WorldWideScience

Sample records for traditional short-pulse excitation

  1. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  2. Modeling short-pulse laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Sandkamm, Ditte Både; Haahr-Lillevang, Lasse

    2014-01-01

    A theoretical description of ultrashort-pulse laser excitation of dielectric materials based on strong-field excitation in the Keldysh picture combined with a multiple-rateequation model for the electronic excitation including collisional processes is presented. The model includes light attenuation...

  3. Features of the mechanoluminescence of thin metal films, excited by short and long laser pulses

    International Nuclear Information System (INIS)

    Banishev, A.F.; Panchenko, V.Ya.; Shishkov, A.V.

    2004-01-01

    The results of the study on the deformation-induced luminescence of the fine grain metal films, originating by the impact of the short (submicrosecond) and long (millisecond) laser pulses, are presented. The supposition os made relative to the luminescence excitation mechanism [ru

  4. Control of laser pulse waveform in longitudinally excited CO2 laser by adjustment of excitation circuit

    Science.gov (United States)

    Uno, Kazuyuki; Jitsuno, Takahisa

    2018-05-01

    In a longitudinally excited CO2 laser that had a 45 cm-long discharge tube with a 1:1:2 mixture of CO2/N2/He gas at a pressure of 3.0 kPa, we realized the generation of a short laser pulse with a spike pulse width of about 200 ns and a pulse tail length of several tens of microseconds, control of the energy ratio of the spike pulse part to the pulse tail part in the short laser pulse, the generation of a long laser pulse with a pulse width of several tens of microseconds, and control of the pulse width in the long laser pulse, by using four types of excitation circuits in which the capacitance was adjusted. In the short laser pulse, the energy ratio was in the range 1:14-1:112. In the long laser pulse, the pulse width was in the range 25.7-82.7 μs.

  5. Development of transient collisional excitation x-ray laser with ultra short-pulse laser

    International Nuclear Information System (INIS)

    Kado, Masataka; Kawachi, Tetsuya; Hasegawa, Noboru; Tanaka, Momoko; Sukegawa, Kouta; Nagashima, Keisuke; Kato, Yoshiaki

    2001-01-01

    We have observed lasing on Ne-like 3s-3p line from titanium (32.4 nm), Ni-like 4p-4d line from silver (13.9 nm) and tin (11.9 nm) with the transient collisional excitation (TCE) scheme that uses combination of a long pre-pulse (∼ns) and a short main pulse (∼ps). A gain coefficient of 23 cm -1 was measured for plasma length up to 4 mm with silver slab targets. We have also observed lasing on Ne-like and Ni-like lines with new TCE scheme that used pico-seconds laser pulse to generate plasma and observed strong improvement of x-ray laser gain coefficient. A gain coefficient of 14 cm -1 was measured for plasma length up to 6 mm with tin targets. (author)

  6. Chirped or time modulated excitation compared to short pulses for photoacoustic imaging in acoustic attenuating media

    Science.gov (United States)

    Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.

    2018-02-01

    In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.

  7. Extremely Short Optical Pulses and Ads/CFT Compliance

    Directory of Open Access Journals (Sweden)

    Konobeeva N.N.

    2015-01-01

    Full Text Available Dynamics of few cycle optical pulses in non-Fermi liquid was considered. Energy spectrum of non-Fermi liquid was taken from the AdS/CFT compliance. Conditions of quasiparticle excitation existence were defined. Non-Fermi liquid parameters impact on the shape of few cycle pulses were estimated. It was shown that extremely short optical pulse propagation in the non-Fermi liquid is a stable pattern. The value of chemical potential has a significant impact on extremely short pulse shape. An increase in initial pulse amplitude does not result in pulse-shape distortions under its propagation in considered medium that is why the non-Fermi liquid can be used in applications inherent in extremely short pulse processing.

  8. The EMP excitation of radiation by the pulsed relativistic electron beam

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Sidelnikov, G.L.

    1996-01-01

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs

  9. The EMP excitation of radiation by the pulsed relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, V A; Sidelnikov, G L [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs.

  10. Pulsed rf excited spectrometer having improved pulse width control

    International Nuclear Information System (INIS)

    1977-01-01

    RF excitation for a spectrometer is obtained by pulse width modulating an RF carrier to produce the desired broadband RF exciting spectrum. The RF excitation includes a train of composite RF pulses, each composite pulse having a primary pulse portion of a first RF phase and a second pulse portion of a second RF phase opposite that of the first. In this manner, the finite rise and fall times of the primary pulse portion are compensated for by the corresponding rise and fall times of the secondary pulse portion. The primary pulse portion is lengthened by an amount equal to the secondary pulse portion so that the secondary pulse portion cancels the added primary pulse portion. In a spectrometer, the compensating second pulse component removes certain undesired side bands of the RF excitation caused by the finite rise and fall times of the applied RF pulses. The compensating second pulse component removes certain undesired side bands associated with each of the resonant lines of the excited resonance spectrum of the sample under analysis, particularly for wide band RF excitation

  11. Water-selective excitation of short T2 species with binomial pulses.

    Science.gov (United States)

    Deligianni, Xeni; Bär, Peter; Scheffler, Klaus; Trattnig, Siegfried; Bieri, Oliver

    2014-09-01

    For imaging of fibrous musculoskeletal components, ultra-short echo time methods are often combined with fat suppression. Due to the increased chemical shift, spectral excitation of water might become a favorable option at ultra-high fields. Thus, this study aims to compare and explore short binomial excitation schemes for spectrally selective imaging of fibrous tissue components with short transverse relaxation time (T2 ). Water selective 1-1-binomial excitation is compared with nonselective imaging using a sub-millisecond spoiled gradient echo technique for in vivo imaging of fibrous tissue at 3T and 7T. Simulations indicate a maximum signal loss from binomial excitation of approximately 30% in the limit of very short T2 (0.1 ms), as compared to nonselective imaging; decreasing rapidly with increasing field strength and increasing T2 , e.g., to 19% at 3T and 10% at 7T for T2 of 1 ms. In agreement with simulations, a binomial phase close to 90° yielded minimum signal loss: approximately 6% at 3T and close to 0% at 7T for menisci, and for ligaments 9% and 13%, respectively. Overall, for imaging of short-lived T2 components, short 1-1 binomial excitation schemes prove to offer marginal signal loss especially at ultra-high fields with overall improved scanning efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  12. Clinical Comparison of Pulse and Chirp Excitation

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    Coded excitation (CE) using frequency modulated signals (chirps) combined with modified matched filtering has earlier been presented showing promising results in simulations and in-vitro. In this study an experimental ultrasound system is evaluated in a clinical setting, where image sequences...... and short pulse excitation to simultaneously produce identical image sequences using both techniques. Nine healthy male volunteers were scanned in abdominal locations. All sequences were evaluated by 3 skilled medical doctors, blinded to each other and to the technique used. They assessed the depth (1...

  13. Self-resonant wakefield excitation by intense laser pulse in plasmas

    International Nuclear Information System (INIS)

    Andreev, N.E.; Pogosova, A.A.; Gorbunov, L.M.; Ramazashvili, R.R.; Kirsanov, V.I.

    1993-01-01

    It is demonstrated by theoretical analysis and numerical calculations that in an underdense plasma the process of three-dimensional evolution of the short and strong laser pulse (with duration equal to several plasma periods) leads to compression and self-modulation of the pulse, so that during a fairly long period of time beats of pulse amplitude generates resonantly a strong and stable plasma wakefield. The intensity of the wake-field is so high that it can provide a new promising outlook for the plasma based accelerator concept. Linear analysis of dispersion relation predicts that taking into account transverse component of wavenumber considerably increases the growth rate of resonance instability of the pulse. The numerical simulations demonstrate that considered self-focusing and resonant-modulation instability are essentially three dimensional processes. Laser field evolution in each transverse cross section of the pulse is synchronized by the regular structure of plasma wave that is excited by the pulse. The considered effect of resonant modulation has a threshold. For the pulses with the intensity below the threshold the refraction dominates and no modulation appears. The studied phenomenon can be referred to as the Self-Resonant Wakefield (SRWF) excitation that is driven by self-focusing and self-modulation of laser pulse with quite a moderate initial duration. In fact, this method of excitation differs from both suggested in Ref.1 (PBWA) and in Refs.2,3 (LWFA), being even more than the combination of these concepts. Unlike the first scheme it does not require initially the two-frequency laser pulse, since the modulation here appears in the most natural way due to evolution of the pulse. In contrast with the LWFA, the considered SRWF generation scheme gives the possibility to raise the intensity of wake-excitation due to pulse self-focusing ( initial stage) and self modulation (second stage)

  14. Pulse excitation experiment of a superconducting generator; chodendo hatsudenki no parusu reiki shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyaike, K.; Iimura, T.; Nishimura, M.; Arata, M.; Takabatake, M. [Toshiba Ltd., Tokyo (Japan); Yamada, M.; Kanamori, Y.; Hasegawa, K. [Kansai Electric Power Co., Inc., Osaka (Japan)

    1999-11-10

    Efficiency improvement, improvement in the stability of electric power system it is miniaturization and weight reduction can be expected in comparison with the traditional-model generator superconducting generator. We produce the small superconducting generator for the experiment experimentally, and performance characteristics verification of the generator is carried out experimentally. This time, pulse excitation test of the superconducting generator was carried out, and the ac loss of the conductor by the pulse excitation investigated the effect on the quenching current. (NEDO)

  15. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-10-15

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  16. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    International Nuclear Information System (INIS)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian

    2011-01-01

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  17. Improving the efficiency of a fluorescent Xe dielectric barrier light source using short pulse excitation

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Richter, P; Maros, I; Balazs, L

    2008-01-01

    Operation of a Xe dielectric barrier discharge lamp producing 147-172 nm VUV radiation is investigated both theoretically and experimentally. Xe gas pressure varies between 100 and 300 mbar, and the glass body of the lamp is coated with LAP (green) phosphor to convert radiation into the visible part of the spectrum. Simulation results predict improved discharge efficiencies reaching 67% when excited by a fast rise-time, short pulse (∼200 ns) driving waveform. In this case most power deposited into the plasma efficiently produces Xe 2 * excimers, while other energy dissipation processes (ion heating, e-Xe elastic collision) are kept at a low rate. Simulation and experimental results are compared in terms of discharge efficacy and show good agreement. A lamp efficacy value as high as 80 lm W -1 is demonstrated experimentally

  18. Peculiarities of the propagation of multidimensional extremely short optical pulses in germanene

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, Alexander V., E-mail: alex_zhukov@sutd.edu.sg [Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore (Singapore); Bouffanais, Roland [Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore (Singapore); Konobeeva, Natalia N. [Volgograd State University, 400062 Volgograd (Russian Federation); Belonenko, Mikhail B. [Laboratory of Nanotechnology, Volgograd Institute of Business, 400048 Volgograd (Russian Federation); Volgograd State University, 400062 Volgograd (Russian Federation)

    2016-09-07

    Highlights: • Established dynamics of ultra-short pulses in germanene. • Studied balance between dispersive and nonlinear effects in germanene. • Spin–orbit interaction effect onto pulse propagation. - Abstract: In this Letter, we study the propagation characteristics of both two-dimensional and three-dimensional extremely short optical pulses in germanene. A distinguishing feature of germanene—in comparison with other graphene-like structures—is the presence of a significant spin–orbit interaction. The account of this interaction has a significant impact on the evolution of extremely short pulses in such systems. Specifically, extremely short optical pulses, consisting of two electric field oscillations, cause the appearance of a tail associated with the excitation of nonlinear waves. Due to the large spin–orbit interaction in germanene, this tail behind the main pulse is much smaller in germanene-based samples as compared to graphene-based ones, thereby making germanene a preferred material for the stable propagation of pulses along the sample.

  19. Coherent, Short-Pulse X-ray Generation via Relativistic Flying Mirrors

    Directory of Open Access Journals (Sweden)

    Masaki Kando

    2018-04-01

    Full Text Available Coherent, Short X-ray pulses are demanded in material science and biology for the study of micro-structures. Currently, large-sized free-electron lasers are used; however, the available beam lines are limited because of the large construction cost. Here we review a novel method to downsize the system as well as providing fully (spatially and temporally coherent pulses. The method is based on the reflection of coherent laser light by a relativistically moving mirror (flying mirror. Due to the double Doppler effect, the reflected pulses are upshifted in frequency and compressed in time. Such mirrors are formed when an intense short laser pulse excites a strongly nonlinear plasma wave in tenuous plasma. Theory, proof-of-principle, experiments, and possible applications are addressed.

  20. Quantum computer based on activated dielectric nanoparticles selectively interacting with short optical pulses

    International Nuclear Information System (INIS)

    Gadomskii, Oleg N; Kharitonov, Yu Ya

    2004-01-01

    The operation principle of a quantum computer is proposed based on a system of dielectric nanoparticles activated with two-level atoms - cubits, in which electric dipole transitions are excited by short intense optical pulses. It is proved that the logical operation (logical operator) CNOT (controlled NOT) is performed by means of time-dependent transfer of quantum information over 'long' (of the order of 10 4 nm) distances between spherical nanoparticles owing to the delayed interaction between them in the optical radiation field. It is shown that one-cubit and two-cubit logical operators required for quantum calculations can be realised by selectively exciting dielectric particles with short optical pulses. (quantum calculations)

  1. UV saturable absorber for short-pulse KrF laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H.; Kuranishi, H.; Ueda, K.; Takuma, H.

    1989-07-01

    A derivative of the linear tricyclic compound, acridine, is shown to beuseful as a saturable absorber for short-pulse KrF lasers. The saturationcharacteristics and absorption recovery of a methanol solution of acridine for a20-psec KrF laser pulse are reported. We obtain a saturation fluence of 1.2mJ/cm/sup 2/ and a ratio of the primary to the excited absorption cross sectionof 6.25:1.

  2. Excitation of hydrogen atom by ultrashort laser pulses in optically dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Calisti, A. [Aix Marseille Universite, CNRS, PIIM, Marseille (France); Astapenko, V.A. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Lisitsa, V.S. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Russian Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)

    2017-10-15

    The features of excitation of a hydrogen atom by ultrashort laser pulses (USP) with a Gaussian envelope in optically dense plasma at a Lyman-beta transition are studied theoretically. The problem is of interest for diagnostics of optically dense media. USP have two doubtless advantages over conventional laser excitation: (a) the USP carrier frequency is shifted to the region of short wavelengths allowing exciting atoms from the ground state and (b) the wide spectrum of USP allows them to penetrate into optically dense media to much longer distances as compared with monochromatic radiation. As actual realistic cases, two examples are considered: hot rarefied plasma (the coronal limit) and dense cold plasma (the Boltzmann equilibrium). Universal expressions for the total probability of excitation of the transition under consideration are obtained in view of absorption of radiation in a medium. As initial data for the spectral form of a line, the results of calculations by methods of molecular dynamics are used. The probability of excitation of an atom is analysed for different values of problem parameters: the pulse duration, the optical thickness of a medium, and the detuning of the pulse carrier frequency from the eigenfrequency of an electron transition. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shihong [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Yancheng Medical College, Jiangsu (China); The First People' s Hospital of Yancheng City, Jiangsu 224005 (China); Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, California 92161 and Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Bae, Won C.; Du, Jiang, E-mail: jiangdu@ucsd.edu [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Hua, Yanqing [Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Zhou, Yi [The First People' s Hospital of Yancheng City, Jiangsu 224005 (China)

    2014-02-15

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can

  4. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    International Nuclear Information System (INIS)

    Li, Shihong; Chang, Eric Y.; Chung, Christine B.; Bae, Won C.; Du, Jiang; Hua, Yanqing; Zhou, Yi

    2014-01-01

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2 * s and/or relative fractions of short and long T2 * s. Results: For all bone samples UTE T2 * signal decay showed bicomponent behavior. A higher short T2 * fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2 * fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2 * fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2 * components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2 * s and relative fractions can be assessed using UTE bicomponent

  5. Laser pulses for coherent xuv Raman excitation

    Science.gov (United States)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  6. UV saturable absorber for short-pulse KrF laser systems.

    Science.gov (United States)

    Nishioka, H; Kuranishi, H; Ueda, K; Takuma, H

    1989-07-01

    A derivative of the linear tricyclic compound, acridine, is shown to be useful as a saturable absorber for short-pulse KrF lasers. The saturation characteristics and absorption recovery of a methanol solution of acridine for a 20-psec KrF laser pulse are reported. We obtain a saturation fluence of 1.2 mJ/cm(2) and a ratio of the primary to the excited absorption cross section of 6.25:1.

  7. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  8. Combining multi-pulse excitation and chirp coding in contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Crocco, M; Sciallero, C; Trucco, A; Pellegretti, P

    2009-01-01

    The development of techniques to separate the response of the contrast agent from that of the biological tissues is of great importance in ultrasound medical imaging. In the literature, one can find various solutions involving the use of multiple transmitted signals and the weighted sum of related echoes. In this paper, the combination of one of these multi-pulse techniques with a coded excitation is proposed and assessed. Coded excitation has been used mainly to increase the signal-to-noise ratio (SNR) and the penetration depth, provided that a matched filtering is applied in the reception chain. However, it has been shown that a signal with a long duration time also increases the backscattered echoes produced by the microbubbles and, consequently, the contrast-to-tissue ratio. Therefore, the implementation of a multi-pulse technique using a long coded pulse can yield a better contrast-to-tissue ratio and SNR. This paper investigates the combination of the linear chirp pulse with a multi-pulse technique based on the transmission of three pulses. The performance was evaluated using both simulated and real signals, assessing the improvement in the contrast-to-tissue ratio and SNR, the visual quality of the images obtained and the axial accuracy. A comparison with the same multi-pulse technique implemented using a traditional amplitude-modulated pulse revealed that the deployment of a chirp pulse produces several noticeable advantages and only a minor drawback

  9. Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (lambda approx 172 nm)

    CERN Document Server

    Carman, R J

    2003-01-01

    A detailed rate-equation analysis has been used to simulate the plasma kinetics in a pulsed-excited dielectric barrier discharge in xenon, under operating conditions where the discharge structure is spatially homogeneous. The one-dimensional model, incorporating 14 species and 70 reaction processes, predicts results that are in good agreement with experimental measurements of the electrical characteristics, and optical (vacuum-ultraviolet (VUV) and visible) pulse shapes. The model reveals that electrical breakdown of the discharge gap occurs via a fast-moving ionization/excitation wavefront that starts close to the anode dielectric and propagates towards the cathode at approx 3x10 sup 5 m s sup - sup 1. The wavefront appears as a result of successive avalanches of electrons that propagate across the discharge gap after release from the cathode dielectric. During breakdown, the mean electron energy in the bulk plasma is close to optimum for preferential excitation of the Xe* 1s sub 4 sub , sub 5 states that fe...

  10. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  11. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  12. Pure-Phase Selective Excitation in Fast-Relaxing Systems

    Science.gov (United States)

    Zangger, Klaus; Oberer, Monika; Sterk, Heinz

    2001-09-01

    Selective pulses have been used frequently for small molecules. However, their application to proteins and other macromolecules has been limited. The long duration of shaped-selective pulses and the short T2 relaxation times in proteins often prohibited the use of highly selective pulses especially on larger biomolecules. A very selective excitation can be obtained within a short time by using the selective excitation sequence presented in this paper. Instead of using a shaped low-intensity radiofrequency pulse, a cluster of hard 90° pulses, delays of free precession, and pulsed field gradients can be used to selectively excite a narrow chemical shift range within a relatively short time. Thereby, off-resonance magnetization, which is allowed to evolve freely during the free precession intervals, is destroyed by the gradient pulses. Off-resonance excitation artifacts can be removed by random variation of the interpulse delays. This leads to an excitation profile with selectivity as well as phase and relaxation behavior superior to that of commonly used shaped-selective pulses. Since the evolution of scalar coupling is inherently suppressed during the double-selective excitation of two different scalar-coupled nuclei, the presented pulse cluster is especially suited for simultaneous highly selective excitation of N-H and C-H fragments. Experimental examples are demonstrated on hen egg white lysozyme (14 kD) and the bacterial antidote ParD (19 kD).

  13. Heat pulse excitability of vestibular hair cells and afferent neurons

    Science.gov (United States)

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  14. Molecular spinning by a chiral train of short laser pulses

    Science.gov (United States)

    Floß, Johannes; Averbukh, Ilya Sh.

    2012-12-01

    We provide a detailed theoretical analysis of molecular rotational excitation by a chiral pulse train, a sequence of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. Molecular rotation with a preferential rotational sense (clockwise or counterclockwise) can be excited by this scheme. We show that the directionality of the rotation is caused by quantum interference of different excitation pathways. The chiral pulse train is capable of selective excitation of molecular isotopologs and nuclear spin isomers in a mixture. We demonstrate this using 14N2 and 15N2 as examples for isotopologs and para- and ortho-nitrogen as examples for nuclear-spin isomers.

  15. Development of the dense plasma focus for short-pulse applications

    Science.gov (United States)

    Bennett, N.; Blasco, M.; Breeding, K.; Constantino, D.; DeYoung, A.; DiPuccio, V.; Friedman, J.; Gall, B.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Misch, M.; Molnar, S.; Morgan, G.; O'Brien, R.; Robbins, L.; Rundberg, R.; Sipe, N.; Welch, D. R.; Yuan, V.

    2017-01-01

    The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. In this paper, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. The resulting neutron pulse widths are reduced by an average of 21 ±9 % from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8 ±30.7 ns FWHM and 1.84 ±0.49 ×1012 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirm the role of the reentrant cathode. A hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.

  16. Quinary excitation method for pulse compression ultrasound measurements.

    Science.gov (United States)

    Cowell, D M J; Freear, S

    2008-04-01

    A novel switched excitation method for linear frequency modulated excitation of ultrasonic transducers in pulse compression systems is presented that is simple to realise, yet provides reduced signal sidelobes at the output of the matched filter compared to bipolar pseudo-chirp excitation. Pulse compression signal sidelobes are reduced through the use of simple amplitude tapering at the beginning and end of the excitation duration. Amplitude tapering using switched excitation is realised through the use of intermediate voltage switching levels, half that of the main excitation voltages. In total five excitation voltages are used creating a quinary excitation system. The absence of analogue signal generation and power amplifiers renders the excitation method attractive for applications with requirements such as a high channel count or low cost per channel. A systematic study of switched linear frequency modulated excitation methods with simulated and laboratory based experimental verification is presented for 2.25 MHz non-destructive testing immersion transducers. The signal to sidelobe noise level of compressed waveforms generated using quinary and bipolar pseudo-chirp excitation are investigated for transmission through a 0.5m water and kaolin slurry channel. Quinary linear frequency modulated excitation consistently reduces signal sidelobe power compared to bipolar excitation methods. Experimental results for transmission between two 2.25 MHz transducers separated by a 0.5m channel of water and 5% kaolin suspension shows improvements in signal to sidelobe noise power in the order of 7-8 dB. The reported quinary switched method for linear frequency modulated excitation provides improved performance compared to pseudo-chirp excitation without the need for high performance excitation amplifiers.

  17. Ultrafast dynamics of laser-pulse excited semiconductors: non-Markovian quantum kinetic equations with nonequilibrium correlations

    Directory of Open Access Journals (Sweden)

    V.V.Ignatyuk

    2004-01-01

    Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.

  18. Pulsed excitation terahertz tomography - multiparametric approach

    Science.gov (United States)

    Lopato, Przemyslaw

    2018-04-01

    This article deals with pulsed excitation terahertz computed tomography (THz CT). Opposite to x-ray CT, where just a single value (pixel) is obtained, in case of pulsed THz CT the time signal is acquired for each position. Recorded waveform can be parametrized - many features carrying various information about examined structure can be calculated. Based on this, multiparametric reconstruction algorithm was proposed: inverse Radon transform based reconstruction is applied for each parameter and then fusion of results is utilized. Performance of the proposed imaging scheme was experimentally verified using dielectric phantoms.

  19. Modulation of the electroluminescence emission from ZnO/Si NCs/p-Si light-emitting devices via pulsed excitation

    Science.gov (United States)

    López-Vidrier, J.; Gutsch, S.; Blázquez, O.; Hiller, D.; Laube, J.; Kaur, R.; Hernández, S.; Garrido, B.; Zacharias, M.

    2017-05-01

    In this work, the electroluminescence (EL) emission of zinc oxide (ZnO)/Si nanocrystals (NCs)-based light-emitting devices was studied under pulsed electrical excitation. Both Si NCs and deep-level ZnO defects were found to contribute to the observed EL. Symmetric square voltage pulses (50-μs period) were found to notably enhance EL emission by about one order of magnitude. In addition, the control of the pulse parameters (accumulation and inversion times) was found to modify the emission lineshape, long inversion times (i.e., short accumulation times) suppressing ZnO defects contribution. The EL results were discussed in terms of the recombination dynamics taking place within the ZnO/Si NCs heterostructure, suggesting the excitation mechanism of the luminescent centers via a combination of electron impact, bipolar injection, and sequential carrier injection within their respective conduction regimes.

  20. Emission Behavior of Crystalline 1,4-Bis(4-phenylthiophene-2-yl)benzene Film Under Optical Excitation with Ultra Short Pulses.

    Science.gov (United States)

    Mochizuki, Hiroyuki; Kawaguchi, Yoshizo; Sasaki, Fumio; Hotta, Shu

    2016-04-01

    We evaluated emission behaviors of crystallized films of 1,4-bis(5-phenylthiophene-2-yl)benzene (AC5) in detail which was a representative thiophene/phenylene co-oligomer. The crystallized AC5 films were prepared by vapor deposition onto a substrate and thermal treatment. The AC5 films consisted of a crystalline domain with the size of several tens of micrometers. We used femtosecond laser pulses for the excitation of the AC5 films. As a result, the femtosecond laser pulses did not induce re-absorption above excitation energy densities of their laser threshold. The obtained gain value for AC5 crystallized film was large, over 150 cm-1. Furthermore, the emission cross section of the crystallized AC5 film was nearly 10(-16) cm2.

  1. Heat pulse excitability of vestibular hair cells and afferent neurons.

    Science.gov (United States)

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in protein biophysics and manipulate cellular excitability. Copyright © 2016 the American Physiological Society.

  2. Broadband excitation by chirped pulses: application to single electron spins in diamond

    International Nuclear Information System (INIS)

    Niemeyer, I; Shim, J H; Zhang, J; Suter, D; Taniguchi, T; Teraji, T; Abe, H; Onoda, S; Yamamoto, T; Ohshima, T; Isoya, J; Jelezko, F

    2013-01-01

    Pulsed excitation of broad spectra requires very high field strengths if monochromatic pulses are used. If the corresponding high power is not available or not desirable, the pulses can be replaced by suitable low-power pulses that distribute the power over a wider bandwidth. As a simple case, we use microwave pulses with a linear frequency chirp. We use these pulses to excite spectra of single nitrogen–vacancy centres in a Ramsey experiment. Compared to the conventional Ramsey experiment, our approach increases the bandwidth by at least an order of magnitude. Compared to the conventional continuous wave-ODMR experiment, the chirped Ramsey experiment does not suffer from power broadening and increases the resolution by at least an order of magnitude. As an additional benefit, the chirped Ramsey spectrum contains not only ‘allowed’ single quantum transitions, but also ‘forbidden’ zero- and double quantum transitions, which can be distinguished from the single quantum transitions by phase-shifting the readout pulse with respect to the excitation pulse or by variation of the external magnetic field strength. (paper)

  3. A novel low cost pulse excitation source to study trap spectroscopy of persistent luminescent materials

    Science.gov (United States)

    Chandrasekhar, Ngangbam; Singh, Nungleppam Monorajan; Gartia, R. K.

    2018-04-01

    Luminescent techniques require one or the other source of excitations which may vary from high cost X-rays, γ-rays, β-rays etc. to low cost LED. Persistent luminescent materials or Glow-in-the-Dark phosphors are the optical harvesters which store the optical energy from day light illuminating a whole night. They are so sensitive that they can be excited even with the low light of firefly. Therefore, instead of using a high cost excitation source authors have developed a low cost functioning of excitation source controlling short pulses of LED to excite persistent phosphors with the aid of ExpEYES Junior (Hardware/software framework developed by IUAC, New Delhi). Using this, the authors have excited the sample under investigation upto 10 ms. Trap spectroscopy of the pre-excited sample with LED is studied using Thermoluminescence (TL) technique. In this communication, development of the excitation source is discussed and demonstrate the its usefulness in the study of trap spectroscopy of commercially available CaS:Eu2+, Sm3+. Trapping parameters are also evaluated using Computerized Glow Curve Deconvolution (CGCD) technique.

  4. Short-Lived Electronically-Excited Diatomic Molecules Cooled via Supersonic Expansion from a Plasma Microjet

    Science.gov (United States)

    Houlahan, Thomas J., Jr.; Su, Rui; Eden, Gary

    2014-06-01

    Using a pulsed plasma microjet to generate short-lived, electronically-excited diatomic molecules, and subsequently ejecting them into vacuum to cool via supersonic expansion, we are able to monitor the cooling of molecules having radiative lifetimes as low as 16 ns. Specifically, we report on the rotational cooling of He_2 molecules in the d^3Σ_u^+, e^3Π_g, and f^3Σ_u^+ states, which have lifetimes of 25 ns, 67 ns, and 16 ns, respectively. The plasma microjet is driven with a 2.6 kV, 140 ns high-voltage pulse (risetime of 20 ns) which, when combined with a high-speed optical imaging system, allows the nonequilibrium rotational distribution for these molecular states to be monitored as they cool from 1200 K to below 250 K with spatial and temporal resolutions of below 10 μm and 10 ns, respectively. The spatial and temporal resolution afforded by this system also allows the observation of excitation transfer between the f^3Σ_u^+ state and the lower lying d^3Σ_u^+ and e^3Π_g states. The extension of this method to other electronically excited diatomics with excitation energies >5 eV will also be discussed.

  5. Wave equations for pulse propagation

    International Nuclear Information System (INIS)

    Shore, B.W.

    1987-01-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  6. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    Science.gov (United States)

    de Araujo, Luís E. E.

    2010-09-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.

  7. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    Science.gov (United States)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  8. Channels of energy redistribution in short-pulse laser interactions with metal targets

    International Nuclear Information System (INIS)

    Zhigilei, Leonid V.; Ivanov, Dmitriy S.

    2005-01-01

    The kinetics and channels of laser energy redistribution in a target irradiated by a short, 1 ps, laser pulse is investigated in computer simulations performed with a model that combines molecular dynamics (MD) simulations with a continuum description of the laser excitation and relaxation of the conduction band electrons, based on the two-temperature model (TTM). The energy transferred from the excited electrons to the lattice splits into several parts, namely the energy of the thermal motion of the atoms, the energy of collective atomic motions associated with the relaxation of laser-induced stresses, the energy carried away from the surface region of the target by a stress wave, the energy of quasi-static anisotropic stresses, and, at laser fluences above the melting threshold, the energy transferred to the latent heat of melting and then released upon recrystallization. The presence of the non-thermal channels of energy redistribution (stress wave and quasi-static stresses), not accounted for in the conventional TTM model, can have important implications for interpretation of experimental results on the kinetics of thermal and mechanical relaxation of a target irradiated by a short laser pulse as well as on the characteristics of laser-induced phase transformations. The fraction of the non-thermal energy in the total laser energy partitioning increases with increasing laser fluence

  9. Multiple pulse traveling wave excitation of neon-like germanium

    International Nuclear Information System (INIS)

    Moreno, J. C.; Nilsen, J.; Silva, L. B. da

    1995-01-01

    Traveling wave excitation has been shown to significantly increase the output intensity of the neon-like germanium x-ray laser. The driving laser pulse consisted of three 100 ps Gaussian laser pulses separated by 400 ps. Traveling wave excitation was employed by tilting the wave front of the driving laser by 45 degrees to match the propagation speed of the x-ray laser photons along the length of the target. We show results of experiments with the traveling wave, with no traveling wave, and against the traveling wave and comparisons to a numerical model. Gain was inferred from line intensity measurements at two lengths

  10. Harmonic pulsed excitation and motion detection of a vibrating reflective target.

    Science.gov (United States)

    Urban, Matthew W; Greenleaf, James F

    2008-01-01

    Elasticity imaging is an emerging medical imaging modality. Methods involving acoustic radiation force excitation and pulse-echo ultrasound motion detection have been investigated to assess the mechanical response of tissue. In this work new methods for dynamic radiation force excitation and motion detection are presented. The theory and model for harmonic motion detection of a vibrating reflective target are presented. The model incorporates processing of radio frequency data acquired using pulse-echo ultrasound to measure harmonic motion with amplitudes ranging from 100 to 10,000 nm. A numerical study was performed to assess the effects of different parameters on the accuracy and precision of displacement amplitude and phase estimation and showed how estimation errors could be minimized. Harmonic pulsed excitation is introduced as a multifrequency radiation force excitation method that utilizes ultrasound tonebursts repeated at a rate f(r). The radiation force, consisting of frequency components at multiples of f(r), is generated using 3.0 MHz ultrasound, and motion detection is performed simultaneously with 9.0 MHz pulse-echo ultrasound. A parameterized experimental analysis showed that displacement can be measured with small errors for motion with amplitudes as low as 100 nm. The parameterized numerical and experimental analyses provide insight into how to optimize acquisition parameters to minimize measurement errors.

  11. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    OpenAIRE

    de Araujo, LEE

    2010-01-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emi...

  12. Electromagnetic excitation of a generic cavity with a variable e-beam pulse

    International Nuclear Information System (INIS)

    Fleetwood, R.; Kerris, K.; Merkel, G.; Roberts, H.; Smith, M.

    1987-01-01

    Relativistic electron-beam nose-erosion techniques have been employed to produce an electron beam with variable pulse shape and bremsstrahlung capability (''dial a pulse''). This capability has been employed to excite a large number of electromagnetic fields inside a canonical cavity. Electron-beam and bremsstrahlung pulse-shape parameters have been varied to produce changes in the electromagnetic cavity response. For example, generic cavity test parameters such as displacement currents or conduction currents can be emphasized or de-emphasized. A theoretical interpretation of these electromagnetic excitations is presented

  13. Modeling pulsed excitation for gas-phase laser diagnostics

    International Nuclear Information System (INIS)

    Settersten, Thomas B.; Linne, Mark A.

    2002-01-01

    Excitation dynamics for pulsed optical excitation are described with the density-matrix equations and the rate equations for a two-level system. A critical comparison of the two descriptions is made with complete and consistent formalisms that are amenable to the modeling of applied laser-diagnostic techniques. General solutions, resulting from numerical integration of the differential equations describing the excitation process, are compared for collisional conditions that range from the completely coherent limit to the steady-state limit, for which the two formalisms are identical. This analysis demonstrates the failure of the rate equations to correctly describe the transient details of the excitation process outside the steady-state limit. However, reasonable estimates of the resultant population are obtained for nonsaturating (linear) excitation. This comparison provides the laser diagnostician with the means to evaluate the appropriate model for excitation through a simple picture of the breakdown of the rate-equation validity

  14. Enhanced performance of an EUV light source (λ = 84 nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon

    International Nuclear Information System (INIS)

    Carman, R J; Kane, D M; Ward, B K

    2010-01-01

    The electrical and optical characteristics of a dielectric barrier discharge (DBD) based neon excimer lamp generating output in the extreme ultraviolet (EUV) spectral range (λ = 84 nm) have been investigated experimentally. We report a detailed comparison of lamp performance for both pulsed and sinusoidal voltage excitation waveforms, using otherwise identical operating conditions. The results show that pulsed voltage excitation yields a ∼50% increase in the overall electrical to EUV conversion efficiency compared with sinusoidal waveforms, when operating in the pressure range 500-900 mbar. Pulsed operation allows greater control of parameters associated with the temporal evolution of the EUV pulse shapes (risetime, instantaneous peak power). The Ne DBD based source is also found to be highly monochromatic with respect to its spectral output from the second continuum band at λ ∼ 84 nm (5 nm FWHM). This continuum band dominates the spectral emission over the wavelength range 30-550 nm. Lamp performance; as measured by the overall EUV output energy, electrical to EUV conversion efficiency and spectral purity at λ ∼ 84 nm; improves with increasing gas pressure up to p = 900 mbar.

  15. Luminescence from ZnSe excited by picosecond mid-infrared FEL pulses

    International Nuclear Information System (INIS)

    Mitsuyu, T.; Suzuki, T.; Tomimasu, T.

    1998-01-01

    We have observed blue band-edge emission from a ZnSe crystal under irradiation of mid-infrared picosecond free electron laser (FEL) pulses. The emission characteristics including spectrum, excitation power dependence, excitation wavelength dependence, and decay time have been investigated. The experimental results have indicated that it is difficult to understand the excitation process by multiphoton excitation, thermal excitation, or excitation through mid-gap levels. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. A differential optical interferometer for measuring short pulses of surface acoustic waves.

    Science.gov (United States)

    Shaw, Anurupa; Teyssieux, Damien; Laude, Vincent

    2017-09-01

    The measurement of the displacements caused by the propagation of a short pulse of surface acoustic waves on a solid substrate is investigated. A stabilized time-domain differential interferometer is proposed, with the surface acoustic wave (SAW) sample placed outside the interferometer. Experiments are conducted with surface acoustic waves excited by a chirped interdigital transducer on a piezoelectric lithium niobate substrate having an operational bandwidth covering the 200-400MHz frequency range and producing 10-ns pulses with 36nm maximum out-of-plane displacement. The interferometric response is compared with a direct electrical measurement obtained with a receiving wide bandwidth interdigital transducer and good correspondence is observed. The effects of varying the path difference of the interferometer and the measurement position on the surface are discussed. Pulse compression along the chirped interdigital transducer is observed experimentally. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ultra-short laser pulses. Petawatt and femtosecond

    International Nuclear Information System (INIS)

    Lemoine, P.

    1999-01-01

    This book deals with a series of new results obtained thanks to the use of ultra-short laser pulses. This branch of physics has made incredible progresses during the last 25 years. Ultra-short laser pulses offer the opportunity to explore the domain of ultra-high energies and of ultra-short duration events. Applications are various, from controlled nuclear fusion to eye surgery and to more familiar industrial applications such as electronics. (J.S.)

  18. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James M [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Trump, Darryl D [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Bletzinger, Peter [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Ganguly, Biswa N [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7919 (United States)

    2006-10-21

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s{sup -1}. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of {approx}3 x 10{sup 15} cm{sup -3} at 25 W. The maximum ozone production achieved by short-pulse excitation was {approx}8.5 x 10{sup 15} cm{sup -3} at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  19. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    Williamson, James M; Trump, Darryl D; Bletzinger, Peter; Ganguly, Biswa N

    2006-01-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s -1 . The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ∼3 x 10 15 cm -3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ∼8.5 x 10 15 cm -3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level

  20. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  1. Short pulse neutron generator

    Science.gov (United States)

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  2. The pulse duration of electrical stimulation influences H-reflexes but not corticospinal excitability for tibialis anterior.

    Science.gov (United States)

    Hindle, Alyssa R; Lou, Jenny W H; Collins, David F

    2014-10-01

    The afferent volley generated by neuromuscular electrical stimulation (NMES) influences corticospinal (CS) excitability and frequent NMES sessions can strengthen CS pathways, resulting in long-term improvements in function. This afferent volley can be altered by manipulating NMES parameters. Presently, we manipulated one such parameter, pulse duration, during NMES over the common peroneal nerve and assessed the influence on H-reflexes and CS excitability. We hypothesized that compared with shorter pulse durations, longer pulses would (i) shift the H-reflex recruitment curve to the left, relative to the M-wave curve; and (ii) increase CS excitability more. Using 3 pulse durations (50, 200, 1000 μs), M-wave and H-reflex recruitment curves were collected and, in separate experiments, CS excitability was assessed by comparing motor evoked potentials elicited before and after 30 min of NMES. Despite finding a leftward shift in the H-reflex recruitment curve when using the 1000 μs pulse duration, consistent with a larger afferent volley for a given efferent volley, the increases in CS excitability were not influenced by pulse duration. Hence, although manipulating pulse duration can alter the relative recruitment of afferents and efferents in the common peroneal nerve, under the present experimental conditions it is ineffective for maximizing CS excitability for rehabilitation.

  3. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    Science.gov (United States)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  4. Stimulated brillouin backscatter of a short-pulse laser

    International Nuclear Information System (INIS)

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-01-01

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x' = x - V g t, t' = t, where V g is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency)

  5. Characterizing human activity induced impulse and slip-pulse excitations through structural vibration

    Science.gov (United States)

    Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young

    2018-02-01

    Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.

  6. Synthesis of ultrawideband radiation of combined antenna arrays excited by nanosecond bipolar voltage pulses

    International Nuclear Information System (INIS)

    Koshelev, V I; Plisko, V V; Sevostyanov, E A

    2017-01-01

    To broaden the spectrum of high-power ultrawideband radiation, it is suggested to synthesize an electromagnetic pulse summing the pulses of different length in free space. On the example of model pulses corresponding to radiation of combined antennas excited by bipolar voltage pulses of the length of 2 and 3 ns, the possibility of twofold broadening of the radiation spectrum was demonstrated. Radiation pulses with the spectrum width exceeding three octaves were obtained. Pattern formation by the arrays of different geometry excited by the pulses having different time shifts was considered. Optimum array structure with the pattern maximum in the main direction was demonstrated on the example of a 2×2 array. (paper)

  7. Broadband and short (10-ps) pulse generation on Nova

    International Nuclear Information System (INIS)

    Perry, M.D.; Browning, D.; Bibeau, C.; Patterson, F.G.; Wilcox, R.; Henesian, M.

    1990-01-01

    The ability to produce high power broadband pulses for purposes of focal spot beam smoothing has recently become an important issue in inertial confinement fusion (ICF). As the first step toward the generation and propagation of such pulses on Nova, the authors have performed a series of experiments with 10-ps pulses. Aside from the inherently broad bandwidth, these short pulses have important applications in ICF experiments and x-ray laser research. The author's experimental results are discussed. The short pulses were produced by diffraction grating pulse compression of chirped pulses formed from self-phase modulation in a single-mode 10-m fused silica fiber. Use of such a short fiber produces a nonlinearly chirped spectrum of 0.74 nm. The central nearly linearly chirped 0.26 nm is selected by polarization discrimination and compressed using 1800-line/mm diffraction gratings to a nearly Gaussian pulse of 10 ps FWHM with an energy contrast ratio of 20:1. This 1-nJ pulse is injected into a Nova amplifier chain with selected amplifiers unfired

  8. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.

    1979-01-01

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  9. Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals

    International Nuclear Information System (INIS)

    Giri, Ashutosh; Hopkins, Patrick E.

    2015-01-01

    Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states

  10. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  11. Extremely short light pulses: generation; diagnostics, and application in attosecond spectroscopy

    International Nuclear Information System (INIS)

    Iakovlev, V.

    2003-06-01

    The scope of the thesis includes the design of chirped mirrors, as well as theoretical investigations in the fields of high-harmonic generation and laser-dressed Auger decay, the unifying aspect being the presence of extremely short light pulses and physical processes taking place on a femtosecond scale. The main results of the research are the following: 1) It was shown that efficient global optimization of chirped mirrors is possible with an adapted version of the memetic algorithm (also known as hybrid genetic algorithm). 2) The analysis of high-harmonic spectra generated by a few-cycle laser pulse can reveal the electric field of the pulse in the vicinity of its envelope peak. The method developed for this purpose can also be regarded as a method to measure the carrier-envelope phase of laser pulses, which is more robust and has a larger range of applicability compared to the simple analysis of the cut-off region of high-harmonic spectra. 3) A quantum theory of time-resolved Auger spectroscopy was developed. Based on the essential states method, closed-form expressions for probability amplitudes were derived. The theory lays the foundation for the interpretation of experiments that probe electronic motion during atomic excitation, deexcitation, and ionization. (author)

  12. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  13. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  14. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  15. Spectral tuning via multi-phonon-assisted stokes and anti-stokes excitations in LaF{sub 3}: Tm{sup 3+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dangli, E-mail: gaodangli@163.com [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Shaanxi Key Laboratory of Nano Materials and Technology, Xi' an, Shaanxi 710055 (China); Tian, Dongping, E-mail: dptian@xauat.edu.cn [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Chong, Bo; Li, Long [College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Zhang, Xiangyu [College of Science, Chang' an University, Xi' an, Shaanxi 710064 (China)

    2016-09-05

    We present a facile and highly effective method to tailor upconversion (UC) emission from LaF{sub 3}: Tm{sup 3+} nanoparticles (NPs) by adjusting ambient temperature from 20 K to 400 K accompanied with the pulse laser excitation. Spectral tuning mechanism controlled by ambient temperature at pulse laser excitation is revealed, and a mechanism based on the modification on multi-phonon relaxation rates for the rapid population of intermediate level {sup 3}H{sub 4} and multi-phonon-assisted excited state absorption is proposed. Based on multi-phonon relaxation theory and time-resolved photoluminescence studies, it is reasonable that UC luminescence under short-pulse laser excitation mainly originates from the ions at/near the surface of NPs. These exciting findings in ambient temperature accompanied with the short-pulse excitation dependent UC selectivity offer a general approach to tailoring lanthanide related UC emissions, which will benefit multicolor displays and imaging. - Graphical abstract: An effective method to tailor upconversion from LaF{sub 3}: Tm{sup 3+} nanoparticles by adjusting ambient temperature accompanied with the short-pulse laser excitation is presented and the spectral tuning mechanism based the modification on multi-phonon relaxation rate and multi-phonon-assisted excited state absorption is also revealed. - Highlights: • The luminescence switching is controlled by temperature and pulse duration. • The mechanism based on the multi-phonon-assisted excitations is proposed. • Blue luminescence under short-pulse excitation originates from the surface ions. • Temperature has a big effect on luminescence color output.

  16. Detection of salmonella on globe fruits using pulse excited magnetoelastic biosensors

    Science.gov (United States)

    Wikle, Howard C.; Du, Songtao; Prorok, Barton C.; Chin, Bryan A.

    2015-05-01

    This paper describes the results of a research project to investigate magnetoelastic (ME) biosensors actuated with a pulse excitation to measure the concentration of Salmonella Typhimurium of globe fruits. The ME biosensors are based on an acoustic wave resonator platform that is a freestanding (free-free) thin ribbon of magnetostrictive material with a lengthto- width ratio of 5:1. A biorecognition probe coated on the surface of the resonator platform binds with a targeted pathogen, i.e. E2 phage that binds with S. Typhimurium. The biosensor was actuated to vibrate longitudinally such that the resonant frequency depended primarily on the length of sensor and its overall mass. A pulsed excitation and measurement system was used to actuate micron scale ME biosensors to vibrate. The biosensor responds in a ring-down manner, a damped decay of the resonance amplitude, from which the resonant frequency was measured. An increase in mass due to the binding of the target pathogen resulted in a decrease in the resonant frequency. The pulsed excitation and measurement system that was developed under this effort and the characterization of its performance on the measurement of Salmonella concentrations on globe fruits is described.

  17. High-voltage short-fall pulse generator

    International Nuclear Information System (INIS)

    Dolbilov, G.V.; Fateev, A.A.; Petrov, V.A.

    1986-01-01

    Powerful high-voltage pulses with short fall times and relatively low afterpulse amplitude are required for the deflection systems of accelerators. A generator is described that provides, into a 75-ohm load, a voltage pulse of up to 100 kV with a fall time of less than 1 nsec and a relative afterpulse amplitude of less than or equal to 15%. The generator employs a short-circuited ferrite-filled line in which shock waves are formed. A magnetic section is used to increase power. The switch is a TGI1-2500/50 thyratron. The main causes of afterpulses and methods for reducing their amplitude are examined

  18. Theory of spin and lattice wave dynamics excited by focused laser pulses

    Science.gov (United States)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  19. Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation

    CERN Document Server

    Turtos, R.M.; Polovitsyn, A.; Christodoulou, S.; Salomoni, M.; Auffray, E.; Moreels, I.; Lecoq, P.; Grim, J.Q.

    2016-01-01

    Fast timing has emerged as a critical requirement for radiation detection in medical and high energy physics, motivating the search for scintillator materials with high light yield and fast time response. However, light emission rates from conventional scintillation mechanisms fundamentally limit the achievable time resolution, which is presently at least one order of magnitude slower than required for next-generation detectors. One solution to this challenge is to generate an intense prompt signal in response to ionizing radiation. In this paper, we present colloidal semiconductor nanocrystals (NCs) as promising prompt photon sources. We investigate two classes of NCs: two-dimensional CdSe nanoplatelets (NPLs) and spherical CdSe/CdS core/giant shell quantum dots (GS QDs). We demonstrate that the emission rates of these NCs under pulsed X-ray excitation are much faster than traditional mechanisms in bulk scintillators, i.e. 5d-4f transitions. CdSe NPLs have a sub-100 ps effective decay time of 77 ps and CdSe/...

  20. Steady-state pulses and superradiance in short-wavelength, swept-gain amplifiers

    International Nuclear Information System (INIS)

    Bonifacio, R.; Hopf, F.A.; Meystre, P.; Scully, M.O.

    1975-01-01

    The steady-state behavior of amplifiers in which the excitation is swept at the speed of light is discussed in the semiclassical approximation. In the present work the case where the decay time of the population is comparable to that of the polarization is examined. Pulse propagation is shown to obey a generalized sine-Gordon equation which contains the effects of atomic relaxations. The analytical expression of the steady-state pulses (SSP) gives two threshold conditions. In the region of limited gain the SSP is a broad pulse with small area which can be obtained by small signal theory. In the second region of high gain the SSP is the superradiant π pulse. Its pulse power is not limited as in usual superradiant theory because, as is shown, for a swept excitation the cooperation-length limit does not exist

  1. A UV pre-ionized dual-wavelength short-pulse high-power CO{sub 2} laser facility for laser particle acceleration research

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, N A; Mouris, J F; Davis, R W

    1994-12-01

    In this report we describe the Chalk River dual-wavelength, short-pulse, single-mode, high-power CO{sub 2} laser facility for research in laser particle acceleration and CANDU materials modifications. The facility is designed and built around UV-preionized transversely-excited atmospheric-pressure (TEA) Lumonics CO{sub 2} laser discharge modules. Peak focussed power densities of up to 2 x 10{sup 14} W/cm{sup 2} in 500 ps pulses have been obtained. (author). 10 refs., 9 figs.

  2. Ultrawide spectral broadening and compression of single extremely short pulses in the visible, uv-vuv, and middle infrared by high-order stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kalosha, V. P.; Herrmann, J.

    2003-01-01

    We present the results of a comprehensive analytical and numerical study of ultrawide spectral broadening and compression of isolated extremely short visible, uv-vuv and middle infrared (MIR) pulses by high-order stimulated Raman scattering in hollow waveguides. Spectral and temporal characteristics of the output pulses and the mechanism of pulse compression using dispersion of the gas filling and output glass window are investigated without the slowly varying envelope approximation. Physical limitations due to phase mismatch, velocity walk off, and pump-pulse depletion as well as improvements through the use of pump-pulse sequences and dispersion control are studied. It is shown that phase-locked pulses as short as ∼2 fs in the visible and uv-vuv, and 6.5 fs in the MIR can be generated by coherent scattering in impulsively excited Raman media without the necessity of external phase control. Using pump-pulse sequences, shortest durations in the range of about 1 fs for visible and uv-vuv probe pulses are predicted

  3. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter

    2015-01-01

    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...

  4. Optic fiber pulse-diagnosis sensor of traditional Chinese medicine

    Science.gov (United States)

    Ni, J. S.; Jin, W.; Zhao, B. N.; Zhang, X. L.; Wang, C.; Li, S. J.; Zhang, F. X.; Peng, G. D.

    2013-09-01

    The wrist-pulse is a kind of signals, from which a lot of physiological and pathological status of patients are deduced according to traditional Chinese medicine theories. This paper designs a new optic fiber wrist-pulse sensor that based on a group of FBGs. Sensitivity of the optic fiber wrist-pulse measurement system reaches 0.05% FS and the range reaches 50kPa. Frequency response is from 0 Hz to 5 kHz. A group of typical pulse signal is given out in the paper to compare different status of patient. It will improve quantification of pulse diagnosis greatly.

  5. Lifetime measurement of the cesium 6P3/2 state using ultrafast laser-pulse excitation and ionization

    International Nuclear Information System (INIS)

    Sell, J. F.; Patterson, B. M.; Ehrenreich, T.; Brooke, G.; Scoville, J.; Knize, R. J.

    2011-01-01

    We report a precision measurement of the cesium 6P 3/2 excited-state lifetime. Two collimated, counterpropagating thermal Cs beams cross perpendicularly to femtosecond pulsed laser beams. High timing accuracy is achieved from having excitation and ionization laser pulses which originate from the same mode-locked laser. Using pulse selection we vary the separation in time between excitation and ionization laser pulses while counting the ions produced. We obtain a Cs 6P 3/2 lifetime of 30.460(38) ns, which is a factor of two improvement from previous measurements and with an uncertainty of 0.12%, is one of the most accurate lifetime measurements on record.

  6. Semi-classical description of Rydberg atoms in strong, single-cycle electromagnetic pulses

    International Nuclear Information System (INIS)

    Jensen, R.V.; Sanders, M.M.

    1993-01-01

    Recent experimental measurements of the excitation and ionization of Rydberg atoms by single-cycle, electromagnetic pulses have revealed a variety of novel features. Because many quantum states are strongly coupled by the broadband radiation in the short pulse, the traditional methods of quantum mechanics are inadequate to account for the experimental results. We have therefore developed a semi-classical description of the interaction of both hydrogenic and non-hydrogenic atoms with single-cycle pulses of intense, electromagnetic radiation which is based on the strong correspondence theory of Percival and Richards. This theory, which was originally introduced for the description of strong atomic collisions, accounts for some of the surprising features of the experimental measurements and provides new predictions for future experimental studies

  7. Efficient method to design RF pulses for parallel excitation MRI using gridding and conjugate gradient.

    Science.gov (United States)

    Feng, Shuo; Ji, Jim

    2014-04-01

    Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.

  8. Radiation and propagation of short acoustical pulses from underground explosions

    International Nuclear Information System (INIS)

    Banister, J.R.

    1982-06-01

    Radiation and propagation of short acoustical pulses from underground nuclear explosions were analyzed. The cone of more intense radiation is defined by the ratio of sound speeds in the ground and air. The pressure history of the radiated pulse is a function of the vertical ground-motion history, the range, the burial depth, and the velocity of longitudinal seismic waves. The analysis of short-pulse propagation employed an N-wave model with and without enegy conservation. Short pulses with initial wave lengths less than 100 m are severely attenuated by the energy loss in shocks and viscous losses in the wave interior. The methods developed in this study should be useful for system analysis

  9. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Sarpe, Cristian; Jelzow, Nikolai [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Lillevang, Lasse H. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Götte, Nadine; Zielinski, Bastian [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Balling, Peter [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Senftleben, Arne [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Baumert, Thomas, E-mail: baumert@physik.uni-kassel.de [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany)

    2016-06-30

    Highlights: • Temporally asymmetric shaped femtosecond laser pulses lead to excitation over smaller area and larger depth in water. • Transient optical properties are measured radially resolved by spectral interference in an imaging geometry. • Radially resolved spectral interference shows indications of nonlinear propagation effects at high fluences. - Abstract: In this work, laser excitation of water under ambient conditions is investigated by radially resolved common-path spectral interferometry. Water, as a sample system for dielectric materials, is excited by ultrashort bandwidth-limited and temporally asymmetric shaped femtosecond laser pulses, where the latter start with an intense main pulse followed by a decaying pulse sequence, i.e. a temporal Airy pulse. Spectral interference in an imaging geometry allows measurements of the transient optical properties integrated along the propagation through the sample but radially resolved with respect to the transverse beam profile. Since the optical properties reflect the dynamics of the free-electron plasma, such measurements reveal the spatial characteristics of the laser excitation. We conclude that temporally asymmetric shaped laser pulses are a promising tool for high-precision laser material processing, as they reduce the transverse area of excitation, but increase the excitation inside the material along the beam propagation.

  10. Control of HOD photodissociation dynamics via bond-selective infrared multiphoton excitation and a femtosecond ultraviolet laser pulse

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1992-01-01

    moment, excites the molecule to a dissociative electronic state. We consider the HOD molecule which is ideal due to the local mode structure of the vibrational states. It is shown that selective and localized bond stretching can be created in simple laser fields. When such a nonstationary vibrating HOD...... molecule is photodissociated with a short laser pulse (~5 fs) complete selectivity between the channels H+OD and D+OH is observed over the entire absorption band covering these channels. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  11. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    International Nuclear Information System (INIS)

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen

    2011-01-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied. (interdisciplinary physics and related areas of science and technology)

  12. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  13. Implications of electron attachment to highly-excited states in pulsed-power discharges

    International Nuclear Information System (INIS)

    Pinnaduwage, L.A.; Univ. of Tennessee, Knoxville, TN

    1997-01-01

    The author points out the possible implications of electron attachment to highly-excited states of molecules in two pulsed power technologies. One involves the pulsed H 2 discharges used for the generation of H ion beams for magnetic fusion energy and particle accelerators. The other is the power modulated plasma discharges used for material processing

  14. Thin film surface processing by UltraShort Laser Pulses (USLP)

    NARCIS (Netherlands)

    Scorticati, D.; Skolski, J.Z.P.; Römer, G.R.B.E.; Huis in 't Veld, A.J.; Workum, M.; Theelen, M.J.; Zeman, M.

    2012-01-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed

  15. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    Science.gov (United States)

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  16. Generation of short optical pulses for laser fusion. M.L. report No. 2451

    International Nuclear Information System (INIS)

    Kuizenga, D.J.

    1975-06-01

    This report considers some of the problems involved in generating the required short pulses for the laser-fusion program. Short pulses are required to produce the laser fusion, and pulses produced synchronously with this primary pulse are required for plasma diagnostics. The requirements of these pulses are first described. Several methods are considered in order to generate pulses at 1.064 μ to drive the Nd:Glass amplifiers to produce laser fusion. Conditions for optimum energy extraction per short pulse for Nd:YAG and Nd:Glass lasers are given. Four methods are then considered to produce these pulses: (1) using a fast switch to chop the required pulse out of a much longer Q-switched pulse; (2) active mode locking; (3) passive mode locking; and (4) a combination of active and passive mode locking. The use of cavity dumping is also considered to increase the energy per short pulse

  17. Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Milant'ev, V.P.; Turikov, V.A.

    2006-01-01

    In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done

  18. Assessment and mitigation of electromagnetic pulse (EMP) impacts at short-pulse laser facilities

    International Nuclear Information System (INIS)

    Brown, C G Jr; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-01-01

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  19. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    Science.gov (United States)

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...... of randomly oriented heteronuclear diatomic molecules can be obtained under simultaneous irradiation by a resonant and an off-resonant intense IR laser pulse: Molecules with one initial orientation will be vibrationally excited, while those with the opposite orientation will be at rest. The orientation-dependent...... distribution. (C) 2000 American Institute of Physics....

  1. GINGER simulations of short-pulse effects in the LEUTL FEL

    International Nuclear Information System (INIS)

    Huang, Z.; Fawley, W.M.

    2001-01-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup

  2. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers

    International Nuclear Information System (INIS)

    Wang Bin; Zhang Hongchao; Qin Yuan; Wang Xi; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO 2 film components with platinum high-absorptance inclusions was established. The temperature rises of TiO 2 films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

  3. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements

    Directory of Open Access Journals (Sweden)

    Steffi L. Colyer, Polly M. McGuigan

    2018-03-01

    Full Text Available Textile electromyography (EMG electrodes embedded in clothing allow muscle excitation to be recorded in previously inaccessible settings; however, their ability to accurately and reliably measure EMG during dynamic tasks remains largely unexplored. To quantify the validity and reliability of textile electrodes, 16 recreationally active males completed two identical testing sessions, within which three functional movements (run, cycle and squat were performed twice: once wearing EMG shorts (measuring quadriceps, hamstrings and gluteals myoelectric activity and once with surface EMG electrodes attached to the vastus lateralis, biceps femoris and gluteus maximus. EMG signals were identically processed to provide average rectified EMG (normalized to walking and excitation length. Results were compared across measurement systems and demonstrated good agreement between the magnitude of muscle excitation when EMG activity was lower, but agreement was poorer when excitation was higher. The length of excitation bursts was consistently longer when measured using textile vs. surface EMG electrodes. Comparable between-session (day-to-day repeatability was found for average rectified EMG (mean coefficient of variation, CV: 42.6 and 41.2% and excitation length (CV: 12.9 and 9.8% when using textile and surface EMG, respectively. Additionally, similar within-session repeatability (CV was recorded for average rectified EMG (13.8 and 14.1% and excitation length (13.0 and 12.7% for textile and surface electrodes, respectively. Generally, textile EMG electrodes appear to be capable of providing comparable muscle excitation information and reproducibility to surface EMG during dynamic tasks. Textile EMG shorts could therefore be a practical alternative to traditional laboratory-based methods allowing muscle excitation information to be collected in more externally-valid training environments.

  4. New developments in short-pulse eye safe lasers pay the way for future LADARs and 3D mapping performances

    Science.gov (United States)

    Pasmanik, Guerman; Latone, Kevin; Shilov, Alex; Shklovsky, Eugeni; Spiro, Alex; Tiour, Larissa

    2005-06-01

    We have demonstrated that direct excitation of 3rd Stokes Raman emission in crystal can produce short (few nanosecond) eye-safe pulses. Produced beam has very high quality and the pulse energy can be as high as tens of millijoules. For pulsed diode pumped solid state lasers the demonstrated repetition rate was 250 Hz but higher repetition rates are certainly achievable. It is important that tested schemes do not have strict requirements on laser pump parameters, namely beam divergence and frequency bandwidth. The obtained results are very relevant to the development of eye-safe lasers, such as the new generation of rangefinders, target designators, and laser tracking and pin-pointing devices, as well as remote 2D and 3D imaging systems.

  5. Wave fronts, pulses and wave trains in photoexcited superlattices behaving as excitable or oscillatory media

    International Nuclear Information System (INIS)

    Arana, J I; Bonilla, L L; Grahn, H T

    2011-01-01

    Undoped and strongly photoexcited semiconductor superlattices with field-dependent recombination behave as excitable or oscillatory media with spatially discrete nonlinear convection and diffusion. Infinitely long, dc-current-biased superlattices behaving as excitable media exhibit wave fronts with increasing or decreasing profiles, whose velocities can be calculated by means of asymptotic methods. These superlattices can also support pulses of the electric field. Pulses moving downstream with the flux of electrons can be constructed from their component wave fronts, whereas pulses advancing upstream do so slowly and experience saltatory motion: they change slowly in long intervals of time separated by fast transitions during which the pulses jump to the previous superlattice period. Photoexcited superlattices can also behave as oscillatory media and exhibit wave trains. (paper)

  6. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  7. The influence of the excitation pulse length on ultrafast magnetization dynamics in nickel

    Directory of Open Access Journals (Sweden)

    A. Fognini

    2015-03-01

    Full Text Available The laser-induced demagnetization of a ferromagnet is caused by the temperature of the electron gas as well as the lattice temperature. For long excitation pulses, the two reservoirs are in thermal equilibrium. In contrast to a picosecond laser pulse, a femtosecond pulse causes a non-equilibrium between the electron gas and the lattice. By pump pulse length dependent optical measurements, we find that the magnetodynamics in Ni caused by a picosecond laser pulse can be reconstructed from the response to a femtosecond pulse. The mechanism responsible for demagnetization on the picosecond time scale is therefore contained in the femtosecond demagnetization experiment.

  8. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers.

    Science.gov (United States)

    Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2011-07-10

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America

  9. Evaluation of cytogenetic effects of very short laser pulsed radiations

    International Nuclear Information System (INIS)

    Guedeney, G.; Courant, D.; Malarbet, J.-L.; Dolloy, M.-T.; Court, L.

    1992-01-01

    The aim of this study is to evaluate the capacity of a laser, delivering very short pulses in the near infrared spectrum with a high pulse ratio frequency, to induce genetic modification on biological tissues. Chromatid exchanges and chromosomal aberrations studies are used to test potential effect on human lymphocytes. The laser irradiation induces a significant increase of acentric fragments but the absence of dicentric suggests that a repetitive very short pulses irradiation has a relatively low capacity to induce genetic abnormalities. (author)

  10. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  11. A technique for the measurement of electron attachment to short-lived excited species

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Pinnaduwage, L.A.; Bitouni, A.P.

    1990-01-01

    A technique is described for the measurement of electron attachment to short-lived (approx-lt 10 -9 s) excited species. Preliminary results are presented for photoenhanced electron attachment to short-lived electronically-excited states of triethylamine molecules produced by laser two-photon excitation. The attachment cross sections for these excited states are estimated to be >10 -11 cm 2 and are ∼10 7 larger compared to those for the unexcited (ground-state) molecules. 8 refs., 4 figs

  12. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  13. Complementarity of long pulse and short pulse spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, F [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1995-11-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: (a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, (b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs.

  14. Complementarity of long pulse and short pulse spallation sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs

  15. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.

    Science.gov (United States)

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations. Copyright © 2016

  16. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Gennady Shvets; Nathaniel J. Fisch; Alexander Pukhov

    2001-01-01

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined

  17. Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt

    International Nuclear Information System (INIS)

    Zhang Wei; Yao Minghui

    2006-01-01

    In this paper, the Shilnikov type multi-pulse orbits and chaotic dynamics of parametrically excited viscoelastic moving belt are studied in detail. Using Kelvin-type viscoelastic constitutive law, the equations of motion for viscoelastic moving belt with the external damping and parametric excitation are given. The four-dimensional averaged equation under the case of primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin's approach to the partial differential governing equation of viscoelastic moving belt. From the averaged equations obtained here, the theory of normal form is used to give the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on normal form, the energy-phrase method is employed to analyze the global bifurcations and chaotic dynamics in parametrically excited viscoelastic moving belt. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type multi-pulse homoclinic orbits in the averaged equation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense in parametrically excited viscoelastic moving belt. The chaotic motions of viscoelastic moving belts are also found by using numerical simulation. A new phenomenon on the multi-pulse jumping orbits is observed from three-dimensional phase space

  18. Integrable discretizations of the short pulse equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

  19. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  20. Thermal Dynamics of Xanthene Dye in Polymer Matrix Excited by Double Pulse Laser Radiation

    Science.gov (United States)

    Samusev, Ilia; Borkunov, Rodion; Tsarkov, Maksim; Konstantinova, Elizaveta; Antipov, Yury; Demin, Maksim; Bryukhanov, Valery

    2018-01-01

    Double-pulse laser excitation of the eosin and silver nanoparticles embedded into polymer media is known to be a method of electronic-vibrational energy deactivation kinetic process information obtaining and polymer thermal dynamics investigation. We have studied the vibrational relaxation processes in dye molecules (eosin) and nanoparticles in polyvinyl alcohol after two time-shifted laser pulses with fast and delayed fluorescence kinetics study. In order to simulate thermal and photophysical processes caused by double photon excitation, we solved heat transfer and energy deactivation differential equations numerically. The simulation allowed us to obtain the value of heat conductivity coefficient of polymer matrix.

  1. Enhancement of Lamb Wave Imaging Resolution by Step Pulse Excitation and Prewarping

    Directory of Open Access Journals (Sweden)

    Shangchen Fu

    2015-01-01

    Full Text Available For the purpose of improving the damage localization accuracy, a prewarping technology is combined with step pulse excitation and this method is used in Lamb wave imaging of plate structures with adjacent damages. Based on the step pulse excitation, various narrowband or burst response can be derived by signal processing technology and this method provides flexibility for further prewarping approach. A narrowband signal warped with a preselected distance is then designed, and the dispersion in the response of this prewarping signal will be greatly reduced. However, in order to calculate the distance for prewarping, the first arrival needs to be estimated from the burst response. From the step-pulse response, narrowband responses at different central frequencies can be obtained, and by averaging peak-value time of their first arrivals, a more accurate estimation can be calculated. By using the prewarping method to the damage scattering signals before imaging, the imaging resolution of the delay-and-sum method can be highly enhanced. The experiment carried out in an aluminum plate with adjacent damages proves the efficiency of this method.

  2. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps

    Science.gov (United States)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  3. Spin gymnastics with selective radiofrequency pulses

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, R.; Kupce, E. [Cambridge Univ. (United Kingdom)

    1994-12-31

    Although high resolution NMR spectra are normally excited with short intense radiofrequency pulses, there is an entire family of new experiments that can be performed with frequency-selective or ``soft`` pulses. Time-consuming two-dimensional spectroscopy may be reduced to a much shorter one-dimensional version with much finer digitization in the frequency domain. A large number of soft pulses can be combined to form a ``polychromatic pulse`` that has uniform excitation over the entire range of proton shifts except for a rejection notch at the water frequency. Polychromatic pulses can also be used to create antiphase magnetization in preparation for a coherence transfer or double-quantum experiment. An excitation profile can be designed in the form of a ``template`` that exactly matches the spectrum of a given chemical compound but has zero excitation elsewhere. This is achieved by using the information in the experimental free induction decay to construct a suitable array of soft pulses that has the required excitation pattern. In this manner, interpenetrating spectra can be separated into the spectra of the pure components, for example those of a and b glucose. Selective Hartmann-Hahn coherence transfer experiments employ similar soft pulse techniques. If several such transfers are concatenated, the method may be used as a test to see whether a group of protons is linked in an unbroken chain by scalar spin-spin interactions. (authors). 24 refs., 18 figs.

  4. High beam quality and high energy short-pulse laser with MOPA

    Science.gov (United States)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  5. PSPICE simulation of bipolar pulse converter based on short-circuited coaxial transmission line

    International Nuclear Information System (INIS)

    Shi Lei; Fan Yajun

    2010-01-01

    The operating principle of the bipolar pulse converter based on short-circuited coaxial transmission line type is given. The output bipolar pulses are simulated by using PSPICE program on condition of different electric length and different impedance of the short-circuited coaxial transmission line. The bipolar pulses are generated by using unipolar pulse with pulse width of 2 ns in experiment, the experimental result fit well with the simulation result. (authors)

  6. Isolated grid electron gun and pulser system for long/short pulse operation

    International Nuclear Information System (INIS)

    Koontz, R.F.; Feathers, L.; Kilbourne, C.; Leger, G.; McKinney, T.

    1984-04-01

    The new NPI gun at SLAC serves the dual functions of producing long pulse (up to 5 μsec, 180 pps) electron bursts for nuclear physics experiments, and also short (1 nsec) pulses for filling Stanford Synchrotron Radiation Laboratory (SSRL). This is accomplished by means of a newly designed, isolated grid gun, cathode pulsed with a solid state long pulse pulser, and grid pulsed with a fast recharging avalanche type short pulse (1 nsec) grid pulser. The grid pulser is bipolar so that a fast blackout notch can be placed in the long cathode pulse. This fast notch can be seen by Stanford Linear Collider (SLC) instrumentation and allows the long pulse beam to be computer controlled by SLC intensity and beam position monitors

  7. Fast Resonance Raman Spectroscopy of Short-Lived Radicals

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Wilbrandt, Robert Walter; Hansen, Karina Benthin

    1976-01-01

    We report the first application of pulsed resonance Raman spectroscopy to the study of short-lived free radicals produced by pulse radiolysis. A single pulse from a flash-lamp pumped tunable dye laser is used to excite the resonance Raman spectrum of the p-terphenyl anion radical with an initial...

  8. Excitation of accelerating plasma waves by counter-propagating laser beams

    International Nuclear Information System (INIS)

    Shvets, Gennady; Fisch, Nathaniel J.; Pukhov, Alexander

    2002-01-01

    The conventional approach to exciting high phase velocity waves in plasmas is to employ a laser pulse moving in the direction of the desired particle acceleration. Photon downshifting then causes momentum transfer to the plasma and wave excitation. Novel approaches to plasma wake excitation, colliding-beam accelerator (CBA), which involve photon exchange between the long and short counter-propagating laser beams, are described. Depending on the frequency detuning Δω between beams and duration τ L of the short pulse, there are two approaches to CBA. First approach assumes (τ L ≅2/ω p ). Photons exchanged between the beams deposit their recoil momentum in the plasma driving the plasma wake. Frequency detuning between the beams determines the direction of the photon exchange, thereby controlling the phase of the plasma wake. This phase control can be used for reversing the slippage of the accelerated particles with respect to the wake. A variation on the same theme, super-beatwave accelerator, is also described. In the second approach, a short pulse with τ L >>ω p -1 detuned by Δω∼2ω p from the counter-propagating beam is employed. While parametric excitation of plasma waves by the electromagnetic beatwave at 2ω p of two co-propagating lasers was first predicted by Rosenbluth and Liu [M. N. Rosenbluth and C. S. Liu, Phys. Rev. Lett. 29, 701 (1972)], it is demonstrated that the two excitation beams can be counter-propagating. The advantages of using this geometry (higher instability growth rate, insensitivity to plasma inhomogeneity) are explained, and supporting numerical simulations presented

  9. Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps

    International Nuclear Information System (INIS)

    Liu Shuhai; Neiger, Manfred

    2003-01-01

    Excitation of dielectric barrier discharge xenon excimer lamps by unipolar short square pulses is studied in this paper. Two discharges with different polarity are excited by each voltage pulse (double discharge phenomenon). The primary discharge occurs at the top or at the rising flank of the applied unipolar square pulse, which is directly energized by the external circuit. The secondary discharge with the reversed polarity occurs at the falling flank or shortly after the falling flank end (zero external voltage) depending on the pulse width, which is energized by the energy stored by memory charges deposited by the primary discharge. Fast-speed ICCD imaging shows the primary discharge has a conic discharge appearance with a channel broadening on the anode side. This channel broadening increases with increasing the pulse top level. Only the anode-side surface discharge is observed in the primary discharge. The surface discharge on the cathode side which is present in bipolar sine voltage excitation is not observed. On the contrary, the secondary discharge has only the cathode-side surface discharge. The surface discharge on the anode side is not observed. The secondary discharge is much more diffuse than the primary discharge. Time-resolved emission measurement of double discharges show the secondary discharge emits more VUV xenon excimer radiation but less infrared (IR) xenon atomic emission than the primary discharge. It was found that the IR xenon atomic emission from the secondary discharge can be reduced by shortening the pulse width. The energy efficiency of unipolar-pulsed xenon excimer lamps (the overall energy efficiency of double discharges) is much higher than that obtained under bipolar sine wave excitation. The output VUV spectrum under unipolar pulse excitation is found to be identical to that under sine wave excitation and independent of injected electric power

  10. Forge: a short pulse x-ray diagnostic development facility

    International Nuclear Information System (INIS)

    Stradling, G.L.; Hurry, T.R.; Denbow, E.R.; Selph, M.M.; Ameduri, F.P.

    1985-01-01

    A new short pulse x-ray calibration facility has been brought on line at Los Alamos. This facility is being used for the development, testing and calibration of fast x-ray diagnostic systems. The x-ray source consists of a moderate size, sub-nanosecond laser focused at high intensity on an appropriate target material to generate short pulses of x-ray emission from the resulting plasma. Dynamic performance parameters of fast x-ray diagnostic instruments, such as x-ray streak cameras, can be conveniently measured using this facility

  11. Concepts for the Temporal Characterization of Short Optical Pulses

    Directory of Open Access Journals (Sweden)

    Walmsley Ian A

    2005-01-01

    Full Text Available Methods for the characterization of the time-dependent electric field of short optical pulses are reviewed. The representation of these pulses in terms of correlation functions and time-frequency distributions is discussed, and the strategies for their characterization are explained using these representations. Examples of the experimental implementations of the concepts of spectrography, interferometry, and tomography for the characterization of pulses in the optical telecommunications environment are presented.

  12. Experimental investigation of electron beam wave interactions utilising short pulses

    International Nuclear Information System (INIS)

    Wiggins, Samuel Mark

    2000-01-01

    Experiments have investigated the production of ultra-short electromagnetic pulses and their interaction with electrons in various resonant structures. Diagnostic systems used in the measurements included large bandwidth detection systems for capturing the short pulses. Deconvolution techniques have been applied to account for bandwidth limitation of the detection systems and to extract the actual pulse amplitudes and durations from the data. A Martin-Puplett interferometer has been constructed for use as a Fourier transform spectrometer. The growth of superradiant electromagnetic spikes from short duration (0.5-1.0 ns), high current (0.6-2.0 kA) electron pulses has been investigated in a Ka-band Cherenkov maser and Ka- and W-band backward wave oscillators (BWO). In the Cherenkov maser, radiation spikes were produced with a peak power ≤ 3 MW, a duration ≥ 70 ps and a bandwidth ≤ 19 %. It is shown that coherent spontaneous emission from the leading edge of the electron pulse drives these interactions, giving rise to self-amplified coherent spontaneous emission (SACSE). BWO spikes were produced with a peak power ≤ 63 MW and a pulse duration ∼ 250 ps in the Ka-band and ≤ 12 MW and ∼ 170 ps in the W-band. Evidence of superradiant evolution has been observed in the measurements of scaling laws such as power scaling with the current squared and duration scaling inversely with the fourth root of the power. An X-band free-electron maser amplifier, in which a short (1.0ns) injected radiation pulse interacts with a long (∼ 140 ns) electron beam, has been investigated. The interaction is shown to evolve in the linear regime. The peak output power was 320 kW, which corresponded to a gain, approximately constant across the band, of 42 dB. Changes to the spectrum, that occur when the input radiation pulse is injected into electrons with an energy gradient, have been analysed. (author)

  13. Application of adjustable pulse lasers to studying rapid reaction kinetics of excited lanthanide complexing

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, V.P. (Gosudarstvennyj Opticheskij Inst., Leningrad (USSR))

    1983-12-01

    Using some europium (3) ion complexes new possibilities to be opened by application of adjustable pulse lasers for studying rapid reactions of electron-excited metal ion complexing are demonstrated. The 6Zh rhodamine pulse laser is used as a source of nonequilibrium photoexcitation of an array of Eu/sup 3 +/ complexes in the luminescent kinetic spectroscopy method. The following results are obtained: for the first time the rate of reaction of acetate ion substitution for water molecules of an excited (/sup 5/D/sub 0/) ion of Eu/sup 3 +/ was measured to be (0.7+-0.2)x10/sup 7/ s/sup -1/; using direct experiments the lower limit for the rate of transition of one isomeric form of the excited Eu x EDTA complex into another one in an aqueous solution is determined to be 5x10/sup 5/ s/sup -1/ at 295 K; the kinetics of the excitation energy migration beteen aqueous solvates of Eu/sup 3 +/ and EuxEDTA complexes is investigated.

  14. VCSELs in short-pulse operation for time-of-flight applications

    Science.gov (United States)

    Moench, Holger; Gronenborn, Stephan; Gu, Xi; Gudde, Ralph; Herper, Markus; Kolb, Johanna; Miller, Michael; Smeets, Michael; Weigl, Alexander

    2018-02-01

    VCSEL arrays are the ideal light source for 3D imaging applications. The narrow emission spectrum and the ability for short pulses make them superior to LEDs. Combined with fast photodiodes or special camera chips spatial information can be obtained which is needed in diverse applications like camera autofocus, indoor navigation, 3D-object recognition, augmented reality or autonomously driving vehicles. Pulse operation at the ns scale and at low duty cycle can work with significantly higher current than traditionally used for VCSELs in continuous wave operation. With reduced thermal limitations at low average heat dissipation very high currents become feasible and tens of Watts output power have been realized with small VCSEL chips. The optical emission pattern of VCSELs can be tailored to the desired field of view using beam shaping elements. Such optical elements also enable laser safe class 1 products. A detailed analysis of the complete system and the operation mode is required to calculate the maximum permitted power for a safe system. The good VCSEL properties like robustness, stability over temperature and the potential for integrated solutions open a huge potential for VCSELs in new mass applications in the consumer and automotive markets.

  15. Pulse power technology application to lasers

    International Nuclear Information System (INIS)

    Prestwich, K.R.

    1975-01-01

    Recent developments of intense relativistic electron beam accelerators and the associated pulse power technology are reviewed. The design of specific accelerators for gas laser excitation sources is discussed. A 3 MV, 800 kA, 24 ns electron beam accelerator under development for the electron beam fusion program is described along with the low jitter multichannel oil-dielectric rail switches developed for this application. This technology leads to the design of a 20 kJ, short pulse accelerator optimized gas laser excitation with radially converging electron beams. Other gas laser research requirements have led to the development of an accelerator that will produce a 0.5 MV, 20 kJ, 1 μs electron beam pulse. (auth)

  16. A comparison between short pulse spallation source and long pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Mezei, F.

    1997-11-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H{sup -} beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  17. A comparison between short pulse spallation source and long pulse spallation source

    International Nuclear Information System (INIS)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto; Mezei, F.

    1997-01-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H - beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  18. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  19. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  20. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  1. Subfemtosecond pulse generation by cascade-stimulated Raman scattering with modulated Raman excitation

    International Nuclear Information System (INIS)

    Wu Kun; Wu Jian; Zeng Heping

    2003-01-01

    Subfemtosecond (sub-fs) pulses can be generated by cascade-stimulated Raman scattering in a Raman medium with modulated Raman excitations, driven by two sufficiently intense laser beams, one of which is amplitude modulated. The nonadiabatic Raman interaction establishes a strong modulated Raman coherence, which supports compression of the generated broadband Raman sidebands to a train of sub-fs pulses regardless of whether the carrier frequencies of the driving lasers are tuned above, below or on two-photon Raman resonance. (letter to the editor)

  2. Time-resolved plasma spectroscopy of thin foils heated by a relativistic-intensity short-pulse laser

    International Nuclear Information System (INIS)

    Audebert, P.; Gauthier, J.-C.; Shepherd, R.; Fournier, K.B.; Price, D.; Lee, R.W.; Springer, P.; Peyrusse, O.; Klein, L.

    2002-01-01

    Time-resolved K-shell x-ray spectra are recorded from sub-100 nm aluminum foils irradiated by 150-fs laser pulses at relativistic intensities of Iλ 2 =2x10 18 W μm 2 /cm 2 . The thermal penetration depth is greater than the foil thickness in these targets so that uniform heating takes place at constant density before hydrodynamic motion occurs. The high-contrast, high-intensity laser pulse, broad spectral band, and short time resolution utilized in this experiment permit a simplified interpretation of the dynamical evolution of the radiating matter. The observed spectrum displays two distinct phases. At early time, ≤500 fs after detecting target emission, a broad quasicontinuous spectral feature with strong satellite emission from multiply excited levels is seen. At a later time, the He-like resonance line emission is dominant. The time-integrated data is in accord with previous studies with time resolution greater than 1 ps. The early time satellite emission is shown to be a signature of an initial large area, high density, low-temperature plasma created in the foil by fast electrons accelerated by the intense radiation field in the laser spot. We conclude that, because of this early time phenomenon and contrary to previous predictions, a short, high-intensity laser pulse incident on a thin foil does not create a uniform hot and dense plasma. The heating mechanism has been studied as a function of foil thickness, laser pulse length, and intensity. In addition, the spectra are found to be in broad agreement with a hydrodynamic expansion code postprocessed by a collisional-radiative model based on superconfiguration average rates and on the unresolved transition array formalism

  3. Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.

    Science.gov (United States)

    Kim, Kyunghan; Guo, Zhixiong

    2007-05-01

    A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.

  4. Nuclear Excitation by a Zeptosecond Multi-MeV Laser Pulse

    International Nuclear Information System (INIS)

    Weidenmueller, Hans A.

    2011-01-01

    A zeptosecond multi-MeV laser pulse may either excite a ''plasma'' of strongly interacting nucleons or a collective mode. We derive the conditions on laser energy and photon number such that either of these scenarios is realized. We use the nuclear giant dipole resonance as a representative example, and a random-matrix description of the fine-structure states and perturbation theory as tools.

  5. A fast pulse design for parallel excitation with gridding conjugate gradient.

    Science.gov (United States)

    Feng, Shuo; Ji, Jim

    2013-01-01

    Parallel excitation (pTx) is recognized as a crucial technique in high field MRI to address the transmit field inhomogeneity problem. However, it can be time consuming to design pTx pulses which is not desirable. In this work, we propose a pulse design with gridding conjugate gradient (CG) based on the small-tip-angle approximation. The two major time consuming matrix-vector multiplications are substituted by two operators which involves with FFT and gridding only. Simulation results have shown that the proposed method is 3 times faster than conventional method and the memory cost is reduced by 1000 times.

  6. Laser excitation of SF6: spectroscopy and coherent pulse propagation effects

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Makarov, A.A.; Louisell, W.H.

    1978-01-01

    Recent theoretical studies of coherent propagation effects in SF 6 and other polyatomic molecules are summarized beginning with an account of relevant aspects of the high-resolution spectroscopy of the ν 3 band of SF 6 . A laser pulse propagating in a molecular gas can acquire new frequencies which were not initially present in the pulse, and, in fact, a wave is coherently generated at the frequency of every molecular transition accessible from the initial molecular energy levels. The possible consequences of coherent generation of sidebands for the multiple-photon excitation of SF 6 and other polyatomic molecules are discussed

  7. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas; Interaction d'impulsions laser ultra-courtes et ultra-intenses avec des plasmas sous denses

    Energy Technology Data Exchange (ETDEWEB)

    Solodov, A

    2000-12-15

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  8. High-repetition-rate short-pulse gas discharge.

    Science.gov (United States)

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.

  9. Study of surface layer assessment of solids by ultra-slow and short-pulsed positron beams

    International Nuclear Information System (INIS)

    Suzuki, Ryouichi; Ohdaira, Toshiyuki; Mikado, Tomohisa; Yamada, Kawakatsu

    2004-01-01

    Thin films of insulators with low dielectric constant, as a candidate for next generation LSI (large scale integration), were assessed by two dimensional positron life time and wave height measurements using variable incident energy and also short pulsed positron beams. Linkages and openness of nano-scale voids in the films were evaluated by the measurements. Amorphous SiO 2 films were compared with SiCOH films synthesized by plasma CVD (Chemical Vapor Deposition) by measurements of the correlation between positron lifetime and momentum using short-pulsed positron beams. From the measurements, many hydrocarbons were found on void surface of SiCOH films. Positron lifetime measurement gives information about void sizes, and Doppler broadening due to annihilation γ-rays offers electron momentum distribution, which is a counterpart of positron annihilation. Two γ-rays are emitted on the positron annihilation. Coincident measurements of these two γ-rays provide the correlation spectra between positron lifetime and momentum. An instrument for positron annihilation excitation Auger electron spectroscopy (PAES) was improved, and a time-of-flight (TOF) PAES instrument was developed. Double counting rate and high resolution, compared with a conventional Auger electron spectrometer, were attained in elementary analysis using above TOF-PAES instrument. (Y. Kazumata)

  10. Dynamics of Al/Fe{sub 2}O{sub 3} MIC combustion from short single-pulse photothermal initiation and time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stiegman, Albert E.; Park, Chi-Dong; Mileham, Melissa; Van de Burgt, Lambertus J. [Department of Chemistry and Biochemistry, Florida State University Tallahassee, FL (United States); Kramer, Michael P. [AFRL/MNME Eglin AFB, FL (United States)

    2009-08-15

    Time-resolved spectroscopy was used to study the dynamics of the photothermal ignition of Al/Fe{sub 2}O{sub 3} metastable intermolecular composites after single short-pulse laser initiation. The dynamics were recorded in several time domains from nanosecond to microsecond to quantify the dynamics from initial laser excitation to combustion. Time-averaged spectral data were also collected for the overall emission occurring during combustion. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback

    Science.gov (United States)

    Terrien, Soizic; Krauskopf, Bernd; Broderick, Neil G. R.; Andréoli, Louis; Selmi, Foued; Braive, Rémy; Beaudoin, Grégoire; Sagnes, Isabelle; Barbay, Sylvain

    2017-10-01

    A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable regime, we show that a single optical perturbation can trigger a train of pulses that is sustained for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior characteristic of a noise-induced process driven by uncorrelated white noise present in the system. The comparison of experimental observations with theoretical and numerical analysis of a minimal model yields excellent agreement. Importantly, the random switch-off process takes place between two attractors of different nature: an equilibrium and a periodic orbit. Our analysis shows that there is a small time window during which the pulsations are very sensitive to noise, and this explains the observed strong bias toward switch-off. These results raise the possibility of all optical control of the pulse train duration that may have an impact for practical applications in photonics and may also apply to the dynamics of other noise-driven excitable systems with delayed feedback.

  12. An isolated grid electron gun and pulser system for long/short pulse operation

    International Nuclear Information System (INIS)

    Koontz, R.F.; Feathers, L.; Kilbourne, C.; Leger, G.; McKinney, T.

    1984-01-01

    The new NPI gun at SLAC serves the dual functions of producing long pulse (up to 5 μsec, 180 pps) electron bursts for nuclear physics experiments, and also short ( 1 nsec) pulses for filling Stanford Synchrotron Radiation Laboratory (SSRL). This is accomplished by means of a newly designed, isolated grid gun, cathode pulsed with a solid state long pulse pulser, and grid pulsed with a fast recharging avalanche type short pulse (1 nsec) grid pulser. The grid pulser is bipolar so that a fast blackout notch can be placed in the long cathode pulse. This fast notch can be seen by Stanford Linear Collider (SLC) instrumentation and allows the long pulse beam to be computer controlled by SLC intensity and beam position monitors. (orig.)

  13. A Bit Stream Scalable Speech/Audio Coder Combining Enhanced Regular Pulse Excitation and Parametric Coding

    Directory of Open Access Journals (Sweden)

    Albertus C. den Brinker

    2007-01-01

    Full Text Available This paper introduces a new audio and speech broadband coding technique based on the combination of a pulse excitation coder and a standardized parametric coder, namely, MPEG-4 high-quality parametric coder. After presenting a series of enhancements to regular pulse excitation (RPE to make it suitable for the modeling of broadband signals, it is shown how pulse and parametric codings complement each other and how they can be merged to yield a layered bit stream scalable coder able to operate at different points in the quality bit rate plane. The performance of the proposed coder is evaluated in a listening test. The major result is that the extra functionality of the bit stream scalability does not come at the price of a reduced performance since the coder is competitive with standardized coders (MP3, AAC, SSC.

  14. A Bit Stream Scalable Speech/Audio Coder Combining Enhanced Regular Pulse Excitation and Parametric Coding

    Science.gov (United States)

    Riera-Palou, Felip; den Brinker, Albertus C.

    2007-12-01

    This paper introduces a new audio and speech broadband coding technique based on the combination of a pulse excitation coder and a standardized parametric coder, namely, MPEG-4 high-quality parametric coder. After presenting a series of enhancements to regular pulse excitation (RPE) to make it suitable for the modeling of broadband signals, it is shown how pulse and parametric codings complement each other and how they can be merged to yield a layered bit stream scalable coder able to operate at different points in the quality bit rate plane. The performance of the proposed coder is evaluated in a listening test. The major result is that the extra functionality of the bit stream scalability does not come at the price of a reduced performance since the coder is competitive with standardized coders (MP3, AAC, SSC).

  15. Multiloop soliton and multibreather solutions of the short pulse model equation

    International Nuclear Information System (INIS)

    Matsuno, Yoshimasa

    2007-01-01

    We develop a systematic procedure for constructing the multisoliton solutions of the short pulse (SP) model equation which describes the propagation of ultra-short pulses in nonlinear medica. We first introduce a novel hodograph transformation to convert the SP equation into the sine-Gordon (sG) equation. With the soliton solutions of the sG equation, the system of linear partial differential equations governing the inverse mapping can be integrated analytically to obtain the soliton solutions of the SP equation in the form of the parametric representation. By specifying the soliton parameters, we obtain the multiloop and multibreather solutions. We investigate the asymptotic behavior of both solutions and confirm their solitonic feature. The nonsingular breather solutions may play an important role in studying the propagation of ultra-short pulses in an optical fibre. (author)

  16. Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse

    Science.gov (United States)

    Nie, Jianye; Liu, Guodong; Zhang, Rongzhu

    2018-05-01

    Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.

  17. Using a heterodyne vibrometer in combination with pulse excitation for primary calibration of ultrasonic hydrophones in amplitude and phase

    Science.gov (United States)

    Weber, Martin; Wilkens, Volker

    2017-08-01

    A high-frequency vibrometer was used with ultrasonic pulse excitation in order to perform a primary hydrophone calibration. This approach enables the simultaneous characterization of the amplitude and phase transfer characteristic of ultrasonic hydrophones. The method allows a high frequency resolution in a considerably short time for the measurement. Furthermore, the uncertainty contributions of this approach were investigated and quantified. A membrane hydrophone was calibrated and the uncertainty budget for this measurement was determined. The calibration results are presented up to 70~\\text{MHz} . The measurement results show good agreement with the results obtained by sinusoidal burst excitation through the use of the vibrometer and by a homodyne laser interferometer, with RMS deviation of approximately 3% -4% in the frequency range from 1 to 60~\\text{MHz} . Further hydrophones were characterized up to 100~\\text{MHz} with this procedure to demonstrate the suitability for very high frequency calibration.

  18. Vibration control in smart coupled beams subjected to pulse excitations

    Science.gov (United States)

    Pisarski, Dominik; Bajer, Czesław I.; Dyniewicz, Bartłomiej; Bajkowski, Jacek M.

    2016-10-01

    In this paper, a control method to stabilize the vibration of adjacent structures is presented. The control is realized by changes of the stiffness parameters of the structure's couplers. A pulse excitation applied to the coupled adjacent beams is imposed as the kinematic excitation. For such a representation, the designed control law provides the best rate of energy dissipation. By means of a stability analysis, the performance in different structural settings is studied. The efficiency of the proposed strategy is examined via numerical simulations. In terms of the assumed energy metric, the controlled structure outperforms its passively damped equivalent by over 50 percent. The functionality of the proposed control strategy should attract the attention of practising engineers who seek solutions to upgrade existing damping systems.

  19. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses

    International Nuclear Information System (INIS)

    Gaudin, J.

    2005-11-01

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  20. Research on imploded plasma heating by short pulse laser for fast ignition

    International Nuclear Information System (INIS)

    Kodama, R.; Kitagawa, Y.; Mima, K.

    2001-01-01

    Since the peta watt module (PWM) laser was constructed in 1995, investigated are heating processes of imploded plasmas by intense short pulse lasers. In order to heat the dense plasma locally, a heating laser pulse should be guided into compressed plasmas as deeply as possible. Since the last IAEA Fusion Conference, the feasibility of fast ignition has been investigated by using the short pulse GEKKO MII glass laser and the PWM laser with GEKKO XII laser. We found that relativistic electrons are generated efficiently in a preformed plasma to heat dense plasmas. The coupling efficiency of short pulse laser energy to a solid density plasma is 40% when no plasmas are pre-formed, and 20% when a large scale plasma is formed by a long pulse laser pre-irradiation. The experimental results are confirmed by numerical simulations using the simulation code 'MONET' which stands for the Monte-Carlo Electron Transport code developed at Osaka. In the GEKKO XII and PWM laser experiments, intense heating pulses are injected into imploded plasmas. As a result of the injection of heating pulse, it is found that high energy electrons and ions could penetrate into imploded core plasmas to enhance neutron yield by factor 3∼5. (author)

  1. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    Science.gov (United States)

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  2. Coherent combs in ionization by intense and short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, K., E-mail: Katarzyna.Krajewska@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland); Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299 (United States); Kamiński, J.Z., E-mail: Jerzy.Kaminski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2016-03-22

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented. - Highlights: • We develop relativistic Strong-Field Approximation for ionization by intense and short laser pulses of arbitrary spectral compositions. • We show that the consistent interpretation of results is provided by the Keldysh-type saddle point analysis of probability amplitudes. • We derive a general Fraunhofer-type interference/diffraction formula for finite train of pulses. • We study the coherent combs in photoelectron probability distributions.

  3. Discrete excitation of mode pulses using a diode-pumped solid-state digital laser

    CSIR Research Space (South Africa)

    Ngcobo, Sandile

    2016-02-01

    Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...

  4. Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil.

    Science.gov (United States)

    Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar

    2008-12-01

    Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.

  5. Control of the spin polarization of photoelectrons/photoions using short laser pulses

    International Nuclear Information System (INIS)

    Nakajima, Takashi

    2004-01-01

    We present a generic pump-probe scheme to control spin polarization of photoelectrons/photoions by short laser pulses. By coherently exciting fine structure manifolds of a multi-valence-electron system by the pump laser, a superposition of fine structure states is created. Since each fine structure state can be further decomposed into a superposition of various spin states of valence electrons, each spin component evolves differently in time. This means that varying the time delay between the pump and probe lasers leads to the control of spin states. Specific theoretical results are presented for two-valence-electron atoms, in particular for Mg, which demonstrate that not only the degree of spin polarization but also its sign can be manipulated through time delay. Since the underline physics is rather general and transparent, the presented idea may be potentially applied to nanostructures such as quantum wells and quantum dots

  6. Enhanced Electron Attachment to Highly-Excited Molecules and Its Applications in Pulsed Plasmas

    International Nuclear Information System (INIS)

    Ding, W.X.; Ma, C.Y.; McCorkle, D.L.; Pinnaduwage, L.A.

    1999-01-01

    Studies conducted over the past several years have shown that electron attachment to highly-excited states of molecules have extremely large cross sections. We will discuss the implications of this for pulsed discharges used for H - generation, material processing, and plasma remediation

  7. Short-circuited coil in a solenoid circuit of a pulse magnetic field

    International Nuclear Information System (INIS)

    Kivshik, A.F.; Dubrovin, V.Yu.

    1976-01-01

    A short-circuited coil at the end of a long pulse solenoid attenuates the dissipation field by 3-5 times. A plug-configuration field is set up in the middle portion of the pulse solenoid incorporating the short-circuited coils. Shunting of the coils with the induction current by resistor Rsub(shunt) provides for the adjustment of the plug ratio γ

  8. Experimental investigation of plasma dynamics in dc and short-pulse magnetron discharges

    International Nuclear Information System (INIS)

    Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young

    2006-01-01

    The spatiotemporal evolution of the electron energy distribution function (EEDF) and of plasma parameters such as the electron density, the electron temperature and the plasma and floating potentials has been investigated using spatially and temporally resolved single Langmuir probe measurements in dc and mid-frequency, short-pulse magnetron discharges with a repetition frequency of 10 kHz and a duty cycle of 10%. In the pulsed discharge of the short duty cycle, a peak electron temperature higher than 10 eV was observed near the cathode fall region during the early phase of the pulse-on, which is about three times higher than the steady-state value of the electron temperature in the dc discharge. The temporal evolution of the measured EEDFs showed the initial efficient electron heating during the early phase of the pulse-on and the subsequent relaxation of electron energy by the inelastic collisions and the diffusive loss. The high-energy electrons generated during the pulse-on phase diffused the downstream region toward the grounded substrate, resulting in a bi-Maxwellian EEDF consisting of the background low-energy electrons and the high-energy electrons. The results of the spatially and temporally resolved probe measurements will be presented and the enhanced efficiency of the electron heating in the short-pulse discharge will be explained on the basis of the global model of a pulsed discharge

  9. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  10. Measurement of Ultra-Short Solitary Electromagnetic Pulses

    Directory of Open Access Journals (Sweden)

    Eva Gescheidtova

    2004-01-01

    Full Text Available In connection with the events of the last few years and with the increased number of terrorist activities, the problem of identification and measurement of electromagnetic weapons or other systems impact occurred. Among these are also microwave sources, which can reach extensive peak power of up to Pmax = 100 MW. Solitary, in some cases several times repeated, impulses lasting from tp E <1, 60>ns, cause the destruction of semiconductor junctions. These days we can find scarcely no human activity, where semiconductor structures are not used. The problem of security support of the air traffic, transportation, computer nets, banks, national strategic data canter’s, and other applications crops up. Several types of system protection from the ultra-short electromagnetic pulses present itself, passive and active protection. The analysis of the possible measuring methods, convenient for the identification and measurement of the ultra-short solitary electromagnetic pulses in presented in this paper; some of the methods were chosen and used for practical measurement. This work is part of Research object MSM262200022 "Research of microelectronic systems".

  11. Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry

    International Nuclear Information System (INIS)

    Schmitt-Jansen, Mechthild; Altenburger, Rolf

    2008-01-01

    In ecotoxicological studies involving community-level investigations, rapid and multiparametric fluorescence-based methods may provide substantial advantages over traditional methods used for structural and functional community analysis. Therefore, multiwavelength-excitation pulse-amplitude modulated (PAM) fluorometry was applied in this study to assess long-term changes in periphyton community structure, short-term effects on periphyton functioning (photosynthesis) and pollution induced community tolerance (PICT). For inter-calibration, periphyton structure was evaluated by chemotaxonomic analysis of accessory pigments and a four-wavelength-excitation PAM fluorometer. Short-term effects of herbicides were evaluated by fluorescence quenching analysis and 14 C-incorporation as a proxy of primary production. Subsequently, the method was applied to assess structural and functional changes in periphyton communities after isoproturon exposure for 14 and 26 days, respectively. Results showed good correlation of the PAM fluorescence-based measurements with traditional methods for biofilms in the initial colonisation phase for structural and functional parameters. However, for biofilms older than 9 weeks PAM fluorescence may underestimate biomass. Multiwavelength-excitation PAM fluorometry showed good correlation with marker pigment concentrations indicating that this method provides a reliable estimate of the community structure. PAM fluorometry was able to quantify changes of biomass and follow relative shifts in class composition of biofilms under exposure of isoproturon. Short-term tests based on the quantification of the inhibition of the effective quantum yield revealed a concentration-dependent increase of PICT. The observation of two succession phases of the biofilms after 14 and 26 days of growth, respectively, revealed that sensitivity of biofilms decreased with increasing age and biomass, respectively, but PICT remained a characteristic parameter of exposed

  12. Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Jansen, Mechthild [UFZ-Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig (Germany)], E-mail: Mechthild.Schmitt@ufz.de; Altenburger, Rolf [UFZ-Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig (Germany)

    2008-01-20

    In ecotoxicological studies involving community-level investigations, rapid and multiparametric fluorescence-based methods may provide substantial advantages over traditional methods used for structural and functional community analysis. Therefore, multiwavelength-excitation pulse-amplitude modulated (PAM) fluorometry was applied in this study to assess long-term changes in periphyton community structure, short-term effects on periphyton functioning (photosynthesis) and pollution induced community tolerance (PICT). For inter-calibration, periphyton structure was evaluated by chemotaxonomic analysis of accessory pigments and a four-wavelength-excitation PAM fluorometer. Short-term effects of herbicides were evaluated by fluorescence quenching analysis and {sup 14}C-incorporation as a proxy of primary production. Subsequently, the method was applied to assess structural and functional changes in periphyton communities after isoproturon exposure for 14 and 26 days, respectively. Results showed good correlation of the PAM fluorescence-based measurements with traditional methods for biofilms in the initial colonisation phase for structural and functional parameters. However, for biofilms older than 9 weeks PAM fluorescence may underestimate biomass. Multiwavelength-excitation PAM fluorometry showed good correlation with marker pigment concentrations indicating that this method provides a reliable estimate of the community structure. PAM fluorometry was able to quantify changes of biomass and follow relative shifts in class composition of biofilms under exposure of isoproturon. Short-term tests based on the quantification of the inhibition of the effective quantum yield revealed a concentration-dependent increase of PICT. The observation of two succession phases of the biofilms after 14 and 26 days of growth, respectively, revealed that sensitivity of biofilms decreased with increasing age and biomass, respectively, but PICT remained a characteristic parameter of exposed

  13. Wave-packet dynamics in alkaline dimers. Investigation and control through coherent excitation with fs-pulses

    International Nuclear Information System (INIS)

    Sauer, F.N.B.

    2007-01-01

    During my PhD thesis I investigated alkaline dimers with coherent control in a molecular beam as well as with pump-probe spectroscopy in a magneto-optical trap (MOT). The aim of the coherent control experiments were the isotope selective ionization with phase- and amplitude-shaped fs-pulses. Chapter 4 described the gained results of isotope selective ionization of NaK and KRb in a molecular beam by using different pulse formers. For the NaK dimer was the reached optimization factor R Ph and Ampl 770 =R max /R min =25 between maximization and minimization of the isotopomer ratio ( 23 Na 39 K) + /( 23 Na 41 K) + with phase and amplitude modulation of the fs-pulse with a central wavelength of λ=770 nm. From the electronic ground-state X(1) 1 Σ + ;ν''=0 transfers a one-photon-excitation population in the first excited A(2) 1 Σ + state. The coherent control experiment on KRb was used to maximize and minimize the isotopomer ratio ( 124 KRb) + /( 126 KRb) + . It was the first coherent control experiment with a spectral resolution of 1.84 cm -1 /Pixel. For the phase and amplitude optimization was the received optimization factor between minimization and maximization of the isotopomer ratio R Ph and Ampl =R max /R min =7 at a central wavelength of 840 nm. The results showed a stepwise excitation process from the electronic ground-state in the first excited (2) 1 Σ + state with a further excitation, that is possible over three resonant energy potential curves into the ionic ground-state. In the second part of my thesis I realized pump-probe spectroscopy of Rb 2 dimers in a dark SPOT. (orig.)

  14. Chromium carbide thin films deposited by ultra-short pulse laser deposition

    International Nuclear Information System (INIS)

    Teghil, R.; Santagata, A.; De Bonis, A.; Galasso, A.; Villani, P.

    2009-01-01

    Pulsed laser deposition performed by a laser with a pulse duration of 250 fs has been used to deposit films from a Cr 3 C 2 target. Due to the different processes involved in the laser ablation when it is performed by an ultra-short pulse source instead of a conventional short pulse one, it has been possible to obtain in vacuum films containing only one type of carbide, Cr 3 C 2 , as shown by X-ray photoelectron spectroscopy. On the other hand, Cr 3 C 2 is not the only component of the films, since a large amount of amorphous carbon is also present. The films, deposited at room temperature, are amorphous and seem to be formed by the coalescence of a large number of particles with nanometric size. The film composition can be explained in terms of thermal evaporation from particles ejected from the target.

  15. Characteristics of short pulse grid pulser for an electron LINAC

    International Nuclear Information System (INIS)

    Wang Guicheng; Fang Zhigao; Hong Jun

    1996-01-01

    An equivalent circuit is used to obtain the output waveform of a short pulse grid pulser for an electron LINAC, and the amplitude of the output pulse is studied as a function of number of switching transistors for some kinds of transistor. Two pulsers were fabricated to fulfill the requirements of the 200 MeV LINAC at NSRL

  16. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas

    2017-04-01

    Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Control of giant pulse duration in neodymium mini lasers with controllable cavity length and pulsed pumping

    International Nuclear Information System (INIS)

    Berenberg, Vladimir A.; Cervantes, Miguel A.; Terpugov, Vladimir S.

    2006-01-01

    In a solid-state laser incident on aLiNdP4O12 crystal, pumped by a short light pulse, giant pulse oscillation without the use of resonator Q switching is realized. Tuning of the oscillation pulse duration from 2 up to 20 ns is achieved by changing the cavity length from 24 to 3 mm, respectively. Our analysis of this mode of laser radiation is made on the basis of the rate equations. The factors influencing oscillation pulse duration a reinvestigated. It is shown that in a limiting case the minimal value of the pulse duration is limited by only the rate of excitation transfer from the pumping band to the metastable level

  18. Band-selective shaped pulse for high fidelity quantum control in diamond

    International Nuclear Information System (INIS)

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia; Zhang, Fei-Hao; Gu, Chang-Zhi; Pan, Xin-Yu; Long, Gui-Lu

    2014-01-01

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host 14 N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby 13 C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  19. Band-selective shaped pulse for high fidelity quantum control in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Fei-Hao [Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China); State Key Laboratory of Low-Dimensional Physics and Department of Physics, Tsinghua University, Beijing 100084 (China); Gu, Chang-Zhi; Pan, Xin-Yu, E-mail: xypan@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Long, Gui-Lu [Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China); State Key Laboratory of Low-Dimensional Physics and Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-30

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  20. Modular High Voltage Pulse Converter for Short Rise and Decay Times

    NARCIS (Netherlands)

    Mao, S.

    2018-01-01

    This thesis explores a modular HV pulse converter technology with short rise and decay times. A systematic methodology to derive and classify HV architectures based on a modularization level of power building blocks of the HV pulse converter is developed to summarize existing architectures and

  1. Kinetics of excited levels in copper-vapor laser

    International Nuclear Information System (INIS)

    Smilanski, I.

    1981-10-01

    A full and representative description of the excited copper level kinetics in a copper-vapor laser is presented. The research was carried out in three stages. The first stage was the development of a representative and reliable measurement cell. A laser tube constructed of refractory materials and an excitation circuit which provides short pulses at a high repetition rate to heat the tube and excite the copper atoms were developed. This stage was also dedicated to characterizing the laser and studying its scaling laws. In the second stage a rapid neasuring system which avoids the problem of spectral line shape was developed. The system is based on the 'hook' method, which utilizes the anomalous dispersion in the vicinity of an atomic line. The light source, a wide band nitrogen-laser-pumped dye laser, ensures a short sampling time, and the recording system, with a television camera face as the recording medium, allows precise data reduction. In the third stage the excited copper level kinetics in a copper vapor laser is measured. The principal conclusions, that only a small part of the energy in the discharge is utilized to populate the upper laser levels and that the lower laser level population is very large at the end of the excitation pulse and cannot be attributed to relaxation of the upper levels, necessitate a new kinetic description of the copper-vapor laser. The laser is not self-terminating; it is activated and terminated by the electrical discharge

  2. Generation of ultra short pulses by auto injection in the Nd: YAG laser

    International Nuclear Information System (INIS)

    Faria, I.C. de.

    1986-01-01

    Yhe work presented here, was concerned to the construction of a coherent light source in the near infrared region with pulses of 10 -10 seconds. The auto-injection technique was employed for generating these short pulses with posterior extraction of the pulse applied to a Nd=YAG-pulsed laser. (author) [pt

  3. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun

    2018-04-01

    A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.

  4. Impact of ultrafast demagnetization process on magnetization reversal in L10 FePt revealed using double laser pulse excitation

    Science.gov (United States)

    Shi, J. Y.; Tang, M.; Zhang, Z.; Ma, L.; Sun, L.; Zhou, C.; Hu, X. F.; Zheng, Z.; Shen, L. Q.; Zhou, S. M.; Wu, Y. Z.; Chen, L. Y.; Zhao, H. B.

    2018-02-01

    Ultrafast laser induced magnetization reversal in L10 FePt films with high perpendicular magnetic anisotropy was investigated using single- and double-pulse excitations. Single-pulse excitation beyond 10 mJ cm-2 caused magnetization (M) reversal at the applied fields much smaller than the static coercivity of the films. For double-pulse excitation, both coercivity reduction and reversal percentage showed a rapid and large decrease with the increasing time interval (Δt) of the two pulses in the range of 0-2 ps. In this Δt range, the maximum demagnetization (ΔMp) was also strongly attenuated, whereas the integrated demagnetization signals over more than 10 ps, corresponding to the average lattice heat effect, showed little change. These results indicate that laser induced M reversal in FePt films critically relies on ΔMp. Because ΔMp is determined by spin temperature, which is higher than lattice temperature, utilizing an ultrafast laser instead of a continuous-wave laser in laser-assisted M reversal may reduce the overall deposited energy and increase the speed of recording. The effective control of M reversal by slightly tuning the time delay of two laser pulses may also be useful for ultrafast spin manipulation.

  5. Enhancement of nonlinear optical response of weakly confined excitons in GaAs thin films by spectrally rectangle-shape-pulse-excitation

    International Nuclear Information System (INIS)

    Kojima, O; Isu, T; Ishi-Hayase, J; Sasaki, M; Tsuchiya, M

    2007-01-01

    We report the enhancement of the nonlinear optical response of the weakly confined excitons with use of spectrally rectangular pulse. The nonlinear optical response was investigated as a function of excitation energy by a degenerate four-wave-mixing (DFWM) technique. In the case that the laser pulse with the controlled spectral shape excites the plural exciton states simultaneously, the DFWM signal intensity is enhanced by a factor of two in comparison with the intensity under the excitation of a single exciton state. This enhancement is caused by the superposition of the nonlinear optical responses from the plural exciton states

  6. Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System.

    Science.gov (United States)

    Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier

    2016-04-01

    In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass. © The Author(s) 2016.

  7. Efficient excitation of nonlinear phonons via chirped pulses: Induced structural phase transitions

    Science.gov (United States)

    Itin, A. P.; Katsnelson, M. I.

    2018-05-01

    Nonlinear phononics play important role in strong laser-solid interactions. We discuss a dynamical protocol for efficient phonon excitation, considering recent inspiring proposals: inducing ferroelectricity in paraelectric perovskites, and inducing structural deformations in cuprates [Subedi et al., Phys. Rev. B 89, 220301(R) (2014), 10.1103/PhysRevB.89.220301; Phys. Rev. B 95, 134113 (2017), 10.1103/PhysRevB.95.134113]. High-frequency phonon modes are driven by midinfrared pulses, and coupled to lower-frequency modes those indirect excitations cause structural deformations. We study in more detail the case of KTaO3 without strain, where it was not possible to excite the needed low-frequency phonon mode by resonant driving of the higher frequency one. Behavior of the system is explained using a reduced model of coupled driven nonlinear oscillators. We find a dynamical mechanism which prevents effective excitation at resonance driving. To induce ferroelectricity, we employ driving with sweeping frequency, realizing so-called capture into resonance. The method can be applied to many other related systems.

  8. Formation of very short pulse by neutron spin flip chopper for J-PARC

    International Nuclear Information System (INIS)

    Ebisawa, T.; Soyama, K.; Yamazaki, D.; Tasaki, S.; Sakai, K.; Oku, T.; Maruyama, R.; Hino, M.

    2004-01-01

    We have developed neutron spin flip choppers with high S/N ratio and high intensity for pulsed sources using multi-stage spin flip choppers. It is not easy for us to obtain a very short neutron pulse less than 10 μs using a spin flip chopper, due to the time constant L/R in the normal LR circuit. We will discuss a method obtaining a very short neutron pulse applying the modified push-pull circuit proposed by Ito and Takahashi [4] to the double spin flip chopper with polarizing guides

  9. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.

    Science.gov (United States)

    Bachtel, Andrew D; Gray, Richard A; Stohlman, Jayna M; Bourgeois, Elliot B; Pollard, Andrew E; Rogers, Jack M

    2011-07-01

    We developed a new method for ratiometric optical mapping of transmembrane potential (V(m)) in cardiac preparations stained with di-4-ANEPPS. V(m)-dependent shifts of excitation and emission spectra establish two excitation bands (481 nm) that produce fluorescence changes of opposite polarity within a single emission band (575-620 nm). The ratio of these positive and negative fluorescence signals (excitation ratiometry) increases V(m) sensitivity and removes artifacts common to both signals. We pulsed blue (450 ± 10 nm) and cyan (505 ± 15 nm) light emitting diodes (LEDs) at 375 Hz in alternating phase synchronized to a camera (750 frames-per-second). Fluorescence was bandpass filtered (585 ± 20 nm). This produced signals with upright (blue) and inverted (cyan) action potentials (APs) interleaved in sequential frames. In four whole swine hearts with motion chemically arrested, fractional fluorescence for blue, cyan, and ratio signals was 1.2 ± 0.3%, 1.2 ± 0.3%, and 2.4 ± 0.6%, respectively. Signal-to-noise ratios were 4.3 ± 1.4, 4.0 ± 1.2, and 5.8 ± 1.9, respectively. After washing out the electromechanical uncoupling agent, we characterized motion artifact by cross-correlating blue, cyan, and ratio signals with a signal with normal AP morphology. Ratiometry improved cross-correlation coefficients from 0.50 ± 0.48 to 0.81 ± 0.25, but did not cancel all motion artifacts. These findings demonstrate the feasibility of pulsed LED excitation ratiometry in myocardium. © 2011 IEEE

  10. Short intense ion pulses for materials and warm dense matter research

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Peter A., E-mail: PASeidl@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Persaud, Arun; Waldron, William L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Barnard, John J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Friedman, Alex [Lawrence Livermore National Laboratory, Livermore, CA (United States); Gilson, Erik P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Grote, David P. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2015-11-11

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10{sup 10} ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li{sup +} ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  11. Short intense ion pulses for materials and warm dense matter research

    International Nuclear Information System (INIS)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-01-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10"1"0 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li"+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  12. Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Römer, G.R.B.E.; Bor, T.; Ogieglo, W.; Klein Gunnewiek, M.; Lenferink, A.; Otto, C.; Skolski, J.Z.P.; Grob, F.; Lange, D.F. de; Huis in 't Veld, A.J.

    2013-01-01

    Ultra-short pulsed laser sources, with pulse durations in the ps and fs regime, are commonly exploited for cold ablation. However, operating ultra-short pulsed laser sources at fluence levels well below the ablation threshold allows for fast and selective thermal processing. The latter is especially

  13. Influence of short heat pulses on the helium boiling heat transfer rate

    International Nuclear Information System (INIS)

    Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.

    1987-01-01

    Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer

  14. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  15. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-15

    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  16. Direct electron-impact mechanism of excitation of mercury monobromide in a double-pulse dielectric-barrier-discharge HgBr lamp

    Science.gov (United States)

    Datsyuk, V. V.; Izmailov, I. A.; Naumov, V. V.; Kochelap, V. A.

    2016-08-01

    In a nonequlibrium plasma of a gas-discharge HgBr lamp, the terminal electronic state of the HgBr(B-X) radiative transition with a peak wavelength of 502 nm remains populated for a relatively long time and is repeatedly excited to the B state in collisions with plasma electrons. This transfer of the HgBr molecules from the ground state X to the excited state B is the main mechanism of formation of the light-emitting molecules especially when the lamp is excited by double current pulses. According to our simulations, due to the electron-induced transitions between HgBr(X) and HgBr(B), the output characteristics of the DBD lamp operating in a double-pulse regime are better than those of the lamp operating in a single-pulse regime. In the considered case, the peak power is calculated to increase by a factor of about 2 and the lamp efficiency increases by about 50%.

  17. Pulsed laser study of excited states of aromatic molecules absorbed in globular proteins

    International Nuclear Information System (INIS)

    Cooper, M.; Thomas, J.K.

    1977-01-01

    Pyrene and several derivatives of pyrene such as pyrene sulfonic acid, and pyrene butyric acid were incorporated into bovine serum albumin (BSA) in aqueous solution. The pyrene chromophore was subsequently excited by a pulse of uv light (lambda = 3471 A) from a Q switched frequency doubled ruby laser. The lifetime of the pyrene excited singlet and triplet states were monitored by time resolved spectrophotometry. Various molecules, such as O 2 and I - , dissolved in the aqueous phase, diffused into the protein and quenched pyrene excited states. The rates of these reactions were followed under a variety of conditions such as pH and temperature and in the presence of inert additives. The rates of pyrene excited-state quenching were often considerably smaller than the rates observed in simple solutions. A comparison of the rates in the protein and homogeneous solutions gives information on the factors such as temperature, charge, and pH that control the movement of small molecules in and into BSA

  18. Photoionization and trans-to-cis isomerization of β-cyclodextrin-encapsulated azobenzene induced by two-color two-laser-pulse excitation.

    Science.gov (United States)

    Takeshita, Tatsuya; Hara, Michihiro

    2018-03-15

    Azobenzene (1) and the complex resulting from the incorporation of 1 with cyclodextrin (1/CD) are attractive for light-driven applications such as micromachining and chemical biology tools. The highly sensitive photoresponse of 1 is crucial for light-driven applications containing both 1 and 1/CD to reach their full potential. In this study, we investigated the photoionization and trans-to-cis isomerization of 1/CD induced by one- and two-color two-laser pulse excitation. Photoionization of 1/CD, which was induced by stepwise two-photon absorption, was observed using laser pulse excitation at 266nm. Additionally, simultaneous irradiation with 266 and 532nm laser pulses increased the trans-to-cis isomerization yield (Υ t→c ) by 27%. It was concluded that the increase in Υ t→c was caused by the occurrence of trans-to-cis isomerization in the higher-energy singlet state (S n ), which was reached by S 1 →S n transition induced by laser pulse excitation at 532nm. The results of this study are potentially applicable in light-driven applications such as micromachining and chemical biology tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Simulation of excitation and propagation of pico-second ultrasound

    International Nuclear Information System (INIS)

    Yang, Seung Yong; Kim, No Hyu

    2016-01-01

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm

  20. Simulation of excitation and propagation of pico-second ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Hyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)

    2016-12-15

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

  1. Simulation of excitation and propagation of pico-second ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Kyu [Dept. of Mechanical Engineering, Korea University of Technology and Education, Chunan (Korea, Republic of)

    2014-12-15

    This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

  2. Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2015-01-01

    The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled-wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized. (paper)

  3. Losses analysis of soft magnetic ring core under sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) excitations

    Science.gov (United States)

    Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong

    2018-05-01

    Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.

  4. Fat suppression in MR imaging with binomial pulse sequences

    International Nuclear Information System (INIS)

    Baudovin, C.J.; Bryant, D.J.; Bydder, G.M.; Young, I.R.

    1989-01-01

    This paper reports on a study to develop pulse sequences allowing suppression of fat signal on MR images without eliminating signal from other tissues with short T1. They have developed such a technique involving selective excitation of protons in water, based on a binomial pulse sequence. Imaging is performed at 0.15 T. Careful shimming is performed to maximize separation of fat and water peaks. A spin-echo 1,500/80 sequence is used, employing 90 degrees pulse with transit frequency optimized for water with null excitation of 20 H offset, followed by a section-selective 180 degrees pulse. With use of the binomial sequence for imagining, reduction in fat signal is seen on images of the pelvis and legs of volunteers. Patient studies show dramatic improvement in visualization of prostatic carcinoma compared with standard sequences

  5. Self-Resonant Plasma Wake-Field Excitation by a Laser-Pulse with a Steep Leading-Edge for Particle-Acceleration

    NARCIS (Netherlands)

    Goloviznin, V. V.; van Amersfoort, P. W.

    1995-01-01

    The self-modulational instability of a relatively long laser pulse with a power close to or less than the critical power for relativistic self-focusing in plasma is considered. Strong wake-field excitation occurs as the result of a correlated transverse and longitudinal evolution of the pulse. The

  6. Symmetry issues in a class of ion beam targets using short direct drive pulses

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Lindl, J.D.

    1986-01-01

    We address a class of modified ion beam targets where the symmetry issues are ameliorated in the regime of short bursts of direct drive pulses. Short pulses are here defined so that the fractional change in target radii of peak beam energy deposition are assumed to be small (during each such direct drive burst with a fixed beam focal radius). This requirement is actually not stringent on the temporal pulse-length. In fact we show an explicit example where this can be satisfied by a ≥ 60 ns direct drive pulse-train. A new beam placement scheme is used which systematically eliminated low order spherical harmonic asymmetries. The residual asymmetries of such pulses are studied with both simple model and numerical simulations

  7. Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire

    International Nuclear Information System (INIS)

    Miller, E.K.; Deadrick, F.J.; Landt, J.A.

    1975-01-01

    Absorption of short-pulse electromagnetic energy by a resistively loaded straight wire is examined. Energy collected by the wire, load energy, peak load currents, and peak load voltages are found for a wide range of parameters, with particular emphasis on nuclear electromagnetic pulse (EMP) phenomena. A series of time-sequenced plots is used to illustrate pulse propagation on wires when loads and wire ends are encountered

  8. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power

    DEFF Research Database (Denmark)

    Liu, Haichun; Xu, Can T.; Dumlupinar, Gökhan

    2013-01-01

    We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic...... quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping...... therapy and remote activation of biomolecules in deep tissues....

  9. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses; Processus electroniques d'excitation et de relaxation dans les solides dielectriques excites par des impulsions IR et XUV ultracourtes

    Energy Technology Data Exchange (ETDEWEB)

    Gaudin, J

    2005-11-15

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  10. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    Science.gov (United States)

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  11. Theory and simulation of ultra-short pulse laser interactions

    Energy Technology Data Exchange (ETDEWEB)

    More, R; Walling, R; Price, D; Guethlein, G; Stewart, R; Libby, S; Graziani, F; Levatin, J [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-03-01

    This paper describes recent Livermore work aimed at building computational tools to describe ultra-short pulse laser plasmas. We discuss calculations of laser absorption, atomic data for high-charge ions, and a new idea for linear-response treatment of non-equilibrium phenomena near LTE. (author)

  12. Modeling of collisional excited x-ray lasers using short pulse laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Akira; Moribayashi, Kengo; Utsumi, Takayuki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-03-01

    A simple atomic kinetics model of electron collisional excited x-ray lasers has been developed. The model consists of a collisional radiative model using the average ion model (AIM) and a detailed term accounting (DTA) model of Ni-like Ta. An estimate of plasma condition to produce gain in Ni-like Ta ({lambda}=44A) is given. Use of the plasma confined in a cylinder is proposed to preform a uniform high density plasma from 1-D hydrodynamics calculations. (author)

  13. DURATION LIMIT OF LASER PULSES EMITTED FROM A Ce-DOPED CRYSTAL SHORT CAVITY

    Directory of Open Access Journals (Sweden)

    Le Hoang Hai

    2017-11-01

    Full Text Available Based on the rate equation set for broadband cavities, the dependence of pulse duration on cavity and pumping parameters is analyzed. The cavity uses a Ce-doped crystal as a gain medium. Computation results show the variation of the pulse width with the change of cavity length, mirror reflectivity, pumping energy and pumping pulse duration. A significant influence of multiple-pulse operation in limiting pulse duration is realized and a pulse-width of the order 200 ps is found to be the limit for the direct generation of ultraviolet single picosecond pulses from a Ce:LLF short cavity.

  14. Influence of an inner short-circuit on the behaviour of the superconducting magnet

    International Nuclear Information System (INIS)

    Zizek, F.

    1984-01-01

    On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained

  15. Influence of an inner short-circuit on the behaviour of the superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F. (Skoda k.p., Plzen (Czechoslovakia))

    1984-01-01

    On exciting one of the superconducting quadrupole magnets, voltage pulses were observed on the winding outlets. Over a certain current level the pulses disappeared and a quench of the magnet was registered. A subsequent analysis proved that phenomenon was caused by short-circuiting of the turns inside one of the quadrupole coils. The voltage pulses were caused by repeated quenches of the short-circuited part of the winding. The above effect did not appear until a certain rate of rise of the current was attained.

  16. Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses

    OpenAIRE

    Hudert, Florian; Bruchhausen, Axel; Issenmann, Daniel; Schecker, Olivier; Waitz, Reimar; Erbe, Artur; Scheer, Elke; Dekorsy, Thomas; Mlayah, Adnen; Huntzinger, Jean-Roch

    2009-01-01

    In this Rapid Communication we report the first time-resolved measurements of confined acoustic phonon modes in free-standing Si membranes excited by fs laser pulses. Pump-probe experiments using asynchronous optical sampling reveal the impulsive excitation of discrete acoustic modes up to the 19th harmonic order for membranes of two different thicknesses. The modulation of the membrane thickness is measured with fm resolution. The experimental results are compared with a theoretical model in...

  17. Ionization steps and phase-space metamorphoses in the pulsed microwave ionization of highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    Bayfield, J.E.; Luie, S.Y.; Perotti, L.C.; Skrzypkowski, M.P.

    1996-01-01

    As the peak electric field of the microwave pulse is increased, steps in the classical microwave ionization probability of the highly excited hydrogen atom are produced by phase-space metamorphosis. They arise from new layers of Kolmogorov-Arnold-Moser (KAM) islands being exposed as KAM surfaces are destroyed. Both quantum numerical calculations and laboratory experiments exhibit the ionization steps, showing that such metamorphoses influence pulsed semiclassical systems. copyright 1996 The American Physical Society

  18. Observation of superradiance in a short-pulse FEL oscillator

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Chaix, P.; Piovella, N.; Oepts, D.; Knippels, G.M.H.; van der Meer, A. F. G.; Weits, H. H.

    1997-01-01

    Superradiance has been experimentally studied, in a short-pulse free-electron laser (FEL) oscillator. Superradiance is the optimal way of extracting optical radiation from an FEL and can be characterised by the following scale laws: peak optical power P, scales as the square of electron charge, Q,

  19. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

  20. The dynamic regulation of cortical excitability is altered in episodic ataxia type 2

    DEFF Research Database (Denmark)

    Helmich, Rick C; Siebner, Hartwig R; Giffin, Nicola

    2010-01-01

    -pulse transcranial magnetic stimulation at an interstimulus interval of 2 and 10 ms to assess intracortical inhibition and facilitation, respectively. The time course of burst-induced excitability changes differed between groups. Healthy controls showed a short-lived increase in excitability that was only present 50...... different from either controls or patients with episodic ataxia type 2. Together, these findings indicate that patients with episodic ataxia type 2 have an excessive increase in motor cortex excitability following a strong facilitatory input. We argue that this deficient control of cortical excitability may...

  1. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...

  2. Ionization and recombination in attosecond electric field pulses

    International Nuclear Information System (INIS)

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-01-01

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers

  3. Generation of ultra-short relativistic-electron-bunch by a laser wakefield

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    The possibility of the generation of an ultra-short (about one micron long) relativistic (up to a few GeVs) electron-bunch in a moderately nonlinear laser wakefield excited in an underdense plasma by an intense laser pulse is investigated. The ultra-short bunch is formed by trapping, effective

  4. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  5. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    Science.gov (United States)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  6. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  7. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  8. Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theory

    Science.gov (United States)

    Yazdanpanah, J.

    2018-02-01

    In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.

  9. High Energy, Short Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2008-09-10

    A short pulse fiber injection laser for the Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) has been developed at Lawrence Livermore National Laboratory (LLNL). This system produces 100 {micro}J pulses with 5 nm of bandwidth centered at 1053 nm. The pulses are stretched to 2.5 ns and have been recompressed to sub-ps pulse widths. A key feature of the system is that the pre-pulse power contrast ratio exceeds 80 dB. The system can also precisely adjust the final recompressed pulse width and timing and has been designed for reliable, hands free operation. The key challenges in constructing this system were control of the signal to noise ratio, dispersion management and managing the impact of self phase modulation on the chirped pulse.

  10. Short pulse absorption dynamics in a p-i-n InGaAsP MQW waveguide saturable absorber

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Öhman, Filip; Mørk, Jesper

    2002-01-01

    The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized.......The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized....

  11. Heat wave propagation in a thin film irradiated by ultra-short laser pulses

    International Nuclear Information System (INIS)

    Yoo, Jae Gwon; Kim, Cheol Jung; Lim, C. H.

    2004-01-01

    A thermal wave solution of a hyperbolic heat conduction equation in a thin film is developed on the basis of the Green's function formalism. Numerical computations are carried out to investigate the temperature response and the propagation of the thermal wave inside a thin film due to a heat pulse generated by ultra-short laser pulses with various laser pulse durations and thickness of the film

  12. ENDOR with band-selective shaped inversion pulses

    Science.gov (United States)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  13. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  14. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  15. On the biphoton excitation of the fluorescence of the bacteriochlorophyll molecules of purple photosynthetic bacteria by powerful near IR femto-picosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, A. Yu., E-mail: borissov@belozersky.msu.ru [Moscow State University, Belozersky Institute of Physicochemical Biology (Russian Federation)

    2011-11-15

    The authors of a number of experimental works detected nonresonance biphoton excitation of bacteriochlorophyll molecules, which represent the main pigment in the light-absorbing natural 'antenna' complexes of photosynthesizing purple bacteria, by femtosecond IR pulses (1250-1500 nm). They believe that IR quanta excite hypothetic forbidden levels of the pigments of these bacteria in the double frequency range 625-750 nm. We propose and ground an alternative triplet mechanism to describe this phenomenon. According to our hypothesis, the mechanism of biphoton excitation of molecules by IR quanta can manifest itself specifically, through high triplet levels of molecules in the high fields induced by femtosecond-picosecond laser pulses.

  16. Pondermotive absorption of a short intense laser pulse in a non-uniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A A; Platonov, K Yu [Inst. for Laser Physics, SC ` Vavilov State Optical Inst.` 12, Birzhevaya line, St Petersburg (Russian Federation); Tanaka, K A

    1998-03-01

    An analytical description of the pondermotive absorption mechanism at a short high intense laser pulse interaction with a strong inhomogeneous plasma is presented. The optimal conditions for the maximum of resonance absorption of laser pulse interaction with non-uniform plasma at normal incidence are founded. (author)

  17. Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing

    OpenAIRE

    Scorticati, D.; Illiberi, A.; Römer, G.R.B.E.; Bor, T.; Ogieglo, W.; Klein Gunnewiek, M.; Lenferink, A.; Otto, C.; Skolski, J.Z.P.; Grob, F.; Lange, D.F. de; Huis in 't Veld, A.J.

    2013-01-01

    Ultra-short pulsed laser sources, with pulse durations in the ps and fs regime, are commonly exploited for cold ablation. However, operating ultra-short pulsed laser sources at fluence levels well below the ablation threshold allows for fast and selective thermal processing. The latter is especially advantageous for the processing of thin films. A precise control of the heat affected zone, as small as tens of nanometers, depending on the material and laser conditions, can be achieved. It enab...

  18. Excitation and deexcitation of the Si-H stretching mode in a Si:H with picosecond free electron laser pulses

    International Nuclear Information System (INIS)

    Xu, Z.; Fauchet, M.; Rella, C.W.

    1995-01-01

    Hydrogen in amorphous and crystalline silicon has been the topic of intense theoretical and experimental investigations for more than one decade. To better understand how the Si-H bonds interact with the Si matrix and how they can be broken, it would be useful to excite selectively these bonds and monitor the energy flow from the Si-H bonds into the bulk Si modes. One attractive way of exciting the Si-H modes selectively is with an infrared laser tuned to a Si-H vibrational mode. Unfortunately, up to now, this type of experiment had not been possible because of the lack of a laser producing intense, ultrashort pulses that are tunable in the mid infrared. In this presentation, we report the first measurement where a 1 picosecond long laser pulse was used to excite the Si-H stretching modes near 2000 cm -1 and another identical laser pulse was used to measure the deexcitation from that specific vibrational mode. The laser was the Stanford free electron laser generating ∼1 ps-long pulses, tunable in the 5 μm region and focussed to an intensity of ∼1 GW/cm 2 . The pump-probe measurements were performed in transmission at room temperature on several 2 μm thick a-Si:H films deposited on c-Si. Samples with predominant Si-H 1 modes, predominant Si-H n>1 modes and with a mixture of modes were prepared. The laser was tuned on resonance with either of these modes. Immediately after excitation, we observe a bleaching of the infrared absorption, which can be attributed to excitation of the Si-H mode. Beaching is expected since, as a result of anharmonicity, the detuning between the (E 3 - E 2 ) resonance and the (E 2 - E 1 ) resonance is larger than the laser bandwidth. Note that despite the anharmonicity, it should be possible to climb the vibrational ladder due to power broadening

  19. A new coding concept for fast ultrasound imaging using pulse trains

    DEFF Research Database (Denmark)

    Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    Frame rate in ultrasound imaging can he increased by simultaneous transmission of multiple beams using coded waveforms. However, the achievable degree of orthogonality among coded waveforms is limited in ultrasound, and the image quality degrades unacceptably due to interbeam interference....... In this paper, an alternative combined time-space coding approach is undertaken. In the new method all transducer elements are excited with short pulses and the high time-bandwidth (TB) product waveforms are generated acoustically. Each element transmits a short pulse spherical wave with a constant transmit...... delay from element to element, long enough to assure no pulse overlapping for all depths in the image. Frequency shift keying is used for "per element" coding. The received signals from a point scatterer are staggered pulse trains which are beamformed for all beam directions and further processed...

  20. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    Science.gov (United States)

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  1. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses

    Science.gov (United States)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.

    2017-12-01

    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  2. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  3. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  4. Studying the mechanism of micromachining by short pulsed laser

    Science.gov (United States)

    Gadag, Shiva

    The semiconductor materials like Si and the transparent dielectric materials like glass and quartz are extensively used in optoelectronics, microelectronics, and microelectromechanical systems (MEMS) industries. The combination of these materials often go hand in hand for applications in MEMS such as in chips for pressure sensors, charge coupled devices (CCD), and photovoltaic (PV) cells for solar energy generation. The transparent negative terminal of the solar cell is made of glass on one surface of the PV cell. The positive terminal (cathode) on the other surface of the solar cell is made of silicon with a glass negative terminal (anode). The digital watches and cell phones, LEDs, micro-lens, optical components, and laser optics are other examples for the application of silicon and or glass. The Si and quartz are materials extensively used in CCD and LED for digital cameras and CD players respectively. Hence, three materials: (1) a semiconductor silicon and transparent dielectrics,- (2) glass, and (3) quartz are chosen for laser micromachining as they have wide spread applications in microelectronics industry. The Q-switched, nanosecond pulsed lasers are most extensively used for micro-machining. The nanosecond type of short pulsed laser is less expensive for the end users than the second type, pico or femto, ultra-short pulsed lasers. The majority of the research work done on these materials (Si, SiO 2, and glass) is based on the ultra-short pulsed lasers. This is because of the cut quality, pin point precision of the drilled holes, formation of the nanometer size microstructures and fine features, and minimally invasive heat affected zone. However, there are many applications such as large surface area dicing, cutting, surface cleaning of Si wafers by ablation, and drilling of relatively large-sized holes where some associated heat affected zone due to melting can be tolerated. In such applications the nanosecond pulsed laser ablation of materials is very

  5. Bunching phase evolution of short-pulse FEL oscillator system

    CERN Document Server

    Song, S B; Choi, D I

    2000-01-01

    We studied numerically the short-pulse FEL oscillator system using properly defined bunching phase theta sub B and PSI sub B. In stable operation, we have found that the optical field 'locks' the phase to pi/2 at the trailing edge, which gives the maximum gain. Moreover, electrons can be detrapped from ponderomotive bucket due to the spatial variation of the optical field, and this detrapping effect is a major cause of the limit cycle oscillation of the system. The 'bump' of the output power during the amplification usually exists at the near-perfect cavity synchronism regime, which can be explained as the change of the matching condition between electron micropulse and optical pulse.

  6. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  7. Chemical Excitation and Inactivation in Photoreceptors of the Fly Mutants trp and nss

    NARCIS (Netherlands)

    Suss, E.; Barash, S.; Stavenga, D.G.; Stieve, H.; Selinger, Z.; Minke, B.

    1989-01-01

    The Drosophila and Lucilia photoreceptor mutants, trp and nss, respond like wild-type flies to a short pulse of intense light or prolonged dim light; however, upon continuous intense illumination, the trp and nss mutants are unable to maintain persistent excitation. This defect manifests itself by a

  8. Optical soliton communication using ultra-short pulses

    CERN Document Server

    Sadegh Amiri, Iraj

    2015-01-01

    This brief analyzes the characteristics of a microring resonator (MRR) to perform communication using ultra-short soliton pulses. The raising of nonlinear refractive indices, coupling coefficients and radius of the single microring resonator leads to decrease in input power and round trips wherein the bifurcation occurs. As a result, bifurcation or chaos behaviors are seen at lower input power of 44 W, where the nonlinear refractive index is n2=3.2×10−20 m2/W. Using a decimal convertor system, these ultra-short signals can be converted into quantum information. Results show that multi solitons with FWHM and FSR of 10 pm and 600 pm can be generated respectively. The multi optical soliton with FWHM and FSR of 325 pm and 880 nm can be incorporated with a time division multiple access (TDMA) system wherein the transportation of quantum information is performed.

  9. Induction of the 'in vivo' chlorophyll fluorescence excited by CW and pulse-periodical laser radiation

    International Nuclear Information System (INIS)

    Zakhidov, Eh.A.; Zakhidov, M.A.; Kasymdzhanov, M.A.; Khabibullaev, P.K.

    1996-01-01

    Inductional changes of fluorescence of the native chlorophyll molecules in plant leaves excited by CW and pulse-periodical laser radiation are studied. The opportunity of controlling of the photosynthesis efficiency through fluorescence response at different rates of the electron flow in charge transfer chain of the photosynthetic apparatus of plant is shown. (author). 13 refs.; 4 refs

  10. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  11. Pulse-shaping strategies in short-pulse fiber amplifiers

    International Nuclear Information System (INIS)

    Schimpf, Damian Nikolaus

    2010-01-01

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  12. Clinical observation of one time short-pulse pattern scan laser pan-retinal photocoagulation for proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-04-01

    Full Text Available AIM: To investigate the clinical efficacy and benefit of short-pulse pattern scan laser(PASCALphotocoagulation for proliferative diabetic retinopathy(PDR.METHODS:Twenty-eight PDR patients(42 eyesunderwent short-pulse PASCAL pan-retinal photocoagulation(PRPwere analyzed.The best corrected visual acuity was ≥0.1 in 36 eyes, RESULTS: All the cases had no pain during the short-pulse PASCAL treatment.One year after treatments,the final visual acuity was improved in 6 eyes,kept stable in 28 eyes and decreased in 8 eyes; neovascularization were regressed in 18 eyes(43%, stable in 12 eyes(29%, uncontrolled in 12 eyes(29%. Five eyes(12%received vitrectomy due to vitreous hemorrhage.Compared with before operation, retina thickness in central fovea of macula and visual field had no obvious change after one-time PASCAL PRP(P>0.05. CONCLUSION:The one-time short-pulse PASCAL PRP could stabilize the progress of PDR safely, effectively and simply.

  13. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  14. Application of pulse power technology to ultra high energy electron accelerators

    International Nuclear Information System (INIS)

    Nation, J.A.

    1989-01-01

    The author presents in this paper a review of the application of pulse power technology to the development of high gradient electron accelerators. The technology demands are relatively modest compared to the ultra high power technology used for inertial confinement fusion drivers. With the advent of magnetic switching intense electron beams can be generated with a sufficiently high repetition rate to be of interest for high energy electron accelerator driver applications. Most of the techniques considered rely on the excitation of large amplitude waves on the beams. Within this framework there are two broad categories of accelerator, those in which the waves are directly excited in and supported by the medium and, secondly, those where the waves are used to generate radiofrequency signals which are then coupled via structures to the beam being accelerated. In what follows we shall consider both approaches. Present-day pulse power technology limits pulse durations to about 100 nsec. Consequently, if these sources are to be used, we will need to use high group velocity structures to avoid the need for short accelerator module lengths. An advantage of the short pulse duration is that the available acceleration voltage gradient increases compared to that obtained using conventional rf drivers. 19 references, 9 figures, 1 table

  15. Short-pulse generation in a diode-end-pumped solid-state laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2010-09-01

    Full Text Available , Development of High Average Power Picosecond Laser Systems, Opto- Electronic Devices, (2002). INTRODUCTION A Nd:YVO4 modelocked laser has been constructed using a resonator designed according to the theoretical parameters. The laser produced pulses... theoretical PQSML,th of 2.08W. Short-Pulse Generation in a Diode-End-Pumped Solid-State Laser S. Ngcobo1,2, C. Bollig1 and H. Von Bergmann2 1CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2Laser Research Center, University...

  16. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.

    1986-01-01

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  17. Calibrated Pulse-Thermography Procedure for Inspecting HDPE

    Directory of Open Access Journals (Sweden)

    Mohammed A. Omar

    2008-01-01

    Full Text Available This manuscript discusses the application of a pulse-thermography modality to evaluate the integrity of a high-density polyethylene HDPE joint for delamination, in nonintrusive manner. The inspected HDPE structure is a twin-cup shape, molded through extrusion, and the inspection system comprises a high-intensity, short-duration radiation pulse to excite thermal emission; the text calibrates the experiment settings (pulse duration, and detector sampling rate to accommodate HDPE bulks thermal response. The acquired thermal scans are processed through new contrast computation named “self-referencing”, to investigate the joint tensile strength and further map its adhesion interface in real-time. The proposed system (hardware, software combination performance is assessed through an ultrasound C-scan validation and further benchmarked using a standard pulse phase thermography (PPT routine.

  18. Comment on "Defocusing complex short-pulse equation and its multi-dark-soliton solution"

    Science.gov (United States)

    Youssoufa, Saliou; Kuetche, Victor K.; Kofane, Timoleon C.

    2017-08-01

    In their recent paper, Feng et al. [Phys. Rev. E 93, 052227 (2016), 10.1103/PhysRevE.93.052227] proposed a complex short-pulse equation of both focusing and defocusing types. They studied in detail the defocusing case and derived its multi-dark-soliton solutions. Nonetheless, from a physical viewpoint in order to better and deeply understand their genuine implications, we find it useful to provide a real and proper background for the derivation of the previous evolution system while showing that the expression of the nonlinear electric polarization the above authors used in their scheme is not suitable for getting the defocusing complex short-pulse equation.

  19. Correction of echo shift in reconstruction processing for ultra-short TE pulse sequence

    International Nuclear Information System (INIS)

    Takizawa, Masahiro; Ootsuka, Takehiro; Abe, Takayuki; Takahashi, Tetsuhiko

    2010-01-01

    An ultra-short echo time (TE) pulse sequence is composed of a radial sampling that acquires echo signals radially in the K-space and a half-echo acquisition that acquires only half of the echo signal. The shift in the position of the echo signal (echo shift) caused by the timing errors in the gradient magnetic field pulses affects the image quality in the radial sampling with the half-echo acquisition. To improve image quality, we have developed a signal correction algorithm that detects and eliminates this echo shift during reconstruction by performing a pre-scan within 10 seconds. The results showed that image quality is improved under oblique and/or off-centering conditions that frequently cause image distortion due to hardware error. In conclusion, we have developed a robust ultra-short TE pulse sequence that allows wide latitude in the scan parameters, including oblique and off-centering conditions. (author)

  20. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    International Nuclear Information System (INIS)

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-01-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe

  1. An imaging proton spectrometer for short-pulse laser plasma experiments

    International Nuclear Information System (INIS)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R.; Fuchs, J.; Gauthier, M.

    2010-01-01

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  2. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R. [Lawrence Livermore National Laboratory, Livemore, California 94551 (United States); Fuchs, J.; Gauthier, M. [LULI Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2010-10-15

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  3. Taking snapshots of photoexcited molecules in disordered media using pulsed synchrotron x-rays

    International Nuclear Information System (INIS)

    Chen, L.X.

    2004-01-01

    Photoexcited molecules are quintessential reactants in photochemistry. Structures of these photoexcited molecules in disordered media in which a majority of photochemical reactions take place remained elusive for decades owing to a lack of suitable X-ray sources, despite their importance in understanding fundamental aspects in photochemistry. As new pulsed X-ray sources become available, short-lived excited-state molecular structures in disordered media can now be captured by using laser-pulse pump, X-ray pulse-probe techniques of third-generation synchrotron sources with time resolutions of 30-100 ps, as demonstrated by examples in this review. These studies provide unprecedented information on structural origins of molecular properties in the excited states. By using other ultrafast X-ray facilities that will be completed in the near future, time-resolution for the excited-state structure measurements should reach the femtosecond timescales, which will make 'molecular movies' of bond breaking or formation, and vibrational relaxation, a reality.

  4. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    Science.gov (United States)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  5. Allowable propagation of short pulse laser beam in a plasma channel and electromagnetic solitary waves

    International Nuclear Information System (INIS)

    Zhang, Shan; Hong, Xue-Ren; Wang, Hong-Yu; Xie, Bai-Song

    2011-01-01

    Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.

  6. Study of the fast inversion recovery pulse sequence. With reference to fast fluid attenuated inversion recovery and fast short TI inversion recovery pulse sequence

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi

    1997-01-01

    The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)

  7. Laser spectroscopy on atoms and ions using short-wavelength radiation

    International Nuclear Information System (INIS)

    Larsson, Joergen.

    1994-05-01

    Radiative properties and energy structures in atoms and ions have been investigated using UV/VUV radiation. In order to obtain radiation at short wavelengths, frequency mixing of pulsed laser radiation in crystals and gases has been performed using recently developed frequency-mixing schemes. To allow the study of radiative lifetimes shorter than the pulses from standard Q-switched lasers, different techniques have been used to obtain sufficiently short pulses. The Hanle effect has been employed following pulsed laser excitation for the same purpose. High-resolution spectroscopic techniques have been adapted for use with the broad-band, pulsed laser sources which are readily available in the UV/VUV spectral region. In order to investigate sources of radiation in the XUV and soft X-ray spectral regions, harmonic generation in rare gases has been studied. The generation of coherent radiation by the interaction between laser radiation and relativistic electrons in a synchrotron storage ring has also been investigated. 60 refs

  8. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  9. Time-resolved UV spectroscopy on ammonia excited by a pulsed CO2 laser

    International Nuclear Information System (INIS)

    Holbach, H.

    1980-07-01

    This work investigates the excitation of ammonia by a pulsed CO 2 laser, in particular the processes associated with collisions with argon. It was prompted by two previous observations: the previously reported infrared multiphoton dissociation of NH 3 under nearly collisionless conditions, and the ill understood excitation mechanism of apparently nonresonant low vibrational levels in the presence of Ar. Based on recent spectroscopic data, all vibrational-rotational levels were determined which are simultaneously excited by different CO 2 laser lines. Transitions between the 1 + and 2 - vibrational levels were also taken into account. The linewidth in these calculations was dominated by power broadening, which generates a half width at half maximum of 0.36 cm -1 at the typical power density of 10 MW/cm 2 . In order to reproduce published experimental absorption data, it proved necessary to take account all transitions within a distance of 20 cm -1 from the laser line. This fact implies in most cases the simultaneous population of a large number of vibrational-rotational levels. The population of levels by absorption or by subsequent collisional processes was probed by time-resolved absorption measurement of vibrational bands and their rotational envelope in the near UV. Time resolution (5...10) was sufficient to observe rotational relaxation within individual vibrational levels. Characteristic differences were found for the various excitation lines. (orig.) [de

  10. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation

  11. Multiphoton atomic ionization in the field of a very short laser pulse

    International Nuclear Information System (INIS)

    Popov, V.S.

    2001-01-01

    Closed analytic expressions are derived for the probability of multiphoton atomic and ionic ionization in a variable electric field E(t), which are applicable for arbitrary Keldysh parameters γ. Dependencies of the ionization probability and photoelectron pulse spectrum on the shape of a very short laser pulse are analyzed. Examples of pulse fields of various forms, including a modulated light pulse with a Gaussian or Lorentz envelope, are considered in detail. The interference effect in the photoelectron energy spectrum during atomic ionization by a periodic field of a general form is examined. The range of applicability of the adiabatic approximation in the multiphoton ionization theory is discussed. The imaginary time method is used in the calculations, which allows the probability of particle tunneling through oscillating barriers to be effectively calculated

  12. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  13. Traveling waves of the regularized short pulse equation

    International Nuclear Information System (INIS)

    Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J

    2014-01-01

    The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)

  14. Reactions of N2(A3Σ/sub u/+) and candidates for short wavelength lasers

    International Nuclear Information System (INIS)

    Setser, D.W.

    1987-01-01

    This proposal is a request for a one year renewal of a contract with the Univ. of California (Lawrence Livermore Laboratory). The proposed experiments are directed towards investigation of possible short-wavelength laser candidate molecules that can be pumped via excitation-transfer reactions with N 2 (A 3 Σ/sub u/ + ) molecules. We will continue our flowing-afterglow experiments to characterize the excitation-transfer collisions between N 2 (A) and promising acceptor diatomic molecules (radicals). We also will extend the studies to include excitation-transfer to Cd and to S atoms. For some chemical systems, a pulsed N 2 (A) source would be very convenient for kinetic measurements and we propose to develop a pulsed N 2 (A) source. During the first year, we have shown that the excitation-transfer reaction between N 2 (A) and SO(X) provides a possible laser candidate. Therefore, we propose to start a program to study the quenching and relaxation kinetics of the SO(A 3 PI) molecule, using pulsed laser excitation techniques to generate specific levels of SO(A 3 PI)

  15. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    International Nuclear Information System (INIS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H.Y.; Fu, B.Q.; Li, M.; Liu, W.

    2013-01-01

    Highlights: ► Recrystallization temperature of a rolled W was ∼2480 °C under applied HHF loads. ► Fine grains were obtained under HHF loads with appropriate short pulse length. ► With increasing pulse length, the recrystallized grains significantly grew larger. ► A linear relationship between ln d and 1/T max was found. ► Activation energy for grain growth in T evolution up to T max in 1.5 s was obtained. -- Abstract: Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m 2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/T max ) was found and accordingly the activation energy for grain growth in temperature evolution up to T max in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads

  16. High-order harmonic generation with short-pulse lasers

    International Nuclear Information System (INIS)

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1992-12-01

    Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals

  17. Validation of a Novel Traditional Chinese Medicine Pulse Diagnostic Model Using an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Anson Chui Yan Tang

    2012-01-01

    Full Text Available In view of lacking a quantifiable traditional Chinese medicine (TCM pulse diagnostic model, a novel TCM pulse diagnostic model was introduced to quantify the pulse diagnosis. Content validation was performed with a panel of TCM doctors. Criterion validation was tested with essential hypertension. The gold standard was brachial blood pressure measured by a sphygmomanometer. Two hundred and sixty subjects were recruited (139 in the normotensive group and 121 in the hypertensive group. A TCM doctor palpated pulses at left and right cun, guan, and chi points, and quantified pulse qualities according to eight elements (depth, rate, regularity, width, length, smoothness, stiffness, and strength on a visual analog scale. An artificial neural network was used to develop a pulse diagnostic model differentiating essential hypertension from normotension. Accuracy, specificity, and sensitivity were compared among various diagnostic models. About 80% accuracy was attained among all models. Their specificity and sensitivity varied, ranging from 70% to nearly 90%. It suggested that the novel TCM pulse diagnostic model was valid in terms of its content and diagnostic ability.

  18. Experimental study of pulsed heating of electromagnetic cavities

    International Nuclear Information System (INIS)

    Pritzkau, D.P.; Menegat, A.; Siemann, R.H.

    1997-01-01

    An experiment to study the effects of pulsed heating in electromagnetic cavities will be performed. Pulsed heating is believed to be the limiting mechanism of high acceleration gradients at short wavelengths. A cylindrical cavity operated in the TE 011 mode at a frequency of 11.424 GHz will be used. A klystron will be used to supply a peak input power of 20 MW with a pulse length of 1.5 μs. The temperature response of the cavity will be measured by a second waveguide designed to excite a TE 012 mode in the cavity with a low-power CW signal at a frequency of 17.8 GHz. The relevant theory of pulsed heating will be discussed and the results from cold-testing the structure will be presented

  19. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  20. Excitation of low-frequency residual currents at combination frequencies of an ionising two-colour laser pulse

    Science.gov (United States)

    Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.

    2016-05-01

    We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.

  1. Computational modeling of ultra-short-pulse ablation of enamel

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A. [and others

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  2. Silicon dioxide etching process for fabrication of micro-optics employing pulse-modulated electron-beam-excited plasma

    International Nuclear Information System (INIS)

    Takeda, Keigo; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru

    2006-01-01

    Silicon dioxide etching process employing a pulse-modulated electron-beam-excited plasma (EBEP) has been developed for a fabrication process of optical micro-electro-mechanical systems (MEMSs). Nonplanar dielectric materials were etched by using self-bias induced by the electron beam generating the plasma. In order to investigate the effect of pulse modulation on electron beam, plasma diagnostics were carried out in the EBEP employing C 4 F 8 gas diluted with Ar gas by using a Langmuir single probe and time resolved optical emission spectroscopy. It was found that the pulse-modulated EBEP has an excellent potential to reduce the plasma-induced thermal damage on a photoresist film on a substrate to get the uniform etching and the anisotropic SiO 2 etching in comparison with the conventional EBEP. The pulse-modulated EBEP enabled us to get the high etch rate of SiO 2 of 375 nm/min without any additional bias power supply. Furthermore, the microfabrication on the core area of optical fiber was realized. These results indicate that the pulse-modulated EBEP will be a powerful tool for the application to optical MEMS process

  3. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  4. Study of the oncogenic expression in human fibroblast cells after exposure to very short pulsed laser radiations

    International Nuclear Information System (INIS)

    Dormont, D.; Freville, Th.; Raoul, H.; Courant, D.; Court, L.

    1992-01-01

    The aim of this study is to evaluate the capacity of a laser, delivering very short pulses in the near infrared spectrum with a high pulse ratio frequency, to induce genetic modification on biological tissues. The absence of dicentric among chromosomal aberrations on human lymphocytes suggests that a repetitive very short pulses irradiation has a relatively low capacity to induce genetic abnormalities. The studies of the radiation effects on the cellular growth and the oncogenic expression show that the modifications, induced at the cellular level, do not seem the origin of a cellular transformation and a possible mechanism of carcinogenesis. (author)

  5. Nonlinear interaction of powerful short electromagnetic pulses with an electron plasma

    International Nuclear Information System (INIS)

    Rao, N.N.; Yu, M.Y.; Shukla, P.K.

    1990-01-01

    The nonlinear interaction of powerful short electromagnetic pulses with a plasma consisting of two groups of electrons and immobile ions has been studied. It is shown that the interaction is governed by a nonlinear equation for the electromagnetic wave envelope and a driven nonlinear equation for the low-frequency electron fluctuations. The driver for the latter depends explicitly on the spatio-temporal evolution of the electromagnetic wave flux. It is found that, depending on the cold-to-hot electron density ratio, the localized pulse can propagate with sub- as well as supersonic velocities accompanied by compressional or rarefactional density perturbations. The conditions of existence for the different types of solitary pulses are obtained. The present investigation may be relevant to the study of wave-plasma interaction devices such as inertial fusion confinement as well as to ionospheric modification experiments. (author)

  6. Picosecond, single pulse electron linear accelerator

    International Nuclear Information System (INIS)

    Kikuchi, Riichi; Kawanishi, Masaharu

    1979-01-01

    The picosecond, single pulse electron linear accelerators, are described, which were installed in the Nuclear Engineering Laboratory of the University of Tokyo and in the Nuclear Radiation Laboratory of the Osaka University. The purpose of the picosecond, single pulse electron linear accelerators is to investigate the very short time reaction of the substances, into which gamma ray or electron beam enters. When the electrons in substances receive radiation energy, the electrons get high kinetic energy, and the energy and the electric charge shift, at last to the quasi-stable state. This transient state can be experimented with these special accelerators very accurately, during picoseconds, raising the accuracy of the time of incidence of radiation and also raising the accuracy of observation time. The outline of these picosecond, single pulse electron linear accelerators of the University of Tokyo and the Osaka University, including the history, the systems and components and the output beam characteristics, are explained. For example, the maximum energy 30 -- 35 MeV, the peak current 1 -- 8 n C, the pulse width 18 -- 40 ps, the pulse repetition rate 200 -- 720 pps, the energy spectrum 1 -- 1.8% and the output beam diameter 2 -- 5 mm are shown as the output beam characteristics of the accelerators in both universities. The investigations utilizing the picosecond single pulse electron linear accelerators, such as the investigation of short life excitation state by pulsed radiation, the dosimetry study of pulsed radiation, and the investigation of the transforming mechanism and the development of the transforming technology from picosecond, single pulse electron beam to X ray, vacuum ultraviolet ray and visual ray, are described. (Nakai, Y.)

  7. Experimental approach to interaction physics challenges of the shock ignition scheme using short pulse lasers.

    Science.gov (United States)

    Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C

    2013-12-06

    An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15)  W/cm2, or short pulses with intensities up to 5×10(16)  W/cm2 as well as with 2D particle-in-cell simulations.

  8. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states

    International Nuclear Information System (INIS)

    Guichard, R.

    2007-12-01

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when ℎω > I p : it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with ℎω p : new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  9. Verification of the validity of the short-pulse approximation for one-dimensional Rydberg atoms

    International Nuclear Information System (INIS)

    Kopyciuk, T; Grajek, M

    2011-01-01

    In this paper, we investigate the short-pulse approximation (SPA) for one-dimensional Rydberg atoms. We analyse the limits that SPA has to fulfil in order to be applicable. These concern the shape, the duration and the displacement caused by the pulse. The correctness of SPA is tested by comparing the results obtained using SPA with a numerical solution of the set of time-dependent Schroedinger equations. We show that the limit for the displacement caused by the pulse is of greatest importance. Violation of the limit for the duration of the pulse is shown to lead to concurrent violation of the limit for the displacement. We also show that the shape of the pulse has no influence on the created wave packet.

  10. Nanosecond bipolar pulse generators for bioelectrics.

    Science.gov (United States)

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma

    International Nuclear Information System (INIS)

    Nitikant; Sharma, A K

    2004-01-01

    The process of second harmonic generation of an intense short pulse laser in a plasma is resonantly enhanced by the application of a magnetic wiggler. The wiggler of suitable wave number k-vector 0 provides necessary momentum to second harmonic photons to make harmonic generation a resonant process. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force on them at (2ω 1 ,2k-vector 1 ), where ω 1 and k-vector 1 are the frequency and the wave number of the laser, respectively. As the electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to produce a transverse second harmonic current at (2ω 1 ,2k-vector 1 +k-vector 0 ), driving the second harmonic electromagnetic radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates

  12. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity

    International Nuclear Information System (INIS)

    Wang, Shang; Larin, K V; Li, Jiasong; Vantipalli, S; Twa, M D; Manapuram, R K; Aglyamov, S; Emelianov, S

    2013-01-01

    Accurate non-invasive assessment of tissue elasticity in vivo is required for early diagnostics of many tissue abnormalities. We have developed a focused air-pulse system that produces a low-pressure and short-duration air stream, which can be used to excite transient surface waves (SWs) in soft tissues. System characteristics were studied using a high-resolution analog pressure transducer to describe the excitation pressure. Results indicate that the excitation pressure provided by the air-pulse system can be easily controlled by the air source pressure, the angle of delivery, and the distance between the tissue surface and the port of the air-pulse system. Furthermore, we integrated this focused air-pulse system with phase-sensitive optical coherence tomography (PhS-OCT) to make non-contact measurements of tissue elasticity. The PhS-OCT system is used to assess the group velocity of SW propagation, which can be used to determine Young’s modulus. Pilot experiments were performed on gelatin phantoms with different concentrations (10%, 12% and 14% w/w). The results demonstrate the feasibility of using this focused air-pulse system combined with PhS-OCT to estimate tissue elasticity. This easily controlled non-contact technique is potentially useful to study the biomechanical properties of ocular and other tissues in vivo. (letter)

  13. Properties study of LiNbO3 lateral field excited device working on thickness extension mode

    International Nuclear Information System (INIS)

    Zhi-Tian, Zhang; Ting-Feng, Ma; Chao, Zhang; Wen-Yan, Wang; Yan, Liu; Guan-Ping, Feng

    2010-01-01

    This paper investigates the properties of thickness extension mode excited by lateral electric field on LiNbO 3 by using the extended Christoffel–Bechmann method. It finds that the lateral field excitation coupling factor for a-mode (quasi-extensional mode) reaches its maximum value of 28% on X-cut LiNbO 3 . The characteristics of a lateral field excitation device made of X-cut LiNbO 3 have been investigated and the lateral field excitation device is used for the design of a high frequency ultrasonic transducer. The time and frequency domain pulse/echo response of the LiNbO 3 lateral field excitation ultrasonic transducer is analysed with the modified Krimholtz–Leedom–Matthae model and tested using traditional pulse/echo method. A LiNbO 3 lateral field excitation ultrasonic transducer with the centre frequency of 33.44 MHz and the −6 dB bandwidth of 33.8% is acquired, which is in good agreement with the results of the Krimholtz–Leedom–Matthae model. Further analysis suggests that the LiNbO 3 lateral field excitation device has great potential in the design of broadband high frequency ultrasonic transducers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Excited-state lifetime measurement of silicon vacancy centers in diamond by single-photon frequency upconversion

    Science.gov (United States)

    Rong, Youying; Ma, Jianhui; Chen, Lingxiao; Liu, Yan; Siyushev, Petr; Wu, Botao; Pan, Haifeng; Jelezko, Fedor; Wu, E.; Zeng, Heping

    2018-05-01

    We report a method with high time resolution to measure the excited-state lifetime of silicon vacancy centers in bulk diamond avoiding timing jitter from the single-photon detectors. Frequency upconversion of the fluorescence emitted from silicon vacancy centers was achieved from 738 nm to 436 nm via sum frequency generation with a short pump pulse. The excited-state lifetime can be obtained by measuring the intensity of upconverted light while the pump delay changes. As a probe, a pump laser with pulse duration of 11 ps provided a high temporal resolution of the measurement. The lifetime extracted from the pump–probe curve was 0.755 ns, which was comparable to the timing jitter of the single-photon detectors.

  15. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging.

    Science.gov (United States)

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nuclear transitions induced by atomic excitations

    International Nuclear Information System (INIS)

    Dyer, P.; Bounds, J.A.; Haight, R.C.; Luk, T.S.

    1988-01-01

    In the two-step pumping scheme for a gamma-ray laser, an essential step is that of exciting the nucleus from a long-lived storage isomer to a nearby short- lived state that then decays to the upper lasing level. An experiment is in progress to induce this transfer by first exciting the atomic electrons with UV photons. The incident photons couple well to the electrons, which then couple via a virtual photon to the nucleus. As a test case, excitation of the 235 U nucleus is being sought, using a high- brightness UV laser. The excited nuclear state, having a 26- minute half-life, decays by internal conversion, resulting in emission of an atomic electron. A pulsed infrared laser produces an atomic beam of 235 U which is then bombarded by the UV laser beam. Ions are collected, and conversion electrons are detected by a channel electron multiplier. In preliminary experiments, an upper limit of 7 x 10 -5 has been obtained for the probability of exciting a 235 U atom in the UV beam for one picosecond at an intensity of about 10 15 W/cm 2 . Experiments with higher sensitivities and at higher UV beam intensities are underway

  17. Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency

    Science.gov (United States)

    Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.

    2015-09-01

    We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.

  18. Numerical analysis of short-pulse laser interactions with thin metal film

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2010-10-01

    Full Text Available Thin metal film subjected to a short-pulse laser heating is considered. The hyperbolic two-temperature model describing the temporal andspatial evolution of the lattice and electrons temperatures is discussed. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

  19. A short model excitation of an asymmetric force free superconducting transmission line magnet

    Energy Technology Data Exchange (ETDEWEB)

    Wake, M.; Sato, H.; /KEK, Tsukuba; Carcagno, R.; Foster, W.; Hays, S.; Kashikhin, V.; Oleck, A.; Piekarz, H.; Rabehl, R,; /Fermilab

    2005-09-01

    A short model of asymmetric force free magnet with single beam aperture was tested at Fermilab together with the excitation test of VLHC transmission line magnet. The design concept of asymmetric force free superconducting magnet was verified by the test. The testing reached up to 104 kA current and no indication of force imbalance was observed. Since the model magnet length was only 10cm, A 0.75m model was constructed and tested at KEK with low current to ensure the validity of the design. The cool down and the excitation at KEK were also successful finding very small thermal contraction of the conductor and reasonable field homogeneity.

  20. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  1. Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex

    DEFF Research Database (Denmark)

    Jung, Nikolai H; Gleich, Bernhard; Gattinger, Norbert

    2016-01-01

    Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex (M...... of sinusoidal TMS pulses elicited either a posterior-anterior (PA) or anterior-posterior (AP) directed current in M1. Motor evoked potentials (MEPs) were recorded before and after qTBS to probe changes in cortico-spinal excitability. PA-qTBS at 666 Hz caused a decrease in PA-MEP amplitudes, whereas AP...... in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1....

  2. Annealing of SnO2 thin films by ultra-short laser pulses

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, T.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; Lange, D.F. de; Huis In't Veld, A.J.

    2014-01-01

    Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance

  3. The Importance of Short- and Long-Range Exchange on Various Excited State Properties of DNA Monomers, Stacked Complexes, and Watson-Crick Pairs.

    Science.gov (United States)

    Raeber, Alexandra E; Wong, Bryan M

    2015-05-12

    We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of nonempirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n → π and π → π* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a nonempirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.

  4. Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Vachhani, D. M.; Singh, Ravindra; Misra, Pushkar; Jain, R. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.

    2014-11-01

    Free running short pulse Nd:YAG laser of microsecond pulse duration and high peak power has a unique capability to ablate material from the surface without heat propagation into the bulk. Applications of short pulse Nd:YAG lasers include cleaning and restoration of marble, stones, and a variety of metals for conservation. A study on the development of high peak power short pulses from Nd:YAG laser along with its cleaning and conservation applications has been performed. A pulse energy of 1.25 J with 55 μs pulse duration and a maximum peak power of 22 kW has been achieved. Laser beam has an M2 value of ~28 and a pulse-to-pulse stability of ±2.5%. A lower value of M2 means a better beam quality of the laser in multimode operation. A top hat spatial profile of the laser beam was achieved at the exit end of 200 μm core diameter optical fiber, which is desirable for uniform cleaning. This laser system has been evaluated for efficient cleaning of surface contaminations on marble, zircaloy, and inconel materials for conservation with cleaning efficiency as high as 98%. Laser's cleaning quality and efficiency have been analysed by using a microscope, a scanning electron microscope (SEM), and X-ray photon spectroscopy (XPS) measurements.

  5. Compressing and focusing a short laser pulse by a thin plasma lens

    International Nuclear Information System (INIS)

    Ren, C.; Duda, B. J.; Hemker, R. G.; Mori, W. B.; Katsouleas, T.; Antonsen, T. M.; Mora, P.

    2001-01-01

    We consider the possibility of using a thin plasma slab as an optical element to both focus and compress an intense laser pulse. By thin we mean that the focal length is larger than the lens thickness. We derive analytic formulas for the spot size and pulse length evolution of a short laser pulse propagating through a thin uniform plasma lens. The formulas are compared to simulation results from two types of particle-in-cell code. The simulations give a greater final spot size and a shorter focal length than the analytic formulas. The difference arises from spherical aberrations in the lens which lead to the generation of higher-order vacuum Gaussian modes. The simulations also show that Raman side scattering can develop. A thin lens experiment could provide unequivocal evidence of relativistic self-focusing

  6. Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation

    Energy Technology Data Exchange (ETDEWEB)

    Schick, F. [Univ. of Tuebingen (Germany)

    1996-01-01

    A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage and muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.

  7. Dental hard tissue drilling by longitudinally excited CO2 laser

    Science.gov (United States)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2017-07-01

    We developed a longitudinally excited CO2 laser with a long optical cavity and investigated the drilling characteristics of dental hard tissue. The CO2 laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 13 mm, a pulse power supply, a step-up transformer, a storage capacitance, a spark gap, and a long optical cavity with a cavity length of 175 cm. The CO2 laser produced a short pulse that had a spike pulse with the width of 337 ns and the energy of 1.9 mJ, a pulse tail with the length of 180 μs and the energy of 37.6 mJ, and a doughnut-like beam. In the investigation, a sample was a natural drying human tooth (enamel and dentine). In a processing system, a ZnSe focusing lens with the focal length of 50 mm was used and the location of the focal plane was that of the sample surface. In 1 pulse irradiation, the drilling characteristics depended on the fluence was investigated. In the enamel and dentin drilling, the drilling depth increased with the fluence. The 1 pulse irradiation with the fluence of 21.5 J/cm2 produced the depth of 79.3 μm in the enamel drilling, and the depth of 152.7 μm in the dentin drilling. The short-pulse CO2 laser produced a deeper drilling depth at a lower fluence than long-pulse CO2 lasers in dental hard tissue processing.

  8. Enhancing caries resistance with a short-pulsed CO2 9.3-μm laser: a laboratory study (Conference Presentation)

    Science.gov (United States)

    Rechmann, Peter; Rechmann, Beate M.; Groves, William H.; Le, Charles; Rapozo-Hilo, Marcia L.; Featherstone, John D. B.

    2016-02-01

    The objective of this laboratory study was to test whether irradiation with a new 9.3µm microsecond short-pulsed CO2-laser enhances enamel caries resistance with and without additional fluoride applications. 101 human enamel samples were divided into 7 groups. Each group was treated with different laser parameters (Carbon-dioxide laser, wavelength 9.3µm, 43Hz pulse-repetition rate, pulse duration between 3μs to 7μs (1.5mJ/pulse to 2.9mJ/pulse). Using a pH-cycling model and cross-sectional microhardness testing determined the mean relative mineral loss delta Z (∆Z) for each group. The pH-cycling was performed with or without additional fluoride. The CO2 9.3μm short-pulsed laser energy rendered enamel caries resistant with and without additional fluoride use.

  9. Photodetachment of H- by a short laser pulse in crossed static electric and magnetic fields

    International Nuclear Information System (INIS)

    Peng Liangyou; Wang Qiaoling; Starace, Anthony F.

    2006-01-01

    We present a detailed quantum mechanical treatment of the photodetachment of H - by a short laser pulse in the presence of crossed static electric and magnetic fields. An exact analytic formula is presented for the final state electron wave function (describing an electron in both static electric and magnetic fields and a short laser pulse of arbitrary intensity). In the limit of a weak laser pulse, final state electron wave packet motion is examined and related to the closed classical electron orbits in crossed static fields predicted by Peters and Delos [Phys. Rev. A 47, 3020 (1993)]. Owing to these closed orbit trajectories, we show that the detachment probability can be modulated, depending on the time delay between two laser pulses and their relative phase, thereby providing a means to partially control the photodetachment process. In the limit of a long, weak pulse (i.e., a monochromatic radiation field) our results reduce to those of others; however, for this case we analyze the photodetachment cross section numerically over a much larger range of electron kinetic energy (i.e., up to 500 cm -1 ) than in previous studies and relate the detailed structures both analytically and numerically to the above-mentioned, closed classical periodic orbits

  10. A sub-picosecond pulsed 5 MeV electron beam system

    International Nuclear Information System (INIS)

    Farrell, J. Paul; Batchelor, K.; Meshkovsky, I.; Pavlishin, I.; Lekomtsev, V.; Dyublov, A.; Inochkin, M.; Srinivasan-Rao, T.

    2001-01-01

    Laser excited pulsed, electron beam systems that operate at energies from 1 MeV up to 5 MeV and pulse width from 0.1 to 100 ps are described. The systems consist of a high voltage pulser and a coaxial laser triggered gas or liquid spark gap. The spark gap discharges into a pulse forming line designed to produce and maintain a flat voltage pulse for 1 ns duration on the cathode of a photodiode. A synchronized laser is used to illuminate the photocathode with a laser pulse to produce an electron beam with very high brightness, short duration, and current at or near the space charge limit. Operation of the system is described and preliminary test measurements of voltages, synchronization, and jitter are presented for a 5 MeV system. Applications in chemistry, and accelerator research are briefly discussed

  11. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.

    Science.gov (United States)

    Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V

    2013-09-01

    This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.

  12. Electron emission from insulator surfaces by ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Acuna, M; Gravielle, M S, E-mail: mario@iafe.uba.a, E-mail: msilvia@iafe.uba.a [Institutes de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2009-11-01

    Photoelectron emission from insulator surfaces induced by ultra-short laser pulses is studied within a time-dependent distorted wave method. The proposed approach combines the Volkov phase, which takes into account the laser interaction, with a simple representation of the unperturbed surface states, given by the Tight-binding method. The model is applied to evaluate the photoelectron emission from a LiF(001) surface, finding effects of interference produced by the crystal lattice.

  13. Aurora: A short-pulse multikilojoule KrF inertial fusion laser system

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1985-01-01

    Aurora is a laser system that serves as an operating technology demonstration prototype for large-scale high-energy KrF laser systems of interest for inertial fusion applications. This system will incorporate the following elements to achieve an end-to-end 248-nm laser fusion concept demonstration: an injection-locked oscillator-amplifier front end; an optical angular multiplexer to produce 96 encoded optical channels each of 5-nsec duration; a chain of four electron-beam-driven KrF laser amplifiers; automated alignment systems for beam alignment; a decoder to provide for pulse compression of some fraction of the total beam train to be delivered to target, and a target chamber to house and diagnose fusion targets. The front end configuration uses a stable resonator master oscillator to drive an injection-locked unstable resonator slave oscillator. An extension of existing technology has been used to develop an electrooptic switchout at 248 nm that produces a 5-nsec pulse from the longer slave oscillator pulse. This short pulse is amplified by a postamplifier. Using these discharge lasers, the front end then delivers at least 250 mJ of KrF laser light output to the optical encoder

  14. Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

    Science.gov (United States)

    Eisfeld, Eugen; Roth, Johannes

    2018-05-01

    Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  15. A Test Bed for Short Pulse OA Detection of Optical Directors in Amphibious Operations

    National Research Council Canada - National Science Library

    Ertem, M

    1999-01-01

    ...) system to detect optical directors of potential threats in amphibious operations. The use of a short pulse duration allows discrimination of retroreflections from natural sources such as rock formations and vegetation...

  16. Practical Method for engineering Erbium-doped fiber lasers from step-like pulse excitations

    International Nuclear Information System (INIS)

    Causado-Buelvas, J D; Gomez-Cardona, N D; Torres, P

    2011-01-01

    A simple method, known as 'easy points', has been applied to the characterization of Erbium-doped fibers, aiming for the engineering of fiber lasers. Using low- optical-power flattop pulse excitations it has been possible to determine both the attenuation coefficients and the intrinsic saturation powers of doped single-mode fibers at 980 and 1550 nm. Laser systems have been projected for which the optimal fiber length and output power have been determined as a function of the input power. Ring and linear laser cavities have been set up, and the characteristics of the output laser have been obtained and compared with the theoretical predictions based on the 'easy points' parameters.

  17. Analytical investigation of one-dimensional Rydberg atoms interacting with half-cycle pulses

    International Nuclear Information System (INIS)

    Bersons, I.; Veilande, R.

    2004-01-01

    Classical, quantum-mechanical, and semiclassical expressions for the transition probability in one-dimensional Rydberg atom irradiated by short half-cycle pulse are derived and compared. The simple formulas obtained for excitation of Rydberg atom by two time delayed weak half-cycle pulses reproduce well the experimental data and the solutions of time-dependent Schroedinger equation. When the transferred momenta are stronger and positive, the transition probabilities exhibit fast oscillations with time delay between the pulses. The classical transition probability is constant in time. For negative transferred momenta a focusing phenomenon is observed, and there is a region in time delay, where the transition probabilities oscillate with the Kepler period

  18. A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.

    Directory of Open Access Journals (Sweden)

    Ana Rita Luís

    Full Text Available Common bottlenose dolphins (Tursiops truncatus, produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014, and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories. According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001, repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98. Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001, inter-click-interval (P < 0.001 and duration (P < 0.001. We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the

  19. Short Pulse Laser Applications Design

    International Nuclear Information System (INIS)

    Town, R.J.; Clark, D.S.; Kemp, A.J.; Lasinski, B.F.; Tabak, M.

    2008-01-01

    demonstrate FI. Our design work has focused on the NIF, which is the only facility capable of forming a full-scale hydro assembly, and could be adapted for full-scale FI by the conversion of additional beams to short-pulse operation.

  20. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles.

    Science.gov (United States)

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.

  1. Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan

    2017-01-01

    considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...

  2. Nonlinear excitation fluorescence microscopy: source considerations for biological applications

    Science.gov (United States)

    Wokosin, David L.

    2008-02-01

    Ultra-short-pulse solid-state laser sources have improved contrast within fluorescence imaging and also opened new windows of investigation in biological imaging applications. Additionally, the pulsed illumination enables harmonic scattering microscopy which yields intrinsic structure, symmetry and contrast from viable embryos, cells and tissues. Numerous human diseases are being investigated by the combination of (more) intact dynamic tissue imaging of cellular function with gene-targeted specificity and electrophysiology context. The major limitation to more widespread use of multi-photon microscopy has been the complete system cost and added complexity above and beyond commercial camera and confocal systems. The current status of all-solid-state ultrafast lasers as excitation sources will be reviewed since these lasers offer tremendous potential for affordable, reliable, "turnkey" multiphoton imaging systems. This effort highlights the single box laser systems currently commercially available, with defined suggestions for the ranges for individual laser parameters as derived from a biological and fluorophore limited perspective. The standard two-photon dose is defined by 800nm, 10mW, 200fs, and 80Mhz - at the sample plane for tissue culture cells, i.e. after the full scanning microscope system. Selected application-derived excitation wavelengths are well represented by 700nm, 780nm, ~830nm, ~960nm, 1050nm, and 1250nm. Many of the one-box lasers have fixed or very limited excitation wavelengths available, so the lasers will be lumped near 780nm, 800nm, 900nm, 1050nm, and 1250nm. The following laser parameter ranges are discussed: average power from 200mW to 2W, pulse duration from 70fs to 700fs, pulse repetition rate from 20MHz to 200MHz, with the laser output linearly polarized with an extinction ratio at least 100:1.

  3. Connectivity, excitability and activity patterns in neuronal networks

    International Nuclear Information System (INIS)

    Le Feber, Joost; Stoyanova, Irina I; Chiappalone, Michela

    2014-01-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFP i,j ) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFP i,j with the autocorrelation of i (i.e. CFP i,i ), to obtain the single pulse response (SPR i,j )—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression. (papers)

  4. Hybrid Pulsed Nd:YAG Laser

    Science.gov (United States)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  5. Nonresonant Multiple-Pulse Control of Molecular Motions in Liquid

    Directory of Open Access Journals (Sweden)

    Nikiforov V.G.

    2015-01-01

    Full Text Available We propose the implementation of the multiple-pulse excitation for manipulation of the molecular contributions to the optically-heterodyne-detected optical-Kerr-effect. The key parameters controlling the specificity of the multiple-pulse excitation scenarios are the pulses durations, the delays between pulses, the relation between the pump pulses amplitudes and the pulses polarizations. We model the high-order optical responses and consider some principles of the scenarios construction. We show that it is possible to adjust the excitation scenario in such a way that the some responses can be removed from detected signal along with the enhancement of the interested response amplitude. The theoretical analysis and first experimental data reveal that the multiple-pulse excitation technique can be useful for the selective spectroscopy of the molecular vibrations and rotations in liquid.

  6. Characterization of a high repetition-rate laser-driven short-pulsed neutron source

    Science.gov (United States)

    Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2018-05-01

    We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.

  7. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  8. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    International Nuclear Information System (INIS)

    Anderson, S.G.; Barty, C.P.J.; Betts, S.M.; Brown, W.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Gibson, D.J.; Hartemann, F.V.; Kuba, J.; LaSage, G.P.; Rosenzweig, J.B.; Slaughter, D.R.; Springer, P.T.; Tremaine, A.M.

    2003-01-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10 20 photons/s/0.1% bandwidth/mm 2 /mrad 2 . Initial results are reported and compared to theoretical calculations

  9. Modelling of Ne-like copper X-ray laser driven by 1.2 ps short pulse and 280 ps background pulse configuration

    International Nuclear Information System (INIS)

    Demir, A.; Kenar, N.; Goktas, H.; Tallents, G.J.

    2004-01-01

    Detailed simulations of Ne-like Cu x-ray laser are undertaken using the EHYBRID code. The atomic physics data are obtained using the Cowan code. The optimization calculations are performed in terms of the intensity of background and the time separation between the background and the short pulse. The optimum value is obtained for the conditions of a Nd:glass laser with 1.2 ps pulse at 4.4 x 10 15 W cm -2 irradiance pumping a plasma pre-formed by a 280 ps duration pulse at 5.4 x 10 12 W cm -2 with peak-to-peak pulse separation set at 300 ps. X-ray resonance lines between 6 A and 15 A emitted from copper plasmas have been simulated. Free-free and free-bound emission from the Si-, Al-, Mg-, Na-, Ne- and F-like ions is calculated in the simulation. (author)

  10. THE EXCITED LOADS OF ATTRACTION IN A SYMMETRICAL INDUCTOR SYSTEM FOR THE MAGNETIC PULSE REMOVING OF THE BODY CAR

    Directory of Open Access Journals (Sweden)

    A. V. Gnatov

    2015-04-01

    Full Text Available Recently, repair and recovery of vehicle body operations become more and more popular. A special place here is taken by equipment that provides performance of given repair operations. The most interesting are methods for recovery of car body panels that allow the straightening without disassembling of car body panels and damaging of existing protective coating. Now, there are several technologies for repair and recovery of car body panels without their disassembly and dismantling. The most perspective is magnetic-pulse technology of external noncontact straightening. Results. The calculation of excited loads attractions in a symmetrical inductor system in the universal tool of magnetic-pulse straightening is provided. According to the obtained analytical dependence of the numerical evaluation of volumetric construction diagrams, phase and amplitude of the radial dependence of the spatial distribution of the excited efforts of attraction is obtained. The influence of the magnetic properties of the blank screen and manifested in the appearance of powerful magnetic attraction forces is determined. Originality. A new trend of research of magnetic-pulse working of thin-walled metals has been formulated and received further development, which allows to create not only new equipment, but principally new technological processes of external non-contact repair and recovery of vehicle body panels. Scientific basis of electrodynamic and magnetic attraction of thin-walled sheet metals with using the energy of high-power pulsed fields was created for the first time and proved theoretically and experimentally. Scientific and technical solutions in design of effective tools based on single-turn inductor systems of cylindrical geometry for straightening and recovery of car body panels were formulated and proved theoretically, as well as experimentally. Practical value. Using the results of the calculations we can create effective tools for an external magnetic

  11. Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by nanosecond pulse of soft X-ray source and/or UV laser

    International Nuclear Information System (INIS)

    Bruza, Petr; Fidler, Vlastimil; Nikl, Martin

    2011-01-01

    The practical applicability of the rare-earth doped scintillators in high-speed detectors is limited by the slow decay components in the temporal response of a scintillator. The study of origin and properties of material defects that induce the slow decay components is of major importance for the development of new scintillation materials. We present a table-top, time-domain UV-VIS luminescence spectrometer, featuring extended time and input sensitivity ranges and two excitation sources. The combination of both soft X-ray/XUV and UV excitation source allows the comparative measurements of luminescence spectra and decay kinetics of scintillators to be performed under the same experimental conditions. The luminescence of emission centers of a doped scintillator can be induced by conventional N 2 laser pulse, while the complete scintillation process can be initiated by a soft X-ray/XUV pulse excitation from the laser-produced plasma in gas puff target of 4 ns duration. In order to demonstrate the spectrometer, the UV-VIS luminescence spectra and decay kinetics of cerium doped Lu 3 Al 5 O 12 single crystal (LuAG:Ce) scintillator excited by XUV and UV radiation were acquired. Luminescence of the doped Ce 3+ ions was studied under 2.88 nm (430 eV) XUV excitation from the laser-produced nitrogen plasma, and compared with the luminescence under 337 nm (3.68 eV) UV excitation from nitrogen laser. In the former case the excitation energy is deposited in the LuAG host, while in the latter the 4f-5d 2 transition of Ce 3+ is directly excited. Furthermore, YAG:Ce and LuAG:Ce single crystals luminescence decay profiles are compared and discussed.

  12. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  13. Control of ion beam generation in intense short pulse laser target interaction

    International Nuclear Information System (INIS)

    Nagashima, T.; Izumiyama, T.; Barada, D.; Kawata, S.; Gu, Y.J.; Wang, W.M.; Ma, Y.Y.; Kong, Q.

    2013-01-01

    In intense laser plasma interaction, several issues still remain to be solved for future laser particle acceleration. In this paper we focus on a control of generation of high-energy ions. In this study, near-critical density plasmas are employed and are illuminated by high intensity short laser pulses; we have successfully generated high-energy ions, and also controlled ion energy and the ion energy spectrum by multiple-stages acceleration. We performed particle-in-cell simulations in this paper. The first near-critical plasma target is illuminated by a laser pulse, and the ions accelerated are transferred to the next target. The next identical target is also illuminated by another identical large pulse, and the ion beam introduced is further accelerated and controlled. In this study four stages are employed, and finally a few hundreds of MeV of protons are realized. A quasi-monoenergetic energy spectrum is also obtained. (author)

  14. Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium

    International Nuclear Information System (INIS)

    Maimistov, Andrei I

    2000-01-01

    Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)

  15. Femtosecond laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Balling, Peter; Frislev, Martin Thomas

    2012-01-01

    We report an approach to modeling the interaction between ultrashort laser pulses and dielectric materials. The model includes the excitation of carriers by the laser through strongfield excitation, collisional excitation, and absorption in the plasma consisting of conduction-band electrons formed...

  16. Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films

    Science.gov (United States)

    Sokolowski-Tinten, Klaus; Ziegler, Wolfgang; von der Linde, Dietrich; Siegal, Michael P.; Overmyer, D. L.

    2005-03-01

    Short-pulse-laser-induced damage and ablation of thin films of amorphous, diamond-like carbon have been investigated. Material removal and damage are caused by fracture of the film and ejection of large fragments. The fragments exhibit a delayed, intense and broadband emission of microsecond duration. Both fracture and emission are attributed to the laser-initiated relaxation of the high internal stresses of the pulse laser deposition-grown films.

  17. An ultra short pulse reconstruction software applied to the GEMINI high power laser system

    Energy Technology Data Exchange (ETDEWEB)

    Galletti, Mario, E-mail: mario.gall22@gmail.com [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Galimberti, Marco [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Hooker, Chris [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); University of Oxford, Oxford (United Kingdom); Chekhlov, Oleg; Tang, Yunxin [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Bisesto, Fabrizio Giuseppe [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Curcio, Alessandro [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Anania, Maria Pia [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Giulietti, Danilo [Physics Department of the University and INFN, Pisa (Italy)

    2016-09-01

    The GRENOUILLE traces of Gemini pulses (15 J, 30 fs, PW, shot per 20 s) were acquired in the Gemini Target Area PetaWatt at the Central Laser Facility (CLF), Rutherford Appleton Laboratory (RAL). A comparison between the characterizations of the laser pulse parameters made using two different types of algorithms: Video Frog and GRenouille/FrOG (GROG), was made. The temporal and spectral parameters came out to be in great agreement for the two kinds of algorithms. In this experimental campaign it has been showed how GROG, the developed algorithm, works as well as VideoFrog algorithm with the PetaWatt pulse class. - Highlights: • Integration of the diagnostic tool on high power laser. • Validation of the GROG algorithm in comparison to a well-known commercial available software. • Complete characterization of the GEMINI ultra-short high power laser pulse.

  18. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    Science.gov (United States)

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  19. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  20. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure

  1. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    Science.gov (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  2. Nike Experiment to Observe Strong Areal Mass Oscillations in a Rippled Target Hit by a Short Laser Pulse

    Science.gov (United States)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2010-11-01

    When a short (sub-ns) laser pulse deposits finite energy in a target, the shock wave launched into it is immediately followed by a rarefaction wave. If the irradiated surface is rippled, theory and simulations predict strong oscillations of the areal mass perturbation amplitude in the target [A. L. Velikovich et al., Phys. Plasmas 10, 3270 (2003).] The first experiment designed to observe this effect has become possible by adding short-driving-pulse capability to the Nike laser, and has been scheduled for the fall of 2010. Simulations show that while the driving pulse of 0.3 ns is on, the areal mass perturbation amplitude grows by a factor ˜2 due to ablative Richtmyer-Meshkov instability. It then decreases, reverses phase, and reaches another maximum, also about twice its initial value, shortly after the shock breakout at the rear target surface. This signature behavior is observable with the monochromatic x-ray imaging diagnostics fielded on Nike.

  3. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    Science.gov (United States)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  4. Switching Exciton Pulses Through Conical Intersections

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2014-11-01

    Exciton pulses transport excitation and entanglement adiabatically through Rydberg aggregates, assemblies of highly excited light atoms, which are set into directed motion by resonant dipole-dipole interaction. Here, we demonstrate the coherent splitting of such pulses as well as the spatial segregation of electronic excitation and atomic motion. Both mechanisms exploit local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. The fundamental ideas discussed here have general implications for excitons on a dynamic network.

  5. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas

    International Nuclear Information System (INIS)

    Esarey, E.; Sprangle, P.; Krall, J.; Ting, A.

    1997-01-01

    The propagation of intense laser pulses in gases and plasmas is relevant to a wide range of applications, including laser-driven accelerators, laser-plasma channeling, harmonic generation, supercontinuum generation, X-ray lasers, and laser-fusion schemes. Here, several features of intense, short-pulse (≤1 ps) laser propagation in gases undergoing ionization and in plasmas are reviewed, discussed, and analyzed. The wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived. The source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms. In gases, the propagation of high-power (near the critical power) laser pulses is considered including the effects of diffraction, nonlinear self-focusing, ionization, and plasma generation. Self-guided solutions and the stability of these solutions are discussed. In plasmas, optical guiding by relativistic effects, ponderomotive effects, and preformed density channels is considered. The self-consistent plasma response is discussed, including plasma wave effects and instabilities such as self-modulation. Recent experiments on the guiding of laser pulses in gases and in plasmas are briefly summarized

  6. Time-resolved measurement of the quantum states of photons using two-photon interference with short-time reference pulses

    International Nuclear Information System (INIS)

    Ren Changliang; Hofmann, Holger F.

    2011-01-01

    To fully utilize the energy-time degree of freedom of photons for optical quantum-information processes, it is necessary to control and characterize the temporal quantum states of the photons at extremely short time scales. For measurements of the temporal coherence of the quantum states beyond the time resolution of available detectors, two-photon interference with a photon in a short-time reference pulse may be a viable alternative. In this paper, we derive the temporal measurement operators for the bunching statistics of a single-photon input state with a photon from a weak coherent reference pulse. It is shown that the effects of the pulse shape of the reference pulse can be expressed in terms of a spectral filter selecting the bandwidth within which the measurement can be treated as an ideal projection on eigenstates of time. For full quantum tomography, temporal coherence can be determined by using superpositions of reference pulses at two different times. Moreover, energy-time entanglement can be evaluated based on the two-by-two entanglement observed in the coherences between pairs of detection times.

  7. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  8. Laser generation of XeCl exciplex molecules in a longitudinal repetitively pulsed discharge in a Xe - CsCl mixture

    Science.gov (United States)

    Boichenko, A. M.; Klenovskii, M. S.

    2015-12-01

    By using the previously developed kinetic model, we have carried out simulations to study the possibility of laser generation of XeCl exciplex molecules in the working medium based on a mixture of Xe with CsCl vapours, excited by a longitudinal repetitively pulsed discharge. The formation mechanism of exciplex molecules in this mixture is fundamentally different from the formation mechanisms in the traditional mixtures of exciplex lasers. The conditions that make the laser generation possible are discussed. For these conditions, with allowance for available specific experimental conditions of the repetitively pulsed discharge excitation, we have obtained the calculated dependences of the power and efficiency of generation on the reflectivity of mirrors in a laser cavity.

  9. Time-resolved laser-excited Shpol'skii spectrometry with a fiber-optic probe and ICCD camera

    International Nuclear Information System (INIS)

    Bystol, Adam J.; Campiglia, Andres D.; Gillispie, Gregory D.

    2000-01-01

    Improved methodology for chemical analysis via laser-excited Shpol'skii spectrometry is reported. The complications of traditional methodology for measurements at liquid nitrogen temperature are avoided by freezing the distal end of a bifurcated fiber-optic probe directly into the sample matrix. Emission wavelength-time matrices were rapidly collected by automatically incrementing the gate delay of an intensified charge-coupled device (ICCD) camera relative to the laser excitation pulse. The excitation source is a compact frequency-doubled tunable dye laser whose bandwidth (<0.03 nm) is well matched for Shpol'skii spectroscopy. Data reproducibility for quantitative analysis purposes and analytical figures of merit are demonstrated for several polycyclic aromatic hydrocarbons at 77 K. Although not attempted in this study, time-resolved excitation-emission matrices could easily be collected with this instrumental system. (c) 2000 Society for Applied Spectroscopy

  10. Nonlinear excitations and charge transport in lithium niobate crystals investigated using femtosecond-light gratings; Nichtlineare Anregungen und Ladungstransport in Lithiumniobatkristallen untersucht mit Femtosekunden-Lichtgittern

    Energy Technology Data Exchange (ETDEWEB)

    Maxein, Karl Dominik

    2009-12-15

    Lithium niobate (LiNbO{sub 3}) is a widely employed material in nonlinear optics and photonics. Its usage is hampered by the photorefractive effect, which can destroy beam profiles and phase matching conditions. Existing methods to suppress photorefraction fail for the interesting regime of very high intensities and short pulses. Therefore, the photorefractive effect is investigated using femtosecond laser pulses: By utilizing so-called 2K holography, the occupation of energetically shallow traps is observed to occur in less than 100 fs after a two-photon excitation. Writing of photorefractive gratings into oxidized iron-doped LiNbO{sub 3} is much faster with pulses than with cw light. This is explained by the sensitization of the crystal due to charge trapping in photorefractive centers after nonlinear excitations. Finally, light-induced scattering of pulse light is suppressed compared to the scattering of cw light due to the small coherence length of pulses. (orig.)

  11. Tomographic Particle Image Velocimetry using Pulsed, High Power LED Volume Illumination

    OpenAIRE

    Buchmann, N. A.; Willert, C.; Soria, J.

    2011-01-01

    This paper investigates the use of high-power light emitting diode (LED) illumination in Particle Image Velocimetry (PIV) as an alternative to traditional laser-based illumination. The solid-state LED devices can provide averaged radiant power in excess of 10W and by operating the LEDs with short current pulses, considerably higher than in continuous operation, light pulses of sufficient energy suitable for imaging micron-sized particles can be generated. The feasibility of this LED-based ill...

  12. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  13. Temporal analysis of reflected optical signals for short pulse laser interaction with nonhomogeneous tissue phantoms

    International Nuclear Information System (INIS)

    Trivedi, Ashish; Basu, Soumyadipta; Mitra, Kunal

    2005-01-01

    The use of short pulse laser for minimally invasive detection scheme has become an indispensable tool in the technological arsenal of modern medicine and biomedical engineering. In this work, a time-resolved technique has been used to detect tumors/inhomogeneities in tissues by measuring transmitted and reflected scattered temporal optical signals when a short pulse laser source is incident on tissue phantoms. A parametric study involving different scattering and absorption coefficients of tissue phantoms and inhomogeneities, size of inhomogeneity as well as the detector position is performed. The experimental measurements are validated with a numerical solution of the transient radiative transport equation obtained by using discrete ordinates method. Thus, both simultaneous experimental and numerical studies are critical for predicting the optical properties of tissues and inhomogeneities from temporal scattered optical signal measurements

  14. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  15. Dynamical resonance shift and unification of resonances in short-pulse laser-cluster interaction

    Science.gov (United States)

    Mahalik, S. S.; Kundu, M.

    2018-06-01

    Pronounced maximum absorption of laser light irradiating a rare-gas or metal cluster is widely expected during the linear resonance (LR) when Mie-plasma wavelength λM of electrons equals the laser wavelength λ . On the contrary, by performing molecular dynamics (MD) simulations of an argon cluster irradiated by short 5-fs (FWHM) laser pulses it is revealed that, for a given laser pulse energy and a cluster, at each peak intensity there exists a λ —shifted from the expected λM—that corresponds to a unified dynamical LR at which evolution of the cluster happens through very efficient unification of possible resonances in various stages, including (i) the LR in the initial time of plasma creation, (ii) the LR in the Coulomb expanding phase in the later time, and (iii) anharmonic resonance in the marginally overdense regime for a relatively longer pulse duration, leading to maximum laser absorption accompanied by maximum removal of electrons from cluster and also maximum allowed average charge states for the argon cluster. Increasing the laser intensity, the absorption maxima is found to shift to a higher wavelength in the band of λ ≈(1 -1.5 ) λM than permanently staying at the expected λM. A naive rigid sphere model also corroborates the wavelength shift of the absorption peak as found in MD and unequivocally proves that maximum laser absorption in a cluster happens at a shifted λ in the marginally overdense regime of λ ≈(1 -1.5 ) λM instead of λM of LR. The present study is important for guiding an optimal condition laser-cluster interaction experiment in the short-pulse regime.

  16. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  17. Spatial resolution and maximum compensation factor of two-dimensional selective excitation pulses for MRI of objects containing conductive implants

    Directory of Open Access Journals (Sweden)

    Taeseong Woo

    2017-05-01

    Full Text Available A quantitative diagnosis using magnetic resonance imaging (MRI can be disturbed by radiofrequency (RF field inhomogeneity induced by the conductive implants. This inhomogeneity causes a local decrease of the signal intensity around the conductor, resulting in a deterioration of the accurate quantification. In a previous study, we developed an MRI imaging method using a two-dimensional selective excitation pulse (2D pulse to mitigate signal inhomogeneity induced by metallic implants. In this paper, the effect of 2D pulse was evaluated quantitatively by numerical simulation and MRI experiments. We introduced two factors for evaluation, spatial resolution and maximum compensation factor. Numerical simulations were performed with two groups. One group was composed of four models with different signal loss width, to evaluate the spatial resolution of the 2D pulse. The other group is also composed of four models with different amounts of signal loss for evaluating maximum compensation factor. In MRI experiments, we prepared phantoms containing conductors, which have different electrical conductivities related with the amounts of signal intensity decrease. The recovery of signal intensity was observed by 2D pulses, in both numerical simulations and experiments.

  18. Dynamic behavior of HTSC opening switch models controlled by short over-critical current pulses

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Krastelev, E.G.; Voronin, V.S.

    1999-01-01

    We present results of experimental research of dynamical properties of thin films of YBa 2 Cu 3 O 7 HTSC-switch models under action of short overcritical current pulses to test this method of control of fast high-power opening switches for accelerator applications

  19. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  20. Experimental installation for excitation of semiconductors and dielectrics by picosecond pulsed electron beam and electric field

    International Nuclear Information System (INIS)

    Nasibov, A.S.; Berezhnoj, K.V.; Shapkin, P.V.; Reutova, A.G.; Shunajlov, S.A.; Yalandin, M.I.

    2009-01-01

    The experimental facility for shaping high-voltage pulses with amplitudes of 30-250 kV and durations of 100-500 ps and electron beams with a current density of up to 1000 A/cm -2 is described. The facility was built using the principle of energy compression of a pulse from a nanosecond high-voltage generator accompanied by the subsequent pulse sharpening and cutting. The setup is equipped with two test coaxial chambers for radiation excitation in semiconductor crystals by an electron beam or an electric field in air at atmospheric pressure and T = 300 K. Generation of laser radiation in the visible range under field and electron pumping was attained in ZnSSe, ZnSe, ZnCdS, and CdS (462, 480, 515, and 525 nm, respectively). Under the exposure to an electric field (up to 10 6 V x cm -1 ), the laser generation region is as large as 300-500 μm. The radiation divergence was within 5 Deg C. The maximum integral radiation power (6 kW at λ = 480 nm) was obtained under field pumping of a zinc selenide sample with a single dielectric mirror [ru

  1. Optimal initiation of electronic excited state mediated intramolecular H-transfer in malonaldehyde by UV-laser pulses

    Science.gov (United States)

    Nandipati, K. R.; Singh, H.; Nagaprasad Reddy, S.; Kumar, K. A.; Mahapatra, S.

    2014-12-01

    Optimally controlled initiation of intramolecular H-transfer in malonaldehyde is accomplished by designing a sequence of ultrashort (~80 fs) down-chirped pump-dump ultra violet (UV)-laser pulses through an optically bright electronic excited [ S 2 ( π π ∗)] state as a mediator. The sequence of such laser pulses is theoretically synthesized within the framework of optimal control theory (OCT) and employing the well-known pump-dump scheme of Tannor and Rice [D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)]. In the OCT, the control task is framed as the maximization of cost functional defined in terms of an objective function along with the constraints on the field intensity and system dynamics. The latter is monitored by solving the time-dependent Schrödinger equation. The initial guess, laser driven dynamics and the optimized pulse structure (i.e., the spectral content and temporal profile) followed by associated mechanism involved in fulfilling the control task are examined in detail and discussed. A comparative account of the dynamical outcomes within the Condon approximation for the transition dipole moment versus its more realistic value calculated ab initio is also presented.

  2. Luminescence decay of S Zn::Ag and O Zn:Ga scintillation detectors excited by a pulsed laser

    International Nuclear Information System (INIS)

    Romero, L.; Campos, J.

    1981-01-01

    In the present work a high sensitivity experimental set up for luminescence decay measurements in the 1 0 - 1 sec range has been developed. As an application, luminescence light decay In S Zn:Ag and 0Zn:Ga after excitation by a pulsed N 2 laser has been measured. In SZnrAg, measurements of total light decay was compared with donor acceptor pairs theory. In both substances, spectral evolution in the first 15 sec was investigated. (Author) 4 refs

  3. Laser generation of XeCl exciplex molecules in a longitudinal repetitively pulsed discharge in a Xe – CsCl mixture

    International Nuclear Information System (INIS)

    Boichenko, A M; Klenovskii, M S

    2015-01-01

    By using the previously developed kinetic model, we have carried out simulations to study the possibility of laser generation of XeCl exciplex molecules in the working medium based on a mixture of Xe with CsCl vapours, excited by a longitudinal repetitively pulsed discharge. The formation mechanism of exciplex molecules in this mixture is fundamentally different from the formation mechanisms in the traditional mixtures of exciplex lasers. The conditions that make the laser generation possible are discussed. For these conditions, with allowance for available specific experimental conditions of the repetitively pulsed discharge excitation, we have obtained the calculated dependences of the power and efficiency of generation on the reflectivity of mirrors in a laser cavity. (active media)

  4. Laser generation of XeCl exciplex molecules in a longitudinal repetitively pulsed discharge in a Xe – CsCl mixture

    Energy Technology Data Exchange (ETDEWEB)

    Boichenko, A M [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Klenovskii, M S [National Research Tomsk Polytechnic University, Tomsk (Russian Federation)

    2015-12-31

    By using the previously developed kinetic model, we have carried out simulations to study the possibility of laser generation of XeCl exciplex molecules in the working medium based on a mixture of Xe with CsCl vapours, excited by a longitudinal repetitively pulsed discharge. The formation mechanism of exciplex molecules in this mixture is fundamentally different from the formation mechanisms in the traditional mixtures of exciplex lasers. The conditions that make the laser generation possible are discussed. For these conditions, with allowance for available specific experimental conditions of the repetitively pulsed discharge excitation, we have obtained the calculated dependences of the power and efficiency of generation on the reflectivity of mirrors in a laser cavity. (active media)

  5. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  6. Phonon transport in a curved aluminum thin film due to laser short pulse irradiation

    Science.gov (United States)

    Mansoor, Saad Bin; Yilbas, Bekir Sami

    2018-05-01

    Laser short-pulse heating of a curved aluminum thin film is investigated. The Boltzmann transport equation is incorporated to formulate the heating situation. A Gaussian laser intensity distribution is considered along the film arc and time exponentially decaying of pulse intensity is incorporated in the analysis. The governing equations of energy transport in the electron and lattice sub-systems are coupled through the electron-phonon coupling parameter. To quantify the phonon intensity distribution in the thin film, equivalent equilibrium temperature is introduced, which is associated with the average energy of all phonons around a local point when the phonon energies are redistributed adiabatically to an equilibrium state. It is found the numerical simulations that electron temperature follows similar trend to the spatial distribution of the laser pulse intensity at the film edge. Temporal variation of electron temperature does not follow the laser pulse intensity distribution. The rise of temperature in the electron sub-system is fast while it remains slow in the lattice sub-system.

  7. Energy-optimal electrical excitation of nerve fibers.

    Science.gov (United States)

    Jezernik, Saso; Morari, Manfred

    2005-04-01

    We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.

  8. Lax representations for matrix short pulse equations

    Science.gov (United States)

    Popowicz, Z.

    2017-10-01

    The Lax representation for different matrix generalizations of Short Pulse Equations (SPEs) is considered. The four-dimensional Lax representations of four-component Matsuno, Feng, and Dimakis-Müller-Hoissen-Matsuno equations are obtained. The four-component Feng system is defined by generalization of the two-dimensional Lax representation to the four-component case. This system reduces to the original Feng equation, to the two-component Matsuno equation, or to the Yao-Zang equation. The three-component version of the Feng equation is presented. The four-component version of the Matsuno equation with its Lax representation is given. This equation reduces the new two-component Feng system. The two-component Dimakis-Müller-Hoissen-Matsuno equations are generalized to the four-parameter family of the four-component SPE. The bi-Hamiltonian structure of this generalization, for special values of parameters, is defined. This four-component SPE in special cases reduces to the new two-component SPE.

  9. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra short pulses

    CSIR Research Space (South Africa)

    De Clercq, L

    2010-09-01

    Full Text Available al lbl d i I e I e dt ω ωρ ρ ρ − = − = −∑h (1) where, , .a b a bω ω ω= − , (2) ρab gives the elements of the density matrix, ωa the frequencies... of the individual vibrational levels, and Iab the matrix elements of the interaction Hamiltonian [2] which include the detailed time dependence of the shaped femtosecond pulse. 2. Simulation results A transform limited 150 femtosecond laser pulse with a...

  10. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  11. Resonant-enhanced above-threshold ionization of atoms by XUV short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, V.D. [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: vladimir@df.uba.ar; Macri, P.A. [Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Departamento de Fisica, FCEyN, Universidad Nacional de Mar del Plata, CONICET, Funes 3350, 7600 Mar del Plata (Argentina); Arbo, D.G. [Instituto de Astronomia y Fisica del Espacio, UBA-CONICET, CC 67 Suc 28 Buenos Aires (Argentina)

    2009-01-15

    Above-threshold ionization of atoms by XUV short laser pulses is investigated close to the resonant 1s-2p transitions. Both ab initio TDSE and a theoretical Coulomb-Volkov like theory are used to study the enhancement in the ionization probabilities. Our modified Coulomb-Volkov theory, fully accounting for the important 1s-2p transition is able to explain the spectrum as well as the total ionization cross sections.

  12. A high-order corrected description of ultra-short and tightly focused laser pulses, and their electron acceleration in vacuum

    International Nuclear Information System (INIS)

    Zhang, J.T.; Wang, P.X.; Kong, Q.; Chen, Z.; Ho, Y.K.

    2007-01-01

    Field expressions are derived for ultra-short, tightly focused laser pulses up to the second-order temporal correction and seventh-order spatial correction. To evaluate the importance of these corrections, we simulate these fields and investigate the final energy of the accelerated electrons. We vary the order of the corrected expressions, the pulse duration, and the beam waist. We find that electron capture is still an important and generic phenomenon in ultra-short, tightly focused laser pulses. While small differences in the electron acceleration are obtained for various orders of the corrected field equations relative to the paraxial field equations, there is no qualitative difference in the behavior of the electron. Furthermore, the temporal and spatial corrections are found to be correlated

  13. Electromagnetic soliton production during interaction of relativistically strong laser pulses with plasma

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Kamenets, F.F.; Naumova, N.M.

    1995-01-01

    The paper presents the results of a numeric modelling of the propagation of ultra short relativistically strong laser pulses in a rarefied plasma by the 'particle in cell'. Primary attention is paid to the process of the formation of electromagnetic solitons which can not be described in the approximation of envelopes. It is found that under certain conditions a significant portion of pulse energy can transform is solitons. The soliton excitation mechanism is related to a decrease of local frequency of electromagnetic radiation due to the generation of wave plasma waves. From one soliton to a stub of solitons can be generated in the wake of a relatively long pulse depending on the parameters of laser pulse in plasma. Particles are effectively accelerated forwards radiation propagation in the electric field of wake plasma waves. 22 refs., 7 figs

  14. Briquetting of titanium shavings with using of short electrical pulses

    International Nuclear Information System (INIS)

    Abramova, K.B.; Samujlov, S.D.; Filin, Yu.A.

    1998-01-01

    It is proposed and tested a new technology of briquetting of metallic shavings. The technology includes pressing of shavings with comparatively low pressure and processing it by means of short pulse of high density electrical current. Strength of the briquette arrears as a result of the sport electric welding of the contacts between the shaving particles. The technology permits: to produce firm briquettes from the shavings or other scrap of any metal or alloy, for example from titanium; to produce briquettes practically of any porosity; to decrease the compression and abandon heating almost for high-strength alloy in comparison with existing methods [ru

  15. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  16. High excitation of the species in nitrogen–aluminum plasma generated by electron cyclotron resonance microwave discharge of N2 gas and pulsed laser ablation of Al target

    International Nuclear Information System (INIS)

    Liang, Peipei; Li, Yanli; Cai, Hua; You, Qinghu; Yang, Xu; Huang, Feiling; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-01-01

    A reactive nitrogen–aluminum plasma generated by electron cyclotron resonance (ECR) microwave discharge of N 2 gas and pulsed laser ablation of an Al target is characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy (OES). The vibrational and rotational temperatures of N 2 species are determined by spectral simulation. The generated plasma strongly emits radiation from a variety of excited species including ambient nitrogen and ablated aluminum and exhibits unique features in optical emission and temperature evolution compared with the plasmas generated by a pure ECR discharge or by the expansion of the ablation plume. The working N 2 gas is first excited by ECR discharge and the excitation of nitrogen is further enhanced due to the fast expansion of the aluminum plume induced by target ablation, while the excitation of the ablated aluminum is prolonged during the plume expansion in the ECR nitrogen plasma, resulting in the formation of strongly reactive nitrogen–aluminum plasma which contains highly excited species with high vibrational and rotational temperatures. The enhanced intensities and the prolonged duration of the optical emissions of the combined plasma would provide an improved analytical capability for spectrochemical analysis. - Highlights: • ECR discharge and pulsed laser ablation generate highly excited ECR–PLA plasma. • The expansion of PLA plasma results in excitation enhancement of ECR plasma species. • The ECR plasma leads to excitation prolongation of PLA plasma species. • The ECR–PLA plasma emits strong emissions from a variety of excited species. • The ECR–PLA plasma maintains high vibrational–rotational temperatures for a long time

  17. Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Oh, Seung Ryeol; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Kim, Soohyun

    2015-03-01

    Single-pulse coherently controlled nonlinear Raman spectroscopy is the simplest method among the coherent anti-Stokes Raman spectroscopy systems. In recent research, it has been proven that notch-shaped femtosecond pulse laser can be used to collect the coherent anti-Stokes Raman signals. In this study, we applied a fiber Bragg grating to the notch filtering component on the femtosecond pulse lasers. The experiment was performed incorporating a titanium sapphire femtosecond pulse laser source with a 100 mm length of 780-HP fiber which is inscribed 30 mm of Bragg grating. The fiber Bragg grating has 785 nm Bragg wavelength with 0.9 nm bandwidth. We proved that if the pulse lasers have above a certain level of positive group delay dispersion, it is sufficient to propagate in the fiber Bragg grating without any spectral distortion. After passing through the fiber Bragg grating, the pulse laser is reflected on the chirped mirror for 40 times to make the transform-limited pulse. Finally, the pulse time duration was 37 fs, average power was 50mW, and showed an adequate notch shape. Furthermore, the simulation of third order polarization signal is performed using MATLAB tools and the simulation result shows that spectral characteristic and time duration of the pulse is sufficient to use as an excitation source for single-pulse coherent anti-Stokes Raman spectroscopy. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab.

  18. Broadband short pulse measurement by autocorrelation with a sum-frequency generation set-up

    International Nuclear Information System (INIS)

    Glotin, F.; Jaroszynski, D.; Marcouille, O.

    1995-01-01

    Previous spectral and laser pulse length measurements carried out on the CLIO FEL at wavelength λ=8.5 μm suggested that very short light pulses could be generated, about 500 fs wide (FWHM). For these measurements a Michelson interferometer with a Te crystal, as a non-linear detector, was used as a second order autocorrelation device. More recent measurements in similar conditions have confirmed that the laser pulses observed are indeed single: they are not followed by other pulses distant by the slippage length Nλ. As the single micropulse length is likely to depend on the slippage, more measurements at different wavelengths would be useful. This is not directly possible with our actual interferometer set-up, based on a phase-matched non-linear crystal. However, we can use the broadband non-linear medium provided by one of our users' experiments: Sum-Frequency Generation over surfaces. With such autocorrelation set-up, interference fringes are no more visible, but this is largely compensated by the frequency range provided. First tests at 8 μm have already been performed to validate the technic, leading to results similar to those obtained with our previous Michelson set-up

  19. Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses

    Science.gov (United States)

    Garcia-Lechuga, M.; Haahr-Lillevang, L.; Siegel, J.; Balling, P.; Guizard, S.; Solis, J.

    2017-06-01

    Simultaneous time-and-space resolved reflectivity and interferometric measurements over a temporal span of 300 ps have been performed in fused silica and sapphire samples excited with 800 nm, 120 fs laser pulses at energies slightly and well above the ablation threshold. The experimental results have been simulated in the frame of a multiple-rate equation model including light propagation. The comparison of the temporal evolution of the reflectivity and the interferometric measurements at 400 nm clearly shows that the two techniques interrogate different material volumes during the course of the process. While the former is sensitive to the evolution of the plasma density in a very thin ablating layer at the surface, the second yields an averaged plasma density over a larger volume. It is shown that self-trapped excitons do not appreciably contribute to carrier relaxation in fused silica at fluences above the ablation threshold, most likely due to Coulomb screening effects at large excited carrier densities. For both materials, at fluences well above the ablation threshold, the maximum measured plasma reflectivity shows a saturation behavior consistent with a scattering rate proportional to the plasma density in this fluence regime. Moreover, for both materials and for pulse energies above the ablation threshold and delays in the few tens of picoseconds range, a simultaneous "low reflectivity" and "low transmission" behavior is observed. Although this behavior has been identified in the past as a signature of femtosecond laser-induced ablation, its origin is alternatively discussed in terms of the optical properties of a material undergoing strong isochoric heating, before having time to substantially expand or exchange energy with the surrounding media.

  20. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to a pump laser exciting processes in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe a scheme for synchronizing femtosecond x-ray pulses relative to a pump laser. X-ray pulses of <100 fs duration are generated from a proposed source based on a recirculating superconducting linac [1,2,3]. Short x-ray pulses are obtained by a process of electron pulse compression, followed by transverse temporal correlation of the electrons, and ultimately x-ray pulse compression. Timing of the arrival of the x-ray pulse with respect to the pump laser is found to be dominated by the operation of the deflecting cavities which provide the transverse temporal correlation of the electrons. The deflecting cavities are driven from a highly stable RF signal derived from a modelocked laser oscillator which is also the origin of the pump l aser pulses

  1. A short-pulse mode for the SPHINX LTD Z-pinch driver

    Science.gov (United States)

    D'Almeida, Thierry; Lassalle, Francis; Zucchini, Frederic; Loyen, Arnaud; Morell, Alain; Chuvatin, Alexander

    2015-11-01

    The SPHINX machine is a 6MA, 1 μs, LTD Z-pinch driver at CEA Gramat (France) and primarily used for studying radiation effects. Different power amplification concepts were examined in order to reduce the current rise time without modifying the generator discharge scheme, including the Dynamic Load Current Multiplier (DLCM) proposed by Chuvatin. A DLCM device, capable of shaping the current pulse without reducing the rise time, was developed at CEA. This device proved valuable for isentropic compression experiments in cylindrical geometry. Recently, we achieved a short pulse operation mode by inserting a vacuum closing switch between the DLCM and the load. The current rise time was reduced to ~300 ns. We explored the use of a reduced-height wire array for the Dynamic Flux Extruder in order to improve the wire array compression rate and increase the efficiency of the current transfer to the load. These developments are presented. Potential benefits of these developments for future Z pinch experiments are discussed.

  2. Electron localization in fragmentation of H2 with CEP stabilized laser pulses

    International Nuclear Information System (INIS)

    Kremer, Manuel; Fischer, Bettina; Schroeter, Claus Dieter; Feuerstein, Bernold; Moshammer, Robert; Ullrich, Joachim; Rudenko, Artem; Jesus, Vitor L B de

    2009-01-01

    Fully differential data on ionization and dissociation of H 2 in ultra-short (∼ 6 fs), linearly polarized, intense (∼ 4 . 10 14 W/cm 2 ) laser pulses with stabilized carrier-envelope-phase (CEP) have been measured using a reaction microscope. Depending on the CEP of the laser pulses we see a clear asymmetry in the emission direction of the created protons. Contrary to earlier measurements by Kling et al. we observe the highest asymmetry for kinetic energy releases (proton energy) between 0-2 eV. This excludes the electron re-collision mechanism suggested in [1] as dominant excitation channel and requires another explanation.

  3. Interferometry on small quantum systems at short wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Sergey

    2017-01-15

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C{sub 60} fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C{sub 60}.

  4. Interferometry on small quantum systems at short wavelength

    International Nuclear Information System (INIS)

    Usenko, Sergey

    2017-01-01

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C_6_0 fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C_6_0.

  5. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  6. Identification of the structure parameters using short-time non-stationary stochastic excitation

    Science.gov (United States)

    Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra

    2011-07-01

    In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.

  7. Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

    International Nuclear Information System (INIS)

    Lawler, J E; Yavuz, D; Bisognano, J; Bosch, R A; Chiang, T C; Green, M A; Jacobs, K; Miller, T; Wehlitz, R; York, R C

    2013-01-01

    A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (∼170 MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ‘head-on’ fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti : sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam. (paper)

  8. Development of longitudinally excited CO2 laser

    Science.gov (United States)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  9. Extremely short pulses via stark modulation of the atomic transition frequencies.

    Science.gov (United States)

    Radeonychev, Y V; Polovinkin, V A; Kocharovskaya, Olga

    2010-10-29

    We propose a universal method to produce extremely short pulses of electromagnetic radiation in various spectral ranges. The essence of the method is a resonant interaction of radiation with atoms under the conditions of adiabatic periodic modulation of atomic transition frequencies by a far-off-resonant control laser field via dynamic Stark shift of the atomic levels and proper adjustment of the control field intensity and frequency, as well as the optical depth of the medium. The potential of the method is illustrated by an example in a hydrogenlike atomic system.

  10. Streak camera measurements of laser pulse temporal dispersion in short graded-index optical fibers

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillips, G.E.

    1981-01-01

    Streak camera measurements were used to determine temporal dispersion in short (5 to 30 meter) graded-index optical fibers. Results show that 50-ps, 1.06-μm and 0.53-μm laser pulses can be propagated without significant dispersion when care is taken to prevent propagation of energy in fiber cladding modes

  11. Short-pulse CO2-laser damage studies of NaCl and KCl windows

    International Nuclear Information System (INIS)

    Newnam, B.E.; Nowak, A.V.; Gill, D.H.

    1979-01-01

    The damage resistance of bare surfaces and the bulk interior of NaCl and KCl windows was measured with a short-pulse CO 2 laser at 10.6 μm. Parametric studies with 1.7-ns pulses indicated that adsorbed water was probably the limiting agent on surface thresholds in agreement with previous studies at long pulsewidths. Rear-surface thresholds up to 7 J/cm 2 were measured for polished NaCl windows, whereas KCl surfaces damaged at approximately 60% of this level. The breakdown electric-field thresholds of exit surfaces were only 50% of the value of the bulk materials. The pulsewidth dependence of surface damage from 1 to 65 ns, in terms of incident laser fluence, increased as t/sup 1/3/

  12. The interaction of super-intense ultra-short laser pulse and micro-clusters with large atomic clusters

    International Nuclear Information System (INIS)

    Miao Jingwei; Yang Chaowen; An Zhu; Yuan Xuedong; Sun Weiguo; Luo Xiaobing; Wang Hu; Bai Lixing; Shi Miangong; Miao Lei; Zhen Zhijian; Gu Yuqin; Liu Hongjie; Zhu Zhouseng; Sun Liwei; Liao Xuehua

    2007-01-01

    The fusion mechanism of large deuterium clusters (100-1000 Atoms/per cluster) in super-intense ultra-short laser pulse field, Coulomb explosions of micro-cluster in solids, gases and Large-size clusters have been studied using the interaction of a high-intensity femtosecond laser pulses with large deuterium clusters, collision of high-quality beam of micro-cluster from 2.5 MV van de Graaff accelerator with solids, gases and large clusters. The experimental advance of the project is reported. (authors)

  13. Speckle Reduction for Ultrasonic Imaging Using Frequency Compounding and Despeckling Filters along with Coded Excitation and Pulse Compression

    Directory of Open Access Journals (Sweden)

    Joshua S. Ullom

    2012-01-01

    Full Text Available A method for improving the contrast-to-noise ratio (CNR while maintaining the −6 dB axial resolution of ultrasonic B-mode images is proposed. The technique proposed is known as eREC-FC, which enhances a recently developed REC-FC technique. REC-FC is a combination of the coded excitation technique known as resolution enhancement compression (REC and the speckle-reduction technique frequency compounding (FC. In REC-FC, image CNR is improved but at the expense of a reduction in axial resolution. However, by compounding various REC-FC images made from various subband widths, the tradeoff between axial resolution and CNR enhancement can be extended. Further improvements in CNR can be obtained by applying postprocessing despeckling filters to the eREC-FC B-mode images. The despeckling filters evaluated were the following: median, Lee, homogeneous mask area, geometric, and speckle-reducing anisotropic diffusion (SRAD. Simulations and experimental measurements were conducted with a single-element transducer (f/2.66 having a center frequency of 2.25 MHz and a −3 dB bandwidth of 50%. In simulations and experiments, the eREC-FC technique resulted in the same axial resolution that would be typically observed with conventional excitation with a pulse. Moreover, increases in CNR of 348% were obtained in experiments when comparing eREC-FC with a Lee filter to conventional pulsing methods.

  14. Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.

    Science.gov (United States)

    Cho, Hyun Joo; Panyakaew, Pattamon; Thirugnanasambandam, Nivethida; Wu, Tianxia; Hallett, Mark

    2016-06-01

    During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement. Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion. Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles. Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles. This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements. Published by Elsevier Ireland Ltd.

  15. Simulation of intense short-pulse laser-plasma interaction

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru

    2000-01-01

    We have completed the massive parallelization of a 2-dimensional giga-particle code and have achieved a 530-fold acceleration rate with 512 processing elements (PE's). Using this we have implemented a simulation of the interaction of a solid thin film and a high intensity laser and have discovered a phenomenon in which high quality short pulses from the far ultraviolet to soft X-rays are generated at the back surface of the thin layer. We have also introduced the atomic process database code (Hullac) and have the possibility for high precision simulations of X-ray laser radiation. With respect to laser acceleration we have the possibility to quantitatively evaluate relativistic self-focusing assumed to occur in higher intensity fields. Ion acceleration from a solid target and an underdense plasma irradiated by an intense and an ultra intense laser, respectively, has also been studied by particle-in-cell (PIC) simulations. (author)

  16. Nonlinear behavior of photoluminescence from silicon particles under two-photon excitation

    International Nuclear Information System (INIS)

    Xu Xingsheng; Yokoyama, Shiyoshi

    2011-01-01

    Two-photon excited fluorescence (TPEF) under continuous-wave excitation from silicon particles produced by a pulsed laser is investigated. Spectra and images of TPEF from silicon particles are studied under different excitation intensities and operation modes (continuous wave or pulse). It is found that the photoluminescence depends superlinearly on the excitation intensity and that the spectral shape and peaks vary with different silicon particles. The above phenomena show the nonlinear behavior of TPEF from silicon particles, and stimulated emission is a possible process.

  17. The influence of collapse wall on self-excited oscillation pulsed jet nozzle performance

    International Nuclear Information System (INIS)

    Fang, Z L; Kang, Y; Yang, X F; Yuan, B; Li, D

    2012-01-01

    The self-excited oscillation pulsed jet (SOPJ) is widely used owing to its simple structure and good separation of pressure source and system. The structure of nozzle is one of the main factors that influence the performance of the SOPJ nozzle. Upper collapse wall and lower collapse wall is important to the formation and transmission of eddy in oscillation cavity. In this paper, the influence of collapse wall on SOPJ nozzle was analyzed by numerical simulation. The LES algorithm was used to simulate the flow of different combinations of collapse wall. The result showed that when both collapse walls are of the same type, the SOPJ nozzle will have a good performance; the influence of upper collapse wall is more obvious than lower one; model of two-semi-circle upper collapse wall is the first choice when we design SOPJ nozzle.

  18. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes

    International Nuclear Information System (INIS)

    Bolton, P.R.

    1987-06-01

    A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration

  19. Repeatability of pulse diagnosis in traditional Indian Ayurveda medicine

    DEFF Research Database (Denmark)

    Kurande, Vrinda; Waagepetersen, Rasmus; Toft, Egon

    2012-01-01

    Purpose In Ayurveda, pulse diagnosis is the unique diagnostic method that determines the proportion of diagnostic variables (vata, pitta and kapha); however, this is only justifiable if pulse diagnosis yields a consistent result. Though pulse diagnosis has a long historical use, still there is la...

  20. Ultra-short laser pulses: review of the 3. physics talks, September 17-18, 1998

    International Nuclear Information System (INIS)

    Lemoine, P.

    1999-01-01

    This book deals with the operation of lasers with ultra-short pulses and with the laser beam-matter interaction. The applications in concern are: the acceleration of particles, the production of X-ray or photon sources, the micro-machining, the fast ignition in thermonuclear fusion, the production of thin films and the surgery of cornea. (J.S.)

  1. Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser

    Science.gov (United States)

    Manne, J.; Lim, A.; Tulip, J.; Jäger, W.

    2012-05-01

    We report on spectroscopic measurements of acrolein and acrylonitrile at atmospheric pressure using a pulsed distributed feedback quantum-cascade laser in combination with intra- and inter-pulse techniques and compare the results. The measurements were done in the frequency region around 957 cm-1. In the inter-pulse technique, the laser is excited with short current pulses (5-10 ns), and the pulse amplitude is modulated with an external current ramp resulting in a ˜2.3 cm-1 frequency scan. In the intra-pulse technique, a linear frequency down-chirp during the pulse is used for sweeping across the absorption line. Long current pulses up to 500 ns were used for these measurements which resulted in a spectral window of ˜2.2 cm-1 during the down-chirp. These comparatively wide spectral windows facilitated the measurements of the relatively broad absorption lines (˜1 cm-1) of acrolein and acrylonitrile. The use of a room-temperature mercury-cadmium-telluride detector resulted in a completely cryogen-free spectrometer. We demonstrate ppb level detection limits within a data acquisition time of ˜10 s with these methodologies.

  2. The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions

    Science.gov (United States)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A self consistent and fully kinetic simulation of the interaction of lightning radiated electromagnetic (EM) pulses with the nighttime lower ionosphere indicates that optical emissions observable with conventional instruments would be excited. For example, emissions of the 1st and 2nd positive bands of N2 occur at rates reaching 7 x 10(exp 7) and 10(exp 7) cu cm/s respectively at 92 km altitude for a lightning discharge with an electric field E(sub 100) = 20 V/m (normalized to a 100 km distance). The maximum height integrated intensities of these emissions are 4 x 10(exp 7) and 6 x 10(exp 6) R respectively, lasting for approx. 50 micrometers.

  3. Process and device for the selective excitation and separation of isotopes

    International Nuclear Information System (INIS)

    Ducas, T.W.

    1976-01-01

    Description is given of a method for selectively populating high-lying excited states of atoms or molecules. It comprises: excitation of atoms or molecules with a first circularly polarized pulsed radiation, the coherent frequency components of first pulsed radiation have frequencies corresponding to the energy difference between a lower energy level and the frequency split levels of an intermediate energy level, the duration of pulse being less than 2π/Δω, where Δω is the frequency difference of the split levels; applying a second circularly polarized pulsed radiation to atoms or molecules for a time subsequent to the termination of first radiation, the coherent frequency components of second pulsed radiation have frequencies corresponding to the energy difference between the split levels of intermediate energy level and an upper energy level, the duration of second pulse being less than 2π/Δω. The first and second radiation have the same handedness of circular polarization, whereby upper energy level has a greater population than prior to excitation by first and second radiation pulses [fr

  4. Short-Term Effects of Traditional and Alternative Community Interventions to Address Food Insecurity.

    Directory of Open Access Journals (Sweden)

    Federico Roncarolo

    Full Text Available Despite the effects of food insecurity on health are well documented, clear governmental policies to face food insecurity do not exist in western countries. In Canada, interventions to face food insecurity are developed at the community level and can be categorized into two basic strategies: those providing an immediate response to the need for food, defined "traditional" and those targeting the improvement of participants' social cohesion, capabilities and management of their own nutrition, defined "alternative".The objective of this study was to evaluate the effects of food insecurity interventions on food security status and perceived health of participants.This was a longitudinal multilevel study implemented in Montreal, Quebec, Canada. Participants were recruited in a two-stage cluster sampling frame. Clustering units were community organizations working on food insecurity; units of analysis were participants in community food security interventions. A total of 450 participants were interviewed at the beginning and after 9 months of participation in traditional or alternative food security interventions. Food security and perceived health were investigated as dependent variables. Differences overtime were assessed through multilevel regression models.Participants in traditional interventions lowered their food insecurity at follow-up. Decreases among participants in alternative interventions were not statistically significant. Participants in traditional interventions also improved physical (B coefficient 3.00, CI 95% 0.42-5.59 and mental health (B coefficient 6.25, CI 95% 4.15-8.35.Our results challenge the widely held view suggesting the ineffectiveness of traditional interventions in the short term. Although effects may be intervention-dependent, food banks decreased food insecurity and, in so doing, positively affected perceived health. Although study findings demonstrate that food banks offer short term reprise from the effects of food

  5. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...... each pole needs its own excitation coil, which limits the number of poles as each coil will take up too much space between the poles....

  6. Comparison of ATLOG and Xyce for Bell Labs Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Ground Plane.

    Energy Technology Data Exchange (ETDEWEB)

    campione, Salvatore [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warne, Larry K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schiek, Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to the Bell Labs electromagnetic pulse excitation. We use both a frequency-domain and a time-domain method based on transmission line theory through a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared to the circuit simulator Xyce for selected cases. Intentionally Left Blank

  7. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2012-01-15

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  8. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    International Nuclear Information System (INIS)

    Kant, Niti; Nandan Gupta, Devki; Suk, Hyyong

    2012-01-01

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  9. Electromagnetic field, excited by monodirected X-radiation pulse

    International Nuclear Information System (INIS)

    Zhemerov, A.V.; Metelkin, E.V.

    1994-01-01

    Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface

  10. Piezoelectric excitation of elastic waves in centrosymmetrical potassium tantalate crystal

    International Nuclear Information System (INIS)

    Smolenskij, G.A.; Lemanov, V.V.; Sotnikov, A.V.; Syrnikov, P.P.; Yushin, N.K.

    1981-01-01

    Experiment results on excitation of elastic oscillations in potassium tantalate crystals are considered. The experiment has been conducted by usual for supersonic measurements technique: an impulse of the variable electric field has been applied to one of plane-parallel sample end-faces, at the same end-face signals corresponding to elastic pulses propagating in the crystal have been detected. Basic radiopulses parameters: basic frequency 30 MHz, duration 1-2 μs, pulse recurrence frequency 500 Hz, power 10 W. The investigation carried out has shown that the application to the sample at T=80 K temperature of constant external electrical field parallel to direction of elastic wave propagation leads to hysteresis dependence of elastic waves amplitude on the external voltage value. With temperature increase the hysteresis loop is deformed. It has been found when investigating temperature dependence of elastic wave amplitude that in the absence of external constant electrical field in short-circuited by constant current samples the oxillation excitation effect disappears at T approximately equal to 200 K. An essential influence on the elastic wave amplitude value is exerted by illumination of the crystal surface by light with 360-630 nm wave length. At T 130 K bacaee of photovoltaic effect in illuminated samples [ru

  11. Development and performance test of picosecond pulse x-ray excited streak camera system for scintillator characterization

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yoshikawa, Akira

    2010-01-01

    To observe time and wavelength-resolved scintillation events, picosecond pulse X-ray excited streak camera system is developed. The wavelength range spreads from vacuum ultraviolet (VUV) to near infrared region (110-900 nm) and the instrumental response function is around 80 ps. This work describes the principle of the newly developed instrument and the first performance test using BaF 2 single crystal scintillator. Core valence luminescence of BaF 2 peaking around 190 and 220 nm is clearly detected by our system, and the decay time turned out to be of 0.7 ns. These results are consistent with literature and confirm that our system properly works. (author)

  12. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    Science.gov (United States)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  13. Effects of theta burst stimulation on motor cortex excitability in Parkinson's disease.

    Science.gov (United States)

    Zamir, Orit; Gunraj, Carolyn; Ni, Zhen; Mazzella, Filomena; Chen, Robert

    2012-04-01

    Long-term potentiation (LTP)-like plasticity induced by paired associative stimulation (PAS) is impaired in Parkinson's disease (PD). Intermittent theta burst stimulation (iTBS) is another rTMS protocol that produces LTP-like effects and increases cortical excitability but its effects are independent of afferent input. The aim of the present study was to examine the effects of iTBS on cortical excitability in PD. iTBS was applied to the motor cortex in 10 healthy subjects and 12 PD patients ON and OFF dopaminergic medications. Motor evoked potential (MEP) before and for 60 min after iTBS were used to examine the changes in cortical excitability induced by iTBS. Paired-pulse TMS was used to test whether intracortical circuits, including short interval intracortical inhibition, intracortical facilitation, short and long latency afferent inhibition, were modulated by iTBS. After iTBS, the control, PD ON and OFF groups had similar increases in MEP amplitude compared to baseline over the course of 60 min. Changes in intracortical circuits induced by iTBS were also similar for the different groups. iTBS produced similar effects on cortical excitability for PD patients and controls. Spike-timing dependent heterosynaptic LTP-like plasticity induced by PAS may be more impaired in PD than frequency dependent homosynaptic LTP-like plasticity induced by iTBS. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. High-density optical data storage based on grey level recording in photobleaching polymers using two-photon excitation under ultrashort pulse and continuous wave illumination

    International Nuclear Information System (INIS)

    Ganic, D.; Day, D.; Gu, M.

    1999-01-01

    Full text: Two-photon excitation has been employed in three-dimensional optical data storage by many researchers in an attempt to increase the storage density of a given material. The probability of two-photon excitation is proportional to the squared intensity of the incident light; this effect produces excitation only within a small region of the focus spot. Another advantage of two-photon excitation is the use of infrared illumination, which results in the reduction of scattering and enables the recording of layers at a deep depth in a thick material. The storage density thus obtained using multi-layered bit optical recording can be as high as Tbit/cm 3 . To increase this storage density even further, grey level recording can be employed. This method utilises variable exposure times of a laser beam focused into a photobleaching sample. As a result, the bleached area possesses a certain pixel value which depends upon the exposure time; this can increase the storage density many times depending upon the number of grey levels used. Our experiment shows that it is possible to attain grey level recording using both ultrashort pulsed and continuous-wave illumination. Although continuous wave illumination requires an average power of approximately 2 orders of magnitude higher than that for ultrashort pulsed illumination, it is a preferred method of recording due to its relatively low system cost and compactness. Copyright (1999) Australian Optical Society

  15. Laser excitation of the n=3 level of positronium for antihydrogen production

    CERN Document Server

    Aghion, S; Ariga, A; Ariga, T; Bonomi, G; Braunig, P; Bremer, J; Brusa, R S; Cabaret, L; Caccia, M; Caravita, R; Castelli, F; Cerchiari, G; Chlouba, K; Cialdi, S; Comparat, D; Consolati, G; Demetrio, A; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Evans, C; Ferragut, R; Fesel, J; Fontana, A; Forslund, O K; Gerber, S; Giammarchi, M; Gligorova, A; Gninenko, S N; Guatieri, F; Haider, S; Holmestad, H; Huse, T; Jernelv, I L; Jordan, E; Kellerbauer, A; Kimura, M; Koetting, T; Krasnicky, D; Lagomarsino, V; Lansonneur, P; Lebrun, P; Lehner, S; Liberadzka, J; Malbrunot, C; Mariazzi, S; Marx, L; Matveev, V A; Mazzotta, Z; Nebbia, G; Nedelec, P; Oberthaler, M K; Pacifico, N; Pagano, D; Penasa, L; Petracek, V; Pistillo, C; Prelz, F; Prevedelli, M; Ravelli, L; Resch, L; Rienacker, B; Røhne, O M; Rotondi, A; Sacerdoti, M; Sandaker, H; Santoro, R; Scampoli, P; Smestad, L; Sorrentino, F; Spacek, M; Storey, J; Strojek, I M; Testera, G; Tietje, I; Vamosi, S; Widmann, E; Yzombard, P; Zmeskal, J; Zurlo, N.

    2016-01-01

    We demonstrate laser excitation of the n=3 state of positronium (Ps) in vacuum. A specially designed high-efficiency pulsed slow positron beam and single shot positronium annihilation lifetime spectroscopy were used to produce and detect Ps. Pulsed laser excitation of n=3 level at 205 nm was monitored via Ps photoionization induced by a second intense laser pulse at 1064 nm. About 15% of the overall positronium emitted in vacuum was excited to n=3 and photoionized. Saturation of both the n=3 excitation and the following photoionization was observed and is explained by a simple rate equation model. Scanning the laser frequency allowed us to extract the positronium transverse temperature related to the width of the Doppler-broadened line. Moreover, preliminary observation of excitation to Rydberg states (n = 15...17) using n=3 as intermediate level was observed, giving an independent confirmation of efficient excitation to the 33P state.

  16. On the surface topography of ultrashort laser pulse treated steel surfaces

    International Nuclear Information System (INIS)

    Vincenc Obona, J.; Ocelík, V.; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis in’t Veld, A.J.; De Hosson, J.Th.M.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the fluence applied. It is shown that these features appear due to solid-liquid and liquid-gas transitions within surface layer irradiated by intense laser light. The observations are confronted to the theory of short-pulsed laser light-matter interactions, including interference, excitation of electrons, electron-phonon coupling as well as subsequent ablation. It is shown that the orientation of small ripples does not always depend on the direction of the polarization of laser light.

  17. NANOSCALE STRUCTURES GENERATION WITHIN THE SURFACE LAYER OF METALS WITH SHORT UV LASER PULSES

    Directory of Open Access Journals (Sweden)

    Dmitry S. Ivanov

    2017-01-01

    Full Text Available We have completed modeling of a laser pulse influence on a gold target. We have applied a hybrid atomistic-continuum model to analyze the physical mechanisms responsible for the process of nanostructuring. The model combines the advantages of Molecular Dynamics and Two Temperature Model. We have carried out a direct comparison of the modeling results and experimental data on nano-modification due to a single ps laser pulse at the energy densities significantly exceeding the melting threshold. The experimental data is obtained due to a laser pulse irradiation at the wavelength of 248 nm and duration of 1.6 ps. The mask projection (diffraction grating creates the sinusoidal intensity distribution on a gold surface with periods of 270 nm, 350 nm, and 500 nm. The experimental data and modeling results have demonstrated a good match subject to complex interrelations between a fast material response to the laser excitation, generation of crystal defects, phase transitions and hydrodynamic motion of matter under condition of strong laser-induced non-equilibrium. The performed work confirms the proposed approach as a powerful tool for revealing the physical mechanisms underlying the process of nanostructuring of metal surfaces. Detailed understanding of the dynamics of these processes gives the possibility for designing the topology of functional surfaces on nano- and micro-scales.

  18. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  19. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L.

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs

  20. Thin film beam splitter multiple short pulse generation for enhanced Ni-like Ag x-ray laser emission.

    Science.gov (United States)

    Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Delmas, Olivier; Pittman, Moana; Guilbaud, Olivier; Kazamias, Sophie; Cassou, Kevin; Demailly, Julien; Neveu, Olivier; Baynard, Elsa; Ros, David

    2014-04-15

    An alternative, novel multiple pulse generation scheme was implemented directly after the optical compressor output of an x-ray pump laser. The new method uses a polarization sensitive thin film beam splitter and a half-wavelength wave plate for tuning the energy ratio in the multiple short pulses. Based on this method, an extensive study was made of the running parameters for a grazing incidence pumped silver x-ray laser (XRL) pumped with a long pulse of 145 mJ in 6 ns at 532 nm and up to 1.45 J in few picoseconds at 810 nm. Fivefold enhancement in the emission of the silver XRL was demonstrated using the new pump method.

  1. Technical advantages of disk laser technology in short and ultrashort pulse processes

    Science.gov (United States)

    Graham, P.; Stollhof, J.; Weiler, S.; Massa, S.; Faisst, B.; Denney, P.; Gounaris, E.

    2011-03-01

    This paper demonstrates that disk-laser technology introduces advantages that increase efficiency and allows for high productivity in micro-processing in both the nanosecond (ns) and picosecond (ps) regimes. Some technical advantages of disk technology include not requiring good pump beam quality or special wavelengths for pumping of the disk, high optical efficiencies, no thermal lensing effects and a possible scaling of output power without an increase of pump beam quality. With cavity-dumping, the pulse duration of the disk laser can be specified between 30 and hundreds of nanoseconds, but is independent of frequency, thus maintaining process stability. TRUMPF uses this technology in the 750 watts average power laser TruMicro 7050. High intensity, along with fluency, is important for high ablation rates in thinfilm removal. Thus, these ns lasers show high removal rates, above 60 cm2/s, in thin-film solar cell production. In addition, recent results in paint-stripping of aerospace material prove the green credentials and high processing rates inherent with this technology as it can potentially replace toxic chemical processes. The ps disk technology meanwhile is used in, for example, scribing of solar cells, wafer dicing and drilling injector nozzles, as the pulse duration is short enough to minimize heat input in the laser-matter interaction. In the TruMicro Series 5000, the multi-pass regenerative amplifier stage combines high optical-optical efficiencies together with excellent output beam quality for pulse durations of only 6 ps and high pulse energies of up to 0.25 mJ.

  2. Wave-packet dynamics in alkaline dimers. Investigation and control through coherent excitation with fs-pulses; Wellenpaketdynamik in Alkali-Dimeren. Untersuchung und Steuerung durch kohaerente Anregung mit fs-Pulsen

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, F.N.B.

    2007-07-01

    During my PhD thesis I investigated alkaline dimers with coherent control in a molecular beam as well as with pump-probe spectroscopy in a magneto-optical trap (MOT). The aim of the coherent control experiments were the isotope selective ionization with phase- and amplitude-shaped fs-pulses. Chapter 4 described the gained results of isotope selective ionization of NaK and KRb in a molecular beam by using different pulse formers. For the NaK dimer was the reached optimization factor R{sub Ph} and {sub Ampl}{sup 770}=R{sub max}/R{sub min}=25 between maximization and minimization of the isotopomer ratio ({sup 23}Na{sup 39}K){sup +}/({sup 23}Na{sup 41}K){sup +} with phase and amplitude modulation of the fs-pulse with a central wavelength of {lambda}=770 nm. From the electronic ground-state X(1){sup 1}{sigma}{sup +};{nu}''=0 transfers a one-photon-excitation population in the first excited A(2) {sup 1}{sigma}{sup +} state. The coherent control experiment on KRb was used to maximize and minimize the isotopomer ratio ({sup 124}KRb){sup +}/({sup 126}KRb){sup +}. It was the first coherent control experiment with a spectral resolution of 1.84 cm{sup -1}/Pixel. For the phase and amplitude optimization was the received optimization factor between minimization and maximization of the isotopomer ratio R{sub Ph} and {sub Ampl}=R{sub max}/R{sub min}=7 at a central wavelength of 840 nm. The results showed a stepwise excitation process from the electronic ground-state in the first excited (2){sup 1}{sigma}{sup +} state with a further excitation, that is possible over three resonant energy potential curves into the ionic ground-state. In the second part of my thesis I realized pump-probe spectroscopy of Rb{sub 2} dimers in a dark SPOT. (orig.)

  3. Dynamics of ultra-short electromagnetic pulses in the system of chiral carbon nanotube waveguides in the presence of external alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2014-04-01

    The paper addresses the propagation of ultra-short optical pulses in chiral carbon nanotubes in the presence of external alternating electric field. Following the assumption that the considered optical pulses are represented in the form of discrete solitons, we analyze the wave equation for the electromagnetic field and consider the dynamics of pulses in external field, their initial amplitudes and frequencies.

  4. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses

    International Nuclear Information System (INIS)

    Degert, J.

    2002-12-01

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  5. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  6. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  7. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities

    Science.gov (United States)

    Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl

    2014-09-01

    Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.

  8. Effect of power frequency excitation character on ferroresonance in neutral-grounded system

    International Nuclear Information System (INIS)

    Hui Meng; Liu Chong-Xin

    2010-01-01

    In most earlier ferroresonance studies the traditional excitation characteristic of iron core, in which the traditional excitation characteristic contains harmonic voltages or currents, has been used as if it were made up of pure fundamental voltage or current. However, this is not always true. In comparison with traditional excitation characteristics, this paper introduces the power frequency excitation characteristic of the iron core, which contains no harmonics. The power frequency excitation characteristic of iron core has been obtained by Elector Magnetic Transient Program, resulting in discrete voltage and current pairs. Extensive simulations are carried out to analyse the effect of power frequency excitation characteristic on potential transformer ferroresonance. A detailed analysis of simulation results demonstrates that with power frequency excitation characteristic of iron core inclusion at certain excitation voltage the ferroresonance may happen, conversely it may not happen with traditional excitation characteristic inclusion. (general)

  9. Spatially periodic structures, under femtosecond pulsed excitation of crystals

    International Nuclear Information System (INIS)

    Martynovitch, Evgueni F.; Petite, Guillaume; Dresvianski, Vladimir P.; Starchenko, Anton A.

    2004-01-01

    Measuring the luminescence intensity of specially prepared irradiation defects induced in crystals, we observe that the longitudinal structure of quasi-interferences induced by two orthogonally polarized femtosecond pulses propagating together with different velocities is insensitive to the spatial broadening due to velocity dispersion in the crystals. On the contrary, it does depend on the pulse duration when it is changed by varying the spectral width of the radiation. It thus allows a direct measurement of the coherence time of such pulses. Stability of the axial selectivity is a good sign, taking away a number of serious limitations concerning possible applications

  10. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    International Nuclear Information System (INIS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-01-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism

  11. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  12. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  13. Pulse generation scheme for flying electromagnetic doughnuts

    Science.gov (United States)

    Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.

    2018-05-01

    Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.

  14. Elimination of spiral waves and spatiotemporal chaos by the pulse with a specific spatiotemporal configuration

    International Nuclear Information System (INIS)

    Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang

    2008-01-01

    Spiral waves and spatiotemporal chaos are sometimes harmful and should be controlled. In this paper spiral waves and spatiotemporal chaos are successfully eliminated by the pulse with a very specific spatiotemporal configuration. The excited position D of spiral waves or spatiotemporal chaos is first recorded at an arbitrary time (t 0 ). When the system at the domain D enters a recovering state, the external pulse is injected into the domain. If the intensity and the working time of the pulse are appropriate, spiral waves and spatiotemporal chaos can finally be eliminated because counter-directional waves can be generated by the pulse. There are two advantages in the method. One is that the tip can be quickly eliminated together with the body of spiral wave, and the other is that the injected pulse may be weak and the duration can be very short so that the original system is nearly not affected, which is important for practical applications

  15. Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media

    International Nuclear Information System (INIS)

    Shi, L W; Chen, Y H; Xu, B; Wang, Z C; Jiao, Y H; Wang, Z G

    2007-01-01

    In this review, the potential of mode-locked lasers based on advanced quantum-dot (QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects. (topical review)

  16. Reduction of CSF flow artifact in fast fluid attenuated inversion recovery MR imaging. Study of excitation width in 180deg inversion pulse

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Yoshizawa, Satoshi; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Ken; Fujita, Isao

    1998-01-01

    A technique that increases slice thickness so that it becomes wider than the excitation width of the 180deg inversion pulse and in which TR is partitioned twice has been investigated with regard to fast FLAIR. This is a technique that reduces the flow artifact of CSF. It is thought that, with this technique, the flow artifact is reduced because the CSF that flows onto the slice reaches the null point. The cross talk effect of the 180deg inversion pulse appears as a high CSF signal. As a result, the number of slices needs to be partitioned two or three times before imaging. Thus the imaging time is doubled or tripled. Considering the cross talk effect of the 180deg inversion pulse and the imaging time needed for this technique, the optimal imaging technique would be one that uses an inversion pulse that is four times slice thickness plus slice space and for which the number of slices is partitioned twice. Furthermore, the null point of CSF was dependent on dividing TR in half. (author)

  17. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    Directory of Open Access Journals (Sweden)

    J. G. H. Franssen

    2017-07-01

    Full Text Available We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps but hot (∼104 K electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K and ultrafast (∼25 ps electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales.

  18. Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.; Hohl-Ebinger, J.; Warta, W. [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg (Germany)

    2015-02-28

    Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensive theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.

  19. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    International Nuclear Information System (INIS)

    Soh, Wee Tee; Ong, C. K.; Peng, Bin

    2015-01-01

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films

  20. Biological effect of pulsed dose rate brachytherapy with stepping sources if short half-times of repair are present in tissues

    International Nuclear Information System (INIS)

    Fowler, Jack F.; Limbergen, Erik F.M. van

    1997-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR) for local tissue dose rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. Increased effect is more likely for tissues with short half-times of repair of the order of a few minutes, similar to pulse durations. Methods and Materials: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to exponential repair. The situation with two components of T (1(2)) is addressed. A constant overall time of 140 h and a constant total dose of 70 Gy were assumed throughout, the continuous low dose rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, covering the gap in an earlier publication. Four schedules were examined: doses per pulse of 0.5, 1, 1.5, and 2 Gy given at repetition frequencies of 1, 2, 3, and 4 h, respectively, each with a range of assumed half-times of repair of 4 min to 1.5 h. Results are presented for late-responding tissues, the differences from CLDR being two or three times greater than for early-responding tissues and most tumors. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (2 Gy) if the half-time of repair in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in tissue, and--when T (1(2)) is short--the instantaneous dose rate. Maximum ratios of PDR/CLDR occur when the dose rate is such that pulse duration is approximately equal to T (1(2)) . As dose rate in the pulse is increased, a plateau of effect is reached, for most T (1(2)) s, above 10 to 20 Gy/h, which is

  1. Time-resolved investigations of the fragmentation dynamic of H2 (D2) in and with ultra-short laser pulses

    International Nuclear Information System (INIS)

    Ergler, T.

    2006-01-01

    In course of this work pump-probe experiments aimed to study ultrafast nuclear motion in H 2 (D 2 ) fragmentation by intense 6-25 fs laser pulses have been carried out. In order to perform time-resolved measurements, a Mach-Zehnder interferometer providing two identical synchronized laser pulses with the time-delay variable from 0 to 3000 fs with 300 as accuracy and long-term stability has been built. The laser pulses at the intensities of up to 10 15 W/cm 2 were focused onto a H 2 (D 2 ) molecular beam leading to the ionization or dissociation of the molecules, and the momenta of all charged reactions fragments were measured with a reaction microscope. With 6-7 fs pulses it was possible to probe the time evolution of the bound H + 2 (D + 2 ) nuclear wave packet created by the first (pump) laser pulse, fragmenting the molecule with the second (probe) pulse. A fast delocalization, or ''collapse'', and subsequent ''revival'' of the vibrational wave packet have been observed. In addition, the signatures of the ground state vibrational excitation in neutral D 2 molecule have been found, and the dominance of a new, purely quantum mechanical wave packet preparation mechanism (the so-called ''Lochfrass'') has been proved. In the experiments with 25 fs pulses the theoretically predicted enhancement of the ionization probability for the dissociating H + 2 molecular ion at large internuclear distances has been detected for the first time. (orig.)

  2. Stimulated emission depletion following two photon excitation

    OpenAIRE

    Marsh, R. J.; Armoogum, D. A.; Bain, A. J.

    2002-01-01

    The technique of stimulated emission depletion of fluorescence (STED) from a two photon excited molecular population is demonstrated in the S, excited state of fluorescein in ethylene glycol and methanol. Two photon excitation (pump) is achieved using the partial output of a regeneratively amplified Ti:Sapphire laser in conjunction with an optical parametric amplifier whose tuneable output provides a synchronous depletion (dump) pulse. Time resolved fluorescence intensity and anisotropy measu...

  3. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murugesan; Cook; Devasahayam

    1997-01-01

    , Recent advances in radiofrequency (RF) electronics have enabled the generation of pulses of the order of 10-50 ns. Such short pulses provide adequate spectral coverage for EPR studies at 300 MHz resonant frequency. Acquisition of free induction decays (FID) of paramagnetic species possessing...... inhomogeneously broadened narrow lines after pulsed excitation is feasible with an appropriate digitizer/averager. This report describes the use of time-domain RF EPR spectrometry and imaging for in vivo applications. FID responses were collected from a water-soluble, narrow line width spin probe within phantom...... samples in solution and also when infused intravenously in an anesthetized mouse. Using static magnetic field gradients and back-projection methods of image reconstruction, two-dimensional images of the spin-probe distribution were obtained in phantom samples as well as in a mouse. The resolution...

  4. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  5. On the Transmission Line Pulse Measurement Technique

    OpenAIRE

    X. Rodriguez; M. Eduardo; M. Harington

    2015-01-01

    Transmission Line Pulse is a short pulse (25ns to 150ns) measurement of the current-voltage (I/V) characteristics of the ESD protection built into an integrated circuit. The short TLP pulses are used to simulate the short ESD pulse threats and integrated circuit must tolerate without being damaged. In this work the fundamental principles of how the TLP pulse is generated and used to create I-V characteristic plots will be explored. The measurement will be then used to characterize the I-V cha...

  6. Simple fibre based dispersion management for two-photon excited fluorescence imaging through an endoscope

    DEFF Research Database (Denmark)

    Dimopoulos, Konstantinos; Marti, Dominik; Andersen, Peter E.

    2018-01-01

    We want to implement two-photon excitation fluorescence microscopy (TPEFM) into endoscopes, since TPEFM can provide relevant biomarkers for cancer staging and grading in hollow organs, endoscopically accessible through natural orifices. However, many obstacles must be overcome, among others...... the delivery of short laser pulses to the distal end of the endoscope. To this avail, we present imaging results using an all-fibre dispersion management scheme in a TPEFM setup. The scheme has been conceived by Jespersen et al. in 20101 and relies on the combination of a single mode fibre with normal...

  7. Ion acceleration with ultra intense and ultra short laser pulses

    International Nuclear Information System (INIS)

    Floquet, V.

    2012-01-01

    Accelerating ions/protons can be done using short laser pulse (few femto-seconds) focused on few micrometers area on solid target (carbon, aluminum, plastic...). The electromagnetic field intensity reached on target (≥10 18 W.cm -2 ) allows us to turn the solid into a hot dense plasma. The dynamic motion of the electrons is responsible for the creation of intense static electric field at the plasma boundaries. These electric fields accelerate organic pollutants (including protons) located at the boundaries. This acceleration mechanism known as the Target Normal Sheath Acceleration (TNSA) has been the topic of the research presented in this thesis.The goal of this work has been to study the acceleration mechanism and to increase the maximal ion energy achievable. Indeed, societal application such as proton therapy requires proton energy up to few hundreds of MeV. To proceed, we have studied different target configurations allowing us to increase the laser plasma coupling and to transfer as much energy as possible to ions (target with microspheres deposit, foam target, grating). Different experiments have also dealt with generating a pre-plasma on the target surface thanks to a pre-pulse. On the application side, fluorescent material such as CdWO 4 has been studied under high flux rate of protons. These high flux rates have been, up to now, beyond the conventional accelerators capabilities. (author) [fr

  8. Partial Shading Detection in Solar System Using Single Short Pulse of Load

    Directory of Open Access Journals (Sweden)

    Bartczak Mateusz

    2017-03-01

    Full Text Available A single photovoltaic panel under uniform illumination has only one global maximum power point, but the same panel in irregularly illuminated conditions can have more maxima on its power-voltage curve. The irregularly illuminated conditions in most cases are results of partial shading. In the work a single short pulse of load is used to extract information about partial shading. This information can be useful and can help to make some improvements in existing MPPT algorithms. In the paper the intrinsic capacitance of a photovoltaic system is used to retrieve occurrence of partial shading.

  9. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  10. Elimination of Lubricants from Aluminum Cold Rolled Products Using Short Laser Pulses

    Directory of Open Access Journals (Sweden)

    Lima M.S.F.

    2002-01-01

    Full Text Available This work presents a new technique to remove the surface impurities from the aluminum cold-worked sheets. The method consists to concentrate a short-time high-power pulsed laser on the materials surface and scan it in order to cover a desired area. Incrustations ablation is obtained as long as the fluency and the peak power are high enough to produce vaporization of the contaminated layer without affecting the material surface properties. The present problem consists in eliminating a desiccated soap of about 1 g/m² from the surface of a 6016-class aluminum alloy sheet. The soap is originated from the rolling process. The present laser method is intended to replace water washing when the piece cannot be soaked, when drying is difficult due to the geometry, or when environmental restrictions apply. Best results were obtained when the pulse length was 100 ns and the average laser power was 95 W. In these conditions, the surface was completely cleaned and the aluminum alloy did not suffer any structural modification.

  11. Detection of leak-defective fuel rods using the circumferential Lamb waves excited by the resonance backscattering of ultrasonic pulses

    International Nuclear Information System (INIS)

    Choi, M.S.; Yang, M.S.; Kim, H.C.

    1992-01-01

    A new ultrasonic technique for detecting the infiltrated water in leaked fuel rods is developed. Propagation characteristics of the circumferential Lamb waves in the cladding tubes are estimated by the resonance scattering theory. The Lamb waves are excited by the resonance backscattering of ultrasonic pulses. In sound fuel rods, the existence of the Lamb waves is revealed by a series of periodic echoes. In leaked fuel rods, however, the Lamb waves are perturbed strongly by the scattered waves from the surface of fuel pellets, thus the periodic echoes are not observed. (author)

  12. Laser amplification in excited dielectrics

    Science.gov (United States)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian; Zielinski, Bastian; Götte, Nadine; Senftleben, Arne; Balling, Peter; Baumert, Thomas

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

  13. Excitation methods for energy dispersive analysis

    International Nuclear Information System (INIS)

    Jaklevic, J.M.

    1976-01-01

    The rapid development in recent years of energy dispersive x-ray fluorescence analysis has been based primarily on improvements in semiconductor detector x-ray spectrometers. However, the whole analysis system performance is critically dependent on the availability of optimum methods of excitation for the characteristic x rays in specimens. A number of analysis facilities based on various methods of excitation have been developed over the past few years. A discussion is given of the features of various excitation methods including charged particles, monochromatic photons, and broad-energy band photons. The effects of the excitation method on background and sensitivity are discussed from both theoretical and experimental viewpoints. Recent developments such as pulsed excitation and polarized photons are also discussed

  14. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sazonov, S. V., E-mail: sazonov.sergey@gmail.com [National Research Centre “Kurchatov Institute,” (Russian Federation); Ustinov, N. V., E-mail: n-ustinov@mail.ru [Moscow State University of Railways, Kaliningrad Branch (Russian Federation)

    2017-02-15

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky–Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.

  15. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  16. Atomistic simulation study of short pulse laser interactions with a metal target under conditions of spatial confinement by a transparent overlayer

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Eaman T.; Shugaev, Maxim; Wu, Chengping; Zhigilei, Leonid V., E-mail: lz2n@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, Virginia 22904-4745 (United States); Lin, Zhibin; Hainsey, Robert F. [Electro Scientific Industries, Inc., 13900 NW Science Park Drive, Portland, Oregon 97229 (United States)

    2014-05-14

    The distinct characteristics of short pulse laser interactions with a metal target under conditions of spatial confinement by a solid transparent overlayer are investigated in a series of atomistic simulations. The simulations are performed with a computational model combining classical molecular dynamics (MD) technique with a continuum description of the laser excitation, electron-phonon equilibration, and electronic heat transfer based on two-temperature model (TTM). Two methods for incorporation of the description of a transparent overlayer into the TTM-MD model are designed and parameterized for Ag-silica system. The material response to the laser energy deposition is studied for a range of laser fluences that, in the absence of the transparent overlayer, covers the regimes of melting and resolidification, photomechanical spallation, and phase explosion of the overheated surface region. In contrast to the irradiation in vacuum, the spatial confinement by the overlayer facilitates generation of sustained high-temperature and high-pressure conditions near the metal-overlayer interface, suppresses the generation of unloading tensile wave, decreases the maximum depth of melting, and prevents the spallation and explosive disintegration of the surface region of the metal target. At high laser fluences, when the laser excitation brings the surface region of the metal target to supercritical conditions, the confinement prevents the expansion and phase decomposition characteristic for the vacuum conditions leading to a gradual cooling of the hot compressed supercritical fluid down to the liquid phase and eventual solidification. The target modification in this case is limited to the generation of crystal defects and the detachment of the metal target from the overlayer.

  17. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    International Nuclear Information System (INIS)

    Comes, Ryan; Liu Hongxue; Lu Jiwei; Gu, Man; Khokhlov, Mikhail; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  18. Effective excitation of DBD lamp with a long feedline

    International Nuclear Information System (INIS)

    Schitz, D V; Nechoroshev, V O

    2016-01-01

    The proposed solution makes possible the transfer of high-voltage excitation pulses through the long coaxial cable with the minimum losses and the excilamp efficiency. Use of resonant topology of the pulse converter provides ZCS at switching-ON and ZVC at switching- OFF of the transistors. The values of efficiency of radiation of ∼ 9% at the feedline of 2.5 m in length obtained during the experiments are about twice as much as the efficiency at the XeCl- excilamp excitation by the quasi-square pulses power supply due to the decrease of losses at switching and the increase of electric efficiency of a resonant power supply with the long coaxial feedline. (paper)

  19. Short-Pulse-Width Repetitively Q-Switched ~2.7-μm Er:Y2O3 Ceramic Laser

    Directory of Open Access Journals (Sweden)

    Xiaojing Ren

    2017-11-01

    Full Text Available A short-pulse-width repetitively Q-switched 2.7-μm Er:Y2O3 ceramic laser is demonstrated using a specially designed mechanical switch, a metal plate carved with slits of both slit-width and duty-cycle optimized. With a 20% transmission output coupler, stable pulse trains with durations (full-width at half-maximum, FWHM of 27–38 ns were generated with a repetition rate within the range of 0.26–4 kHz. The peak power at a 0.26 kHz repetition rate was ~3 kW.

  20. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  1. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    International Nuclear Information System (INIS)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  2. Micromagnetic simulation of energy consumption and excited eigenmodes in elliptical nanomagnetic switches

    International Nuclear Information System (INIS)

    Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.

    2014-01-01

    Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process

  3. Computational Design of Short Pulse Laser Driven Iron Opacity Measurements at Stellar-Relevant Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madison E. [Univ. of Florida, Gainesville, FL (United States)

    2017-05-20

    Opacity is a critical parameter in the simulation of radiation transport in systems such as inertial con nement fusion capsules and stars. The resolution of current disagreements between solar models and helioseismological observations would bene t from experimental validation of theoretical opacity models. Overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.

  4. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  5. Using narrowband excitation to confirm that the S∗ state in carotenoids is not a vibrationally-excited ground state species

    Science.gov (United States)

    Jailaubekov, Askat E.; Song, Sang-Hun; Vengris, Mikas; Cogdell, Richard J.; Larsen, Delmar S.

    2010-02-01

    The hypothesis that S∗ is a vibrationally-excited ground-state population is tested and discarded for two carotenoid samples: β-carotene in solution and rhodopin glucoside embedded in the light harvesting 2 protein from Rhodopseudomonas acidophila. By demonstrating that the transient absorption signals measured in both systems that are induced by broadband (1000 cm -1) and narrowband (50 cm -1) excitation pulses are near identical and hence bandwidth independent, the impulsive stimulated Raman scattering mechanism proposed as the primary source for S∗ generation is discarded. To support this conclusion, previously published multi-pulse pump-dump-probe signals [17] are revisited to discard secondary mechanisms for S∗ formation.

  6. Novel short-pulse laser diode source for high-resolution 3D flash lidar

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-06-01

    Imaging based on laser illumination is present in various fields of applications such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified the recent years. Among the various technologies currently studied, automotive lidars are a fast-growing one due to their accuracy to detect a wide range of objects at distances up to a few hundreds of meters in various weather conditions. First commercialized devices for ADAS were laser scanners. Since then, new architectures have recently appeared such as solid-state lidar and flash lidar that offer a higher compactness, robustness and a cost reduction. Flash lidars are based on time-of-flight measurements, with the particularity that they do not require beam scanners because only one short laser pulse with a large divergence is used to enlighten the whole scene. Depth of encountered objects can then be recovered from measurement of echoed light at once, hence enabling real-time 3D mapping of the environment. This paper will bring into the picture a cutting edge laser diode source that can deliver millijoule pulses as short as 12 ns, which makes them highly suitable for integration in flash lidars. They provide a 100-kW peak power highly divergent beam in a footprint of 4x5 cm2 (including both the laser diode and driver) and with a 30-% electrical-to-optical efficiency, making them suitable for integration in environments in which compactness and power consumption are a priority. Their emission in the range of 800-1000 nm is considered to be eye safe when taking into account the high divergence of the output beam. An overview of architecture of these state-of-the-art pulsed laser diode sources will be given together with some solutions for their integration in 3D mapping systems. Future work leads will be discussed for miniaturization of the laser diode and drastic cost reduction.

  7. Delayed neutron spectra from short pulse fission of uranium-235

    International Nuclear Information System (INIS)

    Atwater, H.F.; Goulding, C.A.; Moss, C.E.; Pederson, R.A.; Robba, A.A.; Wimett, T.F.; Reeder, P.; Warner, R.

    1986-01-01

    Delayed neutron spectra from individual short pulse (∼50 μs) fission of small 235 U samples (50 mg) were measured using a small (5 cm OD x 5 cm length) NE 213 neutron spectrometer. The irradiating fast neutron flux (∼10 13 neutrons/cm 2 ) for these measurements was provided by the Godiva fast burst reactor at the Los Alamos Critical Experiment Facility (LACEF). A high speed pneumatic transfer system was used to transfer the 50 mg 235 U samples from the irradiation position near the Godiva assembly to a remote shielded counting room containing the NE 213 spectrometer and associated electronics. Data were acquired in sixty-four 0.5 s time bins and over an energy range 1 to 7 MeV. Comparisons between these measurements and a detailed model calculation performed at Los Alamos is presented

  8. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  9. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    Science.gov (United States)

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  10. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    Science.gov (United States)

    Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.

    2017-05-01

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.

  11. Propagation of 1-THz bandwidth electrical pulses on high Tc superconducting transmission lines

    International Nuclear Information System (INIS)

    Nuss, M.C.; Mankiewich, P.M.; Howard, R.E.; Harvey, T.E.; Brandle, C.D.; Straugh, B.L.; Smith, P.R.

    1989-01-01

    The new high temperature superconductors have triggered enormous interest not only because of the unique physics involved but also because of their technical potentials, such as the promise for propagation of extremely short electrical pulses. Superconducting band caps of --20TH z are predicted assuming BCS theory for the superconductor, making lossless propagation of electrical pulses as short as 50 fs possible. Despite microwave measurements at low frequencies of several gigahertz first studies at higher frequencies by Dykaar et al have shown distortion-free propagation of 100-GHz electrical pulses on YBa 2 Cu 3 O 3 (YBCO) lines for --5-mm propagation distance. Results were also reported for aluminum coplanar lines and a YBCO ground plane. The authors report on the propagation of 1-ps electrical pulses (1-THz bandwidth) on YBCO coplanar transmission lines defined on lanthanum gallate (LaGaO 3 ) as a substrate. On LaGaO 3 , YBCO grows highly oriented as on SrTiO 3 . However, unlike SrTiO 3 , LaGaO 3 has a much lower dielectric constant and small losses in the terahertz frequency range. Electrical pulses of --750-fs duration are generated in a radiation-damaged silicon-on-sapphire photoconductive switch integrated into a 20-μm coplanar stripline with 10-μm spacing and excited with 100-fs optical pulses from a CPM laser. An μ1-THz bandwidth electrical contact is made to the YBCO coplanar stripline defined on LaGaO 3 using a flip-chip geometry. They find that electrical pulses broaden only from 750 fs to 1 ps with little loss in amplitude on traveling through their flip-chip input and propagated electrical pulses are probed by electooptic sampling in two small LiTaO 3 crystals separated by 3 mm

  12. Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    International Nuclear Information System (INIS)

    Kundu, M.; Bauer, D.

    2006-01-01

    In a previous paper [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common overbarrier ionization estimate

  13. Amplification of picosecond pulse by electron-beam pumped KrF laser amplifiers. Denshi beam reiki KrF laser zofukuki ni yoru piko byo pulse no zofuku

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, I.; Tomie, T.; Owadano, Y.; Yano, M. (Electrotechnical Laboratory, Tsukuba (Japan))

    1991-08-20

    Experiments on the amplification of a picosecond pulse by electron-beam pumped KrF laser amplifiers were carried out for the purpose of its application to the field such as excitation light source for soft X-ray laser which requires large energy besides peak power. The picosecond pulse was amplified by a discharge pumped KrF amplifier and two electron-beam pumped KrF amplifiers(at the middle stage and the final stage). The energy of 4J, which was the largest energy for short pulse excimer laser so far, was obtained by these devices. About 90% of the window area of the final amplifier with 29cm diameter was filled by the input beam, and energy density of the picosecond beam reached 3.9 times saturation energy density. Measured energy of amplified spontaneous emission(ASE) showed good agreement with the theoretically estimated value. Most of ASE was derived from the discharge pumped laser as the first amplifier. As for the focused power density, the power density ratio of the picosecond pulse to ASE was estimated to be as large as 10{sup 5}. 11 refs., 4 figs.

  14. Short-term effects of a standardized glucose load on region-specific aortic pulse wave velocity assessed by MRI

    NARCIS (Netherlands)

    Jonker, J.T.; Tjeerdema, N.; Hensen, L.C.; Lamb, H.J.; Romijn, J.A.; Smit, J.W.; Westenberg, J.J.; Roos, A. de

    2014-01-01

    PURPOSE: To assess the short-term effects of a standardized oral glucose load on regional aortic pulse wave velocity (PWV) using two-directional in-plane velocity encoded MRI. MATERIALS AND METHODS: A randomized, controlled intervention was performed in 16 male subjects (mean +/- standard deviation:

  15. Absolute carrier phase effects in the two-color excitation of dipolar molecules

    International Nuclear Information System (INIS)

    Brown, Alex; Meath, W.J.; Kondo, A.E.

    2002-01-01

    The pump-probe excitation of a two-level dipolar (d≠0) molecule, where the pump frequency is tuned to the energy level separation while the probe frequency is extremely small, is examined theoretically as an example of absolute phase control of excitation processes. The state populations depend on the probe field's absolute carrier phase but are independent of the pump field's absolute carrier phase. Interestingly, the absolute phase effects occur for pulse durations much longer and field intensities much weaker than those required to see such effects in single pulse excitation

  16. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    International Nuclear Information System (INIS)

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10 12 watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10 9 watts) and can be focussed to intensities of /approximately/10 16 W/cm 2 . Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs

  17. Pulsed air-core deflector-magnet design parameters

    International Nuclear Information System (INIS)

    Jason, A.J.; Cooper, R.K.; Liebman, A.D.; Blind, B.; Koelle, A.R.

    1983-01-01

    The response of air-core magnets to pulsed excitation is dependent on the pulse frequency spectrum because of fields produced by induced currents in the magnet structure. We discuss this phenomenon quantitatively in terms of magnet performance optimization

  18. vuv fluorescence from selective high-order multiphoton excitation of N2

    International Nuclear Information System (INIS)

    Coffee, Ryan N.; Gibson, George N.

    2004-01-01

    Recent fluorescence studies suggest that ultrashort pulse laser excitation may be highly selective. Selective high-intensity laser excitation holds important consequences for the physics of multiphoton processes. To establish the extent of this selectivity, we performed a detailed comparative study of the vacuum ultraviolet fluorescence resulting from the interaction of N 2 and Ar with high-intensity infrared ultrashort laser pulses. Both N 2 and Ar reveal two classes of transitions, inner-valence ns ' l ' . From their pressure dependence, we associate each transition with either plasma or direct laser excitation. Furthermore, we qualitatively confirm such associations with the time dependence of the fluorescence signal. Remarkably, only N 2 presents evidence of direct laser excitation. This direct excitation produces ionic nitrogen fragments with inner-valence (2s) holes, two unidentified transitions, and one molecular transition, the N 2 + :X 2 Σ g + 2 Σ u + . We discuss these results in the light of a recently proposed model for multiphoton excitation

  19. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    Science.gov (United States)

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without

  20. Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-21

    We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.

  1. Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weichao, E-mail: weichao127@gmail.com; Wang, Yongjun, E-mail: t.s.wu@163.com; Wang, Junbiao, E-mail: wangjunb@nwpu.edu.cn; Wei, Shengmin, E-mail: weism@nwpu.edu.cn

    2014-07-01

    The effect of electrical pulse on the metastable precipitates and material strength of Al–Cu–Mg based 2024 aluminum alloy was investigated by means of tensile tests, hardness measurement, transmission electron microscopy and differential scanning calorimetry. The experimental results show that the electrical pulse passing through the naturally aged 2024 alloy can cause an electrical pulse retrogression effect which is characterized by the decrease of material strength and the appearance of Portevin–Le Chatelier (PLC) effect. More electrical pulses under higher current densities are more efficient in causing the electrical pulse retrogression effect. TEM and DSC experimental results reveal that, the electrical pulse retrogression effect is owing to the dissolution of the metastable precipitates in naturally aged 2024 alloy. Compared with the traditional retrogression heat treatment that heats the aluminum alloys through bulk heating in furnace for short time to reduce their material strength, the electrical pulse retrogression effect occurs at a much lower temperature and the pulse treated alloy can nearly restore to its original strength at a faster speed at room temperature.

  2. Numerical simulations of single and double ionization of H2 in short intense laser pulses

    International Nuclear Information System (INIS)

    Baier, Silvio

    2008-01-01

    Rescattering is the dominant process leading to double ionization in atoms and molecules interacting with linearly polarized laser pulses with wavelengths around 800 nm and in an intensity regime of 10 14 to 10 15 W/cm 2 . Using numerical integrations of the two-electron Schroedinger equation of the Hydrogen molecule in appropriate reduced dimensions two mechanisms, namely correlated emission of the electrons and excitation followed by field ionization after rescattering, could be identified and characterized. With the help of a planar model in reduced dimensions these mechanisms were quantitatively compared by their dependence on the molecular alignment with respect to the polarization axis. Two additional mechanisms, which are also related to rescattering, could be identified as well. (orig.)

  3. Regression analysis of radial artery pulse palpation as a potential tool for traditional Chinese medicine training education.

    Science.gov (United States)

    Huang, Po-Yu; Lin, Wen-Chen; Chiu, Bill Yuan-Chi; Chang, Hen-Hong; Lin, Kang-Ping

    2013-12-01

    Pulse palpation was an important part of the traditional Chinese medicine (TCM) vascular examination. It is challenging for new physicians to learn to differentiate between palpations of various pulse types, due to limited comparative learning time with established masters, and so normally it takes many years to master the art. The purpose of this study was to introduce an offline TCM skill evaluation and comparison system that makes available learning of palpation without the master's presence. We record patient's radial artery pulse using an existing pressure-based pulse acquisition system, then annotate it with teachers' evaluation when palpating the same patient, assigned as likelihood of it being each pulse type, e.g. wiry, slippery, hesitant. These training data were separated into per-doctor and per-skill databases for evaluation and comparison purposes, using the following novel procedure: each database was used as training data to a panel of time-series data-mining algorithms, driven by two validation tests, with the created training models evaluated in mean-squared-error. Each validation of the panel and training data yielded an array of error terms, and we chose one to quantitatively evaluate palpation techniques, giving way to compute self consistency and mutual-similarity across different practitioners and techniques. Our experiment of two practitioners and 396 per-processing samples yielded the following: one of the physicians has much higher value of self-consistency for all tested pulse types. Also, the two physicians have high similarity in how they palpate the slipper pulse (P) type, but very dissimilar for hesitant (H) type. This system of skill comparisons may be more broadly applied in places where supervised learning algorithms can detect and use meaningful features in the data; we chose a panel of algorithms previously shown to be effective for many time-series types, but specialized algorithms may be added to improve feature-specific aspect

  4. Short-wavelength luminescence in Ho{sup 3+}-doped KGd(WO{sub 4}){sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, M., E-mail: m.malinowski@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Kaczkan, M.; Stopinski, S.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Majchrowski, A. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2009-12-15

    Emissions from the high-lying excited states, energy transfer and upconversion processes are investigated in Ho{sup 3+}-activated KGd(WO{sub 4}){sub 2} crystal. The spectral assignment based on time-resolved emission spectra allowed to identify various near ultra-violet (UV), blue and green emissions starting from the excited {sup 3}H{sub 5}, {sup 5}G{sub 4}, {sup 5}G{sub 5}, {sup 5}F{sub 3} and {sup 5}S{sub 2} levels. The temporal behavior of these transitions after pulsed excitation was analyzed as a function of temperature and holmium ions concentration. The shortening and nonexponentiality of the decays, observed with increasing activator concentrations, indicated cross-relaxation (CR) among the Ho{sup 3+} ions. Cross-relaxation rates were experimentally determined as a function of activator concentration and used to evaluate the values of the nearest-neighbor trapping rates X{sub 01} and to model the decays. It was observed that KGW, despite higher than in YAG maximum phonon energy of about 900 cm{sup -1}, is more efficient short-wavelength emitter than YAG. Examples of the excited-state absorption (ESA) and energy transfer (ET) mechanisms responsible for the upconverted, short-wavelength emissions were identified by analyzing fluorescence dynamics and possible energy resonances.

  5. Influence of excitation light on the frequency upconversion of trivalent lanthanide ions

    International Nuclear Information System (INIS)

    Fu Zhenxing; Zheng Hairong; Tian Yu; Zhang Zhenglong; Cui Min

    2010-01-01

    The upconversion mechanisms of the 1 D 2 level of Tm 3+ ion under different excitation lights were analyzed. The influences of the excitation lights on the upconversion process, nonradiative relaxation from level 3 F 2 to 3 H 4 and fluorescence properties were investigated. It was shown that the one-color cw excitation could affect the profile of fluorescence, while information of the nonradiative relaxation could not be extracted. The nonradiative relaxation rate measured with the one-color pulsed excitation in crystal phase was in agreement with what was obtained in the free-standing nanometer crystal particles through the two-color pulsed excitation. The characteristics of the fluorescent emissions of Tm 3+ ions doped in various host materials were also discussed under different excitation lights. As a result of the discussion, a possible way to obtain nonradiative relaxation rate directly from a spectroscopic method in frequency domain was proposed. The study can be extended to other trivalent lanthanide ions that have upconversion through excited state absorption.

  6. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  7. Study on pulsed-operation of the drift tube quadrupole magnets

    International Nuclear Information System (INIS)

    Mutou, M.

    1982-01-01

    The heavy ion linac for NUMATRON project is designed not only as a injector for a synchrotron but also as a supplier of heavy ion beams for experiments with linac beam. In one repetition cycle of the synchrotron (1sec), the linac injects nearly 25 beam pulses with pulse width of 300 μsec and pulse interval of 30 msec. And the ion species can be varied every repetition. On the other hand, when it is off duty of injection to the synchrotron, the linac accelerates the beams that are directly used for the experiments. Also in this case, the ion species should be varied according to the requests of the experiments, for instance every 1 sec. Therefore, the quadrupole magnets installed in the drift tubes of the linac must be excited with pulse mode. The power supply of the quadrupole magnets will consists of two parts, namely pulse-excitation and dc-excitation power sources. The report describes the posibilities on the pulse-operation of the quadrupole magnets with the field gradient of asymptotically equals 10 KG/cm, and the analysis of the power supply of the quadrupole magnets. (author)

  8. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation

    International Nuclear Information System (INIS)

    Wang Cong; Jiang Lan; Wang Feng; Li Xin; Yuan Yanping; Xiao Hai; Tsai, Hai-Lung; Lu Yongfeng

    2012-01-01

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train. (paper)

  9. Diagnosis of a short-pulse dielectric barrier discharge at atmospheric pressure in helium with hydrogen-methane admixtures

    Science.gov (United States)

    Nastuta, A. V.; Pohoata, V.; Mihaila, I.; Topala, I.

    2018-04-01

    In this study, we present results from electrical, optical, and spectroscopic diagnosis of a short-pulse (250 ns) high-power impulse (up to 11 kW) dielectric barrier discharge at atmospheric pressure running in a helium/helium-hydrogen/helium-hydrogen-methane gas mixture. This plasma source is able to generate up to 20 cm3 of plasma volume, pulsed in kilohertz range. The plasma spatio-temporal dynamics are found to be developed in three distinct phases. All the experimental observations reveal a similar dynamic to medium power microsecond barrier discharges, although the power per pulse and current density are up to two orders of magnitude higher than the case of microsecond barrier discharges. This might open the possibility for new applications in the field of gas or surface processing, and even life science. These devices can be used in laboratory experiments relevant for molecular astrophysics.

  10. Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Andrey S., E-mail: andrey.moskalenko@uni-konstanz.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz (Germany); Zhu, Zhen-Gang, E-mail: zgzhu@ucas.ac.cn [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Berakdar, Jamal, E-mail: jamal.berakdar@physik.uni-halle.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany)

    2017-02-17

    information on its spin-dependent dynamics. We review examples of such spectra of photons emitted from pulse-driven nanostructures as well as a possibility to characterize and control the light polarization on an ultrafast time scale. Furthermore, we consider the response of strongly correlated systems to short broadband pulses and show that this case bears a great potential to unveil high order correlations while they build up upon excitations.

  11. Why shorter half-times of repair lead to greater damage in pulsed brachytherapy

    International Nuclear Information System (INIS)

    Fowler, J.F.

    1993-01-01

    Pulsed brachytherapy consists of replacing continuous irradiation at low dose-rate with a series of medium dose-rate fractions in the same overall time and to the same total dose. For example, pulses of 1 Gy given every 2 hr or 2 Gy given every 4 hr would deliver the same 70 Gy in 140 hr as continuous irradiation at 0.5 Gy/hr. If higher dose-rates are used, even with gaps between the pulses, the biological effects are always greater. Provided that dose rates in the pulse do not exceed 3 Gy/hr, and provided that pulses are given as often as every 2 hr, the inevitable increases of biological effect are no larger than a few percent (of biologically effective dose or extrapolated response dose). However, these increases are more likely to exceed 10% (and thus become clinically significant) if the half-time of repair of sublethal damage is short (less than 1 hr) rather than long. This somewhat unexpected finding is explained in detail here. The rise and fall of Biologically Effective Dose (and hence of Relative Effectiveness, for a constant dose in each pulse) is calculated during and after single pulses, assuming a range of values of T 1/2 , the half-time of sublethal damage repair. The area under each curve is proportional to Biologically Effective Dose and therefore to log cell kill. Pulses at 3 Gy/hr do yield greater biological effect (dose x integrated Relative Effectiveness) than lower dose-rate pulses or continuous irradiation at 0.5 Gy/hr. The contrast is greater for the short T 1/2 of 0.5 hr than for the longer T 1/2 of 1.5 hr. More biological damage will be done (compared with traditional low dose rate brachytherapy) in tissues with short T 1/2 (0.1-1 hr) than in tissues with longer T 1/2 values. 8 refs., 3 figs

  12. XPS studies of short pulse laser interaction with copper

    International Nuclear Information System (INIS)

    Stefanov, P.; Minkovski, N.; Balchev, I.; Avramova, I.; Sabotinov, N.; Marinova, Ts.

    2006-01-01

    The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm 2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas. The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α') and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH) 2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air

  13. Modeling study on the effects of pulse rise rate in atmospheric pulsed discharges

    Science.gov (United States)

    Zhang, Yuan-Tao; Wang, Yan-Hui

    2018-02-01

    In this paper, we present a modeling study on the discharge characteristics driven by short pulsed voltages, focusing on the effects of pulse rise rate based on the fluid description of atmospheric plasmas. The numerical results show that the breakdown voltage of short pulsed discharge is almost linearly dependent on the pulse rise rate, which is also confirmed by the derived equations from the fluid model. In other words, if the pulse rise rate is fixed as a constant, the simulation results clearly suggest that the breakdown voltage is almost unchanged, although the amplitude of pulsed voltage increases significantly. The spatial distribution of the electric field and electron density are given to reveal the underpinning physics. Additionally, the computational data and the analytical expression also indicate that an increased repetition frequency can effectively decrease the breakdown voltage and current density, which is consistent with the experimental observation.

  14. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  15. Analysis and Recognition of Traditional Chinese Medicine Pulse Based on the Hilbert-Huang Transform and Random Forest in Patients with Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2015-01-01

    Full Text Available Objective. This research provides objective and quantitative parameters of the traditional Chinese medicine (TCM pulse conditions for distinguishing between patients with the coronary heart disease (CHD and normal people by using the proposed classification approach based on Hilbert-Huang transform (HHT and random forest. Methods. The energy and the sample entropy features were extracted by applying the HHT to TCM pulse by treating these pulse signals as time series. By using the random forest classifier, the extracted two types of features and their combination were, respectively, used as input data to establish classification model. Results. Statistical results showed that there were significant differences in the pulse energy and sample entropy between the CHD group and the normal group. Moreover, the energy features, sample entropy features, and their combination were inputted as pulse feature vectors; the corresponding average recognition rates were 84%, 76.35%, and 90.21%, respectively. Conclusion. The proposed approach could be appropriately used to analyze pulses of patients with CHD, which can lay a foundation for research on objective and quantitative criteria on disease diagnosis or Zheng differentiation.

  16. Analysis and Recognition of Traditional Chinese Medicine Pulse Based on the Hilbert-Huang Transform and Random Forest in Patients with Coronary Heart Disease

    Science.gov (United States)

    Wang, Yiqin; Yan, Hanxia; Yan, Jianjun; Yuan, Fengyin; Xu, Zhaoxia; Liu, Guoping; Xu, Wenjie

    2015-01-01

    Objective. This research provides objective and quantitative parameters of the traditional Chinese medicine (TCM) pulse conditions for distinguishing between patients with the coronary heart disease (CHD) and normal people by using the proposed classification approach based on Hilbert-Huang transform (HHT) and random forest. Methods. The energy and the sample entropy features were extracted by applying the HHT to TCM pulse by treating these pulse signals as time series. By using the random forest classifier, the extracted two types of features and their combination were, respectively, used as input data to establish classification model. Results. Statistical results showed that there were significant differences in the pulse energy and sample entropy between the CHD group and the normal group. Moreover, the energy features, sample entropy features, and their combination were inputted as pulse feature vectors; the corresponding average recognition rates were 84%, 76.35%, and 90.21%, respectively. Conclusion. The proposed approach could be appropriately used to analyze pulses of patients with CHD, which can lay a foundation for research on objective and quantitative criteria on disease diagnosis or Zheng differentiation. PMID:26180536

  17. Clinical use and evaluation of coded excitation in B-mode images

    DEFF Research Database (Denmark)

    Misaridis, Athanasios; Pedersen, M. H.; Jensen, Jørgen Arendt

    2000-01-01

    on a predistorted FM excitation and a mismatched compression filter designed for medical ultrasonic applications. The attenuation effect, analyzed in this paper using the ambiguity function and simulations, dictated the choice of the coded waveform. In this study clinical images, images of wire phantoms......Use of long encoded waveforms can be advantageous in ultrasound imaging, as long as the pulse compression mechanism ensures low range sidelobes and preserves both axial resolution and contrast. A coded excitation/compression scheme was previously presented by our group, which is based...... was programmed to allow alternating excitation on every second frame. That offers the possibility of direct comparison of the same set of image pairs; one with pulsed and one with encoded excitation. Abdominal clinical images from healthy volunteers were acquired and statistically analyzed by means of the auto...

  18. Pharmacological modulation of the short-lasting effects of antagonistic direct current-stimulation over the human motor cortex

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2012-07-01

    Full Text Available Combined administration of transcranial direct current stimulation (tDCS with either pergolide (PGL or D-cycloserine (D-CYC can prolong the excitability-diminishing effects of cathodal, or the excitability enhancing effect of anodal stimulation for up to 24hrs poststimulation. However, it remains unclear whether the potentiation of the observed aftereffects is dominated by the polarity and duration of the stimulation, or the dual application of combined stimulation and drug administration. The present study looks at whether the aftereffects of oral administration of PGL (a D1/D2 agonist or D-CYC (a partial NMDA receptor agonist, in conjunction with the short duration antagonistic application of tDCS (either 5 min cathodal followed immediately by 5 min anodal or vice versa, that alone only induces short lasting aftereffects, can modulate cortical excitability in healthy human subjects, as revealed by a single-pulse MEP (motor-evoked-potential paradigm. Results indicate that the antagonistic application of DC currents induces short-term neuroplastic aftereffects that are dependent upon the polarity of the second application of short-duration tDCS. The application of D-cycloserine resulted in a reversal of this trend and so consequently a marked inhibition of cortical excitability with the cathodal-anodal stimulation order was observed. The administration of pergolide showed no significant aftereffects in either case. These results emphasise that the aftereffects of tDCS are dependent upon the stimulation orientation, and mirror the findings of other studies reporting the neuroplasticity inducing aftereffects of tDCS, and their prolongation when combined with the administration of CNS active drugs.

  19. Pulsed positive corona streamer propagation and branching

    International Nuclear Information System (INIS)

    Veldhuizen, E.M. van; Rutgers, W.R.

    2002-01-01

    The propagation and branching of pulsed positive corona streamers in a short gap is observed with high resolution in space and time. The appearance of the pre-breakdown phenomena can be controlled by the electrode configuration, the gas composition and the impedance of the pulsed power circuit. In a point-wire gap the positive corona shows much more branching than in the parallel plane gap with a protrusion. In air, the branching is more pronounced than in argon. The pulsed power circuit appears to operate in two modes, either as an inductive circuit creating a lower number of thick streamers or as a resistive circuit giving a higher number of thin streamers. A possible cause for branching is electrostatic repulsion of two parts of the streamer head. The electric field at the streamer head is limited, the maximum values found are ∼170 kV cm -1 in air and ∼100 kV cm -1 in argon. At these maximum field strengths, the electrons have 5-10 eV energy, so the ionization is dominated by two-step processes. Differences between argon and ambient air in the field strength at which streamers propagate are ascribed to the difference in de-excitation processes in noble and molecular gases. The fact that the pulsed power circuit can control the streamer structure is important for applications, but this effect must also be taken into account in fundamental studies of streamer propagation and branching. (author)

  20. Pulsed positive corona streamer propagation and branching

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E.M. van [Department of Physics, Technische Universiteit Eindhoven, Eindhoven (Netherlands)]. E-mail: e.m.v.veldhuizen@tue.nl; Rutgers, W.R. [Department of Physics, Technische Universiteit Eindhoven, Eindhoven (Netherlands)

    2002-09-07

    The propagation and branching of pulsed positive corona streamers in a short gap is observed with high resolution in space and time. The appearance of the pre-breakdown phenomena can be controlled by the electrode configuration, the gas composition and the impedance of the pulsed power circuit. In a point-wire gap the positive corona shows much more branching than in the parallel plane gap with a protrusion. In air, the branching is more pronounced than in argon. The pulsed power circuit appears to operate in two modes, either as an inductive circuit creating a lower number of thick streamers or as a resistive circuit giving a higher number of thin streamers. A possible cause for branching is electrostatic repulsion of two parts of the streamer head. The electric field at the streamer head is limited, the maximum values found are {approx}170 kV cm{sup -1} in air and {approx}100 kV cm{sup -1} in argon. At these maximum field strengths, the electrons have 5-10 eV energy, so the ionization is dominated by two-step processes. Differences between argon and ambient air in the field strength at which streamers propagate are ascribed to the difference in de-excitation processes in noble and molecular gases. The fact that the pulsed power circuit can control the streamer structure is important for applications, but this effect must also be taken into account in fundamental studies of streamer propagation and branching. (author)