WorldWideScience

Sample records for traditional stereoscopic stimuli

  1. Teaching-learning: stereoscopic 3D versus Traditional methods in Mexico City.

    Science.gov (United States)

    Mendoza Oropeza, Laura; Ortiz Sánchez, Ricardo; Ojeda Villagómez, Raúl

    2015-01-01

    In the UNAM Faculty of Odontology, we use a stereoscopic 3D teaching method that has grown more common in the last year, which makes it important to know whether students can learn better with this strategy. The objective of the study is to know, if the 4th year students of the bachelor's degree in dentistry learn more effectively with the use of stereoscopic 3D than the traditional method in Orthodontics. first, we selected the course topics, to be used for both methods; the traditional method using projection of slides and for the stereoscopic third dimension, with the use of videos in digital stereo projection (seen through "passive" polarized 3D glasses). The main topic was supernumerary teeth, including and diverted from their guide eruption. Afterwards we performed an exam on students, containing 24 items, validated by expert judgment in Orthodontics teaching. The results of the data were compared between the two educational methods for determined effectiveness using the model before and after measurement with the statistical package SPSS 20 version. The results presented for the 9 groups of undergraduates in dentistry, were collected with a total of 218 students for 3D and traditional methods, we found in a traditional method a mean 4.91, SD 1.4752 in the pretest and X=6.96, SD 1.26622, St Error 0.12318 for the posttest. The 3D method had a mean 5.21, SD 1.996779 St Error 0.193036 for the pretest X= 7.82, SD =0.963963, St Error 0.09319 posttest; the analysis of Variance between groups F= 5.60 Prob > 0.0000 and Bartlett's test for equal variances 21.0640 Prob > chi2 = 0.007. These results show that the student's learning in 3D means a significant improvement as compared to the traditional teaching method and having a strong association between the two methods. The findings suggest that the stereoscopic 3D method lead to improved student learning compared to traditional teaching.

  2. Stereoscopic Three-Dimensional Neuroanatomy Lectures Enhance Neurosurgical Training: Prospective Comparison with Traditional Teaching.

    Science.gov (United States)

    Clark, Anna D; Guilfoyle, Mathew R; Candy, Nicholas G; Budohoski, Karol P; Hofmann, Riikka; Barone, Damiano G; Santarius, Thomas; Kirollos, Ramez W; Trivedi, Rikin A

    2017-12-01

    Stereoscopic three-dimensional (3D) imaging is increasingly used in the teaching of neuroanatomy and although this is mainly aimed at undergraduate medical students, it has enormous potential for enhancing the training of neurosurgeons. This study aims to assess whether 3D lecturing is an effective method of enhancing the knowledge and confidence of neurosurgeons and how it compares with traditional two-dimensional (2D) lecturing and cadaveric training. Three separate teaching sessions for neurosurgical trainees were organized: 1) 2D course (2D lecture + cadaveric session), 2) 3D lecture alone, and 3) 3D course (3D lecture + cadaveric session). Before and after each session, delegates were asked to complete questionnaires containing questions relating to surgical experience, anatomic knowledge, confidence in performing procedures, and perceived value of 3D, 2D, and cadaveric teaching. Although both 2D and 3D lectures and courses were similarly effective at improving self-rated knowledge and understanding, the 3D lecture and course were associated with significantly greater gains in confidence reported by the delegates for performing a subfrontal approach and sylvian fissure dissection. Stereoscopic 3D lectures provide neurosurgical trainees with greater confidence for performing standard operative approaches and enhances the benefit of subsequent practical experience in developing technical skills in cadaveric dissection. Copyright © 2017. Published by Elsevier Inc.

  3. Digital stereoscopic imaging

    Science.gov (United States)

    Rao, A. Ravishankar; Jaimes, Alejandro

    1999-05-01

    The convergence of inexpensive digital cameras and cheap hardware for displaying stereoscopic images has created the right conditions for the proliferation of stereoscopic imagin applications. One application, which is of growing importance to museums and cultural institutions, consists of capturing and displaying 3D images of objects at multiple orientations. In this paper, we present our stereoscopic imaging system and methodology for semi-automatically capturing multiple orientation stereo views of objects in a studio setting, and demonstrate the superiority of using a high resolution, high fidelity digital color camera for stereoscopic object photography. We show the superior performance achieved with the IBM TDI-Pro 3000 digital camera developed at IBM Research. We examine various choices related to the camera parameters, image capture geometry, and suggest a range of optimum values that work well in practice. We also examine the effect of scene composition and background selection on the quality of the stereoscopic image display. We will demonstrate our technique with turntable views of objects from the IBM Corporate Archive.

  4. Stereoscopic 3D video games and their effects on engagement

    Science.gov (United States)

    Hogue, Andrew; Kapralos, Bill; Zerebecki, Chris; Tawadrous, Mina; Stanfield, Brodie; Hogue, Urszula

    2012-03-01

    With television manufacturers developing low-cost stereoscopic 3D displays, a large number of consumers will undoubtedly have access to 3D-capable televisions at home. The availability of 3D technology places the onus on content creators to develop interesting and engaging content. While the technology of stereoscopic displays and content generation are well understood, there are many questions yet to be answered surrounding its effects on the viewer. Effects of stereoscopic display on passive viewers for film are known, however video games are fundamentally different since the viewer/player is actively (rather than passively) engaged in the content. Questions of how stereoscopic viewing affects interaction mechanics have previously been studied in the context of player performance but very few have attempted to quantify the player experience to determine whether stereoscopic 3D has a positive or negative influence on their overall engagement. In this paper we present a preliminary study of the effects stereoscopic 3D have on player engagement in video games. Participants played a video game in two conditions, traditional 2D and stereoscopic 3D and their engagement was quantified using a previously validated self-reporting tool. The results suggest that S3D has a positive effect on immersion, presence, flow, and absorption.

  5. Clinical usefulness of stereoscopic DSA

    International Nuclear Information System (INIS)

    Bussaka, Hiromasa; Takahashi, Mutsumasa; Miyawaki, Masayuki; Korogi, Yukinori; Yamashita, Yasuyuki; Izunaga, Hiroshi; Nakashima, Koki; Yoshizumi, Kazuhiro

    1988-01-01

    Digital subtraction angiography (DSA) is widely used as a screening examination for vascular diseases, but it has several disadvantages, one of which is overlapping of the vessels. To overcome this disadvantage, stereoscopic technique is applied to our DSA equipment. Stereoscopic DSA is obtained by alternate exposures from twin focal spots of an x-ray tube without additional contrast medium or radiation exposures. Stereoscopic intravenous DSA was performed 223 times, and was useful in 157 times (70.4 %) for the identification and stereoscopic observation of the abdominal and pelvic vessels. Thirty-seven intra-arterial DSAs were performed stereoscopically for cranial, abdominal and pelvic angiograms, and effective studies were obtained in 30 DSAs (81.1 %) with demonstration of tumor stains and displacement of the vessels. It is necessary to use adequate compensation filters for the good stereoscopic DSAs, especially for the cervical and thoracic DSAs. (author)

  6. Stereoscopy in diagnostic radiology and procedure planning: does stereoscopic assessment of volume-rendered CT angiograms lead to more accurate characterisation of cerebral aneurysms compared with traditional monoscopic viewing?

    International Nuclear Information System (INIS)

    Stewart, Nikolas; Lock, Gregory; Coucher, John; Hopcraft, Anthony

    2014-01-01

    Stereoscopic vision is a critical part of the human visual system, conveying more information than two-dimensional, monoscopic observation alone. This study aimed to quantify the contribution of stereoscopy in assessment of radiographic data, using widely available three-dimensional (3D)-capable display monitors by assessing whether stereoscopic viewing improved the characterisation of cerebral aneurysms. Nine radiology registrars were shown 40 different volume-rendered (VR) models of cerebral computed tomography angiograms (CTAs), each in both monoscopic and stereoscopic format and then asked to record aneurysm characteristics on short multiple-choice answer sheets. The monitor used was a current model commercially available 3D television. Responses were marked against a gold standard of assessments made by a consultant radiologist, using the original CT planar images on a diagnostic radiology computer workstation. The participants' results were fairly homogenous, with most showing no difference in diagnosis using stereoscopic VR models. One participant performed better on the monoscopic VR models. On average, monoscopic VRs achieved a slightly better diagnosis by 2.0%. Stereoscopy has a long history, but it has only recently become technically feasible for stored cross-sectional data to be adequately reformatted and displayed in this format. Scant literature exists to quantify the technology's possible contribution to medical imaging - this study attempts to build on this limited knowledge base and promote discussion within the field. Stereoscopic viewing of images should be further investigated and may well eventually find a permanent place in procedural and diagnostic medical imaging.

  7. Stereoscopic 3D graphics generation

    Science.gov (United States)

    Li, Zhi; Liu, Jianping; Zan, Y.

    1997-05-01

    Stereoscopic display technology is one of the key techniques of areas such as simulation, multimedia, entertainment, virtual reality, and so on. Moreover, stereoscopic 3D graphics generation is an important part of stereoscopic 3D display system. In this paper, at first, we describe the principle of stereoscopic display and summarize some methods to generate stereoscopic 3D graphics. Secondly, to overcome the problems which came from the methods of user defined models (such as inconvenience, long modifying period and so on), we put forward the vector graphics files defined method. Thus we can design more directly; modify the model simply and easily; generate more conveniently; furthermore, we can make full use of graphics accelerator card and so on. Finally, we discuss the problem of how to speed up the generation.

  8. Stereoscopic optical viewing system

    Science.gov (United States)

    Tallman, C.S.

    1986-05-02

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  9. Polarizing aperture stereoscopic cinema camera

    Science.gov (United States)

    Lipton, Lenny

    2012-07-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.

  10. Stereoscopic methods in TEM

    International Nuclear Information System (INIS)

    Thomas, L.E.

    1975-07-01

    Stereoscopic methods used in TEM are reviewed. The use of stereoscopy to characterize three-dimensional structures observed by TEM has become widespread since the introduction of instruments operating at 1 MV. In its emphasis on whole structures and thick specimens this approach differs significantly from conventional methods of microstructural analysis based on three-dimensional image reconstruction from a number of thin-section views. The great advantage of stereo derives from the ability to directly perceive and measure structures in three-dimensions by capitalizing on the unsurpassed human ability for stereoscopic matching of corresponding details on picture pairs showing the same features from different viewpoints. At this time, stereo methods are aimed mainly at structural understanding at the level of dislocations, precipitates, and irradiation-induced point-defect clusters in crystal and on the cellular irradiation-induced point-defect clusters in crystal and on the cellular level of biological specimens. 3-d reconstruction methods have concentrated on the molecular level where image resolution requirements dictate the use of very thin specimens. One recent application of three-dimensional coordinate measurements is a system developed for analyzing depth variations in the numbers, sizes and total volumes of voids produced near the surfaces of metal specimens during energetic ion bombardment. This system was used to correlate the void volumes at each depth along the ion range with the number of atomic displacements produced at that depth, thereby unfolding the entire swelling versus dose relationship from a single stereo view. A later version of this system incorporating computer-controlled stereo display capabilities is now being built

  11. [Dendrobium officinale stereoscopic cultivation method].

    Science.gov (United States)

    Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui

    2014-12-01

    The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor.

  12. Stereoscopically Observing Manipulative Actions.

    Science.gov (United States)

    Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A

    2016-08-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. © The Author 2016. Published by Oxford University Press.

  13. Analysis of brain activity and response during monoscopic and stereoscopic visualization

    Science.gov (United States)

    Calore, Enrico; Folgieri, Raffaella; Gadia, Davide; Marini, Daniele

    2012-03-01

    Stereoscopic visualization in cinematography and Virtual Reality (VR) creates an illusion of depth by means of two bidimensional images corresponding to different views of a scene. This perceptual trick is used to enhance the emotional response and the sense of presence and immersivity of the observers. An interesting question is if and how it is possible to measure and analyze the level of emotional involvement and attention of the observers during a stereoscopic visualization of a movie or of a virtual environment. The research aims represent a challenge, due to the large number of sensorial, physiological and cognitive stimuli involved. In this paper we begin this research by analyzing possible differences in the brain activity of subjects during the viewing of monoscopic or stereoscopic contents. To this aim, we have performed some preliminary experiments collecting electroencephalographic (EEG) data of a group of users using a Brain- Computer Interface (BCI) during the viewing of stereoscopic and monoscopic short movies in a VR immersive installation.

  14. Crosstalk evaluation in stereoscopic displays

    NARCIS (Netherlands)

    Wang, L.; Teunissen, C.; Tu, Yan; Chen, Li; Zhang, P.; Zhang, T.; Heynderickx, I.E.J.

    2011-01-01

    Substantial progress in liquid-crystal display and polarization film technology has enabled several types of stereoscopic displays. Despite all progress, some image distortions still exist in these 3-D displays, of which interocular crosstalk - light leakage of the image for one eye to the other eye

  15. Stereoscopic Visualization of Diffusion Tensor Imaging Data: A Comparative Survey of Visualization Techniques

    International Nuclear Information System (INIS)

    Raslan, O.; Debnam, J.M.; Ketonen, L.; Kumar, A.J.; Schellingerhout, D.; Wang, J.

    2013-01-01

    Diffusion tensor imaging (DTI) data has traditionally been displayed as a gray scale functional anisotropy map (GSFM) or color coded orientation map (CCOM). These methods use black and white or color with intensity values to map the complex multidimensional DTI data to a two-dimensional image. Alternative visualization techniques, such as V m ax maps utilize enhanced graphical representation of the principal eigenvector by means of a headless arrow on regular non stereoscopic (VM) or stereoscopic display (VMS). A survey of clinical utility of patients with intracranial neoplasms was carried out by 8 neuro radiologists using traditional and nontraditional methods of DTI display. Pairwise comparison studies of 5 intracranial neoplasms were performed with a structured questionnaire comparing GSFM, CCOM, VM, and VMS. Six of 8 neuro radiologists favored V m ax maps over traditional methods of display (GSFM and CCOM). When comparing the stereoscopic (VMS) and the non-stereoscopic (VM) modes, 4 favored VMS, 2 favored VM, and 2 had no preference. In conclusion, processing and visualizing DTI data stereoscopically is technically feasible. An initial survey of users indicated that V m ax based display methodology with or without stereoscopic visualization seems to be preferred over traditional methods to display DTI data.

  16. Stereoscopic Three-Dimensional Visualization Applied to Multimodal Brain Images: Clinical Applications and a Functional Connectivity Atlas.

    Directory of Open Access Journals (Sweden)

    Gonzalo M Rojas

    2014-11-01

    Full Text Available Effective visualization is central to the exploration and comprehension of brain imaging data. While MRI data are acquired in three-dimensional space, the methods for visualizing such data have rarely taken advantage of three-dimensional stereoscopic technologies. We present here results of stereoscopic visualization of clinical data, as well as an atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive description of the exact location and the relative sizes of various brain landmarks, structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization facilitated comprehension of the anatomical position of complex large-scale functional connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual comprehension of image contents, and brings increased dimensionality to visualization of traditional MRI data, as well as patterns of functional connectivity.

  17. Stereoscopic medical imaging collaboration system

    Science.gov (United States)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  18. Tradition

    DEFF Research Database (Denmark)

    Otto, Ton

    2016-01-01

    : beliefs, practices, institutions, and also things. In this sense, the meaning of the term in social research is very close to its usage in common language and is not always theoretically well developed (see Shils, 1971: 123). But the concept of tradition has also been central to major theoretical debates...... on the nature of social change, especially in connection with the notion of modernity. Here tradition is linked to various forms of agency as a factor of both stability and intentional change....

  19. Stereoscopic game design and evaluation

    Science.gov (United States)

    Rivett, Joe; Holliman, Nicolas

    2013-03-01

    We report on a new game design where the goal is to make the stereoscopic depth cue sufficiently critical to success that game play should become impossible without using a stereoscopic 3D (S3D) display and, at the same time, we investigate whether S3D game play is affected by screen size. Before we detail our new game design we review previously unreported results from our stereoscopic game research over the last ten years at the Durham Visualisation Laboratory. This demonstrates that game players can achieve significantly higher scores using S3D displays when depth judgements are an integral part of the game. Method: We design a game where almost all depth cues, apart from the binocular cue, are removed. The aim of the game is to steer a spaceship through a series of oncoming hoops where the viewpoint of the game player is from above, with the hoops moving right to left across the screen towards the spaceship, to play the game it is essential to make decisive depth judgments to steer the spaceship through each oncoming hoop. To confound these judgements we design altered depth cues, for example perspective is reduced as a cue by varying the hoop's depth, radius and cross-sectional size. Results: Players were screened for stereoscopic vision, given a short practice session, and then played the game in both 2D and S3D modes on a seventeen inch desktop display, on average participants achieved a more than three times higher score in S3D than they achieved in 2D. The same experiment was repeated using a four metre S3D projection screen and similar results were found. Conclusions: Our conclusion is that games that use the binocular depth cue in decisive game judgements can benefit significantly from using an S3D display. Based on both our current and previous results we additionally conclude that display size, from cell-phone, to desktop, to projection display does not adversely affect player performance.

  20. 21 CFR 886.1870 - Stereoscope.

    Science.gov (United States)

    2010-04-01

    ... exercises of eye muscles. (b) Classification. Class I (general controls). The AC-powered device and the... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1870 Stereoscope. (a) Identification. A stereoscope is an AC...

  1. No-reference stereoscopic image quality measurement based on generalized local ternary patterns of binocular energy response

    International Nuclear Information System (INIS)

    Zhou, Wujie; Yu, Lu

    2015-01-01

    Perceptual no-reference (NR) quality measurement of stereoscopic images has become a challenging issue in three-dimensional (3D) imaging fields. In this article, we propose an efficient binocular quality-aware features extraction scheme, namely generalized local ternary patterns (GLTP) of binocular energy response, for general-purpose NR stereoscopic image quality measurement (SIQM). More specifically, we first construct the binocular energy response of a distorted stereoscopic image with different stimuli of amplitude and phase shifts. Then, the binocular quality-aware features are generated from the GLTP of the binocular energy response. Finally, these features are mapped to the subjective quality score of the distorted stereoscopic image by using support vector regression. Experiments on two publicly available 3D databases confirm the effectiveness of the proposed metric compared with the state-of-the-art full reference and NR metrics. (paper)

  2. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Science.gov (United States)

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  3. Subjective and objective measurements of visual fatigue induced by excessive disparities in stereoscopic images

    Science.gov (United States)

    Jung, Yong Ju; Kim, Dongchan; Sohn, Hosik; Lee, Seong-il; Park, Hyun Wook; Ro, Yong Man

    2013-03-01

    As stereoscopic displays have spread, it is important to know what really causes the visual fatigue and discomfort and what happens in the visual system in the brain behind the retina while viewing stereoscopic 3D images on the displays. In this study, functional magnetic resonance imaging (fMRI) was used for the objective measurement to assess the human brain regions involved in the processing of the stereoscopic stimuli with excessive disparities. Based on the subjective measurement results, we selected two subsets of comfort videos and discomfort videos in our dataset. Then, a fMRI experiment was conducted with the subsets of comfort and discomfort videos in order to identify which brain regions activated while viewing the discomfort videos in a stereoscopic display. We found that, when viewing a stereoscopic display, the right middle frontal gyrus, the right inferior frontal gyrus, the right intraparietal lobule, the right middle temporal gyrus, and the bilateral cuneus were significantly activated during the processing of excessive disparities, compared to those of small disparities (< 1 degree).

  4. Architecture for high performance stereoscopic game rendering on Android

    Science.gov (United States)

    Flack, Julien; Sanderson, Hugh; Shetty, Sampath

    2014-03-01

    Stereoscopic gaming is a popular source of content for consumer 3D display systems. There has been a significant shift in the gaming industry towards casual games for mobile devices running on the Android™ Operating System and driven by ARM™ and other low power processors. Such systems are now being integrated directly into the next generation of 3D TVs potentially removing the requirement for an external games console. Although native stereo support has been integrated into some high profile titles on established platforms like Windows PC and PS3 there is a lack of GPU independent 3D support for the emerging Android platform. We describe a framework for enabling stereoscopic 3D gaming on Android for applications on mobile devices, set top boxes and TVs. A core component of the architecture is a 3D game driver, which is integrated into the Android OpenGL™ ES graphics stack to convert existing 2D graphics applications into stereoscopic 3D in real-time. The architecture includes a method of analyzing 2D games and using rule based Artificial Intelligence (AI) to position separate objects in 3D space. We describe an innovative stereo 3D rendering technique to separate the views in the depth domain and render directly into the display buffer. The advantages of the stereo renderer are demonstrated by characterizing the performance in comparison to more traditional render techniques, including depth based image rendering, both in terms of frame rates and impact on battery consumption.

  5. Depth Perception In Remote Stereoscopic Viewing Systems

    Science.gov (United States)

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  6. Brief history of electronic stereoscopic displays

    Science.gov (United States)

    Lipton, Lenny

    2012-02-01

    A brief history of recent developments in electronic stereoscopic displays is given concentrating on products that have succeeded in the market place and hence have had a significant influence on future implementations. The concentration is on plano-stereoscopic (two-view) technology because it is now the dominant display modality in the marketplace. Stereoscopic displays were created for the motion picture industry a century ago, and this technology influenced the development of products for science and industry, which in turn influenced product development for entertainment.

  7. Stereoscopic augmented reality for laparoscopic surgery.

    Science.gov (United States)

    Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj

    2014-07-01

    Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and

  8. Two Eyes, 3D: Stereoscopic Design Principles

    Science.gov (United States)

    Price, Aaron; Subbarao, M.; Wyatt, R.

    2013-01-01

    Two Eyes, 3D is a NSF-funded research project about how people perceive highly spatial objects when shown with 2D or stereoscopic ("3D") representations. As part of the project, we produced a short film about SN 2011fe. The high definition film has been rendered in both 2D and stereoscopic formats. It was developed according to a set of stereoscopic design principles we derived from the literature and past experience producing and studying stereoscopic films. Study participants take a pre- and post-test that involves a spatial cognition assessment and scientific knowledge questions about Type-1a supernovae. For the evaluation, participants use iPads in order to record spatial manipulation of the device and look for elements of embodied cognition. We will present early results and also describe the stereoscopic design principles and the rationale behind them. All of our content and software is available under open source licenses. More information is at www.twoeyes3d.org.

  9. 21 CFR 886.1880 - Fusion and stereoscopic target.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing object...

  10. Virtual and stereoscopic anatomy: when virtual reality meets medical education.

    Science.gov (United States)

    de Faria, Jose Weber Vieira; Teixeira, Manoel Jacobsen; de Moura Sousa Júnior, Leonardo; Otoch, Jose Pinhata; Figueiredo, Eberval Gadelha

    2016-11-01

    OBJECTIVE The authors sought to construct, implement, and evaluate an interactive and stereoscopic resource for teaching neuroanatomy, accessible from personal computers. METHODS Forty fresh brains (80 hemispheres) were dissected. Images of areas of interest were captured using a manual turntable and processed and stored in a 5337-image database. Pedagogic evaluation was performed in 84 graduate medical students, divided into 3 groups: 1 (conventional method), 2 (interactive nonstereoscopic), and 3 (interactive and stereoscopic). The method was evaluated through a written theory test and a lab practicum. RESULTS Groups 2 and 3 showed the highest mean scores in pedagogic evaluations and differed significantly from Group 1 (p 0.05). Size effects, measured as differences in scores before and after lectures, indicate the effectiveness of the method. ANOVA results showed significant difference (p < 0.05) between groups, and the Tukey test showed statistical differences between Group 1 and the other 2 groups (p < 0.05). No statistical differences between Groups 2 and 3 were found in the practicum. However, there were significant differences when Groups 2 and 3 were compared with Group 1 (p < 0.05). CONCLUSIONS The authors conclude that this method promoted further improvement in knowledge for students and fostered significantly higher learning when compared with traditional teaching resources.

  11. Stereoscopic display in a slot machine

    Science.gov (United States)

    Laakso, M.

    2012-03-01

    This paper reports the results of a user trial with a slot machine equipped with a stereoscopic display. The main research question was to find out what kind of added value does stereoscopic 3D (S-3D) bring to slot games? After a thorough literature survey, a novel gaming platform was designed and implemented. Existing multi-game slot machine "Nova" was converted to "3DNova" by replacing the monitor with an S-3D display and converting six original games to S-3D format. To evaluate the system, several 3DNova machines were put available for players for four months. Both qualitative and quantitative analysis was carried out from statistical values, questionnaires and observations. According to the results, people find the S-3D concept interesting but the technology is not optimal yet. Young adults and adults were fascinated by the system, older people were more cautious. Especially the need to wear stereoscopic glasses provide a challenge; ultimate system would probably use autostereoscopic technology. Also the games should be designed to utilize its full power. The main contributions of this paper are lessons learned from creating an S-3D slot machine platform and novel information about human factors related to stereoscopic slot machine gaming.

  12. Matte painting in stereoscopic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2010-02-01

    While there have been numerous studies concerning human perception in stereoscopic environments, rules of thumb for cinematography in stereoscopy have not yet been well-established. To that aim, we present experiments and results of subject testing in a stereoscopic environment, similar to that of a theater (i.e. large flat screen without head-tracking). In particular we wish to empirically identify thresholds at which different types of backgrounds, referred to in the computer animation industry as matte paintings, can be used while still maintaining the illusion of seamless perspective and depth for a particular scene and camera shot. In monoscopic synthetic imagery, any type of matte painting that maintains proper perspective lines, depth cues, and coherent lighting and textures saves in production costs while still maintaining the illusion of an alternate cinematic reality. However, in stereoscopic synthetic imagery, a 2D matte painting that worked in monoscopy may fail to provide the intended illusion of depth because the viewer has added depth information provided by stereopsis. We intend to observe two stereoscopic perceptual thresholds in this study which will provide practical guidelines indicating when to use each of three types of matte paintings. We ran subject tests in two virtual testing environments, each with varying conditions. Data were collected showing how the choices of the users matched the correct response, and the resulting perceptual threshold patterns are discussed below.

  13. Visual discomfort in stereoscopic displays : a review

    NARCIS (Netherlands)

    Lambooij, M.T.M.; IJsselsteijn, W.A.; Heynderickx, I.E.J.; Woods, A.J.; Merritt, J.O.; Bolas, M.T.; McDowall, I.E.

    2007-01-01

    Visual discomfort has been the subject of considerable research in relation to stereoscopic and autostereoscopic displays, but remains an ambiguous concept used to denote a variety of subjective symptoms potentially related to different underlying processes. In this paper we clarify the importance

  14. Visual discomfort in stereoscopic dsplays : A review

    NARCIS (Netherlands)

    Lambooij, M.T.M.; IJsselsteijn, W.; Heynderickx, I.

    2007-01-01

    Visual discomfort has been the subject of considerable research in relation to stereoscopic and autostereoscopic displays, but remains an ambiguous concept used to denote a variety of subjective symptoms potentially related to different underlying processes. In this paper we clarify the importance

  15. Teaching with Stereoscopic Video: Opportunities and Challenges

    Science.gov (United States)

    Variano, Evan

    2017-11-01

    I will present my work on creating stereoscopic videos for fluid pedagogy. I discuss a variety of workflows for content creation and a variety of platforms for content delivery. I review the qualitative lessons learned when teaching with this material, and discuss outlook for the future. This work was partially supported by the NSF award ENG-1604026 and the UC Berkeley Student Technology Fund.

  16. What is 3D good for? A review of human performance on stereoscopic 3D displays

    Science.gov (United States)

    McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.

  17. A stereoscopic television system for reactor inspection

    International Nuclear Information System (INIS)

    Friend, D.B.; Jones, A.

    1980-03-01

    A stereoscopic television system suitable for reactor inspection has been developed. Right and left eye views, obtained from two conventional black and white cameras, are displayed by the anaglyph technique and observers wear appropriately coloured viewing spectacles. All camera functions, such as zoom, focus and toe-in are remotely controlled. A laboratory experiment is described which demonstrates the increase in spatial awareness afforded by the use of stereo television and illustrates its potential in the supervision of remote handling tasks. Typical depth resolutions of 3mm at 1m and 10mm at 2m have been achieved with the reactor instrument. Trials undertaken during routine inspection at Oldbury Power Station in June 1978 are described. They demonstrate that stereoscopic television can indeed improve the convenience of remote handling and that the added display realism is beneficial in visual inspection. (author)

  18. Stereoscopic image production: live, CGI, and integration

    Science.gov (United States)

    Criado, Enrique

    2006-02-01

    This paper shortly describes part of the experience gathered in more than 10 years of stereoscopic movie production, some of the most common problems found and the solutions, with more or less fortune, we applied to solve those problems. Our work is mainly focused in the entertainment market, theme parks, museums, and other cultural related locations and events. In our movies, we have been forced to develop our own devices to permit correct stereo shooting (stereoscopic rigs) or stereo monitoring (real-time), and to solve problems found with conventional film editing, compositing and postproduction software. Here, we discuss stereo lighting, monitoring, special effects, image integration (using dummies and more), stereo-camera parameters, and other general 3-D movie production aspects.

  19. Is eye damage caused by stereoscopic displays?

    Science.gov (United States)

    Mayer, Udo; Neumann, Markus D.; Kubbat, Wolfgang; Landau, Kurt

    2000-05-01

    A normal developing child will achieve emmetropia in youth and maintain it. Thereby cornea, lens and axial length of the eye grow astonishingly coordinated. In the last years research has evidenced that this coordinated growing process is a visually controlled closed loop. The mechanism has been studied particularly in animals. It was found that the growth of the axial length of the eyeball is controlled by image focus information from the retina. It was shown that maladjustment can occur by this visually-guided growth control mechanism that result in ametropia. Thereby it has been proven that e.g. short-sightedness is not only caused by heredity, but is acquired under certain visual conditions. It is shown that these conditions are similar to the conditions of viewing stereoscopic displays where the normal accommodation convergence coupling is disjoint. An evaluation is given of the potential of damaging the eyes by viewing stereoscopic displays. Concerning this, different viewing methods for stereoscopic displays are evaluated. Moreover, clues are given how the environment and display conditions shall be set and what users shall be chosen to minimize the risk of eye damages.

  20. Usability of stereoscopic view in teleoperation

    Science.gov (United States)

    Boonsuk, Wutthigrai

    2015-03-01

    Recently, there are tremendous growths in the area of 3D stereoscopic visualization. The 3D stereoscopic visualization technology has been used in a growing number of consumer products such as the 3D televisions and the 3D glasses for gaming systems. This technology refers to the idea that human brain develops depth of perception by retrieving information from the two eyes. Our brain combines the left and right images on the retinas and extracts depth information. Therefore, viewing two video images taken at slightly distance apart as shown in Figure 1 can create illusion of depth [8]. Proponents of this technology argue that the stereo view of 3D visualization increases user immersion and performance as more information is gained through the 3D vision as compare to the 2D view. However, it is still uncertain if additional information gained from the 3D stereoscopic visualization can actually improve user performance in real world situations such as in the case of teleoperation.

  1. Human factors involved in perception and action in a natural stereoscopic world: an up-to-date review with guidelines for stereoscopic displays and stereoscopic virtual reality (VR)

    Science.gov (United States)

    Perez-Bayas, Luis

    2001-06-01

    In stereoscopic perception of a three-dimensional world, binocular disparity might be thought of as the most important cue to 3D depth perception. Nevertheless, in reality there are many other factors involved before the 'final' conscious and subconscious stereoscopic perception, such as luminance, contrast, orientation, color, motion, and figure-ground extraction (pop-out phenomenon). In addition, more complex perceptual factors exist, such as attention and its duration (an equivalent of 'brain zooming') in relation to physiological central vision, In opposition to attention to peripheral vision and the brain 'top-down' information in relation to psychological factors like memory of previous experiences and present emotions. The brain's internal mapping of a pure perceptual world might be different from the internal mapping of a visual-motor space, which represents an 'action-directed perceptual world.' In addition, psychological factors (emotions and fine adjustments) are much more involved in a stereoscopic world than in a flat 2D-world, as well as in a world using peripheral vision (like VR, using a curved perspective representation, and displays, as natural vision does) as opposed to presenting only central vision (bi-macular stereoscopic vision) as in the majority of typical stereoscopic displays. Here is presented the most recent and precise information available about the psycho-neuro- physiological factors involved in the perception of stereoscopic three-dimensional world, with an attempt to give practical, functional, and pertinent guidelines for building more 'natural' stereoscopic displays.

  2. Use of the stereoscopic virtual reality display system for the detection and characterization of intracranial aneurysms: A Icomparison with conventional computed tomography workstation and 3D rotational angiography.

    Science.gov (United States)

    Liu, Xiujuan; Tao, Haiquan; Xiao, Xigang; Guo, Binbin; Xu, Shangcai; Sun, Na; Li, Maotong; Xie, Li; Wu, Changjun

    2018-07-01

    This study aimed to compare the diagnostic performance of the stereoscopic virtual reality display system with the conventional computed tomography (CT) workstation and three-dimensional rotational angiography (3DRA) for intracranial aneurysm detection and characterization, with a focus on small aneurysms and those near the bone. First, 42 patients with suspected intracranial aneurysms underwent both 256-row CT angiography (CTA) and 3DRA. Volume rendering (VR) images were captured using the conventional CT workstation. Next, VR images were transferred to the stereoscopic virtual reality display system. Two radiologists independently assessed the results that were obtained using the conventional CT workstation and stereoscopic virtual reality display system. The 3DRA results were considered as the ultimate reference standard. Based on 3DRA images, 38 aneurysms were confirmed in 42 patients. Two cases were misdiagnosed and 1 was missed when the traditional CT workstation was used. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional CT workstation were 94.7%, 85.7%, 97.3%, 75%, and99.3%, respectively, on a per-aneurysm basis. The stereoscopic virtual reality display system missed a case. The sensitivity, specificity, PPV, NPV, and accuracy of the stereoscopic virtual reality display system were 100%, 85.7%, 97.4%, 100%, and 97.8%, respectively. No difference was observed in the accuracy of the traditional CT workstation, stereoscopic virtual reality display system, and 3DRA in detecting aneurysms. The stereoscopic virtual reality display system has some advantages in detecting small aneurysms and those near the bone. The virtual reality stereoscopic vision obtained through the system was found as a useful tool in intracranial aneurysm diagnosis and pre-operative 3D imaging. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Digital stereoscopic cinema: the 21st century

    Science.gov (United States)

    Lipton, Lenny

    2008-02-01

    Over 1000 theaters in more than a dozen countries have been outfitted with digital projectors using the Texas Instruments DLP engine equipped to show field-sequential 3-D movies using the polarized method of image selection. Shuttering eyewear and advanced anaglyph products are also being deployed for image selection. Many studios are in production with stereoscopic films, and some have committed to producing their entire output of animated features in 3-D. This is a time of technology change for the motion picture industry.

  4. Phase-only stereoscopic hologram calculation based on Gerchberg–Saxton iterative algorithm

    International Nuclear Information System (INIS)

    Xia Xinyi; Xia Jun

    2016-01-01

    A phase-only computer-generated holography (CGH) calculation method for stereoscopic holography is proposed in this paper. The two-dimensional (2D) perspective projection views of the three-dimensional (3D) object are generated by the computer graphics rendering techniques. Based on these views, a phase-only hologram is calculated by using the Gerchberg–Saxton (GS) iterative algorithm. Comparing with the non-iterative algorithm in the conventional stereoscopic holography, the proposed method improves the holographic image quality, especially for the phase-only hologram encoded from the complex distribution. Both simulation and optical experiment results demonstrate that our proposed method can give higher quality reconstruction comparing with the traditional method. (special topic)

  5. Peculiarities of perception of stereoscopic radiation images in full colour

    International Nuclear Information System (INIS)

    Mamchev, G.V.

    1994-01-01

    The principles of coloring stereoscopic radiation images providing their three-dimensional structure distinguishing increase are discussed. The results of analytical and experimental studies dealing with estimation of the effect of stereoscopic image chromaticity on accuracy of metric operations realization in three-dimensional space are given. 5 refs., 1 fig., 1 tab

  6. Alternation Frequency Thresholds for Stereopsis as a Technique for Exploring Stereoscopic Difficulties

    Directory of Open Access Journals (Sweden)

    Svetlana Rychkova

    2011-01-01

    Full Text Available When stereoscopic images are presented alternately to the two eyes, stereopsis occurs at F ⩾ 1 Hz full-cycle frequencies for very simple stimuli, and F ⩾ 3 Hz full-cycle frequencies for random-dot stereograms (eg Ludwig I, Pieper W, Lachnit H, 2007 “Temporal integration of monocular images separated in time: stereopsis, stereoacuity, and binocular luster” Perception & Psychophysics 69 92–102. Using twenty different stereograms presented through liquid crystal shutters, we studied the transition to stereopsis with fifteen subjects. The onset of stereopsis was observed during a stepwise increase of the alternation frequency, and its disappearance was observed during a stepwise decrease in frequency. The lowest F values (around 2.5 Hz were observed with stimuli involving two to four simple disjoint elements (circles, arcs, rectangles. Higher F values were needed for stimuli containing slanted elements or curved surfaces (about 1 Hz increment, overlapping elements at two different depths (about 2.5 Hz increment, or camouflaged overlapping surfaces (> 7 Hz increment. A textured cylindrical surface with a horizontal axis appeared easier to interpret (5.7 Hz than a pair of slanted segments separated in depth but forming a cross in projection (8 Hz. Training effects were minimal, and F usually increased as disparities were reduced. The hierarchy of difficulties revealed in the study may shed light on various problems that the brain needs to solve during stereoscopic interpretation. During the construction of the three-dimensional percept, the loss of information due to natural decay of the stimuli traces must be compensated by refreshes of visual input. In the discussion an attempt is made to link our results with recent advances in the comprehension of visual scene memory.

  7. An HTML Tool for Production of Interactive Stereoscopic Compositions.

    Science.gov (United States)

    Chistyakov, Alexey; Soto, Maria Teresa; Martí, Enric; Carrabina, Jordi

    2016-12-01

    The benefits of stereoscopic vision in medical applications were appreciated and have been thoroughly studied for more than a century. The usage of the stereoscopic displays has a proven positive impact on performance in various medical tasks. At the same time the market of 3D-enabled technologies is blooming. New high resolution stereo cameras, TVs, projectors, monitors, and head mounted displays become available. This equipment, completed with a corresponding application program interface (API), could be relatively easy implemented in a system. Such complexes could open new possibilities for medical applications exploiting the stereoscopic depth. This work proposes a tool for production of interactive stereoscopic graphical user interfaces, which could represent a software layer for web-based medical systems facilitating the stereoscopic effect. Further the tool's operation mode and the results of the conducted subjective and objective performance tests will be exposed.

  8. Evaluating methods for controlling depth perception in stereoscopic cinematography

    Science.gov (United States)

    Sun, Geng; Holliman, Nick

    2009-02-01

    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography

  9. The effects of 5.1 sound presentations on the perception of stereoscopic imagery in video games

    Science.gov (United States)

    Cullen, Brian; Galperin, Daniel; Collins, Karen; Hogue, Andrew; Kapralos, Bill

    2013-03-01

    Stereoscopic 3D (S3D) content in games, film and other audio-visual media has been steadily increasing over the past number of years. However, there are still open, fundamental questions regarding its implementation, particularly as it relates to a multi-modal experience that involves sound and haptics. Research has shown that sound has considerable impact on our perception of 2D phenomena, but very little research has considered how sound may influence stereoscopic 3D. Here we present the results of an experiment that examined the effects of 5.1 surround sound (5.1) and stereo loudspeaker setups on depth perception in relation to S3D imagery within a video game environment. Our aim was to answer the question: "can 5.1 surround sound enhance the participant's perception of depth in the stereoscopic field when compared to traditional stereo sound presentations?" In addition, our study examined how the presence or absence of Doppler frequency shift and frequency fall-off audio effects can also influence depth judgment under these conditions. Results suggest that 5.1 surround sound presentations enhance the apparent depth of stereoscopic imagery when compared to stereo presentations. Results also suggest that the addition of audio effects such as Doppler shift and frequency fall-off filters can influence the apparent depth of S3D objects.

  10. Psychometric Assessment of Stereoscopic Head-Mounted Displays

    Science.gov (United States)

    2016-06-29

    Journal Article 3. DATES COVERED (From – To) Jan 2015 - Dec 2015 4. TITLE AND SUBTITLE PSYCHOMETRIC ASSESSMENT OF STEREOSCOPIC HEAD- MOUNTED DISPLAYS...to render an immersive three-dimensional constructive environment. The purpose of this effort was to quantify the impact of aircrew vision on an...simulated tasks requiring precise depth discrimination. This work will provide an example validation method for future stereoscopic virtual immersive

  11. Interactive floating windows: a new technique for stereoscopic video games

    Science.gov (United States)

    Zerebecki, Chris; Stanfield, Brodie; Tawadrous, Mina; Buckstein, Daniel; Hogue, Andrew; Kapralos, Bill

    2012-03-01

    The film industry has a long history of creating compelling experiences in stereoscopic 3D. Recently, the video game as an artistic medium has matured into an effective way to tell engaging and immersive stories. Given the current push to bring stereoscopic 3D technology into the consumer market there is considerable interest to develop stereoscopic 3D video games. Game developers have largely ignored the need to design their games specifically for stereoscopic 3D and have thus relied on automatic conversion and driver technology. Game developers need to evaluate solutions used in other media, such as film, to correct perceptual problems such as window violations, and modify or create new solutions to work within an interactive framework. In this paper we extend the dynamic floating window technique into the interactive domain enabling the player to position a virtual window in space. Interactively changing the position, size, and the 3D rotation of the virtual window, objects can be made to 'break the mask' dramatically enhancing the stereoscopic effect. By demonstrating that solutions from the film industry can be extended into the interactive space, it is our hope that this initiates further discussion in the game development community to strengthen their story-telling mechanisms in stereoscopic 3D games.

  12. Stereoscopic Visual Attention-Based Regional Bit Allocation Optimization for Multiview Video Coding

    Directory of Open Access Journals (Sweden)

    Dai Qionghai

    2010-01-01

    Full Text Available We propose a Stereoscopic Visual Attention- (SVA- based regional bit allocation optimization for Multiview Video Coding (MVC by the exploiting visual redundancies from human perceptions. We propose a novel SVA model, where multiple perceptual stimuli including depth, motion, intensity, color, and orientation contrast are utilized, to simulate the visual attention mechanisms of human visual system with stereoscopic perception. Then, a semantic region-of-interest (ROI is extracted based on the saliency maps of SVA. Both objective and subjective evaluations of extracted ROIs indicated that the proposed SVA model based on ROI extraction scheme outperforms the schemes only using spatial or/and temporal visual attention clues. Finally, by using the extracted SVA-based ROIs, a regional bit allocation optimization scheme is presented to allocate more bits on SVA-based ROIs for high image quality and fewer bits on background regions for efficient compression purpose. Experimental results on MVC show that the proposed regional bit allocation algorithm can achieve over % bit-rate saving while maintaining the subjective image quality. Meanwhile, the image quality of ROIs is improved by  dB at the cost of insensitive image quality degradation of the background image.

  13. What is stereoscopic vision good for?

    Science.gov (United States)

    Read, Jenny C. A.

    2015-03-01

    Stereo vision is a resource-intensive process. Nevertheless, it has evolved in many animals including mammals, birds, amphibians and insects. It must therefore convey significant fitness benefits. It is often assumed that the main benefit is improved accuracy of depth judgments, but camouflage breaking may be as important, particularly in predatory animals. In humans, for the last 150 years, stereo vision has been turned to a new use: helping us reproduce visual reality for artistic purposes. By recreating the different views of a scene seen by the two eyes, stereo achieves unprecedented levels of realism. However, it also has some unexpected effects on viewer experience. The disruption of established mechanisms for interpreting pictures may be one reason why some viewers find stereoscopic content disturbing. Stereo vision also has uses in ophthalmology. Clinical stereoacuity tests are used in the management of conditions such as strabismus and amblyopia as well as vision screening. Stereoacuity can reveal the effectiveness of therapy and even predict long-term outcomes post surgery. Yet current clinical stereo tests fall far short of the accuracy and precision achievable in the lab. At Newcastle University, we are exploiting the recent availability of autostereo 3D tablet computers to design a clinical stereotest app in the form of a game suitable for young children. Our goal is to enable quick, accurate and precise stereoacuity measures which will enable clinicians to obtain better outcomes for children with visual disorders.

  14. Using mental rotation to evaluate the benefits of stereoscopic displays

    Science.gov (United States)

    Aitsiselmi, Y.; Holliman, N. S.

    2009-02-01

    Context: The idea behind stereoscopic displays is to create the illusion of depth and this concept could have many practical applications. A common spatial ability test involves mental rotation. Therefore a mental rotation task should be easier if being undertaken on a stereoscopic screen. Aim: The aim of this project is to evaluate stereoscopic displays (3D screen) and to assess whether they are better for performing a certain task than over a 2D display. A secondary aim was to perform a similar study but replicating the conditions of using a stereoscopic mobile phone screen. Method: We devised a spatial ability test involving a mental rotation task that participants were asked to complete on either a 3D or 2D screen. We also design a similar task to simulate the experience on a stereoscopic cell phone. The participants' error rate and response times were recorded. Using statistical analysis, we then compared the error rate and response times of the groups to see if there were any significant differences. Results: We found that the participants got better scores if they were doing the task on a stereoscopic screen as opposed to a 2D screen. However there was no statistically significant difference in the time it took them to complete the task. We also found similar results for 3D cell phone display condition. Conclusions: The results show that the extra depth information given by a stereoscopic display makes it easier to mentally rotate a shape as depth cues are readily available. These results could have many useful implications to certain industries.

  15. Interlopers 3D: experiences designing a stereoscopic game

    Science.gov (United States)

    Weaver, James; Holliman, Nicolas S.

    2014-03-01

    Background In recent years 3D-enabled televisions, VR headsets and computer displays have become more readily available in the home. This presents an opportunity for game designers to explore new stereoscopic game mechanics and techniques that have previously been unavailable in monocular gaming. Aims To investigate the visual cues that are present in binocular and monocular vision, identifying which are relevant when gaming using a stereoscopic display. To implement a game whose mechanics are so reliant on binocular cues that the game becomes impossible or at least very difficult to play in non-stereoscopic mode. Method A stereoscopic 3D game was developed whose objective was to shoot down advancing enemies (the Interlopers) before they reached their destination. Scoring highly required players to make accurate depth judgments and target the closest enemies first. A group of twenty participants played both a basic and advanced version of the game in both monoscopic 2D and stereoscopic 3D. Results The results show that in both the basic and advanced game participants achieved higher scores when playing in stereoscopic 3D. The advanced game showed that by disrupting the depth from motion cue the game became more difficult in monoscopic 2D. Results also show a certain amount of learning taking place over the course of the experiment, meaning that players were able to score higher and finish the game faster over the course of the experiment. Conclusions Although the game was not impossible to play in monoscopic 2D, participants results show that it put them at a significant disadvantage when compared to playing in stereoscopic 3D.

  16. Stereoscopic filming for investigating evasive side-stepping and anterior cruciate ligament injury risk

    Science.gov (United States)

    Lee, Marcus J. C.; Bourke, Paul; Alderson, Jacqueline A.; Lloyd, David G.; Lay, Brendan

    2010-02-01

    Non-contact anterior cruciate ligament (ACL) injuries are serious and debilitating, often resulting from the performance of evasive sides-stepping (Ssg) by team sport athletes. Previous laboratory based investigations of evasive Ssg have used generic visual stimuli to simulate realistic time and space constraints that athletes experience in the preparation and execution of the manoeuvre. However, the use of unrealistic visual stimuli to impose these constraints may not be accurately identifying the relationship between the perceptual demands and ACL loading during Ssg in actual game environments. We propose that stereoscopically filmed footage featuring sport specific opposing defender/s simulating a tackle on the viewer, when used as visual stimuli, could improve the ecological validity of laboratory based investigations of evasive Ssg. Due to the need for precision and not just the experience of viewing depth in these scenarios, a rigorous filming process built on key geometric considerations and equipment development to enable a separation of 6.5 cm between two commodity cameras had to be undertaken. Within safety limits, this could be an invaluable tool in enabling more accurate investigations of the associations between evasive Ssg and ACL injury risk.

  17. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance.

    Directory of Open Access Journals (Sweden)

    Christopher A Mela

    Full Text Available We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b the first wearable system offering both large FOV and microscopic imaging simultaneously,

  18. Stereoscopic radiographic images with gamma source encoding

    International Nuclear Information System (INIS)

    Strocovsky, S.G.; Otero, D

    2012-01-01

    Conventional radiography with X-ray tube has several drawbacks, as the compromise between the size of the focal spot and the fluence. The finite dimensions of the focal spot impose a limit to the spatial resolution. Gamma radiography uses gamma-ray sources which surpass in size, portability and simplicity to X-ray tubes. However, its low intrinsic fluence forces to use extended sources that also degrade the spatial resolution. In this work, we show the principles of a new radiographic technique that overcomes the limitations associated with the finite dimensions of X-ray sources, and that offers additional benefits to conventional techniques. The new technique called coding source imaging (CSI), is based on the use of extended sources, edge-encoding of radiation and differential detection. The mathematical principles and the method of images reconstruction with the new proposed technique are explained in the present work. Analytical calculations were made to determine the maximum spatial resolution and the variables on which it depends. The CSI technique was tested by means of Monte Carlo simulations with sets of spherical objects. We show that CSI has stereoscopic capabilities and it can resolve objects smaller than the source size. The CSI decoding algorithm reconstructs simultaneously four different projections from the same object, while conventional radiography produces only one projection per acquisition. Projections are located in separate image fields on the detector plane. Our results show it is possible to apply an extremely simple radiographic technique with extended sources, and get 3D information of the attenuation coefficient distribution for simple geometry objects in a single acquisition. The results are promising enough to evaluate the possibility of future research with more complex objects typical of medical diagnostic radiography and industrial gamma radiography (author)

  19. The Role of Amodal Surface Completion in Stereoscopic Transparency

    Science.gov (United States)

    Anderson, Barton L.; Schmid, Alexandra C.

    2012-01-01

    Previous work has shown that the visual system can decompose stereoscopic textures into percepts of inhomogeneous transparency. We investigate whether this form of layered image decomposition is shaped by constraints on amodal surface completion. We report a series of experiments that demonstrate that stereoscopic depth differences are easier to discriminate when the stereo images generate a coherent percept of surface color, than when images require amodally integrating a series of color changes into a coherent surface. Our results provide further evidence for the intimate link between the segmentation processes that occur in conditions of transparency and occlusion, and the interpolation processes involved in the formation of amodally completed surfaces. PMID:23060829

  20. Stereoscopic radiographic images with thermal neutrons

    International Nuclear Information System (INIS)

    Silvani, M.I.; Almeida, G.L.; Rogers, J.D.; Lopes, R.T.

    2011-01-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  1. Stereoscopic radiographic images with thermal neutrons

    Science.gov (United States)

    Silvani, M. I.; Almeida, G. L.; Rogers, J. D.; Lopes, R. T.

    2011-10-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  2. Analysis of scene distortions in stereoscopic images due to the variation of the ideal viewing conditions

    Science.gov (United States)

    Viale, Alberto; Villa, Dario

    2011-03-01

    Recently stereoscopy has increased a lot its popularity and various technologies are spreading in theaters and homes allowing observation of stereoscopic images and movies, becoming affordable even for home users. However there are some golden rules that users should follow to ensure a better enjoyment of stereoscopic images, first of all the viewing condition should not be too different from the ideal ones, which were assumed during the production process. To allow the user to perceive stereo depth instead of a flat image, two different views of the same scene are shown to the subject, one is seen just through his left eye and the other just through the right one; the vision process is making the work of merging the two images in a virtual three-dimensional scene, giving to the user the perception of depth. The two images presented to the user were created, either from image synthesis or from more traditional techniques, following the rules of perspective. These rules need some boundary conditions to be explicit, such as eye separation, field of view, parallax distance, viewer position and orientation. In this paper we are interested in studying how the variation of the viewer position and orientation from the ideal ones expressed as specified parameters in the image creation process, is affecting the correctness of the reconstruction of the three-dimensional virtual scene.

  3. A system and method for adjusting and presenting stereoscopic content

    DEFF Research Database (Denmark)

    2013-01-01

    on the basis of one or more vision specific parameters (0M, ThetaMuAlphaChi, ThetaMuIotaNu, DeltaTheta) indicating abnormal vision for the user. In this way, presenting stereoscopic content is enabled that is adjusted specifically to the given person. This may e.g. be used for training purposes or for improved...

  4. 3D Stereoscopic Visualization of Fenestrated Stent Grafts

    International Nuclear Information System (INIS)

    Sun Zhonghua; Squelch, Andrew; Bartlett, Andrew; Cunningham, Kylie; Lawrence-Brown, Michael

    2009-01-01

    The purpose of this study was to present a technique of stereoscopic visualization in the evaluation of patients with abdominal aortic aneurysm treated with fenestrated stent grafts compared with conventional 2D visualizations. Two patients with abdominal aortic aneurysm undergoing fenestrated stent grafting were selected for inclusion in the study. Conventional 2D views including axial, multiplanar reformation, maximum-intensity projection, and volume rendering and 3D stereoscopic visualizations were assessed by two experienced reviewers independently with regard to the treatment outcomes of fenestrated repair. Interobserver agreement was assessed with Kendall's W statistic. Multiplanar reformation and maximum-intensity projection visualizations were scored the highest in the evaluation of parameters related to the fenestrated stent grafting, while 3D stereoscopic visualization was scored as valuable in the evaluation of appearance (any distortions) of the fenestrated stent. Volume rendering was found to play a limited role in the follow-up of fenestrated stent grafting. 3D stereoscopic visualization adds additional information that assists endovascular specialists to identify any distortions of the fenestrated stents when compared with 2D visualizations.

  5. Size Optimization of 3D Stereoscopic Film Frames

    African Journals Online (AJOL)

    pc

    2018-03-22

    Mar 22, 2018 ... perception. Keywords- Optimization; Stereoscopic Film; 3D Frames;Aspect. Ratio ... television will mature to enable the viewing of 3D films prevalent[3]. On the .... Industry Standard VFX Practices and Proced. 2014. [10] N. A. ...

  6. The rendering context for stereoscopic 3D web

    Science.gov (United States)

    Chen, Qinshui; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    3D technologies on the Web has been studied for many years, but they are basically monoscopic 3D. With the stereoscopic technology gradually maturing, we are researching to integrate the binocular 3D technology into the Web, creating a stereoscopic 3D browser that will provide users with a brand new experience of human-computer interaction. In this paper, we propose a novel approach to apply stereoscopy technologies to the CSS3 3D Transforms. Under our model, each element can create or participate in a stereoscopic 3D rendering context, in which 3D Transforms such as scaling, translation and rotation, can be applied and be perceived in a truly 3D space. We first discuss the underlying principles of stereoscopy. After that we discuss how these principles can be applied to the Web. A stereoscopic 3D browser with backward compatibility is also created for demonstration purposes. We take advantage of the open-source WebKit project, integrating the 3D display ability into the rendering engine of the web browser. For each 3D web page, our 3D browser will create two slightly different images, each representing the left-eye view and right-eye view, both to be combined on the 3D display to generate the illusion of depth. And as the result turns out, elements can be manipulated in a truly 3D space.

  7. Flow Mapping of a Jet in Crossflow with Stereoscopic PIV

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Özcan, Oktay; Westergaard, C. H.

    2002-01-01

    Stereoscopic Particle Image Velocimetry (PIV) has been used to make a three-dimensional flow mapping of a jet in crossflow. The Reynolds number based on the free stream velocity and the jet diameter was nominally 2400. A jet-to-crossflow velocity ratio of 3.3 was used. Details of the formation...

  8. Objective quality assessment of stereoscopic images with vertical disparity using EEG

    Science.gov (United States)

    Shahbazi Avarvand, Forooz; Bosse, Sebastian; Müller, Klaus-Robert; Schäfer, Ralf; Nolte, Guido; Wiegand, Thomas; Curio, Gabriel; Samek, Wojciech

    2017-08-01

    Objective. Neurophysiological correlates of vertical disparity in 3D images are studied in an objective approach using EEG technique. These disparities are known to negatively affect the quality of experience and to cause visual discomfort in stereoscopic visualizations. Approach. We have presented four conditions to subjects: one in 2D and three conditions in 3D, one without vertical disparity and two with different vertical disparity levels. Event related potentials (ERPs) are measured for each condition and the differences between ERP components are studied. Analysis is also performed on the induced potentials in the time frequency domain. Main results. Results show that there is a significant increase in the amplitude of P1 components in 3D conditions in comparison to 2D. These results are consistent with previous studies which have shown that P1 amplitude increases due to the depth perception in 3D compared to 2D. However the amplitude is significantly smaller for maximum vertical disparity (3D-3) in comparison to 3D with no vertical disparity. Our results therefore suggest that the vertical disparity in 3D-3 condition decreases the perception of depth compared to other 3D conditions and the amplitude of P1 component can be used as a discriminative feature. Significance. The results show that the P1 component increases in amplitude due to the depth perception in the 3D stimuli compared to the 2D stimulus. On the other hand the vertical disparity in the stereoscopic images is studied here. We suggest that the amplitude of P1 component is modulated with this parameter and decreases due to the decrease in the perception of depth.

  9. An interactive, stereoscopic virtual environment for medical imaging visualization, simulation and training

    Science.gov (United States)

    Krueger, Evan; Messier, Erik; Linte, Cristian A.; Diaz, Gabriel

    2017-03-01

    Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic

  10. Dream Home: a multiview stereoscopic interior design system

    Science.gov (United States)

    Hsiao, Fu-Jen; Teng, Chih-Jen; Lin, Chung-Wei; Luo, An-Chun; Yang, Jinn-Cherng

    2010-01-01

    In this paper, a novel multi-view stereoscopic interior design system, "Dream Home", has been developed to bring users new interior design experience. Different than other interior design system before, we put emphasis on its intuitive manipulation and multi-view stereoscopic visualization in real time. Users can do their own interior design just using their hands and eyes without any difficulty. They manipulate furniture cards directly as they wish to setup their living room in the model house task space, get the multi-view 3D visual feedback instantly, and re-adjust cards until they are satisfied. No special skills are required, and you can explore your design talent arbitrarily. We hope that "Dream Home" will make interior design more user-friendly, more intuitive, and more vivid.

  11. Methodology for stereoscopic motion-picture quality assessment

    Science.gov (United States)

    Voronov, Alexander; Vatolin, Dmitriy; Sumin, Denis; Napadovsky, Vyacheslav; Borisov, Alexey

    2013-03-01

    Creating and processing stereoscopic video imposes additional quality requirements related to view synchronization. In this work we propose a set of algorithms for detecting typical stereoscopic-video problems, which appear owing to imprecise setup of capture equipment or incorrect postprocessing. We developed a methodology for analyzing the quality of S3D motion pictures and for revealing their most problematic scenes. We then processed 10 modern stereo films, including Avatar, Resident Evil: Afterlife and Hugo, and analyzed changes in S3D-film quality over the years. This work presents real examples of common artifacts (color and sharpness mismatch, vertical disparity and excessive horizontal disparity) in the motion pictures we processed, as well as possible solutions for each problem. Our results enable improved quality assessment during the filming and postproduction stages.

  12. Current status of stereoscopic 3D LCD TV technologies

    Science.gov (United States)

    Choi, Hee-Jin

    2011-06-01

    The year 2010 may be recorded as a first year of successful commercial 3D products. Among them, the 3D LCD TVs are expected to be the major one regarding the sales volume. In this paper, the principle of current stereoscopic 3D LCD TV techniques and the required flat panel display (FPD) technologies for the realization of them are reviewed. [Figure not available: see fulltext.

  13. Clinical Assessment of a New Stereoscopic Digital Angiography System

    International Nuclear Information System (INIS)

    Moll, Thierry; Douek, Philippe; Finet, Gerard; Turjman, Francis; Picard, Catherine; Revel, Didier; Amiel, Michel

    1998-01-01

    Purpose: To assess the clinical feasibility of an experimental modified angiographic system capable of real-time digital stereofluoroscopy and stereography in X-ray angiography, using a twin-focus tube and a stereoscopic monitor. Methods: We report the experience obtained in 37 patients with a well-documented examination. The patients were examined for coronary angiography (11 cases), aortography (7 cases), pulmonary angiography (6 cases), inferior vena cava filter placement (2 cases), and cerebral angiography (11 cases). Six radiologists were asked to use stereoscopic features for fluoroscopy and angiography. A questionnaire was designed to record their subjective evaluation of stereoscopic image quality, ergonomics of the system, and its medical interest. Results: Stereofluoroscopy was successfully used in 25 of 37 cases; diplopia and/or ghost images were reported in 6 cases. It was helpful for aortic catheterization in 10 cases and for selective catheterization in 5 cases. In stereoangiography, depth was easily and accurately perceived in 27 of 37 cases; diplopia and/or ghost images were reported in 4 cases. A certain gain in the three-dimensional evaluation of the anatomy and relation between vessels and lesions was noted. As regards ergonomic considerations, polarized spectacles were not considered cumbersome. Visual fatigue and additional work were variously reported. Stereoshift tuning before X-ray acquisition was not judged to be a limiting factor. Conclusion: A twin-focus X-ray tube and a polarized shutter for stereoscopic display allowed effective real-time three-dimensional perception of angiographic images. Our clinical study suggests no clear medical interest for diagnostic examinations, but the field of interventional radiology needs to be investigated

  14. Optimal display conditions for quantitative analysis of stereoscopic cerebral angiograms

    International Nuclear Information System (INIS)

    Charland, P.; Peters, T.; McGill Univ., Montreal, Quebec

    1996-01-01

    For several years the authors have been using a stereoscopic display as a tool in the planning of stereotactic neurosurgical techniques. This PC-based workstation allows the surgeon to interact with and view vascular images in three dimensions, as well as to perform quantitative analysis of the three-dimensional (3-D) space. Some of the perceptual issues relevant to the presentation of medical images on this stereoscopic display were addressed in five experiments. The authors show that a number of parameters--namely the shape, color, and depth cue, associated with a cursor--as well as the image filtering and observer position, have a role in improving the observer's perception of a 3-D image and his ability to localize points within the stereoscopically presented 3-D image. However, an analysis of the results indicates that while varying these parameters can lead to an effect on the performance of individual observers, the effects are not consistent across observers, and the mean accuracy remains relatively constant under the different experimental conditions

  15. Quantitative evaluation of papilledema from stereoscopic color fundus photographs.

    Science.gov (United States)

    Tang, Li; Kardon, Randy H; Wang, Jui-Kai; Garvin, Mona K; Lee, Kyungmoo; Abràmoff, Michael D

    2012-07-03

    To derive a computerized measurement of optic disc volume from digital stereoscopic fundus photographs for the purpose of diagnosing and managing papilledema. Twenty-nine pairs of stereoscopic fundus photographs and optic nerve head (ONH) centered spectral domain optical coherence tomography (SD-OCT) scans were obtained at the same visit in 15 patients with papilledema. Some patients were imaged at multiple visits in order to assess their changes. Three-dimensional shape of the ONH was estimated from stereo fundus photographs using an automated multi-scale stereo correspondence algorithm. We assessed the correlation of the stereo volume measurements with the SD-OCT volume measurements quantitatively, in terms of volume of retinal surface elevation above a reference plane and also to expert grading of papilledema from digital fundus photographs using the Frisén grading scale. The volumetric measurements of retinal surface elevation estimated from stereo fundus photographs and OCT scans were positively correlated (correlation coefficient r(2) = 0.60; P photographs compares favorably with that from OCT scans and with expert grading of papilledema severity. Stereoscopic color imaging of the ONH combined with a method of automated shape reconstruction is a low-cost alternative to SD-OCT scans that has potential for a more cost-effective diagnosis and management of papilledema in a telemedical setting. An automated three-dimensional image analysis method was validated that quantifies the retinal surface topography with an imaging modality that has lacked prior objective assessment.

  16. A systematized WYSIWYG pipeline for digital stereoscopic 3D filmmaking

    Science.gov (United States)

    Mueller, Robert; Ward, Chris; Hušák, Michal

    2008-02-01

    Digital tools are transforming stereoscopic 3D content creation and delivery, creating an opportunity for the broad acceptance and success of stereoscopic 3D films. Beginning in late 2005, a series of mostly CGI features has successfully initiated the public to this new generation of highly-comfortable, artifact-free digital 3D. While the response has been decidedly favorable, a lack of high-quality live-action films could hinder long-term success. Liveaction stereoscopic films have historically been more time-consuming, costly, and creatively-limiting than 2D films - thus a need arises for a live-action 3D filmmaking process which minimizes such limitations. A unique 'systematized' what-you-see-is-what-you-get (WYSIWYG) pipeline is described which allows the efficient, intuitive and accurate capture and integration of 3D and 2D elements from multiple shoots and sources - both live-action and CGI. Throughout this pipeline, digital tools utilize a consistent algorithm to provide meaningful and accurate visual depth references with respect to the viewing audience in the target theater environment. This intuitive, visual approach introduces efficiency and creativity to the 3D filmmaking process by eliminating both the need for a 'mathematician mentality' of spreadsheets and calculators, as well as any trial and error guesswork, while enabling the most comfortable, 'pixel-perfect', artifact-free 3D product possible.

  17. The development and evaluation of a stereoscopic television system for use in nuclear environments

    International Nuclear Information System (INIS)

    Dumbreck, A.A.; Murphy, S.P.

    1987-01-01

    This paper describes the development and evaluation of a stereoscopic TV system at Harwell Laboratory. The theory of stereo image geometry is outlined, and criteria for the matching of stereoscopic pictures are given. A stereoscopic TV system designed for remote handling tasks has been produced, it provides two selectable angles of view and variable convergence, the display is viewed via polarizing spectacles. Preliminary evaluations have indicated improved performance with no problems of operator fatigue

  18. The development and evaluation of a stereoscopic television system for remote handling

    International Nuclear Information System (INIS)

    Dumbreck, A.A.; Murphy, S.P.; Smith, C.W.

    1990-01-01

    This paper describes the development and evaluation of a stereoscopic television system at Harwell Laboratory. The theory of stereo image geometry is outlined, and criteria for the matching of stereoscopic pictures are given. A stereoscopic television system designed for remote handling tasks has been produced, it provides two selectable angles of view and variable convergence, the display is viewed via polarizing spectacles. Evaluations have indicated improved performance with no problems of operator fatigue over a wide range of applications. (author)

  19. Stimuli-Adaptable Materials

    DEFF Research Database (Denmark)

    Frankær, Sarah Maria Grundahl

    The work presented in this Thesis deals with the development of a stimuli-adaptable polymer material based on the UV-induced dimerisation of cinnamic acid and its derivatives. It is in the nature of an adhesive to adhere very well to its substrate and therefore problems can arise upon removal...

  20. Efficient stereoscopic contents file format on the basis of ISO base media file format

    Science.gov (United States)

    Kim, Kyuheon; Lee, Jangwon; Suh, Doug Young; Park, Gwang Hoon

    2009-02-01

    A lot of 3D contents haven been widely used for multimedia services, however, real 3D video contents have been adopted for a limited applications such as a specially designed 3D cinema. This is because of the difficulty of capturing real 3D video contents and the limitation of display devices available in a market. However, diverse types of display devices for stereoscopic video contents for real 3D video contents have been recently released in a market. Especially, a mobile phone with a stereoscopic camera has been released in a market, which provides a user as a consumer to have more realistic experiences without glasses, and also, as a content creator to take stereoscopic images or record the stereoscopic video contents. However, a user can only store and display these acquired stereoscopic contents with his/her own devices due to the non-existence of a common file format for these contents. This limitation causes a user not share his/her contents with any other users, which makes it difficult the relevant market to stereoscopic contents is getting expanded. Therefore, this paper proposes the common file format on the basis of ISO base media file format for stereoscopic contents, which enables users to store and exchange pure stereoscopic contents. This technology is also currently under development for an international standard of MPEG as being called as a stereoscopic video application format.

  1. Measuring system with stereoscopic x-ray television for accurate diagnosis

    International Nuclear Information System (INIS)

    Iwasaki, K.; Shimizu, S.

    1987-01-01

    X-ray stereoscopic television is diagnostically effective. The authors invented a measuring system using stereoscopic television whereby the coordinates of any two points and their separation can be measured in real time without physical contact. For this purpose, the distances between the two foci of the tube and between the tube and image intensifier were entered into a microcomputer beforehand, and any two points on the CRT stereoscopic image can be defined through the stereoscopic spectacles. The coordinates and distance are then displayed on the CRT monitor. By this means, measurements such as distance between vessels and size of organs are easily made

  2. A analysis of differences between common types of 3D stereoscopic movie & TV technology

    Directory of Open Access Journals (Sweden)

    CHEN Shuangyin

    2013-06-01

    Full Text Available 3D stereoscopic movie & TV technology develops rapidly.It is spreading into common people's life day by day.In this thesis,the author analyzes 3D stereoscopic movie & TV technology thoroughly.By comparing and studying the different technical solutions of the stereoscopic photography and video recording,production process and playing back,the author generalizes the characteristics of various programs and analyzes their strength and weakness.Eventually,the thesis gives the specific application of existing technical solutions and the future development.At last,it puts improvement goals of 3D stereoscopic movie & TV technology and gives large future development.

  3. Remote stereoscopic video play platform for naked eyes based on the Android system

    Science.gov (United States)

    Jia, Changxin; Sang, Xinzhu; Liu, Jing; Cheng, Mingsheng

    2014-11-01

    As people's life quality have been improved significantly, the traditional 2D video technology can not meet people's urgent desire for a better video quality, which leads to the rapid development of 3D video technology. Simultaneously people want to watch 3D video in portable devices,. For achieving the above purpose, we set up a remote stereoscopic video play platform. The platform consists of a server and clients. The server is used for transmission of different formats of video and the client is responsible for receiving remote video for the next decoding and pixel restructuring. We utilize and improve Live555 as video transmission server. Live555 is a cross-platform open source project which provides solutions for streaming media such as RTSP protocol and supports transmission of multiple video formats. At the receiving end, we use our laboratory own player. The player for Android, which is with all the basic functions as the ordinary players do and able to play normal 2D video, is the basic structure for redevelopment. Also RTSP is implemented into this structure for telecommunication. In order to achieve stereoscopic display, we need to make pixel rearrangement in this player's decoding part. The decoding part is the local code which JNI interface calls so that we can extract video frames more effectively. The video formats that we process are left and right, up and down and nine grids. In the design and development, a large number of key technologies from Android application development have been employed, including a variety of wireless transmission, pixel restructuring and JNI call. By employing these key technologies, the design plan has been finally completed. After some updates and optimizations, the video player can play remote 3D video well anytime and anywhere and meet people's requirement.

  4. Stereoscopic Feature Tracking System for Retrieving Velocity of Surface Waters

    Science.gov (United States)

    Zuniga Zamalloa, C. C.; Landry, B. J.

    2017-12-01

    The present work is concerned with the surface velocity retrieval of flows using a stereoscopic setup and finding the correspondence in the images via feature tracking (FT). The feature tracking provides a key benefit of substantially reducing the level of user input. In contrast to other commonly used methods (e.g., normalized cross-correlation), FT does not require the user to prescribe interrogation window sizes and removes the need for masking when specularities are present. The results of the current FT methodology are comparable to those obtained via Large Scale Particle Image Velocimetry while requiring little to no user input which allowed for rapid, automated processing of imagery.

  5. Evaluating stereoscopic displays : both efficiency measures and perceived workload sensitive to manipulations in binocular disparity

    NARCIS (Netherlands)

    Beurden, van M.H.P.H.; IJsselsteijn, W.A.; Kort, de Y.A.W.; Woods, A.J.; Holliman, N.S.; Dodgson, N.A.

    2011-01-01

    Stereoscopic displays are known to offer a number of key advantages in visualizing complex 3D structures or datasets. The large majority of studies that focus on evaluating stereoscopic displays for professional applications use completion time and/or the percentage of correct answers to measure

  6. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  7. Low-cost universal stereoscopic virtual reality interfaces

    Science.gov (United States)

    Starks, Michael R.

    1993-09-01

    Low cost stereoscopic virtual reality hardware interfacing with nearly any computer and stereoscopic software running on any PC is described. Both are user configurable for serial or parallel ports. Stereo modeling, rendering, and interaction via gloves or 6D mice are provided. Low cost LCD Visors and external interfaces represent a breakthrough in convenience and price/performance. A complete system with software, Visor, interface and Power Glove is under $DOL500. StereoDrivers will interface with any system giving video sync (e.g., G of RGB). PC3D will access any standard serial port, while PCVR works with serial or parallel ports and glove devices. Model RF Visors detect magnetic fields and require no connection to the system. PGSI is a microprocessor control for the Power Glove and Visors. All interfaces will operate to 120 Hz with Model G Visors. The SpaceStations are demultiplexing, field doubling devices which convert field sequential video or graphics for stereo display with dual video projection or dual LCD SpaceHelmets.

  8. Perceptual asymmetry reveals neural substrates underlying stereoscopic transparency.

    Science.gov (United States)

    Tsirlin, Inna; Allison, Robert S; Wilcox, Laurie M

    2012-02-01

    We describe a perceptual asymmetry found in stereoscopic perception of overlaid random-dot surfaces. Specifically, the minimum separation in depth needed to perceptually segregate two overlaid surfaces depended on the distribution of dots across the surfaces. With the total dot density fixed, significantly larger inter-plane disparities were required for perceptual segregation of the surfaces when the front surface had fewer dots than the back surface compared to when the back surface was the one with fewer dots. We propose that our results reflect an asymmetry in the signal strength of the front and back surfaces due to the assignment of the spaces between the dots to the back surface by disparity interpolation. This hypothesis was supported by the results of two experiments designed to reduce the imbalance in the neuronal response to the two surfaces. We modeled the psychophysical data with a network of inter-neural connections: excitatory within-disparity and inhibitory across disparity, where the spread of disparity was modulated according to figure-ground assignment. These psychophysical and computational findings suggest that stereoscopic transparency depends on both inter-neural interactions of disparity-tuned cells and higher-level processes governing figure ground segregation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Some theoretical aspects of the design of stereoscopic television systems

    International Nuclear Information System (INIS)

    Jones, A.

    1980-03-01

    Several parameters which together specify the performance of a stereoscopic television system which has been demonstrated in reactors are investigated theoretically. These are: (1) the minimum resolvable depth interval in object space, (2) the region of space which can be displayed in three dimensions without causing undue eyestrain to the observer, (3) distortions which may arise in the display. The resulting equations form a basis from which operational stereocameras can be designed and a particular example is given, which also illustrates the relationships between the parameters. It is argued that the extent of the stereo region (parameter (2) above) predicted by previously published work is probably too large for closed circuit television inspection. This arises because the criterion used to determine the maximum tolerable screen parallax is too generous. An alternative, based upon the size of Panum's fusional area (a property of the observer's eye) is proposed. Preliminary experimental support for the proposal is given by measurements of the extent of the stereoscopic region using a number of observers. (author)

  10. Matching and correlation computations in stereoscopic depth perception.

    Science.gov (United States)

    Doi, Takahiro; Tanabe, Seiji; Fujita, Ichiro

    2011-03-02

    A fundamental task of the visual system is to infer depth by using binocular disparity. To encode binocular disparity, the visual cortex performs two distinct computations: one detects matched patterns in paired images (matching computation); the other constructs the cross-correlation between the images (correlation computation). How the two computations are used in stereoscopic perception is unclear. We dissociated their contributions in near/far discrimination by varying the magnitude of the disparity across separate sessions. For small disparity (0.03°), subjects performed at chance level to a binocularly opposite-contrast (anti-correlated) random-dot stereogram (RDS) but improved their performance with the proportion of contrast-matched (correlated) dots. For large disparity (0.48°), the direction of perceived depth reversed with an anti-correlated RDS relative to that for a correlated one. Neither reversed nor normal depth was perceived when anti-correlation was applied to half of the dots. We explain the decision process as a weighted average of the two computations, with the relative weight of the correlation computation increasing with the disparity magnitude. We conclude that matching computation dominates fine depth perception, while both computations contribute to coarser depth perception. Thus, stereoscopic depth perception recruits different computations depending on the disparity magnitude.

  11. Preliminary evaluation of a prototype stereoscopic a-Si:H-based X-ray imaging system for full-field digital mammography

    International Nuclear Information System (INIS)

    Darambara, D.G.; Speller, R.D.; Horrocks, J.A.; Godber, S.; Wilson, R.; Hanby, A.

    2001-01-01

    In a pre-clinical study, we have been investigating the potential of a-Si:H active matrix, flat panel imagers for X-ray full-field digital mammography through the development of an advanced 3D X-ray imaging system and have measured a number of their important imaging characteristics. To enhance the information embodied into the digital images produced by the a-Si array, stereoscopic images, created by viewing the object under examination from two angles and recombining the images, were obtained. This method provided us with a full 3D X-ray image of the test object as well as left and right perspective 2D images all at the same time. Within this scope, images of fresh, small human breast tissue specimens--normal and diseased--were obtained at ±2 deg., processed and stereoscopically displayed for a pre-clinical evaluation by radiologists. It was demonstrated that the stereoscopic presentation of the images provides important additional information and has potential benefits over the more traditional 2D data

  12. No-Reference Stereoscopic IQA Approach: From Nonlinear Effect to Parallax Compensation

    Directory of Open Access Journals (Sweden)

    Ke Gu

    2012-01-01

    Full Text Available The last decade has seen a booming of the applications of stereoscopic images/videos and the corresponding technologies, such as 3D modeling, reconstruction, and disparity estimation. However, only a very limited number of stereoscopic image quality assessment metrics was proposed through the years. In this paper, we propose a new no-reference stereoscopic image quality assessment algorithm based on the nonlinear additive model, ocular dominance model, and saliency based parallax compensation. Our studies using the Toyama database result in three valuable findings. First, quality of the stereoscopic image has a nonlinear relationship with a direct summation of two monoscopic image qualities. Second, it is a rational assumption that the right-eye response has the higher impact on the stereoscopic image quality, which is based on a sampling survey in the ocular dominance research. Third, the saliency based parallax compensation, resulted from different stereoscopic image contents, is considerably valid to improve the prediction performance of image quality metrics. Experimental results confirm that our proposed stereoscopic image quality assessment paradigm has superior prediction accuracy as compared to state-of-the-art competitors.

  13. Stereoscopic HDTV Research at NHK Science and Technology Research Laboratories

    CERN Document Server

    Yamanoue, Hirokazu; Nojiri, Yuji

    2012-01-01

    This book focuses on the two psychological factors of naturalness and ease of viewing of three-dimensional high-definition television (3D HDTV) images. It has been said that distortions peculiar to stereoscopic images, such as the “puppet theater” effect or the “cardboard” effect, spoil the sense of presence. Whereas many earlier studies have focused on geometrical calculations about these distortions, this book instead describes the relationship between the naturalness of reproduced 3D HDTV images and the nonlinearity of depthwise reproduction. The ease of viewing of each scene is regarded as one of the causal factors of visual fatigue. Many of the earlier studies have been concerned with the accurate extraction of local parallax; however, this book describes the typical spatiotemporal distribution of parallax in 3D images. The purpose of the book is to examine the correlations between the psychological factors and amount of characteristics of parallax distribution in order to understand the characte...

  14. Visual perception and stereoscopic imaging: an artist's perspective

    Science.gov (United States)

    Mason, Steve

    2015-03-01

    This paper continues my 2014 February IS and T/SPIE Convention exploration into the relationship of stereoscopic vision and consciousness (90141F-1). It was proposed then that by using stereoscopic imaging people may consciously experience, or see, what they are viewing and thereby help make them more aware of the way their brains manage and interpret visual information. Environmental imaging was suggested as a way to accomplish this. This paper is the result of further investigation, research, and follow-up imaging. A show of images, that is a result of this research, allows viewers to experience for themselves the effects of stereoscopy on consciousness. Creating dye-infused aluminum prints while employing ChromaDepth® 3D glasses, I hope to not only raise awareness of visual processing but also explore the differences and similarities between the artist and scientist―art increases right brain spatial consciousness, not only empirical thinking, while furthering the viewer's cognizance of the process of seeing. The artist must abandon preconceptions and expectations, despite what the evidence and experience may indicate in order to see what is happening in his work and to allow it to develop in ways he/she could never anticipate. This process is then revealed to the viewer in a show of work. It is in the experiencing, not just from the thinking, where insight is achieved. Directing the viewer's awareness during the experience using stereoscopic imaging allows for further understanding of the brain's function in the visual process. A cognitive transformation occurs, the preverbal "left/right brain shift," in order for viewers to "see" the space. Using what we know from recent brain research, these images will draw from certain parts of the brain when viewed in two dimensions and different ones when viewed stereoscopically, a shift, if one is looking for it, which is quite noticeable. People who have experienced these images in the context of examining their own

  15. Disparity modifications and the emotional effects of stereoscopic images

    Science.gov (United States)

    Kawai, Takashi; Atsuta, Daiki; Tomiyama, Yuya; Kim, Sanghyun; Morikawa, Hiroyuki; Mitsuya, Reiko; Häkkinen, Jukka

    2014-03-01

    This paper describes a study that focuses on disparity changes in emotional scenes of stereoscopic (3D) images, in which an examination of the effects on pleasant and arousal was carried out by adding binocular disparity to 2D images that evoke specific emotions, and applying disparity modification based on the disparity analysis of famous 3D movies. From the results of the experiment, for pleasant, a significant difference was found only for the main effect of the emotions. On the other hand, for arousal, there was a trend of increasing the evaluation values in the order 2D condition, 3D condition and 3D condition applied the disparity modification for happiness, surprise, and fear. This suggests the possibility that binocular disparity and the modification affect arousal.

  16. Stereoscopic augmented reality with pseudo-realistic global illumination effects

    Science.gov (United States)

    de Sorbier, Francois; Saito, Hideo

    2014-03-01

    Recently, augmented reality has become very popular and has appeared in our daily life with gaming, guiding systems or mobile phone applications. However, inserting object in such a way their appearance seems natural is still an issue, especially in an unknown environment. This paper presents a framework that demonstrates the capabilities of Kinect for convincing augmented reality in an unknown environment. Rather than pre-computing a reconstruction of the scene like proposed by most of the previous method, we propose a dynamic capture of the scene that allows adapting to live changes of the environment. Our approach, based on the update of an environment map, can also detect the position of the light sources. Combining information from the environment map, the light sources and the camera tracking, we can display virtual objects using stereoscopic devices with global illumination effects such as diffuse and mirror reflections, refractions and shadows in real time.

  17. Head-coupled remote stereoscopic camera system for telepresence applications

    Science.gov (United States)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  18. Efficient Stereoscopic Video Matching and Map Reconstruction for a Wheeled Mobile Robot

    Directory of Open Access Journals (Sweden)

    Oscar Montiel-Ross

    2012-10-01

    Full Text Available This paper presents a novel method to achieve stereoscopic vision for mobile robot (MR navigation with the advantage of not needing camera calibration for depth (distance estimation measurements. It uses the concept of the adaptive candidate matching window for stereoscopic correspondence for block matching, resulting in improvements in efficiency and accuracy. An average of 40% of time reduction in the calculation process is obtained. All the algorithms for navigation, including the stereoscopic vision module, were implemented using an original computer architecture for the Virtex 5 FPGA, where a distributed multicore processor system was embedded and coordinated using the Message Passing Interface.

  19. Many-core computing for space-based stereoscopic imaging

    Science.gov (United States)

    McCall, Paul; Torres, Gildo; LeGrand, Keith; Adjouadi, Malek; Liu, Chen; Darling, Jacob; Pernicka, Henry

    The potential benefits of using parallel computing in real-time visual-based satellite proximity operations missions are investigated. Improvements in performance and relative navigation solutions over single thread systems can be achieved through multi- and many-core computing. Stochastic relative orbit determination methods benefit from the higher measurement frequencies, allowing them to more accurately determine the associated statistical properties of the relative orbital elements. More accurate orbit determination can lead to reduced fuel consumption and extended mission capabilities and duration. Inherent to the process of stereoscopic image processing is the difficulty of loading, managing, parsing, and evaluating large amounts of data efficiently, which may result in delays or highly time consuming processes for single (or few) processor systems or platforms. In this research we utilize the Single-Chip Cloud Computer (SCC), a fully programmable 48-core experimental processor, created by Intel Labs as a platform for many-core software research, provided with a high-speed on-chip network for sharing information along with advanced power management technologies and support for message-passing. The results from utilizing the SCC platform for the stereoscopic image processing application are presented in the form of Performance, Power, Energy, and Energy-Delay-Product (EDP) metrics. Also, a comparison between the SCC results and those obtained from executing the same application on a commercial PC are presented, showing the potential benefits of utilizing the SCC in particular, and any many-core platforms in general for real-time processing of visual-based satellite proximity operations missions.

  20. Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review.

    Science.gov (United States)

    Howarth, Peter A

    2011-03-01

    The visual stimulus provided by a 3-D stereoscopic display differs from that of the real world because the image provided to each eye is produced on a flat surface. The distance from the screen to the eye remains fixed, providing a single focal distance, but the introduction of disparity between the images allows objects to be located geometrically in front of, or behind, the screen. Unlike in the real world, the stimulus to accommodation and the stimulus to convergence do not match. Although this mismatch is used positively in some forms of Orthoptic treatment, a number of authors have suggested that it could negatively lead to the development of asthenopic symptoms. From knowledge of the zone of clear, comfortable, single binocular vision one can predict that, for people with normal binocular vision, adverse symptoms will not be present if the discrepancy is small, but are likely if it is large, and that what constitutes 'large' and 'small' are idiosyncratic to the individual. The accommodation-convergence mismatch is not, however, the only difference between the natural and the artificial stimuli. In the former case, an object located in front of, or behind, a fixated object will not only be perceived as double if the images fall outside Panum's fusional areas, but it will also be defocused and blurred. In the latter case, however, it is usual for the producers of cinema, TV or computer game content to provide an image that is in focus over the whole of the display, and as a consequence diplopic images will be sharply in focus. The size of Panum's fusional area is spatial frequency-dependent, and because of this the high spatial frequencies present in the diplopic 3-D image will provide a different stimulus to the fusion system from that found naturally. © 2011 The College of Optometrists.

  1. Visual fatigue modeling for stereoscopic video shot based on camera motion

    Science.gov (United States)

    Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing

    2014-11-01

    As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.

  2. Influence of stereoscopic vision on task performance with an operating microscope

    NARCIS (Netherlands)

    Nibourg, Lisanne M.; Wanders, Wouter; Cornelissen, Frans W.; Koopmans, Steven A.

    PURPOSE: To determine the extent to which stereoscopic depth perception influences the performance of tasks executed under an operating microscope. SETTING: Laboratory of Experimental Ophthalmology, University Medical Center Groningen, the Netherlands. DESIGN: Experimental study. METHODS: Medical

  3. Enhancement of stereoscopic comfort by fast control of frequency content with wavelet transform

    Science.gov (United States)

    Lemmer, Nicolas; Moreau, Guillaume; Fuchs, Philippe

    2003-05-01

    As the scope of virtual reality applications including stereoscopic imaging becomes wider, it is quite clear that not every designer of a VR application thinks of its constraints in order to make a correct use of stereo. Stereoscopic imagery though not required can be a useful tool for depth perception. It is possible to limit the depth of field as shown by Perrin who has also undertaken research on the link between the ability of fusing stereoscopic images (stereopsis) and local disparity and spatial frequency content. We will show how we can extend and enhance this work especially on the computational complexity point of view. The wavelet theory allows us to define a local spatial frequency and then a local measure of stereoscopic comfort. This measure is based on local spatial frequency and disparity as well as on the observations made by Woepking. Local comfort estimation allows us to propose several filtering methods to enhance this comfort. The idea to modify the images such as they check a "stereoscopic comfort condition" defined as a threshold for the stereoscopic comfort condition. More technically, we seek to limit high spatial frequency content when disparity is high thanks to the use of fast algorithms.

  4. Evaluating stereoscopic displays: both efficiency measures and perceived workload sensitive to manipulations in binocular disparity

    Science.gov (United States)

    van Beurden, Maurice H. P. H.; Ijsselsteijn, Wijnand A.; de Kort, Yvonne A. W.

    2011-03-01

    Stereoscopic displays are known to offer a number of key advantages in visualizing complex 3D structures or datasets. The large majority of studies that focus on evaluating stereoscopic displays for professional applications use completion time and/or the percentage of correct answers to measure potential performance advantages. However, completion time and accuracy may not fully reflect all the benefits of stereoscopic displays. In this paper, we argue that perceived workload is an additional valuable indicator reflecting the extent to which users can benefit from using stereoscopic displays. We performed an experiment in which participants were asked to perform a visual path-tracing task within a convoluted 3D wireframe structure, varying in level of complexity of the visualised structure and level of disparity of the visualisation. The results showed that an optimal performance (completion time, accuracy and workload), depend both on task difficulty and disparity level. Stereoscopic disparity revealed a faster and more accurate task performance, whereas we observed a trend that performance on difficult tasks stands to benefit more from higher levels of disparity than performance on easy tasks. Perceived workload (as measured using the NASA-TLX) showed a similar response pattern, providing evidence that perceived workload is sensitive to variations in disparity as well as task difficulty. This suggests that perceived workload could be a useful concept, in addition to standard performance indicators, in characterising and measuring human performance advantages when using stereoscopic displays.

  5. A Review on Stereoscopic 3D: Home Entertainment for the Twenty First Century

    Science.gov (United States)

    Karajeh, Huda; Maqableh, Mahmoud; Masa'deh, Ra'ed

    2014-12-01

    In the last few years, stereoscopic developed very rapidly and employed in many different fields such as entertainment. Due to the importance of entertainment aspect of stereoscopic 3D (S3D) applications, a review of the current state of S3D development in entertainment technology is conducted. In this paper, a novel survey of the stereoscopic entertainment aspects is presented by discussing the significant development of a 3D cinema, the major development of 3DTV, the issues related to 3D video content and 3D video games. Moreover, we reviewed some problems that can be caused in the viewers' visual system from watching stereoscopic contents. Some stereoscopic viewers are not satisfied as they are frustrated from wearing glasses, have visual fatigue, complain from unavailability of 3D contents, and/or complain from some sickness. Therefore, we will discuss stereoscopic visual discomfort and to what extend the viewer will have an eye fatigue while watching 3D contents or playing 3D games. The suggested solutions in the literature for this problem are discussed.

  6. Real-time photorealistic stereoscopic rendering of fire

    Science.gov (United States)

    Rose, Benjamin M.; McAllister, David F.

    2007-02-01

    We propose a method for real-time photorealistic stereo rendering of the natural phenomenon of fire. Applications include the use of virtual reality in fire fighting, military training, and entertainment. Rendering fire in real-time presents a challenge because of the transparency and non-static fluid-like behavior of fire. It is well known that, in general, methods that are effective for monoscopic rendering are not necessarily easily extended to stereo rendering because monoscopic methods often do not provide the depth information necessary to produce the parallax required for binocular disparity in stereoscopic rendering. We investigate the existing techniques used for monoscopic rendering of fire and discuss their suitability for extension to real-time stereo rendering. Methods include the use of precomputed textures, dynamic generation of textures, and rendering models resulting from the approximation of solutions of fluid dynamics equations through the use of ray-tracing algorithms. We have found that in order to attain real-time frame rates, our method based on billboarding is effective. Slicing is used to simulate depth. Texture mapping or 2D images are mapped onto polygons and alpha blending is used to treat transparency. We can use video recordings or prerendered high-quality images of fire as textures to attain photorealistic stereo.

  7. Measurement of compressed breast thickness by optical stereoscopic photogrammetry.

    Science.gov (United States)

    Tyson, Albert H; Mawdsley, Gordon E; Yaffe, Martin J

    2009-02-01

    The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of the breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.

  8. Digital stereoscopic photography using StereoData Maker

    Science.gov (United States)

    Toeppen, John; Sykes, David

    2009-02-01

    Stereoscopic digital photography has become much more practical with the use of USB wired connections between a pair of Canon cameras using StereoData Maker software for precise synchronization. StereoPhoto Maker software is now used to automatically combine and align right and left image files to produce a stereo pair. Side by side images are saved as pairs and may be viewed using software that converts the images into the preferred viewing format at the time of display. Stereo images may be shared on the internet, displayed on computer monitors, autostereo displays, viewed on high definition 3D TVs, or projected for a group. Stereo photographers are now free to control composition using point and shoot settings, or are able to control shutter speed, aperture, focus, ISO, and zoom. The quality of the output depends on the developed skills of the photographer as well as their understanding of the software, human vision and the geometry they choose for their cameras and subjects. Observers of digital stereo images can zoom in for greater detail and scroll across large panoramic fields with a few keystrokes. The art, science, and methods of taking, creating and viewing digital stereo photos are presented in a historic and developmental context in this paper.

  9. Stereoscopic vision in the absence of the lateral occipital cortex.

    Directory of Open Access Journals (Sweden)

    Jenny C A Read

    2010-09-01

    Full Text Available Both dorsal and ventral cortical visual streams contain neurons sensitive to binocular disparities, but the two streams may underlie different aspects of stereoscopic vision. Here we investigate stereopsis in the neurological patient D.F., whose ventral stream, specifically lateral occipital cortex, has been damaged bilaterally, causing profound visual form agnosia. Despite her severe damage to cortical visual areas, we report that DF's stereo vision is strikingly unimpaired. She is better than many control observers at using binocular disparity to judge whether an isolated object appears near or far, and to resolve ambiguous structure-from-motion. DF is, however, poor at using relative disparity between features at different locations across the visual field. This may stem from a difficulty in identifying the surface boundaries where relative disparity is available. We suggest that the ventral processing stream may play a critical role in enabling healthy observers to extract fine depth information from relative disparities within one surface or between surfaces located in different parts of the visual field.

  10. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  11. Development of a stereoscopic three-dimensional drawing application

    Science.gov (United States)

    Carver, Donald E.; McAllister, David F.

    1991-08-01

    With recent advances in 3-D technology, computer users have the opportunity to work within a natural 3-D environment; a flat panel LCD computer display of this type, the DTI-100M made by Dimension Technologies, Inc., recently went on the market. In a joint venture between DTI and NCSU, an object-oriented 3-D drawing application, 3-D Draw, was developed to address some issues of human interface design for interactive stereo drawing applications. The focus of this paper is to determine some of the procedures a user would naturally expect to follow while working within a true 3-D environment. The paper discusses (1) the interface between the Macintosh II and DTI-100M during implementation of 3-D Draw, including stereo cursor development and presentation of current 2-D systems, with an additional `depth'' parameter, in the 3-D world, (2) problems in general for human interface into the 3-D environment, and (3) necessary functions and/or problems in developing future stereoscopic 3-D operating systems/tools.

  12. Stereoscopic, thermal, and true deep cumulus cloud top heights

    Science.gov (United States)

    Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.

    2004-05-01

    We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.

  13. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Emotional stimuli and motor conversion disorder

    NARCIS (Netherlands)

    Voon, V.; Brezing, C.; Gallea, C.; Ameli, R.; Roelofs, K.; LaFrance, W.C.; Hallett, M.

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli,

  15. Stereoscopic Machine-Vision System Using Projected Circles

    Science.gov (United States)

    Mackey, Jeffrey R.

    2010-01-01

    A machine-vision system capable of detecting obstacles large enough to damage or trap a robotic vehicle is undergoing development. The system includes (1) a pattern generator that projects concentric circles of laser light forward onto the terrain, (2) a stereoscopic pair of cameras that are aimed forward to acquire images of the circles, (3) a frame grabber and digitizer for acquiring image data from the cameras, and (4) a single-board computer that processes the data. The system is being developed as a prototype of machine- vision systems to enable robotic vehicles ( rovers ) on remote planets to avoid craters, large rocks, and other terrain features that could capture or damage the vehicles. Potential terrestrial applications of systems like this one could include terrain mapping, collision avoidance, navigation of robotic vehicles, mining, and robotic rescue. This system is based partly on the same principles as those of a prior stereoscopic machine-vision system in which the cameras acquire images of a single stripe of laser light that is swept forward across the terrain. However, this system is designed to afford improvements over some of the undesirable features of the prior system, including the need for a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe. In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism: the pattern of concentric circles is projected steadily in the forward direction. The system calibrates itself by use of data acquired during projection of the concentric-circle pattern onto a known target representing flat ground. The calibration- target image data are stored in the computer memory for use as a

  16. Traveling via Rome through the Stereoscope: Reality, Memory, and Virtual Travel

    Directory of Open Access Journals (Sweden)

    Douglas M. Klahr

    2016-06-01

    Full Text Available Underwood and Underwood’s 'Rome through the Stereoscope' of 1902 was a landmark in stereoscopic photography publishing, both as an intense, visually immersive experience and as a cognitively demanding exercise. The set consisted of a guidebook, forty-six stereographs, and five maps whose notations enabled the reader/viewer to precisely replicate the location and orientation of the photographer at each site. Combined with the extensive narrative within the guidebook, the maps and images guided its users through the city via forty-six sites, whether as an example of armchair travel or an actual travel companion. The user’s experience is examined and analyzed within the following parameters: the medium of stereoscopic photography, narrative, geographical imagination, and memory, bringing forth issues of movement, survey and route frames of reference, orientation, visualization, immersion, and primary versus secondary memories. 'Rome through the Stereoscope' was an example of virtual travel, and the process of fusing dual images into one — stereoscopic synthesis — further demarcated the experience as a virtual environment.

  17. High-Definition 3D Stereoscopic Microscope Display System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yoo Kwan-Hee

    2010-01-01

    Full Text Available Biomedical research has been performed by using advanced information techniques, and micro-high-quality stereo images have been used by researchers and/or doctors for various aims in biomedical research and surgery. To visualize the stereo images, many related devices have been developed. However, the devices are difficult to learn for junior doctors and demanding to supervise for experienced surgeons. In this paper, we describe the development of a high-definition (HD three-dimensional (3D stereoscopic imaging display system for operating a microscope or experimenting on animals. The system consists of a stereoscopic camera part, image processing device for stereoscopic video recording, and stereoscopic display. In order to reduce eyestrain and viewer fatigue, we use a preexisting stereo microscope structure and polarized-light stereoscopic display method that does not reduce the quality of the stereo images. The developed system can overcome the discomfort of the eye piece and eyestrain caused by use over a long period of time.

  18. METHOD FOR DETERMINING THE SPATIAL COORDINATES IN THE ACTIVE STEREOSCOPIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Valery V. Korotaev

    2014-11-01

    Full Text Available The paper deals with the structural scheme of active stereoscopic system and algorithm of its operation, providing the fast calculation of the spatial coordinates. The system includes two identical cameras, forming a stereo pair, and a laser scanner, which provides vertical scanning of the space before the system by the laser beam. A separate synchronizer provides synchronous operation of the two cameras. The developed algorithm of the system operation is implemented in MATLAB. In the proposed algorithm, the influence of background light is eliminated by interframe processing. The algorithm is based on precomputation of coordinates for epipolar lines and corresponding points in stereoscopic image. These data are used to quick calculation of the three-dimensional coordinates of points that form the three-dimensional images of objects. Experiment description on a physical model is given. Experimental results confirm the efficiency of the proposed active stereoscopic system and its operation algorithm. The proposed scheme of active stereoscopic system and calculating method for the spatial coordinates can be recommended for creation of stereoscopic systems, operating in real time and at high processing speed: devices for face recognition, systems for the position control of railway track, automobile active safety systems.

  19. Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

    Science.gov (United States)

    Fang, Yuming; Zhang, Chi; Li, Jing; Lei, Jianjun; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2017-10-01

    In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

  20. Digital stereoscopic convergence where video games and movies for the home user meet

    Science.gov (United States)

    Schur, Ethan

    2009-02-01

    Today there is a proliferation of stereoscopic 3D display devices, 3D content, and 3D enabled video games. As we in the S-3D community bring stereoscopic 3D to the home user we have a real opportunity of using stereoscopic 3D to bridge the gap between exciting immersive games and home movies. But to do this, we cannot limit ourselves to current conceptions of gaming and movies. We need, for example, to imagine a movie that is fully rendered using avatars in a stereoscopic game environment. Or perhaps to imagine a pervasive drama where viewers can play too and become an essential part of the drama - whether at home or on the go on a mobile platform. Stereoscopic 3D is the "glue" that will bind these video and movie concepts together. As users feel more immersed, the lines between current media will blur. This means that we have the opportunity to shape the way that we, as humans, view and interact with each other, our surroundings and our most fundamental art forms. The goal of this paper is to stimulate conversation and further development on expanding the current gaming and home theatre infrastructures to support greatly-enhanced experiential entertainment.

  1. Partially converted stereoscopic images and the effects on visual attention and memory

    Science.gov (United States)

    Kim, Sanghyun; Morikawa, Hiroyuki; Mitsuya, Reiko; Kawai, Takashi; Watanabe, Katsumi

    2015-03-01

    This study contained two experimental examinations of the cognitive activities such as visual attention and memory in viewing stereoscopic (3D) images. For this study, partially converted 3D images were used with binocular parallax added to a specific region of the image. In Experiment 1, change blindness was used as a presented stimulus. The visual attention and impact on memory were investigated by measuring the response time to accomplish the given task. In the change blindness task, an 80 ms blank was intersected between the original and altered images, and the two images were presented alternatingly for 240 ms each. Subjects were asked to temporarily memorize the two switching images and to compare them, visually recognizing the difference between the two. The stimuli for four conditions (2D, 3D, Partially converted 3D, distracted partially converted 3D) were randomly displayed for 20 subjects. The results of Experiment 1 showed that partially converted 3D images tend to attract visual attention and are prone to remain in viewer's memory in the area where moderate negative parallax has been added. In order to examine the impact of a dynamic binocular disparity on partially converted 3D images, an evaluation experiment was conducted that applied learning, distraction, and recognition tasks for 33 subjects. The learning task involved memorizing the location of cells in a 5 × 5 matrix pattern using two different colors. Two cells were positioned with alternating colors, and one of the gray cells was moved up, down, left, or right by one cell width. Experimental conditions was set as a partially converted 3D condition in which a gray cell moved diagonally for a certain period of time with a dynamic binocular disparity added, a 3D condition in which binocular disparity was added to all gray cells, and a 2D condition. The correct response rates for recognition of each task after the distraction task were compared. The results of Experiment 2 showed that the correct

  2. Application of longitudinal magnification effect to magnification stereoscopic angiography. A new method of cerebral angiography

    International Nuclear Information System (INIS)

    Doi, K.; Rossmann, K.; Duda, E.E.

    1976-01-01

    A new method of stereoscopic cerebral angiography was developed which employs 2X radiographic magnification. In order to obtain the same depth perception in the object as with conventional contact stereoscopic angiography, one can make the x-ray exposures at two focal spot positions which are separated by only 1 inch, whereas the contact technique requires a separation of 4 inches. The smaller distance is possible because, with 2X magnification, the transverse detail in the object is magnified by a factor of two, but the longitudinal detail, which is related to the stereo effect, is magnified by a factor of four, due to the longitudinal magnification effect. The small focal spot separation results in advantages such as improved stereoscopic image detail, better image quality, and low radiation exposure to the patient

  3. Evaluating visual discomfort in stereoscopic projection-based CAVE system with a close viewing distance

    Science.gov (United States)

    Song, Weitao; Weng, Dongdong; Feng, Dan; Li, Yuqian; Liu, Yue; Wang, Yongtian

    2015-05-01

    As one of popular immersive Virtual Reality (VR) systems, stereoscopic cave automatic virtual environment (CAVE) system is typically consisted of 4 to 6 3m-by-3m sides of a room made of rear-projected screens. While many endeavors have been made to reduce the size of the projection-based CAVE system, the issue of asthenopia caused by lengthy exposure to stereoscopic images in such CAVE with a close viewing distance was seldom tangled. In this paper, we propose a light-weighted approach which utilizes a convex eyepiece to reduce visual discomfort induced by stereoscopic vision. An empirical experiment was conducted to examine the feasibility of convex eyepiece in a large depth of field (DOF) at close viewing distance both objectively and subjectively. The result shows the positive effects of convex eyepiece on the relief of eyestrain.

  4. Application of longitudinal magnification effect to magnification stereoscopic angiography. A new method of cerebral angiography

    Energy Technology Data Exchange (ETDEWEB)

    Doi, K.; Rossmann, K.; Duda, E.E.

    1976-01-01

    A new method of stereoscopic cerebral angiography was developed which employs 2X radiographic magnification. In order to obtain the same depth perception in the object as with conventional contact stereoscopic angiography, one can make the x-ray exposures at two focal spot positions which are separated by only 1 inch, whereas the contact technique requires a separation of 4 inches. The smaller distance is possible because, with 2X magnification, the transverse detail in the object is magnified by a factor of two, but the longitudinal detail, which is related to the stereo effect, is magnified by a factor of four, due to the longitudinal magnification effect. The small focal spot separation results in advantages such as improved stereoscopic image detail, better image quality, and low radiation exposure to the patient.

  5. Usage of stereoscopic visualization in the learning contents of rotational motion.

    Science.gov (United States)

    Matsuura, Shu

    2013-01-01

    Rotational motion plays an essential role in physics even at an introductory level. In addition, the stereoscopic display of three-dimensional graphics includes is advantageous for the presentation of rotational motions, particularly for depth recognition. However, the immersive visualization of rotational motion has been known to lead to dizziness and even nausea for some viewers. Therefore, the purpose of this study is to examine the onset of nausea and visual fatigue when learning rotational motion through the use of a stereoscopic display. The findings show that an instruction method with intermittent exposure of the stereoscopic display and a simplification of its visual components reduced the onset of nausea and visual fatigue for the viewers, which maintained the overall effect of instantaneous spatial recognition.

  6. Doing Textiles Experiments in Game-Based Virtual Reality: A Design of the Stereoscopic Chemical Laboratory (SCL) for Textiles Education

    Science.gov (United States)

    Lau, Kung Wong; Kan, Chi Wai; Lee, Pui Yuen

    2017-01-01

    Purpose: The purpose of this paper is to discuss the use of stereoscopic virtual technology in textile and fashion studies in particular to the area of chemical experiment. The development of a designed virtual platform, called Stereoscopic Chemical Laboratory (SCL), is introduced. Design/methodology/approach: To implement the suggested…

  7. Taking space literally: reconceptualizing the effects of stereoscopic representation on user experience

    Directory of Open Access Journals (Sweden)

    Benny Liebold

    2013-03-01

    Full Text Available Recently, cinemas, home theater systems and game consoles have undergone a rapid evolution towards stereoscopic representation with recipients gradually becoming accustomed to these changes. Stereoscopy techniques in most media present two offset images separately to the left and right eye of the viewer (usually with the help of glasses separating both images resulting in the perception of three-dimensional depth. In contrast to these mass market techniques, true 3D volumetric displays or holograms that display an image in three full dimensions are relatively uncommon. The visual quality and visual comfort of stereoscopic representation is constantly being improved by the industry.

  8. Use of camera drive in stereoscopic display of learning contents of introductory physics

    Science.gov (United States)

    Matsuura, Shu

    2011-03-01

    Simple 3D physics simulations with stereoscopic display were created for a part of introductory physics e-Learning. First, cameras to see the 3D world can be made controllable by the user. This enabled to observe the system and motions of objects from any position in the 3D world. Second, cameras were made attachable to one of the moving object in the simulation so as to observe the relative motion of other objects. By this option, it was found that users perceive the velocity and acceleration more sensibly on stereoscopic display than on non-stereoscopic 3D display. Simulations were made using Adobe Flash ActionScript, and Papervison 3D library was used to render the 3D models in the flash web pages. To display the stereogram, two viewports from virtual cameras were displayed in parallel in the same web page. For observation of stereogram, the images of two viewports were superimposed by using 3D stereogram projection box (T&TS CO., LTD.), and projected on an 80-inch screen. The virtual cameras were controlled by keyboard and also by Nintendo Wii remote controller buttons. In conclusion, stereoscopic display offers learners more opportunities to play with the simulated models, and to perceive the characteristics of motion better.

  9. The Impact of Stereoscopic Imagery and Motion on Anatomical Structure Recognition and Visual Attention Performance

    Science.gov (United States)

    Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas

    2018-01-01

    Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…

  10. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  11. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    Science.gov (United States)

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  12. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography

    Science.gov (United States)

    Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S.; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.

    2016-01-01

    Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes. PMID:27231616

  13. Subjective experiences of watching stereoscopic Avatar and U2 3D in a cinema

    Science.gov (United States)

    Pölönen, Monika; Salmimaa, Marja; Takatalo, Jari; Häkkinen, Jukka

    2012-01-01

    A stereoscopic 3-D version of the film Avatar was shown to 85 people who subsequently answered questions related to sickness, visual strain, stereoscopic image quality, and sense of presence. Viewing Avatar for 165 min induced some symptoms of visual strain and sickness, but the symptom levels remained low. A comparison between Avatar and previously published results for the film U2 3D showed that sickness and visual strain levels were similar despite the films' runtimes. The genre of the film had a significant effect on the viewers' opinions and sense of presence. Avatar, which has been described as a combination of action, adventure, and sci-fi genres, was experienced as more immersive and engaging than the music documentary U2 3D. However, participants in both studies were immersed, focused, and absorbed in watching the stereoscopic 3-D (S3-D) film and were pleased with the film environments. The results also showed that previous stereoscopic 3-D experience significantly reduced the amount of reported eye strain and complaints about the weight of the viewing glasses.

  14. Stereoscopic Vascular Models of the Head and Neck: A Computed Tomography Angiography Visualization

    Science.gov (United States)

    Cui, Dongmei; Lynch, James C.; Smith, Andrew D.; Wilson, Timothy D.; Lehman, Michael N.

    2016-01-01

    Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching…

  15. Interaksi pada Museum Virtual Menggunakan Pengindera Tangan dengan Penyajian Stereoscopic 3D

    Directory of Open Access Journals (Sweden)

    Gary Almas Samaita

    2017-01-01

    Full Text Available Kemajuan teknologi menjadikan museum mengembangkan cara penyajian koleksinya. Salah satu teknologi yang diadaptasi dalam penyajian museum virtual adalah Virtual Reality (VR dengan stereoscopic 3D. Sayangnya, museum virtual dengan teknik penyajian stereoscopic masih menggunakan keyboard dan mouse sebagai perangkat interaksi. Penelitian ini bertujuan untuk merancang dan menerapkan interaksi dengan pengindera tangan pada museum virtual dengan penyajian stereoscopic 3D. Museum virtual divisualisasikan dengan teknik stereoscopic side-by-side melalui Head Mounting Display (HMD berbasis Android. HMD juga memiliki fungsi head tracking dengan membaca orientasi kepala. Interaksi tangan diterapkan dengan menggunakan pengindera tangan yang ditempatkan pada HMD. Karena pengindera tangan tidak didukung oleh HMD berbasis Android, maka digunakan server sebagai perantara HMD dan pengindera tangan. Setelah melalui pengujian, diketahui bahwa rata-rata confidence rate dari pembacaan pengindera tangan pada pola tangan untuk memicu interaksi adalah sebesar 99,92% dengan rata-rata efektifitas 92,61%. Uji ketergunaan juga dilakukan dengan pendasaran ISO/IEC 9126-4 untuk mengukur efektifitas, efisiensi, dan kepuasan pengguna dari sistem yang dirancang dengan meminta partisipan untuk melakukan 9 tugas yang mewakili interaksi tangan dalam museum virtual. Hasil pengujian menunjukkan bahwa semua pola tangan yang dirancang dapat dilakukan oleh partisipan meskipun pola tangan dinilai cukup sulit dilakukan. Melalui kuisioner diketahui bahwa total 86,67% partisipan setuju bahwa interaksi tangan memberikan pengalaman baru dalam menikmati museum virtual.

  16. An exploration of the initial effects of stereoscopic displays on optometric parameters

    NARCIS (Netherlands)

    Fortuin, M.F.; Lambooij, M.T.M.; IJsselsteijn, W.A.; Heynderickx, I.E.J.; Edgar, D.F.; Evans, B.J.W.

    2011-01-01

    PURPOSE: To compare the effect on optometric variables of reading text presented in 2-D and 3-D on two types of stereoscopic display. METHODS: This study measured changes in binocular visual acuity, fixation disparity, aligning prism, heterophoria, horizontal fusional reserves, prism facility and

  17. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography.

    Science.gov (United States)

    Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S; Kuo, Anthony N; Toth, Cynthia A; Izatt, Joseph A

    2016-05-01

    Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes.

  18. Stereoscopic 3D display with dynamic optical correction for recovering from asthenopia

    Science.gov (United States)

    Shibata, Takashi; Kawai, Takashi; Otsuki, Masaki; Miyake, Nobuyuki; Yoshihara, Yoshihiro; Iwasaki, Tsuneto

    2005-03-01

    The purpose of this study was to consider a practical application of a newly developed stereoscopic 3-D display that solves the problem of discrepancy between accommodation and convergence. The display uses dynamic optical correction to reduce the discrepancy, and can present images as if they are actually remote objects. The authors thought the display may assist in recovery from asthenopia, which is often caused when the eyes focus on a nearby object for a long time, such as in VDT (Visual Display Terminal) work. In general, recovery from asthenopia, and especially accommodative asthenopia, is achieved by focusing on distant objects. In order to verify this hypothesis, the authors performed visual acuity tests using Landolt rings before and after presenting stereoscopic 3-D images, and evaluated the degree of recovery from asthenopia. The experiment led to three main conclusions: (1) Visual acuity rose after viewing stereoscopic 3-D images on the developed display. (2) Recovery from asthenopia was particularly effective for the dominant eye in comparison with the other eye. (3) Interviews with the subjects indicated that the Landolt rings were particularly clear after viewing the stereoscopic 3-D images.

  19. Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel

    2005-01-01

    A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbule...

  20. Stereoscopic PIV and POD applied to the far turbulent axisymmetric jet

    DEFF Research Database (Denmark)

    Wähnström, Maja; George, William K.; Meyer, Knud Erik

    2006-01-01

    here applies stereoscopic PIV to the far field of the same jet in which the mode-2 phenomenon was first noticed. Indeed azimuthal mode-1 is maximal if all three velocity components are considered, so the new findings are confirmed. This work also addresses a number of outstanding issues from all...

  1. Evaluation of stereoscopic medical video content on an autostereoscopic display for undergraduate medical education

    Science.gov (United States)

    Ilgner, Justus F. R.; Kawai, Takashi; Shibata, Takashi; Yamazoe, Takashi; Westhofen, Martin

    2006-02-01

    Introduction: An increasing number of surgical procedures are performed in a microsurgical and minimally-invasive fashion. However, the performance of surgery, its possibilities and limitations become difficult to teach. Stereoscopic video has evolved from a complex production process and expensive hardware towards rapid editing of video streams with standard and HDTV resolution which can be displayed on portable equipment. This study evaluates the usefulness of stereoscopic video in teaching undergraduate medical students. Material and methods: From an earlier study we chose two clips each of three different microsurgical operations (tympanoplasty type III of the ear, endonasal operation of the paranasal sinuses and laser chordectomy for carcinoma of the larynx). This material was added by 23 clips of a cochlear implantation, which was specifically edited for a portable computer with an autostereoscopic display (PC-RD1-3D, SHARP Corp., Japan). The recording and synchronization of left and right image was performed at the University Hospital Aachen. The footage was edited stereoscopically at the Waseda University by means of our original software for non-linear editing of stereoscopic 3-D movies. Then the material was converted into the streaming 3-D video format. The purpose of the conversion was to present the video clips by a file type that does not depend on a television signal such as PAL or NTSC. 25 4th year medical students who participated in the general ENT course at Aachen University Hospital were asked to estimate depth clues within the six video clips plus cochlear implantation clips. Another 25 4th year students who were shown the material monoscopically on a conventional laptop served as control. Results: All participants noted that the additional depth information helped with understanding the relation of anatomical structures, even though none had hands-on experience with Ear, Nose and Throat operations before or during the course. The monoscopic

  2. Perceiving, imaging, and preferring physiognomic stimuli.

    Science.gov (United States)

    Lindauer, M S

    1986-01-01

    Physiognomic color responses in perception, imagery, and affect were investigated. Maluma and taketa, nonsense stimuli defined by many investigators as physiognomic, were utilized as prototypical physiognomic stimuli, along with eight other stimuli of various sorts. In Experiment 1, 22 subjects matched the colors of the stimuli; in Experiment 2, 27 subjects reported their imagery to the stimuli; and in Experiment 3, 16 subjects gave their color preferences for the stimuli. The Munsell sets of colors were employed throughout. Significant differences between the physiognomic and other stimuli were found on the brightness and saturation of color matches, images, and preferences. Other differences (e.g., the latency of color images) were also present. Distinctions were also noted between the two physiognomic stimuli. These results support the priority of innate and perceptual processes in physiognomy over those of learning and memory, although some ambiguities still remain.

  3. SEISVIZ3D: Stereoscopic system for the representation of seismic data - Interpretation and Immersion

    Science.gov (United States)

    von Hartmann, Hartwig; Rilling, Stefan; Bogen, Manfred; Thomas, Rüdiger

    2015-04-01

    The seismic method is a valuable tool for getting 3D-images from the subsurface. Seismic data acquisition today is not only a topic for oil and gas exploration but is used also for geothermal exploration, inspections of nuclear waste sites and for scientific investigations. The system presented in this contribution may also have an impact on the visualization of 3D-data of other geophysical methods. 3D-seismic data can be displayed in different ways to give a spatial impression of the subsurface.They are a combination of individual vertical cuts, possibly linked to a cubical portion of the data volume, and the stereoscopic view of the seismic data. By these methods, the spatial perception for the structures and thus of the processes in the subsurface should be increased. Stereoscopic techniques are e. g. implemented in the CAVE and the WALL, both of which require a lot of space and high technical effort. The aim of the interpretation system shown here is stereoscopic visualization of seismic data at the workplace, i.e. at the personal workstation and monitor. The system was developed with following criteria in mind: • Fast rendering of large amounts of data so that a continuous view of the data when changing the viewing angle and the data section is possible, • defining areas in stereoscopic view to translate the spatial impression directly into an interpretation, • the development of an appropriate user interface, including head-tracking, for handling the increased degrees of freedom, • the possibility of collaboration, i.e. teamwork and idea exchange with the simultaneous viewing of a scene at remote locations. The possibilities offered by the use of a stereoscopic system do not replace a conventional interpretation workflow. Rather they have to be implemented into it as an additional step. The amplitude distribution of the seismic data is a challenge for the stereoscopic display because the opacity level and the scaling and selection of the data have to

  4. Emotional Stimuli and Motor Conversion Disorder

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Ameli, Rezvan; Roelofs, Karin; LaFrance, W. Curt, Jr.; Hallett, Mark

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli, and greater activity to negative relative to…

  5. In-line phase-contrast stereoscopic X-ray imaging for radiological purposes: An initial experimental study

    International Nuclear Information System (INIS)

    Siegbahn, E.A.; Coan, P.; Zhou, S.-A.; Bravin, A.; Brahme, A.

    2011-01-01

    We report results from a pilot study in which the in-line propagation-based phase-contrast imaging technique is combined with the stereoscopic method. Two phantoms were imaged at several sample-detector distances using monochromatic, 30 keV, X-rays. High contrast- and spatial-resolution phase-contrast stereoscopic pairs of X-ray images were constructed using the anaglyph approach and a vivid stereoscopic effect was demonstrated. On the other hand, images of the same phantoms obtained with a shorter sample-to-detector distance, but otherwise the same experimental conditions (i.e. the same X-ray energy and absorbed radiation dose), corresponding to the conventional attenuation-based imaging mode, hardly revealed stereoscopic effects because of the lower image contrast produced. These results have confirmed our hypothesis that stereoscopic X-ray images of samples with objects composed of low-atomic-number elements are considerably improved if phase-contrast imaging is used. It is our belief that the high-resolution phase-contrast stereoscopic method will be a valuable new medical imaging tool for radiologists and that it will be of help to enhance the diagnostic capability in the examination of patients in future clinical practice, even though further efforts will be needed to optimize the system performance.

  6. Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?

    Science.gov (United States)

    Schild, Jonas; Masuch, Maic

    2012-03-01

    This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.

  7. Interactive and Stereoscopic Hybrid 3D Viewer of Radar Data with Gesture Recognition

    Science.gov (United States)

    Goenetxea, Jon; Moreno, Aitor; Unzueta, Luis; Galdós, Andoni; Segura, Álvaro

    This work presents an interactive and stereoscopic 3D viewer of weather information coming from a Doppler radar. The hybrid system shows a GIS model of the regional zone where the radar is located and the corresponding reconstructed 3D volume weather data. To enhance the immersiveness of the navigation, stereoscopic visualization has been added to the viewer, using a polarized glasses based system. The user can interact with the 3D virtual world using a Nintendo Wiimote for navigating through it and a Nintendo Wii Nunchuk for giving commands by means of hand gestures. We also present a dynamic gesture recognition procedure that measures the temporal advance of the performed gesture postures. Experimental results show how dynamic gestures are effectively recognized so that a more natural interaction and immersive navigation in the virtual world is achieved.

  8. Application of a stereoscopic digital subtraction angiography approach to blood flow analysis

    International Nuclear Information System (INIS)

    Fencil, L.E.; Doi, K.; Hoffmann, K.R.

    1986-01-01

    The authors are developing a stereoscopic digital subtraction angiographic (DSA) approach for accurate measurement of the size, magnification factor, orientation, and blood flow of a selected vessel segment. We employ a Siemens Digitron 2 and a Stereolix x-ray tube with a 25-mm tube shift. Absolute vessel sizes in each stereoscopic image are determined using the magnification factor and an iterative deconvolution technique employing the LSF of the DSA system. From data on vessel diameter and three-dimensional orientation, the effective attenuation coefficient of the diluted contrast medium can be determined, thus allowing accurate blood flow analysis in high-frame-rate DSA images. The accuracy and precision of the approach will be studied using both static and dynamic phantoms

  9. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.

    Science.gov (United States)

    Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi

    2016-05-30

    Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images.

  10. A novel no-reference objective stereoscopic video quality assessment method based on visual saliency analysis

    Science.gov (United States)

    Yang, Xinyan; Zhao, Wei; Ye, Long; Zhang, Qin

    2017-07-01

    This paper proposes a no-reference objective stereoscopic video quality assessment method with the motivation that making the effect of objective experiments close to that of subjective way. We believe that the image regions with different visual salient degree should not have the same weights when designing an assessment metric. Therefore, we firstly use GBVS algorithm to each frame pairs and separate both the left and right viewing images into the regions with strong, general and week saliency. Besides, local feature information like blockiness, zero-crossing and depth are extracted and combined with a mathematical model to calculate a quality assessment score. Regions with different salient degree are assigned with different weights in the mathematical model. Experiment results demonstrate the superiority of our method compared with the existed state-of-the-art no-reference objective Stereoscopic video quality assessment methods.

  11. Distortion of depth perception in virtual environments using stereoscopic displays: quantitative assessment and corrective measures

    Science.gov (United States)

    Kleiber, Michael; Winkelholz, Carsten

    2008-02-01

    The aim of the presented research was to quantify the distortion of depth perception when using stereoscopic displays. The visualization parameters of the used virtual reality system such as perspective, haploscopic separation and width of stereoscopic separation were varied. The experiment was designed to measure distortion in depth perception according to allocentric frames of reference. The results of the experiments indicate that some of the parameters have an antithetic effect which allows to compensate the distortion of depth perception for a range of depths. In contrast to earlier research which reported underestimation of depth perception we found that depth was overestimated when using true projection parameters according to the position of the eyes of the user and display geometry.

  12. The Effect of Stereoscopic ("3D") vs. 2D Presentation on Learning through Video and Film

    Science.gov (United States)

    Price, Aaron; Kasal, E.

    2014-01-01

    Two Eyes, 3D is a NSF-funded research project into the effects of stereoscopy on learning of highly spatial concepts. We report final results on one study of the project which tested the effect of stereoscopic presentation on learning outcomes of two short films about Type 1a supernovae and the morphology of the Milky Way. 986 adults watched either film, randomly distributed between stereoscopic and 2D presentation. They took a pre-test and post-test that included multiple choice and drawing tasks related to the spatial nature of the topics in the film. Orientation of the answering device was also tracked and a spatial cognition pre-test was given to control for prior spatial ability. Data collection took place at the Adler Planetarium's Space Visualization Lab and the project is run through the AAVSO.

  13. An MR-compatible stereoscopic in-room 3D display for MR-guided interventions.

    Science.gov (United States)

    Brunner, Alexander; Groebner, Jens; Umathum, Reiner; Maier, Florian; Semmler, Wolfhard; Bock, Michael

    2014-08-01

    A commercial three-dimensional (3D) monitor was modified for use inside the scanner room to provide stereoscopic real-time visualization during magnetic resonance (MR)-guided interventions, and tested in a catheter-tracking phantom experiment at 1.5 T. Brightness, uniformity, radio frequency (RF) emissions and MR image interferences were measured. Due to modifications, the center luminance of the 3D monitor was reduced by 14%, and the addition of a Faraday shield further reduced the remaining luminance by 31%. RF emissions could be effectively shielded; only a minor signal-to-noise ratio (SNR) decrease of 4.6% was observed during imaging. During the tracking experiment, the 3D orientation of the catheter and vessel structures in the phantom could be visualized stereoscopically.

  14. Atomic structure of Fe thin-films on Cu(0 0 1) studied with stereoscopic photography

    International Nuclear Information System (INIS)

    Hattori, Azusa N.; Fujikado, M.; Uchida, T.; Okamoto, S.; Fukumoto, K.; Guo, F.Z.; Matsui, F.; Nakatani, K.; Matsushita, T.; Hattori, K.; Daimon, H.

    2004-01-01

    The complex magnetic properties of Fe films epitaxially grown on Cu(0 0 1) have been discussed in relation to their atomic structure. We have studied the Fe films on Cu(0 0 1) by a new direct method for three-dimensional (3D) atomic structure analysis, so-called 'stereoscopic photography'. The forward-focusing peaks in the photoelectron angular distribution pattern excited by the circularly polarized light rotate around the light axis in either clockwise or counterclockwise direction depending on the light helicity. By using a display-type spherical mirror analyzer for this phenomenon, we can obtain stereoscopic photographs of atomic structure. The photographs revealed that the iron structure changes from bcc to fcc and almost bcc structure with increasing iron film thickness

  15. Dynamic stereoscopic selective visual attention (dssva): integrating motion and shape with depth in video segmentation

    OpenAIRE

    López Bonal, María Teresa; Fernández Caballero, Antonio; Saiz Valverde, Sergio

    2008-01-01

    Depth inclusion as an important parameter for dynamic selective visual attention is presented in this article. The model introduced in this paper is based on two previously developed models, dynamic selective visual attention and visual stereoscopy, giving rise to the so-called dynamic stereoscopic selective visual attention method. The three models are based on the accumulative computation problem-solving method. This paper shows how software reusability enables enhancing results in vision r...

  16. The right view from the wrong location: depth perception in stereoscopic multi-user virtual environments.

    Science.gov (United States)

    Pollock, Brice; Burton, Melissa; Kelly, Jonathan W; Gilbert, Stephen; Winer, Eliot

    2012-04-01

    Stereoscopic depth cues improve depth perception and increase immersion within virtual environments (VEs). However, improper display of these cues can distort perceived distances and directions. Consider a multi-user VE, where all users view identical stereoscopic images regardless of physical location. In this scenario, cues are typically customized for one "leader" equipped with a head-tracking device. This user stands at the center of projection (CoP) and all other users ("followers") view the scene from other locations and receive improper depth cues. This paper examines perceived depth distortion when viewing stereoscopic VEs from follower perspectives and the impact of these distortions on collaborative spatial judgments. Pairs of participants made collaborative depth judgments of virtual shapes viewed from the CoP or after displacement forward or backward. Forward and backward displacement caused perceived depth compression and expansion, respectively, with greater compression than expansion. Furthermore, distortion was less than predicted by a ray-intersection model of stereo geometry. Collaboration times were significantly longer when participants stood at different locations compared to the same location, and increased with greater perceived depth discrepancy between the two viewing locations. These findings advance our understanding of spatial distortions in multi-user VEs, and suggest a strategy for reducing distortion.

  17. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    Science.gov (United States)

    Boulos, Maged N.K.; Robinson, Larry R.

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  18. Monoscopic versus stereoscopic photography in screening for clinically significant macular edema.

    Science.gov (United States)

    Welty, Christopher J; Agarwal, Anita; Merin, Lawrence M; Chomsky, Amy

    2006-01-01

    The purpose of the study was to determine whether monoscopic photography could serve as an accurate tool when used to screen for clinically significant macular edema. In a masked randomized fashion, two readers evaluated monoscopic and stereoscopic retinal photographs of 100 eyes. The photographs were evaluated first individually for probable clinically significant macular edema based on the Early Treatment Diabetic Retinopathy Study criteria and then as stereoscopic pairs. Graders were evaluated for sensitivity and specificity individually and in combination. Individually, reader one had a sensitivity of 0.93 and a specificity of 0.77, and reader two had a sensitivity of 0.88 and a specificity of 0.94. In combination, the readers had a sensitivity of 0.91 and a specificity of 0.86. They correlated on 0.76 of the stereoscopic readings and 0.92 of the monoscopic readings. These results indicate that the use of monoscopic retinal photography may be an accurate screening tool for clinically significant macular edema.

  19. Case study: the introduction of stereoscopic games on the Sony PlayStation 3

    Science.gov (United States)

    Bickerstaff, Ian

    2012-03-01

    A free stereoscopic firmware update on Sony Computer Entertainment's PlayStation® 3 console provides the potential to increase enormously the popularity of stereoscopic 3D in the home. For this to succeed though, a large selection of content has to become available that exploits 3D in the best way possible. In addition to the existing challenges found in creating 3D movies and television programmes, the stereography must compensate for the dynamic and unpredictable environments found in games. Automatically, the software must map the depth range of the scene into the display's comfort zone, while minimising depth compression. This paper presents a range of techniques developed to solve this problem and the challenge of creating twice as many images as the 2D version without excessively compromising the frame rate or image quality. At the time of writing, over 80 stereoscopic PlayStation 3 games have been released and notable titles are used as examples to illustrate how the techniques have been adapted for different game genres. Since the firmware's introduction in 2010, the industry has matured with a large number of developers now producing increasingly sophisticated 3D content. New technologies such as viewer head tracking and head-mounted displays should increase the appeal of 3D in the home still further.

  20. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    Science.gov (United States)

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  1. Keeping Tradition

    NARCIS (Netherlands)

    Zenhong, C.; Buwalda, P.L.

    2011-01-01

    Chinese dumplings such as Jiao Zi and Bao Zi are two of the popular traditional foods in Asia. They are usually made from wheat flour dough (rice flour or starch is sometimes used) that contains fillings. They can be steamed, boiled and fried and are consumed either as a main meal or dessert. As

  2. Prey capture behaviour evoked by simple visual stimuli in larval zebrafish

    Directory of Open Access Journals (Sweden)

    Isaac Henry Bianco

    2011-12-01

    Full Text Available Understanding how the nervous system recognises salient stimuli in the environ- ment and selects and executes the appropriate behavioural responses is a fundamen- tal question in systems neuroscience. To facilitate the neuroethological study of visually-guided behaviour in larval zebrafish, we developed virtual reality assays in which precisely controlled visual cues can be presented to larvae whilst their behaviour is automatically monitored using machine-vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼ 20◦ towards small moving spots (1◦ but reacted to larger spots (10◦ with high-amplitude aversive turns (∼ 60◦. The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analysing movie sequences of larvae hunting parame- cia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behaviour in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey.

  3. Continuous monitoring of prostate position using stereoscopic and monoscopic kV image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M. Tynan R.; Parsons, Dave D.; Robar, James L. [Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada and Nova Scotia Cancer Centre, QEII Health Science Centre, Halifax, Nova Scotia B3H 2Y9 (Canada)

    2016-05-15

    Purpose: To demonstrate continuous kV x-ray monitoring of prostate motion using both stereoscopic and monoscopic localizations, assess the spatial accuracy of these techniques, and evaluate the dose delivered from the added image guidance. Methods: The authors implemented both stereoscopic and monoscopic fiducial localizations using a room-mounted dual oblique x-ray system. Recently developed monoscopic 3D position estimation techniques potentially overcome the issue of treatment head interference with stereoscopic imaging at certain gantry angles. To demonstrate continuous position monitoring, a gold fiducial marker was placed in an anthropomorphic phantom and placed on the Linac couch. The couch was used as a programmable translation stage. The couch was programmed with a series of patient prostate motion trajectories exemplifying five distinct categories: stable prostate, slow drift, persistent excursion, transient excursion, and high frequency excursions. The phantom and fiducial were imaged using 140 kVp, 0.63 mAs per image at 1 Hz for a 60 s monitoring period. Both stereoscopic and monoscopic 3D localization accuracies were assessed by comparison to the ground-truth obtained from the Linac log file. Imaging dose was also assessed, using optically stimulated luminescence dosimeter inserts in the phantom. Results: Stereoscopic localization accuracy varied between 0.13 ± 0.05 and 0.33 ± 0.30 mm, depending on the motion trajectory. Monoscopic localization accuracy varied from 0.2 ± 0.1 to 1.1 ± 0.7 mm. The largest localization errors were typically observed in the left–right direction. There were significant differences in accuracy between the two monoscopic views, but which view was better varied from trajectory to trajectory. The imaging dose was measured to be between 2 and 15 μGy/mAs, depending on location in the phantom. Conclusions: The authors have demonstrated the first use of monoscopic localization for a room-mounted dual x-ray system. Three

  4. Virtual reality stimuli for force platform posturography.

    Science.gov (United States)

    Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko

    2002-01-01

    People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.

  5. Cardiorespiratory interactions to external stimuli.

    Science.gov (United States)

    Bernardi, L; Porta, C; Spicuzza, L; Sleight, P

    2005-09-01

    Respiration is a powerful modulator of heart rate variability, and of baro- or chemo-reflex sensitivity. This occurs via a mechanical effect of breathing that synchronizes all cardiovascular variables at the respiratory rhythm, particularly when this occurs at a particular slow rate coincident with the Mayer waves in arterial pressure (approximately 6 cycles/min). Recitation of the rosary prayer (or of most mantras), induces a marked enhancement of these slow rhythms, whereas random verbalization or random breathing does not. This phenomenon in turn increases baroreflex sensitivity and reduces chemoreflex sensitivity, leading to increases in parasympathetic and reductions in sympathetic activity. The opposite can be seen during either verbalization or mental stress tests. Qualitatively similar effects can be obtained even by passive listening to more or less rhythmic auditory stimuli, such as music, and the speed of the rhythm (rather than the style) appears to be one of the main determinants of the cardiovascular and respiratory responses. These findings have clinical relevance. Appropriate modulation of breathing, can improve/restore autonomic control of cardiovascular and respiratory systems in relevant diseases such as hypertension and heart failure, and might therefore help improving exercise tolerance, quality of life, and ultimately, survival.

  6. The Effect of Two-dimensional and Stereoscopic Presentation on Middle School Students' Performance of Spatial Cognition Tasks

    Science.gov (United States)

    Price, Aaron; Lee, Hee-Sun

    2010-02-01

    We investigated whether and how student performance on three types of spatial cognition tasks differs when worked with two-dimensional or stereoscopic representations. We recruited nineteen middle school students visiting a planetarium in a large Midwestern American city and analyzed their performance on a series of spatial cognition tasks in terms of response accuracy and task completion time. Results show that response accuracy did not differ between the two types of representations while task completion time was significantly greater with the stereoscopic representations. The completion time increased as the number of mental manipulations of 3D objects increased in the tasks. Post-interviews provide evidence that some students continued to think of stereoscopic representations as two-dimensional. Based on cognitive load and cue theories, we interpret that, in the absence of pictorial depth cues, students may need more time to be familiar with stereoscopic representations for optimal performance. In light of these results, we discuss potential uses of stereoscopic representations for science learning.

  7. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  8. Instructed fear stimuli bias visual attention

    NARCIS (Netherlands)

    Deltomme, Berre; Mertens, G.; Tibboel, Helen; Braem, Senne

    We investigated whether stimuli merely instructed to be fear-relevant can bias visual attention, even when the fear relation was never experienced before. Participants performed a dot-probe task with pictures of naturally fear-relevant (snake or spider) or -irrelevant (bird or butterfly) stimuli.

  9. [Traditional nostrum].

    Science.gov (United States)

    Sugiyama, Shigeru

    2006-01-01

    The commercialization of drugs started toward the end of Heian period (794-1192) when not only aristocrats and monks who were traditional patrons to drug makers, but also local clans and landlords who became powerful as a result of the disbanding of aristocratic manors accumulated enough wealth to spend money on medicine. Although traveling around the country was still a dangerous endeavor, merchants assembled groups to bring lucrative foreign drugs (mainly Chinese) to remote areas. The spread of commercial drugs to common people, however, did not happen until the early Edo period (1603-1867), when the so-called barrier system was installed nationwide to make domestic travel safe. Commercialization started in large cities and gradually spread to other areas. Many nostrums popular until recently appeared in the Genroku period (1688-1703) or later. Many such nostrums were all-cures, often consisting of such active ingredients as Saussureae radix, Agalloch, or Gambir. Even in the Edo period, many people living in agricultural or fishing villages, as well as those in the lower tier, were still poor. Much of the medication available to those people was therefore made of various plant or animal-derived substances that were traditionally used as folk medicines.

  10. Computer-enhanced stereoscopic vision in a head-mounted operating binocular

    International Nuclear Information System (INIS)

    Birkfellner, Wolfgang; Figl, Michael; Matula, Christian; Hummel, Johann; Hanel, Rudolf; Imhof, Herwig; Wanschitz, Felix; Wagner, Arne; Watzinger, Franz; Bergmann, Helmar

    2003-01-01

    Based on the Varioscope, a commercially available head-mounted operating binocular, we have developed the Varioscope AR, a see through head-mounted display (HMD) for augmented reality visualization that seamlessly fits into the infrastructure of a surgical navigation system. We have assessed the extent to which stereoscopic visualization improves target localization in computer-aided surgery in a phantom study. In order to quantify the depth perception of a user aiming at a given target, we have designed a phantom simulating typical clinical situations in skull base surgery. Sixteen steel spheres were fixed at the base of a bony skull, and several typical craniotomies were applied. After having taken CT scans, the skull was filled with opaque jelly in order to simulate brain tissue. The positions of the spheres were registered using VISIT, a system for computer-aided surgical navigation. Then attempts were made to locate the steel spheres with a bayonet probe through the craniotomies using VISIT and the Varioscope AR as a stereoscopic display device. Localization of targets 4 mm in diameter using stereoscopic vision and additional visual cues indicating target proximity had a success rate (defined as a first-trial hit rate) of 87.5%. Using monoscopic vision and target proximity indication, the success rate was found to be 66.6%. Omission of visual hints on reaching a target yielded a success rate of 79.2% in the stereo case and 56.25% with monoscopic vision. Time requirements for localizing all 16 targets ranged from 7.5 min (stereo, with proximity cues) to 10 min (mono, without proximity cues). Navigation error is primarily governed by the accuracy of registration in the navigation system, whereas the HMD does not appear to influence localization significantly. We conclude that stereo vision is a valuable tool in augmented reality guided interventions. (note)

  11. Poster - 48: Clinical assessment of ExacTrac stereoscopic imaging of spine alignment for lung SBRT

    International Nuclear Information System (INIS)

    Sattarivand, Mike; Summers, Clare; Robar, James

    2016-01-01

    Purpose: To evaluate the validity of using spine as a surrogate for tumor positioning with ExacTrac stereoscopic imaging in lung stereotactic body radiation therapy (SBRT). Methods: Using the Novalis ExacTrac x-ray system, 39 lung SBRT patients (182 treatments) were aligned before treatment with 6 degrees (6D) of freedom couch (3 translations, 3 rotations) based on spine matching on stereoscopic images. The couch was shifted to treatment isocenter and pre-treatment CBCT was performed based on a soft tissue match around tumor volume. The CBCT data were used to measure residual errors following ExacTrac alignment. The thresholds for re-aligning the patients based on CBCT were 3mm shift or 3° rotation (in any 6D). In order to evaluate the effect of tumor location on residual errors, correlations between tumor distance from spine and individual residual errors were calculated. Results: Residual errors were up to 0.5±2.4mm. Using 3mm/3° thresholds, 80/182 (44%) of the treatments required re-alignment based on CBCT soft tissue matching following ExacTrac spine alignment. Most mismatches were in sup-inf, ant-post, and roll directions which had larger standard deviations. No correlation was found between tumor distance from spine and individual residual errors. Conclusion: ExacTrac stereoscopic imaging offers a quick pre-treatment patient alignment. However, bone matching based on spine is not reliable for aligning lung SBRT patients who require soft tissue image registration from CBCT. Spine can be a poor surrogate for lung SBRT patient alignment even for proximal tumor volumes.

  12. Poster - 48: Clinical assessment of ExacTrac stereoscopic imaging of spine alignment for lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Sattarivand, Mike; Summers, Clare; Robar, James [Nova Scotia Cancer Centre, Nova Scotia Cancer Centre, Nova Scotia Cancer Centre (Canada)

    2016-08-15

    Purpose: To evaluate the validity of using spine as a surrogate for tumor positioning with ExacTrac stereoscopic imaging in lung stereotactic body radiation therapy (SBRT). Methods: Using the Novalis ExacTrac x-ray system, 39 lung SBRT patients (182 treatments) were aligned before treatment with 6 degrees (6D) of freedom couch (3 translations, 3 rotations) based on spine matching on stereoscopic images. The couch was shifted to treatment isocenter and pre-treatment CBCT was performed based on a soft tissue match around tumor volume. The CBCT data were used to measure residual errors following ExacTrac alignment. The thresholds for re-aligning the patients based on CBCT were 3mm shift or 3° rotation (in any 6D). In order to evaluate the effect of tumor location on residual errors, correlations between tumor distance from spine and individual residual errors were calculated. Results: Residual errors were up to 0.5±2.4mm. Using 3mm/3° thresholds, 80/182 (44%) of the treatments required re-alignment based on CBCT soft tissue matching following ExacTrac spine alignment. Most mismatches were in sup-inf, ant-post, and roll directions which had larger standard deviations. No correlation was found between tumor distance from spine and individual residual errors. Conclusion: ExacTrac stereoscopic imaging offers a quick pre-treatment patient alignment. However, bone matching based on spine is not reliable for aligning lung SBRT patients who require soft tissue image registration from CBCT. Spine can be a poor surrogate for lung SBRT patient alignment even for proximal tumor volumes.

  13. System design description for the LDUA high resolution stereoscopic video camera system (HRSVS)

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1998-01-01

    The High Resolution Stereoscopic Video Camera System (HRSVS), system 6230, was designed to be used as an end effector on the LDUA to perform surveillance and inspection activities within a waste tank. It is attached to the LDUA by means of a Tool Interface Plate (TIP) which provides a feed through for all electrical and pneumatic utilities needed by the end effector to operate. Designed to perform up close weld and corrosion inspection roles in US T operations, the HRSVS will support and supplement the Light Duty Utility Arm (LDUA) and provide the crucial inspection tasks needed to ascertain waste tank condition

  14. Immersive Televisual Environments: Spectatorship, Stereoscopic Vision and the Failure of 3DTV

    Directory of Open Access Journals (Sweden)

    Ilkin Mehrabov

    2015-09-01

    Full Text Available This article focuses on one of the most ground-breaking technological attempts in creating novel immersive media environments for heightened televisual user experiences: 3DTV, a Network of Excellence funded by the European Commission 6th Framework Information Society Technologies Programme. Based on the theoretical framework outlined by the works of Jonathan Crary and Brian Winston, and on empirical data obtained from author’s fieldwork and laboratory visit notes, as well as discussions with practitioners, the article explores the history of stereoscopic vision and technological progress related with it, and looks for possible reasons of 3DTV’s dramatic commercial failure.

  15. Measurement of rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, O.; Meyer, Knud Erik; Larsen, Poul Scheel

    2004-01-01

    A simple technique is described for measuring the mean rate-of-displacement (velocity gradient) tensor in a plane by using a conventional stereoscopic PIV system. The technique involves taking PIV data in two or three closely-spaced parallel planes at different times. All components of the mean...... are presented to show the applicability of the proposed technique. The PIV cameras and light sheet optics shown in Fig. 1a are mounted on the same traverse mechanism in order to displace the measurement plane accurately. Data obtained in constant-y and -z planes are presented. Fig. 1b shows a contour plot...

  16. Evaluation of stereoscopic video cameras synchronized with the movement of an operator's head on the teleoperation of the actual backhoe shovel

    Science.gov (United States)

    Minamoto, Masahiko; Matsunaga, Katsuya

    1999-05-01

    Operator performance while using a remote controlled backhoe shovel is described for three different stereoscopic viewing conditions: direct view, fixed stereoscopic cameras connected to a helmet mounted display (HMD), and rotating stereo camera connected and slaved to the head orientation of a free moving stereo HMD. Results showed that the head- slaved system provided the best performance.

  17. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    Science.gov (United States)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  18. Broadcast-quality-stereoscopic video in a time-critical entertainment and corporate environment

    Science.gov (United States)

    Gay, Jean-Philippe

    1995-03-01

    `reality present: Peter Gabrial and Cirque du Soleil' is a 12 minute original work directed and produced by Doug Brown, Jean-Philippe Gay & A. Coogan, which showcases creative content applications of commercial stereoscopic video equipment. For production, a complete equipment package including a Steadicam mount was used in support of the Ikegami LK-33 camera. Remote production units were fielded in the time critical, on-stage and off-stage environments of 2 major live concerts: Peter Gabriel's Secret World performance at the San Diego Sports Arena, and Cirque du Soleil's Saltimbanco performance in Chicago. Twin 60 Hz video channels were captured on Beta SP for maximum post production flexibility. Digital post production and field sequential mastering were effected in D-2 format at studio facilities in Los Angeles. The program was world premiered to a large public at the World of Music, Arts and Dance festivals in Los Angeles and San Francisco, in late 1993. It was presented to the artists in Los Angeles, Montreal and Washington D.C. Additional presentations have been made using a broad range of commercial and experimental stereoscopic video equipment, including projection systems, LCD and passive eyewear, and digital signal processors. Technical packages for live presentation have been fielded on site and off, through to the present.

  19. Calculation of 3D Coordinates of a Point on the Basis of a Stereoscopic System

    Science.gov (United States)

    Mussabayev, R. R.; Kalimoldayev, M. N.; Amirgaliyev, Ye. N.; Tairova, A. T.; Mussabayev, T. R.

    2018-05-01

    The solution of three-dimensional (3D) coordinate calculation task for a material point is considered. Two flat images (a stereopair) which correspond to the left and to the right viewpoints of a 3D scene are used for this purpose. The stereopair is obtained using two cameras with parallel optical axes. The analytical formulas for calculating 3D coordinates of a material point in the scene were obtained on the basis of analysis of the stereoscopic system optical and geometrical schemes. The detailed presentation of the algorithmic and hardware realization of the given method was discussed with the the practical. The practical module was recommended for the determination of the optical system unknown parameters. The series of experimental investigations were conducted for verification of theoretical results. During these experiments the minor inaccuracies were occurred by space distortions in the optical system and by it discrecity. While using the high quality stereoscopic system, the existing calculation inaccuracy enables to apply the given method for the wide range of practical tasks.

  20. A foreground object features-based stereoscopic image visual comfort assessment model

    Science.gov (United States)

    Jin, Xin; Jiang, G.; Ying, H.; Yu, M.; Ding, S.; Peng, Z.; Shao, F.

    2014-11-01

    Since stereoscopic images provide observers with both realistic and discomfort viewing experience, it is necessary to investigate the determinants of visual discomfort. By considering that foreground object draws most attention when human observing stereoscopic images. This paper proposes a new foreground object based visual comfort assessment (VCA) metric. In the first place, a suitable segmentation method is applied to disparity map and then the foreground object is ascertained as the one having the biggest average disparity. In the second place, three visual features being average disparity, average width and spatial complexity of foreground object are computed from the perspective of visual attention. Nevertheless, object's width and complexity do not consistently influence the perception of visual comfort in comparison with disparity. In accordance with this psychological phenomenon, we divide the whole images into four categories on the basis of different disparity and width, and exert four different models to more precisely predict its visual comfort in the third place. Experimental results show that the proposed VCA metric outperformance other existing metrics and can achieve a high consistency between objective and subjective visual comfort scores. The Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are over 0.84 and 0.82, respectively.

  1. Matching methods evaluation framework for stereoscopic breast x-ray images.

    Science.gov (United States)

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps.

  2. Optoelectronic stereoscopic device for diagnostics, treatment, and developing of binocular vision

    Science.gov (United States)

    Pautova, Larisa; Elkhov, Victor A.; Ovechkis, Yuri N.

    2003-08-01

    Operation of the device is based on alternative generation of pictures for left and right eyes on the monitor screen. Controller gives pulses on LCG so that shutter for left or right eye opens synchronously with pictures. The device provides frequency of switching more than 100 Hz, and that is why the flickering is absent. Thus, a separate demonstration of images to the left eye or to the right one in turn is obtained for patients being unaware and creates the conditions of binocular perception clsoe to natural ones without any additional separation of vision fields. LC-cell transfer characteristic coodination with time parameters of monitor screen has enabled to improve stereo image quality. Complicated problem of computer stereo images with LC-glasses is so called 'ghosts' - noise images that come to blocked eye. We reduced its influence by adapting stereo images to phosphor and LC-cells characteristics. The device is intended for diagnostics and treatment of stabismus, amblyopia and other binocular and stereoscopic vision impairments, for cultivating, training and developing of stereoscopic vision, for measurements of horizontal and vertical phoria, phusion reserves, the stereovision acuity and some else, for fixing central scotoma borders, as well as suppression scotoma in strabismus too.

  3. Employing WebGL to develop interactive stereoscopic 3D content for use in biomedical visualization

    Science.gov (United States)

    Johnston, Semay; Renambot, Luc; Sauter, Daniel

    2013-03-01

    Web Graphics Library (WebGL), the forthcoming web standard for rendering native 3D graphics in a browser, represents an important addition to the biomedical visualization toolset. It is projected to become a mainstream method of delivering 3D online content due to shrinking support for third-party plug-ins. Additionally, it provides a virtual reality (VR) experience to web users accommodated by the growing availability of stereoscopic displays (3D TV, desktop, and mobile). WebGL's value in biomedical visualization has been demonstrated by applications for interactive anatomical models, chemical and molecular visualization, and web-based volume rendering. However, a lack of instructional literature specific to the field prevents many from utilizing this technology. This project defines a WebGL design methodology for a target audience of biomedical artists with a basic understanding of web languages and 3D graphics. The methodology was informed by the development of an interactive web application depicting the anatomy and various pathologies of the human eye. The application supports several modes of stereoscopic displays for a better understanding of 3D anatomical structures.

  4. Passive method of eliminating accommodation/convergence disparity in stereoscopic head-mounted displays

    Science.gov (United States)

    Eichenlaub, Jesse B.

    2005-03-01

    The difference in accommodation and convergence distance experienced when viewing stereoscopic displays has long been recognized as a source of visual discomfort. It is especially problematic in head mounted virtual reality and enhanced reality displays, where images must often be displayed across a large depth range or superimposed on real objects. DTI has demonstrated a novel method of creating stereoscopic images in which the focus and fixation distances are closely matched for all parts of the scene from close distances to infinity. The method is passive in the sense that it does not rely on eye tracking, moving parts, variable focus optics, vibrating optics, or feedback loops. The method uses a rapidly changing illumination pattern in combination with a high speed microdisplay to create cones of light that converge at different distances to form the voxels of a high resolution space filling image. A bench model display was built and a series of visual tests were performed in order to demonstrate the concept and investigate both its capabilities and limitations. Results proved conclusively that real optical images were being formed and that observers had to change their focus to read text or see objects at different distances

  5. Assessing the precision of gaze following using a stereoscopic 3D virtual reality setting.

    Science.gov (United States)

    Atabaki, Artin; Marciniak, Karolina; Dicke, Peter W; Thier, Peter

    2015-07-01

    Despite the ecological importance of gaze following, little is known about the underlying neuronal processes, which allow us to extract gaze direction from the geometric features of the eye and head of a conspecific. In order to understand the neuronal mechanisms underlying this ability, a careful description of the capacity and the limitations of gaze following at the behavioral level is needed. Previous studies of gaze following, which relied on naturalistic settings have the disadvantage of allowing only very limited control of potentially relevant visual features guiding gaze following, such as the contrast of iris and sclera, the shape of the eyelids and--in the case of photographs--they lack depth. Hence, in order to get full control of potentially relevant features we decided to study gaze following of human observers guided by the gaze of a human avatar seen stereoscopically. To this end we established a stereoscopic 3D virtual reality setup, in which we tested human subjects' abilities to detect at which target a human avatar was looking at. Following the gaze of the avatar showed all the features of the gaze following of a natural person, namely a substantial degree of precision associated with a consistent pattern of systematic deviations from the target. Poor stereo vision affected performance surprisingly little (only in certain experimental conditions). Only gaze following guided by targets at larger downward eccentricities exhibited a differential effect of the presence or absence of accompanying movements of the avatar's eyelids and eyebrows. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Assessment of stereoscopic optic disc images using an autostereoscopic screen – experimental study

    Directory of Open Access Journals (Sweden)

    Vaideanu Daniella

    2008-07-01

    Full Text Available Abstract Background Stereoscopic assessment of the optic disc morphology is an important part of the care of patients with glaucoma. The aim of this study was to assess stereoviewing of stereoscopic optic disc images using an example of the new technology of autostereoscopic screens compared to the liquid shutter goggles. Methods Independent assessment of glaucomatous disc characteristics and measurement of optic disc and cup parameters whilst using either an autostereoscopic screen or liquid crystal shutter goggles synchronized with a view switching display. The main outcome measures were inter-modality agreements between the two used modalities as evaluated by the weighted kappa test and Bland Altman plots. Results Inter-modality agreement for measuring optic disc parameters was good [Average kappa coefficient for vertical Cup/Disc ratio was 0.78 (95% CI 0.62–0.91 and 0.81 (95% CI 0.6–0.92 for observer 1 and 2 respectively]. Agreement between modalities for assessing optic disc characteristics for glaucoma on a five-point scale was very good with a kappa value of 0.97. Conclusion This study compared two different methods of stereo viewing. The results of assessment of the different optic disc and cup parameters were comparable using an example of the newly developing autostereoscopic display technologies as compared to the shutter goggles system used. The Inter-modality agreement was high. This new technology carries potential clinical usability benefits in different areas of ophthalmic practice.

  7. A 3-D mixed-reality system for stereoscopic visualization of medical dataset.

    Science.gov (United States)

    Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco

    2009-11-01

    We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice.

  8. Figure and ground in the visual cortex: v2 combines stereoscopic cues with gestalt rules.

    Science.gov (United States)

    Qiu, Fangtu T; von der Heydt, Rüdiger

    2005-07-07

    Figure-ground organization is a process by which the visual system identifies some image regions as foreground and others as background, inferring 3D layout from 2D displays. A recent study reported that edge responses of neurons in area V2 are selective for side-of-figure, suggesting that figure-ground organization is encoded in the contour signals (border ownership coding). Here, we show that area V2 combines two strategies of computation, one that exploits binocular stereoscopic information for the definition of local depth order, and another that exploits the global configuration of contours (Gestalt factors). These are combined in single neurons so that the "near" side of the preferred 3D edge generally coincides with the preferred side-of-figure in 2D displays. Thus, area V2 represents the borders of 2D figures as edges of surfaces, as if the figures were objects in 3D space. Even in 3D displays, Gestalt factors influence the responses and can enhance or null the stereoscopic depth information.

  9. Attentional load modulates responses of human primary visual cortex to invisible stimuli.

    Science.gov (United States)

    Bahrami, Bahador; Lavie, Nilli; Rees, Geraint

    2007-03-20

    Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.

  10. Multi-Functional Stimuli-Responsive Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — Supramolecular polymers based on non-covalent interactions can display a wide array of stimuli-responsive attributes. They can be tailored to change shape, actuate...

  11. Newborns' Discrimination of Chromatic from Achromatic Stimuli.

    Science.gov (United States)

    Adams, Russell J.; And Others

    1986-01-01

    Two experiments assessed the extent of newborns' ability to discriminate color. Results imply that newborns have some, albeit limited, capacity to discriminate chromatic from achromatic stimuli, and hence, are at least dichromats. (Author/DR)

  12. Generalized Habituation of Concept Stimuli in Toddlers

    Science.gov (United States)

    Faulkender, Patricia J.; And Others

    1974-01-01

    An evaluation of selective generalization of habituation on the basis of meaningful categories of stimuli. Also explored are the sex differences in conceptual generalization of habituation. Subjects were 36 toddlers with a mean age of 40 months. (SDH)

  13. Dynamic Stimuli And Active Processing In Human Visual Perception

    Science.gov (United States)

    Haber, Ralph N.

    1990-03-01

    Theories of visual perception traditionally have considered a static retinal image to be the starting point for processing; and has considered processing both to be passive and a literal translation of that frozen, two dimensional, pictorial image. This paper considers five problem areas in the analysis of human visually guided locomotion, in which the traditional approach is contrasted to newer ones that utilize dynamic definitions of stimulation, and an active perceiver: (1) differentiation between object motion and self motion, and among the various kinds of self motion (e.g., eyes only, head only, whole body, and their combinations); (2) the sources and contents of visual information that guide movement; (3) the acquisition and performance of perceptual motor skills; (4) the nature of spatial representations, percepts, and the perceived layout of space; and (5) and why the retinal image is a poor starting point for perceptual processing. These newer approaches argue that stimuli must be considered as dynamic: humans process the systematic changes in patterned light when objects move and when they themselves move. Furthermore, the processing of visual stimuli must be active and interactive, so that perceivers can construct panoramic and stable percepts from an interaction of stimulus information and expectancies of what is contained in the visual environment. These developments all suggest a very different approach to the computational analyses of object location and identification, and of the visual guidance of locomotion.

  14. The mere exposure effect with scene stimuli

    OpenAIRE

    八木 , 善彦

    2016-01-01

     The mere exposure effect refers to the phenomenon where previous exposures to stimuli increasesubsequent affective preference for those stimuli. It has been indicated that with specific stimulus-category(i.e., paintings, matrices, and photographs of scene), repeated exposure has little or oppositeeffect on affective ratings. In this study, two experiments were conducted in order to explore theeffect of stimulus-category on the mere exposure effects. Photographs of young woman’s(Experiment1)a...

  15. Binocular Combination of Second-Order Stimuli

    Science.gov (United States)

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  16. The Influence of Manifest Strabismus and Stereoscopic Vision on Non-Verbal Abilities of Visually Impaired Children

    Science.gov (United States)

    Gligorovic, Milica; Vucinic, Vesna; Eskirovic, Branka; Jablan, Branka

    2011-01-01

    This research was conducted in order to examine the influence of manifest strabismus and stereoscopic vision on non-verbal abilities of visually impaired children aged between 7 and 15. The sample included 55 visually impaired children from the 1st to the 6th grade of elementary schools for visually impaired children in Belgrade. RANDOT stereotest…

  17. Quantitative Measurement of Eyestrain on 3D Stereoscopic Display Considering the Eye Foveation Model and Edge Information

    Directory of Open Access Journals (Sweden)

    Hwan Heo

    2014-05-01

    Full Text Available We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user’s gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position where edge strength is maximized can be detected, and we determine this position as the gaze position that has a higher probability of being the correct one. Based on this gaze point, the eye foveation model is defined. Second, we quantitatively evaluate the correlation between the degree of eyestrain and the causal factors of visual fatigue, such as the degree of change of stereoscopic disparity (CSD, stereoscopic disparity (SD, frame cancellation effect (FCE, and edge component (EC of the 3D stereoscopic display using the eye foveation model. Third, by comparing the eyestrain in conventional 3D video and experimental 3D sample video, we analyze the characteristics of eyestrain according to various factors and types of 3D video. Fourth, by comparing the eyestrain with or without the compensation of eye saccades movement in 3D video, we analyze the characteristics of eyestrain according to the types of eye movements in 3D video. Experimental results show that the degree of CSD causes more eyestrain than other factors.

  18. Comparing Short- and Long-Term Learning Effects between Stereoscopic and Two-Dimensional Film at a Planetarium

    Science.gov (United States)

    Price, C. Aaron; Lee, Hee-Sun; Subbarao, Mark; Kasal, Evan; Aguileara, Julieta

    2015-01-01

    Science centers such as museums and planetariums have used stereoscopic ("three-dimensional") films to draw interest from and educate their visitors for decades. Despite the fact that most adults who are finished with their formal education get their science knowledge from such free-choice learning settings very little is known about the…

  19. Evaluation of the Performance of Vortex Generators on the DU 91-W2-250 Profile using Stereoscopic PIV

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Meyer, Knud Erik

    2009-01-01

    Stereoscopic PIV measurements investigating the effect of Vortex Generators on the lift force near stall and on glide ratio at best aerodynamic performance have been carried out in the LM Glasfiber wind tunnel on a DU 91-W2-250 profile. Measurements at two Reynolds numbers were analyzed; Re=0...

  20. Evaluation of the Performance of Vortex Generators on the DU 91-W2-250 Profile using Stereoscopic PIV

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Meyer, Knud Erik

    2008-01-01

    Stereoscopic PIV measurements investigating the effect of Vortex Generators on the lift force near stall and on glide ratio at best aerodynamic performance have been carried out in the LM Glasfiber wind tunnel on a DU 91-W2-250 profile. Measurements at two Reynolds numbers were analyzed; Re=0...

  1. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    NARCIS (Netherlands)

    Ragni, D.; Van Oudheusden, B.W.; Scarano, F.

    2011-01-01

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes

  2. Generalization of the disruptive effects of alternative stimuli when combined with target stimuli in extinction.

    Science.gov (United States)

    Podlesnik, Christopher A; Miranda-Dukoski, Ludmila; Jonas Chan, C K; Bland, Vikki J; Bai, John Y H

    2017-09-01

    Differential-reinforcement treatments reduce target problem behavior in the short term but at the expense of making it more persistent long term. Basic and translational research based on behavioral momentum theory suggests that combining features of stimuli governing an alternative response with the stimuli governing target responding could make target responding less persistent. However, changes to the alternative stimulus context when combining alternative and target stimuli could diminish the effectiveness of the alternative stimulus in reducing target responding. In an animal model with pigeons, the present study reinforced responding in the presence of target and alternative stimuli. When combining the alternative and target stimuli during extinction, we altered the alternative stimulus through changes in line orientation. We found that (1) combining alternative and target stimuli in extinction more effectively decreased target responding than presenting the target stimulus on its own; (2) combining these stimuli was more effective in decreasing target responding trained with lower reinforcement rates; and (3) changing the alternative stimulus reduced its effectiveness when it was combined with the target stimulus. Therefore, changing alternative stimuli (e.g., therapist, clinical setting) during behavioral treatments that combine alternative and target stimuli could reduce the effectiveness of those treatments in disrupting problem behavior. © 2017 Society for the Experimental Analysis of Behavior.

  3. Recall and recognition hypermnesia for Socratic stimuli.

    Science.gov (United States)

    Kazén, Miguel; Solís-Macías, Víctor M

    2016-01-01

    In two experiments, we investigate hypermnesia, net memory improvements with repeated testing of the same material after a single study trial. In the first experiment, we found hypermnesia across three trials for the recall of word solutions to Socratic stimuli (dictionary-like definitions of concepts) replicating Erdelyi, Buschke, and Finkelstein and, for the first time using these materials, for their recognition. In the second experiment, we had two "yes/no" recognition groups, a Socratic stimuli group presented with concrete and abstract verbal materials and a word-only control group. Using signal detection measures, we found hypermnesia for concrete Socratic stimuli-and stable performance for abstract stimuli across three recognition tests. The control group showed memory decrements across tests. We interpret these findings with the alternative retrieval pathways (ARP) hypothesis, contrasting it with alternative theories of hypermnesia, such as depth of processing, generation and retrieve-recognise. We conclude that recognition hypermnesia for concrete Socratic stimuli is a reliable phenomenon, which we found in two experiments involving both forced-choice and yes/no recognition procedures.

  4. Streaming video-based 3D reconstruction method compatible with existing monoscopic and stereoscopic endoscopy systems

    Science.gov (United States)

    Bouma, Henri; van der Mark, Wannes; Eendebak, Pieter T.; Landsmeer, Sander H.; van Eekeren, Adam W. M.; ter Haar, Frank B.; Wieringa, F. Pieter; van Basten, Jean-Paul

    2012-06-01

    Compared to open surgery, minimal invasive surgery offers reduced trauma and faster recovery. However, lack of direct view limits space perception. Stereo-endoscopy improves depth perception, but is still restricted to the direct endoscopic field-of-view. We describe a novel technology that reconstructs 3D-panoramas from endoscopic video streams providing a much wider cumulative overview. The method is compatible with any endoscope. We demonstrate that it is possible to generate photorealistic 3D-environments from mono- and stereoscopic endoscopy. The resulting 3D-reconstructions can be directly applied in simulators and e-learning. Extended to real-time processing, the method looks promising for telesurgery or other remote vision-guided tasks.

  5. Stereoscopic particle image velocimetry investigations of the mixed convection exchange flow through a horizontal vent

    Science.gov (United States)

    Varrall, Kevin; Pretrel, Hugues; Vaux, Samuel; Vauquelin, Olivier

    2017-10-01

    The exchange flow through a horizontal vent linking two compartments (one above the other) is studied experimentally. This exchange is here governed by both the buoyant natural effect due to the temperature difference of the fluids in both compartments, and the effect of a (forced) mechanical ventilation applied in the lower compartment. Such a configuration leads to uni- or bi-directional flows through the vent. In the experiments, buoyancy is induced in the lower compartment thanks to an electrical resistor. The forced ventilation is applied in exhaust or supply modes and three different values of the vent area. To estimate both velocity fields and flow rates at the vent, measurements are realized at thermal steady state, flush the vent in the upper compartment using stereoscopic particle image velocimetry (SPIV), which is original for this kind of flow. The SPIV measurements allows the area occupied by both upward and downward flows to be determined.

  6. Stereoscopic visualization in curved spacetime: seeing deep inside a black hole

    International Nuclear Information System (INIS)

    Hamilton, Andrew J S; Polhemus, Gavin

    2010-01-01

    Stereoscopic visualization adds an additional dimension to the viewer's experience, giving them a sense of distance. In a general relativistic visualization, distance can be measured in a variety of ways. We argue that the affine distance, which matches the usual notion of distance in flat spacetime, is a natural distance to use in curved spacetime. As an example, we apply affine distance to the visualization of the interior of a black hole. Affine distance is not the distance perceived with normal binocular vision in curved spacetime. However, the failure of binocular vision is simply a limitation of animals that have evolved in flat spacetime, not a fundamental obstacle to depth perception in curved spacetime. Trinocular vision would provide superior depth perception.

  7. Stereoscopic Augmented Reality System for Supervised Training on Minimal Invasive Surgery Robots

    DEFF Research Database (Denmark)

    Matu, Florin-Octavian; Thøgersen, Mikkel; Galsgaard, Bo

    2014-01-01

    the need for efficient training. When training with the robot, the communication between the trainer and the trainee is limited, since the trainee often cannot see the trainer. To overcome this issue, this paper proposes an Augmented Reality (AR) system where the trainer is controlling two virtual robotic...... arms. These arms are virtually superimposed on the video feed to the trainee, and can therefore be used to demonstrate and perform various tasks for the trainee. Furthermore, the trainer is presented with a 3D image through a stereoscopic display. Because of the added depth perception, this enables...... the procedure, and thereby enhances the training experience. The virtual overlay was also found to work as a good and illustrative approach for enhanced communication. However, the delay of the prototype made it difficult to use for actual training....

  8. Stereoscopic neuroanatomy lectures using a three-dimensional virtual reality environment.

    Science.gov (United States)

    Kockro, Ralf A; Amaxopoulou, Christina; Killeen, Tim; Wagner, Wolfgang; Reisch, Robert; Schwandt, Eike; Gutenberg, Angelika; Giese, Alf; Stofft, Eckart; Stadie, Axel T

    2015-09-01

    Three-dimensional (3D) computer graphics are increasingly used to supplement the teaching of anatomy. While most systems consist of a program which produces 3D renderings on a workstation with a standard screen, the Dextrobeam virtual reality VR environment allows the presentation of spatial neuroanatomical models to larger groups of students through a stereoscopic projection system. Second-year medical students (n=169) were randomly allocated to receive a standardised pre-recorded audio lecture detailing the anatomy of the third ventricle accompanied by either a two-dimensional (2D) PowerPoint presentation (n=80) or a 3D animated tour of the third ventricle with the DextroBeam. Students completed a 10-question multiple-choice exam based on the content learned and a subjective evaluation of the teaching method immediately after the lecture. Students in the 2D group achieved a mean score of 5.19 (±2.12) compared to 5.45 (±2.16) in the 3D group, with the results in the 3D group statistically non-inferior to those of the 2D group (p<0.0001). The students rated the 3D method superior to 2D teaching in four domains (spatial understanding, application in future anatomy classes, effectiveness, enjoyableness) (p<0.01). Stereoscopically enhanced 3D lectures are valid methods of imparting neuroanatomical knowledge and are well received by students. More research is required to define and develop the role of large-group VR systems in modern neuroanatomy curricula. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    Science.gov (United States)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  10. Lingering representations of stimuli influence recall organization

    Science.gov (United States)

    Chan, Stephanie C.Y.; Applegate, Marissa C.; Morton, Neal W; Polyn, Sean M.; Norman, Kenneth A.

    2017-01-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the “fading embers” of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. PMID:28132858

  11. Lingering representations of stimuli influence recall organization.

    Science.gov (United States)

    Chan, Stephanie C Y; Applegate, Marissa C; Morton, Neal W; Polyn, Sean M; Norman, Kenneth A

    2017-03-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the "fading embers" of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. VEP Responses to Op-Art Stimuli.

    Directory of Open Access Journals (Sweden)

    Louise O'Hare

    Full Text Available Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.

  13. VEP Responses to Op-Art Stimuli.

    Science.gov (United States)

    O'Hare, Louise; Clarke, Alasdair D F; Pollux, Petra M J

    2015-01-01

    Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.

  14. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  15. Stimuli-responsive liquid crystalline materials

    NARCIS (Netherlands)

    Debije, M.G.; Schenning, A.P.H.J.; Hashmi, Saleem

    2016-01-01

    Stimuli-responsive materials which respond to triggers from the environment by changing their properties are one of the focal points in materials science. For precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals

  16. Toward 3D-IPTV: design and implementation of a stereoscopic and multiple-perspective video streaming system

    Science.gov (United States)

    Petrovic, Goran; Farin, Dirk; de With, Peter H. N.

    2008-02-01

    3D-Video systems allow a user to perceive depth in the viewed scene and to display the scene from arbitrary viewpoints interactively and on-demand. This paper presents a prototype implementation of a 3D-video streaming system using an IP network. The architecture of our streaming system is layered, where each information layer conveys a single coded video signal or coded scene-description data. We demonstrate the benefits of a layered architecture with two examples: (a) stereoscopic video streaming, (b) monoscopic video streaming with remote multiple-perspective rendering. Our implementation experiments confirm that prototyping 3D-video streaming systems is possible with today's software and hardware. Furthermore, our current operational prototype demonstrates that highly heterogeneous clients can coexist in the system, ranging from auto-stereoscopic 3D displays to resource-constrained mobile devices.

  17. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    Science.gov (United States)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  18. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    International Nuclear Information System (INIS)

    Xie Yaoqin; Gu Jia; Xing Lei; Liu Wu

    2013-01-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow. (paper)

  19. Effect of Stereoscopic Anaglyphic 3-Dimensional Video Didactics on Learning Neuroanatomy.

    Science.gov (United States)

    Goodarzi, Amir; Monti, Sara; Lee, Darrin; Girgis, Fady

    2017-11-01

    The teaching of neuroanatomy in medical education has historically been based on didactic instruction, cadaveric dissections, and intraoperative experience for students. Multiple novel 3-dimensional (3D) modalities have recently emerged. Among these, stereoscopic anaglyphic video is easily accessible and affordable, however, its effects have not yet formally been investigated. This study aimed to investigate if 3D stereoscopic anaglyphic video instruction in neuroanatomy could improve learning for content-naive students, as compared with 2-dimensional (2D) video instruction. A single-site controlled prospective case control study was conducted at the School of Education. Content knowledge was assessed at baseline, followed by the presentation of an instructional neuroanatomy video. Participants viewed the video in either 2D or 3D format and then completed a written test of skull base neuroanatomy. Pretest and post-test performances were analyzed with independent Student's t-tests and analysis of covariance. Our study was completed by 249 subjects. At baseline, the 2D (n = 124, F = 97) and 3D groups (n = 125, F = 96) were similar, although the 3D group was older by 1.7 years (P = 0.0355) and the curricula of participating classes differed (P < 0.0001). Average scores for the 3D group were higher for both pretest (2D, M = 19.9%, standard deviation [SD] = 12.5% vs. 3D, M = 23.9%, SD = 14.9%, P = 0.0234) and post-test performances (2D, M = 68.5%, SD = 18.6% vs. 3D, M = 77.3%, SD = 18.8%, P = 0.003), but the magnitude of improvement across groups did not reach statistical significance (2D, M = 48.7%, SD = 21.3%, vs. 3D, M = 53.5%, SD = 22.7%, P = 0.0855). Incorporation of 3D video instruction into curricula without careful integration is insufficient to promote learning over 2D video. Published by Elsevier Inc.

  20. Blind Braille readers mislocate tactile stimuli.

    Science.gov (United States)

    Sterr, Annette; Green, Lisa; Elbert, Thomas

    2003-05-01

    In a previous experiment, we observed that blind Braille readers produce errors when asked to identify on which finger of one hand a light tactile stimulus had occurred. With the present study, we aimed to specify the characteristics of this perceptual error in blind and sighted participants. The experiment confirmed that blind Braille readers mislocalised tactile stimuli more often than sighted controls, and that the localisation errors occurred significantly more often at the right reading hand than at the non-reading hand. Most importantly, we discovered that the reading fingers showed the smallest error frequency, but the highest rate of stimulus attribution. The dissociation of perceiving and locating tactile stimuli in the blind suggests altered tactile information processing. Neuroplasticity, changes in tactile attention mechanisms as well as the idea that blind persons may employ different strategies for tactile exploration and object localisation are discussed as possible explanations for the results obtained.

  1. Physiological responses induced by pleasant stimuli.

    Science.gov (United States)

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.

  2. Preparation of stimuli for timbre perception studies.

    Science.gov (United States)

    Labuschagne, Ilse B; Hanekom, Johan J

    2013-09-01

    Stimuli used in timbre perception studies must be controlled carefully in order to yield meaningful results. During psychoacoustic testing of individual timbre properties, (1) it must be ensured that timbre properties do not co-vary, as timbre properties are often not independent from one another, and (2) the potential influence of loudness, pitch, and perceived duration must be eliminated. A mathematical additive synthesis method is proposed which allows complete control over two spectral parameters, the spectral centroid (corresponding to brightness) and irregularity, and two temporal parameters, log rise-time (LRT) and a parameter characterizing the sustain/decay segment, while controlling for covariation in the spectral centroid and irregularity. Thirteen musical instrument sounds were synthesized. Perceptual data from six listeners indicate that variation in the four timbre properties mainly influences loudness and that perceived duration and pitch are not influenced significantly for the stimuli of longer duration (2 s) used here. Trends across instruments were found to be similar.

  3. Multiaccommodative stimuli in VR systems: problems & solutions.

    Science.gov (United States)

    Marran, L; Schor, C

    1997-09-01

    Virtual reality environments can introduce multiple and sometimes conflicting accommodative stimuli. For instance, with the high-powered lenses commonly used in head-mounted displays, small discrepancies in screen lens placement, caused by manufacturer error or user adjustment focus error, can change the focal depths of the image by a couple of diopters. This can introduce a binocular accommodative stimulus or, if the displacement between the two screens is unequal, an unequal (anisometropic) accommodative stimulus for the two eyes. Systems that allow simultaneous viewing of virtual and real images can also introduce a conflict in accommodative stimuli: When real and virtual images are at different focal planes, both cannot be in focus at the same time, though they may appear to be in similar locations in space. In this paper four unique designs are described that minimize the range of accommodative stimuli and maximize the visual system's ability to cope efficiently with the focus conflicts that remain: pinhole optics, monocular lens addition combined with aniso-accommodation, chromatic bifocal, and bifocal lens system. The advantages and disadvantages of each design are described and recommendation for design choice is given after consideration of the end use of the virtual reality system (e.g., low or high end, entertainment, technical, or medical use). The appropriate design modifications should allow greater user comfort and better performance.

  4. Simulation of Stimuli-Responsive Polymer Networks

    Directory of Open Access Journals (Sweden)

    Thomas Gruhn

    2013-11-01

    Full Text Available The structure and material properties of polymer networks can depend sensitively on changes in the environment. There is a great deal of progress in the development of stimuli-responsive hydrogels for applications like sensors, self-repairing materials or actuators. Biocompatible, smart hydrogels can be used for applications, such as controlled drug delivery and release, or for artificial muscles. Numerical studies have been performed on different length scales and levels of details. Macroscopic theories that describe the network systems with the help of continuous fields are suited to study effects like the stimuli-induced deformation of hydrogels on large scales. In this article, we discuss various macroscopic approaches and describe, in more detail, our phase field model, which allows the calculation of the hydrogel dynamics with the help of a free energy that considers physical and chemical impacts. On a mesoscopic level, polymer systems can be modeled with the help of the self-consistent field theory, which includes the interactions, connectivity, and the entropy of the polymer chains, and does not depend on constitutive equations. We present our recent extension of the method that allows the study of the formation of nano domains in reversibly crosslinked block copolymer networks. Molecular simulations of polymer networks allow the investigation of the behavior of specific systems on a microscopic scale. As an example for microscopic modeling of stimuli sensitive polymer networks, we present our Monte Carlo simulations of a filament network system with crosslinkers.

  5. Anagrus breviphragma Soyka Short Distance Search Stimuli

    Directory of Open Access Journals (Sweden)

    Elisabetta Chiappini

    2015-01-01

    Full Text Available Anagrus breviphragma Soyka (Hymenoptera: Mymaridae successfully parasitises eggs of Cicadella viridis (L. (Homoptera: Cicadellidae, embedded in vegetal tissues, suggesting the idea of possible chemical and physical cues, revealing the eggs presence. In this research, three treatments were considered in order to establish which types of cue are involved: eggs extracted from leaf, used as a control, eggs extracted from leaf and cleaned in water and ethanol, used to evaluate the presence of chemicals soluble in polar solvents, and eggs extracted from leaf and covered with Parafilm (M, used to avoid physical stimuli due to the bump on the leaf surface. The results show that eggs covered with Parafilm present a higher number of parasitised eggs and a lower probing starting time with respect to eggs washed with polar solvents or eggs extracted and untreated, both when the treatments were singly tested or when offered in sequence, independently of the treatment position. These results suggest that the exploited stimuli are not physical due to the bump but chemicals that can spread in the Parafilm, circulating the signal on the whole surface, and that the stimuli that elicit probing and oviposition are not subjected to learning.

  6. Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli

    Science.gov (United States)

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter

    2014-01-01

    Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947

  7. The Advanced Gamma-ray Imaging System (AGIS): Real Time Stereoscopic Array Trigger

    Science.gov (United States)

    Byrum, K.; Anderson, J.; Buckley, J.; Cundiff, T.; Dawson, J.; Drake, G.; Duke, C.; Haberichter, B.; Krawzcynski, H.; Krennrich, F.; Madhavan, A.; Schroedter, M.; Smith, A.

    2009-05-01

    Future large arrays of Imaging Atmospheric Cherenkov telescopes (IACTs) such as AGIS and CTA are conceived to comprise of 50 - 100 individual telescopes each having a camera with 10**3 to 10**4 pixels. To maximize the capabilities of such IACT arrays with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We describe the design of a stereoscopic array trigger that calculates image parameters and then correlates them across a subset of telescopes. Fast Field Programmable Gate Array technology allows to use lookup tables at the array trigger level to form a real-time pattern recognition trigger tht capitalizes on the multiple view points of the shower at different shower core distances. A proof of principle system is currently under construction. It is based on 400 MHz FPGAs and the goal is for camera trigger rates of up to 10 MHz and a tunable cosmic-ray background suppression at the array level.

  8. Time Dependence of Intrafraction Patient Motion Assessed by Repeat Stereoscopic Imaging

    International Nuclear Information System (INIS)

    Hoogeman, Mischa S.; Nuyttens, Joost J.; Levendag, Peter C.; Heijmen, Ben J.M.

    2008-01-01

    Purpose: To quantify intrafraction patient motion and its time dependence in immobilized intracranial and extracranial patients. The data can be used to optimize the intrafraction imaging frequency and consequent patient setup correction with an image guidance and tracking system, and to establish the required safety margins in the absence of such a system. Method and Materials: The intrafraction motion of 32 intracranial patients, immobilized with a thermoplastic mask, and 11 supine- and 14 prone-treated extracranial spine patients, immobilized with a vacuum bag, were analyzed. The motion was recorded by an X-ray, stereoscopic, image-guidance system. For each group, we calculated separately the systematic (overall mean and SD) and the random displacement as a function of elapsed intrafraction time. Results: The SD of the systematic intrafraction displacements increased linearly over time for all three patient groups. For intracranial-, supine-, and prone-treated patients, the SD increased to 0.8, 1.2, and 2.2 mm, respectively, in a period of 15 min. The random displacements for the prone-treated patients were significantly higher than for the other groups, namely 1.6 mm (1 SD), probably caused by respiratory motion. Conclusions: Despite the applied immobilization devices, patients drift away from their initial position during a treatment fraction. These drifts are in general small if compared with conventional treatment margins, but will significantly contribute to the margin for high-precision radiation treatments with treatment times of 15 min or longer

  9. Real-time Stereoscopic 3D for E-Robotics Learning

    Directory of Open Access Journals (Sweden)

    Richard Y. Chiou

    2011-02-01

    Full Text Available Following the design and testing of a successful 3-Dimensional surveillance system, this 3D scheme has been implemented into online robotics learning at Drexel University. A real-time application, utilizing robot controllers, programmable logic controllers and sensors, has been developed in the “MET 205 Robotics and Mechatronics” class to provide the students with a better robotic education. The integration of the 3D system allows the students to precisely program the robot and execute functions remotely. Upon the students’ recommendation, polarization has been chosen to be the main platform behind the 3D robotic system. Stereoscopic calculations are carried out for calibration purposes to display the images with the highest possible comfort-level and 3D effect. The calculations are further validated by comparing the results with students’ evaluations. Due to the Internet-based feature, multiple clients have the opportunity to perform the online automation development. In the future, students, in different universities, will be able to cross-control robotic components of different types around the world. With the development of this 3D ERobotics interface, automation resources and robotic learning can be shared and enriched regardless of location.

  10. Lie group model neuromorphic geometric engine for real-time terrain reconstruction from stereoscopic aerial photos

    Science.gov (United States)

    Tsao, Thomas R.; Tsao, Doris

    1997-04-01

    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.

  11. Stereoscopic virtual reality models for planning tumor resection in the sellar region

    Directory of Open Access Journals (Sweden)

    Wang Shou-sen

    2012-11-01

    Full Text Available Abstract Background It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region. Methods To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery. Results All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images. Conclusions The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.

  12. Robust and Accurate Algorithm for Wearable Stereoscopic Augmented Reality with Three Indistinguishable Markers

    Directory of Open Access Journals (Sweden)

    Fabrizio Cutolo

    2016-09-01

    Full Text Available In the context of surgical navigation systems based on augmented reality (AR, the key challenge is to ensure the highest degree of realism in merging computer-generated elements with live views of the surgical scene. This paper presents an algorithm suited for wearable stereoscopic augmented reality video see-through systems for use in a clinical scenario. A video-based tracking solution is proposed that relies on stereo localization of three monochromatic markers rigidly constrained to the scene. A PnP-based optimization step is introduced to refine separately the pose of the two cameras. Video-based tracking methods using monochromatic markers are robust to non-controllable and/or inconsistent lighting conditions. The two-stage camera pose estimation algorithm provides sub-pixel registration accuracy. From a technological and an ergonomic standpoint, the proposed approach represents an effective solution to the implementation of wearable AR-based surgical navigation systems wherever rigid anatomies are involved.

  13. 3-D Digitization of Stereoscopic Jet-in-Crossflow Vortex Structure Images via Augmented Reality

    Science.gov (United States)

    Sigurdson, Lorenz; Strand, Christopher; Watson, Graeme; Nault, Joshua; Tucker, Ryan

    2006-11-01

    Stereoscopic images of smoke-laden vortex flows have proven useful for understanding the topology of the embedded 3-D vortex structures. Images from two cameras allow a perception of the 3-D structure via the use of red/blue eye glasses. The human brain has an astonishing capacity to calculate and present to the observer the complex turbulent smoke volume. We have developed a technique whereby a virtual cursor is introduced to the perception, which creates an ``augmented reality.'' The perceived position of this cursor in the 3-D field can be precisely controlled by the observer. It can be brought near a characteristic vortex structure in order to digitally estimate the spatial coordinates of that feature. A calibration procedure accounts for camera positioning. Vortex tubes can be traced and recorded for later or real time supersposition of tube skeleton models. These models can be readily digitally obtained for display in graphics systems to allow complete exploration from any location or perspective. A unique feature of this technology is the use of the human brain to naturally perform the difficult computation of the shape of the translucent smoke volume. Examples are given of application to low velocity ratio and Reynolds number elevated jets-in-crossflow.

  14. Formalizing the potential of stereoscopic 3D user experience in interactive entertainment

    Science.gov (United States)

    Schild, Jonas; Masuch, Maic

    2015-03-01

    The use of stereoscopic 3D vision affects how interactive entertainment has to be developed as well as how it is experienced by the audience. The large amount of possibly impacting factors and variety as well as a certain subtlety of measured effects on user experience make it difficult to grasp the overall potential of using S3D vision. In a comprehensive approach, we (a) present a development framework which summarizes possible variables in display technology, content creation and human factors, and (b) list a scheme of S3D user experience effects concerning initial fascination, emotions, performance, and behavior as well as negative feelings of discomfort and complexity. As a major contribution we propose a qualitative formalization which derives dependencies between development factors and user effects. The argumentation is based on several previously published user studies. We further show how to apply this formula to identify possible opportunities and threats in content creation as well as how to pursue future steps for a possible quantification.

  15. Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties.

    Science.gov (United States)

    Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2015-10-01

    Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.

  16. Volume Attenuation and High Frequency Loss as Auditory Depth Cues in Stereoscopic 3D Cinema

    Science.gov (United States)

    Manolas, Christos; Pauletto, Sandra

    2014-09-01

    Assisted by the technological advances of the past decades, stereoscopic 3D (S3D) cinema is currently in the process of being established as a mainstream form of entertainment. The main focus of this collaborative effort is placed on the creation of immersive S3D visuals. However, with few exceptions, little attention has been given so far to the potential effect of the soundtrack on such environments. The potential of sound both as a means to enhance the impact of the S3D visual information and to expand the S3D cinematic world beyond the boundaries of the visuals is large. This article reports on our research into the possibilities of using auditory depth cues within the soundtrack as a means of affecting the perception of depth within cinematic S3D scenes. We study two main distance-related auditory cues: high-end frequency loss and overall volume attenuation. A series of experiments explored the effectiveness of these auditory cues. Results, although not conclusive, indicate that the studied auditory cues can influence the audience judgement of depth in cinematic 3D scenes, sometimes in unexpected ways. We conclude that 3D filmmaking can benefit from further studies on the effectiveness of specific sound design techniques to enhance S3D cinema.

  17. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties

    Science.gov (United States)

    Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi

    2016-11-01

    Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.

  18. Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV.

    Science.gov (United States)

    Hutchison, Chris; Sullivan, Pierre; Ethier, C Ross

    2011-03-01

    Computational modeling of bileaflet mechanical heart valve (BiMHV) flow requires experimentally validated datasets and improved knowledge of BiMHV fluid mechanics. In this study, flow was studied downstream of a model BiMHV in an axisymmetric aortic sinus using stereoscopic particle image velocimetry. The inlet flow was steady and the Reynolds number based on the aortic diameter was 7600. Results showed the out-of-plane velocity was of similar magnitude as the transverse velocity. Although additional studies are needed for confirmation, analysis of the out-of-plane velocity showed the possible presence of a four-cell streamwise vortex structure in the mean velocity field. Spatial data for all six Reynolds stress components were obtained. Reynolds normal stress profiles revealed similarities between the central jet and free jets. These findings are important to BiMHV flow modeling, though clinical relevance is limited due to the idealized conditions chosen. To this end, the dataset is publicly available for CFD validation purposes.

  19. Integrating multi-view transmission system into MPEG-21 stereoscopic and multi-view DIA (digital item adaptation)

    Science.gov (United States)

    Lee, Seungwon; Park, Ilkwon; Kim, Manbae; Byun, Hyeran

    2006-10-01

    As digital broadcasting technologies have been rapidly progressed, users' expectations for realistic and interactive broadcasting services also have been increased. As one of such services, 3D multi-view broadcasting has received much attention recently. In general, all the view sequences acquired at the server are transmitted to the client. Then, the user can select a part of views or all the views according to display capabilities. However, this kind of system requires high processing power of the server as well as the client, thus posing a difficulty in practical applications. To overcome this problem, a relatively simple method is to transmit only two view-sequences requested by the client in order to deliver a stereoscopic video. In this system, effective communication between the server and the client is one of important aspects. In this paper, we propose an efficient multi-view system that transmits two view-sequences and their depth maps according to user's request. The view selection process is integrated into MPEG-21 DIA (Digital Item Adaptation) so that our system is compatible to MPEG-21 multimedia framework. DIA is generally composed of resource adaptation and descriptor adaptation. It is one of merits that SVA (stereoscopic video adaptation) descriptors defined in DIA standard are used to deliver users' preferences and device capabilities. Furthermore, multi-view descriptions related to multi-view camera and system are newly introduced. The syntax of the descriptions and their elements is represented in XML (eXtensible Markup Language) schema. If the client requests an adapted descriptor (e.g., view numbers) to the server, then the server sends its associated view sequences. Finally, we present a method which can reduce user's visual discomfort that might occur while viewing stereoscopic video. This phenomenon happens when view changes as well as when a stereoscopic image produces excessive disparity caused by a large baseline between two cameras. To

  20. Effect of Size Change and Brightness Change of Visual Stimuli on Loudness Perception and Pitch Perception of Auditory Stimuli

    Directory of Open Access Journals (Sweden)

    Syouya Tanabe

    2011-10-01

    Full Text Available People obtain a lot of information from visual and auditory sensation on daily life. Regarding the effect of visual stimuli on perception of auditory stimuli, studies of phonological perception and sound localization have been made in great numbers. This study examined the effect of visual stimuli on perception in loudness and pitch of auditory stimuli. We used the image of figures whose size or brightness was changed as visual stimuli, and the sound of pure tone whose loudness or pitch was changed as auditory stimuli. Those visual and auditory stimuli were combined independently to make four types of audio-visual multisensory stimuli for psychophysical experiments. In the experiments, participants judged change in loudness or pitch of auditory stimuli, while they judged the direction of size change or the kind of a presented figure in visual stimuli. Therefore they cannot neglect visual stimuli while they judged auditory stimuli. As a result, perception in loudness and pitch were promoted significantly around their difference limen, when the image was getting bigger or brighter, compared with the case in which the image had no changes. This indicates that perception in loudness and pitch were affected by change in size and brightness of visual stimuli.

  1. Emotion attribution to basic parametric static and dynamic stimuli

    NARCIS (Netherlands)

    Visch, V.; Goudbeek, M.B.; Cohn, J.; Nijholt, A.; Pantic, P.

    2009-01-01

    The following research investigates the effect of basic visual stimuli on the attribution of basic emotions by the viewer. In an empirical study (N = 33) we used two groups of visually minimal expressive stimuli: dynamic and static. The dynamic stimuli consisted of an animated circle moving

  2. Understanding traditional African healing

    OpenAIRE

    MOKGOBI, M.G.

    2014-01-01

    Traditional African healing has been in existence for many centuries yet many people still seem not to understand how it relates to God and religion/spirituality. Some people seem to believe that traditional healers worship the ancestors and not God. It is therefore the aim of this paper to clarify this relationship by discussing a chain of communication between the worshipers and the Almighty God. Other aspects of traditional healing namely types of traditional healers, training of tradition...

  3. A pilot study on pupillary and cardiovascular changes induced by stereoscopic video movies

    Directory of Open Access Journals (Sweden)

    Sugita Norihiro

    2007-10-01

    Full Text Available Abstract Background Taking advantage of developed image technology, it is expected that image presentation would be utilized to promote health in the field of medical care and public health. To accumulate knowledge on biomedical effects induced by image presentation, an essential prerequisite for these purposes, studies on autonomic responses in more than one physiological system would be necessary. In this study, changes in parameters of the pupillary light reflex and cardiovascular reflex evoked by motion pictures were examined, which would be utilized to evaluate the effects of images, and to avoid side effects. Methods Three stereoscopic video movies with different properties were field-sequentially rear-projected through two LCD projectors on an 80-inch screen. Seven healthy young subjects watched movies in a dark room. Pupillary parameters were measured before and after presentation of movies by an infrared pupillometer. ECG and radial blood pressure were continuously monitored. The maximum cross-correlation coefficient between heart rate and blood pressure, ρmax, was used as an index to evaluate changes in the cardiovascular reflex. Results Parameters of pupillary and cardiovascular reflexes changed differently after subjects watched three different video movies. Amplitudes of the pupillary light reflex, CR, increased when subjects watched two CG movies (movies A and D, while they did not change after watching a movie with the real scenery (movie R. The ρmax was significantly larger after presentation of the movie D. Scores of the questionnaire for subjective evaluation of physical condition increased after presentation of all movies, but their relationship with changes in CR and ρmax was different in three movies. Possible causes of these biomedical differences are discussed. Conclusion The autonomic responses were effective to monitor biomedical effects induced by image presentation. Further accumulation of data on multiple autonomic

  4. Holistic processing for bodies and body parts: New evidence from stereoscopic depth manipulations.

    Science.gov (United States)

    Harris, Alison; Vyas, Daivik B; Reed, Catherine L

    2016-10-01

    Although holistic processing has been documented extensively for upright faces, it is unclear whether it occurs for other visual categories with more extensive substructure, such as body postures. Like faces, body postures have high social relevance, but they differ in having fine-grain organization not only of basic parts (e.g., arm) but also subparts (e.g., elbow, wrist, hand). To compare holistic processing for whole bodies and body parts, we employed a novel stereoscopic depth manipulation that creates either the percept of a whole body occluded by a set of bars, or of segments of a body floating in front of a background. Despite sharing low-level visual properties, only the stimulus perceived as being behind bars should be holistically "filled in" via amodal completion. In two experiments, we tested for better identification of individual body parts within the context of a body versus in isolation. Consistent with previous findings, recognition of body parts was better in the context of a whole body when the body was amodally completed behind occluders. However, when the same bodies were perceived as floating in strips, performance was significantly worse, and not significantly different, from that for amodally completed parts, supporting holistic processing of body postures. Intriguingly, performance was worst for parts in the frontal depth condition, suggesting that these effects may extend from gross body organization to a more local level. These results provide suggestive evidence that holistic representations may not be "all-or-none," but rather also operate on body regions of more limited spatial extent.

  5. Turbulent Structure of a Simplified Urban Fluid Flow Studied Through Stereoscopic Particle Image Velocimetry

    Science.gov (United States)

    Monnier, Bruno; Goudarzi, Sepehr A.; Vinuesa, Ricardo; Wark, Candace

    2018-02-01

    Stereoscopic particle image velocimetry was used to provide a three-dimensional characterization of the flow around a simplified urban model defined by a 5 by 7 array of blocks, forming four parallel streets, perpendicular to the incoming wind direction corresponding to a zero angle of incidence. Channeling of the flow through the array under consideration was observed, and its effect increased as the incoming wind direction, or angle of incidence ( AOI), was changed from 0° to 15°, 30°, and 45°. The flow between blocks can be divided into two regions: a region of low turbulence kinetic energy (TKE) levels close to the leeward side of the upstream block, and a high TKE area close to the downstream block. The centre of the arch vortex is located in the low TKE area, and two regions of large streamwise velocity fluctuation bound the vortex in the spanwise direction. Moreover, a region of large spanwise velocity fluctuation on the downstream block is found between the vortex legs. Our results indicate that the reorientation of the arch vortex at increasing AOI is produced by the displacement of the different TKE regions and their interaction with the shear layers on the sides and top of the upstream and downstream blocks, respectively. There is also a close connection between the turbulent structure between the blocks and the wind gusts. The correlations among gust components were also studied, and it was found that in the near-wall region of the street the correlations between the streamwise and spanwise gusts R_{uv} were dominant for all four AOI cases. At higher wall-normal positions in the array, the R_{uw} correlation decreased with increasing AOI, whereas the R_{uv} coefficient increased as AOI increased, and at {it{AOI}}=45° all three correlations exhibited relatively high values of around 0.4.

  6. Calibration grooming and alignment for LDUA High Resolution Stereoscopic Video Camera System (HRSVS)

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1998-01-01

    The High Resolution Stereoscopic Video Camera System (HRSVS) was designed by the Savannah River Technology Center (SRTC) to provide routine and troubleshooting views of tank interiors during characterization and remediation phases of underground storage tank (UST) processing. The HRSVS is a dual color camera system designed to provide stereo viewing of the interior of the tanks including the tank wall in a Class 1, Division 1, flammable atmosphere. The HRSVS was designed with a modular philosophy for easy maintenance and configuration modifications. During operation of the system with the LDUA, the control of the camera system will be performed by the LDUA supervisory data acquisition system (SDAS). Video and control status 1458 will be displayed on monitors within the LDUA control center. All control functions are accessible from the front panel of the control box located within the Operations Control Trailer (OCT). The LDUA will provide all positioning functions within the waste tank for the end effector. Various electronic measurement instruments will be used to perform CG and A activities. The instruments may include a digital volt meter, oscilloscope, signal generator, and other electronic repair equipment. None of these instruments will need to be calibrated beyond what comes from the manufacturer. During CG and A a temperature indicating device will be used to measure the temperature of the outside of the HRSVS from initial startup until the temperature has stabilized. This device will not need to be in calibration during CG and A but will have to have a current calibration sticker from the Standards Laboratory during any acceptance testing. This sensor will not need to be in calibration during CG and A but will have to have a current calibration sticker from the Standards Laboratory during any acceptance testing

  7. Audiovisual Capture with Ambiguous Audiovisual Stimuli

    Directory of Open Access Journals (Sweden)

    Jean-Michel Hupé

    2011-10-01

    Full Text Available Audiovisual capture happens when information across modalities get fused into a coherent percept. Ambiguous multi-modal stimuli have the potential to be powerful tools to observe such effects. We used such stimuli made of temporally synchronized and spatially co-localized visual flashes and auditory tones. The flashes produced bistable apparent motion and the tones produced ambiguous streaming. We measured strong interferences between perceptual decisions in each modality, a case of audiovisual capture. However, does this mean that audiovisual capture occurs before bistable decision? We argue that this is not the case, as the interference had a slow temporal dynamics and was modulated by audiovisual congruence, suggestive of high-level factors such as attention or intention. We propose a framework to integrate bistability and audiovisual capture, which distinguishes between “what” competes and “how” it competes (Hupé et al., 2008. The audiovisual interactions may be the result of contextual influences on neural representations (“what” competes, quite independent from the causal mechanisms of perceptual switches (“how” it competes. This framework predicts that audiovisual capture can bias bistability especially if modalities are congruent (Sato et al., 2007, but that is fundamentally distinct in nature from the bistable competition mechanism.

  8. Can persons with dementia be engaged with stimuli?

    Science.gov (United States)

    Cohen-Mansfield, Jiska; Marx, Marcia S; Dakheel-Ali, Maha; Regier, Natalie G; Thein, Khin

    2010-04-01

    To determine which stimuli are 1) most engaging 2) most often refused by nursing home residents with dementia, and 3) most appropriate for persons who are more difficult to engage with stimuli. Participants were 193 residents of seven Maryland nursing homes. All participants had a diagnosis of dementia. Stimulus engagement was assessed by the Observational Measure of Engagement. The most engaging stimuli were one-on-one socializing with a research assistant, a real baby, personalized stimuli based on the person's self-identity, a lifelike doll, a respite video, and envelopes to stamp. Refusal of stimuli was higher among those with higher levels of cognitive function and related to the stimulus' social appropriateness. Women showed more attention and had more positive attitudes for live social stimuli, simulated social stimuli, and artistic tasks than did men. Persons with comparatively higher levels of cognitive functioning were more likely to be engaged in manipulative and work tasks, whereas those with low levels of cognitive functioning spent relatively more time responding to social stimuli. The most effective stimuli did not differ for those most likely to be engaged and those least likely to be engaged. Nursing homes should consider both having engagement stimuli readily available to residents with dementia, and implementing a socialization schedule so that residents receive one-on-one interaction. Understanding the relationship among type of stimulus, cognitive function, and acceptance, attention, and attitude toward the stimuli can enable caregivers to maximize the desired benefit for persons with dementia.

  9. Understanding traditional African healing.

    Science.gov (United States)

    Mokgobi, M G

    2014-09-01

    Traditional African healing has been in existence for many centuries yet many people still seem not to understand how it relates to God and religion/spirituality. Some people seem to believe that traditional healers worship the ancestors and not God. It is therefore the aim of this paper to clarify this relationship by discussing a chain of communication between the worshipers and the Almighty God. Other aspects of traditional healing namely types of traditional healers, training of traditional healers as well as the role of traditional healers in their communities are discussed. In conclusion, the services of traditional healers go far beyond the uses of herbs for physical illnesses. Traditional healers serve many roles which include but not limited to custodians of the traditional African religion and customs, educators about culture, counselors, social workers and psychologists.

  10. Study of high-definition and stereoscopic head-aimed vision for improved teleoperation of an unmanned ground vehicle

    Science.gov (United States)

    Tyczka, Dale R.; Wright, Robert; Janiszewski, Brian; Chatten, Martha Jane; Bowen, Thomas A.; Skibba, Brian

    2012-06-01

    Nearly all explosive ordnance disposal robots in use today employ monoscopic standard-definition video cameras to relay live imagery from the robot to the operator. With this approach, operators must rely on shadows and other monoscopic depth cues in order to judge distances and object depths. Alternatively, they can contact an object with the robot's manipulator to determine its position, but that approach carries with it the risk of detonation from unintentionally disturbing the target or nearby objects. We recently completed a study in which high-definition (HD) and stereoscopic video cameras were used in addition to conventional standard-definition (SD) cameras in order to determine if higher resolutions and/or stereoscopic depth cues improve operators' overall performance of various unmanned ground vehicle (UGV) tasks. We also studied the effect that the different vision modes had on operator comfort. A total of six different head-aimed vision modes were used including normal-separation HD stereo, SD stereo, "micro" (reduced separation) SD stereo, HD mono, and SD mono (two types). In general, the study results support the expectation that higher resolution and stereoscopic vision aid UGV teleoperation, but the degree of improvement was found to depend on the specific task being performed; certain tasks derived notably more benefit from improved depth perception than others. This effort was sponsored by the Joint Ground Robotics Enterprise under Robotics Technology Consortium Agreement #69-200902 T01. Technical management was provided by the U.S. Air Force Research Laboratory's Robotics Research and Development Group at Tyndall AFB, Florida.

  11. Exogenous (automatic) attention to emotional stimuli: a review.

    Science.gov (United States)

    Carretié, Luis

    2014-12-01

    Current knowledge on the architecture of exogenous attention (also called automatic, bottom-up, or stimulus-driven attention, among other terms) has been mainly obtained from studies employing neutral, anodyne stimuli. Since, from an evolutionary perspective, exogenous attention can be understood as an adaptive tool for rapidly detecting salient events, reorienting processing resources to them, and enhancing processing mechanisms, emotional events (which are, by definition, salient for the individual) would seem crucial to a comprehensive understanding of this process. This review, focusing on the visual modality, describes 55 experiments in which both emotional and neutral irrelevant distractors are presented at the same time as ongoing task targets. Qualitative and, when possible, meta-analytic descriptions of results are provided. The most conspicuous result is that, as confirmed by behavioral and/or neural indices, emotional distractors capture exogenous attention to a significantly greater extent than do neutral distractors. The modulatory effects of the nature of distractors capturing attention, of the ongoing task characteristics, and of individual differences, previously proposed as mediating factors, are also described. Additionally, studies reviewed here provide temporal and spatial information-partially absent in traditional cognitive models-on the neural basis of preattention/evaluation, reorienting, and sensory amplification, the main subprocesses involved in exogenous attention. A model integrating these different levels of information is proposed. The present review, which reveals that there are several key issues for which experimental data are surprisingly scarce, confirms the relevance of including emotional distractors in studies on exogenous attention.

  12. Visual discomfort while watching stereoscopic three-dimensional movies at the cinema.

    Science.gov (United States)

    Zeri, Fabrizio; Livi, Stefano

    2015-05-01

    This study investigates discomfort symptoms while watching Stereoscopic three-dimensional (S3D) movies in the 'real' condition of a cinema. In particular, it had two main objectives: to evaluate the presence and nature of visual discomfort while watching S3D movies, and to compare visual symptoms during S3D and 2D viewing. Cinema spectators of S3D or 2D films were interviewed by questionnaire at the theatre exit of different multiplex cinemas immediately after viewing a movie. A total of 854 subjects were interviewed (mean age 23.7 ± 10.9 years; range 8-81 years; 392 females and 462 males). Five hundred and ninety-nine of them viewed different S3D movies, and 255 subjects viewed a 2D version of a film seen in S3D by 251 subjects from the S3D group for a between-subjects design for that comparison. Exploratory factor analysis revealed two factors underlying symptoms: External Symptoms Factors (ESF) with a mean ± S.D. symptom score of 1.51 ± 0.58 comprised of eye burning, eye ache, eye strain, eye irritation and tearing; and Internal Symptoms Factors (ISF) with a mean ± S.D. symptom score of 1.38 ± 0.51 comprised of blur, double vision, headache, dizziness and nausea. ISF and ESF were significantly correlated (Spearman r = 0.55; p = 0.001) but with external symptoms significantly higher than internal ones (Wilcoxon Signed-ranks test; p = 0.001). The age of participants did not significantly affect symptoms. However, females had higher scores than males for both ESF and ISF, and myopes had higher ISF scores than hyperopes. Newly released movies provided lower ESF scores than older movies, while the seat position of spectators had minimal effect. Symptoms while viewing S3D movies were significantly and negatively correlated to the duration of wearing S3D glasses. Kruskal-Wallis results showed that symptoms were significantly greater for S3D compared to those of 2D movies, both for ISF (p = 0.001) and for ESF (p = 0.001). In short, the analysis of the symptoms

  13. Subjective evaluation of two stereoscopic imaging systems exploiting visual attention to improve 3D quality of experience

    Science.gov (United States)

    Hanhart, Philippe; Ebrahimi, Touradj

    2014-03-01

    Crosstalk and vergence-accommodation rivalry negatively impact the quality of experience (QoE) provided by stereoscopic displays. However, exploiting visual attention and adapting the 3D rendering process on the fly can reduce these drawbacks. In this paper, we propose and evaluate two different approaches that exploit visual attention to improve 3D QoE on stereoscopic displays: an offline system, which uses a saliency map to predict gaze position, and an online system, which uses a remote eye tracking system to measure real time gaze positions. The gaze points were used in conjunction with the disparity map to extract the disparity of the object-of-interest. Horizontal image translation was performed to bring the fixated object on the screen plane. The user preference between standard 3D mode and the two proposed systems was evaluated through a subjective evaluation. Results show that exploiting visual attention significantly improves image quality and visual comfort, with a slight advantage for real time gaze determination. Depth quality is also improved, but the difference is not significant.

  14. Attribute amnesia is greatly reduced with novel stimuli

    Directory of Open Access Journals (Sweden)

    Weijia Chen

    2017-11-01

    Full Text Available Attribute amnesia is the counterintuitive phenomenon where observers are unable to report a salient aspect of a stimulus (e.g., its colour or its identity immediately after the stimulus was presented, despite both attending to and processing the stimulus. Almost all previous attribute amnesia studies used highly familiar stimuli. Our study investigated whether attribute amnesia would also occur for unfamiliar stimuli. We conducted four experiments using stimuli that were highly familiar (colours or repeated animal images or that were unfamiliar to the observers (unique animal images. Our results revealed that attribute amnesia was present for both sets of familiar stimuli, colour (p < .001 and repeated animals (p = .001; but was greatly attenuated, and possibly eliminated, when the stimuli were unique animals (p = .02. Our data shows that attribute amnesia is greatly reduced for novel stimuli.

  15. Perceptual load modifies processing of unattended stimuli both in the presence and absence of attended stimuli.

    Science.gov (United States)

    Couperus, J W

    2010-11-26

    This study explored effects of perceptual load on stimulus processing in the presence and absence of an attended stimulus. Participants were presented with a bilateral or unilateral display and asked to perform a discrimination task at either low or high perceptual load. Electrophysiological responses to stimuli were then compared at the P100 and N100. As in previous studies, perceptual load modified processing of attended and unattended stimuli seen at occipital scalp sites. Moreover, perceptual load modulated attention effects when the attended stimulus was presented at high perceptual load for unilateral displays. However, this was not true when the attended and unattended stimulus appeared simultaneously in bilateral displays. Instead, only a main effect of perceptual load was found. Reductions in processing contralateral to the unattended stimulus at the N100 provide support for Lavie's (1995) theory of selective attention. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Separating discriminative and function-altering effects of verbal stimuli

    OpenAIRE

    Schlinger, Henry D.

    1993-01-01

    Ever since Skinner's first discussion of rule-governed behavior, behavior analysts have continued to define rules, either explicitly or implicitly, as verbal discriminative stimuli. Consequently, it is not difficult to find, in the literature on rule-governed behavior, references to stimulus control, antecedent control, or to rules occasioning behavior. However, some verbal stimuli have effects on behavior that are not easily described as discriminative. Such stimuli don't evoke behavior as d...

  17. Multisensory stimuli improve relative localisation judgments compared to unisensory auditory or visual stimuli

    OpenAIRE

    Bizley, Jennifer; Wood, Katherine; Freeman, Laura

    2018-01-01

    Observers performed a relative localisation task in which they reported whether the second of two sequentially presented signals occurred to the left or right of the first. Stimuli were detectability-matched auditory, visual, or auditory-visual signals and the goal was to compare changes in performance with eccentricity across modalities. Visual performance was superior to auditory at the midline, but inferior in the periphery, while auditory-visual performance exceeded both at all locations....

  18. Valuation of Go Stimuli or Devaluation of No-Go Stimuli? Evidence of an Increased Preference for Attended Go Stimuli Following a Go/No-Go Task.

    Science.gov (United States)

    Inoue, Kazuya; Sato, Nobuya

    2017-01-01

    Attentional inhibition that occurs during discrimination tasks leads to the negative evaluation of distractor stimuli. This phenomenon, known as the distractor devaluation effect also occurs when go/no-go tasks require response inhibition. However, it remains unclear whether there are interactions between attention and response controls when the distractor devaluation effect occurs. The aims of this study were to investigate whether attention to stimuli in the go/no-go task plays a facilitative role in distractor devaluation through response inhibition, and to clarify whether this effect reflects a decreased preference for no-go stimuli. Participants evaluated the preference for pictures before and after a go/no-go task. In Experiments 1 and 2, they made a go or no-go response depending on the category of pictures displayed (gummy candies or rice crackers), whereas in Experiment 3 they did on the basis digit category, even or odd numbers, superimposed on such pictures. Experiments 1 and 2 demonstrated that the pictures presented as no-go stimuli in the preceding go/no-go task were evaluated as less positive than the pictures presented as go stimuli. This devaluation effect reflected an increased preference for the go stimuli but not a decreased preference for the no-go stimuli. Experiment 3 indicated that response inhibition did not affect the preference for the pictures that had not received attention in a preceding go/no-go task. These results suggest that although attention plays an important role in differential ratings for go and no-go stimuli, such differences, in fact, reflect the valuation of go stimuli.

  19. Developing Affective Mental Imagery Stimuli with Multidimensional Scaling

    Directory of Open Access Journals (Sweden)

    Matthew J. Facciani

    2015-06-01

    Full Text Available The goal of this paper is to provide an example of how multidimensional scaling (MDS can be used for stimuli development. The study described in this paper illustrates this process by developing affective mental imagery stimuli using the circumplex model of affect as a guide. The circumplex model of affect argues that all emotions can be described in terms of two underlying primary dimensions: valence and arousal (Russel, 1980. We used MDS to determine if affective mental imagery stimuli obtained from verbal prompts could be separated by arousal and valence to create four distinct categories (high –positive, low-positive, high-negative, and low-negative as seen in other stimuli. 60 students from the University of South Carolina participated in the first experiment to evaluate three sets of stimuli. After being analyzed using MDS, selected stimuli were then assessed again in a second experiment to validate their robust valence and arousal distinctions. The second experiment was conducted with 34 subjects to validate 40 of the best stimuli from experiment 1. It was found that mental imagery stimuli can produce a reliable affective response for the dimensions of valence and arousal and that MDS can be an effective tool for stimuli development.

  20. Analysis of brain activity and response to colour stimuli during learning tasks: an EEG study

    Science.gov (United States)

    Folgieri, Raffaella; Lucchiari, Claudio; Marini, Daniele

    2013-02-01

    The research project intends to demonstrate how EEG detection through BCI device can improve the analysis and the interpretation of colours-driven cognitive processes through the combined approach of cognitive science and information technology methods. To this end, firstly it was decided to design an experiment based on comparing the results of the traditional (qualitative and quantitative) cognitive analysis approach with the EEG signal analysis of the evoked potentials. In our case, the sensorial stimulus is represented by the colours, while the cognitive task consists in remembering the words appearing on the screen, with different combination of foreground (words) and background colours. In this work we analysed data collected from a sample of students involved in a learning process during which they received visual stimuli based on colour variation. The stimuli concerned both the background of the text to learn and the colour of the characters. The experiment indicated some interesting results concerning the use of primary (RGB) and complementary (CMY) colours.

  1. Anhedonia reflects impairment in making relative value judgments between positive and neutral stimuli in schizophrenia.

    Science.gov (United States)

    Strauss, Gregory P; Visser, Katherine Frost; Keller, William R; Gold, James M; Buchanan, Robert W

    2018-02-27

    Anhedonia (i.e., diminished capacity to experience pleasure) has traditionally been viewed as a core symptom of schizophrenia (SZ). However, modern laboratory-based studies suggest that this definition may be incorrect, as hedonic capacity may be intact. Alternative conceptualizations have proposed that anhedonia may reflect an impairment in generating mental representations of affective value that are needed to guide decision-making and initiate motivated behavior. The current study evaluated this hypothesis in 42 outpatients with SZ and 19 healthy controls (CN) who completed two tasks: (a) an emotional experience task that required them to indicate how positive, negative, and calm/excited they felt in response to a single emotional or neutral photograph; (b) a relative value judgment task where they selected which of 2 photographs they preferred. Results indicated that SZ and CN reported similar levels of positive emotion and arousal in response to emotional and neutral stimuli; however, SZ reported higher negative affect for neutral and pleasant stimuli than CN. In the relative value judgment task, CN displayed clear preference for stimuli differing in valence; however, SZ showed less distinct preferences for positive over neutral stimuli. Findings suggest that although in-the-moment experiences of positive emotion to singular stimuli may be intact in SZ, the ability to make relative value judgments that are needed to guide decision-making is impaired. Original conceptualizations of anhedonia as a diminished capacity for pleasure in SZ may be inaccurate; anhedonia may more accurately reflect a deficit in relative value judgment that results from impaired value representation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Stimuli-responsive cement-reinforced rubber.

    Science.gov (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  3. Happiness increases distraction by auditory deviant stimuli.

    Science.gov (United States)

    Pacheco-Unguetti, Antonia Pilar; Parmentier, Fabrice B R

    2016-08-01

    Rare and unexpected changes (deviants) in an otherwise repeated stream of task-irrelevant auditory distractors (standards) capture attention and impair behavioural performance in an ongoing visual task. Recent evidence indicates that this effect is increased by sadness in a task involving neutral stimuli. We tested the hypothesis that such effect may not be limited to negative emotions but reflect a general depletion of attentional resources by examining whether a positive emotion (happiness) would increase deviance distraction too. Prior to performing an auditory-visual oddball task, happiness or a neutral mood was induced in participants by means of the exposure to music and the recollection of an autobiographical event. Results from the oddball task showed significantly larger deviance distraction following the induction of happiness. Interestingly, the small amount of distraction typically observed on the standard trial following a deviant trial (post-deviance distraction) was not increased by happiness. We speculate that happiness might interfere with the disengagement of attention from the deviant sound back towards the target stimulus (through the depletion of cognitive resources and/or mind wandering) but help subsequent cognitive control to recover from distraction. © 2015 The British Psychological Society.

  4. Heightened attentional capture by visual food stimuli in Anorexia Nervosa

    NARCIS (Netherlands)

    Neimeijer, Renate A.M.; Roefs, Anne; de Jong, Peter J.

    The present study was designed to test the hypothesis that anorexia nervosa (AN) patients are relatively insensitive to the attentional capture of visual food stimuli. Attentional avoidance of food might help AN patients to prevent more elaborate processing of food stimuli and the subsequent

  5. Product perception from sensory stimuli: the case of vacuum cleaner.

    Science.gov (United States)

    Almeida e Silva, Caio Márcio; Okimoto, Maria Lúciar R L; Tanure, Raffaela Leane Zenni

    2012-01-01

    This paper discusses the importance of consideration of different sensory stimuli in the perception of the product. So we conducted an experiment that examined whether there is a difference between the perception of sensory stimuli from artificially isolated. The result is an analysis of the different sensory modalities, relating them to product an between them.

  6. Roll motion stimuli : sensory conflict, perceptual weighting and motion sickness

    NARCIS (Netherlands)

    Graaf, B. de; Bles, W.; Bos, J.E.

    1998-01-01

    In an experiment with seventeen subjects interactions of visual roll motion stimuli and vestibular body tilt stimuli were examined in determining the subjective vertical. Interindi-vidual differences in weighting the visual information were observed, but in general visual and vestibular responses

  7. Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli

    Science.gov (United States)

    Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.

    2010-01-01

    Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…

  8. Processing of natural temporal stimuli by macaque retinal ganglion cells

    NARCIS (Netherlands)

    Hateren, J.H. van; Rüttiger, L.; Lee, B.B.

    2002-01-01

    This study quantifies the performance of primate retinal ganglion cells in response to natural stimuli. Stimuli were confined to the temporal and chromatic domains and were derived from two contrasting environments, one typically northern European and the other a flower show. The performance of the

  9. Haptic and Audio-visual Stimuli: Enhancing Experiences and Interaction

    NARCIS (Netherlands)

    Nijholt, Antinus; Dijk, Esko O.; Lemmens, Paul M.C.; Luitjens, S.B.

    2010-01-01

    The intention of the symposium on Haptic and Audio-visual stimuli at the EuroHaptics 2010 conference is to deepen the understanding of the effect of combined Haptic and Audio-visual stimuli. The knowledge gained will be used to enhance experiences and interactions in daily life. To this end, a

  10. Stimuli-Regulated Smart Polymeric Systems for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Ansuja Pulickal Mathew

    2017-04-01

    Full Text Available The physiological condition of the human body is a composite of different environments, each with its own parameters that may differ under normal, as well as diseased conditions. These environmental conditions include factors, such as pH, temperature and enzymes that are specific to a type of cell, tissue or organ or a pathological state, such as inflammation, cancer or infection. These conditions can act as specific triggers or stimuli for the efficient release of therapeutics at their destination by overcoming many physiological and biological barriers. The efficacy of conventional treatment modalities can be enhanced, side effects decreased and patient compliance improved by using stimuli-responsive material that respond to these triggers at the target site. These stimuli or triggers can be physical, chemical or biological and can be internal or external in nature. Many smart/intelligent stimuli-responsive therapeutic gene carriers have been developed that can respond to either internal stimuli, which may be normally present, overexpressed or present in decreased levels, owing to a disease, or to stimuli that are applied externally, such as magnetic fields. This review focuses on the effects of various internal stimuli, such as temperature, pH, redox potential, enzymes, osmotic activity and other biomolecules that are present in the body, on modulating gene expression by using stimuli-regulated smart polymeric carriers.

  11. Gender differences in identifying emotions from auditory and visual stimuli.

    Science.gov (United States)

    Waaramaa, Teija

    2017-12-01

    The present study focused on gender differences in emotion identification from auditory and visual stimuli produced by two male and two female actors. Differences in emotion identification from nonsense samples, language samples and prolonged vowels were investigated. It was also studied whether auditory stimuli can convey the emotional content of speech without visual stimuli, and whether visual stimuli can convey the emotional content of speech without auditory stimuli. The aim was to get a better knowledge of vocal attributes and a more holistic understanding of the nonverbal communication of emotion. Females tended to be more accurate in emotion identification than males. Voice quality parameters played a role in emotion identification in both genders. The emotional content of the samples was best conveyed by nonsense sentences, better than by prolonged vowels or shared native language of the speakers and participants. Thus, vocal non-verbal communication tends to affect the interpretation of emotion even in the absence of language. The emotional stimuli were better recognized from visual stimuli than auditory stimuli by both genders. Visual information about speech may not be connected to the language; instead, it may be based on the human ability to understand the kinetic movements in speech production more readily than the characteristics of the acoustic cues.

  12. Attentional Capture by Emotional Stimuli Is Modulated by Semantic Processing

    Science.gov (United States)

    Huang, Yang-Ming; Baddeley, Alan; Young, Andrew W.

    2008-01-01

    The attentional blink paradigm was used to examine whether emotional stimuli always capture attention. The processing requirement for emotional stimuli in a rapid sequential visual presentation stream was manipulated to investigate the circumstances under which emotional distractors capture attention, as reflected in an enhanced attentional blink…

  13. Emotional attention for erotic stimuli: Cognitive and brain mechanisms.

    Science.gov (United States)

    Sennwald, Vanessa; Pool, Eva; Brosch, Tobias; Delplanque, Sylvain; Bianchi-Demicheli, Francesco; Sander, David

    2016-06-01

    It has long been posited that among emotional stimuli, only negative threatening information modulates early shifts of attention. However, in the last few decades there has been an increase in research showing that attention is also involuntarily oriented toward positive rewarding stimuli such as babies, food, and erotic information. Because reproduction-related stimuli have some of the largest effects among positive stimuli on emotional attention, the present work reviews recent literature and proposes that the cognitive and cerebral mechanisms underlying the involuntarily attentional orientation toward threat-related information are also sensitive to erotic information. More specifically, the recent research suggests that both types of information involuntarily orient attention due to their concern relevance and that the amygdala plays an important role in detecting concern-relevant stimuli, thereby enhancing perceptual processing and influencing emotional attentional processes. © 2015 Wiley Periodicals, Inc.

  14. TRADITIONAL CHINESE HERBAL MEDICINE

    NARCIS (Netherlands)

    ZHU, YP; WOERDENBAG, HJ

    1995-01-01

    Herbal medicine, acupuncture and moxibustion, and massage and the three major constituent parts of traditional Chinese medicine. Although acupuncture is well known in many Western countries, Chinese herbal medicine, the mos important part of traditional Chinese medicine, is less well known in the

  15. Traditional timber frames

    NARCIS (Netherlands)

    Jorissen, A.J.M.; Hamer, den J.; Leijten, A.J.M.; Salenikovich, A.

    2014-01-01

    Due to new possibilities traditional timber framing has become increasingly popular since the beginning of the 21e century. Although traditional timber framing has been used for centuries, the expected mechanical behaviour is not dealt with in great detail in building codes, guidelines or text

  16. Improving maps of ice-sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Howat, I. M.; Tscherning, C. C.

    2013-01-01

    We combine the complementary characteristics of laser altimeter data and stereoscopic digital elevation models (DEMs) to construct high-resolution (_100 m) maps of surface elevations and elevation changes over rapidly changing outlet glaciers in Greenland. Measurements from spaceborne and airborne...... laser altimeters have relatively low errors but are spatially limited to the ground tracks, while DEMs have larger errors but provide spatially continuous surfaces. The principle of our method is to fit the DEM surface to the altimeter point clouds in time and space to minimize the DEM errors and use...... that surface to extrapolate elevations away from altimeter flight lines. This reduces the DEM registration errors and fills the gap between the altimeter paths. We use data from ICESat and ATM as well as SPOT 5 DEMs from 2007 and 2008 and apply them to the outlet glaciers Jakobshavn Isbræ (JI...

  17. GEOMETRIC AND REFLECTANCE SIGNATURE CHARACTERIZATION OF COMPLEX CANOPIES USING HYPERSPECTRAL STEREOSCOPIC IMAGES FROM UAV AND TERRESTRIAL PLATFORMS

    Directory of Open Access Journals (Sweden)

    E. Honkavaara

    2016-06-01

    Full Text Available Light-weight hyperspectral frame cameras represent novel developments in remote sensing technology. With frame camera technology, when capturing images with stereoscopic overlaps, it is possible to derive 3D hyperspectral reflectance information and 3D geometric data of targets of interest, which enables detailed geometric and radiometric characterization of the object. These technologies are expected to provide efficient tools in various environmental remote sensing applications, such as canopy classification, canopy stress analysis, precision agriculture, and urban material classification. Furthermore, these data sets enable advanced quantitative, physical based retrieval of biophysical and biochemical parameters by model inversion technologies. Objective of this investigation was to study the aspects of capturing hyperspectral reflectance data from unmanned airborne vehicle (UAV and terrestrial platform with novel hyperspectral frame cameras in complex, forested environment.

  18. 3-D flow characterization and shear stress in a stenosed carotid artery bifurcation model using stereoscopic PIV technique.

    Science.gov (United States)

    Kefayati, Sarah; Poepping, Tamie L

    2010-01-01

    The carotid artery bifurcation is a common site of atherosclerosis which is a major leading cause of ischemic stroke. The impact of stenosis in the atherosclerotic carotid artery is to disturb the flow pattern and produce regions with high shear rate, turbulence, and recirculation, which are key hemodynamic factors associated with plaque rupture, clot formation, and embolism. In order to characterize the disturbed flow in the stenosed carotid artery, stereoscopic PIV measurements were performed in a transparent model with 50% stenosis under pulsatile flow conditions. Simulated ECG gating of the flowrate waveform provides external triggering required for volumetric reconstruction of the complex flow patterns. Based on the three-component velocity data in the lumen region, volumetric shear-stress patterns were derived.

  19. Stereoscopic three-dimensional images of an anatomical dissection of the eyeball and orbit for educational purposes.

    Science.gov (United States)

    Matsuo, Toshihiko; Takeda, Yoshimasa; Ohtsuka, Aiji

    2013-01-01

    The purpose of this study was to develop a series of stereoscopic anatomical images of the eye and orbit for use in the curricula of medical schools and residency programs in ophthalmology and other specialties. Layer-by-layer dissection of the eyelid, eyeball, and orbit of a cadaver was performed by an ophthalmologist. A stereoscopic camera system was used to capture a series of anatomical views that were scanned in a panoramic three-dimensional manner around the center of the lid fissure. The images could be rotated 360 degrees in the frontal plane and the angle of views could be tilted up to 90 degrees along the anteroposterior axis perpendicular to the frontal plane around the 360 degrees. The skin, orbicularis oculi muscle, and upper and lower tarsus were sequentially observed. The upper and lower eyelids were removed to expose the bulbar conjunctiva and to insert three 25-gauge trocars for vitrectomy at the location of the pars plana. The cornea was cut at the limbus, and the lens with mature cataract was dislocated. The sclera was cut to observe the trocars from inside the eyeball. The sclera was further cut to visualize the superior oblique muscle with the trochlea and the inferior oblique muscle. The eyeball was dissected completely to observe the optic nerve and the ophthalmic artery. The thin bones of the medial and inferior orbital wall were cracked with a forceps to expose the ethmoid and maxillary sinus, respectively. In conclusion, the serial dissection images visualized aspects of the local anatomy specific to various procedures, including the levator muscle and tarsus for blepharoptosis surgery, 25-gauge trocars as viewed from inside the eye globe for vitrectomy, the oblique muscles for strabismus surgery, and the thin medial and inferior orbital bony walls for orbital bone fractures.

  20. Stereoscopic motion analysis in densely packed clusters: 3D analysis of the shimmering behaviour in Giant honey bees.

    Science.gov (United States)

    Kastberger, Gerald; Maurer, Michael; Weihmann, Frank; Ruether, Matthias; Hoetzl, Thomas; Kranner, Ilse; Bischof, Horst

    2011-02-08

    The detailed interpretation of mass phenomena such as human escape panic or swarm behaviour in birds, fish and insects requires detailed analysis of the 3D movements of individual participants. Here, we describe the adaptation of a 3D stereoscopic imaging method to measure the positional coordinates of individual agents in densely packed clusters. The method was applied to study behavioural aspects of shimmering in Giant honeybees, a collective defence behaviour that deters predatory wasps by visual cues, whereby individual bees flip their abdomen upwards in a split second, producing Mexican wave-like patterns. Stereoscopic imaging provided non-invasive, automated, simultaneous, in-situ 3D measurements of hundreds of bees on the nest surface regarding their thoracic position and orientation of the body length axis. Segmentation was the basis for the stereo matching, which defined correspondences of individual bees in pairs of stereo images. Stereo-matched "agent bees" were re-identified in subsequent frames by the tracking procedure and triangulated into real-world coordinates. These algorithms were required to calculate the three spatial motion components (dx: horizontal, dy: vertical and dz: towards and from the comb) of individual bees over time. The method enables the assessment of the 3D positions of individual Giant honeybees, which is not possible with single-view cameras. The method can be applied to distinguish at the individual bee level active movements of the thoraces produced by abdominal flipping from passive motions generated by the moving bee curtain. The data provide evidence that the z-deflections of thoraces are potential cues for colony-intrinsic communication. The method helps to understand the phenomenon of collective decision-making through mechanoceptive synchronization and to associate shimmering with the principles of wave propagation. With further, minor modifications, the method could be used to study aspects of other mass phenomena that

  1. Stereoscopic motion analysis in densely packed clusters: 3D analysis of the shimmering behaviour in Giant honey bees

    Directory of Open Access Journals (Sweden)

    Hoetzl Thomas

    2011-02-01

    Full Text Available Abstract Background The detailed interpretation of mass phenomena such as human escape panic or swarm behaviour in birds, fish and insects requires detailed analysis of the 3D movements of individual participants. Here, we describe the adaptation of a 3D stereoscopic imaging method to measure the positional coordinates of individual agents in densely packed clusters. The method was applied to study behavioural aspects of shimmering in Giant honeybees, a collective defence behaviour that deters predatory wasps by visual cues, whereby individual bees flip their abdomen upwards in a split second, producing Mexican wave-like patterns. Results Stereoscopic imaging provided non-invasive, automated, simultaneous, in-situ 3D measurements of hundreds of bees on the nest surface regarding their thoracic position and orientation of the body length axis. Segmentation was the basis for the stereo matching, which defined correspondences of individual bees in pairs of stereo images. Stereo-matched "agent bees" were re-identified in subsequent frames by the tracking procedure and triangulated into real-world coordinates. These algorithms were required to calculate the three spatial motion components (dx: horizontal, dy: vertical and dz: towards and from the comb of individual bees over time. Conclusions The method enables the assessment of the 3D positions of individual Giant honeybees, which is not possible with single-view cameras. The method can be applied to distinguish at the individual bee level active movements of the thoraces produced by abdominal flipping from passive motions generated by the moving bee curtain. The data provide evidence that the z-deflections of thoraces are potential cues for colony-intrinsic communication. The method helps to understand the phenomenon of collective decision-making through mechanoceptive synchronization and to associate shimmering with the principles of wave propagation. With further, minor modifications, the method

  2. Dynamic bioactive stimuli-responsive polymeric surfaces

    Science.gov (United States)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH

  3. Traditional medicine and genomics

    Directory of Open Access Journals (Sweden)

    Kalpana Joshi

    2010-01-01

    Full Text Available ′Omics′ developments in the form of genomics, proteomics and metabolomics have increased the impetus of traditional medicine research. Studies exploring the genomic, proteomic and metabolomic basis of human constitutional types based on Ayurveda and other systems of oriental medicine are becoming popular. Such studies remain important to developing better understanding of human variations and individual differences. Countries like India, Korea, China and Japan are investing in research on evidence-based traditional medicines and scientific validation of fundamental principles. This review provides an account of studies addressing relationships between traditional medicine and genomics.

  4. Traditional medicine and genomics.

    Science.gov (United States)

    Joshi, Kalpana; Ghodke, Yogita; Shintre, Pooja

    2010-01-01

    'Omics' developments in the form of genomics, proteomics and metabolomics have increased the impetus of traditional medicine research. Studies exploring the genomic, proteomic and metabolomic basis of human constitutional types based on Ayurveda and other systems of oriental medicine are becoming popular. Such studies remain important to developing better understanding of human variations and individual differences. Countries like India, Korea, China and Japan are investing in research on evidence-based traditional medicines and scientific validation of fundamental principles. This review provides an account of studies addressing relationships between traditional medicine and genomics.

  5. Facilitation of responses by task-irrelevant complex deviant stimuli.

    Science.gov (United States)

    Schomaker, J; Meeter, M

    2014-05-01

    Novel stimuli reliably attract attention, suggesting that novelty may disrupt performance when it is task-irrelevant. However, under certain circumstances novel stimuli can also elicit a general alerting response having beneficial effects on performance. In a series of experiments we investigated whether different aspects of novelty--stimulus novelty, contextual novelty, surprise, deviance, and relative complexity--lead to distraction or facilitation. We used a version of the visual oddball paradigm in which participants responded to an occasional auditory target. Participants responded faster to this auditory target when it occurred during the presentation of novel visual stimuli than of standard stimuli, especially at SOAs of 0 and 200 ms (Experiment 1). Facilitation was absent for both infrequent simple deviants and frequent complex images (Experiment 2). However, repeated complex deviant images did facilitate responses to the auditory target at the 200 ms SOA (Experiment 3). These findings suggest that task-irrelevant deviant visual stimuli can facilitate responses to an unrelated auditory target in a short 0-200 millisecond time-window after presentation. This only occurs when the deviant stimuli are complex relative to standard stimuli. We link our findings to the novelty P3, which is generated under the same circumstances, and to the adaptive gain theory of the locus coeruleus-norepinephrine system (Aston-Jones and Cohen, 2005), which may explain the timing of the effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Nonword repetition in adults who stutter: The effects of stimuli stress and auditory-orthographic cues.

    Directory of Open Access Journals (Sweden)

    Geoffrey A Coalson

    Full Text Available Adults who stutter (AWS are less accurate in their immediate repetition of novel phonological sequences compared to adults who do not stutter (AWNS. The present study examined whether manipulation of the following two aspects of traditional nonword repetition tasks unmask distinct weaknesses in phonological working memory in AWS: (1 presentation of stimuli with less-frequent stress patterns, and (2 removal of auditory-orthographic cues immediately prior to response.Fifty-two participants (26 AWS, 26 AWNS produced 12 bisyllabic nonwords in the presence of corresponding auditory-orthographic cues (i.e., immediate repetition task, and the absence of auditory-orthographic cues (i.e., short-term recall task. Half of each cohort (13 AWS, 13 AWNS were exposed to the stimuli with high-frequency trochaic stress, and half (13 AWS, 13 AWNS were exposed to identical stimuli with lower-frequency iambic stress.No differences in immediate repetition accuracy for trochaic or iambic nonwords were observed for either group. However, AWS were less accurate when recalling iambic nonwords than trochaic nonwords in the absence of auditory-orthographic cues.Manipulation of two factors which may minimize phonological demand during standard nonword repetition tasks increased the number of errors in AWS compared to AWNS. These findings suggest greater vulnerability in phonological working memory in AWS, even when producing nonwords as short as two syllables.

  7. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Chendi Ding

    2016-12-01

    Full Text Available Benefiting from the development of nanotechnology, drug delivery systems (DDSs with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs, quantum dots (QDs and carbon nanotubes (CNTs. The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules and extrinsic (temperature, light irradiation, magnetic field and ultrasound ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.

  8. Seeing music: The perception of melodic 'ups and downs' modulates the spatial processing of visual stimuli.

    Science.gov (United States)

    Romero-Rivas, Carlos; Vera-Constán, Fátima; Rodríguez-Cuadrado, Sara; Puigcerver, Laura; Fernández-Prieto, Irune; Navarra, Jordi

    2018-05-10

    Musical melodies have "peaks" and "valleys". Although the vertical component of pitch and music is well-known, the mechanisms underlying its mental representation still remain elusive. We show evidence regarding the importance of previous experience with melodies for crossmodal interactions to emerge. The impact of these crossmodal interactions on other perceptual and attentional processes was also studied. Melodies including two tones with different frequency (e.g., E4 and D3) were repeatedly presented during the study. These melodies could either generate strong predictions (e.g., E4-D3-E4-D3-E4-[D3]) or not (e.g., E4-D3-E4-E4-D3-[?]). After the presentation of each melody, the participants had to judge the colour of a visual stimulus that appeared in a position that was, according to the traditional vertical connotations of pitch, either congruent (e.g., high-low-high-low-[up]), incongruent (high-low-high-low-[down]) or unpredicted with respect to the melody. Behavioural and electroencephalographic responses to the visual stimuli were obtained. Congruent visual stimuli elicited faster responses at the end of the experiment than at the beginning. Additionally, incongruent visual stimuli that broke the spatial prediction generated by the melody elicited larger P3b amplitudes (reflecting 'surprise' responses). Our results suggest that the passive (but repeated) exposure to melodies elicits spatial predictions that modulate the processing of other sensory events. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lepping

    Full Text Available Anterior cingulate cortex (ACC and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD. Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression.Nineteen MDD and 20 never-depressed (ND control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning.ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum.These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments.

  10. Perceptual Sensitivity and Response to Strong Stimuli Are Related

    Directory of Open Access Journals (Sweden)

    Anna C. Bolders

    2017-09-01

    Full Text Available To shed new light on the long-standing debate about the (independence of sensitivity to weak stimuli and overreactivity to strong stimuli, we examined the relation between these tendencies within the neurobehavioral framework of the Predictive and Reactive Control Systems (PARCS theory (Tops et al., 2010, 2014. Whereas previous studies only considered overreactivity in terms of the individual tendency to experience unpleasant affect (punishment reactivity resulting from strong sensory stimulation, we also took the individual tendency to experience pleasant affect (reward reactivity resulting from strong sensory stimulation into account. According to PARCS theory, these temperamental tendencies overlap in terms of high reactivity toward stimulation, but oppose each other in terms of the response orientation (approach or avoid. PARCS theory predicts that both types of reactivity to strong stimuli relate to sensitivity to weak stimuli, but that these relationships are suppressed due to the opposing relationship between reward and punishment reactivity. We measured punishment and reward reactivity to strong stimuli and sensitivity to weak stimuli using scales from the Adult Temperament Questionnaire (Evans and Rothbart, 2007. Sensitivity was also measured more objectively using the masked auditory threshold. We found that sensitivity to weak stimuli (both self-reported and objectively assessed was positively associated with self-reported punishment and reward reactivity to strong stimuli, but only when these reactivity measures were controlled for each other, implicating a mutual suppression effect. These results are in line with PARCS theory and suggest that sensitivity to weak stimuli and overreactivity are dependent, but this dependency is likely to be obscured if punishment and reward reactivity are not both taken into account.

  11. External-stimuli responsive systems for cancer theranostic

    Directory of Open Access Journals (Sweden)

    Jianhui Yao

    2016-10-01

    Full Text Available The upsurge of novel nanomaterials and nanotechnologies has inspired the researchers who are striving for designing safer and more efficient drug delivery systems for cancer therapy. Stimuli responsive nanomaterial offered an alternative to design controllable drug delivery system on account of its spatiotemporally controllable properties. Additionally, external stimuli (light, magnetic field and ultrasound could develop into theranostic applications for personalized medicine use because of their unique characteristics. In this review, we give a brief overview about the significant progresses and challenges of certain external-stimuli responsive systems that have been extensively investigated in drug delivery and theranostics within the last few years.

  12. Novel stimuli are negative stimuli: evidence that negative affect is reduced in the mere exposure effect.

    Science.gov (United States)

    Robinson, Brent M; Elias, Lorin J

    2005-04-01

    Repeated exposure of a nonreinforced stimulus results in an increased preference for that stimulus, the mere exposure effect. The present study repeatedly presented positive, negative, and neutrally affective faces to 48 participants while they made judgments about the emotional expression. Participants then rated the likeability of novel neutrally expressive faces and some of these previously presented faces, this time in their neutral expression. Faces originally presented as happy were rated as the most likeable, followed by faces originally presented as neutral. Negative and novel faces were not rated significantly differently from each other. These findings support the notion that the increase in preference towards repeatedly presented stimuli is the result of the reduction in negative affect, consistent with the modified two-factor uncertainty-reduction model and classical conditioning model of the mere exposure effect.

  13. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued

  14. Adding stimuli-responsive extensions to antifouling hairy particles

    NARCIS (Netherlands)

    Munoz Bonilla, Sandra; Herk, van A.M.; Heuts, J.P.A.

    2010-01-01

    The use of living block copolymers as stabilisers in emulsion polymerisation allowed preparation of multilayer functional hairy particles via surface-initiated ATRP. Polymer films prepared from the obtained particles present antifouling properties along with stimuli-responsive behaviour.

  15. Perceptual multistability in figure-ground segregation using motion stimuli.

    Science.gov (United States)

    Gori, Simone; Giora, Enrico; Pedersini, Riccardo

    2008-11-01

    In a series of experiments using ambiguous stimuli, we investigate the effects of displaying ordered, discrete series of images on the dynamics of figure-ground segregation. For low frame presentation speeds, the series were perceived as a sequence of discontinuous, static images, while for high speeds they were perceived as continuous. We conclude that using stimuli varying continuously along one parameter results in stronger hysteresis and reduces spontaneous switching compared to matched static stimuli with discontinuous parameter changes. The additional evidence that the size of the hysteresis effects depended on trial duration is consistent with the stochastic nature of the dynamics governing figure-ground segregation. The results showed that for continuously changing stimuli, alternative figure-ground organizations are resolved via low-level, dynamical competition. A second series of experiments confirmed these results with an ambiguous stimulus based on Petter's effect.

  16. Characterization of Ferrofluid-based Stimuli-responsive Elastomers

    OpenAIRE

    Sandra dePedro; Xavier Munoz-Berbel; Rosalia Rodríguez-Rodríguez; Jordi Sort; Jose Antonio Plaza; Juergen Brugger; Andreu Llobera; Victor J Cadarso

    2016-01-01

    Stimuli-responsive materials undergo physicochemical and/or structural changes when a specific actuation is applied. They are heterogeneous composites, consisting of a non-responsive matrix where functionality is provided by the filler. Surprisingly, the synthesis of polydimethylsiloxane (PDMS)-based stimuli-responsive elastomers (SRE) has seldomly been presented. Here, we present the structural, biological, optical, magnetic, and mechanical properties of several magnetic SRE (M-SRE) obtained...

  17. Analyzing the User Behavior toward Electronic Commerce Stimuli

    OpenAIRE

    Lorenzo-Romero, Carlota; Alarcón-del-Amo, María-del-Carmen; Gómez-Borja, Miguel-Ángel

    2016-01-01

    Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e., navigational structure as utilitarian stimulus) versus non-verbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this res...

  18. Analyzing the user behavior towards Electronic Commerce stimuli

    OpenAIRE

    Carlota Lorenzo-Romero; María-del-Carmen Alarcón-del-Amo

    2016-01-01

    Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e. navigational structure as utilitarian stimulus) versus nonverbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this resea...

  19. KASTAMONU TRADITIONAL WOMEN CLOTHES

    Directory of Open Access Journals (Sweden)

    E.Elhan ÖZUS

    2015-08-01

    Full Text Available Clothing is a unique dressing style of a community, a period or a profession. In clothing there is social status and difference principle rather than fashion. In this context, the society created a clothing style in line with its own customs, traditions and social structure. One of the features separating societies from each other and indicating their cultural and social classes is the clothing style. As it is known, traditional Turkish clothes reflecting the characteristics of Turkish society is our most beautiful heritage from past to present. From this heritage there are several examples of women's clothes c arried to present. When these examples are examined, it is possible to see the taste, the way of understanding art, joy and the lifestyle of the history. These garments are also the documents outlining the taste and grace of Turkish people. In the present study, traditional Kastamonu women's clothing, that has an important place in traditional cultural clothes of Anatolia, is investigated . The method of the present research is primarily defined as the examination of the written sources. The study is complet ed with the observations and examinations made in Kastamonu. According to the findings of the study, traditional Kastamonu women's clothing are examined and adapted to todays’ clothing.

  20. Effects of Auditory Stimuli on Visual Velocity Perception

    Directory of Open Access Journals (Sweden)

    Michiaki Shibata

    2011-10-01

    Full Text Available We investigated the effects of auditory stimuli on the perceived velocity of a moving visual stimulus. Previous studies have reported that the duration of visual events is perceived as being longer for events filled with auditory stimuli than for events not filled with auditory stimuli, ie, the so-called “filled-duration illusion.” In this study, we have shown that auditory stimuli also affect the perceived velocity of a moving visual stimulus. In Experiment 1, a moving comparison stimulus (4.2∼5.8 deg/s was presented together with filled (or unfilled white-noise bursts or with no sound. The standard stimulus was a moving visual stimulus (5 deg/s presented before or after the comparison stimulus. The participants had to judge which stimulus was moving faster. The results showed that the perceived velocity in the auditory-filled condition was lower than that in the auditory-unfilled and no-sound conditions. In Experiment 2, we investigated the effects of auditory stimuli on velocity adaptation. The results showed that the effects of velocity adaptation in the auditory-filled condition were weaker than those in the no-sound condition. These results indicate that auditory stimuli tend to decrease the perceived velocity of a moving visual stimulus.

  1. Bitter taste stimuli induce differential neural codes in mouse brain.

    Directory of Open Access Journals (Sweden)

    David M Wilson

    Full Text Available A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total, including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA, presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5 were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05 to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05 from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.

  2. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  3. Attack of the S. Mutans!: a stereoscopic-3D multiplayer direct-manipulation behavior-modification serious game for improving oral health in pre-teens

    Science.gov (United States)

    Hollander, Ari; Rose, Howard; Kollin, Joel; Moss, William

    2011-03-01

    Attack! of the S. Mutans is a multi-player game designed to harness the immersion and appeal possible with wide-fieldof- view stereoscopic 3D to combat the tooth decay epidemic. Tooth decay is one of the leading causes of school absences and costs more than $100B annually in the U.S. In 2008 the authors received a grant from the National Institutes of Health to build a science museum exhibit that included a suite of serious games involving the behaviors and bacteria that cause cavities. The centerpiece is an adventure game where five simultaneous players use modified Wii controllers to battle biofilms and bacteria while immersed in environments generated within a 11-foot stereoscopic WUXGA display. The authors describe the system and interface used in this prototype application and some of the ways they attempted to use the power of immersion and the appeal of S3D revolution to change health attitudes and self-care habits.

  4. Surgical approaches to complex vascular lesions: the use of virtual reality and stereoscopic analysis as a tool for resident and student education.

    Science.gov (United States)

    Agarwal, Nitin; Schmitt, Paul J; Sukul, Vishad; Prestigiacomo, Charles J

    2012-08-01

    Virtual reality training for complex tasks has been shown to be of benefit in fields involving highly technical and demanding skill sets. The use of a stereoscopic three-dimensional (3D) virtual reality environment to teach a patient-specific analysis of the microsurgical treatment modalities of a complex basilar aneurysm is presented. Three different surgical approaches were evaluated in a virtual environment and then compared to elucidate the best surgical approach. These approaches were assessed with regard to the line-of-sight, skull base anatomy and visualisation of the relevant anatomy at the level of the basilar artery and surrounding structures. Overall, the stereoscopic 3D virtual reality environment with fusion of multimodality imaging affords an excellent teaching tool for residents and medical students to learn surgical approaches to vascular lesions. Future studies will assess the educational benefits of this modality and develop a series of metrics for student assessments.

  5. Healthier Traditional Food

    OpenAIRE

    Edward F. Millen

    2017-01-01

    The study of traditional food and healthy eating habits has been one of the fast growing areas. All humans, both men and women, require food for their survival. However, both men and women indulge in food as if it were their sole purpose of existence. Hence, eating disorders are common among men and women. Then media has played an effective role not only in establishing faulty standards for traditional healthy food but also it has highlighted the importance of healthy eating. It has brought t...

  6. Under pressure: adolescent substance users show exaggerated neural processing of aversive interoceptive stimuli

    NARCIS (Netherlands)

    Berk, L.; Stewart, J.L.; May, A.C.; Wiers, R.W.; Davenport, P.W.; Paulus, M.P.; Tapert, S.F.

    2015-01-01

    Aims: Adolescents with substance use disorders (SUD) exhibit hyposensitivity to pleasant internally generated (interoceptive) stimuli and hypersensitivity to external rewarding stimuli. It is unclear whether similar patterns exist for aversive interoceptive stimuli. We compared activation in the

  7. Setup accuracy of stereoscopic X-ray positioning with automated correction for rotational errors in patients treated with conformal arc radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Soete, Guy; Verellen, Dirk; Tournel, Koen; Storme, Guy

    2006-01-01

    We evaluated setup accuracy of NovalisBody stereoscopic X-ray positioning with automated correction for rotational errors with the Robotics Tilt Module in patients treated with conformal arc radiotherapy for prostate cancer. The correction of rotational errors was shown to reduce random and systematic errors in all directions. (NovalisBody TM and Robotics Tilt Module TM are products of BrainLAB A.G., Heimstetten, Germany)

  8. A comparison of cup-to-disc ratio estimates by fundus biomicroscopy and stereoscopic optic disc photography in the Tema Eye Survey.

    Science.gov (United States)

    Mwanza, J C; Grover, D S; Budenz, D L; Herndon, L W; Nolan, W; Whiteside-de Vos, J; Hay-Smith, G; Bandi, J R; Bhansali, K A; Forbes, L A; Feuer, W J; Barton, K

    2017-08-01

    PurposeTo determine if there are systematic differences in cup-to-disc ratio (CDR) grading using fundus biomicroscopy compared to stereoscopic disc photograph reading.MethodsThe vertical cup-to-disc ratio (VCDR) and horizontal cup-to-disc ratio (HCDR) of 2200 eyes (testing set) were graded by glaucoma subspecialists through fundus biomicroscopy and by a reading center using stereoscopic disc photos. For validation, the glaucoma experts also estimated VCDR and HCDR using stereoscopic disc photos in a subset of 505 eyes that they had assessed biomicroscopically. Agreement between grading methods was assessed with Bland-Altman plots.ResultsIn both sets, photo reading tended to yield small CDRs marginally larger, but read large CDRs marginally smaller than fundus biomicroscopy. The mean differences in VCDR and HCDR were 0.006±0.18 and 0.05±0.18 (testing set), and -0.053±0.23 and -0.028±0.21 (validation set), respectively. The limits of agreement were ~0.4, which is twice as large as the cutoff of clinically significant CDR difference between methods. CDR estimates differed by 0.2 or more in 33.8-48.7% between methods.ConclusionsThe differences in CDR estimates between fundus biomicroscopy and stereoscopic optic disc photo reading showed a wide variation, and reached clinically significance threshold in a large proportion of patients, suggesting a poor agreement. Thus, glaucoma should be monitored by comparing baseline and subsequent CDR estimates using the same method rather than comparing photographs to fundus biomicroscopy.

  9. Relationship between Stereoscopic Vision, Visual Perception, and Microstructure Changes of Corpus Callosum and Occipital White Matter in the 4-Year-Old Very Low Birth Weight Children

    Directory of Open Access Journals (Sweden)

    Przemko Kwinta

    2015-01-01

    Full Text Available Aim. To assess the relationship between stereoscopic vision, visual perception, and microstructure of the corpus callosum (CC and occipital white matter, 61 children born with a mean birth weight of 1024 g (SD 270 g were subjected to detailed ophthalmologic evaluation, Developmental Test of Visual Perception (DTVP-3, and diffusion tensor imaging (DTI at the age of 4. Results. Abnormal stereoscopic vision was detected in 16 children. Children with abnormal stereoscopic vision had smaller CC (CC length: 53±6 mm versus 61±4 mm; p<0.01; estimated CC area: 314±106 mm2 versus 446±79 mm2; p<0.01 and lower fractional anisotropy (FA values in CC (FA value of rostrum/genu: 0.7±0.09 versus 0.79±0.07; p<0.01; FA value of CC body: 0.74±0.13 versus 0.82±0.09; p=0.03. We found a significant correlation between DTVP-3 scores, CC size, and FA values in rostrum and body. This correlation was unrelated to retinopathy of prematurity. Conclusions. Visual perceptive dysfunction in ex-preterm children without major sequelae of prematurity depends on more subtle changes in the brain microstructure, including CC. Role of interhemispheric connections in visual perception might be more complex than previously anticipated.

  10. Noodles, traditionally and today

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2016-09-01

    Full Text Available Chinese noodles originated in the Han dynasty, which has more than 4,000 years of history. There are many stories about the origin of noodles. To a certain extent, noodles also reflect the cultural traditions and customs of China, which essentially means “human nature” and “worldly common sense”. There are thousands of varieties of noodles in China, according to the classification of the shape of noodles, seasoning gravy, cooking craft, and so on. Many noodles have local characteristics. Noodles are accepted by people from all over the world. The industrial revolution and the development of the food industry realized the transition from a traditional handicraft industry to mass production using machinery. In addition, the invention of instant noodles and their mass production also greatly changed the noodle industry. In essence, noodles are a kind of cereal food, which is the main body of the traditional Chinese diet. It is the main source of energy for Chinese people and the most economical energy food. Adhering to the principle of “making cereal food the main food”, is to maintain our Chinese good diet tradition, which can avoid the disadvantages of a high energy, high fat, and low carbohydrate diet, and promote health. The importance of the status of noodles in the dietary structure of residents in our country and the health impact should not be ignored.

  11. Traditional Cherokee Food.

    Science.gov (United States)

    Hendrix, Janey B.

    A collection for children and teachers of traditional Cherokee recipes emphasizes the art, rather than the science, of cooking. The hand-printed, illustrated format is designed to communicate the feeling of Cherokee history and culture and to encourage readers to collect and add family recipes. The cookbook could be used as a starting point for…

  12. Modern vs. Traditional.

    Science.gov (United States)

    Zhenhui, Rao

    1999-01-01

    This article discusses traditional methods, such as the grammar-translation, and modern methods, the communicative approach, for teaching English-as-a-foreign-language in China. The relationship between linguistic accuracy and communicative competence, student-centered orientation, and the role of the teacher are highlighted. (Author/VWL)

  13. Non-Traditional Wraps

    Science.gov (United States)

    Owens, Buffy

    2009-01-01

    This article presents a recipe for non-traditional wraps. In this article, the author describes how adults and children can help with the recipe and the skills involved with this recipe. The bigger role that children can play in the making of the item the more they are apt to try new things and appreciate the texture and taste.

  14. Making Tradition Healthy

    Centers for Disease Control (CDC) Podcasts

    2007-11-01

    In this podcast, a Latina nutrition educator shows how a community worked with local farmers to grow produce traditionally enjoyed by Hispanic/Latinos.  Created: 11/1/2007 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health.   Date Released: 11/10/2007.

  15. Sex-related memory recall and talkativeness for emotional stimuli

    Directory of Open Access Journals (Sweden)

    Benedetto eArnone

    2011-09-01

    Full Text Available Recent studies have evidenced an increasing interest in sex-related brain mechanisms and cerebral lateralization subserving emotional memory, language processing, and conversational behavior. We used event related potentials (ERP to examine the influence of sex and hemisphere on brain responses to emotional stimuli. Given that the P300 component of ERP is considered a cognitive neuroelectric phenomenon, we compared left and right hemisphere P300 responses to emotional stimuli in men and women. As indexed by both amplitude and latency measures, emotional stimuli elicited more robust P300 effects in the left hemisphere in women than in men, while a stronger P300 component was elicited in the right hemisphere in men compared to women. Our findings show that the variables of sex and hemisphere interacted significantly to influence the strength of the P300 component to the emotional stimuli. Emotional stimuli were also best recalled when given a long-term, incidental memory test, a fact potentially related to the differential P300 waves at encoding. Moreover, taking into account the sex-related differences in language processing and conversational behaviour, in the present study we evaluated possible talkativeness differences between the two genders in the recollection of emotional stimuli. Our data showed that women used a higher number of words, compared to men, to describe both arousal and neutral stories. Moreover, the present results support the view that sex differences in lateralization may not be a general feature of language processing but may be related to the specific condition, such as the emotional content of stimuli.

  16. Enhanced brain susceptibility to negative stimuli in adolescents: ERP evidences

    Directory of Open Access Journals (Sweden)

    Jiajin eYuan

    2015-04-01

    Full Text Available Background: previous studies investigated neural substrates of emotional face processing in adolescents and its comparison with adults. As emotional faces elicit more of emotional expression recognition rather than direct emotional responding, it remains undetermined how adolescents are different from adults in brain susceptibility to emotionally stressful stimuli. Methods: Event-Related Potentials were recorded for highly negative (HN, moderately negative (MN and Neutral pictures in 20 adolescents and 20 adults while subjects performed a standard/deviant distinction task by pressing different keys, irrespective of the emotionality of deviant stimuli. Results: Adolescents exhibited more negative amplitudes for HN versus neutral pictures in N1 (100-150ms, P2 (130-190ms, N2 (210-290ms and P3 (360-440ms components. In addition, adolescents showed more negative amplitudes for MN compared to neutral pictures in N1, P2 and N2 components. By contrast, adults exhibited significant emotion effects for HN stimuli in N2 and P3 amplitudes but not in N1 and P2 amplitudes, and they did not exhibit a significant emotion effect for MN stimuli at all these components. In the 210-290ms time interval, the emotion effect for HN stimuli was significant across frontal and central regions in adolescents, while this emotion effect was noticeable only in the central region for adults. Conclusions: Adolescents are more emotionally sensitive to negative stimuli compared to adults, regardless of the emotional intensity of the stimuli, possibly due to the immature prefrontal control system over the limbic emotional inputs during adolescence. Keywords: Event-Related Potentials (ERPs; Adolescence; Emotion intensity; Negative pictures; Emotional Susceptibility

  17. Challenging tradition in Nigeria.

    Science.gov (United States)

    Supriya, K E

    1991-01-01

    In Nigeria since 1987, the National Association of Nigeria Nurses and Midwives (NSNNM) has used traditional medial and traditional health care workers to curtail the practice of female circumcision. Other harmful traditions are being changed also, such as early marriage, taboos of pregnancy and childbirth, and scarification. 30,000 member of NANNM are involved in this effort to halt the harmful practices themselves and to change community opinion. The program involved national and state level workshops on harmful health consequences of traditional practices and instruction on how to conduct focus group discussions to assess women's beliefs and practices. The focus groups were found to be a particularly successful method of opening up discussion of taboo topics and expressing deep emotions. The response to the knowledge that circumcision was not necessary was rage and anger, which was channeled into advocacy roles or change in the practice. The result was the channeled into advocacy roles for change in the practice. The result was the development of books, leaflets and videos. One community group designed a dress with a decorative motif of tatoos and bodily cuts to symbolize circumcision and scarring. Plays and songs were written and performed. Artists provided models of female genitalia both before and after circumcision. The campaign has been successful in bringing this issue to the public attention in prominent ways, such a national television, health talk shows, and women;s magazines. One of the most important results of the effort has been the demonstration that culture and tradition can be changed from within, rather than from outside imposition of values and beliefs.

  18. Check-All-That-Apply (CATA), Sorting, and Polarized Sensory Positioning (PSP) with Astringent Stimuli

    Science.gov (United States)

    Fleming, Erin E.; Ziegler, Gregory R.; Hayes, John E.

    2015-01-01

    Multiple rapid sensory profiling techniques have been developed as more efficient alternatives to traditional sensory descriptive analysis. Here, we compare the results of three rapid sensory profiling techniques – check-all-that-apply (CATA), sorting, and polarized sensory positioning (PSP) – using a diverse range of astringent stimuli. These rapid methods differ in their theoretical basis, implementation, and data analyses, and the relative advantages and limitations are largely unexplored. Additionally, we were interested in using these methods to compare varied astringent stimuli, as these compounds are difficult to characterize using traditional descriptive analysis due to high fatigue and potential carry-over. In the CATA experiment, subjects (n=41) were asked to rate the overall intensity of each stimulus as well as to endorse any relevant terms (from a list of 13) which characterized the sample. In the sorting experiment, subjects (n=30) assigned intensity-matched stimuli into groups 1-on-1 with the experimenter. In the PSP experiment, (n=41) subjects first sampled and took notes on three blind references (‘poles’) before rating each stimulus for its similarity to each of the 3 poles. Two-dimensional perceptual maps from correspondence analysis (CATA), multidimensional scaling (sorting), and multiple factor analysis (PSP) were remarkably similar, with normalized RV coefficients indicating significantly similar plots, regardless of method. Agglomerative hierarchical clustering of all data sets using Ward’s minimum variance as the linkage criteria showed the clusters of astringent stimuli were approximately based on the respective class of astringent agent. Based on the descriptive CATA data, it appears these differences may be due to the presence of side tastes such as bitterness and sourness, rather than astringent sub-qualities per se. Although all three methods are considered ‘rapid,’ our prior experience with sorting suggests it is best

  19. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-04-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued to guarantee the controlled release of cargo at a specific time and with an accurate amount. Upon applying different stimuli such as light, magnetic field, heat, pH change, enzymes or redox, functional materials change their physicochemical properties through physical transformation or chemical reactions, allowing the release of payload agents on demand. This dissertation studied three stimuli-responsive membrane systems for controlled release from films of macro sizes to microcapsules of nano sizes. The first membrane system is a polymeric composite film which can decrease and sustain diffusion upon light irradiation. The photo-response of membranes is based on the photoreaction of cinnamic derivatives. The second one is composite membrane which can improve diffusion upon heating. The thermo-response of membranes comes from the volume phase transition ability of hydrogels. The third one is microcapsule which can release encapsulated agents upon light irradiation. The photo-response of capsules results from the photoreaction of nitrobenzyl derivatives. The study on these membrane systems reveals that stimuli-responsive release can be achieved by utilizing different functional materials on either macro or micro level. Based on the abundant family of smart materials, designing and fabricating stimuli-responsive systems shall lead to various advanced release processes on demand for biomedical applications.

  20. Teaching children with autism spectrum disorder to tact olfactory stimuli.

    Science.gov (United States)

    Dass, Tina K; Kisamore, April N; Vladescu, Jason C; Reeve, Kenneth F; Reeve, Sharon A; Taylor-Santa, Catherine

    2018-05-28

    Research on tact acquisition by children with autism spectrum disorder (ASD) has often focused on teaching participants to tact visual stimuli. It is important to evaluate procedures for teaching tacts of nonvisual stimuli (e.g., olfactory, tactile). The purpose of the current study was to extend the literature on secondary target instruction and tact training by evaluating the effects of a discrete-trial instruction procedure involving (a) echoic prompts, a constant prompt delay, and error correction for primary targets; (b) inclusion of secondary target stimuli in the consequent portion of learning trials; and (c) multiple exemplar training on the acquisition of item tacts of olfactory stimuli, emergence of category tacts of olfactory stimuli, generalization of category tacts, and emergence of category matching, with three children diagnosed with ASD. Results showed that all participants learned the item and category tacts following teaching, participants demonstrated generalization across category tacts, and category matching emerged for all participants. © 2018 Society for the Experimental Analysis of Behavior.

  1. Steady-state VEP responses to uncomfortable stimuli.

    Science.gov (United States)

    O'Hare, Louise

    2017-02-01

    Periodic stimuli, such as op-art, can evoke a range of aversive sensations included in the term visual discomfort. Illusory motion effects are elicited by fixational eye movements, but the cortex might also contribute to effects of discomfort. To investigate this possibility, steady-state visually evoked responses (SSVEPs) to contrast-matched op-art-based stimuli were measured at the same time as discomfort judgements. On average, discomfort reduced with increasing spatial frequency of the pattern. In contrast, the peak amplitude of the SSVEP response was around the midrange spatial frequencies. Like the discomfort judgements, SSVEP responses to the highest spatial frequencies were lowest amplitude, but the relationship breaks down between discomfort and SSVEP for the lower spatial frequency stimuli. This was not explicable by gross eye movements as measured using the facial electrodes. There was a weak relationship between the peak SSVEP responses and discomfort judgements for some stimuli, suggesting that discomfort can be explained in part by electrophysiological responses measured at the level of the cortex. However, there is a breakdown of this relationship in the case of lower spatial frequency stimuli, which remains unexplained. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Absent Audiovisual Integration Elicited by Peripheral Stimuli in Parkinson's Disease.

    Science.gov (United States)

    Ren, Yanna; Suzuki, Keisuke; Yang, Weiping; Ren, Yanling; Wu, Fengxia; Yang, Jiajia; Takahashi, Satoshi; Ejima, Yoshimichi; Wu, Jinglong; Hirata, Koichi

    2018-01-01

    The basal ganglia, which have been shown to be a significant multisensory hub, are disordered in Parkinson's disease (PD). This study was to investigate the audiovisual integration of peripheral stimuli in PD patients with/without sleep disturbances. Thirty-six age-matched normal controls (NC) and 30 PD patients were recruited for an auditory/visual discrimination experiment. The mean response times for each participant were analyzed using repeated measures ANOVA and race model. The results showed that the response to all stimuli was significantly delayed for PD compared to NC (all p audiovisual stimuli was significantly faster than that to unimodal stimuli in both NC and PD ( p audiovisual integration was absent in PD; however, it did occur in NC. Further analysis showed that there was no significant audiovisual integration in PD with/without cognitive impairment or in PD with/without sleep disturbances. Furthermore, audiovisual facilitation was not associated with Hoehn and Yahr stage, disease duration, or the presence of sleep disturbances (all p > 0.05). The current results showed that audiovisual multisensory integration for peripheral stimuli is absent in PD regardless of sleep disturbances and further suggested the abnormal audiovisual integration might be a potential early manifestation of PD.

  3. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    Science.gov (United States)

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  4. Stereoscopic displays for virtual reality in the car manufacturing industry: application to design review and ergonomic studies

    Science.gov (United States)

    Moreau, Guillaume; Fuchs, Philippe

    2002-05-01

    In the car manufacturing industry the trend is to drastically reduce the time-to-market by increasing the use of the Digital Mock-up instead of physical prototypes. Design review and ergonomic studies are specific tasks because they involve qualitative or even subjective judgements. In this paper, we present IMAVE (IMmersion Adapted to a VEhicle) designed for immersive styling review, gaps visualization and simple ergonomic studies. We show that stereoscopic displays are necessary and must fulfill several constraints due to the proximity and size of the car dashboard. The duration fo the work sessions forces us to eliminate all vertical parallax, and 1:1 scale is obviously required for a valid immersion. Two demonstrators were realized allowing us to have a large set of testers (over 100). More than 80% of the testers saw an immediate use of the IMAVE system. We discuss the good and bad marks awarded to the system. Future work include being able to use several rear-projected stereo screens for doors and central console visualization, but without the parallax presently visible in some CAVE-like environments.

  5. Three-dimensional temporally resolved measurements of turbulence-flame interactions using orthogonal-plane cinema-stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam Michael; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2009-09-15

    A new orthogonal-plane cinema-stereoscopic particle image velocimetry (OPCS-PIV) diagnostic has been used to measure the dynamics of three-dimensional turbulence-flame interactions. The diagnostic employed two orthogonal PIV planes, with one aligned perpendicular and one aligned parallel to the streamwise flow direction. In the plane normal to the flow, temporally resolved slices of the nine-component velocity gradient tensor were determined using Taylor's hypothesis. Volumetric reconstruction of the 3D turbulence was performed using these slices. The PIV plane parallel to the streamwise flow direction was then used to measure the evolution of the turbulence; the path and strength of 3D turbulent structures as they interacted with the flame were determined from their image in this second plane. Structures of both vorticity and strain-rate magnitude were extracted from the flow. The geometry of these structures agreed well with predictions from direct numerical simulations. The interaction of turbulent structures with the flame also was observed. In three dimensions, these interactions had complex geometries that could not be reflected in either planar measurements or simple flame-vortex configurations. (orig.)

  6. Stereoscopic-3D display design: a new paradigm with Intel Adaptive Stable Image Technology [IA-SIT

    Science.gov (United States)

    Jain, Sunil

    2012-03-01

    Stereoscopic-3D (S3D) proliferation on personal computers (PC) is mired by several technical and business challenges: a) viewing discomfort due to cross-talk amongst stereo images; b) high system cost; and c) restricted content availability. Users expect S3D visual quality to be better than, or at least equal to, what they are used to enjoying on 2D in terms of resolution, pixel density, color, and interactivity. Intel Adaptive Stable Image Technology (IA-SIT) is a foundational technology, successfully developed to resolve S3D system design challenges and deliver high quality 3D visualization at PC price points. Optimizations in display driver, panel timing firmware, backlight hardware, eyewear optical stack, and synch mechanism combined can help accomplish this goal. Agnostic to refresh rate, IA-SIT will scale with shrinking of display transistors and improvements in liquid crystal and LED materials. Industry could profusely benefit from the following calls to action:- 1) Adopt 'IA-SIT S3D Mode' in panel specs (via VESA) to help panel makers monetize S3D; 2) Adopt 'IA-SIT Eyewear Universal Optical Stack' and algorithm (via CEA) to help PC peripheral makers develop stylish glasses; 3) Adopt 'IA-SIT Real Time Profile' for sub-100uS latency control (via BT Sig) to extend BT into S3D; and 4) Adopt 'IA-SIT Architecture' for Monitors and TVs to monetize via PC attach.

  7. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging.

    Science.gov (United States)

    Thériault, Gabrielle; Cottet, Martin; Castonguay, Annie; McCarthy, Nathalie; De Koninck, Yves

    2014-01-01

    Two-photon microscopy has revolutionized functional cellular imaging in tissue, but although the highly confined depth of field (DOF) of standard set-ups yields great optical sectioning, it also limits imaging speed in volume samples and ease of use. For this reason, we recently presented a simple and retrofittable modification to the two-photon laser-scanning microscope which extends the DOF through the use of an axicon (conical lens). Here we demonstrate three significant benefits of this technique using biological samples commonly employed in the field of neuroscience. First, we use a sample of neurons grown in culture and move it along the z-axis, showing that a more stable focus is achieved without compromise on transverse resolution. Second, we monitor 3D population dynamics in an acute slice of live mouse cortex, demonstrating that faster volumetric scans can be conducted. Third, we acquire a stereoscopic image of neurons and their dendrites in a fixed sample of mouse cortex, using only two scans instead of the complete stack and calculations required by standard systems. Taken together, these advantages, combined with the ease of integration into pre-existing systems, make the extended depth-of-field imaging based on Bessel beams a strong asset for the field of microscopy and life sciences in general.

  8. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Ragni, D.; Oudheusden, B.W. van; Scarano, F. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)

    2012-02-15

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes perpendicular to the blade axis and merged to form a 3D measurement volume. Transonic conditions have been reached at the tip region, with a revolution frequency of 19,800 rpm and a relative free-stream Mach number of 0.73 at the tip. The pressure field and the surface pressure distribution are inferred from the 3D velocity data through integration of the momentum Navier-Stokes equation in differential form, allowing for the simultaneous flow visualization and the aerodynamic loads computation, with respect to a reference frame moving with the blade. The momentum and pressure data are further integrated by means of a contour-approach to yield the aerodynamic sectional force components as well as the blade torsional moment. A steady Reynolds averaged Navier-Stokes numerical simulation of the entire propeller model has been used for comparison to the measurement data. (orig.)

  9. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    Science.gov (United States)

    Ragni, D.; van Oudheusden, B. W.; Scarano, F.

    2012-02-01

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes perpendicular to the blade axis and merged to form a 3D measurement volume. Transonic conditions have been reached at the tip region, with a revolution frequency of 19,800 rpm and a relative free-stream Mach number of 0.73 at the tip. The pressure field and the surface pressure distribution are inferred from the 3D velocity data through integration of the momentum Navier-Stokes equation in differential form, allowing for the simultaneous flow visualization and the aerodynamic loads computation, with respect to a reference frame moving with the blade. The momentum and pressure data are further integrated by means of a contour-approach to yield the aerodynamic sectional force components as well as the blade torsional moment. A steady Reynolds averaged Navier-Stokes numerical simulation of the entire propeller model has been used for comparison to the measurement data.

  10. Sadum: Traditional and Contemporary

    Directory of Open Access Journals (Sweden)

    Ratna Panggabean

    2009-07-01

    Full Text Available Sadum is one of the traditional cloths of the Batak people in North Sumatra. It is woven on a back strap loom with supplementary weft technique. Sadum is a warp faced weaving made of cotton and beads woven into the cloth. Ritually it is used as a shoulder cloth, gifts exchanges, and in dances. It also bears the symbol of good tidings and blessings for the receiver. The cloth has change during times in technique, color, patterns, as well as in functions. But the use as a ritual cloth stays the same. The basic weaving techniques and equipments used to create it hasn’t change, but its material and added techniques has made this cloth become more rich in color, pattern, and texture. Most changes began when the Europeans came to Indonesia and introduced new material such as synthetic fibers and colors. In the 70s traditional cloth of Indonesia got its boost when the government declared batik as Indonesian national attire. This encourages other traditional weavings to develop into contemporary clothing. Later, new techniques and material were introduced to the Sadum weavings including embroidery, silk and golden threads which were never used before.

  11. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. Copyright © 2016. Published by Elsevier B.V.

  12. Response to various periods of mechanical stimuli in Physarum plasmodium

    International Nuclear Information System (INIS)

    Umedachi, Takuya; Ito, Kentaro; Kobayashi, Ryo; Ishiguro, Akio; Nakagaki, Toshiyuki

    2017-01-01

    Response to mechanical stimuli is a fundamental and critical ability for living cells to survive in hazardous conditions or to form adaptive and functional structures against force(s) from the environment. Although this ability has been extensively studied by molecular biology strategies, it is also important to investigate the ability from the viewpoint of biological rhythm phenomena so as to reveal the mechanisms that underlie these phenomena. Here, we use the plasmodium of the true slime mold Physarum polycephalum as the experimental system for investigating this ability. The plasmodium was repetitively stretched for various periods during which its locomotion speed was observed. Since the plasmodium has inherent oscillation cycles of protoplasmic streaming and thickness variation, how the plasmodium responds to various periods of external stretching stimuli can shed light on the other biological rhythm phenomena. The experimental results show that the plasmodium exhibits response to periodic mechanical stimulation and changes its locomotion speed depending on the period of the stretching stimuli. (paper)

  13. Emotional conditioning to masked stimuli and modulation of visuospatial attention.

    Science.gov (United States)

    Beaver, John D; Mogg, Karin; Bradley, Brendan P

    2005-03-01

    Two studies investigated the effects of conditioning to masked stimuli on visuospatial attention. During the conditioning phase, masked snakes and spiders were paired with a burst of white noise, or paired with an innocuous tone, in the conditioned stimulus (CS)+ and CS- conditions, respectively. Attentional allocation to the CSs was then assessed with a visual probe task, in which the CSs were presented unmasked (Experiment 1) or both unmasked and masked (Experiment 2), together with fear-irrelevant control stimuli (flowers and mushrooms). In Experiment 1, participants preferentially allocated attention to CS+ relative to control stimuli. Experiment 2 suggested that this attentional bias depended on the perceived aversiveness of the unconditioned stimulus and did not require conscious recognition of the CSs during both acquisition and expression. Copyright 2005 APA, all rights reserved.

  14. Generating Stimuli for Neuroscience Using PsychoPy.

    Science.gov (United States)

    Peirce, Jonathan W

    2008-01-01

    PsychoPy is a software library written in Python, using OpenGL to generate very precise visual stimuli on standard personal computers. It is designed to allow the construction of as wide a variety of neuroscience experiments as possible, with the least effort. By writing scripts in standard Python syntax users can generate an enormous variety of visual and auditory stimuli and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG etc.). The structure of scripts is simple and intuitive. As a result, new experiments can be written very quickly, and trying to understand a previously written script is easy, even with minimal code comments. PsychoPy can also generate movies and image sequences to be used in demos or simulated neuroscience experiments. This paper describes the range of tools and stimuli that it provides and the environment in which experiments are conducted.

  15. Generating stimuli for neuroscience using PsychoPy

    Directory of Open Access Journals (Sweden)

    Jonathan W Peirce

    2009-01-01

    Full Text Available PsychoPy is a software library written in Python, using OpenGL to generate very precise visual stimuli on standard personal computers. It is designed to allow the construction of as wide a variety of neuroscience experiments as possible, with the least effort. By writing scripts in standard Python syntax users can generate an enormous variety of visual and auditory stimuli and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG etc.. The structure of scripts is simple and intuitive. As a result, new experiments can be written very quickly, and trying to understand a previously written script is easy, even with minimal code comments. PsychoPy can also generate movies and image sequences to be used in demos or simulated neuroscience experiments. This paper describes the range of tools and stimuli that it provides and the environment in which experiments are conducted.

  16. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    Science.gov (United States)

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Attentional capture by social stimuli in young infants

    Directory of Open Access Journals (Sweden)

    Maxie eGluckman

    2013-08-01

    Full Text Available We investigated the possibility that a range of social stimuli capture the attention of 6-month-old infants when in competition with other non-face objects. Infants viewed a series of six-item arrays in which one target item was a face, body part, or animal as their eye movements were recorded. Stimulus arrays were also processed for relative salience of each item in terms of color, luminance, and amount of contour. Targets were rarely the most visually salient items in the arrays, yet infants’ first looks toward all three target types were above chance, and dwell times for targets exceeded other stimulus types. Girls looked longer at faces than did boys, but there were no sex differences for other stimuli. These results are interpreted in a context of learning to discriminate between different classes of animate stimuli, perhaps in line with affordances for social interaction, and origins of sex differences in social attention.

  18. Effect of stimuli, transducers and gender on acoustic change complex

    Directory of Open Access Journals (Sweden)

    Hemanth N. Shetty

    2012-08-01

    Full Text Available The objective of this study was to investigate the effect of stimuli, transducers and gender on the latency and amplitude of acoustic change complex (ACC. ACC is a multiple overlapping P1-N1-P2 complex reflecting acoustic changes across the entire stimulus. Fifteen males and 15 females, in the age range of 18 to 25 (mean=21.67 years, having normal hearing participated in the study. The ACC was recorded using the vertical montage. The naturally produced stimuli /sa/ and /si/ were presented through the insert earphone/loud speaker to record the ACC. The ACC obtained from different stimuli presented through different transducers from male/female participants were analyzed using mixed analysis of variance. Dependent t-test and independent t-test were performed when indicated. There was a significant difference in latency of 2N1 at the transition, with latency for /sa/ being earlier; but not at the onset portions of ACC. There was no significant difference in amplitude of ACC between the stimuli. Among the transducers, there was no significant difference in latency and amplitude of ACC, for both /sa/ and /si/ stimuli. Female participants showed earlier latency for 2N1 and larger amplitude of N1 and 2P2 than male participants, which was significant. ACC provides important insight in detecting the subtle spectral changes in each stimulus. Among the transducers, no difference in ACC was noted as the spectra of stimuli delivered were within the frequency response of the transducers. The earlier 2N1 latency and larger N1 and 2P2 amplitudes noticed in female participants could be due to smaller head circumference. The findings of this study will be useful in determining the capacity of the auditory pathway in detecting subtle spectral changes in the stimulus at the level of the auditory cortex.

  19. Generating Stimuli for Neuroscience Using PsychoPy

    OpenAIRE

    Peirce, Jonathan W.

    2009-01-01

    PsychoPy is a software library written in Python, using OpenGL to generate very precise visual stimuli on standard personal computers. It is designed to allow the construction of as wide a variety of neuroscience experiments as possible, with the least effort. By writing scripts in standard Python syntax users can generate an enormous variety of visual and auditory stimuli and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG etc.). The structure of scrip...

  20. Monocular zones in stereoscopic scenes: A useful source of information for human binocular vision?

    Science.gov (United States)

    Harris, Julie M.

    2010-02-01

    When an object is closer to an observer than the background, the small differences between right and left eye views are interpreted by the human brain as depth. This basic ability of the human visual system, called stereopsis, lies at the core of all binocular three-dimensional (3-D) perception and related technological display development. To achieve stereopsis, it is traditionally assumed that corresponding locations in the right and left eye's views must first be matched, then the relative differences between right and left eye locations are used to calculate depth. But this is not the whole story. At every object-background boundary, there are regions of the background that only one eye can see because, in the other eye's view, the foreground object occludes that region of background. Such monocular zones do not have a corresponding match in the other eye's view and can thus cause problems for depth extraction algorithms. In this paper I will discuss evidence, from our knowledge of human visual perception, illustrating that monocular zones do not pose problems for our human visual systems, rather, our visual systems can extract depth from such zones. I review the relevant human perception literature in this area, and show some recent data aimed at quantifying the perception of depth from monocular zones. The paper finishes with a discussion of the potential importance of considering monocular zones, for stereo display technology and depth compression algorithms.

  1. Traditional sorghum beer "ikigage"

    OpenAIRE

    Lyumugabe Loshima, François

    2010-01-01

    Samples of traditional sorghum beer Ikigage was collected in the southern province of Rwanda and analyzed for microbiological and physico-chemical contents. Ikigage contained total aerobic mesophilic bacteria (33.55 x 106 cfu/ml), yeast (10.15 x 106 cfu/ml), lactic acid bacteria (35.35 x 104 cfu/ml), moulds (4.12 x 104 cfu/ml), E. coli (21.90 x 103 cfu/ml), fecal streptococci (22.50 x 103 cfu/ml), Staphylococcus aureus (16.02 x 103 cfu/ml), total coliform (32.30 x 103 cfu/ml), eth...

  2. In the Dirac tradition

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-04-15

    It was Paul Dirac who cast quantum mechanics into the form we now use, and many generations of theoreticians openly acknowledge his influence on their thinking. When Dirac died in 1984, St. John's College, Cambridge, his base for most of his lifetime, instituted an annual lecture in his memory at Cambridge. The first lecture, in 1986, attracted two heavyweights - Richard Feynman and Steven Weinberg. Far from using the lectures as a platform for their own work, in the Dirac tradition they presented stimulating material on deep underlying questions.

  3. In the Dirac tradition

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    It was Paul Dirac who cast quantum mechanics into the form we now use, and many generations of theoreticians openly acknowledge his influence on their thinking. When Dirac died in 1984, St. John's College, Cambridge, his base for most of his lifetime, instituted an annual lecture in his memory at Cambridge. The first lecture, in 1986, attracted two heavyweights - Richard Feynman and Steven Weinberg. Far from using the lectures as a platform for their own work, in the Dirac tradition they presented stimulating material on deep underlying questions

  4. Attention Strongly Modulates Reliability of Neural Responses to Naturalistic Narrative Stimuli.

    Science.gov (United States)

    Ki, Jason J; Kelly, Simon P; Parra, Lucas C

    2016-03-09

    Attentional engagement is a major determinant of how effectively we gather information through our senses. Alongside the sheer growth in the amount and variety of information content that we are presented with through modern media, there is increased variability in the degree to which we "absorb" that information. Traditional research on attention has illuminated the basic principles of sensory selection to isolated features or locations, but it provides little insight into the neural underpinnings of our attentional engagement with modern naturalistic content. Here, we show in human subjects that the reliability of an individual's neural responses with respect to a larger group provides a highly robust index of the level of attentional engagement with a naturalistic narrative stimulus. Specifically, fast electroencephalographic evoked responses were more strongly correlated across subjects when naturally attending to auditory or audiovisual narratives than when attention was directed inward to a mental arithmetic task during stimulus presentation. This effect was strongest for audiovisual stimuli with a cohesive narrative and greatly reduced for speech stimuli lacking meaning. For compelling audiovisual narratives, the effect is remarkably strong, allowing perfect discrimination between attentional state across individuals. Control experiments rule out possible confounds related to altered eye movement trajectories or order of presentation. We conclude that reliability of evoked activity reproduced across subjects viewing the same movie is highly sensitive to the attentional state of the viewer and listener, which is aided by a cohesive narrative. Copyright © 2016 Ki et al.

  5. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Directory of Open Access Journals (Sweden)

    Jiagui Qu

    Full Text Available Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  6. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Science.gov (United States)

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  7. Positive erotic picture stimuli for emotion research in heterosexual females.

    Science.gov (United States)

    Jacob, Gitta Anne; Arntz, Arnoud; Domes, Gregor; Reiss, Neele; Siep, Nicolette

    2011-12-30

    In most experimental studies, emotional pictures are widely used as stimulus material. However, there is still a lack of standardization of picture stimuli displaying erotic relationships, despite the association between a number of psychological problems and severe impairments and problems in intimate relationships. The aim of the study was to test a set of erotic stimuli, with the potential to be used in experimental studies, with heterosexual female subjects. Twenty International Affective Picture System (IAPS) pictures and an additional 100 pictures showing romantic but not explicitly sexual scenes and/or attractive single males were selected. All pictures were rated with respect to valence, arousal, and dominance by 41 heterosexual women and compared to pictures with negative, positive, and neutral emotional valence. Erotic IAPS pictures and our additional erotic pictures did not differ in any of the evaluation dimensions. Analyses of variance (ANOVAs) for valence, arousal, and dominance comparing different picture valence categories showed strong effects for category. However, valence was not significantly different between erotic and positive pictures, while arousal and control were not significantly different between positive and neutral pictures. The pictures of our new set are as positive for heterosexual women as highly positive IAPS pictures, but higher in arousal and dominance. The picture set can be used in experimental psychiatric studies requiring high numbers of stimuli per category. Limitations are the restriction of stimuli application to heterosexual females only and to self-report data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Heightened attentional capture by visual food stimuli in anorexia nervosa.

    Science.gov (United States)

    Neimeijer, Renate A M; Roefs, Anne; de Jong, Peter J

    2017-08-01

    The present study was designed to test the hypothesis that anorexia nervosa (AN) patients are relatively insensitive to the attentional capture of visual food stimuli. Attentional avoidance of food might help AN patients to prevent more elaborate processing of food stimuli and the subsequent generation of craving, which might enable AN patients to maintain their strict diet. Participants were 66 restrictive AN spectrum patients and 55 healthy controls. A single-target rapid serial visual presentation task was used with food and disorder-neutral cues as critical distracter stimuli and disorder-neutral pictures as target stimuli. AN spectrum patients showed diminished task performance when visual food cues were presented in close temporal proximity of the to-be-identified target. In contrast to our hypothesis, results indicate that food cues automatically capture AN spectrum patients' attention. One explanation could be that the enhanced attentional capture of food cues in AN is driven by the relatively high threat value of food items in AN. Implications and suggestions for future research are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Temporal attention for visual food stimuli in restrained eaters

    NARCIS (Netherlands)

    Neimeijer, Renate A. M.; de Jong, Peter J.; Roefs, Anne

    2013-01-01

    Although restrained eaters try to limit their food intake, they often fail and indulge in exactly those foods that they want to avoid. A possible explanation is a temporal attentional bias for food cues. It could be that for these people food stimuli are processed relatively efficiently and require

  10. External stimuli response on a novel chitosan hydrogel crosslinked ...

    Indian Academy of Sciences (India)

    The influence of external stimuli such as pH, temperature, and ionic strength of the swelling media on equilibrium swelling properties has been observed. Hydrogels showed a typical pH and temperature responsive behaviour such as low pH and high temperature has maximum swelling while high pH and low temperature ...

  11. Positive mood broadens visual attention to positive stimuli.

    Science.gov (United States)

    Wadlinger, Heather A; Isaacowitz, Derek M

    2006-03-01

    In an attempt to investigate the impact of positive emotions on visual attention within the context of Fredrickson's (1998) broaden-and-build model, eye tracking was used in two studies to measure visual attentional preferences of college students (n=58, n=26) to emotional pictures. Half of each sample experienced induced positive mood immediately before viewing slides of three similarly-valenced images, in varying central-peripheral arrays. Attentional breadth was determined by measuring the percentage viewing time to peripheral images as well as by the number of visual saccades participants made per slide. Consistent with Fredrickson's theory, the first study showed that individuals induced into positive mood fixated more on peripheral stimuli than did control participants; however, this only held true for highly-valenced positive stimuli. Participants under induced positive mood also made more frequent saccades for slides of neutral and positive valence. A second study showed that these effects were not simply due to differences in emotional arousal between stimuli. Selective attentional broadening to positive stimuli may act both to facilitate later building of resources as well as to maintain current positive affective states.

  12. Secondary hyperalgesia to heat stimuli after burn injury in man

    DEFF Research Database (Denmark)

    Pedersen, J L; Kehlet, H

    1998-01-01

    The aim of the study was to examine the presence of hyperalgesia to heat stimuli within the zone of secondary hyperalgesia to punctate mechanical stimuli. A burn was produced on the medial part of the non-dominant crus in 15 healthy volunteers with a 50 x 25 mm thermode (47 degrees C, 7 min......), and assessments were made 70 min and 40 min before, and 0, 1, and 2 h after the burn injury. Hyperalgesia to mechanical and heat stimuli were examined by von Frey hairs and contact thermodes (3.75 and 12.5 cm2), and pain responses were rated with a visual analog scale (0-100). The area of secondary hyperalgesia...... to punctate stimuli was assessed with a rigid von Frey hair (462 mN). The heat pain responses to 45 degrees C in 5 s (3.75 cm2) were tested in the area just outside the burn, where the subjects developed secondary hyperalgesia, and on the lateral crus where no subject developed secondary hyperalgesia (control...

  13. Precuneus-prefrontal activity during awareness of visual verbal stimuli

    DEFF Research Database (Denmark)

    Kjaer, T W; Nowak, M; Kjær, Klaus Wilbrandt

    2001-01-01

    Awareness is a personal experience, which is only accessible to the rest of world through interpretation. We set out to identify a neural correlate of visual awareness, using brief subliminal and supraliminal verbal stimuli while measuring cerebral blood flow distribution with H(2)(15)O PET. Awar...

  14. Stress improves selective attention towards emotionally neutral left ear stimuli.

    Science.gov (United States)

    Hoskin, Robert; Hunter, M D; Woodruff, P W R

    2014-09-01

    Research concerning the impact of psychological stress on visual selective attention has produced mixed results. The current paper describes two experiments which utilise a novel auditory oddball paradigm to test the impact of psychological stress on auditory selective attention. Participants had to report the location of emotionally-neutral auditory stimuli, while ignoring task-irrelevant changes in their content. The results of the first experiment, in which speech stimuli were presented, suggested that stress improves the ability to selectively attend to left, but not right ear stimuli. When this experiment was repeated using tonal stimuli the same result was evident, but only for female participants. Females were also found to experience greater levels of distraction in general across the two experiments. These findings support the goal-shielding theory which suggests that stress improves selective attention by reducing the attentional resources available to process task-irrelevant information. The study also demonstrates, for the first time, that this goal-shielding effect extends to auditory perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Stimulus intensity and the psychological refractory period II auditive stimuli

    NARCIS (Netherlands)

    Koster, W.G.; Schuur, van R.

    1970-01-01

    In experiments in which stimuli are presented closely spaced in time, subjects exhibit a limitation in the transmission of the signals. The result is either a delayed response or a less accurate response. This phenomenon has been called the psychological refractory phase (Telford, 1931). It is

  16. Reversal Negativity and Bistable Stimuli: Attention, Awareness, or Something Else?

    Science.gov (United States)

    Intaite, Monika; Koivisto, Mika; Ruksenas, Osvaldas; Revonsuo, Antti

    2010-01-01

    Ambiguous (or bistable) figures are visual stimuli that have two mutually exclusive perceptual interpretations that spontaneously alternate with each other. Perceptual reversals, as compared with non-reversals, typically elicit a negative difference called reversal negativity (RN), peaking around 250 ms from stimulus onset. The cognitive…

  17. Exposure to Virtual Social Stimuli Modulates Subjective Pain Reports

    Directory of Open Access Journals (Sweden)

    Jacob M Vigil

    2014-01-01

    Full Text Available BACKGROUND: Contextual factors, including the gender of researchers, influence experimental and patient pain reports. It is currently not known how social stimuli influence pain percepts, nor which types of sensory modalities of communication, such as auditory, visual or olfactory cues associated with person perception and gender processing, produce these effects.

  18. Music influences ratings of the affect of visual stimuli

    NARCIS (Netherlands)

    Hanser, W.E.; Mark, R.E.

    2013-01-01

    This review provides an overview of recent studies that have examined how music influences the judgment of emotional stimuli, including affective pictures and film clips. The relevant findings are incorporated within a broader theory of music and emotion, and suggestions for future research are

  19. Cortical oscillations modulated by congruent and incongruent audiovisual stimuli.

    Science.gov (United States)

    Herdman, A T; Fujioka, T; Chau, W; Ross, B; Pantev, C; Picton, T W

    2004-11-30

    Congruent or incongruent grapheme-phoneme stimuli are easily perceived as one or two linguistic objects. The main objective of this study was to investigate the changes in cortical oscillations that reflect the processing of congruent and incongruent audiovisual stimuli. Graphemes were Japanese Hiragana characters for four different vowels (/a/, /o/, /u/, and /i/). They were presented simultaneously with their corresponding phonemes (congruent) or non-corresponding phonemes (incongruent) to native-speaking Japanese participants. Participants' reaction times to the congruent audiovisual stimuli were significantly faster by 57 ms as compared to reaction times to incongruent stimuli. We recorded the brain responses for each condition using a whole-head magnetoencephalograph (MEG). A novel approach to analysing MEG data, called synthetic aperture magnetometry (SAM), was used to identify event-related changes in cortical oscillations involved in audiovisual processing. The SAM contrast between congruent and incongruent responses revealed greater event-related desynchonization (8-16 Hz) bilaterally in the occipital lobes and greater event-related synchronization (4-8 Hz) in the left transverse temporal gyrus. Results from this study further support the concept of interactions between the auditory and visual sensory cortices in multi-sensory processing of audiovisual objects.

  20. Functionalized mesoporous silica nanoparticles for stimuli-responsive and targeted

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Nikola [Iowa State Univ., Ames, IA (United States)

    2009-12-15

    Construction of functional supramolecular nanoassemblies has attracted great deal of attention in recent years for their wide spectrum of practical applications. Mesoporous silica nanoparticles (MSN) in particular were shown to be effective scaffolds for the construction of drug carriers, sensors and catalysts. Herein, we describe the synthesis and characterization of stimuli-responsive, controlled release MSN-based assemblies for drug delivery.

  1. Relationship of extinction to perceptual thresholds for single stimuli.

    Science.gov (United States)

    Meador, K J; Ray, P G; Day, L J; Loring, D W

    2001-04-24

    To demonstrate the effects of target stimulus intensity on extinction to double simultaneous stimuli. Attentional deficits contribute to extinction in patients with brain lesions, but extinction (i.e., masking) can also be produced in healthy subjects. The relationship of extinction to perceptual thresholds for single stimuli remains uncertain. Brief electrical pulses were applied simultaneously to the left and right index fingers of 16 healthy volunteers (8 young and 8 elderly adults) and 4 patients with right brain stroke (RBS). The stimulus to be perceived (i.e., target stimulus) was given at the lowest perceptual threshold to perceive any single stimulus (i.e., Minimal) and at the threshold to perceive 100% of single stimuli. The mask stimulus (i.e., stimulus given to block the target) was applied to the contralateral hand at intensities just below discomfort. Extinction was less for target stimuli at 100% than Minimal threshold for healthy subjects. Extinction of left targets was greater in patients with RBS than elderly control subjects. Left targets were extinguished less than right in healthy subjects. In contrast, the majority of left targets were extinguished in patients with RBS even when right mask intensity was reduced below right 100% threshold for single stimuli. RBS patients had less extinction for right targets despite having greater left mask - threshold difference than control subjects. In patients with RBS, right "targets" at 100% threshold extinguished left "masks" (20%) almost as frequently as left masks extinguished right targets (32%). Subtle changes in target intensity affect extinction in healthy adults. Asymmetries in mask and target intensities (relative to single-stimulus perceptual thresholds) affect extinction in RBS patients less for left targets but more for right targets as compared with control subjects.

  2. Cortical responses from adults and infants to complex visual stimuli.

    Science.gov (United States)

    Schulman-Galambos, C; Galambos, R

    1978-10-01

    Event-related potentials (ERPs) time-locked to the onset of visual stimuli were extracted from the EEG of normal adult (N = 16) and infant (N = 23) subjects. Subjects were not required to make any response. Stimuli delivered to the adults were 150 msec exposures of 2 sets of colored slides projected in 4 blocks, 2 in focus and 2 out of focus. Infants received 2-sec exposures of slides showing people, colored drawings or scenes from Disneyland, as well as 2-sec illuminations of the experimenter as she played a game or of a TV screen the baby was watching. The adult ERPs showed 6 waves (N1 through P4) in the 140--600-msec range; this included a positive wave at around 350 msec that was large when the stimuli were focused and smaller when they were not. The waves in the 150--200-msec range, by contrast, steadily dropped in amplitude as the experiment progressed. The infant ERPs differed greatly from the adult ones in morphology, usually showing a positive (latency about 200 msec)--negative(5--600msec)--positive(1000msec) sequence. This ERP appeared in all the stimulus conditions; its presence or absence, furthermore, was correlated with whether or not the baby seemed interested in the stimuli. Four infants failed to produce these ERPs; an independent measure of attention to the stimuli, heart rate deceleration, was demonstrated in two of them. An electrode placed beneath the eye to monitor eye movements yielded ERPs closely resembling those derived from the scalp in most subjects; reasons are given for assigning this response to activity in the brain, probably at the frontal pole. This study appears to be one of the first to search for cognitive 'late waves' in a no-task situation. The results suggest that further work with such task-free paradigms may yield additional useful techniques for studying the ERP.

  3. Non-traditional inheritance

    International Nuclear Information System (INIS)

    Hall, J.G.

    1992-01-01

    In the last few years, several non-traditional forms of inheritance have been recognized. These include mosaicism, cytoplasmic inheritance, uniparental disomy, imprinting, amplification/anticipation, and somatic recombination. Genomic imprinting (GI) is the dependence of the phenotype on the sex of the transmitting parent. GI in humans seems to involve growth, behaviour, and survival in utero. The detailed mechanism of genomic imprinting is not known, but it seems that some process is involved in turning a gene off; this probably involves two genes, one of which produces a product that turns a gene off, and the gene that is itself turned off. The process of imprinting (turning off) may be associated with methylation. Erasure of imprinting can occur, and seems to be associated with meiosis. 10 refs

  4. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console.

    Science.gov (United States)

    Volonté, Francesco; Buchs, Nicolas C; Pugin, François; Spaltenstein, Joël; Schiltz, Boris; Jung, Minoa; Hagen, Monika; Ratib, Osman; Morel, Philippe

    2013-09-01

    Computerized management of medical information and 3D imaging has become the norm in everyday medical practice. Surgeons exploit these emerging technologies and bring information previously confined to the radiology rooms into the operating theatre. The paper reports the authors' experience with integrated stereoscopic 3D-rendered images in the da Vinci surgeon console. Volume-rendered images were obtained from a standard computed tomography dataset using the OsiriX DICOM workstation. A custom OsiriX plugin was created that permitted the 3D-rendered images to be displayed in the da Vinci surgeon console and to appear stereoscopic. These rendered images were displayed in the robotic console using the TilePro multi-input display. The upper part of the screen shows the real endoscopic surgical field and the bottom shows the stereoscopic 3D-rendered images. These are controlled by a 3D joystick installed on the console, and are updated in real time. Five patients underwent a robotic augmented reality-enhanced procedure. The surgeon was able to switch between the classical endoscopic view and a combined virtual view during the procedure. Subjectively, the addition of the rendered images was considered to be an undeniable help during the dissection phase. With the rapid evolution of robotics, computer-aided surgery is receiving increasing interest. This paper details the authors' experience with 3D-rendered images projected inside the surgical console. The use of this intra-operative mixed reality technology is considered very useful by the surgeon. It has been shown that the usefulness of this technique is a step toward computer-aided surgery that will progress very quickly over the next few years. Copyright © 2012 John Wiley & Sons, Ltd.

  5. ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY

    International Nuclear Information System (INIS)

    Davies, J. A.; Perry, C. H.; Harrison, R. A.; Trines, R. M. G. M.; Lugaz, N.; Möstl, C.; Liu, Y. D.; Steed, K.

    2013-01-01

    The twin-spacecraft STEREO mission has enabled simultaneous white-light imaging of the solar corona and inner heliosphere from multiple vantage points. This has led to the development of numerous stereoscopic techniques to investigate the three-dimensional structure and kinematics of solar wind transients such as coronal mass ejections (CMEs). Two such methods—triangulation and the tangent to a sphere—can be used to determine time profiles of the propagation direction and radial distance (and thereby radial speed) of a solar wind transient as it travels through the inner heliosphere, based on its time-elongation profile viewed by two observers. These techniques are founded on the assumption that the transient can be characterized as a point source (fixed φ, FP, approximation) or a circle attached to Sun-center (harmonic mean, HM, approximation), respectively. These geometries constitute extreme descriptions of solar wind transients, in terms of their cross-sectional extent. Here, we present the stereoscopic expressions necessary to derive propagation direction and radial distance/speed profiles of such transients based on the more generalized self-similar expansion (SSE) geometry, for which the FP and HM geometries form the limiting cases; our implementation of these equations is termed the stereoscopic SSE method. We apply the technique to two Earth-directed CMEs from different phases of the STEREO mission, the well-studied event of 2008 December and a more recent event from 2012 March. The latter CME was fast, with an initial speed exceeding 2000 km s –1 , and highly geoeffective, in stark contrast to the slow and ineffectual 2008 December CME

  6. Diffuse nitrogen loss simulation and impact assessment of stereoscopic agriculture pattern by integrated water system model and consideration of multiple existence forms

    Science.gov (United States)

    Zhang, Yongyong; Gao, Yang; Yu, Qiang

    2017-09-01

    Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the

  7. Effects of Intraluminal Thrombus on Patient-Specific Abdominal Aortic Aneurysm Hemodynamics via Stereoscopic Particle Image Velocity and Computational Fluid Dynamics Modeling

    Science.gov (United States)

    Chen, Chia-Yuan; Antón, Raúl; Hung, Ming-yang; Menon, Prahlad; Finol, Ender A.; Pekkan, Kerem

    2014-01-01

    The pathology of the human abdominal aortic aneurysm (AAA) and its relationship to the later complication of intraluminal thrombus (ILT) formation remains unclear. The hemodynamics in the diseased abdominal aorta are hypothesized to be a key contributor to the formation and growth of ILT. The objective of this investigation is to establish a reliable 3D flow visualization method with corresponding validation tests with high confidence in order to provide insight into the basic hemodynamic features for a better understanding of hemodynamics in AAA pathology and seek potential treatment for AAA diseases. A stereoscopic particle image velocity (PIV) experiment was conducted using transparent patient-specific experimental AAA models (with and without ILT) at three axial planes. Results show that before ILT formation, a 3D vortex was generated in the AAA phantom. This geometry-related vortex was not observed after the formation of ILT, indicating its possible role in the subsequent appearance of ILT in this patient. It may indicate that a longer residence time of recirculated blood flow in the aortic lumen due to this vortex caused sufficient shear-induced platelet activation to develop ILT and maintain uniform flow conditions. Additionally, two computational fluid dynamics (CFD) modeling codes (Fluent and an in-house cardiovascular CFD code) were compared with the two-dimensional, three-component velocity stereoscopic PIV data. Results showed that correlation coefficients of the out-of-plane velocity data between PIV and both CFD methods are greater than 0.85, demonstrating good quantitative agreement. The stereoscopic PIV study can be utilized as test case templates for ongoing efforts in cardiovascular CFD solver development. Likewise, it is envisaged that the patient-specific data may provide a benchmark for further studying hemodynamics of actual AAA, ILT, and their convolution effects under physiological conditions for clinical applications. PMID:24316984

  8. Adaptation to Variance of Stimuli in Drosophila Larva Navigation

    Science.gov (United States)

    Wolk, Jason; Gepner, Ruben; Gershow, Marc

    In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  9. The Role of Inhibition in Avoiding Distraction by Salient Stimuli.

    Science.gov (United States)

    Gaspelin, Nicholas; Luck, Steven J

    2018-01-01

    Researchers have long debated whether salient stimuli can involuntarily 'capture' visual attention. We review here evidence for a recently discovered inhibitory mechanism that may help to resolve this debate. This evidence suggests that salient stimuli naturally attempt to capture attention, but capture can be avoided if the salient stimulus is suppressed before it captures attention. Importantly, the suppression process can be more or less effective as a result of changing task demands or lapses in cognitive control. Converging evidence for the existence of this suppression mechanism comes from multiple sources, including psychophysics, eye-tracking, and event-related potentials (ERPs). We conclude that the evidence for suppression is strong, but future research will need to explore the nature and limits of this mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Stimuli-responsive hydrogels in drug delivery and tissue engineering.

    Science.gov (United States)

    Sood, Nikhil; Bhardwaj, Ankur; Mehta, Shuchi; Mehta, Abhinav

    2016-01-01

    Hydrogels are the three-dimensional network structures obtained from a class of synthetic or natural polymers which can absorb and retain a significant amount of water. Hydrogels are one of the most studied classes of polymer-based controlled drug release. These have attracted considerable attention in biochemical and biomedical fields because of their characteristics, such as swelling in aqueous medium, biocompatibility, pH and temperature sensitivity or sensitivity towards other stimuli, which can be utilized for their controlled zero-order release. The hydrogels are expected to explore new generation of self-regulated delivery system having a wide array of desirable properties. This review highlights the exciting opportunities and challenges in the area of hydrogels. Here, we review different literatures on stimuli-sensitive hydrogels, such as role of temperature, electric potential, pH and ionic strength to control the release of drug from hydrogels.

  11. Neural activation toward erotic stimuli in homosexual and heterosexual males.

    Science.gov (United States)

    Kagerer, Sabine; Klucken, Tim; Wehrum, Sina; Zimmermann, Mark; Schienle, Anne; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf

    2011-11-01

    Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. Blood oxygen level-dependent responses measured by fMRI and subjective ratings. A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males. © 2011 International Society for Sexual Medicine.

  12. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    Science.gov (United States)

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  13. Autobiographical memories of young adults elicited by positive musical stimuli

    OpenAIRE

    Gonçalves, Ana Margarida Silva

    2015-01-01

    Dissertação de mestrado integrado em Psicologia Studies on autobiographical memories have shown the presence of three main components: childhood amnesia, recency effect and reminiscence bump (Rubin, 1986). Previous research suggests that autobiographical memories elicited by positive stimuli are associated with highly, specific and generally pleasant episodes (Krumhansl & Zupnick, 2013). Music has an important and highly emotional and social role in individual’s lives. The p...

  14. Exogenous (automatic) attention to emotional stimuli: a review

    OpenAIRE

    Carretié, Luis

    2014-01-01

    Current knowledge on the architecture of exogenous attention (also called automatic, bottom-up, or stimulus-driven attention, among other terms) has been mainly obtained from studies employing neutral, anodyne stimuli. Since, from an evolutionary perspective, exogenous attention can be understood as an adaptive tool for rapidly detecting salient events, reorienting processing resources to them, and enhancing processing mechanisms, emotional events (which are, by definition, salient for the in...

  15. Brain response to visual sexual stimuli in homosexual pedophiles.

    Science.gov (United States)

    Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke

    2008-01-01

    The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men.

  16. Neural correlates of quality during perception of audiovisual stimuli

    CERN Document Server

    Arndt, Sebastian

    2016-01-01

    This book presents a new approach to examining perceived quality of audiovisual sequences. It uses electroencephalography to understand how exactly user quality judgments are formed within a test participant, and what might be the physiologically-based implications when being exposed to lower quality media. The book redefines experimental paradigms of using EEG in the area of quality assessment so that they better suit the requirements of standard subjective quality testings. Therefore, experimental protocols and stimuli are adjusted accordingly. .

  17. Psychophysiological effects of audiovisual stimuli during cycle exercise.

    Science.gov (United States)

    Barreto-Silva, Vinícius; Bigliassi, Marcelo; Chierotti, Priscila; Altimari, Leandro R

    2018-05-01

    Immersive environments induced by audiovisual stimuli are hypothesised to facilitate the control of movements and ameliorate fatigue-related symptoms during exercise. The objective of the present study was to investigate the effects of pleasant and unpleasant audiovisual stimuli on perceptual and psychophysiological responses during moderate-intensity exercises performed on an electromagnetically braked cycle ergometer. Twenty young adults were administered three experimental conditions in a randomised and counterbalanced order: unpleasant stimulus (US; e.g. images depicting laboured breathing); pleasant stimulus (PS; e.g. images depicting pleasant emotions); and neutral stimulus (NS; e.g. neutral facial expressions). The exercise had 10 min of duration (2 min of warm-up + 6 min of exercise + 2 min of warm-down). During all conditions, the rate of perceived exertion and heart rate variability were monitored to further understanding of the moderating influence of audiovisual stimuli on perceptual and psychophysiological responses, respectively. The results of the present study indicate that PS ameliorated fatigue-related symptoms and reduced the physiological stress imposed by the exercise bout. Conversely, US increased the global activity of the autonomic nervous system and increased exertional responses to a greater degree when compared to PS. Accordingly, audiovisual stimuli appear to induce a psychophysiological response in which individuals visualise themselves within the story presented in the video. In such instances, individuals appear to copy the behaviour observed in the videos as if the situation was real. This mirroring mechanism has the potential to up-/down-regulate the cardiac work as if in fact the exercise intensities were different in each condition.

  18. Afferent activity to necklace glomeruli is dependent on external stimuli

    Directory of Open Access Journals (Sweden)

    Munger Steven D

    2009-03-01

    Full Text Available Abstract Background The main olfactory epithelium (MOE is a complex organ containing several functionally distinct subpopulations of sensory neurons. One such subpopulation is distinguished by its expression of the guanylyl cyclase GC-D. The axons of GC-D-expressing (GC-D+ neurons innervate 9–15 "necklace" glomeruli encircling the caudal main olfactory bulb (MOB. Chemosensory stimuli for GC-D+ neurons include two natriuretic peptides, uroguanylin and guanylin, and CO2. However, the biologically-relevant source of these chemostimuli is unclear: uroguanylin is both excreted in urine, a rich source of olfactory stimuli for rodents, and expressed in human nasal epithelium; CO2 is present in both inspired and expired air. Findings To determine whether the principal source of chemostimuli for GC-D+ neurons is external or internal to the nose, we assessed the consequences of removing external chemostimuli for afferent activity to the necklace glomeruli. To do so, we performed unilateral naris occlusions in Gucy2d-Mapt-lacZ +/- mice [which express a β-galactosidase (β-gal reporter specifically in GC-D+ neurons] followed by immunohistochemistry for β-gal and a glomerular marker of afferent activity, tyrosine hydroxylase (TH. We observed a dramatic decrease in TH immunostaining, consistent with reduced or absent afferent activity, in both necklace and non-necklace glomeruli ipsilateral to the occluded naris. Conclusion Like other MOB glomeruli, necklace glomeruli exhibit a large decrease in afferent activity upon removal of external stimuli. Thus, we conclude that activity in GC-D+ neurons, which specifically innervate necklace glomeruli, is not dependent on internal stimuli. Instead, GC-D+ neurons, like other OSNs in the MOE, primarily sense the external world.

  19. Endogenous sequential cortical activity evoked by visual stimuli.

    Science.gov (United States)

    Carrillo-Reid, Luis; Miller, Jae-Eun Kang; Hamm, Jordan P; Jackson, Jesse; Yuste, Rafael

    2015-06-10

    Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. Copyright © 2015 Carrillo-Reid et al.

  20. Neural Conflict–Control Mechanisms Improve Memory for Target Stimuli

    Science.gov (United States)

    Krebs, Ruth M.; Boehler, Carsten N.; De Belder, Maya; Egner, Tobias

    2015-01-01

    According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. PMID:24108799

  1. Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications

    Directory of Open Access Journals (Sweden)

    Jaime Plazas-Tuttle

    2015-06-01

    Full Text Available Nanomaterial science and design have shifted from generating single passive nanoparticles to more complex and adaptive multi-component nanohybrids. These adaptive nanohybrids (ANHs are designed to simultaneously perform multiple functions, while actively responding to the surrounding environment. ANHs are engineered for use as drug delivery carriers, in tissue-engineered templates and scaffolds, adaptive clothing, smart surface coatings, electrical switches and in platforms for diversified functional applications. Such ANHs are composed of carbonaceous, metallic or polymeric materials with stimuli-responsive soft-layer coatings that enable them to perform such switchable functions. Since ANHs are engineered to dynamically transform under different exposure environments, evaluating their environmental behavior will likely require new approaches. Literature on polymer science has established a knowledge core on stimuli-responsive materials. However, translation of such knowledge to environmental health and safety (EHS of these ANHs has not yet been realized. It is critical to investigate and categorize the potential hazards of ANHs, because exposure in an unintended or shifting environment could present uncertainty in EHS. This article presents a perspective on EHS evaluation of ANHs, proposes a principle to facilitate their identification for environmental evaluation, outlines a stimuli-based classification for ANHs and discusses emerging properties and dynamic aspects for systematic EHS evaluation.

  2. Hemispheric specialization in dogs for processing different acoustic stimuli.

    Directory of Open Access Journals (Sweden)

    Marcello Siniscalchi

    Full Text Available Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions.

  3. Reward modulates oculomotor competition between differently valued stimuli.

    Science.gov (United States)

    Bucker, Berno; Silvis, Jeroen D; Donk, Mieke; Theeuwes, Jan

    2015-03-01

    The present work explored the effects of reward in the well-known global effect paradigm in which two objects appear simultaneously in close spatial proximity. The experiment consisted of three phases (i) a pre-training phase that served as a baseline, (ii) a reward-training phase to associate differently colored stimuli with high, low and no reward value, and (iii) a post-training phase in which rewards were no longer delivered, to examine whether objects previously associated with higher reward value attracted the eyes more strongly than those associated with low or no reward value. Unlike previous reward studies, the differently valued objects directly competed with each other on the same trial. The results showed that initially eye movements were not biased towards any particular stimulus, while in the reward-training phase, eye movements started to land progressively closer towards stimuli that were associated with a high reward value. Even though rewards were no longer delivered, this bias remained robustly present in the post-training phase. A time course analysis showed that the effect of reward was present for the fastest saccades (around 170 ms) and increased with increasing latency. Although strategic effects for slower saccades cannot be ruled out, we suggest that fast oculomotor responses became habituated and were no longer under strategic attentional control. Together the results imply that reward affects oculomotor competition in favor of stimuli previously associated high reward, when multiple reward associated objects compete for selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Attention modulates the dorsal striatum response to love stimuli.

    Science.gov (United States)

    Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H

    2014-02-01

    In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. Copyright © 2012 Wiley Periodicals, Inc.

  5. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  6. Neural conflict-control mechanisms improve memory for target stimuli.

    Science.gov (United States)

    Krebs, Ruth M; Boehler, Carsten N; De Belder, Maya; Egner, Tobias

    2015-03-01

    According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. The Commonality of Loss Aversion across Procedures and Stimuli

    Science.gov (United States)

    Kim, Byoung W.; Gilman, Jodi M.; Kuster, John K.; Blood, Anne J.; Kuhnen, Camelia M.

    2015-01-01

    Individuals tend to give losses approximately 2-fold the weight that they give gains. Such approximations of loss aversion (LA) are almost always measured in the stimulus domain of money, rather than objects or pictures. Recent work on preference-based decision-making with a schedule-less keypress task (relative preference theory, RPT) has provided a mathematical formulation for LA similar to that in prospect theory (PT), but makes no parametric assumptions in the computation of LA, uses a variable tied to communication theory (i.e., the Shannon entropy or information), and works readily with non-monetary stimuli. We evaluated if these distinct frameworks described similar LA in healthy subjects, and found that LA during the anticipation phase of the PT-based task correlated significantly with LA related to the RPT-based task. Given the ease with which non-monetary stimuli can be used on the Internet, or in animal studies, these findings open an extensive range of applications for the study of loss aversion. Furthermore, the emergence of methodology that can be used to measure preference for both social stimuli and money brings a common framework to the evaluation of preference in both social psychology and behavioral economics. PMID:26394306

  8. The Commonality of Loss Aversion across Procedures and Stimuli.

    Directory of Open Access Journals (Sweden)

    Sang Lee

    Full Text Available Individuals tend to give losses approximately 2-fold the weight that they give gains. Such approximations of loss aversion (LA are almost always measured in the stimulus domain of money, rather than objects or pictures. Recent work on preference-based decision-making with a schedule-less keypress task (relative preference theory, RPT has provided a mathematical formulation for LA similar to that in prospect theory (PT, but makes no parametric assumptions in the computation of LA, uses a variable tied to communication theory (i.e., the Shannon entropy or information, and works readily with non-monetary stimuli. We evaluated if these distinct frameworks described similar LA in healthy subjects, and found that LA during the anticipation phase of the PT-based task correlated significantly with LA related to the RPT-based task. Given the ease with which non-monetary stimuli can be used on the Internet, or in animal studies, these findings open an extensive range of applications for the study of loss aversion. Furthermore, the emergence of methodology that can be used to measure preference for both social stimuli and money brings a common framework to the evaluation of preference in both social psychology and behavioral economics.

  9. Stimuli-responsive magnetic particles for biomedical applications.

    Science.gov (United States)

    Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A

    2011-01-17

    In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The Commonality of Loss Aversion across Procedures and Stimuli.

    Science.gov (United States)

    Lee, Sang; Lee, Myung J; Kim, Byoung W; Gilman, Jodi M; Kuster, John K; Blood, Anne J; Kuhnen, Camelia M; Breiter, Hans C

    2015-01-01

    Individuals tend to give losses approximately 2-fold the weight that they give gains. Such approximations of loss aversion (LA) are almost always measured in the stimulus domain of money, rather than objects or pictures. Recent work on preference-based decision-making with a schedule-less keypress task (relative preference theory, RPT) has provided a mathematical formulation for LA similar to that in prospect theory (PT), but makes no parametric assumptions in the computation of LA, uses a variable tied to communication theory (i.e., the Shannon entropy or information), and works readily with non-monetary stimuli. We evaluated if these distinct frameworks described similar LA in healthy subjects, and found that LA during the anticipation phase of the PT-based task correlated significantly with LA related to the RPT-based task. Given the ease with which non-monetary stimuli can be used on the Internet, or in animal studies, these findings open an extensive range of applications for the study of loss aversion. Furthermore, the emergence of methodology that can be used to measure preference for both social stimuli and money brings a common framework to the evaluation of preference in both social psychology and behavioral economics.

  11. Vection is modulated by the semantic meaning of stimuli and experimental instructions.

    Science.gov (United States)

    Ogawa, Masaki; Seno, Takeharu

    2014-01-01

    Vection strength is modulated by the semantic meanings of stimuli. In experiment 1--even though vection stimuli were of uniform size, color, and luminance--when they also had semantic meaning as falling objects, vection was inhibited. Specifically, stimuli perceived as feathers, petals, and leaves did not effectively induce vection. In experiment 2 we used the downward motion of identical dots to induce vection. Participants observed stimuli while holding either an umbrella or a wooden sword. Results showed that vection was inhibited when participants held the umbrella and the stimuli was perceived as rain or snow falling. The two experiments suggest that vection is modulated by the semantic meaning of stimuli.

  12. Traditional Medicine in Developing Countries

    DEFF Research Database (Denmark)

    Thorsen, Rikke Stamp

    or spiritual healer and self-treatment with herbal medicine or medicinal plants. Reliance on traditional medicine varies between countries and rural and urban areas, but is reported to be as high as 80% in some developing countries. Increased realization of the continued importance of traditional medicine has......People use traditional medicine to meet their health care needs in developing countries and medical pluralism persists worldwide despite increased access to allopathic medicine. Traditional medicine includes a variety of treatment opportunities, among others, consultation with a traditional healer...... led to the formulation of policies on the integration of traditional medicine into public health care. Local level integration is already taking place as people use multiple treatments when experiencing illness. Research on local level use of traditional medicine for health care, in particular the use...

  13. Development of degradable renewable polymers and stimuli-responsive nanocomposites

    Science.gov (United States)

    Eyiler, Ersan

    The overall goal of this research was to explore new living radical polymerization methods and the blending of renewable polymers. Towards this latter goal, polylactic acid (PLA) was blended with a new renewable polymer, poly(trimethylene-malonate) (PTM), with the aim of improving mechanical properties, imparting faster degradation, and examining the relationship between degradation and mechanical properties. Blend films of PLA and PTM with various ratios (5, 10, and 20 wt %) were cast from chloroform. Partially miscible blends exhibited Young's modulus and elongation-to-break values that significantly extend PLA's usefulness. Atomic force microscopy (AFM) data showed that incorporation of 10 wt% PTM into PLA matrix exhibited a Young's modulus of 4.61 GPa, which is significantly higher than that of neat PLA (1.69 GPa). The second part of the bioplastics study involved a one-week hydrolytic degradation study of PTM and another new bioplastic, poly(trimethylene itaconate) (PTI) using DI water (pH 5.4) at room temperature, and the effects of degradation on crystallinity and mechanical properties of these films were examined by differential scanning calorimetry (DSC) and AFM. PTI showed an increase in crystallinity with degradation, which was attributed to predominately degradation of free amorphous regions. Depending on the crystallinity, the elastic modulus increased at first, and decreased slightly. Both bulk and surface-tethered stimuli-responsive polymers were studied on amine functionalized magnetite (Fe3O4) nanoparticles. Stimuli-responsive polymers studied, including poly(N-isopropylacrylamide) (PNIPAM), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), and poly(itaconic acid) (PIA), were grafted via surface-initiated aqueous atom transfer radical polymerization (SI-ATRP). Both Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) spectroscopies showed the progression of the grafting. The change in particle size as a

  14. Stereoscopic (3D) versus monoscopic (2D) laparoscopy: comparative study of performance using advanced HD optical systems in a surgical simulator model.

    Science.gov (United States)

    Schoenthaler, Martin; Schnell, Daniel; Wilhelm, Konrad; Schlager, Daniel; Adams, Fabian; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz

    2016-04-01

    To compare task performances of novices and experts using advanced high-definition 3D versus 2D optical systems in a surgical simulator model. Fifty medical students (novices in laparoscopy) were randomly assigned to perform five standardized tasks adopted from the Fundamentals of Laparoscopic Surgery (FLS) curriculum in either a 2D or 3D laparoscopy simulator system. In addition, eight experts performed the same tasks. Task performances were evaluated using a validated scoring system of the SAGES/FLS program. Participants were asked to rate 16 items in a questionnaire. Overall task performance of novices was significantly better using stereoscopic visualization. Superiority of performances in 3D reached a level of significance for tasks peg transfer and precision cutting. No significant differences were noted in performances of experts when using either 2D or 3D. Overall performances of experts compared to novices were better in both 2D and 3D. Scorings in the questionnaires showed a tendency toward lower scores in the group of novices using 3D. Stereoscopic imaging significantly improves performance of laparoscopic phantom tasks of novices. The current study confirms earlier data based on a large number of participants and a standardized task and scoring system. Participants felt more confident and comfortable when using a 3D laparoscopic system. However, the question remains open whether these findings translate into faster and safer operations in a clinical setting.

  15. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    Science.gov (United States)

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  16. Do emotional stimuli enhance or impede recall relative to neutral stimuli? An investigation of two "false memory" tasks.

    Science.gov (United States)

    Monds, Lauren A; Paterson, Helen M; Kemp, Richard I

    2017-09-01

    Many eyewitness memory situations involve negative and distressing events; however, many studies investigating "false memory" phenomena use neutral stimuli only. The aim of the present study was to determine how both the Deese-Roediger-McDermott (DRM) procedure and the Misinformation Effect Paradigm tasks were related to each other using distressing and neutral stimuli. Participants completed the DRM (with negative and neutral word lists) and viewed a distressing or neutral film. Misinformation for the film was introduced and memory was assessed. Film accuracy and misinformation susceptibility were found to be greater for those who viewed the distressing film relative to the neutral film. Accuracy responses on both tasks were related, however, susceptibility to the DRM illusion and Misinformation Effect were not. The misinformation findings support the Paradoxical Negative Emotion (PNE) hypothesis that negative stimuli will lead to remembering more accurate details but also greater likelihood of memory distortion. However, the PNE hypothesis was not supported for the DRM results. The findings also suggest that the DRM and Misinformation tasks are not equivalent and may have differences in underlying mechanisms. Future research should focus on more ecologically valid methods of assessing false memory.

  17. The Hausa Lexicographic Tradition

    Directory of Open Access Journals (Sweden)

    Roxana Ma Newman

    2011-10-01

    Full Text Available

    Abstract: Hausa, a major language of West Africa, is one of the most widely studied languagesof Sub-Saharan Africa. It has a rich lexicographic tradition dating back some two centuries. Sincethe first major vocabulary published in 1843 up to the present time, almost 60 lexicographic works— dictionaries, vocabularies, glossaries — have been published, in a range of metalanguages, fromEnglish to Hausa itself. This article traces the historical development of the major studies accordingto their type and function as general reference works, specialized works, pedagogical works, andterminological works. For each work, there is a general discussion of its size, accuracy of the phonological,lexical, and grammatical information, and the adequacy of its definitions and illustrativematerial. A complete list of the lexicographic works is included.

    Keywords: ARABIC, BILINGUAL LEXICOGRAPHY, DIALECTAL VARIANTS, DICTIONARIES,ENGLISH, ETYMOLOGIES, FRENCH, GERMAN, GLOSSARIES, GRAMMATICALCATEGORIES, HAUSA, LANGUAGE LEARNING, LOANWORDS, NEOLOGISMS, NIGER,NIGERIA, ORTHOGRAPHY, PHONETIC TRANSCRIPTION, PHONOLOGY, RUSSIAN, STANDARDDIALECT, STANDARDIZATION, TERMINOLOGY, VOCABULARIES, WEST AFRICA.

    Opsomming: Die leksikografiese tradisie in Hausa. Hausa, 'n belangrike taal vanWes-Afrika, is een van die tale van Afrika suid van die Sahara wat die wydste bestudeer word. Dithet 'n ryk leksikografiese tradisie wat ongeveer twee eeue oud is. Van die eerste groot woordeboekwat in 1843 gepubliseer is tot die hede is ongeveer 60 leksikografiese werke — woordeboeke,naamlyste, woordelyste — gepubliseer in 'n reeks metatale van Engels tot Hausa self. Hierdie artikelgaan die historiese ontwikkeling van die groter studies aan die hand van hulle tipe en funksieas algemene naslaanwerke, gespesialiseerde werke, opvoedkundige werke, en terminologiesewerke na. Vir elke werk is daar 'n algemene bespreking oor sy grootte, akkuraatheid van die fonologiese,leksikale en

  18. Consumer Neuroscience: the traditional and VR TV Commercial

    Directory of Open Access Journals (Sweden)

    Federica Leanza

    2017-04-01

    Full Text Available Today’s consumer is not easily influenced by classic marketing strategies. He looks for new stimuli and wants to be surprised and captivated by new ploys. This Consumer Neuroscience research aims to compare the cognitive, emotive and preference consumers’ response to traditional and Virtual Reality TV commercials. Brain oscillations (delta, theta, alpha, beta and physiological indexes (SCL - Skin Conductance Level were monitored, when subject (N=seventeen observed four traditional TV commercials and four Virtual Reality commercials in randomized order. During the vision of Virtual Reality commercials, the participants were absorbed into the advertisement and interacted with it thanks to the “Oculus Rift”. Subjects were also asked to explicitly evaluate each commercial and to express their preference on them. The intention is to understand the new marketing strategies efficacy and how these impact on consumer at implicit (brain oscillations and physiological indexes and explicit (subject evaluation level.

  19. Perseverative instrumental and Pavlovian responding to conditioned stimuli in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Nonkes, L.J.P.; Homberg, J.R.

    2013-01-01

    Environmental stimuli can influence behavior via the process of Pavlovian conditioning. Recent genetic research suggests that some individuals are more sensitive to environmental stimuli for behavioral guidance than others. One important mediator of this effect is serotonin transporter (5-HTT)

  20. Intimate stimuli result in fronto-parietal activation changes in anorexia nervosa

    NARCIS (Netherlands)

    van Zutphen, L; Maier, S; Siep, N; Jacob, G A; Tüscher, O; van Elst, L Tebartz; Zeeck, A; Arntz, A; O'Connor, M-F; Stamm, H; Hudek, M; Joos, Andreas

    2018-01-01

    BACKGROUND: Intimacy is a key psychological problem in anorexia nervosa (AN). Empirical evidence, including neurobiological underpinnings, is however, scarce. OBJECTIVE: In this study, we evaluated various emotional stimuli including intimate stimuli experienced in patients with AN and non-patients,

  1. United we sense, divided we fail: context-driven perception of ambiguous visual stimuli.

    NARCIS (Netherlands)

    Klink, P.C.; van Wezel, R.J.A.; van Ee, R.

    2012-01-01

    Ambiguous visual stimuli provide the brain with sensory information that contains conflicting evidence for multiple mutually exclusive interpretations. Two distinct aspects of the phenomenological experience associated with viewing ambiguous visual stimuli are the apparent stability of perception

  2. United we sense, divided we fail: context-driven perception of ambiguous visual stimuli

    NARCIS (Netherlands)

    Klink, P. C; van Wezel, Richard Jack Anton; van Ee, R.

    2012-01-01

    Ambiguous visual stimuli provide the brain with sensory information that contains conflicting evidence for multiple mutually exclusive interpretations. Two distinct aspects of the phenomenological experience associated with viewing ambiguous visual stimuli are the apparent stability of perception

  3. A dual-stimuli-responsive fluorescent switch ultrathin film

    Science.gov (United States)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  4. Reception of the Istrian musical tradition(s

    Directory of Open Access Journals (Sweden)

    Marušić Dario

    2007-01-01

    Full Text Available The successive colonization of Istria with culturally differentiated populations, and peripheral position of the peninsula regarding both the Latin and Slav worlds, has conditioned interesting phenomena which defines the traditional life of the province. On the spiritual level it is primarily reflected in two cultural dimensions: the language and traditional music.

  5. Do Live versus Audio-Recorded Narrative Stimuli Influence Young Children's Narrative Comprehension and Retell Quality?

    Science.gov (United States)

    Kim, Young-Suk Grace

    2016-01-01

    Purpose: The primary aim of the present study was to examine whether different ways of presenting narrative stimuli (i.e., live narrative stimuli versus audio-recorded narrative stimuli) influence children's performances on narrative comprehension and oral-retell quality. Method: Children in kindergarten (n = 54), second grade (n = 74), and fourth…

  6. Cognitive conflict increases processing of negative, task-irrelevant stimuli.

    Science.gov (United States)

    Ligeza, Tomasz S; Wyczesany, Miroslaw

    2017-10-01

    The detection of cognitive conflict is thought to trigger adjustments in executive control. It has been recently shown that cognitive conflict increases processing of stimuli that are relevant to the ongoing task and that these modulations are exerted by the dorsolateral prefrontal cortex (DLPFC). However, it is still unclear whether such control influences are unspecific and might also affect the processing of task-irrelevant stimuli. The aim of the study was to examine if cognitive conflict affects processing of neutral and negative, task-irrelevant pictures. Participants responded to congruent (non-conflict) or to incongruent (conflict-eliciting) trials of a modified flanker task. Each response was followed by a presentation of a neutral or negative picture. The late positive potential (LPP) in response to picture presentation was used to assess the level of picture processing after conflict vs non-conflict trials. Connectivity between the DLPFC and attentional and perceptual areas during picture presentation was analysed to check if the DLPFC might be a source of these modulations. ERP results showed an effect of cognitive conflict only on processing of negative pictures: LPP in response to negative pictures was increased after conflict trials, whereas LPP in response to neutral pictures remained unchanged. Cortical connectivity analysis showed that conflict trials intensified information flow from the DLPFC towards attentional and perceptual regions. Results suggest that cognitive conflict increases processing of task-irrelevant stimuli; however, they must display high biological salience. Increase in cognitive control exerted by the DLPFC over attentional and perceptual regions is a probable mechanism of the effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Impact of emotion on consciousness: positive stimuli enhance conscious reportability.

    Directory of Open Access Journals (Sweden)

    Kristine Rømer Thomsen

    2011-04-01

    Full Text Available Emotion and reward have been proposed to be closely linked to conscious experience, but empirical data are lacking. The anterior cingulate cortex (ACC plays a central role in the hedonic dimension of conscious experience; thus potentially a key region in interactions between emotion and consciousness. Here we tested the impact of emotion on conscious experience, and directly investigated the role of the ACC. We used a masked paradigm that measures conscious reportability in terms of subjective confidence and objective accuracy in identifying the briefly presented stimulus in a forced-choice test. By manipulating the emotional valence (positive, neutral, negative and the presentation time (16 ms, 32 ms, 80 ms we measured the impact of these variables on conscious and subliminal (i.e. below threshold processing. First, we tested normal participants using face and word stimuli. Results showed that participants were more confident and accurate when consciously seeing happy versus sad/neutral faces and words. When stimuli were presented subliminally, we found no effect of emotion. To investigate the neural basis of this impact of emotion, we recorded local field potentials (LFPs directly in the ACC in a chronic pain patient. Behavioural findings were replicated: the patient was more confident and accurate when (consciously seeing happy versus sad faces, while no effect was seen in subliminal trials. Mirroring behavioural findings, we found significant differences in the LFPs after around 500 ms (lasting 30 ms in conscious trials between happy and sad faces, while no effect was found in subliminal trials. We thus demonstrate a striking impact of emotion on conscious experience, with positive emotional stimuli enhancing conscious reportability. In line with previous studies, the data indicate a key role of the ACC, but goes beyond earlier work by providing the first direct evidence of interaction between emotion and conscious experience in the human

  8. PENILAIAN PEDOFILIA MENGGUNAKAN RESPON HEMODINAMIK OTAK TERHADAP STIMULI SEKSUAL

    Directory of Open Access Journals (Sweden)

    Kuhelan Mahendran

    2015-09-01

    Full Text Available ABSTRAK Menilai secara akurat orientasi seksual seseorang sangat penting dalam melakukan penanganan terhadap pelaku kekerasan seksual pada anak. Phallometry adalah metode standar untuk mengidentifikasi orientasi seksual; tetapi, metode ini telah banyak dikritik oleh karena bersifat intrusif dan reliabilitasnya terbatas. Tujuan:Untuk mengevaluasi apakah pola respon spasial terhadap stimuli seksual yang ditandai oleh adanya perubahan blood oxygen level-dependent signal (BOLDmemfasilitasi proses identifikasi pedofilia. Desain:Selama dilakukan pemeriksaan magnetic resonance imaging fungsional (fMRI, ditampilkan gambar anak-anak dan dewasa tanpa busana dengan jenis kelamin sama atau berbeda terhadap sampel penelitian (kelompok pedofil dan kontrol. Kami mengkalkulasi perbedaan BOLDterhadap stimuli sexual anak-anak dan dewasa pada setiap sampel. Hasil foto dengan kontras kemudian dimasukkan sesuai dengan kelompoknya untuk dianalisis perbedaan pemetaan otak antara kelompok pedofil dan kontrol. Kami mengkalkulasi nilai ekspresi yang sesuai dengan hasil kelompok bagi setiap sampel. Nilai ekspresi tersebut dibedakan menjadi 2 algoritma klasifikasi: analisis Fisher linear discriminant dan analisis -nearest neighbor. Prosedur klasifikasi tersebut telah divalidasi silang menggunakan metode leave-one-out. Lokasi:Bagian Kedokteran Seksual, Fakultas Kedokteran Universitas Christian Albrechts di Kiel, Jerman. Sampel:Kami merekrut 24 sampel dengan pedofil yang memiliki ketertarikan seksual terhadap anak perempuan (n=11 atau laki-laki (n=13 pre pubertas dan 32 kontrol laki-laki sehat yang memiliki ketertarikan seksual terhadap wanita (n=18 atau pria (n=14 dewasa. Pengukuran luaran utama:Angka sensitivitasdan spesifisitas dari kedua algoritme klasifikasi. Hasil:Akurasi klasifikasi tertinggi dicapai dengan analisis diskriminan linear Fisher, yang menunjukkan akurasi rata-rata 95% (100% spesifisitas, 88% sensitivitas. Simpulan:Pola respon otak fungsional terhadap

  9. Neurophysiological responses to music and vibroacoustic stimuli in Rett syndrome.

    Science.gov (United States)

    Bergström-Isacsson, Märith; Lagerkvist, Bengt; Holck, Ulla; Gold, Christian

    2014-06-01

    People with Rett syndrome (RTT) have severe communicative difficulties. They have as well an immature brainstem that implies dysfunction of the autonomic nervous system. Music plays an important role in their life, is often used as a motivating tool in a variety of situations and activities, and caregivers are often clear about people with RTTs favourites. The aim of this study was to investigate physiological and emotional responses related to six different musical stimuli in people with RTT. The study included 29 participants with RTT who were referred to the Swedish Rett Center for medical brainstem assessment during the period 2006-2007. 11 children with a typical developmental pattern were used as comparison. A repeated measures design was used, and physiological data were collected from a neurophysiological brainstem assessment. The continuous dependent variables measured were Cardiac Vagal Tone (CVT), Cardiac Sensitivity to Baroreflex (CSB), Mean Arterial Blood Pressure (MAP) and the Coefficient of Variation of Mean Arterial Blood Pressure (MAP-CV). These parameters were used to categorise brainstem responses as parasympathetic (calming) response, sympathetic (activating) response, arousal (alerting) response and unclear response. The results showed that all participants responded to the musical stimuli, but not always in the expected way. It was noticeable that both people with and without RTT responded with an arousal to all musical stimuli to begin with. Even though the initial expressions sometimes changed after some time due to poor control functions of their brainstem, the present results are consistent with the possibility that the RTT participants' normal responses to music are intact. These findings may explain why music is so important for individuals with RTT throughout life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Richard Junior Manuel Godinez Tello

    Full Text Available IntroductionThe main idea of a traditional Steady State Visually Evoked Potentials (SSVEP-BCI is the activation of commands through gaze control. For this purpose, the retina of the eye is excited by a stimulus at a certain frequency. Several studies have shown effects related to different kind of stimuli, frequencies, window lengths, techniques of feature extraction and even classification. So far, none of the previous studies has performed a comparison of performance of stimuli colors through LED technology. This study addresses precisely this important aspect and would be a great contribution to the topic of SSVEP-BCIs. Additionally, the performance of different colors at different frequencies and the visual comfort were evaluated in each case.MethodsLEDs of four different colors (red, green, blue and yellow flickering at four distinct frequencies (8, 11, 13 and 15 Hz were used. Twenty subjects were distributed in two groups performing different protocols. Multivariate Synchronization Index (MSI was the technique adopted as feature extractor.ResultsThe accuracy was gradually enhanced with the increase of the time window. From our observations, the red color provides, in most frequencies, both highest rates of accuracy and Information Transfer Rate (ITR for detection of SSVEP.ConclusionAlthough the red color has presented higher ITR, this color was turned in the less comfortable one and can even elicit epileptic responses according to the literature. For this reason, the green color is suggested as the best choice according to the proposed rules. In addition, this color has shown to be safe and accurate for an SSVEP-BCI.

  11. Combined electric and pressure cuff pain stimuli for assessing conditioning pain modulation (CPM).

    Science.gov (United States)

    Tsukamoto, M; Petersen, K K; Mørch, C D; Arendt-Nielsen, L

    2017-12-29

    Aims Traditionally, conditioning pain modulation (CPM) can be assessed by applying a test stimulus (TS) before and after application of a conditioning stimulus (CS), which is normally applied extra-segmental. Currently, no studies have attempted to apply the TS and CS to the same site using different stimuli modalities. The aim of this study was to evaluate electrical TS and cuff pressure CS applied to the same experimental site for studying CPM. Methods 20 male volunteers participated in this study, which consisted of stimulations applied by a cuff-algometer (NociTech and Aalborg University, Denmark) and current stimulator (Digitimer DS5, UK), through two Ag/AgCl electrodes (Ambu® Neuroline 700, Denmark). The cuff was wrapped around the lower leg and stimulation electrodes were placed under the cuff and to the same location on the contralateral leg. Electrical TS were applied to the non-dominant leg with or without cuff pressure CS on the dominant (CS1) or the same (non-dominant) leg (CS2, electrode under cuff). The subjects were instructed to rate the electrical evoked pain intensity on a 10-cm continuous visual analog scale (VAS, "0" represented "no pain", and "10" represented "maximal pain"). The pain detection threshold (PDT) was defined as "1" on the VAS scale. Results There was no significant deference in PDT for neither CS1 nor CS2. A median split subanalysis on CPM-responders versus CPM-nonresponders to the TS + CS1 combination. Using this grouping, there was significant increase in PDT when comparing TS to TS + CS1 or TS + CS2 (4.0 mA vs 5.6 mA; P CPM can be evoked in a subgroup of subjects by applying the electrical test stimulus and cuff pressure conditioning stimuli to the same experimental site.

  12. [Responses of bat cochlear nucleus neurons to ultrasonic stimuli].

    Science.gov (United States)

    Vasil'ev, A G; Grigor'eva, T I

    1977-01-01

    The responses of cochlear nuclei single units in Vespertilionidae and Rhinolophidae were studied by means of ultrasound stimuli of different frequencies. Most neurons were found to have one or two complementary response areas with best frequencies equal to 1/2 and 1/3 of the highest one (which we regard as the basic best frequency). In Vespertilionidae which emit frequency-modulated signals some neurons have complementary areas with upper thresholds. The latency of responses do not correlate with the stimulus frequency. This suggests that there is no correlative reception of echosignals at this level of auditory system in bats.

  13. Stimuli-Responsive Polymer-Clay Nanocomposites under Electric Fields

    Science.gov (United States)

    Piao, Shang Hao; Kwon, Seung Hyuk; Choi, Hyoung Jin

    2016-01-01

    This short Feature Article reviews electric stimuli-responsive polymer/clay nanocomposites with respect to their fabrication, physical characteristics and electrorheological (ER) behaviors under applied electric fields when dispersed in oil. Their structural characteristics, morphological features and thermal degradation behavior were examined by X-ray diffraction pattern, scanning electron microscopy and transmission electron microscopy, and thermogravimetric analysis, respectively. Particular focus is given to the electro-responsive ER characteristics of the polymer/clay nanocomposites in terms of the yield stress and viscoelastic properties along with their applications. PMID:28787852

  14. Neurophysiological responses to music and vibroacoustic stimuli in Rett syndrome

    DEFF Research Database (Denmark)

    Bergström-Isacsson, Märith; Lagerkvist, Bengt; Holck, Ulla

    2014-01-01

    People with Rett syndrome (RTT) have severe communicative difficulties. They have as well an immature brainstem that implies dysfunction of the autonomic nervous system. Music plays an important role in their life, is often used as a motivating tool in a variety of situations and activities......, and caregivers are often clear about people with RTTs favourites. The aim of this study was to investigate physiological and emotional responses related to six different musical stimuli in people with RTT. The study included 29 participants with RTT who were referred to the Swedish Rett Center for medical...

  15. Encoding of natural and artificial stimuli in the auditory midbrain

    Science.gov (United States)

    Lyzwa, Dominika

    How complex acoustic stimuli are encoded in the main center of convergence in the auditory midbrain is not clear. Here, the representation of neural spiking responses to natural and artificial sounds across this subcortical structure is investigated based on neurophysiological recordings from the mammalian midbrain. Neural and stimulus correlations of neuronal pairs are analyzed with respect to the neurons' distance, and responses to different natural communication sounds are discriminated. A model which includes linear and nonlinear neural response properties of this nucleus is presented and employed to predict temporal spiking responses to new sounds. Supported by BMBF Grant 01GQ0811.

  16. Attentional capture by social stimuli in young infants

    OpenAIRE

    Gluckman, Maxie; Johnson, Scott P.

    2013-01-01

    We investigated the possibility that a range of social stimuli capture the attention of 6-month-old infants when in competition with other non-face objects. Infants viewed a series of six-item arrays in which one target item was a face, body part, or animal as their eye movements were recorded. Stimulus arrays were also processed for relative salience of each item in terms of color, luminance, and amount of contour. Targets were rarely the most visually salient items in the arrays, yet inf...

  17. Neural responses to smoking stimuli are influenced by smokers' attitudes towards their own smoking behaviour.

    Directory of Open Access Journals (Sweden)

    Bastian Stippekohl

    Full Text Available An important feature of addiction is the high drug craving that may promote the continuation of consumption. Environmental stimuli classically conditioned to drug-intake have a strong motivational power for addicts and can elicit craving. However, addicts differ in the attitudes towards their own consumption behavior: some are content with drug taking (consonant users whereas others are discontent (dissonant users. Such differences may be important for clinical practice because the experience of dissonance might enhance the likelihood to consider treatment. This fMRI study investigated in smokers whether these different attitudes influence subjective and neural responses to smoking stimuli. Based on self-characterization, smokers were divided into consonant and dissonant smokers. These two groups were presented smoking stimuli and neutral stimuli. Former studies have suggested differences in the impact of smoking stimuli depending on the temporal stage of the smoking ritual they are associated with. Therefore, we used stimuli associated with the beginning (BEGIN-smoking-stimuli and stimuli associated with the terminal stage (END-smoking-stimuli of the smoking ritual as distinct stimulus categories. Stimulus ratings did not differ between both groups. Brain data showed that BEGIN-smoking-stimuli led to enhanced mesolimbic responses (amygdala, hippocampus, insula in dissonant compared to consonant smokers. In response to END-smoking-stimuli, dissonant smokers showed reduced mesocortical responses (orbitofrontal cortex, subcallosal cortex compared to consonant smokers. These results suggest that smoking stimuli with a high incentive value (BEGIN-smoking-stimuli are more appetitive for dissonant than consonant smokers at least on the neural level. To the contrary, smoking stimuli with low incentive value (END-smoking-stimuli seem to be less appetitive for dissonant smokers than consonant smokers. These differences might be one reason why dissonant

  18. Neural responses to smoking stimuli are influenced by smokers' attitudes towards their own smoking behaviour.

    Science.gov (United States)

    Stippekohl, Bastian; Winkler, Markus H; Walter, Bertram; Kagerer, Sabine; Mucha, Ronald F; Pauli, Paul; Vaitl, Dieter; Stark, Rudolf

    2012-01-01

    An important feature of addiction is the high drug craving that may promote the continuation of consumption. Environmental stimuli classically conditioned to drug-intake have a strong motivational power for addicts and can elicit craving. However, addicts differ in the attitudes towards their own consumption behavior: some are content with drug taking (consonant users) whereas others are discontent (dissonant users). Such differences may be important for clinical practice because the experience of dissonance might enhance the likelihood to consider treatment. This fMRI study investigated in smokers whether these different attitudes influence subjective and neural responses to smoking stimuli. Based on self-characterization, smokers were divided into consonant and dissonant smokers. These two groups were presented smoking stimuli and neutral stimuli. Former studies have suggested differences in the impact of smoking stimuli depending on the temporal stage of the smoking ritual they are associated with. Therefore, we used stimuli associated with the beginning (BEGIN-smoking-stimuli) and stimuli associated with the terminal stage (END-smoking-stimuli) of the smoking ritual as distinct stimulus categories. Stimulus ratings did not differ between both groups. Brain data showed that BEGIN-smoking-stimuli led to enhanced mesolimbic responses (amygdala, hippocampus, insula) in dissonant compared to consonant smokers. In response to END-smoking-stimuli, dissonant smokers showed reduced mesocortical responses (orbitofrontal cortex, subcallosal cortex) compared to consonant smokers. These results suggest that smoking stimuli with a high incentive value (BEGIN-smoking-stimuli) are more appetitive for dissonant than consonant smokers at least on the neural level. To the contrary, smoking stimuli with low incentive value (END-smoking-stimuli) seem to be less appetitive for dissonant smokers than consonant smokers. These differences might be one reason why dissonant smokers

  19. How 'Digital' is Traditional Crime?

    NARCIS (Netherlands)

    Montoya, L.; Junger, Marianne; Hartel, Pieter H.

    Measuring how much cybercrime exists is typically done by first defining cybercrime and then quantifying how many cases fit that definition. The drawback is that definitions vary across countries and many cybercrimes are recorded as traditional crimes. An alternative is to keep traditional

  20. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    Science.gov (United States)

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  1. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    Directory of Open Access Journals (Sweden)

    Mikkel Wallentin

    2016-01-01

    Full Text Available Klinefelter syndrome (47, XXY (KS is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49 responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors. One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  2. Misremembering emotion: Inductive category effects for complex emotional stimuli.

    Science.gov (United States)

    Corbin, Jonathan C; Crawford, L Elizabeth; Vavra, Dylan T

    2017-07-01

    Memories of objects are biased toward what is typical of the category to which they belong. Prior research on memory for emotional facial expressions has demonstrated a bias towards an emotional expression prototype (e.g., slightly happy faces are remembered as happier). We investigate an alternate source of bias in memory for emotional expressions - the central tendency bias. The central tendency bias skews reconstruction of a memory trace towards the center of the distribution for a particular attribute. This bias has been attributed to a Bayesian combination of an imprecise memory for a particular object with prior information about its category. Until now, studies examining the central tendency bias have focused on simple stimuli. We extend this work to socially relevant, complex, emotional facial expressions. We morphed facial expressions on a continuum from sad to happy. Different ranges of emotion were used in four experiments in which participants viewed individual expressions and, after a variable delay, reproduced each face by adjusting a morph to match it. Estimates were biased toward the center of the presented stimulus range, and the bias increased at longer memory delays, consistent with the Bayesian prediction that as trace memory loses precision, category knowledge is given more weight. The central tendency effect persisted within and across emotion categories (sad, neutral, and happy). This article expands the scope of work on inductive category effects to memory for complex, emotional stimuli.

  3. Music Influences Ratings of the Affect of Visual Stimuli

    Directory of Open Access Journals (Sweden)

    Waldie E Hanser

    2013-09-01

    Full Text Available This review provides an overview of recent studies that have examined how music influences the judgment of emotional stimuli, including affective pictures and film clips. The relevant findings are incorporated within a broader theory of music and emotion, and suggestions for future research are offered.Music is important in our daily lives, and one of its primary uses by listeners is the active regulation of one's mood. Despite this widespread use as a regulator of mood and its general pervasiveness in our society, the number of studies investigating the issue of whether, and how, music affects mood and emotional behaviour is limited however. Experiments investigating the effects of music have generally focused on how the emotional valence of background music impacts how affective pictures and/or film clips are evaluated. These studies have demonstrated strong effects of music on the emotional judgment of such stimuli. Most studies have reported concurrent background music to enhance the emotional valence when music and pictures are emotionally congruent. On the other hand, when music and pictures are emotionally incongruent, the ratings of the affect of the pictures will in- or decrease depending on the emotional valence of the background music. These results appear to be consistent in studies investigating the effects of (background music.

  4. Investigating vision in schizophrenia through responses to humorous stimuli

    Directory of Open Access Journals (Sweden)

    Wolfgang Tschacher

    2015-06-01

    Full Text Available The visual environment of humans contains abundant ambiguity and fragmentary information. Therefore, an early step of vision must disambiguate the incessant stream of information. Humorous stimuli produce a situation that is strikingly analogous to this process: Funniness is associated with the incongruity contained in a joke, pun, or cartoon. Like in vision in general, appreciating a visual pun as funny necessitates disambiguation of incongruous information. Therefore, perceived funniness of visual puns was implemented to study visual perception in a sample of 36 schizophrenia patients and 56 healthy control participants. We found that both visual incongruity and Theory of Mind (ToM content of the puns were associated with increased experienced funniness. This was significantly less so in participants with schizophrenia, consistent with the gestalt hypothesis of schizophrenia, which would predict compromised perceptual organization in patients. The association of incongruity with funniness was not mediated by known predictors of humor appreciation, such as affective state, depression, or extraversion. Patients with higher excitement symptoms and, at a trend level, reduced cognitive symptoms, reported lower funniness experiences. An open question remained whether patients showed this deficiency of visual incongruity detection independent of their ToM deficiency. Humorous stimuli may be viewed as a convenient method to study perceptual processes, but also fundamental questions of higher-level cognition.

  5. Temporal attention for visual food stimuli in restrained eaters.

    Science.gov (United States)

    Neimeijer, Renate A M; de Jong, Peter J; Roefs, Anne

    2013-05-01

    Although restrained eaters try to limit their food intake, they often fail and indulge in exactly those foods that they want to avoid. A possible explanation is a temporal attentional bias for food cues. It could be that for these people food stimuli are processed relatively efficiently and require less attentional resources to enter awareness. Once a food stimulus has captured attention, it may be preferentially processed and granted prioritized access to limited cognitive resources. This might help explain why restrained eaters often fail in their attempts to restrict their food intake. A Rapid Serial Visual Presentation task consisting of dual and single target trials with food and neutral pictures as targets and/or distractors was administered to restrained (n=40) and unrestrained (n=40) eaters to study temporal attentional bias. Results indicated that (1) food cues did not diminish the attentional blink in restrained eaters when presented as second target; (2) specifically restrained eaters showed an interference effect of identifying food targets on the identification of preceding neutral targets; (3) for both restrained and unrestrained eaters, food cues enhanced the attentional blink; (4) specifically in restrained eaters, food distractors elicited an attention blink in the single target trials. In restrained eaters, food cues get prioritized access to limited cognitive resources, even if this processing priority interferes with their current goals. This temporal attentional bias for food stimuli might help explain why restrained eaters typically have difficulties maintaining their diet rules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Medial temporal lobe damage impairs representation of simple stimuli

    Directory of Open Access Journals (Sweden)

    David E Warren

    2010-05-01

    Full Text Available Medial temporal lobe damage in humans is typically thought to produce a circumscribed impairment in the acquisition of new enduring memories, but recent reports have documented deficits even in short-term maintenance. We examined possible maintenance deficits in a population of medial temporal lobe amnesics, with the goal of characterizing their impairments as either representational drift or outright loss of representation over time. Patients and healthy comparisons performed a visual search task in which the similarity of various lures to a target was varied parametrically. Stimuli were simple shapes varying along one of several visual dimensions. The task was performed in two conditions, one presenting a sample target simultaneously with the search array and the other imposing a delay between sample and array. Eye-movement data collected during search revealed that the duration of fixations to items varied with lure-target similarity for all participants, i.e., fixations were longer for items more similar to the target. In the simultaneous condition, patients and comparisons exhibited an equivalent effect of similarity on fixation durations. However, imposing a delay modulated the effect differently for the two groups: in comparisons, fixation duration to similar items was exaggerated; in patients, the original effect was diminished. These findings indicate that medial temporal lobe lesions subtly impair short-term maintenance of even simple stimuli, with performance reflecting not the complete loss of the maintained representation but rather a degradation or progressive drift of the representation over time.

  7. Emotional stimuli exert parallel effects on attention and memory.

    Science.gov (United States)

    Talmi, Deborah; Ziegler, Marilyne; Hawksworth, Jade; Lalani, Safina; Herman, C Peter; Moscovitch, Morris

    2013-01-01

    Because emotional and neutral stimuli typically differ on non-emotional dimensions, it has been difficult to determine conclusively which factors underlie the ability of emotional stimuli to enhance immediate long-term memory. Here we induced arousal by varying participants' goals, a method that removes many potential confounds between emotional and non-emotional items. Hungry and sated participants encoded food and clothing images under divided attention conditions. Sated participants attended to and recalled food and clothing images equivalently. Hungry participants performed worse on the concurrent tone-discrimination task when they viewed food relative to clothing images, suggesting enhanced attention to food images, and they recalled more food than clothing images. A follow-up regression analysis of the factors predicting memory for individual pictures revealed that food images had parallel effects on attention and memory in hungry participants, so that enhanced attention to food images did not predict their enhanced memory. We suggest that immediate long-term memory for food is enhanced in the hungry state because hunger leads to more distinctive processing of food images rendering them more accessible during retrieval.

  8. Representation of dynamical stimuli in populations of threshold neurons.

    Directory of Open Access Journals (Sweden)

    Tatjana Tchumatchenko

    2011-10-01

    Full Text Available Many sensory or cognitive events are associated with dynamic current modulations in cortical neurons. This raises an urgent demand for tractable model approaches addressing the merits and limits of potential encoding strategies. Yet, current theoretical approaches addressing the response to mean- and variance-encoded stimuli rarely provide complete response functions for both modes of encoding in the presence of correlated noise. Here, we investigate the neuronal population response to dynamical modifications of the mean or variance of the synaptic bombardment using an alternative threshold model framework. In the variance and mean channel, we provide explicit expressions for the linear and non-linear frequency response functions in the presence of correlated noise and use them to derive population rate response to step-like stimuli. For mean-encoded signals, we find that the complete response function depends only on the temporal width of the input correlation function, but not on other functional specifics. Furthermore, we show that both mean- and variance-encoded signals can relay high-frequency inputs, and in both schemes step-like changes can be detected instantaneously. Finally, we obtain the pairwise spike correlation function and the spike triggered average from the linear mean-evoked response function. These results provide a maximally tractable limiting case that complements and extends previous results obtained in the integrate and fire framework.

  9. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  10. Effect of task demands on dual coding of pictorial stimuli.

    Science.gov (United States)

    Babbitt, B C

    1982-01-01

    Recent studies have suggested that verbal labeling of a picture does not occur automatically. Although several experiments using paired-associate tasks produced little evidence indicating the use of a verbal code with picture stimuli, the tasks were probably not sensitive to whether the codes were activated initially. It is possible that verbal labels were activated at input, but not used later in performing the tasks. The present experiment used a color-naming interference task in order to assess, with a more sensitive measure, the amount of verbal coding occurring in response to word or picture input. Subjects named the color of ink in which words were printed following either word or picture input. If verbal labeling of the input occurs, then latency of color naming should increase when the input item and color-naming word are related. The results provided substantial evidence of such verbal activation when the input items were words. However, the presence of verbal activation with picture input was a function of task demands. Activation occurred when a recall memory test was used, but not when a recognition memory test was used. The results support the conclusion that name information (labels) need not be activated during presentation of visual stimuli.

  11. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Healable thermoset polymer composite embedded with stimuli-responsive fibres

    Science.gov (United States)

    Li, Guoqiang; Meng, Harper; Hu, Jinlian

    2012-01-01

    Severe wounds in biological systems such as human skin cannot heal themselves, unless they are first stitched together. Healing of macroscopic damage in thermoset polymer composites faces a similar challenge. Stimuli-responsive shape-changing polymeric fibres with outstanding mechanical properties embedded in polymers may be able to close macro-cracks automatically upon stimulation such as heating. Here, a stimuli-responsive fibre (SRF) with outstanding mechanical properties and supercontraction capability was fabricated for the purpose of healing macroscopic damage. The SRFs and thermoplastic particles (TPs) were incorporated into regular thermosetting epoxy for repeatedly healing macroscopic damages. The system works by mimicking self-healing of biological systems such as human skin, close (stitch) then heal, i.e. close the macroscopic crack through the thermal-induced supercontraction of the SRFs, and bond the closed crack through melting and diffusing of TPs at the crack interface. The healing efficiency determined using tapered double-cantilever beam specimens was 94 per cent. The self-healing process was reasonably repeatable. PMID:22896563

  13. Stimuli-responsive Smart Liposomes in Cancer Targeting.

    Science.gov (United States)

    Jain, Ankit; Jain, Sanjay K

    2018-02-08

    Liposomes are vesicular carriers which possess aqueous core entrapped within the lipid bilayer. These are carriers of choice because of biocompatible and biodegradable features in addition to flexibility of surface modifications at surface and lipid compositions of lipid bilayers. Liposomes have been reported well for cancer treatment using both passive and active targeting approaches however tumor microenvironment is still the biggest hurdle for safe and effective delivery of anticancer agents. To overcome this problem, stimuli-responsive smart liposomes have emerged as promising cargoes pioneered to anomalous tumor milieu in response to pH, temperature, and enzymes etc. as internal triggers, and magnetic field, ultrasound, and redox potential as external guides for enhancement of drug delivery to tumors. This review focuses on all such stimuli-responsive approaches using fabrication potentiality of liposomes in combination to various ligands, linkers, and PEGylation etc. Scientists engaged in cancer targeting approaches can get benefited greatly with this knowledgeable assemblage of advances in liposomal nanovectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions

    Science.gov (United States)

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  15. Startle auditory stimuli enhance the performance of fast dynamic contractions.

    Directory of Open Access Journals (Sweden)

    Miguel Fernandez-Del-Olmo

    Full Text Available Fast reaction times and the ability to develop a high rate of force development (RFD are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS; a visual stimulus accompanied by a non-startle auditory stimulus (AS; and a visual stimulus accompanied by a startle auditory stimulus (SS. Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training.

  16. Analyzing the User Behavior toward Electronic Commerce Stimuli.

    Science.gov (United States)

    Lorenzo-Romero, Carlota; Alarcón-Del-Amo, María-Del-Carmen; Gómez-Borja, Miguel-Ángel

    2016-01-01

    Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e., navigational structure as utilitarian stimulus) versus non-verbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this research consists in analyzing the impact of these web technologies -which constitute the web atmosphere or webmosphere of a website- on shopping human behavior (i.e., users' internal states -affective, cognitive, and satisfaction- and behavioral responses - approach responses, and real shopping outcomes-) within the retail online store created by computer, taking into account some mediator variables (i.e., involvement, atmospheric responsiveness, and perceived risk). A 2 ("free" versus "hierarchical" navigational structure) × 2 ("on" versus "off" music) × 2 ("moving" versus "static" images) between-subjects computer experimental design is used to test empirically this research. In addition, an integrated methodology was developed allowing the simulation, tracking and recording of virtual user behavior within an online shopping environment. As main conclusion, this study suggests that the positive responses of online consumers might increase when they are allowed to freely navigate the online stores and their experience is enriched by animate gifts and music background. The effect caused by mediator variables modifies relatively the final shopping human behavior.

  17. Analyzing the user behavior towards Electronic Commerce stimuli

    Directory of Open Access Journals (Sweden)

    Carlota Lorenzo-Romero

    2016-11-01

    Full Text Available Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e. navigational structure as utilitarian stimulus versus nonverbal web technology (music and presentation of products as hedonic stimuli. Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this research consists in analyzing the impact of these web technologies –which constitute the web atmosphere or webmosphere of a website– on shopping human bebaviour (i.e. users’ internal states -affective, cognitive, and satisfaction- and behavioral responses - approach responses, and real shopping outcomes- within the retail online store created by computer, taking into account some mediator variables (i.e. involvement, atmospheric responsiveness, and perceived risk. A 2(free versus hierarchical navigational structure x2(on versus off music x2(moving versus static images between-subjects computer experimental design is used to test empirically this research. In addition, an integrated methodology was developed allowing the simulation, tracking and recording of virtual user behavior within an online shopping environment. As main conclusion, this study suggests that the positive responses of online consumers might increase when they are allowed to freely navigate the online stores and their experience is enriched by animate gifts and music background. The effect caused by mediator variables modifies relatively the final shopping human behavior.

  18. Swimming micro-robot powered by stimuli-sensitive gel

    Science.gov (United States)

    Masoud, Hassan; Alexeev, Alexander

    2012-11-01

    Using three-dimensional computer simulations, we design a simple maneuverable micro-swimmer that can self-propel and navigate in highly viscous (low Reynolds-number) environments. Our simple swimmer consists of a cubic gel body which periodically changes volume in response to external stimuli, two rigid rectangular flaps attached to the opposite sides of the gel body, and a flexible steering flap at the front end of the swimmer. The stimuli-sensitive body undergoes periodic expansions (swelling) and contractions (deswelling) leading to a time-irreversible beating motion of the propulsive flaps that propel the micro-swimmer. Thus, the responsive gel body acts as an ``engine'' actuating the motion of the swimmer. We examine how the swimming speed depends on the gel and flap properties. We also probe how the swimmer trajectory can be changed using a responsive steering flap whose curvature is controlled by an external stimulus. We show that the turning occurs due to steering flap bending and periodic beating. Furthermore, our simulations reveal that the turning direction can be regulated by changing the intensity of external stimulus.

  19. Moving Stimuli Facilitate Synchronization But Not Temporal Perception.

    Science.gov (United States)

    Silva, Susana; Castro, São Luís

    2016-01-01

    Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap.

  20. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    Science.gov (United States)

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  1. The Motivating Effect of Antecedent Stimuli on the Web Shop: A Conjoint Analysis of the Impact of Antecedent Stimuli at the Point of Online Purchase

    Science.gov (United States)

    Fagerstrom, Asle

    2010-01-01

    This article introduces the concept of motivating operation (MO) to the field of online consumer research. A conjoint analysis was conducted to assess the motivating impact of antecedent stimuli on online purchasing. Stimuli tested were in-stock status, price, other customers' reviews, order confirmation procedures, and donation to charity. The…

  2. Analysis of the three-dimensional trajectories of dusts observed with a stereoscopic fast framing camera in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, M., E-mail: shoji@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Masuzaki, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Tanaka, Y. [Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Pigarov, A.Yu.; Smirnov, R.D. [University of California at San Diego, La Jolla, CA 92093 (United States); Kawamura, G.; Uesugi, Y.; Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan)

    2015-08-15

    The three-dimensional trajectories of dusts have been observed with two stereoscopic fast framing cameras installed in upper and outer viewports in the Large Helical Device (LHD). It shows that the dust trajectories locate in divertor legs and an ergodic layer around the main plasma confinement region. While it is found that most of the dusts approximately move along the magnetic field lines with acceleration, there are some dusts which have sharply curved trajectories crossing over the magnetic field lines. A dust transport simulation code was modified to investigate the dust trajectories in fully three dimensional geometries such as LHD plasmas. It can explain the general trend of most of observed dust trajectories by the effect of the plasma flow in the peripheral plasma. However, the behavior of the some dusts with sharply curved trajectories is not consistent with the simulations.

  3. Effect of expectation on pain assessment of lower- and higher-intensity stimuli.

    Science.gov (United States)

    Ružić, Valentina; Ivanec, Dragutin; Modić Stanke, Koraljka

    2017-01-01

    Pain modulation via expectation is a well-documented phenomenon. So far it has been shown that expectations about effectiveness of a certain treatment enhance the effectiveness of different analgesics and of drug-free pain treatments. Also, studies demonstrate that people assess same-intensity stimuli differently, depending on the experimentally induced expectations regarding the characteristics of the stimuli. Prolonged effect of expectation on pain perception and possible symmetry in conditions of lower- and higher-intensity stimuli is yet to be studied. Aim of this study is to determine the effect of expectation on the perception of pain experimentally induced by the series of higher- and lower-intensity stimuli. 192 healthy participants were assigned to four experimental groups differing by expectations regarding the intensity of painful stimuli series. Expectations of two groups were congruent with actual stimuli; one group expected and received lower-intensity stimuli and the other expected and received higher-intensity stimuli. Expectations of the remaining two groups were not congruent with actual stimuli; one group expected higher-intensity stimuli, but actually received lower-intensity stimuli while the other group expected lower-intensity stimuli, but in fact received higher-intensity ones. Each group received a series of 24 varied-intensity electrical stimuli rated by the participants on a 30° intensity scale. Expectation manipulation had statistically significant effect on pain intensity assessment. When expecting lower-intensity stimuli, the participants underestimated pain intensity and when expecting higher-intensity stimuli, they overestimated pain intensity. The effect size of expectations upon pain intensity assessment was equal for both lower- and higher-intensity stimuli. The obtained results imply that expectation manipulation can achieve the desired effect of decreasing or increasing both slight and more severe pain for a longer period of

  4. Unveiling Cebuano Traditional Healing Practices

    Directory of Open Access Journals (Sweden)

    ZachiaRaiza Joy S. Berdon

    2016-02-01

    Full Text Available This study aims to identify the features of Cebuano’s traditional healing practices. Specifically, it also answers the following objectives: analyze traditional healing in Cebuano’s perspectives, explain the traditional healing process practiced in terms of the traditional healers’ belief, and extrapolate perceptions of medical practitioners toward traditional healing. This study made use of qualitative approach, among five traditional healers who performed healing for not less than ten years, in the mountain barangays of Cebu City. These healers served as the primary informants who were selected because of their popularity in healing. The use of open-ended interview in local dialect and naturalistic observation provided a free listing of their verbatim accounts were noted and as primary narratives. Participation in the study was voluntary and participants were interviewed privately after obtaining their consent. The Cebuano traditional healing practices or “panambal” comprise the use of “himolso” (pulse-checking, “palakaw” (petition, “pasubay” (determining what causes the sickness and its possible means of healing, “pangalap” (searching of medicinal plants for “palina” (fumigation, “tayhop” (gentle-blowing, “tutho” (saliva-blowing,“tuob” (boiling, “orasyon” (mystical prayers, “hilot” (massage, and “barang” (sorcery. Though traditional with medical science disapproval, it contributes to a mystical identity of Cebuano healers, as a manifestation of folk Catholicism belief, in order to do a good legacy to the community that needs help. For further study, researchers may conduct further the studies on the: curative effects of medicinal plants in Cebu, psychological effect pulsechecking healed persons by the mananambal, and unmasking the other features of traditional healing.

  5. Differences in Optical Coherence Tomography Assessment of Bruch Membrane Opening Compared to Stereoscopic Photography for Estimating Cup-to-Disc Ratio.

    Science.gov (United States)

    Mwanza, Jean-Claude; Huang, Linda Y; Budenz, Donald L; Shi, Wei; Huang, Gintien; Lee, Richard K

    2017-12-01

    To compare the vertical and horizontal cup-to-disc ratio (VCDR, HCDR) by an updated optical coherence tomography (OCT) Bruch membrane opening (BMO) algorithm and stereoscopic optic disc photograph readings by glaucoma specialists. Reliability analysis. A total of 195 eyes (116 glaucoma and 79 glaucoma suspect) of 99 patients with stereoscopic photographs and OCT scans of the optic discs taken during the same visit were compared. Optic disc photographs were read by 2 masked glaucoma specialists for VCDR and HCDR estimation. Intraclass correlation coefficient (ICC) and Bland-Altman plots were used to assess the agreement between photograph reading and OCT in estimating CDR. OCT images computed significantly larger VCDR and HCDR than photograph reading before and after stratifying eyes based on disc size (P < .001). The difference in CDR estimates between the 2 methods was equal to or greater than 0.2 in 29% and 35% of the eyes for VCDR and HCDR, respectively, with a mean difference of 0.3 in each case. The ICCs between the readers and OCT ranged between 0.50 and 0.63. The size of disagreement in VCDR correlated weakly with cup area in eyes with medium (r 2  = 0.10, P = .008) and large (r 2  = 0.09, P = .007) discs. OCT and photograph reading by clinicians agree poorly in CDR assessment. The difference in VCDR between the 2 methods was depended on cup area in medium and large discs. These differences should be considered when making conclusions regarding CDRs in clinical practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minghui; Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn; Liu, Xuefeng; Liu, Ting; Wang, Hongjie

    2015-05-01

    In recent years, stimuli-sensitive prodrugs have been extensively studied for the rapid “burst” release of antitumor drugs to enhance chemotherapeutic efficiency. In this study, a novel stimuli-sensitive prodrug containing galactosamine as a targeting moiety, poly(ethylene glycol)–doxorubicin (PEG–DOX) conjugate, was developed for targeting HepG2 human liver cancer cells. To obtain the PEG–DOX conjugate, both galactosamine-decorated poly(ethylene glycol) aldehyde (Gal-PEG-CHO) and methoxy poly(ethylene glycol) aldehyde (mPEG-CHO) were firstly synthesized and functionalized with dithiodipropionate dihydrazide (TPH) through direct reductive amination via Schiff's base formation, and then DOX molecules were chemically conjugated to the hydrazide end groups of TPH-functionalized Gal-/m-PEG chains via pH-sensitive hydrazone linkages. The chemical structures of TPH-functionalized PEG and PEG–DOX prodrug were confirmed by {sup 1}H NMR analysis. The PEG–DOX conjugate could self-assemble into spherical nanomicelles with a mean diameter of 140 nm, as indicated by transmission electron microscopy and dynamic light scattering. The drug loading content and loading efficiency in the prodrug nanomicelles were as high as 20 wt.% and 75 wt.%, respectively. In vitro drug release studies showed that DOX was released rapidly from the prodrug nanomicelles at the intracellular levels of pH and reducing agent. Cellular uptake and MTT experiments demonstrated that the galactosamine-decorated prodrug nanomicelles were more efficiently internalized into HepG2 cells via a receptor-mediated endocytosis process and exhibited a higher toxicity, compared with pristine prodrug nanomicelles. These results suggest that the novel Gal-PEG–DOX prodrug nanomicelles have tremendous potential for targeted liver cancer therapy. - Highlights: • A novel stimuli-responsive PEGylated prodrugs is synthesized. • PEGylated prodrugs can self-assemble into spherical nanoparticles (140 nm

  7. Aurorae in Australian Aboriginal Traditions

    Science.gov (United States)

    Hamacher, Duane W.

    2013-07-01

    Transient celestial phenomena feature prominently in the astronomical knowledge and traditions of Aboriginal Australians. In this paper, I collect accounts of the Aurora Australis from the literature regarding Aboriginal culture. Using previous studies of meteors, eclipses, and comets in Aboriginal traditions, I anticipate that the physical properties of aurora, such as their generally red colour as seen from southern Australia, will be associated with fire, death, blood, and evil spirits. The survey reveals this to be the case and also explores historical auroral events in Aboriginal cultures, aurorae in rock art, and briefly compares Aboriginal auroral traditions with other global indigenous groups, including the Maori of New Zealand.

  8. PREFACE: Stimuli Stimuli

    Science.gov (United States)

    Queisser, Hans J.

    2011-01-01

    Tributes are paid to Zhores Alferov by presenting personal anecdotes from the fields, where Alferov performed his pioneering research: masers, lasers, solar cells and heterojunctions. What a pleasure and honor to pay tribute to Zhores Alferov in this Festschrift. Member of a remarkable laboratory and originator of imaginative and useful ideas for semiconductor physics and technology; a happy birthday! I would like to use this opportunity to ramble a little about the physics of masers, lasers, heterojunctions, solar cells— all themes of such vital importance in Alferov's career—and also tangible in my own endeavors. I start out with an anecdote of a colloquium presentation in my youthful days at Göttingen. The Physics Colloquium at Göttingen University presented a serious weekly meeting. Werner Heisenberg and Carl Friedrich von Weizsäcker attended, often Wolfgang Pauli visited from Zurich; Otto Hahn always sat in the first row, on the left corner— and he smoked his cigar. I had just obtained my doctorate [1]— it was 1958, and my boss Rudolf Hilsch ordered me to contribute a colloquium talk. He hoped that I would report on color centers in alkali halides or review experiments on quenched amorphous bismuth, a surprising superconductor [2], or on my own dissertation [1], all recent results of our team. I, however, being an avid reader of the latest American physics literature, begged to differ. The English language gave me no problems because I had in 1951/52 spent a year at the University of Kansas. This experience in the friendly American Midwest provided me with a definite linguistic advantage over most of my German fellow students. I was fascinated by those very first reports on the maser, this molecular amplifier using ammonia for stimulated emission, and therefore decided, quite to the chagrin of my boss Hilsch, to choose this particular topic for a report at the Colloquium. So I went to the rostrum in the small auditorium 'Hörsaal II' and delivered a well-rehearsed talk. The audience was intrigued by this new principle of stimulated coherent microwave radiation [3]. Friedrich Hund, famous for his 'rule' was then our theory professor, he sat in the second row. He was very surprised, and asked me in the discussion if he had understood correctly. If it were true what I had just suggested, then the maser coherence length would go from the Earth to the Moon. I paused a little, pondered and observed my microwave-conscious friends in the audience nodding encouragingly. 'Yes, sir; I think so!' 'I don't believe it', Hund retorted. How could a youngster react? I remained silent and obediently, quite imperceptibly shrugged my shoulders. After the talk, Professor Lamla, an editor of a science journal came to congratulate me and asked for a manuscript. I delivered [4]. This item on my early publication list may have contributed to the fact that I was hired in 1959 by William Shockley to join his fledgling company Shockley Transistor in this old apricot barn on 391 South San Antonio Road in Mountain View, California [5]. I knew that it would be extremely difficult to extend the frequency into the optical regime, you have to fight against the square of the frequency. Nevertheless, I refrained from making the statement in my paper that reaching an optical maser might be hopeless [4]. 'Never say never' is an appropriate adage, not only for seniors. A young colleague, who had also written a review paper, dared to support a more pessimistic view [6]. He anticipated in his very last sentence that stimulated emission would probably prevail merely in the microwave regime. This defeatist attitude seemed to have ruled throughout Germany, as already preached in the famous textbooks by Pohl [7], and also assumed by physics Professor Hellwege at Darmstadt, who was the leading expert regarding luminescence of materials such as ruby crystals; yet Maiman and others surpassed him [8]. Silicon came next for me, working, for example, with Shockley on the theory of maximal efficiency for solar cells, not really a topic regarding coherent radiation [9]. Once, however, a discussion evolved during one of those nearly dreaded hamburger lunches with Shockley at Kirk's charcoal restaurant on El Camino Real in Mountain View. Those frugal lunches ended with a demanding one-on-one interrogation, stricter and tougher than any doctoral oral examination. 'What, you do not know of Einstein's A and B coefficients?' Next afternoon I dutifully looked them up in the Stanford physics library. My first, rather indirect contacts with semiconductor heterojunctions occurred in this former apricot barn of Shockley's. Improving junction transistors required a maximum of the emitter efficiency. The emitter-to-base junction should carry only a forward current, no particles should flow from base to emitter [10]. This requirement can be met with a heterojunction: some other semiconductor material covering the silicon. Shockley had already contemplated this possibility while still at Bell Laboratories [11]. One day, a physicist by the name of Herbert Krömer visited us. This young man had also studied at Göttingen, especially with the memorable theoretician Richard Becker, whom we all admired. Krömer had in Princeton contributed to the theoretical understanding [12] of such wide-gap emitter/base junctions, and Shockley urgently wanted to hire him. But Herb preferred to join Varian Associates, just up the road in Palo Alto. Later, it was my great pleasure to attend the Nobel Festivities for Herb and Zhores Alferov in Stockholm. In the early sixties, I became a Member of Technical Staff at the Bell Laboratories in Murray Hill, New Jersey. Now, compound semiconductors, such as gallium arsenide, had to attract my interest. By the time of the mid-sixties, helium/neon-lasers were quite the vogue; Bell Labs actually established a little workshop with a production line to fabricate them and spread them throughout the departments. 'The solution in search of a problem', as sceptics joked about this new light source, was of vital interest to us because of the high frequencies to carry plenty of information channels. Transmission of laser light straight through the air, from Building 1 to Building 2 at Murray Hill, however, showed that the atmosphere was by far too unstable. We discussed silver-plated tubes and glass fibers, which eventually became so unbelievably pure that nowadays they provide a wealth of inexpensive communication channels. A gas laser did not appear to emerge into a viable, convenient engineering solution, nor did the ruby. A diode laser source had to be developed. I used laser-induced photoluminescence to search for more efficient GaAs materials, which resulted in detecting crystals with amphoteric silicon doping of very high output in the near-infrared [13]. This invention was patented in 37 countries and provided millions of diodes, such as for TV remote control devices. I had to sign off my inventor's reward for one US dollar, which I actually did not even receive. (In earlier years, patentors obtained one silver dollar; but not anymore!) Yet my little diodes, however efficient, could not be stimulated to emit coherent light, alas! Together with my colleagues and friends Morton Panish and Craig Casey, later famous textbook authors on diode lasers [14], we searched for solutions, although colleagues at the famed RCA Laboratories in Princeton had predicted that a laser diode was impossible [15]. I remember one morning when Mort told us of a talk he had just heard at a meeting in New York City, where our friendly competitors at the IBM Labs in Yorktown Heights, NY had suggested that heterojunctions could nicely confine and concentrate carriers, maybe also photons. Such heterojunctions were then tried in Panish's lab to be grown via liquid-phase epitaxy, Stan Sumski being the expert technician. At that time, the Leningraders, under leadership of Zhores Alferov were working hard and highly successfully with this crystal growth technique. We were very much impressed by the success in Leningrad. Liquid-phase epitaxy yields, in principle, exceedingly pure crystals, but we were unhappy about the principal lack of direct monitoring during this growth process, which we deemed absolutely necessary for obtaining reproducible heterojunctions with tightly controlled small dimensions. Ultrahigh-vacuum epitaxy seemed to be the inescapable solution. Delicate molecular beams had to be gently used and monitored! What a costly proposition! I clearly remember the day when Mort and I went to the Laboratory director John Galt. A little bit fearful and subdued, we explained our project. No, not expensive, rather a very expensive idea! We anxiously watched John with his usual stern demeanour; he paused and contemplated: 'All right, we do it—go ahead!' Construction for equipment needed for the Molecular Beam Epitaxy (MBE) began, and in Al Cho, an excellent new employee was hired for this task. A little later I left Bell Labs, this fabulous 'Mecca of Solid State' for a physics professorship at the Goethe University in Frankfurt-on-the-Main in Germany. Meanwhile, successful work on semiconductor lasers bore ample fruit worldwide. In Frankfurt, I used gas laser sources for photoluminescence diagnostics of elemental and compound semiconductors. With my astute doctoral student 'Teddy' Güttler, for example, we observed impurity photoluminescence in Au-doped silicon and concluded that doping of solar cells with deep impurities would not be beneficial for cell efficiency; just the opposite would happen because of increased carrier recombination [16]. In 1968, Western Germany experienced an ultra-left-wing student rebellion. Frankfurt students violently attacked me and accused me of war research since I used lasers, obviously a deadly weapon of mass destruction. Dieter Bimberg, our co-editor of this Festschrift, will undoubtedly remember those happenings when he was a doctoral candidate. In 1968, we all assembled in Moscow for the International Conference on the Physics of Semiconductors; what a unique opportunity to meet so many Russian colleagues, including this intellectual elite from the most remarkable Joffe Institute, with Zhores Alferov a major player. In 1970, I became a founding director of the Max-Planck-Institute for Solid State Research at Stuttgart, in the Southwest of Germany. There I eventually succeeded—against massive opposition—to establish a group for MBE, which became truly successful under the very capable leadership of Klaus Ploog [17], to whom was bestowed a prize of the Seibold-Foundation for Japan-Germany Science Cooperation. Klaus von Klitzing's group in our Max-Planck-Institute in Stuttgart relies on MBE to the present day for research on the quantum Hall effect [18]. Equally, my former doctoral student Horst Stormer had to utilize excellent MBE for his Nobel-Prize winning research on the fractional quantum Hall effect [18]. We fondly remember one congenial dinner party at our Stuttgart house, with Zhores Alferov and Helmut Lotsch as our valued guests; it must have been in the mid-seventies. My wife Inge had prepared a dessert in the shape of the title page of the Springer journal Applied Physics, with chocolate and orange cream. Herr Lotsch had won Alferov to become part of our board of editors, a most valuable connection to the excellence of Soviet semiconductor research! Many Japanese colleagues, especially from industrial electronics labs came to learn the tricks of MBE from us in Stuttgart; the German electronics industry, however, was reluctant and remained completely disinterested—but the French equipment maker RIBER was our staunch ally, and this company grew with the international acceptance of MBE for small, high-frequency devices. One diligent young visitor at my Stuttgart laboratories, Ozamu Kumagai from the SONY Corporation, did especially well. Back at home, he most cleverly devised novel technologies for efficient and low-cost production of laser diodes and thus earned a promotion to Vice Presidency. One of the most recent, gratifying encounters with Zhores Alferov happened to me in a cozy retreat in the forests near Madrid, with Antonio Luque being our gracious host for a solar cell symposium. We Stuttgarters had hoped to use multi-pair generation in perfected silicon solar cells [19], but a better chance to capture more photons from the solar spectrum exists most likely in multi-junction cells [20], with fancy tunnel-contacts interconnecting between heterojunctions. We shall see if this approach might eventually lead to more efficient, yet still economical solar energy conversion. Semiconductor heterojunctions for communications and consumers! Many of Alferov's present activities in St Petersburg and Berlin are governed by this magic modern prefix nano, which might one day also provide some applications in solar cells; but we have yet to carefully investigate [21]! References [1] Queisser H J 1958 Z.Physik 152 507 and 495 [2] Buckel W and Hilsch R 1956 Z. Physik 146 27 [3] Wittke J P 1957 Proc. IRE 45 291 with references to earlier work [4] Queisser H J 1959 Naturwiss. 46 394 [5] Queisser H J 1988 The Conquest of the Microchip (Cambridge, MA: Harvard University Press) [6] Wolf H C and Agnew Z 1958 Physik 10 480 [7] Pohl R W Optik (Heidelberg: Springer) [8] Yariv A 1968 Quantum Electronics (New York: Wiley) [9] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 [10] For details, see Sze S M and Ng K K 2007 Physics of Semiconductor Devices 3rd edn (Hoboken, NJ: Wiley) [11] Shockley W 1951 US Patent Specification 2.569.347 [12] Krömer H 1957 Proc. IRE 45 1535 [13] Queisser H J 1966 J. Appl. Phys. 37 2909 (this paper was withheld internally for some time due to the patent application: US Pat.3.387.163) [14] Panish M B and Casey C H 1978 Heterostructure Lasers (New York: Academic) [15] Kressel H Private communications [16] Güttler G and Queisser H J 1996 J. Appl. Phys. 40 4994 [17] Ploog K and Graf K 1984 MBE of III-V Compounds (Berlin: Springer) [18] For recent coverage, see Chakraborty T and Pietiläinen P 1995 The Quantum Hall Effect (Berlin: Springer) [19] Werner J H, Kolodinski S and Queisser H J 1993 Phys. Rev. Lett. 72 3851 [20] Yamaguchi M 2002 Physica E 14 84 [21] Queisser H J 2002 Physica E 14 1 and many other contributions in this issue

  9. Stimuli-Directed Helical Chirality Inversion and Bio-Applications

    Directory of Open Access Journals (Sweden)

    Ziyu Lv

    2016-08-01

    Full Text Available Helical structure is a sophisticated ubiquitous motif found in nature, in artificial polymers, and in supramolecular assemblies from microscopic to macroscopic points of view. Significant progress has been made in the synthesis and structural elucidation of helical polymers, nevertheless, a new direction for helical polymeric materials, is how to design smart systems with controllable helical chirality, and further use them to develop chiral functional materials and promote their applications in biology, biochemistry, medicine, and nanotechnology fields. This review summarizes the recent progress in the development of high-performance systems with tunable helical chirality on receiving external stimuli and discusses advances in their applications as drug delivery vesicles, sensors, molecular switches, and liquid crystals. Challenges and opportunities in this emerging area are also presented in the conclusion.

  10. Perceiving imitatible stimuli: consequences of isomorphism between input and output.

    Science.gov (United States)

    Wilson, M

    2001-07-01

    For more than a century, psychologists have been intrigued by the idea that mental representations of perceived human actions are closely connected with mental representations of performing those same actions. In this article, connections between input and output representations are considered in terms of the potential for imitation. A broad range of evidence suggests that, for imitatible stimuli, input and output representations are isomorphic to one another, allowing mutual influence between perception and motoric planning that is rapid, effortless, and possibly obligatory. Thus, the cognitive consequences of imitatibility may underlie such diverse phenomena as phoneme perception; imitation in neonates; echoic memory; stimulus-response compatibility; conduction aphasia; maintenance rehearsal; and a variety of developmental and social activities such as language acquisition, social learning, empathy, and monitoring one's own behavior.

  11. Preattentive processing, poststimulus elaboration, and memory for emotionally arousing stimuli.

    Science.gov (United States)

    Migita, Mai; Otani, Hajime; Libkuman, Terry M; Sheffert, Sonya M

    2011-01-01

    Christianson (1992) proposed two mechanisms to explain emotionally enhanced memory: preattentive processing and poststimulus elaboration. Experiment 1 examined these processes by instructing participants to perform (1) a concurrent distractor task, (2) a continuous distractor task, or (3) both while viewing the negatively arousing, positively arousing, and neutral pictures. Recall of negatively arousing pictures showed a small decline in one of the distractor conditions, indicating that elaboration plays a minor role in remembering these pictures. Experiment 2 partially replicated Experiment 1 with an intentional learning instruction to investigate whether participants in Experiment 1 were anticipating a recall test. For all three picture types, recall declined in the continuous distractor task condition, indicating that elaboration played a role, even when the pictures were negatively arousing. Overall, these results were consistent with the notion that remembering negatively valenced stimuli is largely based on preattentive processing with a minor role played by poststimulus elaboration.

  12. Comparisons of memory for nonverbal auditory and visual sequential stimuli.

    Science.gov (United States)

    McFarland, D J; Cacace, A T

    1995-01-01

    Properties of auditory and visual sensory memory were compared by examining subjects' recognition performance of randomly generated binary auditory sequential frequency patterns and binary visual sequential color patterns within a forced-choice paradigm. Experiment 1 demonstrated serial-position effects in auditory and visual modalities consisting of both primacy and recency effects. Experiment 2 found that retention of auditory and visual information was remarkably similar when assessed across a 10s interval. Experiments 3 and 4, taken together, showed that the recency effect in sensory memory is affected more by the type of response required (recognition vs. reproduction) than by the sensory modality employed. These studies suggest that auditory and visual sensory memory stores for nonverbal stimuli share similar properties with respect to serial-position effects and persistence over time.

  13. Retrospective Attention Gates Discrete Conscious Access to Past Sensory Stimuli.

    Science.gov (United States)

    Thibault, Louis; van den Berg, Ronald; Cavanagh, Patrick; Sergent, Claire

    2016-01-01

    Cueing attention after the disappearance of visual stimuli biases which items will be remembered best. This observation has historically been attributed to the influence of attention on memory as opposed to subjective visual experience. We recently challenged this view by showing that cueing attention after the stimulus can improve the perception of a single Gabor patch at threshold levels of contrast. Here, we test whether this retro-perception actually increases the frequency of consciously perceiving the stimulus, or simply allows for a more precise recall of its features. We used retro-cues in an orientation-matching task and performed mixture-model analysis to independently estimate the proportion of guesses and the precision of non-guess responses. We find that the improvements in performance conferred by retrospective attention are overwhelmingly determined by a reduction in the proportion of guesses, providing strong evidence that attracting attention to the target's location after its disappearance increases the likelihood of perceiving it consciously.

  14. Stimuli Responsive Ionogels for Sensing Applications—An Overview

    Directory of Open Access Journals (Sweden)

    Andrew Kavanagh

    2012-02-01

    Full Text Available This overview aims to summarize the existing potential of “Ionogels” as a platform to develop stimuli responsive materials. Ionogels are a class of materials that contain an Ionic Liquid (IL confined within a polymer matrix. Recently defined as “a solid interconnected network spreading throughout a liquid phase”, the ionogel therefore combines the properties of both its solid and liquid components. ILs are low melting salts that exist as liquids composed entirely of cations and anions at or around 100 °C. Important physical properties of these liquids such as viscosity, density, melting point and conductivity can be altered to suit a purpose by choice of the cation/anion. Here we provide an overview to highlight the literature thus far, detailing the encapsulation of IL and responsive materials within these polymeric structures. Exciting applications in the areas of optical and electrochemical sensing, solid state electrolytes and actuating materials shall be discussed.

  15. Plasma catecholamine responses to physiologic stimuli in normal human pregnancy.

    Science.gov (United States)

    Barron, W M; Mujais, S K; Zinaman, M; Bravo, E L; Lindheimer, M D

    1986-01-01

    The dynamic response of the sympathoadrenal system was evaluated during and after pregnancy in 13 healthy women with a protocol that compared cardiovascular parameters and plasma catecholamine levels during the basal state, after postural maneuvers, and following isometric exercise. Plasma epinephrine and norepinephrine levels were similar during and after gestation when the women rested on their sides, but heart rate was greater in pregnancy. Ten minutes of supine recumbency produced minimal changes, but attenuation of the anticipated increases in heart rate and plasma norepinephrine levels during standing and isometric exercise were observed during pregnancy. In contrast, alterations in plasma epinephrine appeared unaffected by gestation. Plasma renin activity and aldosterone levels were, as expected, greater during pregnancy; however, increments in response to upright posture were similar in pregnant and postpartum women. To the extent that circulating catecholamines may be considered indices of sympathoadrenal function, these data suggest that normal pregnancy alters cardiovascular and sympathetic nervous system responses to physiologic stimuli.

  16. Processing of Binaural Pitch Stimuli in Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2009-01-01

    Binaural pitch is a tonal sensation produced by introducing a frequency-dependent interaural phase shift in binaurally presented white noise. As no spectral cues are present in the physical stimulus, binaural pitch perception is assumed to rely on accurate temporal fine structure coding and intact...... binaural integration mechanisms. This study investigated to what extent basic auditory measures of binaural processing as well as cognitive abilities are correlated with the ability of hearing-impaired listeners to perceive binaural pitch. Subjects from three groups (1: normal-hearing; 2: cochlear...... hearingloss; 3: retro-cochlear impairment) were asked to identify the pitch contour of series of five notes of equal duration, ranging from 523 to 784 Hz, played either with Huggins’ binaural pitch stimuli (BP) or perceptually similar, but monaurally detectable, pitches (MP). All subjects from groups 1 and 2...

  17. Disentangling the role of floral sensory stimuli in pollination networks

    DEFF Research Database (Denmark)

    Kantsa, Aphrodite; Raguso, Robert A.; Dyer, Adrian G.

    2018-01-01

    Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use...... a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering...... period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role...

  18. Balancing Attended and Global Stimuli in Perceived Video Quality Assessment

    DEFF Research Database (Denmark)

    You, Junyong; Korhonen, Jari; Perkis, Andrew

    2011-01-01

    . This paper proposes a quality model based on the late attention selection theory, assuming that the video quality is perceived via two mechanisms: global and local quality assessment. First we model several visual features influencing the visual attention in quality assessment scenarios to derive......The visual attention mechanism plays a key role in the human perception system and it has a significant impact on our assessment of perceived video quality. In spite of receiving less attention from the viewers, unattended stimuli can still contribute to the understanding of the visual content...... an attention map using appropriate fusion techniques. The global quality assessment as based on the assumption that viewers allocate their attention equally to the entire visual scene, is modeled by four carefully designed quality features. By employing these same quality features, the local quality model...

  19. Olfactory stimuli as context cues in human memory.

    Science.gov (United States)

    Cann, A; Ross, D A

    1989-01-01

    Olfactory stimuli were used as context cues in a recognition memory paradigm. Male college students were exposed to 50 slides of the faces of college females while in the presence of a pleasant or an unpleasant odor. During the acquisition phase, ratings of physical attractiveness of the slides were collected. After a 48-hr delay, a recognition test was given using the original 50 slides and 50 new slides. The recognition test was conducted with either the original odor or the alternative odor present. A no-odor control group did not receive olfactory cues. The attractiveness ratings indicated that the odor variations had no effect on these social judgments. Analyses of d' scores, hits, and false alarms for the recognition performance indicated support for the predicted interaction in which presence of the same odor at both sessions led to better overall performance.

  20. Pupillary response to direct and consensual chromatic light stimuli

    DEFF Research Database (Denmark)

    Traustason, Sindri; Brondsted, Adam Elias; Sander, Birgit

    2016-01-01

    Medical, Copenhagen), which is capable of both direct and consensual pupillometry measurements. The device uses a pair of dual monochromatic narrow bandwidth LED light sources, red (660 nm) and blue (470 nm). Pupil light responses were recorded with infrared video cameras and analysed using custom-made circuitry...... and software. Subjects were randomized to receive light stimuli at either the right or left eye after 5 min of dark adaptation. Pupil light responses were recorded in both eyes for 10 seconds before illumination, during illumination and 50 seconds after illumination with red and blue light. Three variables...... were defined for the recorded pupil responses: the maximal constriction amplitude (CAmax ), the pupil response during illumination and postillumination pupil response (PIPR). RESULTS: No difference was found in the pupil response to blue light. With red light, the pupil response during illumination...

  1. Sleep deprivation affects reactivity to positive but not negative stimuli.

    Science.gov (United States)

    Pilcher, June J; Callan, Christina; Posey, J Laura

    2015-12-01

    The current study examined the effects of partial and total sleep deprivation on emotional reactivity. Twenty-eight partially sleep-deprived participants and 31 totally sleep-deprived participants rated their valence and arousal responses to positive and negative pictures across four testing sessions during the day following partial sleep deprivation or during the night under total sleep deprivation. The results suggest that valence and arousal ratings decreased under both sleep deprivation conditions. In addition, partial and total sleep deprivation had a greater negative effect on positive events than negative events. These results suggest that sleep-deprived persons are more likely to respond less to positive events than negative events. One explanation for the current findings is that negative events could elicit more attentive behavior and thus stable responding under sleep deprivation conditions. As such, sleep deprivation could impact reactivity to emotional stimuli through automated attentional and self-regulatory processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. What boxing-related stimuli reveal about response behaviour.

    Science.gov (United States)

    Ottoboni, Giovanni; Russo, Gabriele; Tessari, Alessia

    2015-01-01

    When two athletes meet inside the ropes of the boxing ring to fight, their cognitive systems have to respond as quickly as possible to a manifold of stimuli to assure victory. In the present work, we studied the pre-attentive mechanisms, which form the basis of an athlete's ability in reacting to an opponent's punches. Expert boxers, beginner boxers and people with no experience of boxing performed a Simon-like task where they judged the colour of the boxing gloves worn by athletes in attack postures by pressing two lateralised keys. Although participants were not instructed to pay attention to the direction of the punches, beginner boxers' responses resembled a defence-related pattern, expert boxers' resembled counterattacks, whereas non-athletes' responses were not influenced by the unrelated task information. Results are discussed in the light of an expertise-related action simulation account.

  3. Traditional birth attendants in Malawi

    Directory of Open Access Journals (Sweden)

    J. J. M. Smit

    1994-03-01

    Full Text Available Traditional Birth Attendants (TBAs and traditional healers form an important link in the chain of health personnel providing primary health care in Malawi. In spite of the establishment of hospitals and health centres, it is to these traditional healers and TBAs that the majority of people turn in times of sickness and child-birth. Approximately 60 percent of all deliveries in Malawi occur in the villages. It is therefore important that due regard be paid to the activities of these traditional practitioners in order to ensure the achievement of the goal - "Health for all by the year 2000". The training of TBAs is seen as part of the Maternal and Child Health Services in the country.

  4. Traditional birth attendants in Malawi

    Directory of Open Access Journals (Sweden)

    J. J. M. Smit

    1994-05-01

    Full Text Available Traditional Birth Attendants (TBAs and traditional healers form an important link in the chain of health personnel providing primary health care in Malawi. In spite of the establishment of hospitals and health centres, it is to these traditional healers and TBAs that the majority of people turn in times of sickness and child-birth. Approximately 60 percent of all deliveries in Malawi occur in the villages. It is therefore important that due regard be paid to the activities of these traditional practitioners in order to ensure the achievement of the goal - "Health for all by the year 2000". The training of TBAs is seen as part of the Maternal and Child Health Services in the country.

  5. [Common household traditional Chinese medicines].

    Science.gov (United States)

    Zhang, Shu-Yuan; Li, Mei; Fu, Dan; Liu, Yang; Wang, Hui; Tan, Wei

    2016-02-01

    With the enhancement in the awareness of self-diagnosis among residents, it's very common for each family to prepare common medicines for unexpected needs. Meanwhile, with the popularization of the traditional Chinese medicine knowledge, the proportion of common traditional Chinese medicines prepared at residents' families is increasingly higher than western medicines year by year. To make it clear, both pre-research and closed questionnaire research were adopted for residents in Chaoyang District, Beijing, excluding residents with a medical background. Based on the results of data, a analysis was made to define the role and influence on the quality of life of residents and give suggestions for relevant departments to improve the traditional Chinese medicine popularization and promote the traditional Chinese medicine market. Copyright© by the Chinese Pharmaceutical Association.

  6. Traditional Chinese Medicine: An Introduction

    Science.gov (United States)

    ... Resources CME/CEU and Online Lectures Online Continuing Education Series Distinguished Lecture Series Integrated Medicine Research Lecture ... TCM, it is important to separate questions about traditional theories and ... of modern science-based medicine and health promotion practices. The ...

  7. The Zulu traditional birth attendant

    African Journals Online (AJOL)

    Some of the important practices of Zulu traditional birth attendants ... the people as regards pregnancy and labour. This article docu- .... into account previous perinatal deaths. ... They were either widows or married to husbands unable to work.

  8. Stimuli-sensitive hydrogels: A novel ophthalmic drug delivery system

    Directory of Open Access Journals (Sweden)

    Singh Vinod

    2010-01-01

    Full Text Available Background: Stimuli-sensitive hydrogels are three-dimensional, hydrophilic, polymeric networks capable of imbibing large amounts of water or biological fluids on stimulation, such as pH, temperature and ionic change. Aim: To develop hydrogels that are sensitive to stimuli, i.e. pH, in the cul-de-sac of the eye for providing a prolonged effect and increased bioavailability with reduction in frequency of administration. Materials and Methods: Hydrogels were formulated by using timolol maleate as the model drug, polyacrylic acid as the gelling agents, hydroxyl ethyl cellulose as the viscolizer and sodium chloride as the isotonic agent. Stirring of ingredients in pH 4 phosphate buffer at high speed was carried out. The dynamic dialysis technique was used for drug release studies. In vivo study for reduction in intraocular pressure was carried out by using albino rabbits. Statistical Analysis: Drug release studies data were used for statistical analysis in first-order plots, Higuchi plots and Peppas exponential plots. Student t-test was performed for in vivo study. Results: Viscosity of the hydrogel increases from 3.84 cps to 9.54 cps due to change in pH 4 to pH 7.4. The slope value of the Peppas equation was found to be 0.3081, 0.3743 and 0.2964. Up to 80% of drug was released in an 8 h drug release study. Sterile hydrogels with no ocular irritation were obtained. Conclusions: Hydrogels show increase in viscosity due to change in pH. Hydrogels were therapeutically effacious, stable, non-irritant and showed Fickian diffusion. In vivo results clearly show a prolonged reduction in intraocular pressure, which was helpful for reduction in the frequency of administration.

  9. Dopamine, paranormal belief, and the detection of meaningful stimuli.

    Science.gov (United States)

    Krummenacher, Peter; Mohr, Christine; Haker, Helene; Brugger, Peter

    2010-08-01

    Dopamine (DA) is suggested to improve perceptual and cognitive decisions by increasing the signal-to-noise ratio. Somewhat paradoxically, a hyperdopaminergia (arguably more accentuated in the right hemisphere) has also been implied in the genesis of unusual experiences such as hallucinations and paranormal thought. To test these opposing assumptions, we used two lateralized decision tasks, one with lexical (tapping left-hemisphere functions), the other with facial stimuli (tapping right-hemisphere functions). Participants were 40 healthy right-handed men, of whom 20 reported unusual, "paranormal" experiences and beliefs ("believers"), whereas the remaining participants were unexperienced and critical ("skeptics"). In a between-subject design, levodopa (200 mg) or placebo administration was balanced between belief groups (double-blind procedure). For each task and visual field, we calculated sensitivity (d') and response tendency (criterion) derived from signal detection theory. Results showed the typical right visual field advantage for the lexical decision task and a higher d' for verbal than facial stimuli. For the skeptics, d' was lower in the levodopa than in the placebo group. Criterion analyses revealed that believers favored false alarms over misses, whereas skeptics displayed the opposite preference. Unexpectedly, under levodopa, these decision preferences were lower in both groups. We thus infer that levodopa (1) decreases sensitivity in perceptual-cognitive decisions, but only in skeptics, and (2) makes skeptics less and believers slightly more conservative. These results stand at odd to the common view that DA generally improves signal-to-noise ratios. Paranormal ideation seems an important personality dimension and should be assessed in investigations on the detection of signals in noise.

  10. The influence of various distracting stimuli on spatial working memory

    Directory of Open Access Journals (Sweden)

    Martina Starc

    2016-01-01

    Full Text Available Protecting information from distraction is essential for optimal performance of working memory. We examined how the presence of distracting stimuli influences spatial working memory and compared the effect of both task-similar and negatively emotionally salient distractors. We checked the effect of distractors on the accuracy of high-resolution representations, as well as the maintenance of spatial categories, and more precisely defined not only the existence but also the direction of the distracting influences (towards or away from the position of the distractor. Participants (n = 25, 8 men, 19–31 years old were asked to remember the exact position of a target scrambled image and recall it with a joystick after a delay. In some trials an additional distracting image (scrambled, neutral or negative was shown during the delay. We measured the spread of responses (standard deviation of angular error and shifts of the average response towards the prototype angles (45° or towards the position of distractors. Distracting stimuli did not affect the spread of responses and decreased the tendency of participants to move the responses towards the prototype angle. Different types of distractors did not differ in this effect. Contrary to expectations, the participants moved their responses away from the position of distractors; this effect was more pronounced for negative distractors. In addition to memorizing the exact position and maintaining attention on the position of the stimulus, participants are likely to strategically use information about spatial category membership (quadrants and information about the position of the distractor. The repulsive effect of the distractor likely results from inhibition of its position and indicates the need to supplement computational models of spatial working memory and to take into account different strategies of working memory use.

  11. Visual laterality in dolphins: importance of the familiarity of stimuli

    Science.gov (United States)

    2012-01-01

    Background Many studies of cerebral asymmetries in different species lead, on the one hand, to a better understanding of the functions of each cerebral hemisphere and, on the other hand, to develop an evolutionary history of hemispheric laterality. Our animal model is particularly interesting because of its original evolutionary path, i.e. return to aquatic life after a terrestrial phase. The rare reports concerning visual laterality of marine mammals investigated mainly discrimination processes. As dolphins are migrant species they are confronted to a changing environment. Being able to categorize new versus familiar objects would allow dolphins a rapid adaptation to novel environments. Visual laterality could be a prerequisite to this adaptability. To date, no study, to our knowledge, has analyzed the environmental factors that could influence their visual laterality. Results We investigated visual laterality expressed spontaneously at the water surface by a group of five common bottlenose dolphins (Tursiops truncatus) in response to various stimuli. The stimuli presented ranged from very familiar objects (known and manipulated previously) to familiar objects (known but never manipulated) to unfamiliar objects (unknown, never seen previously). At the group level, dolphins used their left eye to observe very familiar objects and their right eye to observe unfamiliar objects. However, eyes are used indifferently to observe familiar objects with intermediate valence. Conclusion Our results suggest different visual cerebral processes based either on the global shape of well-known objects or on local details of unknown objects. Moreover, the manipulation of an object appears necessary for these dolphins to construct a global representation of an object enabling its immediate categorization for subsequent use. Our experimental results pointed out some cognitive capacities of dolphins which might be crucial for their wild life given their fission-fusion social system

  12. Pupillary response to direct and consensual chromatic light stimuli.

    Science.gov (United States)

    Traustason, Sindri; Brondsted, Adam Elias; Sander, Birgit; Lund-Andersen, Henrik

    2016-02-01

    To assess whether the direct and consensual postillumination (ipRGC-driven) pupil light responses to chromatic light stimuli are equal in healthy subjects. Pupil responses in healthy volunteers were recorded using a prototype binocular chromatic pupillometer (IdeaMedical, Copenhagen), which is capable of both direct and consensual pupillometry measurements. The device uses a pair of dual monochromatic narrow bandwidth LED light sources, red (660 nm) and blue (470 nm). Pupil light responses were recorded with infrared video cameras and analysed using custom-made circuitry and software. Subjects were randomized to receive light stimuli at either the right or left eye after 5 min of dark adaptation. Pupil light responses were recorded in both eyes for 10 seconds before illumination, during illumination and 50 seconds after illumination with red and blue light. Three variables were defined for the recorded pupil responses: the maximal constriction amplitude (CAmax ), the pupil response during illumination and postillumination pupil response (PIPR). No difference was found in the pupil response to blue light. With red light, the pupil response during illumination was slightly larger during consensual illumination compared to direct illumination (0.54 and 0.52, respectively, p = 0.027, paired Wilcoxon's test, n = 12), while no differences were found for CAmax or the PIPR. No difference was found between direct and consensual pupil response to either red or blue light in the postillumination period. Direct and consensual responses can readily be compared when examining the postillumination pupil response to blue light as estimation of photosensitive retinal ganglion cell activation. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Pointing Hand Stimuli Induce Spatial Compatibility Effects and Effector Priming

    Directory of Open Access Journals (Sweden)

    Akio eNishimura

    2013-04-01

    Full Text Available The present study investigated the automatic influence of perceiving a picture that indicates other’s action on one’s own task performance in terms of spatial compatibility and effector priming. Participants pressed left and right buttons with their left and right hands respectively, depending on the color of a central dot target. Preceding the target, a left or right hand stimulus (pointing either to the left or right with the index or little finger was presented. In Experiment 1, with brief presentation of the pointing hand, a spatial compatibility effect was observed: Responses were faster when the direction of the pointed finger and the response position were spatially congruent than when incongruent. The spatial compatibility effect was larger for the pointing index finger stimulus compared to the pointing little finger stimulus. Experiment 2 employed longer duration of the pointing hand stimuli. In addition to the spatial compatibility effect for the pointing index finger, the effector priming effect was observed: Responses were faster when the anatomical left/right identity of the pointing and response hands matched than when the pointing and response hands differed in left/right identity. The results indicate that with sufficient processing time, both spatial/symbolic and anatomical features of a static body part implying another’s action simultaneously influence different aspects of the perceiver’s own action. Hierarchical coding, according to which an anatomical code is used only when a spatial code is unavailable, may not be applicable if stimuli as well as responses contain anatomical features.

  14. Visual laterality in dolphins: importance of the familiarity of stimuli

    Directory of Open Access Journals (Sweden)

    Blois-Heulin Catherine

    2012-01-01

    Full Text Available Abstract Background Many studies of cerebral asymmetries in different species lead, on the one hand, to a better understanding of the functions of each cerebral hemisphere and, on the other hand, to develop an evolutionary history of hemispheric laterality. Our animal model is particularly interesting because of its original evolutionary path, i.e. return to aquatic life after a terrestrial phase. The rare reports concerning visual laterality of marine mammals investigated mainly discrimination processes. As dolphins are migrant species they are confronted to a changing environment. Being able to categorize new versus familiar objects would allow dolphins a rapid adaptation to novel environments. Visual laterality could be a prerequisite to this adaptability. To date, no study, to our knowledge, has analyzed the environmental factors that could influence their visual laterality. Results We investigated visual laterality expressed spontaneously at the water surface by a group of five common bottlenose dolphins (Tursiops truncatus in response to various stimuli. The stimuli presented ranged from very familiar objects (known and manipulated previously to familiar objects (known but never manipulated to unfamiliar objects (unknown, never seen previously. At the group level, dolphins used their left eye to observe very familiar objects and their right eye to observe unfamiliar objects. However, eyes are used indifferently to observe familiar objects with intermediate valence. Conclusion Our results suggest different visual cerebral processes based either on the global shape of well-known objects or on local details of unknown objects. Moreover, the manipulation of an object appears necessary for these dolphins to construct a global representation of an object enabling its immediate categorization for subsequent use. Our experimental results pointed out some cognitive capacities of dolphins which might be crucial for their wild life given their

  15. Analyzing the User Behavior toward Electronic Commerce Stimuli

    Science.gov (United States)

    Lorenzo-Romero, Carlota; Alarcón-del-Amo, María-del-Carmen; Gómez-Borja, Miguel-Ángel

    2016-01-01

    Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e., navigational structure as utilitarian stimulus) versus non-verbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this research consists in analyzing the impact of these web technologies –which constitute the web atmosphere or webmosphere of a website– on shopping human behavior (i.e., users’ internal states -affective, cognitive, and satisfaction- and behavioral responses – approach responses, and real shopping outcomes-) within the retail online store created by computer, taking into account some mediator variables (i.e., involvement, atmospheric responsiveness, and perceived risk). A 2 (“free” versus “hierarchical” navigational structure) × 2 (“on” versus “off” music) × 2 (“moving” versus “static” images) between-subjects computer experimental design is used to test empirically this research. In addition, an integrated methodology was developed allowing the simulation, tracking and recording of virtual user behavior within an online shopping environment. As main conclusion, this study suggests that the positive responses of online consumers might increase when they are allowed to freely navigate the online stores and their experience is enriched by animate gifts and music background. The effect caused by mediator variables modifies relatively the final shopping human behavior. PMID:27965549

  16. Little Eyolf and dramatic tradition

    Directory of Open Access Journals (Sweden)

    Roland Lysell

    2015-02-01

    Full Text Available The article criticises an Ibsen tradition who has seen the last scene of Little Eyolf as a reconciliation. Instead, the article discusses the improbability of a happy marriage characterised by social engagement. The play is open but it is hardly probable that Rita, with her erotic desire, and Allmers, whose desire has turned into metaphysics, can be happy together. The arguments refer to inner criteria and the constantly present dramatic tradition.

  17. TRADITIONAL PHYSICAL CULTURE OF BELARUSIANS

    OpenAIRE

    Shamak, Ales

    2017-01-01

    Relevance. The study of the history of physical culture makes it possible to reveal the laws of its development, the relationship with socio-political and economic factors. The aim of the research is to substantiate the essence, types and structure of the traditional physical culture of Belarusians. Results of the Research. Traditional physical culture has been the main type of physical culture of the Belarusian people for about a thousand years. It is regarded as the activity of the society ...

  18. Was the Monetarist Tradition Invented?

    OpenAIRE

    George S. Tavlas

    1998-01-01

    In 1969, Harry Johnson charged that Milton Friedman 'invented' a Chicago oral quantity theory tradition, the idea being that in order to launch a monetarist counter-revolution, Friedman needed to establish a linkage with pre-Keynesian orthodoxy. This paper shows that there was a distinct pre-Keynesian Chicago quantity-theory tradition that advocated increased government expenditure during the Great Depression in order to put money directly into circulation. This policy stance distinguished th...

  19. Electronic commerce versus traditional commerce

    OpenAIRE

    Dorin Vicentiu Popescu; Manoela Popescu

    2007-01-01

    The internet represents new opportunities for the traditional companies, including the diversification of the given services and also the promotion of the new ones, which are personalized and attractive and they are possible thanks to the information and communication technologies. According to this, the Internet impact, which has allowed the development of a new form of commerce- the commerce via Internet (which is a component of the electronic commerce), against the traditional global comme...

  20. Chapter 1. Traditional marketing revisited

    OpenAIRE

    Lambin, Jean-Jacques

    2013-01-01

    The objective of this chapter is to review the traditional marketing concept and to analyse its main ambiguities as presented in popular textbooks. The traditional marketing management model placing heavy emphasis of the marketing mix is in fact a supply-driven approach of the market, using the understanding of consumers’ needs to mould demand to the requirements of supply, instead of adapting supply to the expectations of demand. To clarify the true role of marketing, a distinction is made b...

  1. Visual and auditory stimuli associated with swallowing. An fMRI study

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Watanabe, Yutaka; Tonogi, Morio; Yamane, Gen-yuki; Abe, Shinichi; Yamada, Yoshiaki; Callan, Akiko

    2009-01-01

    We focused on brain areas activated by audiovisual stimuli related to swallowing motions. In this study, three kinds of stimuli related to human swallowing movement (auditory stimuli alone, visual stimuli alone, or audiovisual stimuli) were presented to the subjects, and activated brain areas were measured using functional MRI (fMRI) and analyzed. When auditory stimuli alone were presented, the supplementary motor area was activated. When visual stimuli alone were presented, the premotor and primary motor areas of the left and right hemispheres and prefrontal area of the left hemisphere were activated. When audiovisual stimuli were presented, the prefrontal and premotor areas of the left and right hemispheres were activated. Activation of Broca's area, which would have been characteristic of mirror neuron system activation on presentation of motion images, was not observed; however, activation of brain areas related to swallowing motion programming and performance was verified for auditory, visual and audiovisual stimuli related to swallowing motion. These results suggest that audiovisual stimuli related to swallowing motion could be applied to the treatment of patients with dysphagia. (author)

  2. Does the amygdala response correlate with the personality trait 'harm avoidance' while evaluating emotional stimuli explicitly?

    Science.gov (United States)

    Van Schuerbeek, Peter; Baeken, Chris; Luypaert, Robert; De Raedt, Rudi; De Mey, Johan

    2014-05-07

    The affective personality trait 'harm avoidance' (HA) from Cloninger's psychobiological personality model determines how an individual deals with emotional stimuli. Emotional stimuli are processed by a neural network that include the left and right amygdalae as important key nodes. Explicit, implicit and passive processing of affective stimuli are known to activate the amygdalae differently reflecting differences in attention, level of detailed analysis of the stimuli and the cognitive control needed to perform the required task. Previous studies revealed that implicit processing or passive viewing of affective stimuli, induce a left amygdala response that correlates with HA. In this new study we have tried to extend these findings to the situation in which the subjects were required to explicitly process emotional stimuli. A group of healthy female participants was asked to rate the valence of positive and negative stimuli while undergoing fMRI. Afterwards the neural responses of the participants to the positive and to the negative stimuli were separately correlated to their HA scores and compared between the low and high HA participants. Both analyses revealed increased neural activity in the left laterobasal (LB) amygdala of the high HA participants while they were rating the positive and the negative stimuli. Our results indicate that the left amygdala response to explicit processing of affective stimuli does correlate with HA.

  3. Perceived duration of visual and tactile stimuli depends on perceived speed

    Directory of Open Access Journals (Sweden)

    Alice eTomassini

    2011-09-01

    Full Text Available It is known that the perceived duration of visual stimuli is strongly influenced by speed: faster moving stimuli appear to last longer. To test whether this is a general property of sensory systems we asked participants to reproduce the duration of visual and tactile gratings, and visuo-tactile gratings moving at a variable speed (3.5 – 15 cm/s for three different durations (400, 600 and 800 ms. For both modalities, the apparent duration of the stimulus increased strongly with stimulus speed, more so for tactile than for visual stimuli. In addition, visual stimuli were perceived to last approximately 200 ms longer than tactile stimuli. The apparent duration of visuo-tactile stimuli lay between the unimodal estimates, as the Bayesian account predicts, but the bimodal precision of the reproduction did not show the theoretical improvement. A cross-modal speed-matching task revealed that visual stimuli were perceived to move faster than tactile stimuli. To test whether the large difference in the perceived duration of visual and tactile stimuli resulted from the difference in their perceived speed, we repeated the time reproduction task with visual and tactile stimuli matched in apparent speed. This reduced, but did not completely eliminate the difference in apparent duration. These results show that for both vision and touch, perceived duration depends on speed, pointing to common strategies of time perception.

  4. The Living Indian Critical Tradition

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Dwivedi

    2010-11-01

    Full Text Available This paper attempts to establish the identity of something that is often considered to be missing – a living Indian critical tradition. I refer to the tradition that arises out of the work of those Indians who write in English. The chief architects of this tradition are Sri Aurobindo, C.D. Narasimhaiah, Gayatri Chakravorty Spivak and Homi K. Bhabha. It is possible to believe that Indian literary theories derive almost solely from ancient Sanskrit poetics. Or, alternatively, one can be concerned about the sad state of affairs regarding Indian literary theories or criticism in English. There have been scholars who have raised the question of the pathetic state of Indian scholarship in English and have even come up with some positive suggestions. But these scholars are those who are ignorant about the living Indian critical tradition. The significance of the Indian critical tradition lies in the fact that it provides the real focus to the Indian critical scene. Without an awareness of this tradition Indian literary scholarship (which is quite a different thing from Indian literary criticism and theory as it does not have the same impact as the latter two do can easily fail to see who the real Indian literary critics and theorists are.

  5. P1 and N170 components distinguish human-like and animal-like makeup stimuli.

    Science.gov (United States)

    Luo, Shuwei; Luo, Wenbo; He, Weiqi; Chen, Xu; Luo, Yuejia

    2013-06-19

    This study used event-related potentials to investigate the sensitivity of P1 and N170 components to human-like and animal-like makeup stimuli, which were derived from pictures of Peking opera characters. As predicted, human-like makeup stimuli elicited larger P1 and N170 amplitudes than did animal-like makeup stimuli. Interestingly, a right hemisphere advantage was observed for human-like but not for animal-like makeup stimuli. Dipole source analyses of 130-200-ms window showed that the bilateral fusiform face area may contribute to the differential sensitivity of the N170 component in response to human-like and animal-like makeup stimuli. The present study suggests that the amplitudes of both the P1 and the N170 are sensitive for the mouth component of face-like stimuli.

  6. Opposing Subjective Temporal Experiences in Response to Unpredictable and Predictable Fear-Relevant Stimuli

    Directory of Open Access Journals (Sweden)

    Qian Cui

    2018-03-01

    Full Text Available Previous studies have found that the durations of fear-relevant stimuli were overestimated compared to those of neutral stimuli, even when the fear-relevant stimuli were only anticipated. The current study aimed to investigate the effect of the predictability of fear-relevant stimuli on sub-second temporal estimations. In Experiments 1a and 1b, a randomized design was employed to render the emotional valence of each trial unpredictable. In Experiments 2a and 2b, we incorporated a block design and a cueing paradigm, respectively, to render the emotional stimuli predictable. Compared with the neutral condition, the estimated blank interval was judged as being shorter under the unpredictable fear-relevant condition, while it was judged as being longer under the predictable fear-relevant condition. In other words, the unpredictable and predictable fear-relevant stimuli led to opposing temporal distortions. These results demonstrated that emotions modulate interval perception during different time processing stages.

  7. When goals conflict with values: counterproductive attentional and oculomotor capture by reward-related stimuli.

    Science.gov (United States)

    Le Pelley, Mike E; Pearson, Daniel; Griffiths, Oren; Beesley, Tom

    2015-02-01

    Attention provides the gateway to cognition, by selecting certain stimuli for further analysis. Recent research demonstrates that whether a stimulus captures attention is not determined solely by its physical properties, but is malleable, being influenced by our previous experience of rewards obtained by attending to that stimulus. Here we show that this influence of reward learning on attention extends to task-irrelevant stimuli. In a visual search task, certain stimuli signaled the magnitude of available reward, but reward delivery was not contingent on responding to those stimuli. Indeed, any attentional capture by these critical distractor stimuli led to a reduction in the reward obtained. Nevertheless, distractors signaling large reward produced greater attentional and oculomotor capture than those signaling small reward. This counterproductive capture by task-irrelevant stimuli is important because it demonstrates how external reward structures can produce patterns of behavior that conflict with task demands, and similar processes may underlie problematic behavior directed toward real-world rewards.

  8. Testing the race model inequality in redundant stimuli with variable onset asynchrony

    DEFF Research Database (Denmark)

    Gondan, Matthias

    2009-01-01

    distributions of response times for the single-modality stimuli. It has been derived for synchronous stimuli and for stimuli with stimulus onset asynchrony (SOA). In most experiments with asynchronous stimuli, discrete SOA values are chosen and the race model inequality is separately tested for each SOA. Due...... to SOAs at which the violation of the race model prediction is expected to be large. In addition, the method enables data analysis for experiments in which stimuli are presented with SOA from a continuous distribution rather than in discrete steps.......In speeded response tasks with redundant signals, parallel processing of the signals is tested by the race model inequality. This inequality states that given a race of two signals, the cumulative distribution of response times for redundant stimuli never exceeds the sum of the cumulative...

  9. Traditional botanical medicine: an introduction.

    Science.gov (United States)

    Rosenbloom, Richard A; Chaudhary, Jayesh; Castro-Eschenbach, Diane

    2011-01-01

    The role of traditional medicine in the well-being of mankind has certainly journeyed a long way. From an ancient era, in which knowledge was limited to a few traditional healers and dominated by the use of whole plants or crude drugs, the science has gradually evolved into a complete healthcare system with global recognition. Technologic advancements have facilitated traditional science to deliver numerous breakthrough botanicals with potency equivalent to those of conventional drugs. The renewed interest in traditional medicine is mainly attributed to its ability to prevent disease, promote health, and improve quality of life. Despite the support received from public bodies and research organizations, development of botanical medicines continues to be a challenging process. The present article gives a summarized description of the various difficulties encountered in the development and evaluation of botanical drugs, including isolation of active compounds and standardization of plant ingredients. It indicates a future direction of traditional medicine toward evidence-based evaluation of health claims through well-controlled safety and efficacy studies.

  10. Negative emotional stimuli reduce contextual cueing but not response times in inefficient search

    OpenAIRE

    Kunar, Melina A.; Watson, Derrick G.; Cole, Louise (Researcher in Psychology); Cox, Angeline

    2014-01-01

    In visual search, previous work has shown that negative stimuli narrow the focus of attention and speed reaction times (RTs). This paper investigates these two effects by first asking whether negative emotional stimuli narrow the focus of attention to reduce the learning of a display context in a contextual cueing task and, second, whether exposure to negative stimuli also reduces RTs in inefficient search tasks. In Experiment 1, participants viewed either negative or neutral images (faces or...

  11. Immediate effect of subliminal priming with positive reward stimuli on standing balance in healthy individuals

    OpenAIRE

    Aoyama, Yasuhiro; Uchida, Hiroyuki; Sugi, Yasuyuki; Kawakami, Akinobu; Fujii, Miki; Kiso, Kanae; Kono, Ryota; Takebayashi, Takashi; Hirao, Kazuki

    2017-01-01

    Abstract Background: Information received subconsciously can influence exercise performance; however, it remains unclear whether subliminal or supraliminal reward is more effective in improving standing balance ability when priming stimuli are subconsciously delivered. The present study aimed to compare the effects of subliminal priming-plus-subliminal reward stimuli (experimental) with subliminal priming-plus-supraliminal reward stimuli (control) on standing balance ability. Methods: This wa...

  12. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli

    OpenAIRE

    Sakaki, Michiko; Niki, N.; Mather, M.

    2012-01-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for bio...

  13. Effects of inter- and intramodal selective attention to non-spatial visual stimuli: An event-related potential analysis.

    NARCIS (Netherlands)

    de Ruiter, M.B.; Kok, A.; van der Schoot, M.

    1998-01-01

    Event-related potentials (ERPs) were recorded to trains of rapidly presented auditory and visual stimuli. ERPs in conditions in which Ss attended to different features of visual stimuli were compared with ERPs to the same type of stimuli when Ss attended to different features of auditory stimuli,

  14. Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics

    Science.gov (United States)

    Sato, Jun

    Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft

  15. Parallel search for conjunctions with stimuli in apparent motion.

    Science.gov (United States)

    Casco, C; Ganis, G

    1999-01-01

    A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal

  16. Selective processing of linguistic and pictorial food stimuli in females with anorexia and bulimia nervosa.

    Science.gov (United States)

    Stormark, Kjell Morten; Torkildsen, Øivind

    2004-01-01

    This study investigated subjects with eating disorders' selective attention to linguistic and pictorial representations of food stimuli in a version of the Stroop color-naming task. If subjects with eating disorders' attention really are biased by food stimuli, one would expect equally delayed color-naming latencies to food pictures as previous studies have found to food words. Twenty females with eating disorders (anorexia nervosa, bulimia nervosa, or a combination of both) and 24 female controls identified the color of Stroop versions of linguistic and pictorial representations of color, food, emotional, and neutral stimuli. The eating disorder group was slower than the controls in identifying the color of all words (including the food words) and the pictures depicting food stimuli (but not any of the other pictures). The eating disorder group was also slower in identifying the color of both food and emotional than neutral stimuli, both for the linguistic and pictorial stimuli. These findings indicate that females with bulimia and anorexia nervosa's biased attention to food stimuli are not restricted to linguistic representations. The delayed responses to the emotional words and pictures suggest that processing of negative emotional stimuli, in addition to dysfunctional concerns about stimuli related to food and eating, is important in the maintenance of eating disorders.

  17. Alleged Approach-Avoidance Conflict for Food Stimuli in Binge Eating Disorder.

    Directory of Open Access Journals (Sweden)

    Elisabeth J Leehr

    Full Text Available Food stimuli are omnipresent and naturally primary reinforcing stimuli. One explanation for the intake of high amounts of food in binge eating disorder (BED is a deviant valuation process. Valuation of food stimuli is supposed to influence approach or avoidance behaviour towards food. Focusing on self-reported and indirect (facial electromyography valuation process, motivational aspects in the processing of food stimuli were investigated.We compared an overweight sample with BED (BED+ with an overweight sample without BED (BED- and with normal weight controls (NWC regarding their self-reported and indirect (via facial electromyography valuation of food versus non-food stimuli.Regarding the self-reported valuation, the BED+ sample showed a significantly stronger food-bias compared to the BED- sample, as food stimuli were rated as significantly more positive than the non-food stimuli in the BED+ sample. This self-reported valuation pattern could not be displayed in the indirect valuation. Food stimuli evoked negative indirect valuation in all groups. The BED+ sample showed the plainest approach-avoidance conflict marked by a diverging self-reported (positive and indirect (negative valuation of food stimuli.BED+ showed a deviant self-reported valuation of food as compared to BED-. The valuation process of the BED+ sample seems to be characterized by a motivational ambivalence. This ambivalence should be subject of further studies and may be of potential use for therapeutic interventions.

  18. Interpretative bias in spider phobia: Perception and information processing of ambiguous schematic stimuli.

    Science.gov (United States)

    Haberkamp, Anke; Schmidt, Filipp

    2015-09-01

    This study investigates the interpretative bias in spider phobia with respect to rapid visuomotor processing. We compared perception, evaluation, and visuomotor processing of ambiguous schematic stimuli between spider-fearful and control participants. Stimuli were produced by gradually morphing schematic flowers into spiders. Participants rated these stimuli related to their perceptual appearance and to their feelings of valence, disgust, and arousal. Also, they responded to the same stimuli within a response priming paradigm that measures rapid motor activation. Spider-fearful individuals showed an interpretative bias (i.e., ambiguous stimuli were perceived as more similar to spiders) and rated spider-like stimuli as more unpleasant, disgusting, and arousing. However, we observed no differences between spider-fearful and control participants in priming effects for ambiguous stimuli. For non-ambiguous stimuli, we observed a similar enhancement for phobic pictures as has been reported previously for natural images. We discuss our findings with respect to the visual representation of morphed stimuli and to perceptual learning processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. TERMITES ENDANGERED TRADITIONAL MEDICAL PLANTS

    Directory of Open Access Journals (Sweden)

    Syaukani Syaukani

    2014-04-01

    Full Text Available Surveys on traditional medical plants affected by termites have been conducted since June to August 2010 at Ketambe, northern Aceh. Traditional medical plants and their natural habitats were obtained through interviewing local people. Termites were collected by adopted a Standardized Sampling Protocol and final. taxonomic confirmation was done with the help of Termite Research Group (the Natural History Museum, London. About 20 species of medical plants were attacked by termites with various levels. Nine genera and 20 species were collected from various habitats throughout Ketambe, Simpur as well as Gunung Setan villages. Coffe (Coffea arabica, hazelnut (Aleurites moluccana , and areca (Area catechu were among the worse of traditional medical  plant that had been attached by the termites.

  20. Analysis of Traditional Historical Clothing

    DEFF Research Database (Denmark)

    Jensen, Karsten; Schmidt, A. L.; Petersen, A. H.

    2013-01-01

    for establishing a three-dimensional model and the corresponding two-dimensional pattern for items of skin clothing that are not flat. The new method is non-destructive, and also accurate and fast. Furthermore, this paper presents an overview of the more traditional methods of pattern documentation and measurement......A recurrent problem for scholars who investigate traditional and historical clothing is the measuring of items of clothing and subsequent pattern construction. The challenge is to produce exact data without damaging the item. The main focus of this paper is to present a new procedure...