are traffic accidents or road maintenance reducing the number of available lanes on a road or, as we faced in a project on underground freight transportation, construction of a single lane for two

  3. The Automator: Intelligent control system monitoring

    International Nuclear Information System (INIS)

    M. Bickley; D.A. Bryan; K.S. White

    1999-01-01

    A large-scale control system may contain several hundred thousand control points which must be monitored to ensure smooth operation. Knowledge of the current state of such a system is often implicit in the values of these points and operators must be cognizant of the state while making decisions. Repetitive operators requiring human intervention lead to fatigue, which can in turn lead to mistakes. The authors propose a tool called the Automator based on a middleware software server. This tool would provide a user-configurable engine for monitoring control points. Based on the status of these control points, a specified action could be taken. The action could range from setting another control point, to triggering an alarm, to running an executable. Often the data presented by a system is meaningless without context information from other channels. Such a tool could be configured to present interpreted information based on values of other channels. Additionally, this tool could translate numerous values in a non-friendly form (such as numbers, bits, or return codes) into meaningful strings of information. Multiple instances of this server could be run, allowing individuals or groups to configure their own Automators. The configuration of the tool will be file-based. In the future, these files could be generated by graphical design tools, allowing for rapid development of new configurations. In addition, the server will be able to explicitly maintain information about the state of the control system. This state information can be used in decision-making processes and shared with other applications. A conceptual framework and software design for the tool are presented

  4. Emotional and cognitive influences in air traffic controller tasks: An investigation using a virtual environment?

    Science.gov (United States)

    Truschzinski, Martina; Betella, Alberto; Brunnett, Guido; Verschure, Paul F M J

    2018-05-01

    Air traffic controllers are required to perform complex tasks which require attention and high precision. This study investigates how the difficulty of such tasks influences emotional states, cognitive workload and task performance. We use quantitative and qualitative measurements, including the recording of pupil dilation and changes in affect using questionnaires. Participants were required to perform a number of air traffic control tasks using the immersive human accessible Virtual Reality space in the "eXperience Induction Machine". Based on the data collected, we developed and validated a model which integrates personality, workload and affective theories. Our results indicate that the difficulty of an air traffic control task has a direct influence on cognitive workload as well as on the self-reported mood; whereas both mood and workload seem to change independently. In addition, we show that personality, in particular neuroticism, affects both mood and performance of the participants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. 75 FR 77664 - Honeywell International, Inc., Automation and Control Solutions Division, Including On-Site...

    Science.gov (United States)

    2010-12-13

    ..., Inc., Automation and Control Solutions Division, Including On-Site Leased Workers From Manpower... Solutions Division. The Department has determined that these workers were sufficiently under the control of Honeywell International, Inc., Automation and Control Solutions Division to be considered leased workers...

  6. Subspace Dimensionality: A Tool for Automated QC in Seismic Array Processing

    Science.gov (United States)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.

    2013-12-01

    Because of the great resolving power of seismic arrays, the application of automated processing to array data is critically important in treaty verification work. A significant problem in array analysis is the inclusion of bad sensor channels in the beamforming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by node basis, so the dimensionality of the node traffic is instead monitoried for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. In the established template application, a detector functions in a manner analogous to waveform cross-correlation, applying a statistical test to assess the similarity of the incoming data stream to known templates for events of interest. In our approach, we seek not to detect matching signals, but instead, we examine the signal subspace dimensionality in much the same way that the method addresses node traffic anomalies in large computer systems. Signal anomalies recorded on seismic arrays affect the dimensional structure of the array-wide time-series. We have shown previously that this observation is useful in identifying real seismic events, either by looking at the raw signal or derivatives thereof (entropy, kurtosis), but here we explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for

  7. Task-Oriented and Relationship-Building Communications between Air Traffic Controllers and Pilots

    Directory of Open Access Journals (Sweden)

    Inwon Kang

    2017-09-01

    Full Text Available By questioning the lopsided attention on task-oriented factors in air traffic controller-pilot communication, the current study places an equal weighting on both task-oriented and relationship-building communications, and investigates how each type of communication influences sustainable performance in airline operation team. Results show that both task-oriented and relationship-building communications in terms of sustainability of team process predicted greater communication satisfaction at work. Also, both task interdependence and shared leadership influenced both types of air traffic controller-pilot communication. However, only relationship-building communication had a direct influence on perceived work performance whereas task-oriented communication had not. Along with task-oriented factors, this study raises the relationship-oriented factors as important resources for the sustainable team performance in airline industry.

  8. Automated complex for research of electric drives control

    Science.gov (United States)

    Avlasko, P. V.; Antonenko, D. A.

    2018-05-01

    In the article, the automated complex intended for research of various control modes of electric motors including the inductor motor of double-way feed is described. As a basis of the created complex, the National Instruments platform is chosen. The operating controller built in a platform is delivered with an operating system of real-time for creation of systems of measurement and management. The software developed in the environment of LabVIEW consists of several connected modules which are in different elements of a complex. Besides the software for automated management by experimental installation, the program complex is developed for modelling of processes in the electric drive. As a result there is an opportunity to compare simulated and received experimentally transitional characteristics of the electric drive in various operating modes.

  9. Air Traffic Control: Immature Software Acquisition Processes Increase FAA System Acquisition Risks

    Science.gov (United States)

    1997-03-01

    The General Accounting Office (GAO) at the request of Congress reviewed (1) : the maturity of Federal Aviation Administration's (FAA's) Air Traffic Control : (ATC) modernization software acquisition processes, and (2) the steps/actions : FAA has unde...

  10. A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya; Spielman, Zach; Hill, Rachael

    2017-06-01

    Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to address the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.

  11. A new intelligent approach for air traffic control using gravitational ...

    Indian Academy of Sciences (India)

    Therefore, poor management of this congestion may lead to a lot of flight delays, increase of operational errors by air traffic control personnel ... the PLT [8–11], and decreasing the duration of scheduling. [12, 13]. Hansen [3], Hu ...... [14] Hu X-B and Paolo E D 2009 An efficient genetic algorithm with uniform crossover for air ...

  12. Trajectory Specification for Terminal Air Traffic: Pairwise Conflict Detection and Resolution

    Science.gov (United States)

    Paielli, Russ; Erzberger, Heinz

    2017-01-01

    Trajectory specification is the explicit bounding and control of aircraft trajectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft navigation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) system or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on the terminal area and presents algorithms and software for spacing arrivals and deconflicting both arrivals and departures.

  13. Controller Strategies for Automation Tool Use under Varying Levels of Trajectory Prediction Uncertainty

    Science.gov (United States)

    Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua

    2013-01-01

    A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.

  14. Automated refueling inventory control system at FFTF

    International Nuclear Information System (INIS)

    Ordonez, C.R.

    1983-10-01

    The Refueling Inventory Control System (RICS) at the Fast Flux Test Facility (FFTF) keeps track of all assemblies that reside in the various refueling facilities. The automated RICS allows the user to obtain information regarding any assembly under its control by displaying the data on a screen. It also provides a simulation mode which allows assembly moves on a duplicated data base. This simulation is used to verify the refueling documentation before it is issued

  15. The predictive validity of personality tests in air traffic controller selection

    NARCIS (Netherlands)

    Roe, R.A.; Oprins, E.A.P.B.; Geven, E.

    2012-01-01

    A brief historical review of test methods used for selecting air traffic controllers (ATCOs) shows that in contrast to e.g. ability tests and job samples, personality tests have been used rather infrequently. The lesser popularity of personality tests may be explained from the belief that

  16. Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems

    Science.gov (United States)

    Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael

    2013-01-01

    The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.

  17. A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

    Directory of Open Access Journals (Sweden)

    N. Zarrinpanjeh

    2015-12-01

    Full Text Available One of the most practical tools for urban traffic monitoring is CCTV imaging which is widely used for traffic map generation and updating through human surveillance. But due to the expansion of urban road network and the use of huge number of CCTV cameras, visual inspection and updating of traffic sometimes seems to be ineffective and time consuming and therefore not providing real-time robust update. In this paper a method for vehicle detection accounting and speed estimation is proposed to give a more automated solution for traffic assessment. Through removing violating objects and detection of vehicles via morphological filtering and also classification of moving objects at the scene vehicles are counted and traffic speed is estimated. The proposed method is developed and tested using two datasets and evaluation values are computed. The results show that the successfulness of the algorithm decreases by about 12 % due to decrease in illumination quality of imagery.

  18. Attentional costs and failures in air traffic control notifications.

    Science.gov (United States)

    Imbert, Jean-Paul; Hodgetts, Helen M; Parise, Robert; Vachon, François; Dehais, Frédéric; Tremblay, Sébastien

    2014-01-01

    Large display screens are common in supervisory tasks, meaning that alerts are often perceived in peripheral vision. Five air traffic control notification designs were evaluated in their ability to capture attention during an ongoing supervisory task, as well as their impact on the primary task. A range of performance measures, eye-tracking and subjective reports showed that colour, even animated, was less effective than movement, and notifications sometimes went unnoticed. Designs that drew attention to the notified aircraft by a pulsating box, concentric circles or the opacity of the background resulted in faster perception and no missed notifications. However, the latter two designs were intrusive and impaired primary task performance, while the simpler animated box captured attention without an overhead cognitive cost. These results highlight the need for a holistic approach to evaluation, achieving a balance between the benefits for one aspect of performance against the potential costs for another. Practitioner summary: We performed a holistic examination of air traffic control notification designs regarding their ability to capture attention during an ongoing supervisory task. The combination of performance, eye-tracking and subjective measurements demonstrated that the best design achieved a balance between attentional power and the overhead cognitive cost to primary task performance.

  19. ConductHome: Gesture Interface Control of Home Automation Boxes

    OpenAIRE

    J. Branstett; V. Gagneux; A. Leleu; B. Levadoux; J. Pascale

    2015-01-01

    This paper presents the interface ConductHome which controls home automation systems with a Leap Motion using "invariant gesture protocols". This interface is meant to simplify the interaction of the user with its environment. A hardware part allows the Leap Motion to be carried around the house. A software part interacts with the home automation box and displays the useful information for the user. An objective of this work is the development of a natural/invariant/simpl...

  20. Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire.

    Science.gov (United States)

    Flemisch, Frank Ole; Bengler, Klaus; Bubb, Heiner; Winner, Hermann; Bruder, Ralph

    2014-01-01

    This article provides a general ergonomic framework of cooperative guidance and control for vehicles with an emphasis on the cooperation between a human and a highly automated vehicle. In the twenty-first century, mobility and automation technologies are increasingly fused. In the sky, highly automated aircraft are flying with a high safety record. On the ground, a variety of driver assistance systems are being developed, and highly automated vehicles with increasingly autonomous capabilities are becoming possible. Human-centred automation has paved the way for a better cooperation between automation and humans. How can these highly automated systems be structured so that they can be easily understood, how will they cooperate with the human? The presented research was conducted using the methods of iterative build-up and refinement of framework by triangulation, i.e. by instantiating and testing the framework with at least two derived concepts and prototypes. This article sketches a general, conceptual ergonomic framework of cooperative guidance and control of highly automated vehicles, two concepts derived from the framework, prototypes and pilot data. Cooperation is exemplified in a list of aspects and related to levels of the driving task. With the concept 'Conduct-by-Wire', cooperation happens mainly on the guidance level, where the driver can delegate manoeuvres to the automation with a specialised manoeuvre interface. With H-Mode, a haptic-multimodal interaction with highly automated vehicles based on the H(orse)-Metaphor, cooperation is mainly done on guidance and control with a haptically active interface. Cooperativeness should be a key aspect for future human-automation systems. Especially for highly automated vehicles, cooperative guidance and control is a research direction with already promising concepts and prototypes that should be further explored. The application of the presented approach is every human-machine system that moves and includes high

  1. A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadia Adnan Shiltagh

    2015-11-01

    Full Text Available Wireless Multimedia Sensor Networks (WMSNs are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC. The Modify Spike Neural Network controller (MSNC can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC algorithm shows that the (MSNTLP with EWBPRC is more efficient than (FTLP with EWBPRC algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC and EWBPRC with fixed traffic load parameter (µ shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2 in a computer having the following properties: windows 7 (64-bit, core i7, RAM 8GB, hard 1TB.

  2. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    Energy Technology Data Exchange (ETDEWEB)

    Vismari, Lucio Flavio, E-mail: lucio.vismari@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil); Batista Camargo Junior, Joao, E-mail: joaocamargo@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil)

    2011-07-15

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  3. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    Vismari, Lucio Flavio; Batista Camargo Junior, Joao

    2011-01-01

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  4. Potential Energy and Emission Benefits of Vehicle Automation and Connectivity

    Science.gov (United States)

    2017-08-01

    Driving behavior greatly impacts vehicle tailpipe emissions. Connected and automated vehicle (CAV) technologies are designed to smooth driving and relieve traffic congestion and are therefore expected to reduce fuel consumption and tailpipe emissions...

  5. Signal Control for Reducing Vehicle NOx and CO2 Emissions Based on Prediction of Arrival Traffic Flows at Intersections

    Science.gov (United States)

    Oda, Toshihiko

    Nitrogen oxide (NOx) and carbon dioxide (CO2) emissions from vehicles have been increasing every year because of the growing number of vehicles, and they cause serious environmental problems such as air pollution and global warming. To alleviate these problems, this paper proposes a new traffic signal control method for reducing vehicle NOx and CO2 emissions on arterial roads. To this end, we first model the amount of vehicle emissions as a function of the traffic delay and the number of stops at intersections. This step is necessary because it is difficult to obtain the amount of emissions directly using traffic control systems. Second, we introduce a signal control model in which the control parameters are continuously updated on the basis of predictions of arrival traffic flows at intersections. The signal timings are calculated in such a manner so as to minimize the weighted sum of the two emissions, which depend on the traffic flow. To evaluate the validity of this method, simulation experiments are carried out on an arterial road. The experiments show that the proposed method significantly outperforms existing methods in reducing both the emissions and travel time.

  6. Some indices of bodily reaction of traffic controllers to atmospheric pollution by automobile exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Partsef, D.P.; Bessonova, N.A.

    1976-12-01

    The authors studied pollution of the atmospheric air at 20 posts on Moscow streets with various intensity of auto traffic. They sampled for carbon monoxide, hydrocarbons, nitrogen dioxide, dust, acrolein, oxidants, and ozone and found that the concentration of these substances was a direct function of the intensity of auto flow and a reverse function of the width of the highway. Traffic controllers exhibited increased carboxyhemoglobin blood levels, decrease in bactericidal properties and increase in number of colonies of skin microorganisms. The controller complained in weariness, cardiovascular and gastrointestinal disturbances.

  7. Traffic simulation for mixed traffic systems | Mbam | Global Journal of ...

    African Journals Online (AJOL)

    Traffic problem is classified into single and mixed, especially in most developing countries, where motorbikes are used as the most popular transportation system. The aim of this paper is to introduce the motorbike symbol into the traffic light control system to separate cars/lorries indicator from that of motorbike. This is likely ...

  8. Optimizing the balance between task automation and human manual control in simulated submarine track management.

    Science.gov (United States)

    Chen, Stephanie I; Visser, Troy A W; Huf, Samuel; Loft, Shayne

    2017-09-01

    Automation can improve operator performance and reduce workload, but can also degrade operator situation awareness (SA) and the ability to regain manual control. In 3 experiments, we examined the extent to which automation could be designed to benefit performance while ensuring that individuals maintained SA and could regain manual control. Participants completed a simulated submarine track management task under varying task load. The automation was designed to facilitate information acquisition and analysis, but did not make task decisions. Relative to a condition with no automation, the continuous use of automation improved performance and reduced subjective workload, but degraded SA. Automation that was engaged and disengaged by participants as required (adaptable automation) moderately improved performance and reduced workload relative to no automation, but degraded SA. Automation engaged and disengaged based on task load (adaptive automation) provided no benefit to performance or workload, and degraded SA relative to no automation. Automation never led to significant return-to-manual deficits. However, all types of automation led to degraded performance on a nonautomated task that shared information processing requirements with automated tasks. Given these outcomes, further research is urgently required to establish how to design automation to maximize performance while keeping operators cognitively engaged. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Automated waste canister docking and emplacement using a sensor-based intelligent controller

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1992-08-01

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of ± 0.5 millimeter

  10. Exploiting automatically generated databases of traffic signs and road markings for contextual co-occurrence analysis

    Science.gov (United States)

    Hazelhoff, Lykele; Creusen, Ivo M.; Woudsma, Thomas; de With, Peter H. N.

    2015-11-01

    Combined databases of road markings and traffic signs provide a complete and full description of the present traffic legislation and instructions. Such databases contribute to efficient signage maintenance, improve navigation, and benefit autonomous driving vehicles. A system is presented for the automated creation of such combined databases, which additionally investigates the benefit of this combination for automated contextual placement analysis. This analysis involves verification of the co-occurrence of traffic signs and road markings to retrieve a list of potentially incorrectly signaled (and thus potentially unsafe) road situations. This co-occurrence verification is specifically explored for both pedestrian crossings and yield situations. Evaluations on 420 km of road have shown that individual detection of traffic signs and road markings denoting these road situations can be performed with accuracies of 98% and 85%, respectively. Combining both approaches shows that over 95% of the pedestrian crossings and give-way situations can be identified. An exploration toward additional co-occurrence analysis of signs and markings shows that inconsistently signaled situations can successfully be extracted, such that specific safety actions can be directed toward cases lacking signs or markings, while most consistently signaled situations can be omitted from this analysis.

  11. Detecting air traffic controller interventions in recorded air transportation system data

    Science.gov (United States)

    Kwon, Yul

    In this study, I propose a systematic method of detecting aircraft deviation due to air traffic controller (ATC) intervention. The aircraft deviations associated with ATC interventions are detected using a heuristic algorithm developed from analyzing the actual positions of an aircraft to its filed flight plan when the aircraft trajectories were identified as having an encounter in a loss-of-separation incident. An actual (closed-loop) flight trajectory of the Cleveland Air Route Traffic Control Center (ZOB ARTCC) was collected from the FlightAware database. This was compared with the corresponding planned (open-loop) trajectory dataset generated by the Microsoft(c) Flight Simulator X (FSX). I implemented a conflict-detection algorithm in Matlab to identify open-loop flight trajectories that encounters in loss-of-separation. I analyzed the differences between the closed-loop and open-loop flight trajectories of aircrafts that were identified to have encounters in loss of separation. The analysis identified operationally significant deviations in the closed-loop trajectory data with respect to the horizontal paths of the aircrafts. I then developed and validated a heuristic algorithm, the ATC intervention detection algorithm, based on the findings from the analysis. When used with a test dataset to validate the algorithm, it achieved an 85.7% detection rate in detecting horizontal deviations made by the ATC in resolving identified conflicts, and a false-alarm rate of 68%. In addition to the ATC intervention detection algorithm, I present in this paper an analysis of deviated flight trajectories in an effort to display how the presented methodology can be utilized to provide insight into air traffic controller resolution strategies.

  12. Unified Brake Service by a Hierarchical Controller for Active Deceleration Control in an Electric and Automated Vehicle

    Directory of Open Access Journals (Sweden)

    Yuliang Nie

    2017-12-01

    Full Text Available Unified brake service is a universal service for generating certain brake force to meet the demand deceleration and is essential for an automated driving system. However, it is rather difficult to control the pressure in the wheel cylinders to reach the target deceleration of the automated vehicle, which is the key issue of the active deceleration control system (ADC. This paper proposes a hierarchical control method to actively control vehicle deceleration with active-brake actuators. In the upper hierarchical, the target pressure of wheel cylinders is obtained by dynamic equations of a pure electric vehicle. In the lower hierarchical, the solenoid valve instructions and the pump speed of hydraulic control unit (HCU are determined to satisfy the desired pressure with the feedback of measured wheel cylinder pressure by pressure sensors. Results of road experiments of a pure electric and automated vehicle indicate that the proposed method realizes the target deceleration accurately and efficiently.

  13. Design and development on automated control system of coated fuel particle fabrication process

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2013-01-01

    With the development trend of the large-scale production of the HTR coated fuel particles, the original manual control system can not meet the requirement and the automation control system of coated fuel particle fabrication in modern industrial grade is needed to develop. The comprehensive analysis aiming at successive 4-layer coating process of TRISO type coated fuel particles was carried out. It was found that the coating process could be divided into five subsystems and nine operating states. The establishment of DCS-type (distributed control system) of automation control system was proposed. According to the rigorous requirements of preparation process for coated particles, the design considerations of DCS were proposed, including the principle of coordinated control, safety and reliability, integration specification, practical and easy to use, and open and easy to update. A complete set of automation control system for coated fuel particle preparation process was manufactured based on fulfilling the requirements of these principles in manufacture practice. The automated control system was put into operation in the production of irradiated samples for HTRPM demonstration project. The experimental results prove that the system can achieve better control of coated fuel particle preparation process and meet the requirements of factory-scale production. (authors)

  14. Modeling DNP3 Traffic Characteristics of Field Devices in SCADA Systems of the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Lehigh Univ., Bethlehem, PA (United States); Cheng, Liang [Lehigh Univ., Bethlehem, PA (United States); Chuah, Mooi Choo [Lehigh Univ., Bethlehem, PA (United States)

    2017-03-08

    In the generation, transmission, and distribution sectors of the smart grid, intelligence of field devices is realized by programmable logic controllers (PLCs). Many smart-grid subsystems are essentially cyber-physical energy systems (CPES): For instance, the power system process (i.e., the physical part) within a substation is monitored and controlled by a SCADA network with hosts running miscellaneous applications (i.e., the cyber part). To study the interactions between the cyber and physical components of a CPES, several co-simulation platforms have been proposed. However, the network simulators/emulators of these platforms do not include a detailed traffic model that takes into account the impacts of the execution model of PLCs on traffic characteristics. As a result, network traces generated by co-simulation only reveal the impacts of the physical process on the contents of the traffic generated by SCADA hosts, whereas the distinction between PLCs and computing nodes (e.g., a hardened computer running a process visualization application) has been overlooked. To generate realistic network traces using co-simulation for the design and evaluation of applications relying on accurate traffic profiles, it is necessary to establish a traffic model for PLCs. In this work, we propose a parameterized model for PLCs that can be incorporated into existing co-simulation platforms. We focus on the DNP3 subsystem of slave PLCs, which automates the processing of packets from the DNP3 master. To validate our approach, we extract model parameters from both the configuration and network traces of real PLCs. Simulated network traces are generated and compared against those from PLCs. Our evaluation shows that our proposed model captures the essential traffic characteristics of DNP3 slave PLCs, which can be used to extend existing co-simulation platforms and gain further insights into the behaviors of CPES.

  15. Traffic Flow at Sags : Theory, Modeling and Control

    NARCIS (Netherlands)

    Goni-Ros, B.

    2016-01-01

    Sag vertical curves (sags) are roadway sections along which the gradient increases gradually in the direction of traffic. Empirical observations show that, on freeways, traffic congestion often occurs at sags; actually, in some countries (e.g., Japan), sags are one of the most common types of

  16. Drivers` activities and information needs in an automated highway system. Working paper, August 1995-May 1996

    Energy Technology Data Exchange (ETDEWEB)

    Levitan, L.; Bloomfield, J.

    1996-10-01

    In most visions of the AHS--including that of the National Automated Highway System Consortium--it has been assumed that when a vehicle was under automated control, the driver would be allowed to engage in any of a variety of activities not related to driving (e.g, working, reading, sleeping). The objective of the first study reported here--one of the noncommuter studies--was to determine what drivers do when traveling under automated control, and whether the age of and/gender or the driver and/or the intrastring gap have an influence on those activities. One the objectives of the commuter experiment--of relevance for this report--was to determine whether what drivers do when traveling under automated control changes as a function of experience with the AHS (i.e., across trials). As conceptualization of the AHS proceeds, the details of the interface between the driver and the in-vehicle system will become more important. One part of that interface will be information supplied by the AHS to the driver, perhaps about such things as traffic conditions ahead predicted trip time to the driver`s selected exit, and so on. To maximize the utility of that information, it is important to determine what it is that drivers would like to know when traveling under automated control. The objective of the third study reported here--the second of the five noncommuter experiments--was to provide a first investigation of that issue.

  17. Complaints of Poor Sleep and Risk of Traffic Accidents: A Population-Based Case-Control Study.

    Science.gov (United States)

    Philip, Pierre; Chaufton, Cyril; Orriols, Ludivine; Lagarde, Emmanuel; Amoros, Emmanuelle; Laumon, Bernard; Akerstedt, Torbjorn; Taillard, Jacques; Sagaspe, Patricia

    2014-01-01

    This study aimed to determine the sleepiness-related factors associated with road traffic accidents. A population based case-control study was conducted in 2 French agglomerations. 272 road accident cases hospitalized in emergency units and 272 control drivers matched by time of day and randomly stopped by police forces were included in the study. Odds ratios were calculated for the risk of road traffic accidents. As expected, the main predictive factor for road traffic accidents was having a sleep episode at the wheel just before the accident (OR 9.97, CI 95%: 1.57-63.50, ptraffic accidents was 3.35 times higher in subjects who reported very poor quality sleep during the last 3 months (CI 95%: 1.30-8.63, ptraffic accidents. Physicians should be attentive to complaints of poor sleep quality and quantity, symptoms of anxiety-nervousness and/or drug consumption in regular car drivers.

  18. Damage Control Automation for Reduced Manning (DC-ARM) Supervisory Control System Software Summary

    National Research Council Canada - National Science Library

    Downs, Ryan

    2002-01-01

    .... The SCS currently interfaces and controls the ship's automated fire main, outfitted with smart valves, a high-pressure water mist system, a video over IP system, a door position indication system...

  19. Intelligent Agent Based Traffic Signal Control on Isolated Intersections

    Directory of Open Access Journals (Sweden)

    Daniela Koltovska

    2014-08-01

    Full Text Available The purpose of this paper is to develop an adaptive signal control strategy on isolated urban intersections. An innovative approach to defining the set of states dependent on the actual and primarily observed parameters has been introduced. ?he Q–learning algorithm has been applied. The developed self-learning adaptive signal strategy has been tested on a re?l intersection. The intelligent agent results have been compared to those in cases of fixed-time and actuated control. Regarding the average total delay, the total number of stops and the total throughput, the best results have been obtained for unknown traffic demand and over-capacity.

  20. Standardization of light signals for road traffic control. Contribution in: Speed enforcement, visibility, and effects of traffic control measures on drivers, Transportation Research Record No. 811, p. 14-15, Transportation Research Board, National Academies of Sciences, Washington, D.C., 1981.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1981-01-01

    A recent technical report on road-traffic-control signals prepared by the International Commission on Illumination is briefly discussed. The report represents a first step toward international standardisation of traffic signal lights in order to benefit trade and transportation. The principal

  1. Automated information and control complex of hydro-gas endogenous mine processes

    Science.gov (United States)

    Davkaev, K. S.; Lyakhovets, M. V.; Gulevich, T. M.; Zolin, K. A.

    2017-09-01

    The automated information and control complex designed to prevent accidents, related to aerological situation in the underground workings, accounting of the received and handed over individual devices, transmission and display of measurement data, and the formation of preemptive solutions is considered. Examples for the automated workplace of an airgas control operator by individual means are given. The statistical characteristics of field data characterizing the aerological situation in the mine are obtained. The conducted studies of statistical characteristics confirm the feasibility of creating a subsystem of controlled gas distribution with an adaptive arrangement of points for gas control. The adaptive (multivariant) algorithm for processing measuring information of continuous multidimensional quantities and influencing factors has been developed.

  2. Effects of an alternating work shift on air traffic controllers and the relationship with excessive daytime sleepiness and stress.

    Science.gov (United States)

    Freitas, Ângela M; Portuguez, Mirna Wetters; Russomano, Thaís; Freitas, Marcos de; Silvello, Silvio Luis da Silva; Costa, Jaderson Costa da

    2017-10-01

    To evaluate symptoms of stress and excessive daytime sleepiness (EDS) in air traffic control (ATC) officers in Brazil. Fifty-two ATC officers participated, based at three air traffic control units, identified as A, B and C. Stress symptoms were assessed using the Lipp Inventory of Stress Symptoms for Adults, and EDS by the Epworth Sleepiness Scale. The sample mean age was 37 years, 76.9% of whom were male. Excessive daytime sleepiness was identified in 25% of the ATC officers, with 84.6% of these based at air traffic control unit A, which has greater air traffic flow, operating a 24-hour alternating work shift schedule. A total of 16% of the ATC officers had stress symptoms, and of these, 62% showed a predominance of physical symptoms. The high percentage of ATC officers with EDS identified in group A may be related to chronodisruption due to night work and alternating shifts.

  3. Early Validation of Automation Plant Control Software using Simulation Based on Assumption Modeling and Validation Use Cases

    Directory of Open Access Journals (Sweden)

    Veronika Brandstetter

    2015-10-01

    Full Text Available In automation plants, technical processes must be conducted in a way that products, substances, or services are produced reliably, with sufficient quality and with minimal strain on resources. A key driver in conducting these processes is the automation plant’s control software, which controls the technical plant components and thereby affects the physical, chemical, and mechanical processes that take place in automation plants. To this end, the control software of an automation plant must adhere to strict process requirements arising from the technical processes, and from the physical plant design. Currently, the validation of the control software often starts late in the engineering process in many cases – once the automation plant is almost completely constructed. However, as widely acknowledged, the later the control software of the automation plant is validated, the higher the effort for correcting revealed defects is, which can lead to serious budget overruns and project delays. In this article we propose an approach that allows the early validation of automation control software against the technical plant processes and assumptions about the physical plant design by means of simulation. We demonstrate the application of our approach on the example of an actual plant project from the automation industry and present it’s technical implementation

  4. Model of large scale man-machine systems with an application to vessel traffic control

    NARCIS (Netherlands)

    Wewerinke, P.H.; van der Ent, W.I.; ten Hove, D.

    1989-01-01

    Mathematical models are discussed to deal with complex large-scale man-machine systems such as vessel (air, road) traffic and process control systems. Only interrelationships between subsystems are assumed. Each subsystem is controlled by a corresponding human operator (HO). Because of the

  5. MOD control center automated information systems security evolution

    Science.gov (United States)

    Owen, Rich

    1991-01-01

    The role of the technology infusion process in future Control Center Automated Information Systems (AIS) is highlighted. The following subject areas are presented in the form of the viewgraphs: goals, background, threat, MOD's AISS program, TQM, SDLC integration, payback, future challenges, and bottom line.

  6. Stochastic control of traffic patterns

    DEFF Research Database (Denmark)

    Gaididei, Yuri B.; Gorria, Carlos; Berkemer, Rainer

    2013-01-01

    A stochastic modulation of the safety distance can reduce traffic jams. It is found that the effect of random modulation on congestive flow formation depends on the spatial correlation of the noise. Jam creation is suppressed for highly correlated noise. The results demonstrate the advantage of h...

  7. Design Principles and Algorithms for Air Traffic Arrival Scheduling

    Science.gov (United States)

    Erzberger, Heinz; Itoh, Eri

    2014-01-01

    This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.

  8. Flexible software architecture for user-interface and machine control in laboratory automation.

    Science.gov (United States)

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  9. Automated personal identification: a new technique for controlling access to nuclear materials and facilities

    International Nuclear Information System (INIS)

    Eccles, D.R.

    1975-01-01

    Special nuclear materials must be protected against the threat of diversion or theft, and nuclear facilities against the threat of industrial sabotage. Implicit in this protection is the means of controlling access to protected areas, material access areas, and vital areas. With the advent of automated personal identification technology, the processes of access control can be automated to yield both higher security and reduced costs. This paper first surveys the conventional methods of access control; next, automated personal identification concepts are presented and various systems approaches are highlighted; finally, Calspan's FINGERSCAN /sub TM/ system for identity verification is described

  10. System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation

    Science.gov (United States)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.

    2016-01-01

    The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.

  11. Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution

    Science.gov (United States)

    Hwang, Inseok

    The continued growth of air travel and recent advances in new technologies for navigation, surveillance, and communication have led to proposals by the Federal Aviation Administration (FAA) to provide reliable and efficient tools to aid Air Traffic Control (ATC) in performing their tasks. In this dissertation, we address four problems frequently encountered in air traffic surveillance and control; multiple target tracking and identity management, conflict detection, conflict resolution, and safety verification. We develop a set of algorithms and tools to aid ATC; These algorithms have the provable properties of safety, computational efficiency, and convergence. Firstly, we develop a multiple-maneuvering-target tracking and identity management algorithm which can keep track of maneuvering aircraft in noisy environments and of their identities. Secondly, we propose a hybrid probabilistic conflict detection algorithm between multiple aircraft which uses flight mode estimates as well as aircraft current state estimates. Our algorithm is based on hybrid models of aircraft, which incorporate both continuous dynamics and discrete mode switching. Thirdly, we develop an algorithm for multiple (greater than two) aircraft conflict avoidance that is based on a closed-form analytic solution and thus provides guarantees of safety. Finally, we consider the problem of safety verification of control laws for safety critical systems, with application to air traffic control systems. We approach safety verification through reachability analysis, which is a computationally expensive problem. We develop an over-approximate method for reachable set computation using polytopic approximation methods and dynamic optimization. These algorithms may be used either in a fully autonomous way, or as supporting tools to increase controllers' situational awareness and to reduce their work load.

  12. Technical and economic viability of automated highway systems : preliminary analysis

    Science.gov (United States)

    1997-01-01

    Technical and economic investigations of automated highway systems (AHS) are addressed. It has generally been accepted that such systems show potential to alleviate urban traffic congestion, so most of the AHS research has been focused instead on tec...

  13. Advanced digital computers, controls, and automation technologies for power plants: Proceedings

    International Nuclear Information System (INIS)

    Bhatt, S.C.

    1992-08-01

    This document is a compilation of the papers that were presented at an EPRI workshop on Advances in Computers, Controls, and Automation Technologies for Power Plants. The workshop, sponsored by EPRI's Nuclear Power Division, took place February 1992. It was attended by 157 representatives from electric utilities, equipment manufacturers, engineering consulting organizations, universities, national laboratories, government agencies and international utilities. More than 40% of the attendees were from utilities representing the majority group. There were 30% attendees from equipment manufacturers and the engineering consulting organizations. The participants from government agencies, universities, and national laboratories were about 10% each. The workshop included a keynote address, 35 technical papers, and vendor's equipment demonstrations. The technical papers described the state-of-the-art in the areas of recent utility digital upgrades such as digital feedwater controllers, steam generator level controllers, integrated plant computer systems, computer aided diagnostics, automated testing and surveillance and other applications. A group of technical papers presented the ongoing B ampersand W PWR integrated plant control system prototype developments with the triple redundant advanced digital control system. Several international papers from France, Japan and U.K. presented their programs on advance power plant design and applications. Significant advances in the control and automation technologies such as adaptive controls, self-tuning methods, neural networks and expert systems were presented by developers, universities, and national laboratories. Individual papers are indexed separately

  14. Traffic Flow Wide-Area Surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.

    1994-09-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  15. Traffic flow wide-area surveillance system

    Science.gov (United States)

    Allgood, Glenn O.; Ferrell, Regina K.; Kercel, Stephen W.; Abston, Ruth A.

    1995-01-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a traffic flow wide-area surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  16. Building the Brain's "Air Traffic Control" System: How Early Experiences Shape the Development of Executive Function. Working Paper 11

    Science.gov (United States)

    National Scientific Council on the Developing Child, 2011

    2011-01-01

    Being able to focus, hold, and work with information in mind, filter distractions, and switch gears is like having an air traffic control system at a busy airport to manage the arrivals and departures of dozens of planes on multiple runways. In the brain, this air traffic control mechanism is called executive functioning, a group of skills that…

  17. Distributed Traffic Control for Reduced Fuel Consumption and Travel Time in Transportation Networks

    Science.gov (United States)

    2018-04-01

    Current technology in traffic control is limited to a centralized approach that has not paid appropriate attention to efficiency of fuel consumption and is subject to the scale of transportation networks. This project proposes a transformative approa...

  18. INTELLIGENT AUTOMATED SYSTEM OF CONTROL OF KNOWLEDGE: LINGUISTIC SUBSYSTEM

    Directory of Open Access Journals (Sweden)

    I. Katerynchuk

    2010-08-01

    Full Text Available A flowchart linguistic structure (morfological, syntactical, semantic and pragmatic analysis of sentences of the automated system of control of intellectual knowledge. The model of artificial intelligence recognition and evaluation of textual answers.

  19. Urban Road Traffic Simulation Techniques

    Directory of Open Access Journals (Sweden)

    Ana Maria Nicoleta Mocofan

    2011-09-01

    Full Text Available For achieving a reliable traffic control system it is necessary to first establish a network parameter evaluation system and also a simulation system for the traffic lights plan. In 40 years of history, the computer aided traffic simulation has developed from a small research group to a large scale technology for traffic systems planning and development. In the following thesis, a presentation of the main modeling and simulation road traffic applications will be provided, along with their utility, as well as the practical application of one of the models in a case study.

  20. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied