WorldWideScience

Sample records for traction forces exerted

  1. Traction forces exerted by epithelial cell sheets

    International Nuclear Information System (INIS)

    Saez, A; Anon, E; Ghibaudo, M; Di Meglio, J-M; Hersen, P; Ladoux, B; Du Roure, O; Silberzan, P; Buguin, A

    2010-01-01

    Whereas the adhesion and migration of individual cells have been well described in terms of physical forces, the mechanics of multicellular assemblies is still poorly understood. Here, we study the behavior of epithelial cells cultured on microfabricated substrates designed to measure cell-to-substrate interactions. These substrates are covered by a dense array of flexible micropillars whose deflection enables us to measure traction forces. They are obtained by lithography and soft replica molding. The pillar deflection is measured by video microscopy and images are analyzed with home-made multiple particle tracking software. First, we have characterized the temporal and spatial distributions of traction forces of cellular assemblies of various sizes. The mechanical force balance within epithelial cell sheets shows that the forces exerted by neighboring cells strongly depend on their relative position in the monolayer: the largest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. The average traction stress rapidly decreases from its maximum value at the edge but remains much larger than the inherent noise due to the force resolution of our pillar tracking software, indicating an important mechanical activity inside epithelial cell islands. Moreover, these traction forces vary linearly with the rigidity of the substrate over about two decades, suggesting that cells exert a given amount of deformation rather than a force. Finally, we engineer micropatterned substrates supporting pillars with anisotropic stiffness. On such substrates cellular growth is aligned with respect to the stiffest direction in correlation with the magnitude of the applied traction forces.

  2. Traction Stresses Exerted by Adherent Cells: From Angiogenesis to Metastasis

    Science.gov (United States)

    Reinhart-King, Cynthia

    2010-03-01

    Cells exert traction stresses against their substrate that mediate their ability to sense the mechanical properties of their microenvironment. These same forces mediate cell adhesion, migration and the formation of stable cell-cell contacts during tissue formation. In this talk, I will present our data on the traction stresses generated by endothelial cells and metastatic breast cancer cells focused on understanding the processes of angiogenesis and metastasis, respectively. In the context of capillary formation, our data indicate that the mechanics of the substrate play a critical role in establishing endothelial cell-cell contacts. On more compliant substrates, endothelial cell shape and traction stresses polarize and promote the formation of stable cell-cell contacts. On stiffer substrates, traction stresses are less polarized and cell connectivity is disrupted. These data indicate that the mechanical properties of the microenvironment may drive cell connectivity and the formation of stable cell-cell contacts through the reorientation of traction stresses. In our studies of metastatic cell migration, we have found that traction stresses increase with increasing metastatic potential. We investigated three lines of varying metastatic potential (MCF10A, MCF7 and MDAMB231). MDAMB231, which are the most invasive, exert the most significant forces as measured by Traction Force Microscopy. These data present the possibility that cellular traction stress generation aids in the ability of metastatic cells to migrate through the matrix-dense tumor microenvironment. Such measurements are integral to link the mechanical and chemical microenvironment with the resulting response of the cell in health and disease.

  3. Traction force dynamics predict gap formation in activated endothelium

    International Nuclear Information System (INIS)

    Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van; Hordijk, Peter L.

    2016-01-01

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.

  4. Traction force dynamics predict gap formation in activated endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van; Hordijk, Peter L., E-mail: p.hordijk@vumc.nl

    2016-09-10

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.

  5. Prediction of traction forces of motile cells.

    Science.gov (United States)

    Roux, Clément; Duperray, Alain; Laurent, Valérie M; Michel, Richard; Peschetola, Valentina; Verdier, Claude; Étienne, Jocelyn

    2016-10-06

    When crawling on a flat substrate, living cells exert forces on it via adhesive contacts, enabling them to build up tension within their cytoskeleton and to change shape. The measurement of these forces has been made possible by traction force microscopy (TFM), a technique which has allowed us to obtain time-resolved traction force maps during cell migration. This cell 'footprint' is, however, not sufficient to understand the details of the mechanics of migration, that is how cytoskeletal elements (respectively, adhesion complexes) are put under tension and reinforce or deform (respectively, mature and/or unbind) as a result. In a recent paper, we have validated a rheological model of actomyosin linking tension, deformation and myosin activity. Here, we complement this model with tentative models of the mechanics of adhesion and explore how closely these models can predict the traction forces that we recover from experimental measurements during cell migration. The resulting mathematical problem is a PDE set on the experimentally observed domain, which we solve using a finite-element approach. The four parameters of the model can then be adjusted by comparison with experimental results on a single frame of an experiment, and then used to test the predictive power of the model for following frames and other experiments. It is found that the basic pattern of traction forces is robustly predicted by the model and fixed parameters as a function of current geometry only.

  6. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  7. Rigid two-axis MEMS force plate for measuring cellular traction force

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Jung, Uijin G; Shimoyama, Isao; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi

    2016-01-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µ m  ×  15 µ m  ×  5 µ m base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m −1 and less than 0.05 µ N, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µ N over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement. (paper)

  8. Novel characteristics of traction force in biliary self-expandable metallic stents.

    Science.gov (United States)

    Hori, Yasuki; Hayashi, Kazuki; Yoshida, Michihiro; Naitoh, Itaru; Ban, Tesshin; Miyabe, Katsuyuki; Kondo, Hiromu; Nishi, Yuji; Umemura, Shuichiro; Fujita, Yasuaki; Natsume, Makoto; Kato, Akihisa; Ohara, Hirotaka; Joh, Takashi

    2017-05-01

    In recent years, knowledge concerning the mechanical properties of self-expandable metallic stents (SEMS) has increased. In a previous study, we defined traction force and traction momentum and reported that these characteristics are important for optimal stent deployment. However, traction force and traction momentum were represented as relative values and were not evaluated in various conditions. The purpose of the present study was to measure traction force in various situations assumed during SEMS placement. Traction force and traction momentum were measured in non-stricture, stricture, and angled stricture models using in-house equipment. Stricture and angled stricture models had significantly higher traction force and traction momentum than those of the non-stricture model (stricture vs non-stricture: traction force, 7.2 N vs 1.4 N, P stent influenced the traction force. Clinicians should be aware of the transition of the traction force and should schedule X-ray imaging during SEMS placement. © 2017 Japan Gastroenterological Endoscopy Society.

  9. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    Science.gov (United States)

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  10. 3D Viscoelastic Traction Force Microscopy

    Science.gov (United States)

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M.; Henann, David L.; Franck, Christian

    2014-01-01

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in-vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels. PMID:25170569

  11. Application on forced traction test in surgeries for orbital blowout fracture

    Directory of Open Access Journals (Sweden)

    Bao-Hong Han

    2014-05-01

    Full Text Available AIM: To discuss the application of forced traction test in surgeries for orbital blowout fracture.METHODS: The clinical data of 28 patients with reconstructive surgeries for orbital fracture were retrospectively analyzed. All patients were treated with forced traction test before/in/after operation. The eyeball movement and diplopia were examined and recorded pre-operation, 3 and 6mo after operation, respectively.RESULTS: Diplopia was improved in all 28 cases with forced traction test. There was significant difference between preoperative and post-operative diplopia at 3 and 6mo(PCONCLUSION: Forced traction test not only have a certain clinical significance in diagnosis of orbital blowout fracture, it is also an effective method in improving diplopia before/in/after operation.

  12. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration.

    Science.gov (United States)

    Umeshima, Hiroki; Nomura, Ken-Ichi; Yoshikawa, Shuhei; Hörning, Marcel; Tanaka, Motomu; Sakuma, Shinya; Arai, Fumihito; Kaneko, Makoto; Kengaku, Mineko

    2018-04-05

    Somal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes. In contrast, neurons with a long leading process generated a force dipole with opposing traction forces in the proximal leading process during nuclear translocation. Transient accumulation of actin filaments was observed at the dipole center of the two opposing forces, which was abolished by inhibition of myosin II activity. A swelling in the leading process emerged and generated a traction force that pulled the nucleus when nuclear translocation was physically hampered. The traction force in the leading process swelling was uncoupled from somal translocation in neurons expressing a dominant negative mutant of the KASH protein, which disrupts the interaction between cytoskeletal components and the nuclear envelope. Our results suggest that the leading process is the site of generation of actomyosin-dependent traction force in long bipolar neurons, and that the traction force is transmitted to the nucleus via KASH proteins. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  13. DEFINITION OF LOCOMOTIVE TRACTION FORCE WITH REGARD TO UNEVEN LOADING OF WHEEL-MOTOR BLOCK

    Directory of Open Access Journals (Sweden)

    B. Ye. Bodnar

    2013-11-01

    Full Text Available Purpose. The article describes the most common methods for determining the locomotive traction force. Solving the tasks of traction calculations involves determination of the forces influencing the train at every point of the way. When choosing a rational trajectory of the train motion and the development of operational regulations of train driving it is necessary to determine the actual value of the locomotive traction force. Considering various factors, power value of traction electric motor of locomotive may have significant differences. Advancement of the operational definition system of the locomotive traction force during the calculations by electrical parameters of traction electric motor with regard to uneven load of wheel-motor block is the purpose of the article. Methodology. The method of determining the traction force of locomotives and diesel locomotives with electric transmission, which is based on primary data acquisition of traction electric engines of direct current behavior, was proposed. Sensors and their integration into the electrical circuitry of the locomotive in order to get the data in digital form and for operational calculation of the each traction motor mode and the definition of locomotive traction force are presented. Findings. The experimental investigation of the system of locomotive traction force determination with the electric traction motor ED-105 was offered. A comparison of electrical and mechanical power of the electric motor was conducted. Originality. The system of locomotives power operational definition, which takes into account the variable electro-mechanical factors of wheel and motor blocks and increases the accuracy of the calculations, was proposed. Practical value. The system is a part of an onboard complex in definition of energy-efficient regimes for trains movement and provides the definition of accelerating and decelerating forces.

  14. High-Force Versus Low-Force Lumbar Traction in Acute Lumbar Sciatica Due to Disc Herniation: A Preliminary Randomized Trial.

    Science.gov (United States)

    Isner-Horobeti, Marie-Eve; Dufour, Stéphane Pascal; Schaeffer, Michael; Sauleau, Erik; Vautravers, Philippe; Lecocq, Jehan; Dupeyron, Arnaud

    This study compared the effects of high-force versus low-force lumbar traction in the treatment of acute lumbar sciatica secondary to disc herniation. A randomized double blind trial was performed, and 17 subjects with acute lumbar sciatica secondary to disc herniation were assigned to high-force traction at 50% body weight (BW; LT50, n = 8) or low force traction at 10% BW (LT10, n = 9) for 10 sessions in 2 weeks. Radicular pain (visual analogue scale [VAS]), lumbo-pelvic-hip complex motion (finger-to-toe test), lumbar-spine mobility (Schöber-Macrae test), nerve root compression (straight-leg-raising test), disability (EIFEL score), drug consumption, and overall evaluation of each patient were measured at days 0, 7, 1, 4, and 28. Significant (P sciatica secondary to disc herniation who received 2 weeks of lumbar traction reported reduced radicular pain and functional impairment and improved well-being regardless of the traction force group to which they were assigned. The effects of the traction treatment were independent of the initial level of medication and appeared to be maintained at the 2-week follow-up. Copyright © 2016. Published by Elsevier Inc.

  15. Measurement of the traction force of biological cells by digital holography

    Science.gov (United States)

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  16. Tracking Traction Force Changes of Single Cells on the Liquid Crystal Surface

    Directory of Open Access Journals (Sweden)

    Chin Fhong Soon

    2015-01-01

    Full Text Available Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT system can be used in conjunction with a bespoke cell traction force mapping (CTFM software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.

  17. Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array

    KAUST Repository

    Li, Zhou

    2009-10-14

    The physical behaviors of stationary cells, such as the morphology, motility, adhesion, anchorage, invasion and metastasis, are likely to be important for governing their biological characteristics. A change in the physical properties of mammalian cells could be an indication of disease. In this paper, we present a silicon-nanowire-array based technique for quantifying the mechanical behavior of single cells representing three distinct groups: normal mammalian cells, benign cells (L929), and malignant cells (HeLa). By culturing the cells on top of NW arrays, the maximum traction forces of two different tumor cells (HeLa, L929) have been measured by quantitatively analyzing the bending of the nanowires. The cancer cell exhibits a larger traction force than the normal cell by ∼20% for a HeLa cell and ∼50% for a L929 cell. The traction forces have been measured for the L929 cells and mechanocytes as a function of culture time. The relationship between cells extending area and their traction force has been investigated. Our study is likely important for studying the mechanical properties of single cells and their migration characteristics, possibly providing a new cellular level diagnostic technique. © 2009 American Chemical Society.

  18. Creep force modelling for rail traction vehicles based on the Fastsim algorithm

    Science.gov (United States)

    Spiryagin, Maksym; Polach, Oldrich; Cole, Colin

    2013-11-01

    The evaluation of creep forces is a complex task and their calculation is a time-consuming process for multibody simulation (MBS). A methodology of creep forces modelling at large traction creepages has been proposed by Polach [Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992-1000; Influence of locomotive tractive effort on the forces between wheel and rail. Veh Syst Dyn. 2001(Suppl);35:7-22] adapting his previously published algorithm [Polach O. A fast wheel-rail forces calculation computer code. Veh Syst Dyn. 1999(Suppl);33:728-739]. The most common method for creep force modelling used by software packages for MBS of running dynamics is the Fastsim algorithm by Kalker [A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11:1-13]. However, the Fastsim code has some limitations which do not allow modelling the creep force - creep characteristic in agreement with measurements for locomotives and other high-power traction vehicles, mainly for large traction creep at low-adhesion conditions. This paper describes a newly developed methodology based on a variable contact flexibility increasing with the ratio of the slip area to the area of adhesion. This variable contact flexibility is introduced in a modification of Kalker's code Fastsim by replacing the constant Kalker's reduction factor, widely used in MBS, by a variable reduction factor together with a slip-velocity-dependent friction coefficient decreasing with increasing global creepage. The proposed methodology is presented in this work and compared with measurements for different locomotives. The modification allows use of the well recognised Fastsim code for simulation of creep forces at large creepages in agreement with measurements without modifying the proven modelling methodology at small creepages.

  19. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    Science.gov (United States)

    Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S

    2015-03-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  20. Optimal arm posture control and tendon traction forces of a coupled tendon-driven manipulator

    International Nuclear Information System (INIS)

    Ma, Shugen

    1997-01-01

    In this study, the optimum arm posture of a coupled tendon-driven multijoint manipulator arm (or CT Arm) at maximum payload output was derived and the corresponding tendon traction forces were also analyzed, during management of a heavy payload by the manipulator in a gravity environment. The CT Arm is special tendon traction transmission mechanism in which a pair of tendons used to drive a joint is pulled from base actuators via pulleys mounted on the base-side joints. This mechanism enables optimal utilization of the coupled drive function of tendon traction forces and thus enables the lightweight manipulator to exhibit large payload capability. The properties of the CT Arm mechanism are elucidated by the proposed optimal posture control scheme. Computer simulation was also executed to verify the validity of the proposed control scheme. (author)

  1. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Science.gov (United States)

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  2. Influence of permittivity on gradient force exerted on Mie spheres.

    Science.gov (United States)

    Chen, Jun; Li, Kaikai; Li, Xiao

    2018-04-01

    In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.

  3. Traction cytometry: regularization in the Fourier approach and comparisons with finite element method.

    Science.gov (United States)

    Kulkarni, Ankur H; Ghosh, Prasenjit; Seetharaman, Ashwin; Kondaiah, Paturu; Gundiah, Namrata

    2018-05-09

    Traction forces exerted by adherent cells are quantified using displacements of embedded markers on polyacrylamide substrates due to cell contractility. Fourier Transform Traction Cytometry (FTTC) is widely used to calculate tractions but has inherent limitations due to errors in the displacement fields; these are mitigated through a regularization parameter (γ) in the Reg-FTTC method. An alternate finite element (FE) approach computes tractions on a domain using known boundary conditions. Robust verification and recovery studies are lacking but essential in assessing the accuracy and noise sensitivity of the traction solutions from the different methods. We implemented the L2 regularization method and defined a maximum curvature point in the traction with γ plot as the optimal regularization parameter (γ*) in the Reg-FTTC approach. Traction reconstructions using γ* yield accurate values of low and maximum tractions (Tmax) in the presence of up to 5% noise. Reg-FTTC is hence a clear improvement over the FTTC method but is inadequate to reconstruct low stresses such as those at nascent focal adhesions. FE, implemented using a node-by-node comparison, showed an intermediate reconstruction compared to Reg-FTTC. We performed experiments using mouse embryonic fibroblast (MEF) and compared results between these approaches. Tractions from FTTC and FE showed differences of ∼92% and 22% as compared to Reg-FTTC. Selection of an optimum value of γ for each cell reduced variability in the computed tractions as compared to using a single value of γ for all the MEF cells in this study.

  4. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    Science.gov (United States)

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  5. Comparison of the force exerted by hippocampal and DRG growth cones.

    Science.gov (United States)

    Amin, Ladan; Ercolini, Erika; Ban, Jelena; Torre, Vincent

    2013-01-01

    Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 µm(2) and did not vary between P1-P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10-P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties.

  6. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  7. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements

    Science.gov (United States)

    Tong, Ming Hui; Huang, Nan; Zhang, Wei; Zhou, Zhuo Long; Ngan, Alfonso Hing Wan; Du, Yanan; Chan, Barbara Pui

    2016-01-01

    Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.

  8. Force sensing using 3D displacement measurements in linear elastic bodies

    Science.gov (United States)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  9. Exertion of forces by children performing a free-style jump

    NARCIS (Netherlands)

    Moes, C.C.M.; Visser, R.J.

    1998-01-01

    This research project focuses on the force characteristics and force/time relationships of loads exerted by jumping children. The current study is an experimental research into children jumping on both hard and soft substrates. The hard substrate is obtained by using a force plate. For the soft

  10. Toward single cell traction microscopy within 3D collagen matrices

    International Nuclear Information System (INIS)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels

  11. Toward single cell traction microscopy within 3D collagen matrices

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  12. How emotion context modulates unconscious goal activation during motor force exertion.

    Science.gov (United States)

    Blakemore, Rebekah L; Neveu, Rémi; Vuilleumier, Patrik

    2017-02-01

    Priming participants with emotional or action-related concepts influences goal formation and motor force output during effort exertion tasks, even without awareness of priming information. However, little is known about neural processes underpinning how emotional cues interact with action (or inaction) goals to motivate (or demotivate) motor behaviour. In a novel functional neuroimaging paradigm, visible emotional images followed by subliminal action or inaction word primes were presented before participants performed a maximal force exertion. In neutral emotional contexts, maximum force was lower following inaction than action primes. However, arousing emotional images had interactive motivational effects on the motor system: Unpleasant images prior to inaction primes increased force output (enhanced effort exertion) relative to control primes, and engaged a motivation-related network involving ventral striatum, extended amygdala, as well as right inferior frontal cortex. Conversely, pleasant images presented before action (versus control) primes decreased force and activated regions of the default-mode network, including inferior parietal lobule and medial prefrontal cortex. These findings show that emotional context can determine how unconscious goal representations influence motivational processes and are transformed into actual motor output, without direct rewarding contingencies. Furthermore, they provide insight into altered motor behaviour in psychopathological disorders with dysfunctional motivational processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Orthodontic traction of impacted canine using magnet: a case report

    OpenAIRE

    Li, Larry CF; Wong, Ricky WK; King, Nigel M

    2008-01-01

    ABSTRACT: A 15 year and 1 month old Chinese female with palatally impacted upper left canine was successfully treated with an upper removable appliance with a magnet incorporated to provide orthodontic traction force. This case report indicates the possibility of using magnetic force as a safe, effective and comfortable way for orthodontic traction.

  14. Forces exerted by jumping children: A pilot study

    NARCIS (Netherlands)

    Moes, C.C.M.; Bakker, H.E.

    1998-01-01

    This article reports on a pilot study of the loads exerted vertically by children when jumping. The subjects of the study were 17 children, aged from two to twelve years. Measurements were made using video recordings and a force-plate. The influence of the stiffness of the base and of jumping with

  15. A novel assessment of the traction forces upon settlement of two typical marine fouling invertebrates using PDMS micropost arrays

    Directory of Open Access Journals (Sweden)

    Kang Xiao

    2018-01-01

    Full Text Available Marine biofouling poses a severe threat to maritime and aquaculture industries. To prevent the attachment of marine biofouling organisms on man-made structures, countless cost and effort was spent annually. In particular, most attention has been paid on the development of efficient and environmentally friendly fouling-resistant coatings, as well as larval settlement mechanism of several major biofouling invertebrates. In this study, polydimethylsiloxane (PDMS micropost arrays were utilized as the settlement substrata and opposite tractions were identified during early settlement of the barnacle Amphibalanus amphitrite and the bryozoan Bugula neritina. The settling A. amphitrite pushed the periphery microposts with an average traction force of 376.2 nN, while settling B. neritina pulled the periphery microposts with an average traction force of 205.9 nN. These micropost displacements are consistent with the body expansion of A. amphitrite during early post-settlement metamorphosis stage and elevation of wall epithelium of B. neritina during early pre-ancestrula stage, respectively. As such, the usage of micropost array may supplement the traditional histological approach to indicate the early settlement stages or even the initiation of larval settlement of marine fouling organisms, and could finally aid in the development of automatic monitoring platform for the real-time analysis on this complex biological process.

  16. Traction force microscopy of engineered cardiac tissues.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit

    2018-01-01

    Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.

  17. Regression analysis of traction characteristics of traction fluids

    Science.gov (United States)

    Loewenthal, S. H.; Rohn, D. A.

    1983-01-01

    Traction data for Santotrac 50 and TDF-88 over a wide range of operating conditions were analyzed. An eight term correlation equation to predict the maximum traction coefficient and a six term correlation equation to predict the initial slope of the traction curve were developed. The slope correlation was corrected for size effect considering the compliance of the disks. The effects of different operating conditions on the traction performance of each traction fluid were studied. Both fluids exhibited a loss in traction with increases in spin, but the losses with the TDF-88 fluid were not as severe as those with Santotrac 50. Overall, both fluids exhibited similar performance, showing an increase in traction with contact pressure up to about 2.0 GPa, and a reduction in traction with higher surface speeds up to about 100 m/sec. The apparent stiffness of the traction contact, that is, film disk combination, increases with contact pressure and decreases with speed.

  18. THE TRACTION ELECTRIC OPERATION AND ITS EXPLOITATION ABILITIES

    Directory of Open Access Journals (Sweden)

    V. M. Bezruchenko

    2011-04-01

    Full Text Available The possibilities of asynchronous traction electric motor drive are considered at the certain coupling mass taking into account the coupling restrictions. A variant of using the regulation law for electric motor drive allowing realizing traction force more rationally is offered. The possibility of reaching the speeds to 220 km/h for electric locomotive DS3 is shown

  19. Mechanochemistry Induced Using Force Exerted by a Functionalized Microscope Tip

    DEFF Research Database (Denmark)

    Zhang, Yajie; Wang, Yongfeng; Lü, Jing-Tao

    2017-01-01

    Atomic-scale mechanochemistry is realized from force exerted by a C60 -functionalized scanning tunneling microscope tip. Two conformers of tin phthalocyanine can be prepared on coinage-metal surfaces. A transition between these conformers is induced on Cu(111) and Ag(100). Density...

  20. Update: Exertional rhabdomyolysis, active component, U.S. Armed Forces, 2012-2016.

    Science.gov (United States)

    2017-03-01

    Among active component service members in 2016, there were 525 incident diagnoses of rhabdomyolysis likely due to physical exertion and/or heat stress ("exertional rhabdomyolysis"). The crude incidence rate in 2016 was 40.7 cases per 100,000 person-years. Annual rates of incident diagnoses of exertional rhabdomyolysis increased 46.2% between 2013 and 2016, with the greatest percentage change occurring between 2014 and 2015. In 2016, relative to their respective counterparts, the highest incidence rates of exertional rhabdomyolysis affected service members who were male; younger than 20 years of age; and black, non-Hispanic. During the surveillance period, annual incidence rates were highest among service members of the Marine Corps, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

  1. Elastic model of the traction behavior of two traction lubricants

    Science.gov (United States)

    Loewenthal, S. H.; Rohn, D. A.

    1984-01-01

    In the analysis of rolling-sliding concentrated contacts, such as gears, bearings and traction drives, the traction characteristics of the lubricant are of prime importance. The elastic shear modulus and limiting shear stress properties of the lubricant dictate the traction/slip characteristics and power loss associated with an EHD contact undergoing slip and/or spin. These properties can be deducted directly from the initial slope m and maximum traction coefficient micron of an experimental traction curve. In this investigation, correlation equations are presented to predict m and micron for two modern traction fluids based on the regression analysis of 334 separate traction disk machine experiments. The effects of contact pressure, temperature, surface velocity, ellipticity ratio are examined. Problems in deducing lubricant shear moduli from disk machine tests are discussed. Previously announced in STAR as N83-20116

  2. Targeted traction of impacted teeth with C-tube miniplates.

    Science.gov (United States)

    Chung, Kyu-Rhim; Kim, Yong; Ahn, Hyo-Won; Lee, Dongjoo; Yang, Dong-Min; Kim, Seong-Hun; Nelson, Gerald

    2014-09-01

    Orthodontic traction of impacted teeth has typically been performed using full fixed appliance as anchorage against the traction force. This conventional approach can be difficult to apply in the mixed dentition if the partial fixed appliance offers an insufficient anchor unit. In addition, full fixed appliance can induce unwanted movement of adjacent teeth. This clinical report presents 3 cases where impacted teeth were recovered in the mixed or transitional dentition with skeletal anchorage on the opposite arch without full fixed appliance. Instead, intermaxillary traction was used to bring the impacted teeth into position. With this approach, side effects on teeth and periodontal tissues adjacent to the impaction were minimized.

  3. Observer Based Traction/Braking Control Design for High Speed Trains Considering Adhesion Nonlinearity

    Directory of Open Access Journals (Sweden)

    Wenchuan Cai

    2014-01-01

    Full Text Available Train traction/braking control, one of the key enabling technologies for automatic train operation, literally takes its action through adhesion force. However, adhesion coefficient of high speed train (HST is uncertain in general because it varies with wheel-rail surface condition and running speed; thus, it is extremely difficult to be measured, which makes traction/braking control design and implementation of HSTs greatly challenging. In this work, force observers are applied to estimate the adhesion force or/and the resistance, based on which simple traction/braking control schemes are established under the consideration of actual wheel-rail adhesion condition. It is shown that the proposed controllers have simple structure and can be easily implemented from real applications. Numerical simulation also validates the effectiveness of the proposed control scheme.

  4. Development And Use Of Advanced Microfabricated Traction Force Sensing Substrates To Study The Effect of Nanosilver On Human Macrophages

    Science.gov (United States)

    Stark, Daniel Thomas

    While nanoparticles are a natural byproduct of combustion and a number of natural processes, engineered nanoparticles have only recently entered the consumer market. This motivates the development of methods for studying their effects on human cells, thereby indicating how larger models such as animals and humans might react to them. This research develops a method to mechanically characterize cellular traction forces as a measure of exposure to nanoparticles. To do this, 1microm micropillar molds were fabricated in silicon wafers using smooth sidewall reactive ion plasma etching technologies. Polydimethylsiloxane (PDMS), was cured inside the silicon molds, subsequently treated for cell culture and used to measure cellular traction forces over time in live cell time-lapse experiments. For the first time, transmitted light was used to visualize the PDMS micropillars; a force resolution of 5.6 +/-2.1nN was achieved across all experiments using a standard Olympus IX81 confocal microscope affixed with a 60x NA2.1 objective. To initiate cellular movement, monocyte chemoattractant protein (MCP-1) was conjugated to 1microm latex beads. The effects of 40nm silver nanoparticle exposures were quantified using the micropillar array. Changes in cellular behavior between the control group and cells exposed to nanosilver were not significant, although a comparison between the 5microg/ml and 10microg/ml nanosilver concentrations yielded strong significance using a 2 sided Students t test.

  5. Observer Based Traction/Braking Control Design for High Speed Trains Considering Adhesion Nonlinearity

    OpenAIRE

    Cai, Wenchuan; Liao, Wenhao; Li, Danyong; Song, Yongduan

    2014-01-01

    Train traction/braking control, one of the key enabling technologies for automatic train operation, literally takes its action through adhesion force. However, adhesion coefficient of high speed train (HST) is uncertain in general because it varies with wheel-rail surface condition and running speed; thus, it is extremely difficult to be measured, which makes traction/braking control design and implementation of HSTs greatly challenging. In this work, force observers are applied to estimate t...

  6. Forces exerted during exercises by patients with adolescent idiopathic scoliosis wearing fiberglass braces

    OpenAIRE

    Romano Michele; Carabalona Roberta; Petrilli Silvia; Sibilla Paolo; Negrini Stefano

    2006-01-01

    Abstract Objective To quantify and compare the forces exerted by scoliosis patients in fiberglass braces during exercises usually prescribed in departments where casts are made. The exercises are intended to increase corrective forces, activate muscles, stimulate ventilation and help the patient psychologically. Setting Outpatient care. Patients 17 consecutive adolescent patients wearing fiberglass brace for idiopathic scoliosis. Interventions Exercises (kyphotization, rotation, "escape from ...

  7. Young adult patient with two palatally maxillary impacted canines and forced traction on rigid arches of stabilization. Case report.

    Science.gov (United States)

    Mucedero, M; Pezzuto, C; Rozzi, M; Ricchiuti, M R; Cozza, P

    2016-01-01

    Young adult patient treated for impaction of two maxillary canines. C.S., 15 years, female. Diagnostic evaluation by clinical and radiographic examinations shows permanent dentition with persistence of 5.3 and 6.3, impaction of 1.3 and 2.3, dento-skeletal Cl I malocclusion, normodivergence of bone bases. Analysis of TC dentalscan confirms the palatal impaction of 1.3 and 2.3. The treatment plan provided an orthodontic-surgical approach for adequate space management in dental arch, evaluation of eruption movements, choice of anchorage device, surgical exposure and application of the brackets. Deciduous canines have been extracted and an edgewise appliance with rigid rectangular full thickness archwires has been used to align the arches and to obtain maximum anchorage during the forced traction. The surgical phase, for exposure of 1.3 and 2.3 respectively, performed an open technique by excisional uncovering and a close technique by a repositioned flap. The case has been finalized for the achievement of the right occlusal keys. The possibility to choose the surgical technique depending on the intraosseous position of impacted teeth in association to the edgewise therapy with full thickness arches allows to realize an effectiveness surgical-orthodontic approach for the forced traction of impacted teeth in a favourable position.

  8. Asymmetry of activation of lateral abdominal muscles during the neurodevelopmental traction technique.

    Science.gov (United States)

    Gogola, Anna; Gnat, Rafał; Zaborowska, Małgorzata; Dziub, Dorota; Gwóźdź, Michalina

    2018-01-01

    The aim of the study was to evaluate the symmetry and pattern of activation of lateral abdominal muscles (LAM) in response to neurodevelopmental traction technique. Measurements of LAM thickness were performed in four experimental conditions: during traction with the force of 5% body weight (5% traction): 1) in neutral position, 2) in 20° posterior trunk inclination; during traction with the force of 15% body weight (15% traction): 3) in neutral position, 4) in 20° posterior trunk inclination. Thirty-seven healthy children participated in the study. Not applicable. To evaluate LAM activation level ultrasound technology was employed (two Mindray DP660 devices (Mindray, Shenzhen, China) with 75L38EA linear probes). An experiment with repeated measurements of the dependent variables was conducted. Side-to-side LAM activation asymmetry showed relatively high magnitude, however, significant difference was found only in case of the obliquus externus (OE) during stronger traction (P muscle differences were most pronounced between the OE and TrA (P muscles showing less intense activation. In statistical terms, the only signs of side-to-side asymmetry of LAM activation are visible in case of the OE, however, the magnitude of asymmetry is relatively high. The results allow to identify patterns of activation of LAM in children showing typical development that will serve as a reference in future studies in children with neurological disorder. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.

    Directory of Open Access Journals (Sweden)

    Kaori Kuribayashi-Shigetomi

    Full Text Available This paper describes a method of generating three-dimensional (3D cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF. We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices.

  10. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.

    Science.gov (United States)

    Kuribayashi-Shigetomi, Kaori; Onoe, Hiroaki; Takeuchi, Shoji

    2012-01-01

    This paper describes a method of generating three-dimensional (3D) cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF). We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices.

  11. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.

    Science.gov (United States)

    Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N

    2015-01-01

    Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.

  12. Optical force exerted on a Rayleigh particle by a vector arbitrary-order Bessel beam

    International Nuclear Information System (INIS)

    Yang, Ruiping; Li, Renxian

    2016-01-01

    An analytical description of optical force on a Rayleigh particle by a vector Bessel beam is investigated. Linearly, radially, azimuthally, and circularly polarized Bessel beams are considered. The radial, azimuthal, and axial forces by a vector Bessel beam are numerically simulated. The effect of polarization, order of beams, and half-cone angle to the optical force are mainly discussed. For Bessel beams of larger half-cone angle, the non-paraxiality of beams plays an important role in optical forces. Numerical calculations show that optical forces, especially azimuthal forces, are very sensitive to the polarization of beams. - Highlights: • Optical force exerted on a Rayleigh particle by a vector Bessel beam is analytically derived. • Radial, azimuthal, and axial forces are numerically analyzed. • The effect of polarization, order of beam, and non-paraxiality is analyzed.

  13. The impact of the neurodevelopmental traction technique on activation of lateral abdominal muscles in children aged 11-13 years.

    Science.gov (United States)

    Gogola, Anna; Gnat, Rafał; Dziub, Dorota; Gwóźdź, Michalina; Zaborowska, Małgorzata

    2016-06-27

    The aim of the study was to evaluate the activation of lateral abdominal muscles (LAM) in response to neurodevelopmental traction technique as assessed by ultrasounds as well as to compare the effects of different traction forces. An experiment with repeated measurements of the dependent variables was conducted. Thirty-seven children (22 girls) participated. Measurements of LAM thickness (indicating LAM activation) were performed bilaterally during traction of 5% body weight: 1) in neutral position, 2) in 20° posterior trunk inclination; during traction of 15% body weight: 3) in neutral position, 4) in 20° posterior trunk inclination. The ultrasound technology was employed. When applying the lighter traction the superficial LAM (external and internal oblique muscles) showed significant changes. The mean thickness of both muscles during traction increased (both p  0.05). Stronger traction elicited smaller changes. External and internal oblique muscles showed significant increases (p stronger traction (p Stronger traction induces smaller LAM thickness changes than lighter traction.

  14. CALCULATION OF A MECHANICAL CHARACTERISTIC OF ELECTRIC TRACTION MOTOR OF ELECTRIC VEHICLE

    Directory of Open Access Journals (Sweden)

    Phuong Le Ngo

    2017-01-01

    Full Text Available The traction characteristic of an electric vehicle is the main characteristic of mechanical system that reflects its key performance indicators. Implementation of the traction characteristic is based on controlling angular speed and torque of electric traction motor in an automatic control system. The static mechanical characteristic of an electric traction motor in an automatic control system is the most important characteristic that determines weight, size and operating characteristics of an electric traction motor and serves as the basis for design. The most common variants of constructive implementation of a traction electric drive are analyzed, and a scheme is chosen for further design. Lagrange’s equation for electric mechanical system with one degree of freedom is written in generalized coordinates. In order to determine the generalized forces, elementary operation of all moments influencing on a moving car has been calculated. The resulting equation of motion of the electric vehicle corresponding to the design scheme, as well as the expressions for calculation of characteristic points of static mechanical characteristics of traction motor (i.e. the maximum and minimum time, minimum power are obtained. In order to determine the nominal values of the angular velocity and the power of electric traction motor, a method based on ensuring the movement of the vehicle in the standard cycle has been developed. The method makes it possible to calculate characteristic points of the mechanical characteristic with the lowest possible power rating. The algorithm for calculation of mechanical characteristics of the motor is presented. The method was applied to calculate static mechanical characteristic of an electric traction motor for a small urban electric truck.

  15. Real time relationship between individual finger force and grip exertion on distal phalanges in linear force following tasks.

    Science.gov (United States)

    Luo, Shi-Jian; Shu, Ge; Gong, Yan

    2018-05-01

    Individual finger force (FF) in a grip task is a vital concern in rehabilitation engineering and precise control of manipulators because disorders in any of the fingers will affect the stability or accuracy of the grip force (GF). To understand the functions of each finger in a dynamic grip exertion task, a GF following experiment with four individual fingers without thumb was designed. This study obtained four individual FFs from the distal phalanges with a cylindrical handle in dynamic GF following tasks. Ten healthy male subjects with similar hand sizes participated in the four-finger linear GF following tasks at different submaximal voluntary contraction (SMVC) levels. The total GF, individual FF, finger force contribution, and following error were subsequently calculated and analyzed. The statistics indicated the following: 1) the accuracy and stability of GF at low %MVC were significantly higher than those at high SMVC; 2) at low SMVC, the ability of the fingers to increase the GF was better than the ability to reduce it, but it was contrary at high SMVC; 3) when the target wave (TW) was changing, all four fingers strongly participated in the force exertion, but the participation of the little finger decreased significantly when TW remained stable; 4) the index finger and ring finger had a complementary relationship and played a vital role in the adjustment and control of GF. The middle finger and little finger had a minor influence on the force control and adjustment. In conclusion, each of the fingers had different functions in a GF following task. These findings can be used in the assessment of finger injury rehabilitation and for algorithms of precise control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. THE EFFECTS OF DIFFERENT TRUNK INCLINATIONS ON BILATERAL TRUNK MUSCULAR ACTIVITIES, CENTRE OF PRESSURE AND FORCE EXERTIONS IN STATIC PUSHING POSTURES.

    Science.gov (United States)

    Sanjaya, Kadek Heri; Lee, Soomin; Sriwarno, Andar Bagus; Shimomura, Yoshihito; Katsuura, Tetsuo

    2014-06-01

    In order to reconcile contradictory results from previous studies on manual pushing, a study was conducted to examine the effect of trunk inclination on muscular activities, centre of pressure (COP) and force exertion during static pushing. Ten subjects pushed at 0 degrees, 15 degrees, 30 degrees, and 45 degrees body inclinations in parallel and staggered feet stances. Wall and ground force plates measured pushing force, wall COP, vertical ground reaction force (GRF) and ground COP. Electromyogram data were recorded at 10 trunk muscle sites. Pushing force was found to increase with body inclination. GRF peaked at 15 degrees and reached its lowest level at the 45 degrees inclination. The lowest wall force plate standard deviation of COP displacement was found at the 30 degrees inclination. The lowest low back muscular activity was found at the 15 degrees and 30 degrees inclinations. Based on force exertion, muscular load, and stability, the 30 degrees body inclination was found to be the best posture for static pushing. This study also showed asymmetry in muscular activity and force exertion which has been received less attention in manual pushing studies. These findings will require further study.

  17. Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity

    Science.gov (United States)

    Ramos, João R. D.; Travasso, Rui; Carvalho, João

    2018-01-01

    The formation of a functional vascular network depends on biological, chemical, and physical processes being extremely well coordinated. Among them, the mechanical properties of the extracellular matrix and cell adhesion are fundamental to achieve a functional network of endothelial cells, able to fully cover a required domain. By the use of a Cellular Potts Model and Finite Element Method it is shown that there exists a range of values of endothelial traction forces, cell-cell adhesion, and matrix rigidities where the network can spontaneously be formed, and its properties are characterized. We obtain the analytical relation that the minimum traction force required for cell network formation must obey. This minimum value for the traction force is approximately independent on the considered cell number and cell-cell adhesion. We quantify how these two parameters influence the morphology of the resulting networks (size and number of meshes).

  18. IMPLEMENTATION MODEL OF MOTOR TRACTION FORCE OF MAGLEV TRAIN

    Directory of Open Access Journals (Sweden)

    V. O. Polyakov

    2016-08-01

    Full Text Available Purpose. Traction force implementation (TFI by the motor of magnetic levitation train (MLT occurs in the process of electric-to-kinetic energy transformation at interaction of inductor and armature magnetic fields. Ac-cordingly, the aim of this study is to obtain a correct description of such energy transformation. Methodology. At the present stage, a mathematical and, in particular, computer simulation is the main and most universal tool for analysis and synthesis of processes and systems. At the same time, radical advantages of this tool make the precision of selection of a particular research methodology even more important. It is especially important for such a large and complex system as MLT. Therefore the special attention in the work is given to the rationale for choosing the research paradigm selective features. Findings. The analysis results of existing TFI process model versions indicate that each of them has both advantages and disadvantages. Therefore, one of the main results of this study was the creation of a mathematical model for such process that would preserve the advantages of previous versions, but would be free from their disadvantages. The work provides rationale for application (for the purposes of research of train motor TFI of the integrative holistic paradigm, which assimilates the advantages of the theory of electric circuit and magnetic field. Originality. The priority of creation of such paradigm and corresponding version of FI model constitute the originality of the research. Practical value. The main manifestation of practical value of this research in the opportunity, in case of use of its results, for significant increase in efficiency of MLT dynamic studies, on the condition that their generalized costs will not rise.

  19. Update: Exertional rhabdomyolysis, active component, U.S. Army, Navy, Air Force, and Marine Corps, 2011-2015.

    Science.gov (United States)

    Armed Forces Health Surveillance Branch

    2016-03-01

    Among active component members of the U.S. Army, Navy, Air Force, and Marine Corps in 2015, there were 456 incident episodes of rhabdomyolysis likely due to physical exertion or heat stress ("exertional rhabdomyolysis"). Annual rates of incident diagnoses of exertional rhabdomyolysis increased 17% between 2014 and 2015. In 2015, the highest incidence rates occurred in service members who were male; younger than 20 years of age; black, non-Hispanic; members of the Marine Corps and Army; recruit trainees; and in combat-specific occupations. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain and swelling, limited range of motion, or the excretion of dark urine (e.g., myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

  20. Footwear traction and lower extremity noncontact injury.

    Science.gov (United States)

    Wannop, John W; Luo, Geng; Stefanyshyn, Darren J

    2013-11-01

    Football is the most popular high school sport; however, it has the highest rate of injury. Speculation has been prevalent that foot fixation due to high footwear traction contributes to injury risk. Therefore, the purpose of the study was to determine whether a relationship exists between the athlete's specific footwear traction (measured with their own shoes on the field of play) and lower extremity noncontact injury in high school football. For 3 yr, 555 high school football athletes had their footwear traction measured on the actual field of play at the start of the season, and any injury the athletes suffered during a game was recorded. Lower extremity noncontact injury rates, grouped based on the athlete's specific footwear traction (both translational and rotational), were compared. For translational traction, injury rate reached a peak of 23.3 injuries/1000 game exposures within the midrange of translational traction, before decreasing to 5.0 injuries/1000 game exposures in the high range of traction. For rotational traction, there was a steady increase in injury rate as footwear traction increased, starting at 4.2 injuries/1000 game exposures at low traction and reaching 19.2 injuries/1000 game exposures at high traction. A relationship exists between footwear traction and noncontact lower extremity injury, with increases in rotational traction leading to a greater injury rate and increases in translational traction leading to a decrease in injury. It is recommended that athletes consider selecting footwear with the lowest rotational traction values for which no detriment in performance results.

  1. Hindrances to precise recovery of cellular forces in fibrous biopolymer networks

    Science.gov (United States)

    Zhang, Yunsong; Feng, Jingchen; Heizler, Shay I.; Levine, Herbert

    2018-03-01

    How cells move through the three-dimensional extracellular matrix (ECM) is of increasing interest in attempts to understand important biological processes such as cancer metastasis. Just as in motion on flat surfaces, it is expected that experimental measurements of cell-generated forces will provide valuable information for uncovering the mechanisms of cell migration. However, the recovery of forces in fibrous biopolymer networks may suffer from large errors. Here, within the framework of lattice-based models, we explore possible issues in force recovery by solving the inverse problem: how can one determine the forces cells exert to their surroundings from the deformation of the ECM? Our results indicate that irregular cell traction patterns, the uncertainty of local fiber stiffness, the non-affine nature of ECM deformations and inadequate knowledge of network topology will all prevent the precise force determination. At the end, we discuss possible ways of overcoming these difficulties.

  2. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.

    Science.gov (United States)

    Reinhardt, James W; Gooch, Keith J

    2014-02-01

    Agent-based modeling was used to model collagen fibrils, composed of a string of nodes serially connected by links that act as Hookean springs. Bending mechanics are implemented as torsional springs that act upon each set of three serially connected nodes as a linear function of angular deflection about the central node. These fibrils were evaluated under conditions that simulated axial extension, simple three-point bending and an end-loaded cantilever. The deformation of fibrils under axial loading varied <0.001% from the analytical solution for linearly elastic fibrils. For fibrils between 100 μm and 200 μm in length experiencing small deflections, differences between simulated deflections and their analytical solutions were <1% for fibrils experiencing three-point bending and <7% for fibrils experiencing cantilever bending. When these new rules for fibril mechanics were introduced into a model that allowed for cross-linking of fibrils to form a network and the application of cell traction force, the fibrous network underwent macroscopic compaction and aligned between cells. Further, fibril density increased between cells to a greater extent than that observed macroscopically and appeared similar to matrical tracks that have been observed experimentally in cell-populated collagen gels. This behavior is consistent with observations in previous versions of the model that did not allow for the physically realistic simulation of fibril mechanics. The significance of the torsional spring constant value was then explored to determine its impact on remodeling of the simulated fibrous network. Although a stronger torsional spring constant reduced the degree of quantitative remodeling that occurred, the inclusion of torsional springs in the model was not necessary for the model to reproduce key qualitative aspects of remodeling, indicating that the presence of Hookean springs is essential for this behavior. These results suggest that traction force mediated matrix

  3. Investigation of a cuboidal permanent magnet’s force exerted on a robotic capsule

    Directory of Open Access Journals (Sweden)

    Yang W

    2014-08-01

    Full Text Available Wan’an Yang,1 Chengbing Tang,2 Fengqing Qin1 1School of Computer and Information Engineering, Yibin University, Yibin, 2CNPC Chuanqing Geophysical Prospecting Company Research Center Computer Department, Chengdu, Sichuan, People’s Republic of China Abstract: To control and drive a robotic capsule accurately from outside a patient’s body, we present a schema in which the capsule enclosing the imaging device, circuits, batteries, etc is looped by a permanent magnet ring that acts as an actuator. A cuboidal permanent magnet situated outside the patient's body attracts or pushes the magnet ring from different directions to make the capsule move or rotate. A mathematic model of attractive or repulsive force that the cuboidal magnet exerts on the magnet ring is presented for accurate calculation of force. The experiments showed that the measuring force was in agreement with the theoretical one, and the relations between the dimensions of the cuboidal magnet and force are useful to produce a cuboidal magnet with optimal shape to get appropriate force. Keywords: control and drive, robotic capsule, permanent magnet ring, optimal dimension, force model

  4. Evaluation of force degradation characteristics of orthodontic latex elastics in vitro and in vivo.

    Science.gov (United States)

    Wang, Tong; Zhou, Gang; Tan, Xianfeng; Dong, Yaojun

    2007-07-01

    To evaluate the characteristics of force degradation of latex elastics in clinical applications and in vitro studies. Samples of 3/16-inch latex elastics were investigated, and 12 students between the ages of 12 and 15 years were selected for the intermaxillary and intramaxillary tractions. The elastics in the control groups were set in artificial saliva and dry room conditions and were stretched 20 mm. The repeated-measure two-way analysis of variance and nonlinear regression analysis were used to identify statistical significance. Overall, there were statistically significant differences between the different methods and observation intervals. At 24- and 48-hour time intervals, the force decreased during in vivo testing and in artificial saliva (P .05). In intermaxillary traction the percentage of initial force remaining after 48 hours was 61%. In intramaxillary traction and in artificial saliva the percentage of initial force remaining was 71%, and in room conditions 86% of initial force remained. Force degradation of latex elastics was different according to their environmental conditions. There was significantly more force degradation in intermaxillary traction than in intramaxillary traction. The dry room condition caused the least force loss. There were some differences among groups in the different times to start wearing elastics in intermaxillary traction but no significant differences in intramaxillary traction.

  5. The Force Exerted by the Membrane Potential During Protein Import into the Mitochondrial Matrix

    Science.gov (United States)

    Shariff, Karim; Ghosal, Sandip; Matouschek, Andreas

    2002-01-01

    The electrostatic force exerted on a targeting sequence by the electrical potential across the inner mitochondrial membrane is calculated and found to vary from 1.4 pN to 2.2 pN (per unit elementary charge) as the radius of the inner membrane pore (assumed aqueous) is varied from 12 to 6.5 Angstroms, its measured range. Since the pore is not very much wider than the distance between water molecules, the full shielding effect of water may not be present; the extreme case of a nonaqueous pore gives a force of 3.1 pN per unit charge, which represents an upper limit. When applied to mitochondrial import experiments on the protein harness, these results imply that a force of 11 plus or minus 4 pN is sufficient to catalyze the unfolding of harness during import. Comparison of these results with unfolding forces measured using atomic force microscopy suggests that the two are not inconsistent.

  6. ENERGY EFFICIENCY DETERMINATION OF LOADING-BACK SYSTEM OF ELECTRIC TRACTION MACHINES

    Directory of Open Access Journals (Sweden)

    A. M. Afanasov

    2014-03-01

    Full Text Available Purpose.Acceptance post-repair testsof electric traction machinesare conducted onloading-backstandsthat reducethe overall power costsfor the tests.Currentlya numberof possiblecircuit designs of loading-backsystems of electric machines are known, but there is nomethod of determiningtheir energy efficiency. This in turn makes difficult the choiceof rationaloptions. The purpose of the article is the development of the corresponding methodo-logy to make easier this process. Methodology. Expressions for determining theenergy efficiency ofa stand for testingof electric traction machineswere obtained using the generalizedscheme analysisof energy transformationsin the loading-backsystems of universal structure. Findings.Thetechnique wasoffered and the analytical expressions for determining the energy efficiency of loading-backsystemsof electric traction machines wereobtained. Energy efficiency coefficientofloading-backsystemisproposed to consider as the ratio of the total actionenergy of the mechanical and electromotive forces, providing anchors rotation and flowof currents in electric machines, which are being tested,to the total energy, consumed during the test from the external network. Originality. The concept was introduced and the analytical determination method of the energy efficiency of loading-backsystem in electric traction machines was offered. It differs by efficiency availability of power sources and converters, as well as energy efficiency factors of indirect methods of loss compensation. Practical value. The proposed technique of energy efficiency estimation of a loading-backsystemcan be used in solving the problem of rational options choice of schematics stands decisions for electric traction machines acceptance tests of main line and industrial transport.

  7. Magnetic tweezers optimized to exert high forces over extended distances from the magnet in multicellular systems

    Science.gov (United States)

    Selvaggi, L.; Pasakarnis, L.; Brunner, D.; Aegerter, C. M.

    2018-04-01

    Magnetic tweezers are mainly divided into two classes depending on the ability of applying torque or forces to the magnetic probe. We focused on the second category and designed a device composed by a single electromagnet equipped with a core having a special asymmetric profile to exert forces as large as 230 pN-2.8 μm Dynabeads at distances in excess of 100 μm from the magnetic tip. Compared to existing solutions our magnetic tweezers overcome important limitations, opening new experimental paths for the study of a wide range of materials in a variety of biophysical research settings. We discuss the benefits and drawbacks of different magnet core characteristics, which led us to design the current core profile. To demonstrate the usefulness of our magnetic tweezers, we determined the microrheological properties inside embryos of Drosophila melanogaster during the syncytial stage. Measurements in different locations along the dorsal-ventral axis of the embryos showed little variation, with a slight increase in cytoplasm viscosity at the periphery of the embryos. The mean cytoplasm viscosity we obtain by active force exertion inside the embryos is comparable to that determined passively using high-speed video microrheology.

  8. Counter traction makes endoscopic submucosal dissection easier.

    Science.gov (United States)

    Oyama, Tsuneo

    2012-11-01

    Poor counter traction and poor field of vision make endoscopic submucosal dissection (ESD) difficult. Good counter traction allows dissections to be performed more quickly and safely. Position change, which utilizes gravity, is the simplest method to create a clear field of vision. It is useful especially for esophageal and colon ESD. The second easiest method is clip with line method. Counter traction made by clip with line accomplishes the creation of a clear field of vision and suitable counter traction thereby making ESD more efficient and safe. The author published this method in 2002. The name ESD was not established in those days; the name cutting endoscopic mucosal resection (EMR) or EMR with hook knife was used. The other traction methods such as external grasping forceps, internal traction, double channel scope, and double scopes method are introduced in this paper. A good strategy for creating counter traction makes ESD easier.

  9. Traction-related problems after hip arthroscopy

    Science.gov (United States)

    Lund, Bent; Grønbech Nielsen, Torsten; Lind, Martin

    2017-01-01

    Abstract Traction-related problems are poorly described in the existing literature. The purpose of this prospective study was to describe traction-related problems and how patients perceive these problems. The study was a descriptive cohort study and data were collected from questionnaires and patient files. The questionnaire included questions on patients’ perceptions of traction-related problems in the groin area, at the knee and ankle and how patients had coped with these problems. A total of 100 consecutive patients undergoing hip arthroscopy filled out the questionnaire. Primary findings of this study were that 74% of patients reported some sort of traction-related problems after hip arthroscopy. About 32% of the patients had problems in the groin area and 49% of the patients complained of symptoms in the knee joint. A total of 37% of the patients had experienced problems from the traction boot in the ankle area. The complications were found to be temporary and disappeared after 2–4 weeks. Five patients still had complaints after 3 months. All five patients had a pre-existing knee injury prior to undergoing hip arthroscopy. Traction-related problems after hip arthroscopy are a challenge and our study showed that 74% of the patients reported traction-related problems. This is significantly higher than previously reported. The present study found a high rate of complaints from the knee and ankle joints that have not previously been reported. The presented data suggest the need for more pre-surgery patient information about possible traction-related problems. PMID:28630721

  10. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  11. Influence of plane bed on the force exerted on a cylinder oscillating in still water

    Energy Technology Data Exchange (ETDEWEB)

    Naeeni, S.T.O. [Tehran Univ., Dept. of Civil Engineering, Tehran (Iran); Narayanan, R. [Universiti Teknologi Malaysia, Faculty of Civil Engineering, Johor Bahru (Malaysia)

    2005-12-01

    The wall pressure field on a cylinder oscillating over a plane bed in still water is reported in this paper. Two gaps between the cylinder and the bed were considered. Pressures on the periphery of the cylinder were measured by a transducer and were found to be essentially repeatable from one cycle to the next. The forces determined from the pressure profiles compare well with those measured directly by a force transducer except significantly at Keulegan-Carpenter number of 15.0. The importance of the plane bed when it is stationary or moving with the cylinder is examined. The significance of the roughness of the bed with respect to the oscillatory forces exerted on the cylinder is also assessed. (Author)

  12. Modeling of traction-coupling properties of wheel propulsor

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    In conditions of operation of aggregates on soils with low bearing capacity, the main performance indicators of their operation are determined by the properties of retaining the functional qualities of the propulsor. Therefore, the parameters of the anti-skid device can not be calculated by only one criterion. The equipment of propellers with anti-skid devices, which allow to reduce the compaction effect of the propulsion device on the soil, seems to be a rational solution to the problem of increasing traction and coupling properties of the driving wheels. The mathematical model is based on the study of the interaction of the driving wheel with anti-skid devices and a deformable bearing surface, which takes into account the wheel diameter, skid coefficient, the parameters of the anti-skid device, the physical and mechanical properties of the soil. As a basic mathematical model that determines the dependence of the coupling properties on the wheel parameters, the model obtained as a result of integration and reflecting the process of soil deformation from the shear stress is adopted. The total value of the resistance forces will determine the force of the hitch pressure on the horizontal soil layers, and the value of its deformation is the degree of wheel slippage. When the anti-skid devices interact with the soil, the traction capacity of the wheel is composed of shear forces, soil shear and soil deformation forces with detachable hooks. As a result of the interaction of the hook with the soil, the latter presses against the walls of the hook with the force equal to the sum of the hook load and the resistance to movement. During operation, the linear dimensions of the hook will decrease, which is not taken into account by the safety factor. Abrasive wear of the thickness of the hook is approximately proportional to the work of friction caused by the movement of the hook when inserted into the soil and slipping the wheel.

  13. Direct observation of CD4 T cell morphologies and their cross-sectional traction force derivation on quartz nanopillar substrates using focused ion beam technique

    Science.gov (United States)

    Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Won-Yong; Hong, Chang-Hee; Lee, Sang-Kwon

    2013-07-01

    Direct observations of the primary mouse CD4 T cell morphologies, e.g., cell adhesion and cell spreading by culturing CD4 T cells in a short period of incubation (e.g., 20 min) on streptavidin-functionalized quartz nanopillar arrays (QNPA) using a high-content scanning electron microscopy method were reported. Furthermore, we first demonstrated cross-sectional cell traction force distribution of surface-bound CD4 T cells on QNPA substrates by culturing the cells on top of the QNPA and further analysis in deflection of underlying QNPA via focused ion beam-assisted technique.

  14. Quantifying the Attractive Force Exerted on the Pinned Calcium Spiral Waves by Using the Adventive Field

    International Nuclear Information System (INIS)

    Qiu Kang; Tang Jun; Luo Jin-Ming; Ma Jun

    2013-01-01

    The cytosolic calcium system is inhomogenous because of the discrete and random distribution of ion channels on the ER membrane. It is well known that the spiral tip can be pinned by the heterogenous area, and the field can detach the spiral from the heterogeneity. We use the adventive field to counteract the attractive force exerting on the calcium spiral wave by the heterogeneity, then the strength of the adventive field is used to quantify the attractive force indirectly. Two factors determining the attractive force are studied. It is found that: (1) the attractive force sharply increases with size of the heterogeneity for small-size heterogeneity, whereas the force increases to a saturated value for large-size heterogeneity; (2) for large-size heterogeneity, the force almost remains constant unless the level of the heterogeneity vanishes, the force decreases to zero linearly and sharply, and for small-size heterogeneity, the force decreases successively with the level of the heterogeneity. Furthermore, it is found that the forces exist only when the spiral tip is very close to the heterogenous area. Our study may shed some light on the control or suppression of the calcium spiral wave

  15. Visualizing the interior architecture of focal adhesions with high-resolution traction maps.

    Science.gov (United States)

    Morimatsu, Masatoshi; Mekhdjian, Armen H; Chang, Alice C; Tan, Steven J; Dunn, Alexander R

    2015-04-08

    Focal adhesions (FAs) are micron-sized protein assemblies that coordinate cell adhesion, migration, and mechanotransduction. How the many proteins within FAs are organized into force sensing and transmitting structures is poorly understood. We combined fluorescent molecular tension sensors with super-resolution light microscopy to visualize traction forces within FAs with <100 nm spatial resolution. We find that αvβ3 integrin selectively localizes to high force regions. Paxillin, which is not generally considered to play a direct role in force transmission, shows a higher degree of spatial correlation with force than vinculin, talin, or α-actinin, proteins with hypothesized roles as force transducers. These observations suggest that αvβ3 integrin and paxillin may play important roles in mechanotransduction.

  16. Gender differences in exerted forces and physiological load during pushing and pulling of wheeled cages by postal workers

    NARCIS (Netherlands)

    Van Der Beek, Allard J.; Kluver, B.D.R.; Frings-Dresen, M. H. W.; Hoozemans, M. J M

    The aim was to determine gender differences regarding exerted forces and physiological load during push/pull tasks simulating the daily working practice of postal workers. Eight female and four male workers handled four-wheeled cages under eight conditions corresponding to the cage weight (130, 250,

  17. Soybean biodiesel consumption in agricultural tractor submitted the two forces in the traction bar; Consumo de biodiesel de soja em trator agricola submetido a duas forcas na barra de tracao

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe T. da [Universidade Federal do Ceara (UFC), Juazeiro do Norte, CE (Brazil)], E-mail: felipe.camara@cariri.ufc.br; Lopes, Afonso; Silva, Rouverson P. da; Oliveira, Melina C.J. de; Torres, Luma S. [Universidade Estadual Paulista (FCAV/UNESP), SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias. Dept. de Engenharia Rural

    2009-07-01

    Due to the great development occurred in the world after the Second World War and the establishment of patterns of increasingly intense, the energy demand amounted to the point, putting at risk the non-renewable energy sources such as oil, coal minerals, among others, with growing interest in renewable energies, among which the biodiesel has been detached. In this sense, the present work had for objective to evaluate the fuel consumption of a tractor Valtra BM100 4x2 TDA, running with ethyl biodiesel from soybean filtered in seven mixture proportions mixed with the diesel, subject to two forces in the traction bar. The work was conducted in the Department of Rural Engineering of the Paulista State University (UNESP), Jaboticabal Campus, in an entirely randomized designed, in a factorial diagram 2 x 7, with three repetitions. The treatments were a combination for two forces in the traction bar (10 and 22 kN) and seven mixture proportions (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 e B{sub 1}00). The results showed that the addition of up to 25% biodiesel to diesel has not changed the fuel consumption, and the greatest force resulted in greater consumption volume and weight, and lower specific consumption, by better use of the power of the tractor. (author)

  18. Elastohydrodynamic Traction Properties of Seed Oils

    Science.gov (United States)

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and s...

  19. The Simulation of the Traction Drive with Middle-Frequency Transformer

    Directory of Open Access Journals (Sweden)

    Pavel Drabek

    2008-01-01

    Full Text Available This paper presents research motivated by industrial demand for special traction drive topology devoted to minimization of traction transformer weight against topology with classical 50Hz traction transformer. The special traction drive topology for AC power systems consists of input high voltage trolley converter (single phase matrix converter –middle frequency transformer - output converter - traction motor has been described. The main attention has been given tothe control algorithm of the traction topology (inserting of NULL vector of matrix converter and Two-value control ofsecondary active rectifier.

  20. 21 CFR 882.5960 - Skull tongs for traction.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with a...

  1. COMPARATIVE ANALYSIS OF CONVERTER STRUCTURES OF THE TRACTION DRIVE PROSPECTIVE MULTI-SYSTEM ELECTRIC LOCOMOTIVES WITH DC TRACTION MOTORS

    Directory of Open Access Journals (Sweden)

    A. M. Muha

    2009-03-01

    Full Text Available In the article the structured schemes of steady-state converter are offered for traction drive of promising multisystem electric locomotives with traction engines of direct current and their comparative analysis is conducted.

  2. Advanced dc-Traction-Motor Control System

    Science.gov (United States)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  3. Traction-related problems after hip arthroscopy

    DEFF Research Database (Denmark)

    Frandsen, Lone; Lund, Bent; Grønbech Nielsen, Torsten

    2017-01-01

    . The questionnaire included questions on patients' perceptions of traction-related problems in the groin area, at the knee and ankle and how patients had coped with these problems. A total of 100 consecutive patients undergoing hip arthroscopy filled out the questionnaire. Primary findings of this study were that 74......% of patients reported some sort of traction-related problems after hip arthroscopy. About 32% of the patients had problems in the groin area and 49% of the patients complained of symptoms in the knee joint. A total of 37% of the patients had experienced problems from the traction boot in the ankle area....... The complications were found to be temporary and disappeared after 2-4 weeks. Five patients still had complaints after 3 months. All five patients had a pre-existing knee injury prior to undergoing hip arthroscopy. Traction-related problems after hip arthroscopy are a challenge and our study showed that 74...

  4. Traction for low-back pain with or without sciatica.

    Science.gov (United States)

    Wegner, Inge; Widyahening, Indah S; van Tulder, Maurits W; Blomberg, Stefan E I; de Vet, Henrica Cw; Brønfort, Gert; Bouter, Lex M; van der Heijden, Geert J

    2013-08-19

    Traction has been used to treat low-back pain (LBP), often in combination with other treatments. We included both manual and machine-delivered traction in this review. This is an update of a Cochrane review first published in 1995, and previously updated in 2006. To assess the effects of traction compared to placebo, sham traction, reference treatments and no treatment in people with LBP. We searched the Cochrane Back Review Group Specialized Register, the Cochrane Central Register of Controlled Trials (2012, Issue 8), MEDLINE (January 2006 to August 2012), EMBASE (January 2006 to August 2012), CINAHL (January 2006 to August 2012), and reference lists of articles and personal files. The review authors are not aware of any important new randomized controlled trial (RCTs) on this topic since the date of the last search. RCTs involving traction to treat acute (less than four weeks' duration), subacute (four to 12 weeks' duration) or chronic (more than 12 weeks' duration) non-specific LBP with or without sciatica. Two review authors independently performed study selection, risk of bias assessment and data extraction. As there were insufficient data for statistical pooling, we performed a descriptive analysis. We did not find any case series that identified adverse effects, therefore we evaluated adverse effects that were reported in the included studies. We included 32 RCTs involving 2762 participants in this review. We considered 16 trials, representing 57% of all participants, to have a low risk of bias based on the Cochrane Back Review Group's 'Risk of bias' tool.For people with mixed symptom patterns (acute, subacute and chronic LBP with and without sciatica), there was low- to moderate-quality evidence that traction may make little or no difference in pain intensity, functional status, global improvement or return to work when compared to placebo, sham traction or no treatment. Similarly, when comparing the combination of physiotherapy plus traction with

  5. Counter Traction Makes Endoscopic Submucosal Dissection Easier

    OpenAIRE

    Oyama, Tsuneo

    2012-01-01

    Poor counter traction and poor field of vision make endoscopic submucosal dissection (ESD) difficult. Good counter traction allows dissections to be performed more quickly and safely. Position change, which utilizes gravity, is the simplest method to create a clear field of vision. It is useful especially for esophageal and colon ESD. The second easiest method is clip with line method. Counter traction made by clip with line accomplishes the creation of a clear field of vision and suitable co...

  6. Home Cervical Traction to Reduce Neck Pain in Fighter Pilots.

    Science.gov (United States)

    Chumbley, Eric M; O'Hair, Nicole; Stolfi, Adrienne; Lienesch, Christopher; McEachen, James C; Wright, Bruce A

    2016-12-01

    Most fighter pilots report cervical pain during their careers. Recommendations for remediation lack evidence. We sought to determine whether regular use of a home cervical traction device could decrease reported cervical pain in F-15C pilots. An institutional review board-approved, Health Insurance Portability and Accountability Act-compliant, controlled crossover study was undertaken with 21 male F-15C fighter pilots between February and June 2015. Of the 21 subjects, 12 completed 6 wk each of traction and control, while logging morning, postflying, and post-traction pain. Pain was compared with paired t-tests between the periods, from initial pain scores to postflying, and postflying to post-traction. In the traction phase, initial pain levels increased postflight, from 1.2 (0.7) to 1.6 (1.0) Subsequent post-traction pain levels decreased to 1.3 (0.9), with a corresponding linear decrease in pain relative to pain reported postflight. The difference in pain levels after traction compared to initial levels was not significant, indicating that cervical traction was effective in alleviating flying-related pain. Control pain increased postflight from 1.4 (0.9) to 1.9 (1.3). Daily traction phase pain was lower than the control, but insignificant. To our knowledge, this is the first study of home cervical traction to address fighter pilots' cervical pain. We found a small but meaningful improvement in daily pain rating when using cervical traction after flying. These results help inform countermeasure development for pilots flying high-performance aircraft. Further study should clarify the optimal traction dose and timing in relation to flying.Chumbley EM, O'Hair N, Stolfi A, Lienesch C, McEachen JC, Wright BA. Home cervical traction to reduce neck pain in fighter pilots. Aerosp Med Hum Perform. 2016; 87(12):1010-1015.

  7. Traction for low-back pain with or without sciatica.

    NARCIS (Netherlands)

    Clarke, J.A.; van Tulder, M.W.; Blomberg, S.E.; de Vet, H.C.W.; van der Heijden, G.J.; Bronfort, G.; Bouter, L.M.

    2007-01-01

    Background: Traction is used to treat low-back pain (LBP), often with other treatments. Objectives: To determine traction's effectiveness, compared to reference treatments, placebo, sham traction or no treatment for LBP. Search strategy: We searched CENTRAL (The Cochrane Library 2006, issue 4),

  8. Age and Sex Differences in Controlled Force Exertion Measured by a Computing Bar Chart Target-Pursuit System

    Science.gov (United States)

    Nagasawa, Yoshinori; Demura, Shinichi

    2009-01-01

    This study aimed to examine the age and sex differences in controlled force exertion measured by the bar chart display in 207 males (age 42.1 [plus or minus] 19.8 years) and 249 females (age 41.7 [plus or minus] 19.1 years) aged 15 to 86 years. The subjects matched their submaximal grip strength to changing demand values, which appeared as a…

  9. Traction Control Study for a Scaled Automated Robotic Car

    OpenAIRE

    Morton, Mark A.

    2004-01-01

    This thesis presents the use of sliding mode control applied to a 1/10th scale robotic car to operate at a desired slip. Controlling the robot car at any desired slip has a direct relation to the amount of force that is applied to the driving wheels based on road surface conditions. For this model, the desired traction/slip is maintained for a specific surface which happens to be a Lego treadmill platform. How the platform evolved and the robot car was designed are also covered. To parame...

  10. Elastohydrodynamic (EHD) traction properties of seed oils

    Science.gov (United States)

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and sev...

  11. Nano-mechanics of Tunable Adhesion using Non Covalent Forces

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Liechti

    2012-09-08

    The objective of this program was to examine, via experiment and atomistic and continuum analysis, coordinated noncovalent bonding over a range of length scales with a view to obtaining modulated, patterned and reversible bonding at the molecular level. The first step in this project was to develop processes for depositing self-assembled monolayers (SAMs) bearing carboxylic acid and amine moieties on Si (111) surfaces and probe tips of an interfacial force microscope (IFM). This allowed the adhesive portion of the interactions between functionalized surfaces to be fully captured in the force-displacement response (force profiles) that are measured by the IFM. The interactionswere extracted in the form of traction-separation laws using combined molecular and continuum stress analyses. In this approach, the results of molecular dynamics analyses of SAMs subjected to simple stress states are used to inform continuum models of their stress-strain behavior. Continuum analyses of the IFM experiment were then conducted, which incorporate the stress-strain behavior of the SAMs and traction-separation relations that represent the interactions between the tip and functionalized Si surface. Agreement between predicted and measured force profiles was taken to imply that the traction-separation relations have been properly extracted. Scale up to larger contact areas was considered by forming Si/SAM/Si sandwiches and then separating them via fracture experiments. The mode 1 traction-separation relations have been extracted using fracture mechanics concepts under mode 1 and mixed-mode conditions. Interesting differences were noted between the three sets of traction-separation relations.

  12. Hand forces exerted by long-term care staff when pushing wheelchairs on compliant and non-compliant flooring.

    Science.gov (United States)

    Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C

    2018-09-01

    Purpose-designed compliant flooring and carpeting have been promoted as a means for reducing fall-related injuries in high-risk environments, such as long-term care. However, it is not known whether these surfaces influence the forces that long-term care staff exert when pushing residents in wheelchairs. We studied 14 direct-care staff who pushed a loaded wheelchair instrumented with a triaxial load cell to test the effects on hand force of flooring overlay (vinyl versus carpet) and flooring subfloor (concrete versus compliant rubber [brand: SmartCells]). During straight-line pushing, carpet overlay increased initial and sustained hand forces compared to vinyl overlay by 22-49% over a concrete subfloor and by 8-20% over a compliant subfloor. Compliant subflooring increased initial and sustained hand forces compared to concrete subflooring by 18-31% when under a vinyl overlay. In contrast, compliant flooring caused no change in initial or sustained hand forces compared to concrete subflooring when under a carpet overlay. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    Science.gov (United States)

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret L.; Mogilner, Alex

    2015-01-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948

  14. Traction calculation of band conveyors using the ''Nairi-2'' computer

    Energy Technology Data Exchange (ETDEWEB)

    Kutlunin, V A; Livshis, A V; Pod' yemshchikov, A N

    1982-01-01

    An algorithm is described and a program is introduced for traction calculation of band conveyors using the ''Nairi-2'' computer. The calculation system of the conveyor is derived by means of dividing the closed loop of the band into straight sections, which are separated by drums. The number of sections depends on the number of drums, the bypass system of them by the band, the shape of the conveyor route and in each specific case, a specific number is chosen. The initial information for the computer is assigned by a matrix, each row of which consists of parameters of the corresponding section. As a result, the forces of the beginning and end of the sections are found, and the required output of the drive motors with observance of the conditions of non-slippage of the drive drums and limiting of the maximum slack of the band between rollers are also found. The program allows one to make traction calculations of band conveyors with any routing shape for any number and position of the drive drums.

  15. Effective Maxillary Protraction with Tandem Traction Bow Appliance

    Directory of Open Access Journals (Sweden)

    Pravin Kumar S Marure

    2014-01-01

    Full Text Available Tandem traction bow appliance (TTBA promotes patient compliance, because it is more esthetic and comfortable than extraoral appliances. TTBA should be used only in case where maxillary deficiency and normal mandible is present. Advantages of it includes good oral hygiene, early treatment of any Class III malocclusion, optimal retention, distribution of the forces for protraction to all maxillary teeth, free mandibular movement. It can be used in conjunction with fixed appliances if necessary. This paper includes two case reports. The treatment results in both the cases demonstrated significant skeletal and dental response to TTBA therapy. Skeletal change was primarily a result of anterior movement of the maxilla.

  16. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  17. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  18. Traction control of an electric vehicle based on nonlinear observers

    Directory of Open Access Journals (Sweden)

    Diego A. Aligia

    2017-12-01

    Full Text Available A traction control strategy for a four-wheel electric vehicle is proposed in this paper. The strategy is based on nonlinear observers which allows estimating the maximum force that can be transmitted to the road. Knowledge of the maximum force allows controlling the slip of the driving wheels, preventing the wheel’s slippage in low-grip surfaces. The proposed strategy also allows to avoid the undesired yaw moment in the vehicle which occurs when road conditions on either side of it are dierent. This improves the eciency and the control of the vehicle, avoiding possible losses of stability that can result in risks for its occupants. Both the proposed observer and the control strategy are designed based on a dynamic rotational model of the wheel and a brush force model. Simulation results are obtained based on a complete vehicle model on the Simulink/CarSim platform.

  19. Comparison of force exerted on the sternum during a sneeze versus during low-, moderate-, and high-intensity bench press resistance exercise with and without the valsalva maneuver in healthy volunteers.

    Science.gov (United States)

    Adams, Jenny; Schmid, Jack; Parker, Robert D; Coast, J Richard; Cheng, Dunlei; Killian, Aaron D; McCray, Stephanie; Strauss, Danielle; McLeroy Dejong, Sandra; Berbarie, Rafic

    2014-03-15

    Sternal precautions are intended to prevent complications after median sternotomy, but little data exist to support the consensus recommendations. To better characterize the forces on the sternum that can occur during everyday events, we conducted a prospective nonrandomized study of 41 healthy volunteers that evaluated the force exerted during bench press resistance exercise and while sneezing. A balloon-tipped esophageal catheter, inserted through the subject's nose and advanced into the thoracic cavity, was used to measure the intrathoracic pressure differential during the study activities. After the 1 repetition maximum (1-RM) was assessed, the subject performed the bench press at the following intensities, first with controlled breathing and then with the Valsalva maneuver: 40% of 1-RM (low), 70% of 1-RM (moderate), and 1-RM (high). Next, various nasal irritants were used to induce a sneeze. The forces on the sternum were calculated according to a cylindrical model, and a 2-tailed paired t test was used to compare the mean force exerted during a sneeze with the mean force exerted during each of the 6 bench press exercises. No statistically significant difference was found between the mean force from a sneeze (41.0 kg) and the mean total force exerted during moderate-intensity bench press exercise with breathing (41.4 kg). In conclusion, current guidelines and recommendations limit patient activity after a median sternotomy. Because these patients can repeatedly withstand a sneeze, our study indicates that they can withstand the forces from more strenuous activities than are currently allowed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Skeletal traction and intramedullary nailing cost-effectiveness

    African Journals Online (AJOL)

    In the operative group 24 patients had union with one delayed union while in the traction group 12 patients had union, 9 with mal union and 4 delayed union. Conclusion: Intramedullary nailing is more cost-effective than skeletal traction. It met the dominant strategy, because it was significantly less costly than skeletal ...

  1. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    Science.gov (United States)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  2. Traction alopecia: A neglected entity in 2017

    Directory of Open Access Journals (Sweden)

    Christiana Oyinlola Akingbola

    2017-01-01

    Full Text Available Traction alopecia was first described in 1904 but is still a cause of scarring hair loss in young women worldwide. It is unique in being initially a reversible then an irreversible (scarring form of alopecia. Linked to tightly-pulled hairstyles, it is seen across all races. The pattern of hair loss depends on the style creating it but most commonly affects the frontotemporal hairline. There are some new examination findings associated with traction alopecia, which are traction folliculitis, the fringe sign and hair casts (pseudonits on dermatoscopy. These may prove key in prompting early specialist referral. The mainstay of current treatment is cessation of the contributing hairstyles. Camouflage, anti-inflammatory or growth-stimulating topical preparations are second line treatments. In later stages of severe traction alopecia hair transplantation may be the only effective treatment. The evidence basis for medical intervention with topical agents is anecdotal at best. Furthermore, additional research is required to clarify the pathogenesis of this biphasic alopecia. Until then, prompt diagnosis and identification of causative hairstyles are focus of current dermatological practice.

  3. Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kanghyun Nam

    2015-07-01

    Full Text Available In this paper, a robust wheel slip control system based on a sliding mode controller is proposed for improving traction-ability and reducing energy consumption during sudden acceleration for a personal electric vehicle. Sliding mode control techniques have been employed widely in the development of a robust wheel slip controller of conventional internal combustion engine vehicles due to their application effectiveness in nonlinear systems and robustness against model uncertainties and disturbances. A practical slip control system which takes advantage of the features of electric motors is proposed and an algorithm for vehicle velocity estimation is also introduced. The vehicle velocity estimator was designed based on rotational wheel dynamics, measurable motor torque, and wheel velocity as well as rule-based logic. The simulations and experiments were carried out using both CarSim software and an experimental electric vehicle equipped with in-wheel-motors. Through field tests, traction performance and effectiveness in terms of energy saving were all verified. Comparative experiments with variations of control variables proved the effectiveness and practicality of the proposed control design.

  4. Retinal Changes Induced by Epiretinal Tangential Forces

    Directory of Open Access Journals (Sweden)

    Mario R. Romano

    2015-01-01

    Full Text Available Two kinds of forces are active in vitreoretinal traction diseases: tangential and anterior-posterior forces. However, tangential forces are less characterized and classified in literature compared to the anterior-posterior ones. Tangential epiretinal forces are mainly due to anomalous posterior vitreous detachment (PVD, vitreoschisis, vitreopapillary adhesion (VPA, and epiretinal membranes (ERMs. Anomalous PVD plays a key role in the formation of the tangential vectorial forces on the retinal surface as consequence of gel liquefaction (synchysis without sufficient and fast vitreous dehiscence at the vitreoretinal interface. The anomalous and persistent adherence of the posterior hyaloid to the retina can lead to vitreomacular/vitreopapillary adhesion or to a formation of avascular fibrocellular tissue (ERM resulting from the proliferation and transdifferentiation of hyalocytes resident in the cortical vitreous remnants after vitreoschisis. The right interpretation of the forces involved in the epiretinal tangential tractions helps in a better definition of diagnosis, progression, prognosis, and surgical outcomes of vitreomacular interfaces.

  5. Metrological approach to the force exerted by the axle of a road vehicle in motion carrying liquid

    International Nuclear Information System (INIS)

    Faruolo, Luciano Bruno; Pinto, Fernando Augusto de Noronha Castro

    2016-01-01

    Weigh-in-motion (WIM) systems are used for identifying the dynamic force exerted on the ground by axles of a vehicle. These systems are important for monitoring the gross vehicle weight and the vehicle axle load. Overweighted trucks on the roads increase pavement damage and traffic accidents. Knowing the accuracy of WIM systems is necessary. In the case of liquid transport the ‘sloshing effect’ affects this accuracy. This paper aims to analyze the dynamic measurement of the axle forces in vehicles carrying liquid during WIM up to 6 km h −1 . Laboratory experiments using one vehicle with six axles and liquid loads on different levels in weighing instruments are presented. A non-linear computational multi-mass-springs model was developed and laboratory experiments were carried out to show the acceleration influences on axle forces of vehicles with six axles and with and without baffles to vary the ‘sloshing effect’. (paper)

  6. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts

    Science.gov (United States)

    Alam, Samer G.; Lovett, David; Kim, Dae In; Roux, Kyle J.; Dickinson, Richard B.; Lele, Tanmay P.

    2015-01-01

    ABSTRACT Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus–cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration. PMID:25908852

  7. The Determination of the Asynchronous Traction Motor Characteristics of Locomotive

    Directory of Open Access Journals (Sweden)

    Pavel Grigorievich Kolpakhchyan

    2017-01-01

    Full Text Available The article deals with the problem of the locomotive asynchronous traction motor control with the AC diesel-electric transmission. The limitations of the torque of the traction motor when powered by the inverter are determined. The recommendations to improve the use of asynchronous traction motor of locomotives with the AC diesel-electric transmission are given.

  8. Research on a New Bilateral Self-locking Mechanism for an Inchworm Micro In-pipe Robot with Large Traction

    Directory of Open Access Journals (Sweden)

    Junhong Yang

    2014-10-01

    Full Text Available In this paper, we present an innovative bilaterally-controllable self-locking mechanism that can be applied to the micro in-pipe robot. The background and state of the art of the inchworm micro in-pipe robot is briefly described in the very beginning of the paper, where the main factors that influence the traction ability are also discussed. Afterwards, the micro in-pipe robots’ propulsion principle based on a unidirectional self-locking mechanism is discussed. Then, several kinds of self-locking mechanisms are compared, and a new bilaterally-controllable self-locking mechanism is proposed. By implementing the self-locking mechanism, the robot's tractive force is no longer restricted by the friction force, and both two-way motion and position locking for the robot can be achieved. Finally, the traction experiment is conducted using a prototype robot with the new bilaterally-controllable self-locking mechanism. Test results show that this new self-locking mechanism can adapt itself to a diameter of >17~>20 mm and has a blocking force up to 25N, and the maximum tractive force of the in-pipe robot based on such a locking mechanism is 12N under the maximum velocity of 10mm/s.

  9. Integral Sensor Fault Detection and Isolation for Railway Traction Drive.

    Science.gov (United States)

    Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-05-13

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

  10. Alignment of displaced or impacted teeth with the traction chain.

    Science.gov (United States)

    Sander, Franz Martin; Sander, Christian; Sander, Franz Günter

    2006-07-01

    To align those teeth in the dental arch that cannot erupt or are displaced, they must be surgically exposed. After the traction device is attached, the tooth is again covered with the mucoperiosteal flap to protect the tissues involved. For this reason, the loss of this traction device must be absolutely avoided in order to prevent another surgical intervention. Here at the University of Ulm, we have developed and tested an optimized traction chain for that purpose. The chain is attached to the tooth with a laser-roughened pad applying the acid-etching technique. The chain links serve as fixation elements for traction devices such as elastic ligatures or piggyback archwires. At the same time, one can determine the distance covered by the tooth by the number of the erupting chain links. We demonstrate the clinical application of this traction device in two cases.

  11. Road dust from pavement wear and traction sanding

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.

    2007-07-01

    Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is 'road dust'. The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: (i) How do traction

  12. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    Science.gov (United States)

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  13. An in vitro correlation of mechanical forces and metastatic capacity

    International Nuclear Information System (INIS)

    Indra, Indrajyoti; Undyala, Vishnu; Kandow, Casey; Thirumurthi, Umadevi; Beningo, Karen A; Dembo, Micah

    2011-01-01

    Mechanical forces have a major influence on cell migration and are predicted to significantly impact cancer metastasis, yet this idea is currently poorly defined. In this study we have asked if changes in traction stress and migratory properties correlate with the metastatic progression of tumor cells. For this purpose, four murine breast cancer cell lines derived from the same primary tumor, but possessing increasing metastatic capacity, were tested for adhesion strength, traction stress, focal adhesion organization and for differential migration rates in two-dimensional and three-dimensional environments. Using traction force microscopy (TFM), we were surprised to find an inverse relationship between traction stress and metastatic capacity, such that force production decreased as the metastatic capacity increased. Consistent with this observation, adhesion strength exhibited an identical profile to the traction data. A count of adhesions indicated a general reduction in the number as metastatic capacity increased but no difference in the maturation as determined by the ratio of nascent to mature adhesions. These changes correlated well with a reduction in active beta-1 integrin with increasing metastatic ability. Finally, in two dimensions, wound healing, migration and persistence were relatively low in the entire panel, maintaining a downward trend with increasing metastatic capacity. Why metastatic cells would migrate so poorly prompted us to ask if the loss of adhesive parameters in the most metastatic cells indicated a switch to a less adhesive mode of migration that would only be detected in a three-dimensional environment. Indeed, in three-dimensional migration assays, the most metastatic cells now showed the greatest linear speed. We conclude that traction stress, adhesion strength and rate of migration do indeed change as tumor cells progress in metastatic capacity and do so in a dimension-sensitive manner

  14. Apicotomy as Treatment for Failure of Orthodontic Traction

    Directory of Open Access Journals (Sweden)

    Leandro Berni Osório

    2013-01-01

    Full Text Available Objective. The purpose of this study was to present a case report that demonstrated primary failure in a tooth traction that was subsequently treated with apicotomy technique. Case Report. A 10-year-old girl had an impacted upper right canine with increased pericoronal space, which was apparent on a radiographic image. The right maxillary sinus showed an opacity suggesting sinusitis. The presumptive diagnosis was dentigerous cyst associated with maxillary sinus infection. The plan for treatment included treatment of the sinus infection and cystic lesion and orthodontic traction of the canine after surgical exposure and bonding of an orthodontic appliance. The surgical procedure, canine position, root dilaceration, and probably apical ankylosis acted in the primary failure of the orthodontic traction. Surgical apical cut of the displaced teeth was performed, and tooth position in the dental arch was possible, with a positive response to the pulp vitality test. Conclusion. Apicotomy is an effective technique to treat severe canine displacement and primary orthodontic traction failure of palatally displaced canines.

  15. Influences of Traction Load Shock on Artificial Partial Discharge Faults within Traction Transformer—Experimental Test for Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Shuaibing Li

    2017-10-01

    Full Text Available Partial discharge (PD measurement and its pattern recognition are vital to fault diagnosis of transformers, especially to those traction substation transformers undergoing repetitive traction load shocks. This paper presents the primary factors induced by traction load shocks including high total harmonics distortion (THD, transient voltage impulse and high-temperature rise, and their effects on the feature parameters of PD. Experimental tests are conducted on six artificial PD models with these factors introduced one by one. Results reveal that the maximum PD quantity and the PD repetitive rate are favorable to be enlarged when the oil temperature exceeds 80 °C or the THD is higher than 16% with certain orders of harmonic. The decline in PD inception voltage can mainly be attributed to the transient voltage impulse. The variation in central frequency of the fast Fourier transformation (FFT spectra transformed from ultra-high frequency signals can mainly be attributed to high THD, especially when it exceeds 20%. The temperature rise has no significant influence on the FFT spectra; the transient voltage impulse, however, can result in a central frequency shift of the floating particle discharge. With the rapid development of high-speed railways, the study presented in this paper will be helpful for field PD detection and recognition of traction substation transformers in the future.

  16. Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series

    International Nuclear Information System (INIS)

    Li, Renxian; Ren, Kuan Fang; Han, Xiang'e; Wu, Zhensen; Guo, Lixin; Gong, Shuxi

    2013-01-01

    Debye series expansion (DSE) is employed to the analysis of radiation pressure force (RPF) exerted on biological cells induced by high-order Bessel beams (BB). The beam shape coefficients (BSCs) for high-order Bessel beams are calculated using analytical expressions obtained by the integral localized approximation (ILA). Different types of cells, including a real Chinese Hamster Ovary (CHO) cell and a lymphocyte which are respectively modeled by a coated and five-layered sphere, are considered. The RPF induced by high-order Bessel beams is compared with that by Gaussian beams and zeroth-order Bessel beams, and the effect of different scattering processes on RPF is studied. Numerical calculations show that high-order Bessel beams with zero central intensity can also transversely trap particle in the beam center, and some scattering processes can provide longitudinal pulling force. -- Highlights: ► BSCs for high-order Bessel beam (HOBB) is derived using ILA. ► DSE is employed to study the RPF induced by HOBB exerted on multilayered cells. ► RPF is decided by radius relative to the interval of peaks in intensity profile. ► HOBB can also transversely trap high-index particle in the vicinity of beam axis. ► RPF for some scattering processes can longitudinally pull particles back

  17. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  18. Energy and wear optimisation of train longitudinal dynamics and of traction and braking systems

    Science.gov (United States)

    Conti, R.; Galardi, E.; Meli, E.; Nocciolini, D.; Pugi, L.; Rindi, A.

    2015-05-01

    Traction and braking systems deeply affect longitudinal train dynamics, especially when an extensive blending phase among different pneumatic, electric and magnetic devices is required. The energy and wear optimisation of longitudinal vehicle dynamics has a crucial economic impact and involves several engineering problems such as wear of braking friction components, energy efficiency, thermal load on components, level of safety under degraded or adhesion conditions (often constrained by the current regulation in force on signalling or other safety-related subsystem). In fact, the application of energy storage systems can lead to an efficiency improvement of at least 10% while, as regards the wear reduction, the improvement due to distributed traction systems and to optimised traction devices can be quantified in about 50%. In this work, an innovative integrated procedure is proposed by the authors to optimise longitudinal train dynamics and traction and braking manoeuvres in terms of both energy and wear. The new approach has been applied to existing test cases and validated with experimental data provided by Breda and, for some components and their homologation process, the results of experimental activities derive from cooperation performed with relevant industrial partners such as Trenitalia and Italcertifer. In particular, simulation results are referred to the simulation tests performed on a high-speed train (Ansaldo Breda Emu V250) and on a tram (Ansaldo Breda Sirio Tram). The proposed approach is based on a modular simulation platform in which the sub-models corresponding to different subsystems can be easily customised, depending on the considered application, on the availability of technical data and on the homologation process of different components.

  19. THE EIGHT-WHEEL LOCOMOTIVE DC3 WITH THE SECOND TYPE OF RATING UNLOADING AND ADDITIONAL LOADING OF WHEELS AND DEFLECTIONS SPRING SUSPENSION DURING TRACTION EFFORTS TRANSFER FROM BOGIES TO BODY WITH USING RECLINING TRACTIONS

    Directory of Open Access Journals (Sweden)

    V. A. Bratash

    2010-11-01

    Full Text Available In the article the calculation formulas for determination of unloadings (finishings loadings of wheels and bendings of a spring suspension of 8-wheel electric locomotive DS 3 with the hauling transmission of the second kind at the transmission of tractive forces from the bogies to the body through sloping tractions are presented. Numerical calculations are executed on the example of mainline freight-and-passenger electric locomotive DS 3.

  20. Characterization of fluid forces exerted on a cylinder array oscillating laterally in axial flow

    International Nuclear Information System (INIS)

    Divaret, Lise

    2014-01-01

    This thesis presents an experimental and a numerical study of the fluid forces exerted on a cylinder or a cylinder array oscillating laterally in an axial flow. The parameters of the system are the amplitude, the oscillation frequency, the confinement and the length to diameter ratio of the cylinder. The objective is to determine the fluid damping created by the axial flow, i.e. the dissipative force. The industrial application of this thesis is the determination of the fluid damping of the fuel assemblies in the core of a nuclear power plant during an earthquake. The study focuses on the configurations where the oscillation velocity is small compared to the axial flow velocity. In a first part, we study the case of a cylinder with no confinement oscillating in axial flow. Two methods are used: a dynamical and a quasi-static approach. In dynamics, the damping rate is measured during free oscillations of the cylinder. In the quasi-static approach, the damping coefficient is calculated from the normal force measured on a yawed cylinder. The range of the small ratios between the oscillation and the axial flow velocities corresponds to a range of low yaw angle where the cylinder is in near-axial flow in statics. The case of a yawed cylinder has been studied both experimentally with experiments in a wind tunnel and numerically with CFD calculations. The analyses of the fluid forces shows that for yaw angles smaller than 5 degrees, a linear lift with the yaw angle creates the damping. The origin of the lift force is discussed from pressure and velocity measurements. The results of the quasi-static approach are compared to the results of the dynamical experiments. In a second part, an experimental study is performed on a rigid cylinder array made up of 40 cylinders oscillating in an axial flow. The normal force and the displacement of the cylinder array are measured simultaneously. The added mass and damping coefficient are calculated and their variation with the

  1. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.

    Science.gov (United States)

    Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng

    2017-05-29

    We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.

  2. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  3. Tipepidine, a non-narcotic antitussive, exerts an antidepressant-like effect in the forced swimming test in adrenocorticotropic hormone-treated rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Ogata, Yukino; Honda, Sokichi; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2016-04-01

    We investigated whether tipepidine exerts an antidepressant-like effect in the forced swimming test in adrenocorticotropic hormone (ACTH)-treated rats, which is known as a treatment-resistant depression model, and we studied the pharmacological mechanisms of the effects of tipepidine. Male Wistar rats (5-7 weeks old) were used in this study. Tipepidine (20 and 40 mg/kg, i.p.) decreased the immobility time in the forced swimming test in ACTH-treated rats. The anti-immobility effect of tipepidine was blocked by a catecholamine-depleting agent, alpha-methyl-p-tyrosine (300 mg/kg, s.c.), but not by a serotonin-depleting agent, p-chlorophenylalanine. The anti-immobility effect of tipepidine was also blocked by a dopamine D1 receptor antagonist, SCH23390 (0.02 mg/kg, s.c.) and an adrenaline α2 receptor antagonist, yohimbine (2 mg/kg, i.p.). In microdialysis technique, tipepidine (40 mg/kg, i.p.) increased the extracellular dopamine level of the nucleus accumbens (NAc) in ACTH-treated rats. These results suggest that tipepidine exerts an antidepressant-like effect in the forced swimming test in ACTH-treated rats, and that the effect of tipepidine is mediated by the stimulation of dopamine D1 receptors and adrenaline α2 receptors. The results also suggest that an increase in the extracellular dopamine level in the NAc may be involved in the antidepressant-like effect of tipepidine in ACTH-treated rats. Copyright © 2016. Published by Elsevier B.V.

  4. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness

    NARCIS (Netherlands)

    Krishnan, R.; Park, C.Y.; Lin, Y.C.; Mead, J.; Jaspers, R.T.; Trepat, X.; Lenormand, G.; Tambe, D.; Smolensky, A.V.; Knoll, A.H.; Butler, J.P.; Fredberg, J.J.

    2009-01-01

    Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase

  5. Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model

    Directory of Open Access Journals (Sweden)

    Shuai Su

    2016-02-01

    Full Text Available Increasing attention is being paid to the energy efficiency in metro systems to reduce the operational cost and to advocate the sustainability of railway systems. Classical research has studied the energy-efficient operational strategy and the energy-efficient system design separately to reduce the traction energy consumption. This paper aims to combine the operational strategies and the system design by analyzing how the infrastructure and vehicle parameters of metro systems influence the operational traction energy consumption. Firstly, a solution approach to the optimal train control model is introduced, which is used to design the Optimal Train Control Simulator(OTCS. Then, based on the OTCS, the performance of some important energy-efficient system design strategies is investigated to reduce the trains’ traction energy consumption, including reduction of the train mass, improvement of the kinematic resistance, the design of the energy-saving gradient, increasing the maximum traction and braking forces, introducing regenerative braking and timetable optimization. As for these energy-efficient strategies, the performances are finally evaluated using the OTCS with the practical operational data of the Beijing Yizhuang metro line. The proposed approach gives an example to quantitatively analyze the energy reduction of different strategies in the system design procedure, which may help the decision makers to have an overview of the energy-efficient performances and then to make decisions by balancing the costs and the benefits.

  6. Simple traction-immobilization device for CT scanners

    International Nuclear Information System (INIS)

    Robertson, J.; Federle, M.P.

    1983-01-01

    Successful computed tomographic (CT) scanning of acutely ill or traumatized patients often requires immobilization or traction of the extremities. Existing medical appliances and external fixation devices often are cumbersome, produce technical artifacts, or are uncomfortable for patients. This paper describes a traction-immobilization device that overcomes many of these difficulties. The authors have used this device successfully in several hundred cases and found that it markedly facilitated patient comfort and throughput. Construction is simple and inexpensive, using materials available in most hardware stores

  7. Traction for low-back pain with or without sciatica

    NARCIS (Netherlands)

    Wegner, I.; Widyahehening, I.S.; van Tulder, M.W.; Blomberg, S.E.I.; de Vet, H.C.W.; Brønfort, G.; Bouter, L.M.; van der Heijden, G.J.

    2013-01-01

    Background Traction has been used to treat low-back pain (LBP), often in combination with other treatments. We included both manual and machine-delivered traction in this review. This is an update of a Cochrane review first published in 1995, and previously updated in 2006. Objectives To assess the

  8. Cost effectiveness of using surgery versus skeletal traction in ...

    African Journals Online (AJOL)

    The financial cost benefit of surgery was further complimented by better functional outcomes. Conclusion: The data indicates a cost advantage of managing femoral shaft fracture by surgery compared to traction. Furthermore the longer hospital stay in the traction group is associated with more malunion, limb deformity and ...

  9. Traction sheave elevator, hoisting unit and machine space

    Science.gov (United States)

    Hakala, Harri; Mustalahti, Jorma; Aulanko, Esko

    2000-01-01

    Traction sheave elevator consisting of an elevator car moving along elevator guide rails, a counterweight moving along counterweight guide rails, a set of hoisting ropes (3) on which the elevator car and counterweight are suspended, and a drive machine unit (6) driving a traction sheave (7) acting on the hoisting ropes (3) and placed in the elevator shaft. The drive machine unit (6) is of a flat construction. A wall of the elevator shaft is provided with a machine space with its open side facing towards the shaft, the essential parts of the drive machine unit (6) being placed in the space. The hoisting unit (9) of the traction sheave elevator consists of a substantially discoidal drive machine unit (6) and an instrument panel (8) mounted on the frame (20) of the hoisting unit.

  10. Intravitreal injection of perfluoropropane for the treatment of vitreomacular traction

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Wan

    2013-07-01

    Full Text Available AIM: To study the efficacy of a single intravitreal injection of perfluoropropane(C3F8in releasing vitreomacular traction. METHODS: Twelve eyes of 12 consecutive patients with vitreomacular traction received a single intravitreal injection of 0.3mL 100%(C3F8were retrospectively analyzed. The best corrected vision acuity and the neural epithelium thickness of central macular were observed. RESULTS: One month following treatment, vitreomacular traction was released in 5 eyes(42%, mean final visual acuity(VAimproved 0.04 and mean central foveal thickness decreased by 69μm. The vision acuity before and after treatment were 0.20±0.07, 0.25±0.04 respectively.CONCLUSION: Intravitreal C3F8 injection could offer a minimally invasive alternative to pars plana vitrectomy in patients with vitreomacular traction.

  11. The pressure exerted by a confined ideal gas

    International Nuclear Information System (INIS)

    Pang Hai; Dai Wusheng; Xie Mi

    2011-01-01

    In this paper, we study the pressure exerted by a confined ideal gas on the container boundary and we introduce a surface force in gases. First, the general expression for the local surface pressure tensor is obtained. We find, by examples, that the pressure vanishes at the edges of a box, peaks at the middle of the surface and its magnitude for different statistics satisfies p Fermi > p classical > p Bose on every boundary point. Then, the relation between the surface pressure tensor and generalized forces is studied. Based on the relation, we find that a confined ideal gas can exert forces whose effect is to reduce the total surface area of the boundary of an incompressible object. The force provides mechanisms for several mechanical effects. (1) The force contributes to the adhesion of two thin films in contact with each other. We derive an expression for the adhesion force between two square sheets, estimate its magnitude, and also give a method for distinguishing it from other adhesion forces. (2) The force can lead to the recoiling of a DNA-like column. We study the recoiling process using a simple model and find a deviation from the result given in the thermodynamic limit, which is in accordance with experiments. (3) An open container immersed in a gas can be compressed by this force like the Casimir effect. We discuss the effect for various geometries. (paper)

  12. Tractional retinal detachment in Usher syndrome type II.

    Science.gov (United States)

    Rani, Alka; Pal, Nikhil; Azad, Raj Vardhan; Sharma, Yog Raj; Chandra, Parijat; Vikram Singh, Deependra

    2005-08-01

    Retinal detachment is a rare complication in patients with retinitis pigmentosa. A case is reported of tractional retinal detachment in a patient with retinitis pigmentosa and sensorineural hearing loss, which was diagnosed as Usher syndrome type II. Because of the poor visual prognosis, the patient refused surgery in that eye. Tractional retinal detachment should be added to the differential diagnoses of visual loss in patients with retinitis pigmentosa.

  13. Traction alopecia: the root of the problem

    Directory of Open Access Journals (Sweden)

    Billero V

    2018-04-01

    Full Text Available Victoria Billero, Mariya MitevaDepartment of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL, USAAbstract: Traction alopecia (TA affects one-third of women of African descent who wear various forms of traumatic hairstyling for a prolonged period of time. The risk of TA is increased by the extent of pulling and duration of traction, as well as the use of chemical relaxation. The frequent use of tight buns or ponytails, the attachment of weaves or hair extensions, and tight braids (such as cornrows and dreadlocks are believed to be the highest risk hairstyles. TA can also occur in the setting of religious and occupational traumatic hairstyling. In its later stages, the disease may progress into an irreversible scarring alopecia if traumatic hairstyling continues without appropriate intervention. The most common clinical presentation includes marginal alopecia and non-marginal patchy alopecia. A clue to the clinical diagnosis is the preservation of the fringe sign as opposed to its loss in frontal fibrosing alopecia (FFA. Dermoscopy can be helpful in the diagnosis and can detect the ongoing traction by the presence of hair casts. Histopathology can distinguish TA from alopecia areata, FFA, and patchy central centrifugal cicatricial alopecia. Currently, there is no cure. Therefore, it is imperative that clinicians educate high-risk populations about TA and those practices that may convey the risk of hair loss. Keywords: hair loss, alopecia, dermoscopy, trichoscopy, traction alopecia, African-American 

  14. Analysis methods of stochastic transient electro–magnetic processes in electric traction system

    Directory of Open Access Journals (Sweden)

    T. M. Mishchenko

    2013-04-01

    Full Text Available Purpose. The essence and basic characteristics of calculation methods of transient electromagnetic processes in the elements and devices of non–linear dynamic electric traction systems taking into account the stochastic changes of voltages and currents in traction networks of power supply subsystem and power circuits of electric rolling stock are developed. Methodology. Classical methods and the methods of non–linear electric engineering, as well as probability theory method, especially the methods of stationary ergodic and non–stationary stochastic processes application are used in the research. Findings. Using the above-mentioned methods an equivalent circuit and the system of nonlinear integra–differential equations for electromagnetic condition of the double–track inter-substation zone of alternating current electric traction system are drawn up. Calculations allow obtaining electric traction current distribution in the areas of feeder zones. Originality. First of all the paper is interesting and important from scientific point of view due to the methods, which allow taking into account probabilistic character of change for traction voltages and electric traction system currents. On the second hand the researches develop the most efficient methods of nonlinear circuits’ analysis. Practical value. The practical value of the research is presented in application of the methods to the analysis of electromagnetic and electric energy processes in the traction power supply system in the case of high-speed train traffic.

  15. Advanced Integrated Traction System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  16. Orthodontic Traction of Impacted Canine Using Cantilever

    Directory of Open Access Journals (Sweden)

    Cláudia Nakandakari

    2016-01-01

    Full Text Available The impaction of the maxillary canines causes relevant aesthetic and functional problems. The multidisciplinary approach to the proper planning and execution of orthodontic traction of the element in question is essential. Many strategies are cited in the literature; among them is the good biomechanical control in order to avoid possible side effects. The aim of this paper is to present a case report in which a superior canine impacted by palatine was pulled out with the aid of the cantilever on the Segmented Arch Technique (SAT concept. A 14.7-year-old female patient appeared at clinic complaining about the absence of the upper right permanent canine. The proposed treatment prioritized the traction of the upper right canine without changing the occlusion and aesthetics. For this, it only installed the upper fixed appliance (Roth with slot 0.018, opting for SAT in order to minimize unwanted side effects. The use of cantilever to the traction of the upper right canine has enabled an efficient and predictable outcome, because it is of statically determined mechanics.

  17. Solid-state transformer-based new traction drive system and control

    Science.gov (United States)

    Feng, Jianghua; Shang, Jing; Zhang, Zhixue; Liu, Huadong; Huang, Zihao

    2017-11-01

    A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining high-voltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The carrier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.

  18. Behavior of single lap composite bolted joint under traction loading: Experimental investigation

    Science.gov (United States)

    Awadhani, L. V.; Bewoor, Anand

    2018-04-01

    Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.

  19. Acetabular labral tears: contrast-enhanced MR imaging under continuous leg traction

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, T. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Nakanishi, K. [Dept. of Radiology, Osaka Univ. Medical School, Suita (Japan); Sugano, N. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan); Naito, H. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Tamura, S. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Ochi, T. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan)

    1996-05-01

    The objective of this study was to evaluate the effects of continuous leg traction on contrast-enhanced MR imaging of the hip joint and to determine whether MR imaging under these conditions is useful for demonstrating acetabular labral tears. Nineteen hips underwent MR imaging with a T1-weighted spin-echo sequence, followed by MR imaging under continuous leg traction after intravenous injection of gadolinium-DTPA. Joint fluid enhancement and labral contour detection were evaluated. Eleven hips had labral tears shown by conventional arthrography, arthroscopy and macroscopic surgical findings. Assessment of labral tears by MR imaging was correlated with the diagnosis based on these standard techniques. Joint fluid enhancement was obtained in all hips at 30 min after injection. Superior and inferior labral surfaces were completely delineated in 1 hip on the unenhanced MR images, and in 7 and 13 hips, respectively, on the enhanced images under traction. The enhanced images under traction depicted 9 of the 11 labral tears. Comparison between the unenhanced image and the enhanced image under traction avoided mistaking undercutting of the labrum for a tear in 4 hips. Contrast-enhanced MR imaging under traction was valuable for detecting labral tears non-invasively and without radiation. Follow-up examinations using this method in patients with acetabular dysplasia can help to clarify the natural course of labral disorders and enable better treatment planning. (orig./MG)

  20. An advanced pitch change mechanism incorporating a hybrid traction drive

    Science.gov (United States)

    Steinetz, B. M.; Loewenthal, S. H.; Sargisson, D. F.; White, G.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed.

  1. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  2. Traction bronchiectasis in cryptogenic fibrosing alveolitis: associated computed tomographic features and physiological significance

    International Nuclear Information System (INIS)

    Desai, Sujal R.; Wells, Athol U.; Bois, Roland M. du; Rubens, Michael B.; Hansell, David M.

    2003-01-01

    Our objective was to evaluate the associated CT features and physiological consequences of traction bronchiectasis in patients with cryptogenic fibrosing alveolitis (CFA). The CT scans of 212 patients with CFA (158 men, 54 women; mean age 62.2±10.6 years) were evaluated independently by two observers. The extent of fibrosis, the proportions of a reticular pattern and ground-glass opacification and the extent of emphysema were scored at five levels. The predominant CT pattern, coarseness of a reticular pattern and severity of traction bronchiectasis were graded semiquantitatively. Physiological indices were correlated with CT features. There was traction bronchiectasis on CT in 202 of 212 (95%) patients. Increasingly severe traction bronchiectasis was independently associated with increasingly extensive CFA (p CO (p 2 (p<0.0005), but not indices of air-flow obstruction. In CFA, traction bronchiectasis increases with more extensive disease, a lower proportion of ground-glass opacification and a coarser reticular pattern, but it decreases with concurrent emphysema. Increasingly severe traction bronchiectasis is associated with additional physiological impairment for a given extent of pulmonary fibrosis and emphysema. (orig.)

  3. Control algorithms for single inverter dual induction motor system applied to railway traction; Commande algorithmique d'un systeme mono-onduleur bimachine asynchrone destine a la traction ferroviaire

    Energy Technology Data Exchange (ETDEWEB)

    Pena Eguiluz, R.

    2002-11-15

    The goal of this work concerns the modelling and the behaviour characterisation of a single inverter dual induction motor system applied to a railway traction bogie (BB36000) in order to concept its control. First part of this job is dedicated to the detailed description of overall system. The influence analysis of the internal perturbations (motor parameters variation) and, external perturbations (pantograph detachment, adherence loss, stick-slip) of the system have made considering the field oriented control applied to each motor of the bogie (classical traction structure). vi In a second part, a novel propulsion structure is proposed. It is composed by a single pulse-width modulated two level voltage source inverter. It supplies two parallel connected induction motors, which generate the transmitted traction force to the bogie wheels. The locomotive case represents the common load for the two motors. Several co-operative control strategies (CS) are studied. They are: the mean CS, the double mean CS, the master - slave switched CS and, the mean differential CS. In addition, an appropriated electric modes observer structure for these different controls has studied. These controls have validated applying the perturbations to the models using the solver SABER. This special approach is equivalent to quasi-experimentation, because the mechanical and the electrical system components have modelled using MAST language and, the sample control has created by a C code programme in the SABER environment. Third part is dedicated to the mechanical sensor suppression and, its adaptation in the cooperative control strategies. The partial speed reconstruction methods are: the fundamental frequency relation, the mechanical Kalman filter, the variable structure observer and the MRAS. Finally, the hardware system configuration of the experimental realisation is described. (author)

  4. Physical and electrocardiographic evaluation of horses used for wagon traction

    Directory of Open Access Journals (Sweden)

    M.M. Bomfim

    Full Text Available ABSTRACT The objective of this research was to evaluate the electrocardiogram (ECG of horses used for wagon traction and to compare the results with the parameters obtained from inactive horses or horses submitted to a training routine. Fifty-six 3-15-year-old healthy horses (22 females and 34 males were divided into three groups: control (without a work routine; N=21, wagon traction (N=25 and athlete (N=10 and submitted to physical examination and ECG (at rest. The rhythm, heart rate (HR, amplitude and duration of ECG waveforms and intervals were obtained from the frontal plane and base-apex leads. Heart score (HS was calculated using the arithmetic mean of QRS duration in LI, LII and LIII. Measurements of ECG waves were smaller in control group, in comparison with wagon traction and athlete groups, suggesting that exercise can change ECG. Similar results were observed in the wagon traction and athlete groups, but the electrophysiological adjustments to exercise were not the same for these groups.

  5. Traction bronchiectasis in cryptogenic fibrosing alveolitis: associated computed tomographic features and physiological significance

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Sujal R. [Department of Radiology, King' s College Hospital, Denmark Hill, SE5 9RS, London (United Kingdom); Wells, Athol U.; Bois, Roland M. du [Interstitial Lung Disease Unit, Royal Brompton Hospital, Emmanuel Kaye Building, Manresa Road, Fulham, SW6 6LR, London (United Kingdom); Rubens, Michael B.; Hansell, David M. [Department of Radiology, Royal Brompton Hospital, Sydney Street, SW3 6NP, London (United Kingdom)

    2003-08-01

    Our objective was to evaluate the associated CT features and physiological consequences of traction bronchiectasis in patients with cryptogenic fibrosing alveolitis (CFA). The CT scans of 212 patients with CFA (158 men, 54 women; mean age 62.2{+-}10.6 years) were evaluated independently by two observers. The extent of fibrosis, the proportions of a reticular pattern and ground-glass opacification and the extent of emphysema were scored at five levels. The predominant CT pattern, coarseness of a reticular pattern and severity of traction bronchiectasis were graded semiquantitatively. Physiological indices were correlated with CT features. There was traction bronchiectasis on CT in 202 of 212 (95%) patients. Increasingly severe traction bronchiectasis was independently associated with increasingly extensive CFA (p<0.0005), a coarser reticular pattern (p<0.001), a lower proportion of ground-glass opacification (p<0.005) and less extensive emphysema (p<0.0005). Increasingly severe traction bronchiectasis was independently related to depression of DL{sub CO} (p<0.005), FVC (p=0.02) and pO{sub 2} (p<0.0005), but not indices of air-flow obstruction. In CFA, traction bronchiectasis increases with more extensive disease, a lower proportion of ground-glass opacification and a coarser reticular pattern, but it decreases with concurrent emphysema. Increasingly severe traction bronchiectasis is associated with additional physiological impairment for a given extent of pulmonary fibrosis and emphysema. (orig.)

  6. Musical agency reduces perceived exertion during strenuous physical performance.

    Science.gov (United States)

    Fritz, Thomas Hans; Hardikar, Samyogita; Demoucron, Matthias; Niessen, Margot; Demey, Michiel; Giot, Olivier; Li, Yongming; Haynes, John-Dylan; Villringer, Arno; Leman, Marc

    2013-10-29

    Music is known to be capable of reducing perceived exertion during strenuous physical activity. The current interpretation of this modulating effect of music is that music may be perceived as a diversion from unpleasant proprioceptive sensations that go along with exhaustion. Here we investigated the effects of music on perceived exertion during a physically strenuous task, varying musical agency, a task that relies on the experience of body proprioception, rather than simply diverting from it. For this we measured psychologically indicated exertion during physical workout with and without musical agency while simultaneously acquiring metabolic values with spirometry. Results showed that musical agency significantly decreased perceived exertion during workout, indicating that musical agency may actually facilitate physically strenuous activities. This indicates that the positive effect of music on perceived exertion cannot always be explained by an effect of diversion from proprioceptive feedback. Furthermore, this finding suggests that the down-modulating effect of musical agency on perceived exertion may be a previously unacknowledged driving force for the development of music in humans: making music makes strenuous physical activities less exhausting.

  7. Sustainability Aspects of Energy Conversion in Modern High-Speed Trains with Traction Induction Motors

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2015-03-01

    Full Text Available Some aspects are illustrated of energy conversion processes during the operation of electric railway vehicles with traction induction motors, in order to support transport systems’ sustainability. Increasing efforts are being expended to enhance the sustainability of transportation technologies and systems. Since electric drive systems are used with variable voltage variable frequency (VVVF inverters and traction induction motors, these machines with appropriate controls can realize both traction and electric braking regimes for electric traction vehicles. In line with this idea, this paper addresses the operation sustainability of electric railway vehicles highlighting the chain of interactions among the main electric equipment on an electrically driven railway system supplied from an a.c. contact line: The contact line-side converter, the machine-side converter and the traction induction motor. The paper supports the findings that electric traction drive systems using induction motors fed by network-side converters and VVVF inverters enhance the sustainable operation of railway trains.

  8. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    International Nuclear Information System (INIS)

    Kraning-Rush, Casey M; Carey, Shawn P; Califano, Joseph P; Smith, Brooke N; Reinhart-King, Cynthia A

    2011-01-01

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments

  9. Force direction in pushing and pulling and Musculo-Skeletal load

    NARCIS (Netherlands)

    Looze, M.P. de; Kuijer, P.P.F.M.

    1999-01-01

    In pushing and pulling wheeled objects, the effect of the exerted force on local musculo-skeletal loads depends on the direction of force exertion. Several questions about the direction of force exertion in pushing and pulling, the effects of handle height and force level on force direction, and the

  10. Halo-gravity traction in the treatment of severe spinal deformity: a systematic review and meta-analysis.

    Science.gov (United States)

    Yang, Changsheng; Wang, Huafeng; Zheng, Zhaomin; Zhang, Zhongmin; Wang, Jianru; Liu, Hui; Kim, Yongjung Jay; Cho, Samuel

    2017-07-01

    Halo-gravity traction has been reported to successfully assist in managing severe spinal deformity. This is a systematic review of all studies on halo-gravity traction in the treatment of spinal deformity to provide information for clinical practice. A comprehensive search was conducted for articles on halo-gravity traction in the treatment of spinal deformity according to the PRISMA guidelines. Appropriate studies would be included and analyzed. Preoperative correction rate of spinal deformity, change of pulmonary function and prevalence of complications were the main measurements. Sixteen studies, a total of 351 patients, were included in this review. Generally, the initial Cobb angle was 101.1° in the coronal plane and 80.5° in the sagittal plane, and it was corrected to 49.4° and 56.0° after final spinal fusion. The preoperative correction due to traction alone was 24.1 and 19.3%, respectively. With traction, the flexibility improved 6.1% but postoperatively the patients did not have better correction. Less aggressive procedures and improved pulmonary function were observed in patients with traction. The prevalence of traction-related complications was 22% and three cases of neurologic complication related to traction were noted. The prevalence of total complications related to surgery was 32% and that of neurologic complications was 1%. Partial correction could be achieved preoperatively with halo-gravity traction, and it may help decrease aggressive procedures, improve preoperative pulmonary function, and reduce neurologic complications. However, traction could not increase preoperative flexibility or final correction. Traction-related complications, although usually not severe, were not rare.

  11. Development of Traction Drive Motors for the Toyota Hybrid System

    Science.gov (United States)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  12. Research of the multipolar induction traction frequency regulated motor

    Directory of Open Access Journals (Sweden)

    V. Ia. Bespalov

    2014-01-01

    Full Text Available The paper considers the application features of traction induction electric motors in transmissions of vehicles. It shows that one of important stages in their designing is to choose the number of poles. In traction electric drives engines with the raised number of poles without comprehensive assessment of such solution are often applied. The paper investigates dynamic and power characteristics of the multi-polar traction asynchronous engine (TAE designed and made for using in the individual electric drive of heavy-load wheeled cars. The basic functional elements of the model to simulate the electric drive in Matlab environment with the Simulink and SimPower Systems applications in the structure with vector control are described, and the simulation modeling results of its dynamic mechanical characteristics are provided. It is established that because of increased alternating frequency of currents of the multi-polar engine in the range of high speeds there is an excessive decrease in the torque and the requirement for constancy of the target capacity, corresponding to the specified traction characteristic is not fulfilled. It is a consequence of the waveform distortion of engine phase current in the range of high speeds because of incapability of the power source to compensate an increasing EMF of movement as the speed continues to grow.The paper studies the influence of increased current frequencies on the additional losses in the engine. The analysis of electromagnetic field penetration depth in the copper conductor of stator winding at high frequency allowed us to establish a significant skin – effect. The quantitative assessment is given to this phenomenon by results of numerical calculation of electromagnetic field distribution in a stator groove. Significant increase in additional losses in the engine is established, and estimates of flow loss extent because of damping actions of eddy currents in the laminated steel of stator at

  13. A modification of the maitland roll top traction table.

    Science.gov (United States)

    Kneipp, K

    1975-03-01

    This modification of the Maitland Roll Top Traction Table (Maitland, 1973) differs from the original as follows: 1. The two weight-bearing leaves are enclosed by a "guide frame" and the "U-piece" of the original is replaced by a hinged "gate" at the foot, which can be opened downwards for lumbar traction, or can be locked to restrain the leaves when the table is required for other purposes. 2. Four rollers of light steel replace the wooden dowels. 3. The modified table in use by the author is held by a floor peg, and is set up be-between two walls 10' 6″ apart which provide purchase points for traction. Alternatively, purchase at the head end can be taken by hooks attached to the table itself. 4. The design permits a six-foot plinth to be used. Copyright © 1975 Australian Physiotherapy Association. Published by . All rights reserved.

  14. Traction alopecia: the root of the problem.

    Science.gov (United States)

    Billero, Victoria; Miteva, Mariya

    2018-01-01

    Traction alopecia (TA) affects one-third of women of African descent who wear various forms of traumatic hairstyling for a prolonged period of time. The risk of TA is increased by the extent of pulling and duration of traction, as well as the use of chemical relaxation. The frequent use of tight buns or ponytails, the attachment of weaves or hair extensions, and tight braids (such as cornrows and dreadlocks) are believed to be the highest risk hairstyles. TA can also occur in the setting of religious and occupational traumatic hairstyling. In its later stages, the disease may progress into an irreversible scarring alopecia if traumatic hairstyling continues without appropriate intervention. The most common clinical presentation includes marginal alopecia and non-marginal patchy alopecia. A clue to the clinical diagnosis is the preservation of the fringe sign as opposed to its loss in frontal fibrosing alopecia (FFA). Dermoscopy can be helpful in the diagnosis and can detect the ongoing traction by the presence of hair casts. Histopathology can distinguish TA from alopecia areata, FFA, and patchy central centrifugal cicatricial alopecia. Currently, there is no cure. Therefore, it is imperative that clinicians educate high-risk populations about TA and those practices that may convey the risk of hair loss.

  15. Development of low AC loss windings for superconducting traction transformer

    International Nuclear Information System (INIS)

    Kamijo, H; Hata, H; Fukumoto, Y; Tomioka, A; Bohno, T; Yamada, H; Ayai, N; Yamasaki, K; Kato, T; Iwakuma, M; Funaki, K

    2010-01-01

    We have been developing a light weight and high efficiency superconducting traction transformer for railway rolling stock. We designed and fabricated a prototype superconducting traction transformer of a floor-mount type for Shinkansen rolling stock in 2004. We performed the type-test, the system-test, and the vibration-test. Consequently, we could verify that the transformer satisfied the requirement almost exactly as initially planned. However, there have been raised some problems to be solved to put superconducting traction transformer into practical use such that AC loss of the superconducting tape must be lower and the capacity of the refrigerator must be larger. Especially it is the most important to reduce the AC loss of superconducting windings for lightweight and high efficiency. The AC loss must be reduced near the theoretical value of superconducting tape with multifilament. In this study, we fabricated and evaluated the Bi2223 tapes as introduced various measures to reduce the AC loss. We confirmed that the AC loss of the narrow type of Bi2223 tapes with twist of filaments is lower, and we fabricated windings of this tape for use in superconducting traction transformer.

  16. The Harmonoise/IMAGINE model for traction noise of powered railway vehicles

    NARCIS (Netherlands)

    Dittrich, M.G.; Zhang, X.

    2006-01-01

    Traction noise is one of the noise sources of powered railway vehicles such as locomotives, electric- and diesel-powered multiple unit trains and high-speed trains. Especially at speeds below 60 km/h and at idling, but also at acceleration conditions for a wide range of speeds, traction noise can be

  17. The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials

    International Nuclear Information System (INIS)

    Li Qun; Chen Yiheng

    2008-01-01

    The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials is clarified. Based on the extended Stroh theory, the Coulombic traction, usually neglected in piezoelectric fracture, is imposed on the interface crack surfaces. It is found that the low-capacitance medium (air or vacuum) inside the crack gap yields some large Coulombic traction as compared to the applied mechanical loading whether the remanent polarization of piezoelectric material is considered or not. Thus, previous investigations based on the traction-free condition underestimate the role of the Coulombic traction and in turn may yield unexpected errors for the effective stress intensity factor (SIF) and energy release rate (ERR) at the crack tip. (technical note)

  18. Distributed active traction control system applied to the RoboCup middle size league

    OpenAIRE

    Almeida, José; Dias, André; Sequeira, João; Martins, Alfredo; Silva, Eduardo

    2013-01-01

    This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL). The slip control problem is formulated using simple friction models for ISePorto Team robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies in local slip detection and con...

  19. Contact traction analysis for profile change during coining process

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Kang, Heung Seok; Song, Kee Nam

    2002-01-01

    Contact tractions are analysed in the case of the change in contact profile occurring during the coining process of a thin strip material. The changed profile is assumed as a concave circular arc in the central part of the contact region which is smoothly connected with convex circular arcs at both sides, referring to the actual measurement of the coined material. The profile is discretized and the known solutions of singular integral equations are used. Since the contact profile affects the contact traction and relevant tribological behaviour (e.g. wear) as well, an accurate definition of the profile is necessary in the analysis of material failure. Parametric study is conducted with the variation of the radii and distance of the arcs, which defines the height difference between the summits of the arcs. Considered is the contact profile, which can give the negligible variation of the traction in comparison with that before the coining process

  20. THE MEASUREMENT ELECTROMAGNETIC INTERFERENCE IN THE REVERSE TRACTION NETWORK

    Directory of Open Access Journals (Sweden)

    T. M. Serdiuk

    2009-09-01

    Full Text Available The original automated method of measurement of electrical noise in the return electric-traction network is proposed. It is realized on the base of car-laboratory “Automatics, telemechanics and communication”. The mathematic model of return electric-traction network is developed to scientific bases of automated measurement. It allows us obtaining the mathematic expressions for change of voltage and current harmonics in the rail net and taking into account the inhomogeneity of lines for the following analytic determination of a source of electric noise.

  1. External Hand Forces Exerted by Long-Term Care Staff to Push Floor-Based Lifts: Effects of Flooring System and Resident Weight.

    Science.gov (United States)

    Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C

    2016-09-01

    The aim of this study was to investigate the effects of flooring type and resident weight on external hand forces required to push floor-based lifts in long-term care (LTC). Novel compliant flooring is designed to reduce fall-related injuries among LTC residents but may increase forces required for staff to perform pushing tasks. A motorized lift may offset the effect of flooring on push forces. Fourteen female LTC staff performed straight-line pushes with two floor-based lifts (conventional, motor driven) loaded with passengers of average and 90th-percentile resident weights over four flooring systems (concrete+vinyl, compliant+vinyl, concrete+carpet, compliant+carpet). Initial and sustained push forces were measured by a handlebar-mounted triaxial load cell and compared to participant-specific tolerance limits. Participants rated pushing difficulty. Novel compliant flooring increased initial and sustained push forces and subjective ratings compared to concrete flooring. Compared to the conventional lift, the motor-driven lift substantially reduced initial and sustained push forces and perceived difficulty of pushing for all four floors and both resident weights. Participants exerted forces above published tolerance limits only when using the conventional lift on the carpet conditions (concrete+carpet, compliant+carpet). With the motor-driven lift only, resident weight did not affect push forces. Novel compliant flooring increased linear push forces generated by LTC staff using floor-based lifts, but forces did not exceed tolerance limits when pushing over compliant+vinyl. The motor-driven lift substantially reduced push forces compared to the conventional lift. Results may help to address risk of work-related musculoskeletal injury, especially in locations with novel compliant flooring. © 2016, Human Factors and Ergonomics Society.

  2. Rigidity Sensing Explained by Active Matter Theory

    OpenAIRE

    Marcq, Philippe; Yoshinaga, Natsuhiko; Prost, Jacques

    2011-01-01

    The magnitude of traction forces exerted by living animal cells on their environment is a monotonically increasing and approximately sigmoidal function of the stiffness of the external medium. We rationalize this observation using active matter theory, and propose that adaptation to substrate rigidity results from an interplay between passive elasticity and active contractility.

  3. A semi-flexible model prediction for the polymerization force exerted by a living F-actin filament on a fixed wall

    Science.gov (United States)

    Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul

    2015-10-01

    We consider a single living semi-flexible filament with persistence length ℓp in chemical equilibrium with a solution of free monomers at fixed monomer chemical potential μ1 and fixed temperature T. While one end of the filament is chemically active with single monomer (de)polymerization steps, the other end is grafted normally to a rigid wall to mimic a rigid network from which the filament under consideration emerges. A second rigid wall, parallel to the grafting wall, is fixed at distance L chain model with step size d and persistence length ℓp, hitting a hard wall. Explicit properties require the computation of the mean force f ¯ i ( L ) exerted by the wall at L and associated potential f ¯ i ( L ) = - d W i ( L ) / d L on a filament of fixed size i. By original Monte-Carlo calculations for few filament lengths in a wide range of compression, we justify the use of the weak bending universal expressions of Gholami et al. [Phys. Rev. E 74, 041803 (2006)] over the whole non-escaping filament regime. For a filament of size i with contour length Lc = (i - 1) d, this universal form is rapidly growing from zero (non-compression state) to the buckling value f b ( L c , ℓ p ) = /π 2 k B T ℓ p 4 Lc 2 over a compression range much narrower than the size d of a monomer. Employing this universal form for living filaments, we find that the average force exerted by a living filament on a wall at distance L is in practice L independent and very close to the value of the stalling force Fs H = ( k B T / d ) ln ( ρ ˆ 1 ) predicted by Hill, this expression being strictly valid in the rigid filament limit. The average filament force results from the product of the cumulative size fraction x = x ( L , ℓ p , ρ ˆ 1 ) , where the filament is in contact with the wall, times the buckling force on a filament of size Lc ≈ L, namely, Fs H = x f b ( L ; ℓ p ) . The observed L independence of Fs H implies that x ∝ L-2 for given ( ℓ p , ρ ˆ 1 ) and x ∝ ln ρ ˆ 1

  4. Partial-thickness macular hole in vitreomacular traction syndrome: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Al Sabti Khalid

    2010-01-01

    Full Text Available Abstract Introduction Vitreomacular traction syndrome has recently been recognized as a distinct clinical condition. It may lead to many complications, such as cystoid macular edema, macular pucker formation, tractional macular detachment, and full-thickness macular hole formation. Case presentation We report a case of vitreomacular traction syndrome with eccentric traction at the macula and a partial-thickness macular hole in a 63-year-old Pakistani Punjabi man. The patient was evaluated using optical coherence tomography, and he underwent a successful pars plana vitrectomy. After the operation, his foveal contour regained normal configuration, and his visual acuity improved from 20/60 to 20/30. Conclusions Pars plana vitrectomy prevents the progression of a partial thickness macular hole in vitreomacular traction syndrome. The relief of traction by vitrectomy restores foveal anatomy and visual acuity in this condition.

  5. The aspect of vector control using the asynchronous traction motor in locomotives

    Directory of Open Access Journals (Sweden)

    L. Liudvinavičius

    2009-12-01

    Full Text Available The article examines curves controlling asynchronous traction motors increasingly used in locomotive electric drives the main task of which is to create a tractive effort-speed curve of an ideal locomotive Fk = f(v, including a hyperbolic area the curve of which will create conditions showing that energy created by the diesel engine of diesel locomotives (electric locomotives and in case of electric trains, electricity taken from the contact network over the entire range of locomotive speed is turned into efficient work. Mechanical power on wheel sets is constant Pk = Fkv = const, the power of the diesel engine is fully used over the entire range of locomotive speed. Tractive effort-speed curve Fk(v shows the dependency of locomotive traction power Fk on movement speed v. The article presents theoretical and practical aspects relevant to creating the structure of locomotive electric drive and selecting optimal control that is especially relevant to creating the structure of locomotive electric drive using ATM (asynchronous traction motor that gains special popularity in traction rolling stock replacing DC traction motors having low reliability. The frequency modes of asynchronous motor speed regulation are examined. To control ATM, the authors suggest the method of vector control presenting the structural schemes of a locomotive with ATM and control algorithm.

  6. BACKGROUNDS OF EXPERIMENTAL INVESTIGATION OF ELECTROMAGNETIC COMPATIBILITY OF TRACTION ASYNCHRONOUS ELECTRIC DRIVES IN THE STRUCTURE OF DC TRACTION POWER SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    YU. S. Bondarenko

    2014-04-01

    Full Text Available Purpose. Application of physical modeling as a tool for research of any events or systems is becoming more widespread, including the field of railway transport. At the same time the adequacy of results that can be obtained, depends largely on the similarity degree of the physical model to real system. From the standpoint of the traction asynchronous electric drive (TAED research together with the traction power supply system research, the similarity can not be determined by the direct proportion of the parameters, because the processes nature accompanying the operation of these systems is non-linear. These features should be taken into account in the experimental setup, the basis for constructing of which is establishing of the system similarity that defines the purpose of this paper. Methodology. At the heart of the experimental setup creation laid reproduction of processes of energy transformation in the system of the DC traction power supply. Determination of the similarity degree of the proposed facility to the real system was carried out using the basic theorems of the similarity theory, their additional provisions on the complexity and nonlinear systems, as well as elements of mathematical analysis. Findings. According to the results of work: 1 The block diagram, the energy conversion mechanism of which is similar to the real system was received. This scheme is the basis of experimental setup, built in the future for the study of electromagnetic compatibility of TAED in the structure of DC traction electric power supply system. 2 Similarity of obtained structural scheme with the real system with the mechanism definition of calculating the scaling relations was established. Originality. In the process of establishing the similarity a simplified method for determining the scaling relations for nonlinear systems was suggested. They are identical in their structure components, but have different capacities. Practical value. Experimental

  7. ONCE AGAIN ABOUT DETERMINATION OF SAVING OF ENERGY FOR TRACTION DUE TO PARTIAL CUT–OFF OF TRACTION ENGINES OF ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    G. K. Getman

    2013-09-01

    Full Text Available Purpose. In general the well known methods for determination of energy saving due to the partial traction engines cut-off based on their comparison to efficiency coefficient or to the power of energy losses do not allow objective estimation of efficiency of these measures and in a number of cases result in erroneous results and errors. The search for new more advanced methods for determination of energy saving at the partial cut-off of the traction engines is needed. Methodology. The method of calculation determination of energy saving when partial cutting-off of the traction engines is offered. It is based on the use of rationality coefficient as the loading mode of the electric power consumption for the measuring instrument of transportation activity. Findings. Using the given mathematical expressions it is possible to determine the energy saving in both the relative and absolute values and set the terms (motion speed and route gradient, under which the energy saving will take place. Originality. The method of the task solving, which is based on the evaluation of energy consumption differences for the compared variants (not on the comparison of efficiency coefficient or differences of power of energy losses is offered. Practical value. The given methodology allows obtaining more exact conclusions in relation to the electric power consumption, as the comparison of energy losses power or the efficiency coefficient does not determine precisely the electric power consumption for traction. Therefore the conclusions based on the comparison of power of energy losses or efficiency coefficient can appear inexact.

  8. Experimental research of vehicle traction properties for reconstruction of traffic accidents

    Directory of Open Access Journals (Sweden)

    Dudziak Marian

    2018-01-01

    Full Text Available In order to broaden the database of motor vehicle traction properties in unusual conditions, the research team has performed experimental studies: on wet and snow-covered surfaces. Tests of vehicles equipped with winter tyres with non-skid snow chains have been performed on snow-covered surfaces. It has been shown that on snowy surface chains affect vehicle traction properties, mostly during acceleration. They increase the rate of acceleration up to 50% compared to a vehicle with winter tyres without chains. The results of the performed research can be the basis for the full reconstruction of road accidents under these conditions. Knowledge of traction properties of cars in difficult and unusual conditions is an important cognitive factor and serves to improve road safety.

  9. Cell force mapping using a double-sided micropillar array based on the moiré fringe method

    Science.gov (United States)

    Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.

    2014-07-01

    The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.

  10. Force Exertion and Transmission in Cross-Linked Actin Networks

    Science.gov (United States)

    Stam, Samantha

    Cells are responsive to external cues in their environment telling them to proliferate or migrate within their surrounding tissue. Sensing of cues that are mechanical in nature, such stiffness of a tissue or forces transmitted from other cells, is believed to involve the cytoskeleton of a cell. The cytoskeleton is a complex network of proteins consisting of polymers that provide structural support, motor proteins that remodel these structures, and many others. We do not yet have a complete understanding of how cytoskeletal components respond to either internal or external mechanical force and stiffness. Such an understanding should involve mechanisms by which constituent molecules, such as motor proteins, are responsive to mechanics. Additionally, physical models of how forces are transmitted through biopolymer networks are necessary. My research has focused on networks formed by the cytoskeletal filament actin and the molecular motor protein myosin II. Actin filaments form networks and bundles that form a structural framework of the cell, and myosin II slides actin filaments. In this thesis, we show that stiffness of an elastic load that opposes myosin-generated actin sliding has a very sharp effect on the myosin force output in simulations. Secondly, we show that the stiffness and connectivity of cytoskeletal filaments regulates the contractility and anisotropy of network deformations that transmit force on material length scales. Together, these results have implications for predicting and interpreting the deformations and forces in biopolymeric active materials.

  11. Surgical management of retinal diseases: proliferative diabetic retinopathy and traction retinal detachment.

    Science.gov (United States)

    Cruz-Iñigo, Yousef J; Acabá, Luis A; Berrocal, Maria H

    2014-01-01

    Current indications for pars plana vitrectomy in patients with proliferative diabetic retinopathy (PDR) include vitreous hemorrhage, tractional retinal detachment (TRD), combined tractional and rhegmatogenous retinal detachment (CTRRD), diabetic macular edema associated with posterior hyaloidal traction, and anterior segment neovascularization with media opacities. This chapter will review the indications, surgical objectives, adjunctive pharmacotherapy, microincision surgical techniques, and outcomes of diabetic vitrectomy for PDR, TRD, and CTRRD. With the availability of new microincision vitrectomy technology, wide-angle microscope viewing systems, and pharmacologic agents, vitrectomy can improve visual acuity and achieve long-term anatomic stability in eyes with severe complications from PDR. © 2014 S. Karger AG, Basel

  12. TRACTION RESISTANCE IN CHITOSAN TREATED COTTON

    Directory of Open Access Journals (Sweden)

    LOX Wouter

    2015-05-01

    Full Text Available Nowadays natural products interest has increased. However, when some products are included on textile fibers, they have no affinity and need some binders or other kind of auxiliaries to improve the yeld of the process, and some of them are not so natural as the product which are binding and consequently the “bio” definition is missed as some of them can be considered as highly pollutant. Chitosan is a common used bonding agent for cotton. It improves the antimicrobial and antifungal activity, improves wound healing and is a non-toxic bonding agent. The biopolymer used in this work is chitosan, which is a deacetylated derivative of chitin. These properties depend on the amount of deacetylation (DD and the Molecular weight (MW. Along with these improving properties, as it requires some acid pH to ve solved the treatment with chitosan can have some decreasing mechanical properties. The aim of that paper is to evaluate the change in breaking force of the treated samples and a change in elongation of those samples. It compared different amounts of concentration of chitosan with non treated cotton. The traction resistance test were performed on a dynamometer. The test was conducted according to the UNE EN ISO 13934-1 standard.

  13. Introducing the inbed spinal traction kit for use on patients with low ...

    African Journals Online (AJOL)

    BACKGROUND: Low backpain is a common malady in our environment. BODY: The in-bed spinal Traction kit is designed and assembled by the authors for use in treatment of Low Back Pain. The aim is to reduce cost, shorten period of Hospital stay and immobilization encountered when skin Traction Devices are used in ...

  14. Orthodontic traction of a transmigrated mandibular canine using mini-implant: a case report and review.

    Science.gov (United States)

    Plaza, Sonia Patricia

    2016-12-01

    The patient in this case is an 11-year-old girl, whose mandibular left canine was transmigrated. The traction to the arch was assisted by using a temporary skeletal anchorage device. After 5 months of poor response to traction, the biomechanics were re-adjusted, obtaining effective traction in to the arch in 12 months. After this period, the treatment was completed with fixed orthodontic appliances.

  15. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.

    2015-01-01

    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  16. Traction endurance biomechanical study of metallic suture anchors at different insertion angles

    Directory of Open Access Journals (Sweden)

    Azato Flávia Namie

    2003-01-01

    Full Text Available The suture anchors' insertion angle and its traction resistance are the main subjects of this study. Twenty trials were realized using threaded suture anchors in four diferents angulations (30º /45º /60º /90º in human bone (distal femur and another twenty trials in artificial bone (SawboneTM. The anchors were pulled out being tractioned uprightly from its bone surface by a Kratos Universal test machine. The human bone results found no relation between the main subjects of this study, so whithout statistical value. On the other hand at the artificial bone the insertion angle of 90º beared more traction, being statistically significant compared to the other angles.

  17. Skull traction for cervical spinal injury in Enugu: A 5‑year ...

    African Journals Online (AJOL)

    Forty‑one had the American Spinal Injury Association (ASIA) Grade A whereas 64 had incomplete cord injury of ASIA Grades B–E. Forty‑eight had Crutchfield traction whereas 57 had Gardner‑Wells traction. At the end of treatment, no patient improved among those with ASIA Grades A and B. All the 12 cases of mortality ...

  18. Plica neuropathica causing traction alopecia

    Directory of Open Access Journals (Sweden)

    K Pavithran

    1990-01-01

    Full Text Available A middle aged woman developed matting of the hairs of the scalp following use of a home made shampoo that contained leaves of Hibiscus rosasiensis. The entangled and matted hair mass in the occipital region pulled hairs of the vertex region of the scalp, resulting in a patch of traction alopecia. Release of tension on the hairs by cutting them with scissors prevented further extension of alopecia.

  19. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  20. Wrist Traction During MR Arthrography Improves Detection of Triangular Fibrocartilage Complex and Intrinsic Ligament Tears and Visibility of Articular Cartilage.

    Science.gov (United States)

    Lee, Ryan K L; Griffith, James F; Ng, Alex W H; Nung, Ryan C H; Yeung, David K W

    2016-01-01

    The purpose of this study was to assess the effects of traction during MR arthrography of the wrist on joint space widening, cartilage visibility, and detection of tears of the triangular fibrocartilage complex (TFCC) and intrinsic ligaments. A prospective study included 40 wrists in 39 patients (25 men, 14 women; mean age, 35 years). MR arthrography was performed with a 3-T MRI system with and without axial traction. Two radiologists independently measured wrist and carpal joint space widths and semiquantitatively graded articular cartilage visibility. Using conventional arthrography as the reference standard and working in consensus, they assessed for the presence of tears of the TFCC, lunotriquetral ligament (LTL), and scapholunate ligament (SLL). Visibility of a tear before traction was compared with visibility after traction. With traction, all joint spaces in the wrist and carpus were significantly widened (change, 0.15-1.01 mm; all p < 0.006). Subjective cartilage visibility of all joint spaces improved after traction (all p ≤ 0.048) except for that of the radioscaphoid space, which was well visualized even before traction. Conventional arthrography depicted 24 TFCC tears, seven LTL tears, and three SLL tears. The accuracy of tear detection improved after traction for the TFCC (98% after traction vs 83% before traction), the LTL (100% vs 88%), and the SLL (100% vs 95%). Tear visibility improved after traction for 54% of TFCC tears, 71% of LTL tears, and 66% of SLL tears. Wrist MR arthrography with axial traction significantly improved the visibility of articular cartilage and the detection and visibility of tears of the TFCC and intrinsic ligaments. The results favor more widespread use of traction during MR arthrography of the wrist.

  1. Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV Traction Considering Driving Cycles

    Directory of Open Access Journals (Sweden)

    Thanh Anh Huynh

    2018-05-01

    Full Text Available This paper evaluates the electromagnetic and thermal performance of several traction motors for electric vehicles (EVs. Two different driving cycles are employed for the evaluation of the motors, one for urban and the other for highway driving. The electromagnetic performance to be assessed includes maximum motor torque output for vehicle acceleration and the flux weakening capability for wide operating range under current and voltage limits. Thermal analysis is performed to evaluate the health status of the magnets and windings for the prescribed driving cycles. Two types of traction motors are investigated: two interior permanent magnet motors and one permanent magnet-assisted synchronous reluctance motor. The analysis results demonstrate the benefits and disadvantages of these motors for EV traction and provide suggestions for traction motor design. Finally, experiments are conducted to validate the analysis.

  2. Impedance-Based Harmonic Instability Assessment in Multiple Electric Trains and Traction Network Interaction System

    DEFF Research Database (Denmark)

    Tao, Haidong; Hu, Haitao; Wang, Xiongfei

    2018-01-01

    This paper presents an impedance-based method to systematically investigate the interaction between multi-train and traction networks, focusing on evaluating the harmonic instability problems. Firstly, the interaction mechanism of multi-train and the traction network is represented as a feedback ...

  3. METHODS AND RESEARCH CONCERNING SERVICE LIFE EXTENSION OF SUPORTING STRUCTURES OF TRACTION ROLLING STOCK FOR INDUSTRIAL TRANSPORT

    Directory of Open Access Journals (Sweden)

    O. M. Bondarev

    2014-04-01

    Full Text Available Purpose. The purpose of work is scientifically grounded introduction of the acquired techniques into works for service life extension of the traction and motor rolling stock for industrial transport. Methodology. To achieve the purpose it was analyzed the acquired techniques for service life extension of the traction and motor rolling stock for mainline transport. The acquired techniques during solution of problems concerning the service life extension of rolling stock units were adapted to the locomotives TGM6A and traction aggregates OPE1. Findings. On the basis of experimental and theoretical complex of studies some results were obtained. They gave the ground to determine the possibility of acquired techniques use when solving the problems on service life extension of rolling stock units concerning locomotives TGM6A and traction aggregates OPE1. Originality. On the basis of conducted experimental and theoretical studies scientific maintenance of the works providing extension of service life of traction and motor units of industrial rolling stock was executed. Practical value. Technical solutions and measures, which have to be carried out during operation within the prolonged appointed service life of traction and motor units of industrial rolling stock enterprises using locomotives and traction aggregates to provide the basic technological cycles were developed.

  4. Temperature control of power semiconductor devices in traction applications

    Science.gov (United States)

    Pugachev, A. A.; Strekalov, N. N.

    2017-02-01

    The peculiarity of thermal management of traction frequency converters of a railway rolling stock is highlighted. The topology and the operation principle of the automatic temperature control system of power semiconductor modules of the traction frequency converter are designed and discussed. The features of semiconductors as an object of temperature control are considered; the equivalent circuit of thermal processes in the semiconductors is suggested, the power losses in the two-level voltage source inverters are evaluated and analyzed. The dynamic properties and characteristics of the cooling fan induction motor electric drive with the scalar control are presented. The results of simulation in Matlab are shown for the steady state of thermal processes.

  5. Severe Postoperative Complications may be Related to Mesenteric Traction Syndrome during Open Esophagectomy.

    Science.gov (United States)

    Ambrus, R; Svendsen, L B; Secher, N H; Goetze, J P; Rünitz, K; Achiam, M P

    2017-09-01

    During abdominal surgery, traction of the mesenterium provokes mesenteric traction syndrome, including hypotension, tachycardia, and flushing, along with an increase in plasma prostacyclin (PGI 2 ). We evaluated whether postoperative complications are related to mesenteric traction syndrome during esophagectomy. Flushing, hemodynamic variables, and plasma 6-keto-PGF 1α were recorded during the abdominal part of open ( n = 25) and robotically assisted ( n = 25) esophagectomy. Postoperative complications were also registered, according to the Clavien-Dindo classification. Flushing appeared in 17 (open) and 5 (robotically assisted) surgical cases ( p = 0.001). Mean arterial pressure was stable during both types of surgeries, but infusion of vasopressors during the first hour of open surgery was related to development of widespread (Grade II) flushing ( p = 0.036). For patients who developed flushing, heart rate and plasma 6-keto-PGF 1α also increased ( p = 0.001 and p syndrome manifests more frequently during open than robotically assisted esophagectomy, and postoperative complications appear to be associated with severe mesenteric traction syndrome.

  6. Distributed Active Traction Control System Applied to the RoboCup Middle Size League

    Directory of Open Access Journals (Sweden)

    José Almeida

    2013-10-01

    Full Text Available This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL. The slip control problem is formulated using simple friction models for ISePorto Team Robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies on local slip detection and control at each wheel, with relevant information being relayed to a higher level responsible for global robot motion control. A dedicated one axis control embedded hardware subsystem allowing complex local control, high frequency current sensing and odometric information procession was developed. This local axis control board is integrated in a distributed system using CAN bus communications. The slipping observer was implemented in the axis control hardware nodes integrated in the ISePorto Robots and was used to control and detect loss of traction. An external vision system was used to perform a qualitative analysis of the slip detection and observer performance results are presented.

  7. Changes in dynamics processes of the muscles’ traction under influence of stress-factors

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2006-01-01

    Full Text Available Change of fibers’ dynamic parameters of the frog Rana temporaria skeletal muscle m. tibialis traction under influence of modulated stimulation and aluminium chloride solutions was studied. At 10-4,5·10-4 and 10‑3 M·l-1 concentrations of aluminium chloride the nonlinear decrease of the muscle fibers’ traction parameters was observed.

  8. Posterior-only surgery with preoperative skeletal traction for management of severe scoliosis.

    Science.gov (United States)

    Mehrpour, Saeedreza; Sorbi, Reza; Rezaei, Reza; Mazda, Keyvan

    2017-04-01

    The surgical treatment of severe adolescent spinal deformities is challenging and carries substantial risks of mortality and morbidity. To mitigate this risk, surgeons have employed various methods as this study designed to evaluate the safety and effectiveness of preoperative halo-femoral or halo gravity traction (HGT) followed by posterior-only surgery in the management of severe scoliosis. A total number of 23 patients with severe scoliosis treated by preoperative skeletal traction (halo gravity or halo femoral) followed by posterior fusion and instrumentation in one stage. All patients were followed for a minimum of 2 years after surgery. The average age of the patients was 12.7 years at the time of surgery. Mean of the Cobb angle improved from 99.9° ± 8.2° preoperatively to 75.3° ± 8° post-traction and 49.5° ± 7.7° postoperatively. Kyphosis angle corrected from 56.4° ± 9.5° to 38.6° ± 5.8°. The preop-FVC% was 41 ± 6.1% and after 1 year follow-up FVC% was 45.7 ± 7.7%. No patients required an anterior release due to amount of their deformity. Despite the benefits of modern instrumentation procedures, the treatment of severe scoliosis can be very competing. We think that by applying preoperative halo femoral traction and halo-gravity traction, managing severe scoliosis will be in safe and easy manner and can lead to better deformity correction and less neurological complications and facilitate to avoid anterior operation for severe scoliosis and its related complications.

  9. ANALYSIS OF ENERGY EFFICIENCY OF OPERATING MODES OF ELECTRICAL SYSTEMS WITH THE TRACTION LOADS

    Directory of Open Access Journals (Sweden)

    V. E. Bondarenko

    2017-03-01

    Full Text Available Innovative scenarios of reliable energy supply of transportation process aimed at reducing the specific energy consumption and increase energy efficiency of the systems of electric traction. The paper suggests innovative energy saving directions in traction networks of railways and new circuit solutions accessing traction substations in energy systems networks, ensure energy security of the transportation process. To ensure the energy security of rail transport special schemes were developed to propose the concept of external power traction substations, which would increase the number of connections to the networks of 220 – 330 kV, as well as the creation of transport and energy corridors, development of its own supply of electric networks of 110 kV substations and mobile RP-110 kV of next generation. Therefore, the investment program of the structures owned by the Ukrainian Railways (Ukrzaliznytsia need to be synchronized in their technological characteristics, as well as the criteria of reliability and quality of power supply with the same external energy investment programs. It is found that without any load on left or right supplying arm one of two less loaded phases of traction transformer begins generating specific modes in the supplying three-phase line. Thus, modes of mobile substation cause leakage in one of the phases of the supply line of traction transformers of active-capacitive current, and as a result generating energy in the main power line of 154 kV, which is fixed and calculated by electricity meters. For these three phase mode supply network is necessary to use 1st algorithm, i.e. taking into account the amount of electricity as the energy in all phases. For effective application of reactive power compensation devices in the AC traction power supply systems it is proposed to develop regulatory documentation on necessity of application and the order of choice of parameters and placement of compensation systems taking into

  10. THE FLOW ANALYSIS ABOUT TRACTION OF QUARRY TRAINS

    Directory of Open Access Journals (Sweden)

    G. K. Getman

    2010-04-01

    Full Text Available The method of determination of constituents of expense of electric power on traction of quarry trains is resulted in the article, and also the degree of their intercommunication with the mode of train motion is analysed.

  11. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    Science.gov (United States)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  12. Wavelet Entropy-Based Traction Inverter Open Switch Fault Diagnosis in High-Speed Railways

    Directory of Open Access Journals (Sweden)

    Keting Hu

    2016-03-01

    Full Text Available In this paper, a diagnosis plan is proposed to settle the detection and isolation problem of open switch faults in high-speed railway traction system traction inverters. Five entropy forms are discussed and compared with the traditional fault detection methods, namely, discrete wavelet transform and discrete wavelet packet transform. The traditional fault detection methods cannot efficiently detect the open switch faults in traction inverters because of the low resolution or the sudden change of the current. The performances of Wavelet Packet Energy Shannon Entropy (WPESE, Wavelet Packet Energy Tsallis Entropy (WPETE with different non-extensive parameters, Wavelet Packet Energy Shannon Entropy with a specific sub-band (WPESE3,6, Empirical Mode Decomposition Shannon Entropy (EMDESE, and Empirical Mode Decomposition Tsallis Entropy (EMDETE with non-extensive parameters in detecting the open switch fault are evaluated by the evaluation parameter. Comparison experiments are carried out to select the best entropy form for the traction inverter open switch fault detection. In addition, the DC component is adopted to isolate the failure Isolated Gate Bipolar Transistor (IGBT. The simulation experiments show that the proposed plan can diagnose single and simultaneous open switch faults correctly and timely.

  13. [Long-Term Outcomes of the Treatment of Pediatric Femoral Shaft Fractures Treated with Bryant's Vertical Traction].

    Science.gov (United States)

    Urban, J; Toufar, P; Kloub, M

    2017-01-01

    PURPOSE OF THE STUDY The paper aimed to evaluate the long-term outcomes of the treatment of diaphyseal femur fractures in children treated with Bryant's vertical traction. Moreover, we also assessed the size of overgrowth in the injured femur. MATERIAL AND METHODS The study included 23 patients with 23 femoral shaft fractures treated with Bryant's vertical traction at our department in 2009-2014. The following parameters were assessed: sex, ïnjured side, weight, age, mechanism of injury, potential abuse, type of fracture, duration of traction, and total length of hospital stay. The healing time of the fracture was the same as the duration of traction. Also assessed was the size of femoral shortening after the removal of traction, the presence of skin complications in the course of treatment and potential development of compartment syndrome. At the mean follow-up of 47.8 months (range 22-85 months) from the date of injury the patients were evaluated clinically and radiologically for: length of limbs, presence of rotational deformity, range of motion of knee and hip joints, potential pain or limping, potential scoliosis of the spine and presence of scars after traction. Finally, through a questionnaire we learned about the opinions of parents as to the treatment method and about the possibility of home traction. RESULTS All the fractures healed. There was a total of 17 injured boys and 6 injured girls. Whereas 12 patients sustained a fracture of the left femur, 11 patients sustained a fracture of the right femur. The mean weight of patients at the time of injury was 13.9 kg (range 5-20 kg). The mean age at the time of traction was 30.8 months (range 1-70 months). The injury most frequently occurred from various falls, altogether in 15 cases (65.2%). Traffic accidents were registered as the cause of injury in 3 cases (13%). No abuse was confirmed. The average duration of traction was 19.8 days (range 8-26 days). The total length of hospital stay took on average 23

  14. Physical Basis for Interfacial Traction-Separation Models

    International Nuclear Information System (INIS)

    Neville R. Moody

    2002-01-01

    Many weapon components contain interfaces between dissimilar materials where cracks can initiate and cause failure. In recent years many researchers in the fracture community have adopted a cohesive zone model for simulating crack propagation (based upon traction-separation relations) Sandia is implementing this model in its ASCI codes. There is, however, one important obstacle to using a cohesive zone modeling approach. At the present time traction-separation relations are chosen in an ad hoc manner. The goal of the present work is to determine a physical basis for Traction-Separation (T-U) relations. This report presents results of a program aimed at determining the dependence of such relations on adhesive and bulk properties. The work focused on epoxy/solid interfaces, although the approach is applicable to a broad range of materials. Asymmetric double cantilevered beam and free surface film nanoindentation fracture toughness tests were used to generate a unique set of data spanning length scales, applied mode mixities, and yield (plastic) zone constraint. The crucial roles of crack tip plastic zone size and interfacial adhesion were defined by varying epoxy layer thickness and using coupling agents or special self-assembled monolayers in preparing the samples. The nature of the yield zone was probed in collaborative experiments run at the Advanced Photon Source. This work provides an understanding of the major phenomena governing polymer/solid interfacial fracture and identifies the essential features that must be incorporated in a T-U based cohesive zone failure model. We believe that models using physically based T-U relations provide a more accurate and widely applicable description of interface cracking than models using ad hoc relations. Furthermore, these T-U relations provide an essential tool for using models to tailor interface properties to meet design needs

  15. Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging.

    Science.gov (United States)

    Wang, Yongliang; LeVine, Dana N; Gannon, Margaret; Zhao, Yuanchang; Sarkar, Anwesha; Hoch, Bailey; Wang, Xuefeng

    2018-02-15

    Integrin-transmitted cellular forces are critical for platelet adhesion, activation, aggregation and contraction during hemostasis and thrombosis. Measuring and mapping single platelet forces are desired in both research and clinical applications. Conventional force-to-strain based cell traction force microscopies have low resolution which is not ideal for cellular force mapping in small platelets. To enable platelet force mapping with submicron resolution, we developed a force-activatable biosensor named integrative tension sensor (ITS) which directly converts molecular tensions to fluorescent signals, therefore enabling cellular force mapping directly by fluorescence imaging. With ITS, we mapped cellular forces in single platelets at 0.4µm resolution. We found that platelet force distribution has strong polarization which is sensitive to treatment with the anti-platelet drug tirofiban, suggesting that the ITS force map can report anti-platelet drug efficacy. The ITS also calibrated integrin molecular tensions in platelets and revealed two distinct tension levels: 12-54 piconewton (nominal values) tensions generated during platelet adhesion and tensions above 54 piconewton generated during platelet contraction. Overall, the ITS is a powerful biosensor for the study of platelet mechanobiology, and holds great potential in antithrombotic drug development and assessing platelet activity in health and disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Efficacy of Prone Lumbar Traction on Chronic Discogenic Low Back Pain and Disability

    Directory of Open Access Journals (Sweden)

    Mahmoud Beyki

    2007-09-01

    Full Text Available Objectives: To compare the outcomes of prone and supine lumbar traction in patients with chronic discogenic low back pain. Methods: The test was prospective and randomized control trial. The structure of trial was Urban Physical Medicine and Rehabilitation clinic. Participants was included of A total of 124 subjects with chronic low back pain (LBP and evidence of a degenerative and/or herniated inter-vertebral disk at 1 or more levels of the lumbar spine, who have not our exclusion criteria. There was A 4-week course of lumbar traction, prone or supine in case and control groups consecutively, consisting of six 30-minute sessions every other days, followed by four 30-minute sessions every 3 days. The numeric Visual pain rating scale and the Oswestry Disability Index (ODI were completed at pre-intervention and discharge (within 2 weeks of the last visit. Results: A total of 124 subjects completed the treatment protocol. We noted significant improvements for all post-intervention outcome scores when compared with pre-intervention scores (P<0.01. Also found significant difference between 2 groups in favor of prone traction (P<0.01 Discussion: Traction applied in the prone position for 4 weeks was associated with improvements in pain intensity and ODI scores at discharge, in a sample of patients with activity limiting LBP. However, because we lacked a reasonable long time follow-up, we cannot imply a long lasting relationship between the traction and outcome, and a long time follow-up is suggested.

  17. Lateral forces exerted through ball or bar attachments in relation to the inclination of mini-implant underneath overdentures: in vitro study.

    Science.gov (United States)

    Takagaki, Kyozo; Gonda, Tomoya; Maeda, Yoshinobu

    2015-09-01

    Lateral force to mini-implants should be avoided because mini-implants are weak mechanically because of its small diameter. Overdentures retained by mini-implants are usually formed using ball attachments. However, bar attachments can offer the advantage of splinting the mini-implants. This study examined the effect of attachments in withstanding these lateral forces in tilted mini-implants of overdentures. Strain gauges were attached to the mini-implants (2.5 × 18 mm) embedded in an acrylic resin block. Two mini-implants were inserted vertically (Control) or with one mini-implant inclined at 10° or 20° (10-inclined and 20-inclined, respectively). The female portions of the attachments were secured to the denture base. A prefabricated ball attachment and CAD/CAM-fabricated bar attachment were compared. A vertical load of 49 N was applied to the occlusal surface at a distance 10 mm away from the center of two mini-implants. The lateral force borne by the mini-implants was measured via the attached strain gauge. Mann-Whitney U-test and an analysis of Bonferroni correction were used to compare differences between the two attachments and among the three models (P < 0.05). The lateral force exerted to the inclined mini-implant was significantly greater than that borne by a vertical mini-implant for both attachment types. The lateral force on the 20° inclined mini-implants with bar attachments was smaller than that on mini-implants with ball attachments. Inclined mini-implants are subjected to greater stresses than vertical ones, and a bar attachment can reduce the lateral forces borne by the mini-implant when one mini-implant inclined at 20°. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Severe Postoperative Complications may be Related to Mesenteric Traction Syndrome during Open Esophagectomy

    DEFF Research Database (Denmark)

    Ambrus, R; Svendsen, L B; Secher, N H

    2017-01-01

    . RESULTS: Flushing appeared in 17 (open) and 5 (robotically assisted) surgical cases ( p = 0.001). Mean arterial pressure was stable during both types of surgeries, but infusion of vasopressors during the first hour of open surgery was related to development of widespread (Grade II) flushing ( p = 0......BACKGROUND: During abdominal surgery, traction of the mesenterium provokes mesenteric traction syndrome, including hypotension, tachycardia, and flushing, along with an increase in plasma prostacyclin (PGI2). We evaluated whether postoperative complications are related to mesenteric traction...... syndrome during esophagectomy. METHODS: Flushing, hemodynamic variables, and plasma 6-keto-PGF1α were recorded during the abdominal part of open ( n = 25) and robotically assisted ( n = 25) esophagectomy. Postoperative complications were also registered, according to the Clavien-Dindo classification...

  19. FreedomCAR Advanced Traction Drive Motor Development Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Ley, Josh (UQM Technologies, Inc.); Lutz, Jon (UQM Technologies, Inc.)

    2006-09-01

    The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque

  20. Adaptive control system of dump truck traction electric drive

    Science.gov (United States)

    Bolshunova, O. M.; Korzhev, A. A.; Kamyshyan, A. M.

    2018-03-01

    The paper describes the operational factors that determine the accident rate of a quarry motor vehicle and assessment of their impact on the choice of the operation mode of the traction drive control system.

  1. The Effect of 2 Forms of Talocrural Joint Traction on Dorsiflexion Range of Motion and Postural Control in Those With Chronic Ankle Instability.

    Science.gov (United States)

    Powden, Cameron J; Hogan, Kathleen K; Wikstrom, Erik A; Hoch, Matthew C

    2017-05-01

    Talocrural joint mobilizations are commonly used to address deficits associated with chronic ankle instability (CAI). Examine the immediate effects of talocrural joint traction in those with CAI. Blinded, crossover. Laboratory. Twenty adults (14 females; age = 23.80 ± 4.02 y; height = 169.55 ± 12.38 cm; weight = 78.34 ± 16.32 kg) with self-reported CAI participated. Inclusion criteria consisted of a history of ≥1 ankle sprain, ≥2 episodes of giving way in the previous 3 mo, answering "yes" to ≥4 questions on the Ankle Instability Instrument, and ≤24 on the Cumberland Ankle Instability Tool. Subjects participated in 3 sessions in which they received a single treatment session of sustained traction (ST), oscillatory traction (OT), or a sham condition in a randomized order. Interventions consisted of four 30-s sets of traction with 1 min of rest between sets. During ST and OT, the talus was distracted distally from the ankle mortise to the end-range of accessory motion. ST consisted of continuous distraction and OT involved 1-s oscillations between the mid and end-range of accessory motion. The sham condition consisted of physical contact without force application. Preintervention and postintervention measurements of weight-bearing dorsiflexion, dynamic balance, and static single-limb balance were collected. The independent variable was treatment (ST, OT, sham). The dependent variables included pre-to-posttreatment change scores for the WBLT (cm), normalized SEBTAR (%), and time-to-boundary (TTB) variables(s). Separate 1-way ANOVAs examined differences between treatments for each dependent variable. Alpha was set a priori at P manual therapies.

  2. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.

    Science.gov (United States)

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-04

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised.

  3. Traction Control System for Motorcycles

    Directory of Open Access Journals (Sweden)

    Cardinale Pascal

    2009-01-01

    Full Text Available Traction control is a widely used control system to increase stability and safety of four wheel vehicles. Automatic stability control is used in the BMW K1200R motorcycle and in motoGP competition, but not in other motorcycles. This paper presents an algorithm and a low-cost real-time hardware implementation for motorcycles. A prototype has been developed, applied on a commercial motorcycle, and tested in a real track. The control system that can be tuned by the driver during the race has been appreciated by the test driver.

  4. Demagnetization monitoring and life extending control for permanent magnet-driven traction systems

    Science.gov (United States)

    Niu, Gang; Liu, Senyi

    2018-03-01

    This paper presents a novel scheme of demagnetization monitoring and life extending control for traction systems driven by permanent magnet synchronous motors (PMSMs). Firstly, the offline training is carried to evaluate fatigue damage of insulated gate bipolar transistors (IGBTs) under different flux loss based on first-principle modeling. Then an optimal control law can be extracted by turning down the power distribution factor of the demagnetizing PMSM until all damages of IGBTs turn to balance. Next, the similarity-based empirical modeling is employed to online estimate remaining flux of PMSMs, which is used to update the power distribution factor by referring the optimal control law for the health-oriented autonomous control. The proposed strategy can be demonstrated by a case study of traction drive system coupled with dual-PMSMs. Compared with traditional control strategy, the results show that the novel scheme can not only guarantee traction performance but also extend remaining useful life (RUL) of the system after suffering demagnetization fault.

  5. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison

    International Nuclear Information System (INIS)

    Schmaranzer, Florian; Klauser, Andrea; Henninger, Benjamin; Kogler, Michael; Schmaranzer, Ehrenfried; Forstner, Thomas; Reichkendler, Markus

    2015-01-01

    To assess diagnostic performance of traction MR arthrography of the hip in detection and grading of chondral and labral lesions with arthroscopic comparison. Seventy-five MR arthrograms obtained ± traction of 73 consecutive patients (mean age, 34.5 years; range, 14-54 years) who underwent arthroscopy were included. Traction technique included weight-adapted traction (15-23 kg), a supporting plate for the contralateral leg, and intra-articular injection of 18-27 ml (local anaesthetic and contrast agent). Patients reported on neuropraxia and on pain. Two blinded readers independently assessed femoroacetabular cartilage and labrum lesions which were correlated with arthroscopy. Interobserver agreement was calculated using κ values. Joint distraction ± traction was evaluated in consensus. No procedure had to be stopped. There were no cases of neuropraxia. Accuracy for detection of labral lesions was 92 %/93 %, 91 %/83 % for acetabular lesions, and 92 %/88 % for femoral cartilage lesions for reader 1/reader 2, respectively. Interobserver agreement was moderate (κ = 0.58) for grading of labrum lesions and substantial (κ = 0.7, κ = 0.68) for grading of acetabular and femoral cartilage lesions. Joint distraction was achieved in 72/75 and 14/75 hips with/without traction, respectively. Traction MR arthrography safely enabled accurate detection and grading of labral and chondral lesions. (orig.)

  6. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Schmaranzer, Florian; Klauser, Andrea; Henninger, Benjamin [Medical University Innsbruck, Department of Radiology, Innsbruck (Austria); Kogler, Michael; Schmaranzer, Ehrenfried [District Hospital St. Johann in Tyrol, Department of Radiology, St. Johann in Tyrol (Austria); Forstner, Thomas [Johannes Keppler University, Department for Applied Systems Research and Statistics, Linz (Austria); Reichkendler, Markus [District Hospital St. Johann in Tyrol, Department of Orthopedic Surgery, St. Johann in Tyrol (Austria)

    2015-06-01

    To assess diagnostic performance of traction MR arthrography of the hip in detection and grading of chondral and labral lesions with arthroscopic comparison. Seventy-five MR arthrograms obtained ± traction of 73 consecutive patients (mean age, 34.5 years; range, 14-54 years) who underwent arthroscopy were included. Traction technique included weight-adapted traction (15-23 kg), a supporting plate for the contralateral leg, and intra-articular injection of 18-27 ml (local anaesthetic and contrast agent). Patients reported on neuropraxia and on pain. Two blinded readers independently assessed femoroacetabular cartilage and labrum lesions which were correlated with arthroscopy. Interobserver agreement was calculated using κ values. Joint distraction ± traction was evaluated in consensus. No procedure had to be stopped. There were no cases of neuropraxia. Accuracy for detection of labral lesions was 92 %/93 %, 91 %/83 % for acetabular lesions, and 92 %/88 % for femoral cartilage lesions for reader 1/reader 2, respectively. Interobserver agreement was moderate (κ = 0.58) for grading of labrum lesions and substantial (κ = 0.7, κ = 0.68) for grading of acetabular and femoral cartilage lesions. Joint distraction was achieved in 72/75 and 14/75 hips with/without traction, respectively. Traction MR arthrography safely enabled accurate detection and grading of labral and chondral lesions. (orig.)

  7. On the forces that drive and resist deformation of the south-central Mediterranean: a mechanical model study

    Science.gov (United States)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2018-04-01

    The geodynamics of the Mediterranean comprises a transitional setting in which slab rollback and plate convergence compete to shape the region. In the central Mediterranean, where the balance of driving and resisting forces changes continuously and rapidly since the Miocene, both kinematic and seismo-tectonic observations display a strong variation in deformation style and, therefore possibly, lithospheric forces. We aim to understand the current kinematics in southern Italy and Sicily in terms of lithospheric forces that cause them. The strong regional variation of geodetic velocities appears to prohibit such simple explanation. We use mechanical models to quantify the deformation resulting from large-scale Africa-Eurasia convergence, ESE retreat of the Calabrian subduction zone, pull by the Aegean slab, and regional variations in gravitational potential energy (topography). A key model element is the resistance to slip on major regional fault zones. We show that geodetic velocities, seismicity and sense of slip on regional faults can be understood to result from lithospheric forces. Our most important new finding is that regional variations in resistive tractions are required to fit the observations, with notably very low tractions on the Calabrian subduction contact, and a buildup towards a significant earthquake in the Calabrian fore-arc. We also find that the Calabrian net slab pull force is strongly reduced (compared to the value possible in view of the slab's dimensions) and that trench suction tractions are negligible. Such very small contributions to the present-day force balance in the south-central Mediterranean suggest that the Calabrian arc is now further transitioning towards a setting dominated by Africa-Eurasia plate convergence, whereas during the past 30 Myrs slab retreat continually was the dominant factor.

  8. Integrated Cooling System for Induction Motor Traction Drives, CARAT Program Phase Two Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Charles E. [VPT, Inc., Blacksburg, VA (United States)

    2002-12-03

    This Program is directed toward improvements in electric vehicle/hybrid electric vehicle traction systems, and in particular, the development of a low cost, highly efficient, compact traction motor-controller system targeted for high volume automotive use. Because of the complex inter-relationships between the motor and the controller, the combination of motor and controller must be considered as a system in the design and evaluation of overall cost and performance. The induction motor is ideally suited for use as a traction motor because of its basic ruggedness, low cost, and high efficiency. As one can see in Figure 1.1, the induction motor traction drive has been continually evolving through a succession of programs spanning the past fifteen years. VPT marketed an induction motor-based traction drive system, the EV2000, which proved to be a reliable, high performance system that was used in a wide range of vehicles. The EV2000 drives evolved from the Modular Electric Vehicle Program (MEVP) and has been used in vehicles ranging in size from 3,000 lb. autos and utility vans, to 32,000 lb. city transit buses. Vehicles powered by the EV2000 induction motor powertrain have accumulated over 2 million miles of service. The EV2000 induction motor system represents 1993 state-of-the-art technology, and evolved from earlier induction motor programs that drove induction motor speeds up to 15,000 rpm to reduce the motor size and cost. It was recognized that the improvements in power density and motor cost sought in the PNGV program could only be achieved through increases in motor speed. Esson’s Rule for motor power clearly states that the power obtainable from a given motor design is the product of motor speed and volume. In order to meet the CARAT Program objectives, the maximum speed goal of the induction motor designed in this Program was increased from 15,000 rpm to 20,000 rpm while maintaining the efficiency and durability demonstrated by lower speed designs done in

  9. Lingual traction to facilitate fiber-optic intubation of difficult airways: a single-anesthesiologist randomized trial.

    Science.gov (United States)

    Ching, Yiu-Hei; Karlnoski, Rachel A; Chen, Henian; Camporesi, Enrico M; Shah, Vimal V; Padhya, Tapan A; Mangar, Devanand

    2015-04-01

    Flexible fiber-optic bronchoscope-guided orotracheal intubation is a valuable technique with demonstrated benefits in the management of difficult airways. Despite its popularity with anesthesia providers, the technique is not fail-safe and airway-related complications secondary to failed intubation attempts remain an important problem. We sought to determine the effect of incorporating lingual traction on the success rate of fiber-optic bronchoscope-guided intubation in patients with anticipated difficult airways. In this prospective, randomized, cohort study, we enrolled 91 adult patients with anticipated difficult airways scheduled for elective surgery to undergo fiber-optic bronchoscope-guided orotracheal intubation alone or with lingual traction by an individual anesthesiologist after induction of general anesthesia and neuromuscular blockade. A total of 78 patients were randomized: 39 patients to the fiber-optic bronchoscope-guided intubation with lingual traction group and 39 patients to the fiber-optic bronchoscope-guided intubation alone group. The primary endpoint was the rate of successful first attempt intubations. The secondary outcome was sore throat grade on post-operative day 1. Fiber-optic intubation with lingual traction compared to fiber-optic intubation alone resulted in a higher success rate (92.3 vs. 74.4 %, χ (2) = 4.523, p = 0.033) and greater odds for successful first attempt intubation (OR 4.138, 95 % CI 1.041-16.444, p = 0.044). Sore throat severity on post-operative day 1 was not significantly different but trended towards worsening grades with lingual traction. In this study, lingual traction was shown to be a valuable maneuver for facilitating fiber-optic bronchoscope-guided intubation in the management of patients with anticipated difficult airways.

  10. Frequency of vitreo macular traction in diabetic macular edema on optical coherence tomography

    International Nuclear Information System (INIS)

    Fatima, N.; Islam, Q.U.; Shafique, M.

    2017-01-01

    To determine the frequency of vitreo macular traction (VMT) in patients of diabetic macular edema (DME) as detected on spectral domain optical coherence tomography (SD-OCT). Study Design: Cross-sectional study. Place and Duration of Study: Armed Forces Institute of Ophthalmology (AFIO) Rawalpindi, from May 2013 to Jan 2014. Patients and Methods: Diabetic patients of less than 18 years of age with DME and central macular thickness of more than 250 micrometers (micro m) were included. The patients with idiopathic VMT, history of vitreoretinal surgery, and history of other retinal vascular diseases were excluded from the study. Dilated fundus was done in each patient using 90 D lens on a slit lamp biomicroscope and patients with diabetic retinopathy changes and DME were subjected to OCT examination using Topcon 3-D OCT 1000 (Topcon Corporation). Record of each patient including demographic data, ocular findings and OCT data were endorsed on a pre-devised proforma. Results: Seventy one eyes of 68 patients were included, 36 (50.7 percent) were males and 35 (49.29 percent) were females. Mean age was 53.17 +- 8.79 years. Mean central macular thickness (CMT) was 361.8 +- 109 mu m. VMT was detected in 17 (23.9 percent) eyes. Amongst these, 2(12.5 percent) eyes had vitreofoveal traction, epiretinal membrane was found in 4 (25 percent) eyes and 11(62.5 percent) eyes had extra foveal VMT. Conclusion: Detection of VMT in about a quarter of cases reflects that OCT is a viable tool for early detection of vitreomacular interface abnormalities. (author)

  11. Effects of traction on the blood circulation of femoral head: DSA study on a canine model

    International Nuclear Information System (INIS)

    Yang Xiujun; Xiao Jian; Ren Qile; Fu Shiping; Li Wei; Xiao Xiangsheng

    2010-01-01

    Objective: To study the influence of traction on the blood circulation of femur head and its evaluation by DSA. Methods: Using micro-catheter, transfemoral selective femoral circumflex arteriography in 22 healthy dogs was performed in unilateral hip before (Group A, n=22) and immediately (Group B, n=22), 30 (Group D, n=22), 60 (Group E, n=20), 90 (Group F, n=10), 120 (Group G, n= 10) minutes during 2 kg skin hip traction, and immediately after traction removal (Group H, I, J, L and O) , and 30 minutes after traction removal with 60, 90 and 120 minutes continuous traction (Group K, M and P) , and 60 minutes after traction removal with 90 and 120 minutes continuous traction (Group N and Q). DSA was also performed immediately during 4 kg weight traction before continuous traction in 12 hips (Group C). Blood circulation of the femoral head was evaluated mainly by observing its perfusion and time of circulation. Femur head perfusion was assessed as good scoring 3, poor scoring 2 and extremely poor scoring 1. Femur head circulation time was assessed as normal scoring 3, prolonged scoring 2 and remarkably prolonged scoring 1. Analysis of variance was employed for analysis of the angiographic findings between different groups. Results: Good femoral head perfusion in Group A to Q was 22, 0, 0, 0, 0, 0, 0, 22, 22, 1, 18, 0, 0, 8, 0, 0 and 1 hips respectively, poor one was 0, 22, 8, 22, 15, 4, 1, 0, 0, 15, 2, 4, 6, 2, 1, 3 and 8 hips, respectively, extremely poor one was 0, 0, 4, 0, 5, 6, 9, 0, 0, 4, 0, 6, 4, 0, 9, 7 and 1 hips, respectively; and normal femoral head blood circulation time was 22, 0, 0, 0, 0, 0, 0, 22, 22, 1, 18, 0, 0, 8, 0, 0 and 1 hips, respectively, prolonged one was 0, 22, 9, 22, 15, 4, 2, 0, 0, 15, 2, 5, 7, 2, 2, 4 and 8 hips, respectively, remarkably prolonged one was 0, 0, 3, 0, 5, 6, 8, 0, 0, 4, 0, 5, 3, 0, 8, 6 and 1 hips, respectively. F value of femoral head perfusion among group A and B,group B and C, group B, D, E, F and G, Group H, I, J, L and O

  12. MODELING OF TRACTION SYNCHRONOUS PERMANENT MAGNET MOTOR MODES

    Directory of Open Access Journals (Sweden)

    Y.N. Vas’kovsky

    2013-10-01

    Full Text Available A mathematical model of electromagnetic field for simulating operational modes of traction synchronous motors with permanent magnets intended for electric vehicles is developed. The mathematical model takes into account real-time rotor rotation and allows calculating and analyzing the motor basic running characteristics as time functions.

  13. Vehicle non-exhaust emissions from the tyre-road interface - effect of stud properties, traction sanding and resuspension

    Science.gov (United States)

    Kupiainen, Kaarle J.; Pirjola, Liisa

    2011-08-01

    In Northern cities respirable street dust emission levels (PM 10) are especially high during spring. The spring time dust has been observed to cause health effects as well as discomfort among citizens. Major sources of the dust are the abrasion products from the pavement and traction sand aggregates that are formed due to the motion of the tyre. We studied the formation of respirable abrasion particles in the tyre-road interface due to tyre studs and traction sanding by a mobile laboratory vehicle Sniffer. The measurements were preformed on a test track, where the influence of varying stud weight and stud number per tyre on PM 10 emissions was studied. Studded tyres resulted in higher emission levels than studless tyres especially with speeds 50 km h -1 and higher; however, by using light weight studs, which approximately halves the weight of studs, or by reducing the number of studs per tyre to half, the emission levels decreased by approximately half. Additionally measurements were done with and without traction sand coverage on the pavement of a public road. After traction sanding the emission levels were not affected by tyre type but by formation and suspension of traction sand related dust from the road surface. The emissions after traction sanding decreased as a function of time as passing vehicles' motion shifted the sand grains away from the areas with most tyre-road contact.

  14. Efficient start–up energy management via nonlinear control for eco–traction systems

    International Nuclear Information System (INIS)

    Becherif, M.; Ramadan, H.S.; Ayad, M.Y.; Hissel, D.; Desideri, U.; Antonelli, M.

    2017-01-01

    Highlights: • Renewable HPS for the train start-up within feeding durations. • Dynamic modelling of the modern HPS applied to traction systems. • Port-Controlled Hamiltonian (PCH) design for supercapacitors’ charge/discharge operation. • Experimental validation and applicability of HPSs for energy management in eco-tractions. - Abstract: Electrochemical capacitors, called supercapacitors (SCs) or ultracapacitors, are devices conveniently used for embedded electrical energy management owing to their huge capacitance, low internal resistance and flexible control through power electronic conversion. This paper proposes a main power supply of hybrid Wind Generator (WG)–SC within the train station for feeding the traction onboard SC through specified limited feeding transit durations. Onboard SCs provide the train with the requested start–up self–energy. The hybrid WG–SCs system is an environmental–friendly source that enables the independency on national grid and guarantees an efficient bidirectional power transfer for energy management with enhanced dynamic performance. Therefore, the dynamic modelling and the experimental analysis of the modern hybrid WG–SCs used for managing the charge/discharge operation of SCs at Unity Power Factor (UPF) mode are presented. For this purpose, the Port–Controlled Hamiltonian (PCH) methodology is deduced and explicitly presented. Simulation results, via MATLAB™, reveal that the proposed PCH control methodology can be successfully implemented to ensure acceptable system dynamic behavior. Numerical results are validated with experimental measurements to investigate the significance of the PCH approach for the energy management operation in eco-tractions.

  15. The history of modern spinal traction with particular reference to neural disorders.

    Science.gov (United States)

    Shterenshis, M V

    1997-03-01

    The last 200 years of the history of spinal traction is described in the present article. The study starts at the end of the 18th century with the works of JA Venel (1789) who tried to apply the Hippocratic idea to modern surgery. Orthopedic specialists of the last century were mostly preoccupied with corsets and the method gained broader popularity when neurologists paid attention to the similar method of suspension. The Russian neurologist Osip Mochutkovsky described suspension as a method for the treatment of tabes dorsalis in an article published in the Russian magazine 'Vratch' in 1883. His works became known in Europe when JM Charcot paid attention to it and published a special short monograph on this subject in 1889. This work was translated into English (1889) and Russian (1890) and the method became popular in the treatment of tabes dorsalis and other neurological diseases. The eminent Russian neurologist VM Bekhterev proposed the combination of body suspension with cervical traction (1893). Some years later Gilles de la Tourette promoted the use of spinal traction in his neurological clinic (1897). Unfortunately neurologists worked without the cooperation of orthopedic specialists. During the first decades of the 20th century suspension was also replaced by traction in neurology. This method was used by both neurologists and orthopedic specialists but in the last decades neurologists lost their interests in it and it found greater use in traumatology and in spinal surgery where it is still in use today.

  16. Understanding the traction of tennis surfaces

    OpenAIRE

    Clarke, James; Carré, Matt; Richardson, Andrea; Yang, Zhijun; Damm, Loic; Dixon, Sharon

    2011-01-01

    The traction provided by a footwear-surface interaction can have an impact on player safety, performance and overall enjoyment of sport. Mechanical test methods used for the testing and categorisation of safe playing surfaces do not tend to simulate loads occurring during participation on the surface, and thus are unlikely to predict human response to the surface. For example, the pendulum system routinely employed by the International Tennis Federation (I.T.F.) utilises a standard rubber ‘fo...

  17. Traction for low back pain with or without sciatica: an updated systematic review within the framework of the Cochrane collaboration

    NARCIS (Netherlands)

    Clarke, J.; van Tulder, M.; Blomberg, S; de Vet, H.C.W.; van der Heijden, G; Bronfort, G.

    2006-01-01

    STUDY DESIGN. Systematic review. OBJECTIVE. To determine if traction is more effective than reference treatments, placebo/sham traction, or no treatment for low back pain (LBP). SUMMARY OF BACKGROUND DATA. Various types of traction are used in the treatment of LBP, often in conjunction with other

  18. COMPROMISE, OPTIMAL AND TRACTIONAL ACCOUNTS ON PARETO SET

    Directory of Open Access Journals (Sweden)

    V. V. Lahuta

    2010-11-01

    Full Text Available The problem of optimum traction calculations is considered as a problem about optimum distribution of a resource. The dynamic programming solution is based on a step-by-step calculation of set of points of Pareto-optimum values of a criterion function (energy expenses and a resource (time.

  19. Sustainability Aspects of Energy Conversion in Modern High-Speed Trains with Traction Induction Motors

    OpenAIRE

    Marc A. Rosen; Doru A. Nicola; Cornelia A. Bulucea; Daniel C. Cismaru

    2015-01-01

    Some aspects are illustrated of energy conversion processes during the operation of electric railway vehicles with traction induction motors, in order to support transport systems’ sustainability. Increasing efforts are being expended to enhance the sustainability of transportation technologies and systems. Since electric drive systems are used with variable voltage variable frequency (VVVF) inverters and traction induction motors, these machines with appropriate controls can realize both tra...

  20. Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration

    Science.gov (United States)

    Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

    2012-01-01

    NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid

  1. Simulation of Trolleybus Traction Induction Drive With Supercapacitor Energy Storage System

    Science.gov (United States)

    Brazis, V.; Latkovskis, L.; Grigans, L.

    2010-01-01

    The article considers the possibilities of saving the regenerative braking energy in Škoda 24Tr type trolleybuses by installing the onboard supercapacitor energy storage system (ESS) and improving its performance with automated switching to the autonomous traction mode. Proposed is an ESS control system with constant DC bus voltage in the supercapacitor charging mode and supercapacitor current proportional to the AC drive current in the discharging mode. The authors investigate stability of the trolleybus ESS control system operating together with AC traction drive in various overhead voltage failure modes. The co-simulation of ESS operation was done by Matlab/Simulink AC drive and PSIM ESS continuous models.

  2. Molecular force sensors to measure stress in cells

    International Nuclear Information System (INIS)

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F

    2017-01-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages. (topical review)

  3. The endoplasmic reticulum exerts control over organelle streaming during cell expansion.

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica

    2014-03-01

    Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.

  4. Improving mandibular contour: A pilot study for indication of PPLA traction thread use.

    Science.gov (United States)

    Guida, Stefania; Persechino, Flavia; Rubino, Giuseppe; Pellacani, Giovanni; Farnetani, Francesca; Urtis, Giacomo Giovanni

    2018-02-20

    The request for less-aggressive procedures to improve mandibular contour is increasing. Several kinds of threads have been used for this purpose. Nevertheless, PLLA (poly-L-Lactic acid) traction thread procedure has not been previously described. To investigate the role of PLLA traction threads in improving mandibular contour. Twenty women were enrolled in the study. They were differentially classified for skin laxity. Patients were treated in a single session with two PLLA traction threads per side. Specific post-procedure instructions were given to patients, and complications occurred after the procedures were estimated. A Fisher's t-test was performed to identify criteria related to longevity of results. We found longevity of results to be associated with younger age (p = 0.001), absence of severe skin laxity of jawline and neck (p = 0.001), and aesthetic satisfaction (p = 0.024). Edema, swelling, and temporary skin contour irregularities were found in most cases (N = 16; 80%), whereas paresthesia resolving without sequelae in 2-4 weeks was found in two cases (10%). Our results show that selected patients, younger than 51 and showing a mild-moderate degree of skin laxity of jawline and neck angle represent ideal candidates for PLLA traction thread treatment. Further studies will be performed to confirm our results.

  5. Operation analysis of AC traction motors in terms of electromagnetic torque capability on sustainable railway vehicles

    Directory of Open Access Journals (Sweden)

    Bulucea Cornelia A.

    2016-01-01

    Full Text Available Sustainable operation of electric railway systems represents a significant purpose nowadays in the development of high power and high speed locomotives and trains. At present, high speed electric vehicles mostly work with three-phase induction motors or three-phase synchronous motors as traction motors. The two electric machine types have different efficiencies at different operation points, and experience differences with respect to safety, speed and power, energy use and exergy efficiency. An important issue that correlates these aspects is the electromagnetic torque developed by an electric traction motor. In order to provide an overview of the technical performance of the operation of sustainable railway systems, a detailed analysis is carried out of the electromagnetic torque capability of AC electric motors utilized as traction motors in modern locomotives of high power and/or high speed. The results of this work may help in enhancing the main criteria for optimising the safe and sustainable operation of electric railway traction systems.

  6. Investigation of efficiency of electric drive control system of excavator traction mechanism based on feedback on load

    Science.gov (United States)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-05-01

    The article presents the results of a study of the efficiency of the electric drive control system of the traction mechanism of a dragline based on the use of feedback on load in the traction cable. The investigations were carried out using a refined electromechanical model of the traction mechanism, which took into account not only the elastic elements of the gearbox, the backlashes in it and the changes in the kinematic parameters of the mechanism during operation, but also the mechanical characteristics of the electric drive and the features of its control system. By mathematical modeling of the transient processes of the electromechanical system, it is shown that the introduction of feedback on the load in the elastic element allows one to reduce the dynamic loads in the traction mechanism and to limit the elastic oscillations of the actuating mechanism in comparison with the standard control system. Fixed as a general decrease in the dynamic load of the nodes of traction mechanism in the modes of loading and latching of the bucket, and a decrease the operating time of the mechanism at maximum load. At the same time, undesirable phenomena in the operation of the electric drive were also associated with the increase in the recovery time of the steady-state value of the speed of the actuating mechanism under certain operating conditions, which can lead to a decrease in the reliability of the mechanical part and the productivity of the traction mechanism.

  7. Integrated Traction Control Strategy for Distributed Drive Electric Vehicles with Improvement of Economy and Longitudinal Driving Stability

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2017-01-01

    Full Text Available This paper presents an integrated traction control strategy (ITCS for distributed drive electric vehicles. The purpose of the proposed strategy is to improve vehicle economy and longitudinal driving stability. On high adhesion roads, economy optimization algorithm is applied to maximize motors efficiency by means of the optimized torque distribution. On low adhesion roads, a sliding mode control (SMC algorithm is implemented to guarantee the wheel slip ratio around the optimal slip ratio point to make full use of road adhesion capacity. In order to avoid the disturbance on slip ratio calculation due to the low vehicle speed, wheel rotational speed is taken as the control variable. Since the optimal slip ratio varies according to different road conditions, Bayesian hypothesis selection is utilized to estimate the road friction coefficient. Additionally, the ITCS is designed for combining the vehicle economy and stability control through three traction allocation cases: economy-based traction allocation, pedal self-correcting traction allocation and inter-axles traction allocation. Finally, simulations are conducted in CarSim and Matlab/Simulink environment. The results show that the proposed strategy effectively reduces vehicle energy consumption, suppresses wheels-skid and enhances the vehicle longitudinal stability and dynamic performance.

  8. Comparative study between lateral decubitus and traction table for treatment of pertrochanteric fractures with cephalomedullary nails ☆

    Directory of Open Access Journals (Sweden)

    Eric Fernando de Souza

    Full Text Available ABSTRACT OBJECTIVE: To perform a retrospective radiographic assessment of the reduction and implant position in the femoral head in patients with pertrochanteric fractures treated with cephalomedullary nailing in the lateral position versus traction table. METHODS: Radiographs of patients with pertrochanteric fracture of the femur treated with cephalomedullary nailing in the lateral position and traction table were retrospectively evaluated. For the evaluation we used the anteroposterior radiographic view of the pelvis and the lateral view of the affected side. The cervicodiaphyseal angle, the tip-apex distance (TAD, and the spatial position of the cephalic component in the head were measured. Two patient groups were created, one group operated on the traction table and another group operated in the lateral position. RESULTS: Regarding the cervicodiaphyseal angle observed in the traction table group, the results of 11 patients (61.1% were outside the acceptable parameters proposed in the present study. Both groups were equivalent regarding TAD and the position of the cephalic component in the head. CONCLUSION: A difference in the cervicodiaphyseal angle was observed; the group operated on the traction table had 11 patients (61.1% whose measurements were outside the acceptable parameters.

  9. Traction and lubricant film temperature as related to the glass transition temperature and solidification. [using infrared spectroscopy on EHD contacts

    Science.gov (United States)

    Lauer, J. L.; Peterkin, M. E.

    1978-01-01

    Does a traction fluid have to be a glass or solid under operating conditions. Infrared spectra on dynamic EHD contacts of several types of fluid were used to determine the surface and oil-film temperatures. Polarized spectral runs were made to study molecular alignment. Static glass transition pressures at appropriate temperatures were between 0.1 and 2.0 GPa, with the traction fluid showing the highest. In the EHD contact region, the traction fluid showed both the highest film temperatures as well as the greatest degree of molecular alignment. A plot of the difference between the film and surface temperatures vs shear rate resulted in a master plot valid for all the fluids. From this work, the authors propose a model of 'fluid' traction, where friction between parallel rough molecules provides the traction.

  10. A simple mechanism for measuring and adjusting distraction forces during maxillary advancement.

    Science.gov (United States)

    Suzuki, Eduardo Yugo; Suzuki, Boonsiva

    2009-10-01

    Direct measurement of distraction forces on the craniofacial skeleton has never been reported. The present report describes the development of a method of assessing and adjusting traction forces applied through maxillary distraction osteogenesis. A simple mechanism to measure and adjust tension force during maxillary distraction osteogenesis was developed and connected bilaterally to the traction screws of a rigid external distraction device. Measurements were carried out before and after activation using a Shimpo (Nidec-Shimpo America Corporation, Itasca, IL) force gauge in 4 patients (2 with unilateral cleft lip and/or palate, 1 with bilateral cleft lip and palate, and 1 with noncleft) during the distraction process. Activation was performed twice a day at a rate of 1 mm/day. The average maximum force applied throughout the distraction period was 42.5 N (range 16.4 to 65.3 N), with increments, after activation, averaging 10.5 N (range 7.9 to 15.7 N). In patients with unilateral cleft lip and/or palate, distraction forces on the larger segment were 65.1% higher than on the lesser segment. A differential pattern of forces was also observed in the patients with asymmetric noncleft. However, the differential forces between lateral segments were not observed in the patient with bilateral cleft lip and palate. During the activation period, distraction forces progressively increased, whereas the amount of maxillary movement decreased. Pain and discomfort were reported with high forces. Through this mechanism, direct measurement and adjustment of distraction forces during maxillary advancement was possible. The unbalanced pattern of forces observed in patients with cleft suggests the necessity of individual adjustments for controlling pain and clinical symptoms. Accordingly, assessment of distraction forces during maxillary distraction osteogenesis is extremely helpful in understanding the biomechanics of the distraction process.

  11. Trace of a water droplet exerted by coulomb force. 2

    International Nuclear Information System (INIS)

    Sugita, Hideaki; Murakami, Takuro; Nakazawa, Takeshi; Nakasako, Makoto; Yoshimura, Takuma; Osarakawa, Toshihiro

    2002-01-01

    The movement of water droplets in the air-water separator is based on the principle of the electrostatic precipitator with positive and negative poles. The mechanism of separation is that the water droplets charged negative ions or electrons by corona discharge are collected on the positive pole by Coulomb force operating between the both poles. This paper describes the theoretical analyses that how the movement of a water droplet is affected by Coulomb force in the air-water separator. (author)

  12. [The application of delayed skin grafting combined traction in severe joint cicatricial contracture].

    Science.gov (United States)

    Xu, Zihan; Zhang, Zhenxin; Wang, Benfeng; Sun, Yaowen; Guo, Yadong; Gao, Wenjie; Qin, Gaoping

    2014-11-01

    To investigate the effect of delayed skin grafting combined traction in severe joint cicatricial contracture. At the first stage, the joint cicatricial contracture was released completely with protection of vessels, nerves and tendons. The wound was covered with allogenetic skin or biomaterials. After skin traction for 7-14 days, the joint could reach the extension position. Then the skin graft was performed on the wound. 25 cases were treated from Mar. 2000 to May. 2013. Primary healing was achieved at the second stage in all the cases. The skin graft had a satisfactory color and elasticity. Joint function was normal. All the patients were followed up for 3 months to 11 years with no hypertrophic scar and contraction relapse, except for one case who didn' t have enough active exercise on shoulder joint. Delayed skin grafting combined traction can effectively increase the skin graft survival rate and improve the joint function recovery.

  13. Concept for a Differential Lock and Traction Control Model in Automobiles

    Science.gov (United States)

    Shukul, A. K.; Hansra, S. K.

    2014-01-01

    The automobile is a complex integration of electronics and mechanical components. One of the major components is the differential which is limited due to its shortcomings. The paper proposes a concept of a cost effective differential lock and traction for passenger cars to sports utility vehicles alike, employing a parallel braking mechanism coming into action based on the relative speeds of the wheels driven by the differential. The paper highlights the employment of minimum number of components unlike the already existing systems. The system was designed numerically for the traction control and differential lock for the world's cheapest car. The paper manages to come up with all the system parameters and component costing making it a cost effective system.

  14. Force balancing in mammographic compression

    International Nuclear Information System (INIS)

    Branderhorst, W.; Groot, J. E. de; Lier, M. G. J. T. B. van; Grimbergen, C. A.; Neeter, L. M. F. H.; Heeten, G. J. den; Neeleman, C.

    2016-01-01

    Purpose: In mammography, the height of the image receptor is adjusted to the patient before compressing the breast. An inadequate height setting can result in an imbalance between the forces applied by the image receptor and the paddle, causing the clamped breast to be pushed up or down relative to the body during compression. This leads to unnecessary stretching of the skin and other tissues around the breast, which can make the imaging procedure more painful for the patient. The goal of this study was to implement a method to measure and minimize the force imbalance, and to assess its feasibility as an objective and reproducible method of setting the image receptor height. Methods: A trial was conducted consisting of 13 craniocaudal mammographic compressions on a silicone breast phantom, each with the image receptor positioned at a different height. The image receptor height was varied over a range of 12 cm. In each compression, the force exerted by the compression paddle was increased up to 140 N in steps of 10 N. In addition to the paddle force, the authors measured the force exerted by the image receptor and the reaction force exerted on the patient body by the ground. The trial was repeated 8 times, with the phantom remounted at a slightly different orientation and position between the trials. Results: For a given paddle force, the obtained results showed that there is always exactly one image receptor height that leads to a balance of the forces on the breast. For the breast phantom, deviating from this specific height increased the force imbalance by 9.4 ± 1.9 N/cm (6.7%) for 140 N paddle force, and by 7.1 ± 1.6 N/cm (17.8%) for 40 N paddle force. The results also show that in situations where the force exerted by the image receptor is not measured, the craniocaudal force imbalance can still be determined by positioning the patient on a weighing scale and observing the changes in displayed weight during the procedure. Conclusions: In mammographic breast

  15. INTELLIGENT DIAGNOSTIC SYSTEM OF EMERGENCY SITUATIONS IN TRACTION SUBSTATIONS DC

    Directory of Open Access Journals (Sweden)

    Sh. N. Nasyrov

    2009-09-01

    Full Text Available In the article the architecture and algorithm of operating an expert system providing the efficiency of functioning the electric equipment for traction substation as well as the four-parameter belonging function are determined.

  16. Traction control of an electric formula student racing car

    NARCIS (Netherlands)

    Loof, J.W.; Besselink, I.J.M.; Nijmeijer, H.

    2014-01-01

    This article describes the design of a traction control system in an electric Formula Student vehicle. In many race applications the accelerator pedal is difficult to control for an in-experienced driver, especially in the case of electric vehicles, where a large torque is available from standstill.

  17. Brisement force in fibrous ankylosis: A technique revisited

    Directory of Open Access Journals (Sweden)

    Udupikrishna M Joshi

    2016-01-01

    Full Text Available Fibrous ankylosis is a common complication of trauma to the temporomandibular joint (TMJ in children. Proper treatment and regular follow-up is necessary for its successful management. This report highlights a case of posttraumatic fibrous ankylosis successfully managed with brisement force-gradual tractional forces applied to the TMJ under local anesthesia without any associated complications. Mouth opening increased significantly from 15 to 35 mm. The patient was advised to perform rigorous physiotherapy at home, to maintain interincisal opening of 35 mm. The case was followed up for 6 months with no decrease in mouth opening.

  18. Posture manipulation for rescue activity via small traction robots

    International Nuclear Information System (INIS)

    Iwano, Yuki; Osuka, Koichi; Amano, Hisanori

    2006-01-01

    We discuss a conceptual design of rescue robots against nuclear-power plant accidents. We claim that the rescue robots in nuclear-power plants should have the following properties. (1) The size is small. (2) The structure is simple. (3) The number of the robots is large. This paper studies the rescue robots to rescue people in an area polluted with radioactive leakage in nuclear power institutions. In particular, we propose a rescue system which consists of a group of small mobile robots. First, small traction robots set the posture of the fainted victims to carry easily, and carry them to the safety space with the mobile robots for the stretcher composition. In this paper, we describe the produced small traction robots. And, we confirm that the robots can manipulate a 40 kg dummy doll's posture. We also examine the optimal number of robots from a perspective of working efficiency in the assumption spot. (author)

  19. Fabrication of Superconducting Traction Transformer for Railway Rolling Stock

    International Nuclear Information System (INIS)

    Kamijo, H; Hata, H; Fujimoto, H; Inoue, A; Nagashima, K; Ikeda, K; Yamada, H; Sanuki, Y; Tomioka, A; Uwamori, K; Yoshida, S; Iwakuma, M; Funaki, K

    2006-01-01

    We designed a floor type single-phase 4 MVA superconducting traction transformer for Shinkansen rolling stock. In this study, we fabricated a prototype superconducting traction transformer based on this design. This transformer of the core-type design has a primary winding, four secondary windings and a tertiary winding. The windings are wound by Bi2223 superconducting tapes and cooled by subcooled liquid nitrogen. The core is kept at room temperature. The cryostat is made of GFRP with two holes to pass core legs through. The outer dimensions are about 1.2m x 0.7m x 1.9m excluding the compressor. Its weight is 1.71t excluding that of refrigerator and compressor. The transformer was tested according to Japanese Industrial Standards (JIS)-E5007. We confirmed that the performance of transformer has been achieved almost exactly as planned. The rated capacity is equivalent to 3.5MVA in the superconducting state

  20. Comparison between effectiveness of Mechanical and Manual Traction combined with mobilization and exercise therapy in Patients with Cervical Radiculopathy.

    Science.gov (United States)

    Bukhari, Syed Rehan Iftikhar; Shakil-Ur-Rehman, Syed; Ahmad, Shakeel; Naeem, Aamer

    2016-01-01

    Cervical radiculopathy is a common neuro-musculo-skeletal disorder causing pain and disability. Traction is part of the evidence based manual physical therapy management due to its mechanical nature, type of traction and parameters related to its applicability and are still to be explored more through research. Our objective was to determine the Effects of Mechanical versus Manual Traction in Manual Physical Therapy combined with segmental mobilization and exercise therapy in the physical therapy management of Patients with Cervical Radiculopathy. This randomized control trial was conducted at department of physical therapy and rehabilitation, Rathore Hospital Faisalabad, from February to July 2015. Inclusion criteria were both male and female patients with evident symptoms of cervical spine radiculopathy and age ranged between 20-70 years. The exclusion criteria were Patients with history of trauma, neck pain without radiculopathy, aged less than 20 and more than 70. A total of 72 patients with cervical radiculopathy were screened out as per the inclusion criteria, 42 patients were randomly selected and placed into two groups by toss and trial method, and only 36 patients completed the study, while 6 dropped out. The mechanical traction was applied in group A and manual traction in group B along with common intervention of segmental mobilization and exercise therapy in both groups for 6 weeks. The patient's outcomes were assessed by self reported NPRS and NDI at the baseline and after completion of 06 weeks exercise program at 3 days per week. The data was analyzed through SPSS version-21, and paired T test was applied at 95% level significance to determine the statistical deference between two groups. Clinically the group of patients treated with mechanical traction managed pain (mean pre 6.26, mean post 1.43), and disability (mean pre 24.43 and mean post 7.26) more effectively as compared with the group of patients treated with manual traction (Pain mean pre 6

  1. Group traction drive as means to increase energy efficiency of lokomotives of open-pit transport

    Science.gov (United States)

    Antipin, D. Ya; Izmerov, O. V.; Bishutin, S. G.; Kobishchanov, V. V.

    2017-10-01

    Questions of possible use of a group drive for locomotives of an open-pit transport are considered. The possibility of a significant reduction of traction costs in the case of a combination of a group traction drive with devices for the non-inertial regulation of the coefficient of friction between the wheel and the rail has been shown, and new patentable solutions have been proposed.

  2. Perceived exertion during muscle fatigue as reflected in movement-related cortical potentials: an event-related potential study.

    Science.gov (United States)

    Guo, Feng; Sun, Yong-Jun; Zhang, Ri-Hui

    2017-02-08

    The aim of this study was to explore the mechanism on perceived exertion during muscle fatigue. A total of 15 individuals in the fatigue group and 13 individuals in the nonfatigue group were recruited into this study, performing 200 intermittent handgrip contractions with 30% maximal voluntary contraction. The force, surface electromyography (sEMG), movement-related cortical potentials (MRCPs), and rating perception of effort (RPE) were combined to evaluate the perceived exertion during muscle fatigue. The maximal handgrip force significantly decreased (Pfatigue. The RPE scores reported by the individuals and the motor potential amplitude of MRCPs in the fatigue group significantly increased (Pfatigue but could also reflect the peripheral local muscle fatigue.

  3. Electrical Energy Quality Studies in 3 kV DC Electric Traction Systems for Different Schemes of Connection Traction Substation to Power Utility System

    Directory of Open Access Journals (Sweden)

    Leszek Mierzejewski

    2004-01-01

    Full Text Available The paper present aspects of DC electric traction system influence on electric energetic system. Study is based on modeling and simulation of electrified railway line. After simulation, there was performed analysis of energy quality, whitch using results of simulation and supply systems parameters.

  4. Digital Model of Railway Electric Traction Lines

    Science.gov (United States)

    Garg, Rachana; Mahajan, Priya; Kumar, Parmod

    2017-08-01

    The characteristic impedance and propagation constant define the behavior of signal propagation over the transmission lines. The digital model for railway traction lines which includes railway tracks is developed, using curve fitting technique in MATLAB. The sensitivity of this model has been computed with respect to frequency. The digital sensitivity values are compared with the values of analog sensitivity. The developed model is useful for digital protection, integrated operation, control and planning of the system.

  5. Ulnar nerve injury due to lateral traction device during shoulder arthroscopy: Was it avoidable?

    Directory of Open Access Journals (Sweden)

    Vivek Pandey

    2017-01-01

    Full Text Available Most of the nerve injuries reported during shoulder arthroscopy in a beach chair, or lateral position is related to inappropriate patient positioning or excess traction. The lateral decubitus position is more vulnerable for traction-related neuropraxia. The present case serves as an important lesson from an avoidable situation of “having a one track mind” of the surgical team during the arthroscopic repair of shoulder instability performed in the lateral decubitus position. The operating surgeon must supervise the appropriate positioning of the patient on operation table and adequate padding of vulnerable bony points before beginning of shoulder arthroscopy to prevent any position-related nerve injuries. This is probably the first case to illustrate an unusual cause of ulnar nerve compression particularly related to the use of an additional traction device in the arthroscopic repair of shoulder instability performed in lateral decubitus position, which has not been previously defined.

  6. Investigation of wear of insulation of traction engines of locomotives in operation

    Directory of Open Access Journals (Sweden)

    Nefedov Roman

    2018-01-01

    Full Text Available The article analyzes reliability of traction electric motors in operation. It is shown that the greatest number of failure falls on the winding of the armature. Investigation of the causes of increased wear of the armature winding insulation was carried out using the dynamic thermal model of the electric motor. The model is represented by 150 final elements and takes into account the conditions of thermal conductivity between the nodes and heat transfer to the cooling air. Verification of the model was carried out by comparison with the results of thermal tests of electric motors of the series HБ-406 and ЭД-118. The field of temperatures in the traction motor under various loads was investigated. It is shown that in stationary mode the temperature change along the armature winding can reach 60C. Modeling of thermal dynamic processes in the engine during its operation on the locomotive allowed to identify the most stressed nodes. It is shown that the resource of the electric motor is determined by the wear of the insulation of the frontal part of the armature winding on the side of the traction drive of the locomotive.

  7. A case of traction retinal detachment in a patient with Gaucher disease.

    Science.gov (United States)

    Watanabe, Akira; Gekka, Tamaki; Arai, Kota; Tsuneoka, Hiroshi

    2017-01-01

    This is the first report of vitreous surgery for traction retinal detachment in a patient with type III Gaucher disease with multiple vitreous opacities. A 16-year-old boy who was diagnosed with Gaucher disease at age two and was undergoing enzyme replacement therapy presented with numerous white opacities of varying sizes in the vitreous bodies of both eyes. Visual acuity was 20/40 in the right eye and 20/2000 in the left eye. The retina of the left eye was completely detached, and vitreous surgery was performed. Liquefaction of the vitreous body was advanced, and the central part of the vitreous cavity contained almost no vitreous humor. The macular region was successfully aspirated with a vitreous cutter to form a posterior vitreous detachment. From the optic disk to the nasal side, however, posterior vitreous detachment formation was prevented by strong adhesions between the retina and the vitreous body. The traction retinal detachment of the posterior fundus improved after vitreous body resection alone. Traction retinal detachment may occur as a result of severe vitreous liquefaction in cases of Gaucher disease with numerous vitreous opacities.

  8. Pneumatic-type dynamic traction and flexion splint for treating patients with extension contracture of the metacarpophalangeal joint.

    Science.gov (United States)

    Nakayama, Jun; Horiki, Mituru; Denno, Kakurou; Ogawa, Kazunori; Oka, Hisao; Domen, Kazuhisa

    2016-02-01

    Collateral ligament shortening causes extension contractures of the metacarpophalangeal joint, and dynamic flexion splinting has been widely used to treat these contractures; however, there are various problems with these approaches. We developed a novel, pneumatic-type dynamic traction and flexion splint to solve these problems. A total of 25 fingers were treated with the dynamic traction and flexion splint for 8 weeks. Every 2 weeks, the average metacarpophalangeal joint flexion angle, total active motion, grasp strength, and pain scores were assessed. The finger flexion angle was significantly greater at the final evaluation, starting after 6 weeks of treatment (p < 0.05), than prior to treatment. Similarly, the total active motion results improved significantly over 8 weeks. Our results show that use of the dynamic traction and flexion splint improves patient finger functioning and flexural angle. The dynamic traction and flexion (DTF) splint appears to be effective for treating patients. © The International Society for Prosthetics and Orthotics 2015.

  9. Parametric tests of a traction drive retrofitted to an automotive gas turbine

    Science.gov (United States)

    Rohn, D. A.; Lowenthal, S. H.; Anderson, N. E.

    1980-01-01

    The results of a test program to retrofit a high performance fixed ratio Nasvytis Multiroller Traction Drive in place of a helical gear set to a gas turbine engine are presented. Parametric tests up to a maximum engine power turbine speed of 45,500 rpm and to a power level of 11 kW were conducted. Comparisons were made to similar drives that were parametrically tested on a back-to-back test stand. The drive showed good compatibility with the gas turbine engine. Specific fuel consumption of the engine with the traction drive speed reducer installed was comparable to the original helical gearset equipped engine.

  10. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.

    Directory of Open Access Journals (Sweden)

    Ramaswamy Krishnan

    Full Text Available Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.

  11. Electromagnetic force support for thermonuclear device

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Yoshida, Kiyoshi; Tachikawa, Nobuo; Omori, Junji.

    1992-01-01

    The device of the present invention certainly supports electromagnetic force exerted on toroidal magnetic field coils. That is, a pair of support members are disposed being abutted against each other between toroidal magnetic field coils disposed radially in the torus direction of a vacuum vessel. Both of the support members are connected under an insulative state by way of an insulative structural portion having an insulation key. In addition, each of the support members and each of the toroidal magnetic field coils are connected by electromagnetic force support portions having a metal taper key and a metal spacer and supporting the electromagnetic force. With such a constitution, the electromagnetic force exerted on the toroidal magnetic field coils is supported by the electromagnetic force support portion having the metal taper key and the metal spacer. As a result, stable electromagnetic force support can be attained. Further, since the insulative structural portion has the insulation key, it can be assembled easily. (I.S.)

  12. Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony.

    Science.gov (United States)

    Dumbali, Sandeep P; Mei, Lanju; Qian, Shizhi; Maruthamuthu, Venkat

    2017-10-01

    Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.

  13. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

    Science.gov (United States)

    Khetan, Sudhir; Guvendiren, Murat; Legant, Wesley R.; Cohen, Daniel M.; Chen, Christopher S.; Burdick, Jason A.

    2013-05-01

    Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular traction, independently of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). Moreover, switching the permissive hydrogel to a restrictive state through delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Furthermore, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.

  14. Design of salient pole PM synchronous machines for a vehicle traction application. Analysis and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Rilla, M.

    2012-07-01

    This doctoral thesis presents a study on the development of a liquid-cooled frame salient pole permanent-magnet-exited traction machine for a four-wheel-driven electric car. The emphasis of the thesis is put on a radial flux machine design in order to achieve a light-weight machine structure for traction applications. The design features combine electromagnetic and thermal design methods, because traction machine operation does not have a strict operating point. Arbitrary load cycles and the flexible supply require special attention in the design process. It is shown that accurate modelling of the machine magnetic state is essential for high-performance operation. The saturation effect related to the cross-saturation has to be taken carefully into account in order to achieve the desired operation. Two prototype machines have been designed and built for testing: one totally enclosed machine with a special magnet module pole arrangement and another through-ventilated machine with a more traditional embedded magnet structure. Both structures are built with magnetically salient structures in order to increase the torque production capability with the reluctance torque component. Both machine structures show potential for traction usage. However, the traditional embedded magnet design turns out to be mechanically the more secure one of these two machine options. (orig.)

  15. CONSTRUCTIVE MODELLING FOR ZONE OF RECOVERY ENERGY DISTRIBUTION OF DC TRACTION

    Directory of Open Access Journals (Sweden)

    V. I. Shynkarenko

    2016-10-01

    Full Text Available Purpose.The article is aimed to develop the means and methods of forming a plurality of real and potential structural diagrams for zones of energy recovery and different locations of trains for further training neuro-fuzzy networks on the basis of expert solutions and also for the formation of good control. Methodology. Methodology of mathematical and algorithmic constructivism for modeling the structural diagrams of the electric supply system and modes of traction power consumption and the train’s locations in zones of energy recovery was applied. This approach involves the development of constructive-synthesizing structures (CSS with transformation by specialization, interpretation, specification and implementation. Development CSS provides an extensible definition media, relations and the signature of operations and constructive axiomatic. The most complex and essential part of the axioms is the set formed by the substitution rules defining the process of withdrawal of the corresponding structures. Findings. A specialized and specified CSS, which allows considering all the possibilities and features, that supply power traction systems with modern equipment, stations and trains location was designed. Its feature: the semantic content of the terminal alphabet images of electrical traction network and power consumers with relevant attributes. A special case of the formation of the structural diagram shows the possibilities CSS in relation to this problem. Originality. A new approach to solving the problem of rational use of energy recovery, which consists in application of the methods and means of artificial neural networks, expert systems, fuzzy logic and mathematical and algorithmic constructivism. This paper presents the methods of constructive simulation of a production-distribution of energy recovery zone structure in the system of the DC traction. Practical value. The tasks decision of the rational use of energy recovery can

  16. Systemic design of synchronous traction drives for large speed-range electric vehicle; Conception systemique de chaines de traction synchrones pour vehicule electrique a large gamme de vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Randi, S.A.

    2003-04-15

    The presented study deals with a systemic approach based design of permanent magnet brush-less actuators. The considered system is the electric vehicle motorized with this actuator on a large speed range. First, the review of vehicles architectures and general specifications put emphasis on the design problem complexity and the interest of a simultaneous design taking account of the whole traction chain driving cycle. Then the IPM plane and lumped parameter models are used to bring out the variables which characterizes the work beyond the base speed and the ability in flux weakening operation. The properties of machines with two rotor parts in such operation are studied. The new degrees of freedom available with these structures bring new solutions for drives with larger speed range. Then a model taking account each subsystem is presented and implemented in a global SABER simulator, involving sizing models of components. This tool enables to study the work of the traction chain over significant driving cycles and the performances evaluation. A last, this simulator is brought into work so as to perform a simultaneous design of the traction chain components as battery, inverter, machine, gear, thanks to an optimisation procedure based on genetic algorithm able to process continuous sizes variations and structure modifications, considering performance criteria on losses and cost. (author)

  17. LOADING OF MECHANICAL TRANSMISSION OF TROLLEYBUS TRACTION DRIVING GEAR

    Directory of Open Access Journals (Sweden)

    A. I. Safonov

    2009-01-01

    Full Text Available The paper analyzes factors that determine dynamic loads of mechanical transmission of trolleybus traction driving gear. The paper proposes a methodology for determination of calculative moments of loading transmission elements. Results of the research are analyzed and recommendations on  dynamic reduction of trolleybus transmission are given in the paper. 

  18. THE DYNAMICS AND TRACTION ENERGY METRICS LOCOMOTIVE VL40

    Directory of Open Access Journals (Sweden)

    S. V. Pylypenko

    2008-03-01

    Full Text Available In the article the results of dynamic running and traction-energy tests of the electric locomotive VL40U are presented. In accordance with the test results a conclusion about the suitability of electric locomotive of such a type for operation with trains containing up to 15 passenger coaches inclusive is made.

  19. Orthodontic Traction of Impacted Canine Using Cantilever

    OpenAIRE

    Nakandakari, Cláudia; Gonçalves, João Roberto; Cassano, Daniel Serra; Raveli, Taísa Boamorte; Bianchi, Jonas; Raveli, Dirceu Barnabé

    2016-01-01

    The impaction of the maxillary canines causes relevant aesthetic and functional problems. The multidisciplinary approach to the proper planning and execution of orthodontic traction of the element in question is essential. Many strategies are cited in the literature; among them is the good biomechanical control in order to avoid possible side effects. The aim of this paper is to present a case report in which a superior canine impacted by palatine was pulled out with the aid of the cantilever...

  20. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces

    Czech Academy of Sciences Publication Activity Database

    Rosel, D.; Brabek, J.; Tolde, O.; Mierke, C.T.; Zitterbart, D.P.; Raupach, C.; Bicanova, K.; Kollmannsberger, P.; Pánková, D.; Veselý, Pavel; Folk, P.; Fabry, B.

    2008-01-01

    Roč. 6, č. 9 (2008), s. 1410-1420 ISSN 1541-7786 Institutional research plan: CEZ:AV0Z50520514 Keywords : Rho kinase ROCK * traction force microscopy * ameboid invasion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.533, year: 2008

  1. Overhead Bryant's Traction Does Not Improve the Success of Closed Reduction or Limit AVN in Developmental Dysplasia of the Hip.

    Science.gov (United States)

    Sucato, Daniel J; De La Rocha, Adriana; Lau, Karlee; Ramo, Brandon A

    2017-03-01

    Preoperative Bryant's overhead traction before closed reduction (CR) in developmental dysplasia of the hip (DDH) remains controversial and its success in increasing CR rates and reducing avascular necrosis (AVN) rates has not been specifically reported in a large cohort. IRB-approved retrospective study of patients (below 3 y)who were treated with attempted CR for idiopathic DDH from 1980 to 2009. Successful CR was defined as a hip that remained reduced and did not require repeat CR or open reduction. Patients were grouped by age, hip instability [Ortolani positive (reducible) vs. fixed dislocation], and Tonnis classification and rates of successful CR were compared between groups with PAVN between the traction (18%) and no-traction (8%) groups for all patients (P=0.15). In this retrospective series, preoperative Bryant's traction does not improve the rate of a successful CR for patients with DDH and has no protective effect on the development of AVN of the femoral head. These results suggest that Bryant's overhead traction may not be warranted for patients below 3 years of age with DDH. Level III.

  2. Calculation of locomotive traction force in transient rolling contact

    Directory of Open Access Journals (Sweden)

    Voltr P.

    2017-06-01

    Full Text Available To represent thewheel-rail contact in numerical simulations of rail vehicles, simplified models (Fastsim, Pola´ch etc. are usually employed. These models are designed for steady rolling only, which is perfectly suitable in many cases. However, it is shown to be limiting for simulations at very low vehicle speeds, and therefore it does not actually allow simulation of vehicle running at arbitrarily variable speed. The simplified model of transient rolling, which involves calculation of the stress distribution in the discretised contact area, overcomes this disadvantage but might be unnecessarily complex for more simple simulations. In this paper, an approximative creep force computation method for transient rolling is presented. Its purpose is not to study the transient phenomena themselves but provide a simple and readily available way to prevent incorrect results of the numerical simulation when the vehicle speed approaches zero. The proper function of the proposed method is demonstrated by a simulation of start-up and interrupted sliding of a four-axle locomotive.

  3. Quality electricity lines of external power systems electric traction DC

    Directory of Open Access Journals (Sweden)

    A.V. Petrov

    2012-08-01

    Full Text Available The results of studies that compare and analyze the numerical values of some key indicators quality electricity in the lines of the external power supply system the electric traction DC. As a supplement are additional and fundamental values of energy losses in them.

  4. ELECTRODYNAMICS OF TRANSMISSION AND LOSSES OF POWER IN THE DEVICES OF ELECTRIC TRACTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. O. Kostin

    2014-01-01

    Full Text Available Purpose. Theoretical justification of the "field" approach (based on electromagnetic field to the transmission and losses of power in the devices of traction power supply systems and electric rolling stock. Methodology. The methods of electromagnetic field theory and, in particular, the theory and practice of electromagnetic energy transmission based on the concept of the Poynting vector and elements of the theory of propagation, reflection and refraction of plane electromagnetic waves were used. Findings. Theoretical studies of electromagnetic energy transmission from the traction substation to the electric rolling stock through dielectric (air surrounding traction network: between the contact wire and the rail were carried out. It is proposed strategic designing "squat" (low types of electric rolling stock. The components of electric energy flow through the roof of electric rolling stock and its frontal part of the body were estimated. This allows reliable etimating active power losses in electric traction system. To compensate the reactive power consumed by electric rolling stock, which is conditioned by standing waves, it is proposed (for extinction of the the last to develop and put in front of electric rolling stock the layer of particular environment with the necessary parameters. Originality. The "field" principle of the power transmission analysis and its losses arising in electric traction system was first proposed. The laws of motion of electromagnetic energy flows through the roof and the frontal part of the body of electric rolling stock were established. Practical value. An expression of the absolute value of the Poynting vector in the points of dielectric (air between the contact wire and the rail was obtained. This allows assessing the highest density of energy, which is transferred to the time unit and predicting the main dimensions of the unit of electric rolling stock. The energy indices of the roof of electric rolling stock

  5. Longitudinal Lorentz force on a subwavelength-diameter optical fiber

    International Nuclear Information System (INIS)

    Yu Huakang; Fang Wei; Gu Fuxing; Yang Zongyin; Tong Limin; Qiu Min

    2011-01-01

    We analyze the longitudinal Lorentz forces that a propagating continuous-wave light exerts on a subwavelength-diameter optical fiber. Our theoretical results show that, during the propagating process, the guided light exerts no net time-averaged force on the fiber. Via numerical simulation, we find a significant overall pull force of 0.4 pN/mW acting on a 450-nm-diam fiber tip at a wavelength of 980 nm due to the scattering of the end face and a calculated force distribution reveals the feature of a near-field accumulation. Our results may be helpful to the configuration of optomechanical components or devices based on these fibers.

  6. The influence of aerodynamic forces on the vehicle bodywork of railway traction

    Directory of Open Access Journals (Sweden)

    Sorin ARSENE

    2016-03-01

    Full Text Available The increase of the driving speed in railway system requires a comprehensive analysis on the vehicle aerodynamics, on the manner in which the performance is affected or related to the additional loads on various components. The aerodynamic forces have a greater impact in the case of medium and high values of the relative velocity of the air flow near the vehicle. This paper aims to analyze the loads caused by the aerodynamic forces on the bodywork of the electric locomotive, of 5100 kW LE 060 EA type. In this respect, the bodywork and the chassis of locomotive were modelled in a 3D format; then a series of air flow simulations were performed for different values of the vehicle velocity ranging between 0 km/h and 200 km/h.

  7. Changes in stature during and after spinal traction in young male subjects Alterações na estatura antes e após a tração vertebral em homens jovens

    Directory of Open Access Journals (Sweden)

    ALF Rodacki

    2007-02-01

    Full Text Available BACKGROUND: Spinal traction is a relatively popular procedure for increasing the intervertebral space by applying separating forces. The parameters of time and magnitude of the traction forces may influence the outcomes from this procedure and need to be investigated. The duration of the benefits derived from traction is unknown and needs to be determined so that physiotherapists can provide better and more effective treatments. OBJECTIVE: This study analyzed the relationship between load magnitude and time during spinal traction in relation to stature variations. Traction effect duration was also analyzed. METHOD: Fifteen healthy male subjects (23.1 ± 5.77 years; 1.80 ± 0.17 m and 87.0 ± 9.6 kg were assessed under three traction conditions (0, 30 and 60% of body weight, BW of 42 minutes. Stature variation was used to determine intervertebral disc height variation. Stature was assessed every 7 minutes during traction of 42 minutes and every 5 minutes for 45 minutes after traction ceased. RESULTS: 0 and 30% BW traction produced similar gains (6.09 ± 1.89 mm, 5.70 ± 1.88 mm, respectively; p>0.05, while these were smaller (pCONTEXTUALIZAÇÃO: A tração sobre a coluna vertebral é um procedimento relativamente popular para aumentar o espaço inter-vertebral pela aplicação de forças de separação. Os parâmetros de tempo e magnitude da força aplicada podem influenciar os resultados desse procedimento e ainda precisam ser investigados. A duração dos benefícios derivados da tração não é conhecida e precisa ser determinada para que fisioterapeutas possam prover tratamentos melhores e mais eficientes. OBJETIVO: Este estudo analisou a relação entre a magnitude de carga e de tempo durante a tração vertebral sobre as variações de estatura, bem como a duração deste efeito. MÉTODOS: Quinze sujeitos saudáveis do sexo masculino (23,1 ± 5,77 anos; 1,80 ± 0,17 m e 87,0 ± 9,6 Kg foram mensurados sob três condições (0, 30 e 60% PC

  8. Perspectives on Exertional Rhabdomyolysis.

    Science.gov (United States)

    Rawson, Eric S; Clarkson, Priscilla M; Tarnopolsky, Mark A

    2017-03-01

    Exertional (exercise-induced) rhabdomyolysis is a potentially life threatening condition that has been the subject of research, intense discussion, and media attention. The causes of rhabdomyolysis are numerous and can include direct muscle injury, unaccustomed exercise, ischemia, extreme temperatures, electrolyte abnormalities, endocrinologic conditions, genetic disorders, autoimmune disorders, infections, drugs, toxins, and venoms. The objective of this article is to review the literature on exertional rhabdomyolysis, identify precipitating factors, and examine the role of the dietary supplement creatine monohydrate. PubMed and SPORTDiscus databases were searched using the terms rhabdomyolysis, muscle damage, creatine, creatine supplementation, creatine monohydrate, and phosphocreatine. Additionally, the references of papers identified through this search were examined for relevant studies. A meta-analysis was not performed. Although the prevalence of rhabdomyolysis is low, instances still occur where exercise is improperly prescribed or used as punishment, or incomplete medical history is taken, and exertional rhabdomyolysis occurs. Creatine monohydrate does not appear to be a precipitating factor for exertional rhabdomyolysis. Healthcare professionals should be able to recognize the basic signs of exertional rhabdomyolysis so prompt treatment can be administered. For the risk of rhabdomyolysis to remain low, exercise testing and prescription must be properly conducted based on professional standards.

  9. An overview of the development of lead/acid traction batteries for electric vehicles in India

    Science.gov (United States)

    Sivaramaiah, G.; Subramanian, V. R.

    Electric vehicles (EVs) made an entry into the Indian scene quite recently in the area of passenger transportation, milk floats and other similar applications. The industrial EV market, with various models of fork-lift trucks and platform trucks already in wide use all over India, is a better understood application of EV batteries. The lead/acid traction batteries available in India are not of high-energy density. The best available indigenous lead/acid traction battery has an energy density ( C/5 rate) of 30 W h kg -1 as against 39 W h kg -1 available abroad. This paper reviews the developmental efforts relating to lead/acid traction batteries for electric vehicle applications in India, such as prototype road vehicles, commercial vehicles, rail cars, and locomotives. Due to the need for environmental protection and recognition of exhaustible, finite supplies of petroleum fuel, the Indian government is presently taking active interest in EV projects.

  10. Chin force in violin playing.

    Science.gov (United States)

    Obata, Satoshi; Kinoshita, Hiroshi

    2012-06-01

    Force generated between the left mandible of violinists and the chinrest of the violin was examined using a force-sensing chinrest developed in this study. A strain-gauge force sensor was built, and it was fixed between the violin's top plate and a chin cup. Fifteen professional/amateur violinists held the violin statically, played musical scales with different sound properties and sounding techniques, as well as an excerpt from a Max Bruch concerto. Peak and mean forces were evaluated for each task. In a separate experiment, lateral movement of the lower teeth due to different levels of voluntary chin force exertion was measured. Static holding forces observed were 15 and 22 N with and without the help of the left hand, respectively. Peak force increased from 16 N at soft dynamics to 20 N at strong dynamics during scales. The force further increased to 29 N with the use of vibrato technique and 35 N during shifts. Tempo and hand position did not affect the force. Playing a Bruch concerto induced a mean peak force of 52 N, ranging from 31 to 82 N among the violinists. The developed force-sensing chinrest could accurately record the generated chin force. Typical chin force to stabilize the violin during ordinary musical performance was less than 30 N, but it could momentarily exceed 50 N when technically demanding musical pieces were performed. The lateral shift of the mandible was fairly small (<0.4 mm) even with high chin-force exertion, possibly due to clenching of the molars.

  11. Mechanical Hybrid KERS Based on Toroidal Traction Drives: An Example of Smart Tribological Design to Improve Terrestrial Vehicle Performance

    Directory of Open Access Journals (Sweden)

    Francesco Bottiglione

    2013-01-01

    Full Text Available We analyse in terms of efficiency and traction capabilities a recently patented traction drive, referred to as the double roller full-toroidal variator (DFTV. We compare its performance with the single roller full-toroidal variator (SFTV and the single roller half-toroidal variator (SHTV. Modeling of these variators involves challenging tribological issues; the traction and efficiency performances depend on tribological phenomena occurring at the interface between rollers and disks, where the lubricant undergoes very severe elastohydrodynamic lubrication regimes. Interestingly, the DFTV shows an improvement of the mechanical efficiency over a wide range of transmission ratios and in particular at the unit speed ratio as in such conditions in which the DFTV allows for zero-spin, thus strongly enhancing its traction capabilities. The very high mechanical efficiency and traction performances of the DFTV are exploited to investigate the performance of a flywheel-based Kinetic Energy Recovery System (KERS, where the efficiency of the variator plays an important role in determining the overall energy recovery performance. The energy boost capabilities and the round-trip efficiency are calculated for the three different variators considered in this study. The results suggest that the energy recovery potential of the mechanical KERS can be improved with a proper choice of the variator.

  12. A comparative study on OCT before and after the operation for vitreomacular traction syndrome

    Directory of Open Access Journals (Sweden)

    Shu-Qi Song

    2017-07-01

    Full Text Available AIM: To make a contrast and then analyze the difference of optical coherence tomography(OCTbefore and after vitreomacular traction syndrome(VTSwas performed. METHODS: The clinical date of 11 evaluable eyes of 11 patients with VTS who were diagnosed by OCT and underwent 25G vitreous surgery from January 2013 to January 2014 were retrospectively analyzed. Patients were followed up for an average of 6mo, to observe the visual acuity and OCT examination of the patient before and after operation. We compared the changes of retinal thickness and local morphology before and after operation.RESULTS: After vitreous retraction, 6 eyes improved, 2 eyes do not improve. One eye received macular membrane traction, in the operation the macular epiretinal membrane peeling, retrial membrane stripping and the triamcinolone acetonide intravitreal injection were given, but after the operation, the vision does not improve. Two eyes received vitreous combined with retinal macular membrane traction. In the operation, macular epiretinal membrane stripping was given, after the operation, visual acuity improved. The proportion of those with visual acuity of 0.1 or more increased from 46% before to 73% after the operation. Before operations, the mean central macular thickness was 619.27±195.13μm, 239.12±143.84μm after, which decreased significantly(PCONCLUSION: Vitrectomy can effectively relieve the vitreous traction of the macula, and can prevent further decline in visual acuity and reduce macular edema as well as improve the visual acuity of some patients. So, OCT has important guiding significance on the diagnosis and prognosis of this group.

  13. The definition of exertion-related cardiac events.

    Science.gov (United States)

    Rai, M; Thompson, P D

    2011-02-01

    Vigorous physical activity increases the risk of sudden cardiac death (SCD) and acute myocardial infarction (AMI) but there is no standard definition as to what constitutes an exertion-related cardiac event, specifically the time interval between physical exertion and cardiac event. A systematic review of studies related to exertion-related cardiac events was performed and the time interval between exertion and the event or the symptoms leading to the event was looked for in all the articles selected for inclusion. A total of 12 of 26 articles "suggested" or "defined" exertion-related events as those events whose symptoms started during or within 1 h of exertion. Others used definitions of 0.5 h, 2 h, "during exertion", "during or immediately post exertion" and "during or within several hours after exertion". It is suggested, therefore, that the definition of an exertion-related cardiac event be established as a cardiac event in which symptoms started during or within 1 h of physical exertion.

  14. Regulation of unbalanced electromagnetic moment in mutual loading systems of electric machines of traction rolling stock and multiple unit of mainline and industrial transport

    Directory of Open Access Journals (Sweden)

    A. M. Afanasov

    2014-12-01

    Full Text Available Purpose. The research data are aimed to identify the regulatory principles of unbalanced electromagnetic moment of mutually loaded electric machines of traction rolling stock and multiple unit of main and industrial transport. The purpose of this study is energy efficiency increase of the testing of traction electric machines of direct and pulse current using the improvement methods of their mutual loading, including the principles of automatic regulation of mutual loading system. Methodology. The general theoretical provisions and principles of system approach to the theoretical electric engineering, the theory of electric machines and theoretical mechanics are the methodological basis of this research. The known methods of analysis of electromagnetic and electromechanical processes in electrical machines of direct and pulse current are used in the study. Methods analysis of loading modes regulation of traction electric machines was conducted using the generalized scheme of mutual loading. It is universal for all known methods to cover the losses of idling using the electric power. Findings. The general management principles of mutual loading modes of the traction electric machines of direct and pulse current by regulating their unbalanced electric magnetic moment were developed. Regulatory options of unbalanced electromagnetic moment are examined by changing the difference of the magnetic fluxes of mutually loaded electric machines, the current difference of electric machines anchors, the difference of the angular velocities of electric machines shafts. Originality. It was obtained the scientific basis development to improve the energy efficiency test methods of traction electric machines of direct and pulse current. The management principles of mutual loading modes of traction electric machines were formulated. For the first time it is introduced the concept and developed the principles of regulation of unbalanced electromagnetic moment in

  15. Analysis of the process related to the operations management of the rail traction vehicles in JSC 'Serbian Railways'

    Directory of Open Access Journals (Sweden)

    Vukadinović Vojislav

    2016-01-01

    Full Text Available In the study, issues related to the operations management in railway were elaborated, with special emphasis on the operations management of rail vehicles and main parameters in its activities and in the railway functioning. The analysis of the current status, operation and functioning of the Serbian Railways was also provided, with a special focus on the study of the technical condition regarding exploitation, reliability, and availability of traction vehicles operation which is always actual and particularly important for ensuring the regular and safe functioning of train traffic in all railways in the world as well as in the railway of Serbia. The issue related to the exploitation reliability and availability regarding traction vehicles operation is also being analyzed which is reflected in development of the concept and creation of the methodology for assessment of the technical condition and indicators for determining the level of exploitation reliability, availability of the traction vehicle operation as well as functioning of train traffic and the models related to the operations management of rail traction vehicles.

  16. Forcings and feedbacks by land ecosystem changes on climate change

    Science.gov (United States)

    Betts, R. A.

    2006-12-01

    Vegetation change is involved in climate change through both forcing and feedback processes. Emissions of CO{2} from past net deforestation are estimated to have contributed approximately 0.22 0.51 Wm - 2 to the overall 1.46 Wm - 2 radiative forcing by anthropogenic increases in CO{2} up to the year 2000. Deforestation-induced increases in global mean surface albedo are estimated to exert a radiative forcing of 0 to -0.2 Wm - 2, and dust emissions from land use may exert a radiative forcing of between approximately +0.1 and -0.2 Wm - 2. Changes in the fluxes of latent and sensible heat due to tropical deforestation are simulated to have exerted other local warming effects which cannot be quantified in terms of a Wm - 2 radiative forcing, with the potential for remote effects through changes in atmospheric circulation. With tropical deforestation continuing rapidly, radiative forcing by surface albedo change may become less useful as a measure of the forcing of climate change by changes in the physical properties of the land surface. Although net global deforestation is continuing, future scenarios used for climate change prediction suggest that fossil fuel emissions of CO{2} may continue to increase at a greater rate than land use emissions and therefore continue to increase in dominance as the main radiative forcing. The CO{2} rise may be accelerated by up to 66% by feedbacks arising from global soil carbon loss and forest dieback in Amazonia as a consequence of climate change, and Amazon forest dieback may also exert feedbacks through changes in the local water cycle and increases in dust emissions.

  17. Influence of the braking power control of the traction asynchronous machine in the voltage vector control system under DC

    Directory of Open Access Journals (Sweden)

    Юлія Олександрівна Слободенюк

    2016-11-01

    Full Text Available At braking the traction motors are transferred to generator mode and produce electrical energy which passes to the contact mains or storage device in the DC mains for further use. Such braking is called regenerative. The resulting electrical energy can be spent by trains in traction mode. Regenerative braking reduces the consumption of electric power for traction. In electric railways of our country more than 3% of the consumed electrical energy is given back to contact mains annually. As this takes place there arises the task to control the braking of the traction motors with minimal impact on electric power quality and maintaining proper braking performance. Based on the analysis of the characteristics of the brake traction of an electric locomotive with asynchronous electric machines the main braking modes have been chosen: at a constant sliding speed and the stator constant voltage; at constant braking power and the stator constant voltage; at a power value more than the nominal braking power; at a constant load torque; at a constant frequency of the stator. The vector control system with the formation of the reactive component of the stator current and the EMF regulator was chosen, basing on the working conditions characteristics in the electric braking mode (recuperation; namely, that the characteristics are defined by the laws regulating the frequency and voltage across the stator windings. This control system can fully reproduce any predetermined trajectory of traction and braking performance and adjust braking power. The offered system with recuperation can be used as a means of compensation in emergency situations with a power failure

  18. REACTIVE POWER DEVICES IN SYSTEMS OF ELECTRIC TRACTION

    Directory of Open Access Journals (Sweden)

    M. O. Kostin

    2010-04-01

    Full Text Available A comparative characteristic of different concepts and expressions for determination of reactive power in the circuits with non-sinusoidal electric values has been given. For the first Ukrainian electric locomotives of DE1 type with the system of DC electric traction, the values of reactive power after Budeany, Fryze, and also the differential, integral and generalized reactive powers have been determined. Some measures on reducing its consumption by the DC electric rolling stock have been suggested.

  19. Effects of Different Angles of the Traction Table on Lumbar Spine Ligaments: A Finite Element Study.

    Science.gov (United States)

    Farajpour, Hekmat; Jamshidi, Nima

    2017-12-01

    The traction bed is a noninvasive device for treating lower back pain caused by herniated intervertebral discs. In this study, we investigated the impact of the traction bed on the lower back as a means of increasing the disc height and creating a gap between facet joints. Computed tomography (CT) images were obtained from a female volunteer and a three-dimensional (3D) model was created using software package MIMICs 17.0. Afterwards, the 3D model was analyzed in an analytical software (Abaqus 6.14). The study was conducted under the following traction loads: 25%, 45%, 55%, and 85% of the whole body weight in different angles. Results indicated that the loading angle in the L3-4 area had 36.8%, 57.4%, 55.32%, 49.8%, and 52.15% effect on the anterior longitudinal ligament, posterior longitudinal ligament, intertransverse ligament, interspinous ligament, and supraspinous ligament, respectively. The respective values for the L4-5 area were 32.3%, 10.6%, 53.4%, 56.58%, and 57.35%. Also, the body weight had 63.2%, 42.6%, 44.68%, 50.2%, and 47.85% effect on the anterior longitudinal ligament, posterior longitudinal ligament, intertransverse ligament, interspinous ligament, and supraspinous ligament, respectively. The respective values for the L4-5 area were 67.7%, 89.4%, 46.6%, 43.42% and 42.65%. The authenticity of results was checked by comparing with the experimental data. The results show that traction beds are highly effective for disc movement and lower back pain relief. Also, an optimal angle for traction can be obtained in a 3D model analysis using CT or magnetic resonance imaging images. The optimal angle would be different for different patients and thus should be determined based on the decreased height of the intervertebral disc, weight and height of patients.

  20. Rotordynamic Forces on Centrifugal Pump Impellers

    OpenAIRE

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with rad...

  1. [Randomized controlled trials of needle knife therapy combined with rotation traction manipulation for the treatment of cervical spondylotic radiculopathy].

    Science.gov (United States)

    Zhou, Zhong-Liang; Su, Guo-Hong; Zheng, Bao-Zhu; Zuo, Yu-Zhu; Wei, Fu-Liang

    2016-09-25

    To compare the therapeutic effects between needle knife therapy combined with rotation traction manipulation and rotation traction manipulation for the treatment of cervical spondylotic radiculopathy. From November 2013 to June 2015, 80 patients with cervical spondylotic radiculopathy meeting the inclusion criteria were divided into two groups randomly:the control group in which 39 patients were treated with rotation traction manipulation, and the treatment group in which 41 patients were treated with needle knife combined with rotation traction manipulation. The patients in the control group were treated once dayly for 2 weeks, which was 1 course. The patients in the treatment group were treated with needle knife firstly once a week for 2 weeks, which was 1 course;then were treated with the same methods as the patients in the control group. The symptoms, signs score and the therapeutic effects of the two groups before and after treatment were observed. After treatment, symptoms and signs scores declined in both groups( P knife combined with rotation traction manipulation is an effective method for the treatment of cervical spondylotic radiculopathy, which is better than using manipulation method simply. Needle knife therapy has follow advantages:improving local blood circulation, reducing local content of pain substance, increasing production of substances resisting pain, opening channels and collaterals, and make body reaching new static and dynamic balance on the new foundation.

  2. A novel anchorage technique for transnasal traction in rigid external maxillary distraction.

    Science.gov (United States)

    Varol, A; Basa, S

    2013-12-01

    We describe an effective technique for anchorage of transnasal traction in the management of maxillary rotation during external distraction. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Does mental exertion alter maximal muscle activation?

    Directory of Open Access Journals (Sweden)

    Vianney eRozand

    2014-09-01

    Full Text Available Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 minutes each: i high mental exertion (incongruent Stroop task, ii moderate mental exertion (congruent Stroop task, iii low mental exertion (watching a movie. In each condition, mental exertion was combined with ten intermittent maximal voluntary contractions of the knee extensor muscles (one maximal voluntary contraction every 3 minutes. Neuromuscular function was assessed using electrical nerve stimulation. Maximal voluntary torque, maximal muscle activation and other neuromuscular parameters were similar across mental exertion conditions and did not change over time. These findings suggest that mental exertion does not affect neuromuscular function during intermittent maximal voluntary contractions of the knee extensors.

  4. Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains

    Directory of Open Access Journals (Sweden)

    Marcel Torrent

    2018-06-01

    Full Text Available In this work we proposed to study the use of permanent magnet synchronous motors (PMSM for railway traction in the high-speed trains (HST of Renfe Operadora (the Spanish national railway operator. Currently, induction motors (IM are used in AVE classes 102–112 trains, so, the IM used as a traction motor in these trains has been studied and characterized by comparing the results with data provided by Renfe. A PMSM of equivalent power to the IM has been dimensioned, and different electromagnetic structures of the PMSM rotor have been evaluated. The simulation by the finite element method and analysis of the equivalent electrical circuit used in all the motors have been studied to evaluate the performance of the motors in this application. Efficiency is calculated at different operating points due to its impact on the energy consumption of railway traction. The implementation of the PMSM evaluated is recommended, mainly due to the improvements achieved in efficiency as compared with the IM currently used.

  5. The application of a clinical prediction rule for patients with neck pain likely to benefit from cervical traction: A case report.

    Science.gov (United States)

    Bernstetter, Andrew

    2016-10-01

    Cervical traction is a commonly utilized intervention in the treatment of patients with neck pain. In 2009, a clinical prediction rule (CPR) was developed as a way to assist clinicians in determining the patient population most likely to respond to cervical traction, though this CPR has yet to be validated. The purpose of this case report is to demonstrate the application of that CPR. The patient was a 46-year-old female with a four-week history of right-sided neck and shoulder pain, with numbness and tingling of her thumb and index finger. Treatment consisted of five sessions provided over 3 weeks. The plan of care included home mechanical cervical traction, exercise, and manual therapy. The patient achieved pain-free cervical range of motion. Neck disability index scores decreased from 28% to 6%, and the Patient-Specific Functional Scale average score improved from 5.5 to 10 out of 10. This case report demonstrates the application of a CPR to assist in deciding if cervical traction is an appropriate intervention. Further research is needed to validate the CPR and to establish the optimal mode of delivery for traction.

  6. Creation of electromechanical device for electric vehicle traction

    Directory of Open Access Journals (Sweden)

    Денис Юрьевич Зубенко

    2016-10-01

    Full Text Available The problems of creation of electromechanical device for electric vehicle traction are considered in the article. The aim of creation this design are the replacement of the internal combustion engine on electromechanical device. For this electromechanical device are constructed model, which describe processes that occur in the electric drive of electromechanical device. Characteristics of the main modes of motion were recorded. The introduction of electromechanical device will reduce the level of emissions and reduce noise in the cities

  7. METHODOLOGY OF DETERMINATION OF QUALITY INDEX OF MAINTENANCE SERVICE SYSTEM OF POWER EQUIPMENT OF TRACTION SUBSTATIONS

    Directory of Open Access Journals (Sweden)

    O.O. Matusevych

    2016-03-01

    Full Text Available Purpose. The purpose of this paper is development of methodology for definition of a quality system of maintenance and repair (M and P power equipment of traction substations (TS of electrified railways operating under conditions of uncertainty based on expert information. Methodology. The basic tenets of the theory of fuzzy sets and marks, linguistic and interval estimates of experts were applied to solve this problem. Results. Analysis of the existing diversity of approaches to development of modern methods of improvement of M and P allows us to conclude that the improvement in the quality of the system is achieved by solving individual problems increase the operational reliability of power equipment of traction substations in the following main interrelated areas. There are technical, economic and organizational. The basis of the quality evaluation system is initial data and expertise developed version of the document formalized quality evaluation of electrical equipment of traction substations by experts. The choice of determining the level of Quality service system based on the marks, linguistic and interval estimates of experts, which are reflected in quantitative and / or qualitative form was done. The possible options for expert data presentation and their corresponding quantitative methods of calculating the integral index of quality improvement system maintenance and P of traction substations were described. The methodology and the method of assessing the quality of system maintenance and P of TS allows quickly respond to changing operating conditions of power equipment of traction substations, and to determine the most effective strategies for maintenance of electrical and P TS under conditions of uncertainty functioning distance electricity. Originality. The method of a systematic approach to improve the quality of the system maintenance and P of power equipment of traction substation under conditions of uncertainty based on expert

  8. Strategies for Proximal Femoral Nailing of Unstable Intertrochanteric Fractures: Lateral Decubitus Position or Traction Table.

    Science.gov (United States)

    Sonmez, Mesut Mehmet; Camur, Savas; Erturer, Erden; Ugurlar, Meric; Kara, Adnan; Ozturk, Irfan

    2017-03-01

    The aim of this prospective randomized study was to compare the traction table and lateral decubitus position techniques in the management of unstable intertrochanteric fractures. Eighty-two patients with unstable intertrochanteric fractures between 2011 and 2013 were included in this study. All patients were treated surgically with the Proximal Femoral Nail Antirotation implant (DePuy Synthes). Patients were randomized to undergo the procedure in the lateral decubitus position (42 patients) or with the use of a traction table (40 patients). Patients whose procedure was not performed entirely with a semi-invasive method or who required the use of additional fixation materials, such as cables, were excluded from the study. The groups were compared on the basis of the setup time, surgical time, fluoroscopic exposure time, tip-to-apex distance, collodiaphyseal angle, and modified Baumgaertner criteria for radiologic reduction. The setup time, surgical time, and fluoroscopic exposure time were lower and the differences were statistically significant in the lateral decubitus group compared with the traction table group. The collodiaphyseal angles were significantly different between the groups in favor of the lateral decubitus method. The tip-to-apex distance and the classification of reduction according to the modified Baumgaertner criteria did not demonstrate a statistically significant difference between the groups. The lateral decubitus position is used for most open procedures of the hip. We found that this position facilitates exposure for the surgical treatment of unstable intertrochanteric fractures and has advantages over the traction table in terms of set up time, surgical time and fluoroscopic exposure time.

  9. Exertional dyspnoea in obesity

    Directory of Open Access Journals (Sweden)

    Vipa Bernhardt

    2016-12-01

    Full Text Available The purpose of cardiopulmonary exercise testing (CPET in the obese person, as in any cardiopulmonary exercise test, is to determine the patient's exercise tolerance, and to help identify and/or distinguish between the various physiological factors that could contribute to exercise intolerance. Unexplained dyspnoea on exertion is a common reason for CPET, but it is an extremely complex symptom to explain. Sometimes obesity is the simple answer by elimination of other possibilities. Thus, distinguishing among multiple clinical causes for exertional dyspnoea depends on the ability to eliminate possibilities while recognising response patterns that are unique to the obese patient. This includes the otherwise healthy obese patient, as well as the obese patient with potentially multiple cardiopulmonary limitations. Despite obvious limitations in lung function, metabolic disease and/or cardiovascular dysfunction, obesity may be the most likely reason for exertional dyspnoea. In this article, we will review the more common cardiopulmonary responses to exercise in the otherwise healthy obese adult with special emphasis on dyspnoea on exertion.

  10. Grasp force sensor for robotic hands

    Science.gov (United States)

    Scheinman, Victor D. (Inventor); Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1989-01-01

    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces.

  11. Obesity-related differences in neural correlates of force control.

    Science.gov (United States)

    Mehta, Ranjana K; Shortz, Ashley E

    2014-01-01

    Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).

  12. Forces on Centrifugal Pump Impellers

    OpenAIRE

    Jery, Belgacem; Brennen, Christopher E.; Caughey, Thomas K.; Acosta, Allan

    1985-01-01

    Forces are exerted on a centrifugal pump impeller, due to the asymmetry of the flow caused by the volute of diffuser, and to the motion of the center of the impeller whenever the shaft whirls. Recent work in the measurement of these forces as a function of the whirl speed to shaft speed ratio, and the influence of the volute, is reviewed. These forces may be decomposed into a steady force, a static stiffness matrix, a damping matrix and an inertia matrix. It is shown that for centrifugal p...

  13. Hiking strap force decreases during sustained upwind sailing

    DEFF Research Database (Denmark)

    Buchardt, R; Bay, Jonathan; Bojsen-Møller, Jens

    2017-01-01

    The hypothesis, that sailing upwind in wind speeds above 12 knots causes fatigue, which manifests as a reduction in exerted hiking strap force and/or maximal isometric voluntary contraction force (MVC) of the knee extensors, was evaluated. Additionally, it was investigated if a relationship exists...... between maximal exerted hiking force (hMVC) and sailing performance. In part 1 of the study, 12 national level athletes sailed upwind for 2 × 10 min while hiking strap forces were continuously acquired. Before, in between and after sailing periods, the MVC of the knee extensors was measured. In part 2...... of the study, hMVC was measured dry land in a hiking bench and correlated with the overall results at a national championship. Hiking strap force decreased from the first to the last minute in both 10 min sailing periods (430 ± 131 vs. 285 ± 130 N, P 

  14. Comparison of the environmental performance of light mechanization and animal traction using a modular LCA approach

    DEFF Research Database (Denmark)

    Cerutti, Alessandro K.; Calvo, Angela; Bruun, Sander

    2014-01-01

    Animal traction has supported humans in most field operations since the origin of agriculture. With the introduction of mechanization, humans gained access to much more work power at similar management costs and were able to significantly increase the productivity and time efficiency of field...... Italy, while use of machine traction was evaluated using field data on two-wheel tractors performing the operations in similar production systems, converted to the specific functional unit. Owing to the differing properties of mechanical and living systems, it was difficult to establish a reliable...

  15. Coupling forces resulting from the type of chain saw used

    Directory of Open Access Journals (Sweden)

    Jolanta Malinowska-Borowska

    2014-03-01

    Full Text Available Introduction. Woodcutters’ working conditions are difficult due to the presence of numerous occupational hazards. Petrol –fuelled chain saws commonly used in forestry produce vibration, which may lead to the development of non-specific disorders in the upper extremities of the chain saw operator, referred to as hand-arm vibration syndrome (HAVS. The magnitude of coupling forces exerted on a vibrating tool handle may affect the severity of HAVS and hand-wrist cumulative trauma disorders. The aim of the presented study was to measure coupling forces exerted by fellers on various chain saws and to find correlation between force magnitude and type of tool used. Material and methods. Coupling forces applied by workers on different types of chain saws were measured by means of a hydro-electronic force meter. All measurements were carried out during the harvesting of wood in real work conditions. Results. Mean force applied by forestry workers on their tools was 44.2 N. Coupling forces registered during cutting wood with small universal chain saws were larger than forces exerted on models characterized by higher power profile. Forces applied on comparable tools produced by various manufacturers also differed. Conclusions. The relationship between coupling forces and power of the chain saw should lead to ergonomic improvements of the tool and vibration-reducing devices. These results can also be used as a recommendation for fellers in a range of using proper machines for different types of cut or types of wood. They may also be applicable to develop more effective methods for assessing vibration exposure risks among woodcutters.

  16. Development of force sensing circuit to determine the optimal force required for effective dynamic tripod grip/writing

    Science.gov (United States)

    Suraj S., S.; Kulkarni, Palash; Bokadia, Pratik; Ramanathan, Prabhu; Nageswaran, Sharmila

    2018-04-01

    Handwriting is a combination of fine motor perceptions and cognitive skills to produce words on paper. For writing, the most commonly used and recommended grip is the dynamic tripod grip. A child's handwriting starts developing during the times of pre-schooling and improves over time. While writing, children apply excessive force on the writing instrument. This force is exerted by their fingers and as per the law of reaction, the writing instruments tend to exert an equal and opposite force, that could damage the delicate soft tissue structures in their fingers and initiate cramps and pains. This condition is also prevalent in adults who tend to write for long hours under pressure. An example would be adolescence student during the exams. Clinically this condition is termed as `Writer's Cramp', which is usually characterized by muscle fatigue and pain in the fingers. By understanding and fixing the threshold of the force that should be exerted by the fingers while gripping the instrument, the pain can be controlled or avoided. This research aims in designing an electronic module which can help in understanding the threshold of pressure which is optimum enough to establish a better contact between the fingers and the instrument and should be capable of controlling or avoiding the pain. The design of FSR based electronic system is explained with its circuitry and results of initial testing is presented in this paper.

  17. Sensing And Force-Reflecting Exoskeleton

    Science.gov (United States)

    Eberman, Brian; Fontana, Richard; Marcus, Beth

    1993-01-01

    Sensing and force-reflecting exoskeleton (SAFiRE) provides control signals to robot hand and force feedback from robot hand to human operator. Operator makes robot hand touch objects gently and manipulates them finely without exerting excessive forces. Device attaches to operator's hand; comfortable and lightweight. Includes finger exoskeleton, cable mechanical transmission, two dc servomotors, partial thumb exoskeleton, harness, amplifier box, two computer circuit boards, and software. Transduces motion of index finger and thumb. Video monitor of associated computer displays image corresponding to motion.

  18. Original Paper Effects of oxen yoke and donkey collar on traction ...

    African Journals Online (AJOL)

    The realization of mechanized zaï with draft animal encounters the weakness of hitch traction capabilities. To overcome this issue, a study was conducted in three villages in the northern Burkina Faso with the aim at evaluating the effect of improved yoke and improved collar respectively with oxen and donkey harnessing on ...

  19. Exerting Capacity.

    Science.gov (United States)

    Leger, J Michael; Phillips, Carolyn A

    2017-05-01

    Patient safety has been at the forefront of nursing research since the release of the Institute of Medicine's report estimating the number of preventable adverse events in hospital settings; yet no research to date has incorporated the perspectives of bedside nurses using classical grounded theory (CGT) methodology. This CGT study explored the perceptions of bedside registered nurses regarding patient safety in adult acute care hospitals. Data analysis used three techniques unique to CGT-the constant comparative method, coding, and memoing-to explore the values, realities, and beliefs of bedside nurses about patient safety. The analysis resulted in a substantive theory, Exerting Capacity, which explained how bedside nurses balance the demands of keeping their patients safe. Exerting Capacity has implications for health care organization leaders, nursing leaders, and bedside nurses; it also has indications for future research into the concept of patient safety.

  20. Modern Solutions for Automation of Electrical Traction Power Supply Systems

    Directory of Open Access Journals (Sweden)

    Ana Mihaela Andreica

    2011-09-01

    Full Text Available This paper presents modern solutions for the automation of the electrical traction power supply system used in urban public transport (trams, trolleybuses and subway trains. The monitoring and control of this process uses SCADA distributed architectures, grouped around a central point (dispatcher who controls all field sensors, transmitters and actuators using programmable logical controllers. The presented applications refer to the Bucharest electrical transport infrastructure.

  1. le traitement chirurgical des poches de rétraction tympaniques

    African Journals Online (AJOL)

    16 juin 2006 ... L'évolution naturelle de l'otite atelectasique vers la maladie cholestéatomateuse complique d'avantage la prise en charge des poches de rétraction. ... risque de cholestéatome résiduel était important. Après un recul minimum de 21 mois, le résultat anato- mique été satisfaisant dans 88%. Ailleurs ...

  2. Tire-road friction estimation and traction control strategy for motorized electric vehicle

    Science.gov (United States)

    Jin, Li-Qiang; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053

  3. Development of a measurement system for the mechanical load of functional appliances.

    Science.gov (United States)

    Shimazaki, Aya; Kimura, Hitoshi; Inou, Norio; Maki, Koutaro

    2017-10-03

    Devices called functional appliances are commonly used in orthodontics for treating maxillary protrusion. These devices mechanically force the mandible forward to apply traction force to the mandibular condyle. This promotes cartilaginous growth in the small mandible. However, no studies have clarified how much traction force is applied to the mandibular condyle. Moreover, it remains unknown as to how anatomical characteristics affect this traction force. Therefore, in this study, we developed a device for measuring the amount of force generated while individual patients wore functional appliances, and we investigated the relationship between forces with structures surrounding the mandibular condyle. We compared traction force values with cone-beam computed tomography image data in eight subjects. The functional appliance resulted in a traction force of 339-1477gf/mm, with a mean value of 196.5gf/mm for the elastic modulus of the mandible. A comparison with cone-beam computed tomography image data suggested that the mandibular traction force was affected by the mandibular condyle and shape of the articular eminence. This method can contribute to discovering efficient treatment techniques more suited to individual patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A COMPARISON OF GOLF SHOE DESIGNS HIGHLIGHTS GREATER GROUND REACTION FORCES WITH SHORTER IRONS

    Directory of Open Access Journals (Sweden)

    Paul Worsfold

    2007-12-01

    Full Text Available In an effort to reduce golf turf damage the traditional metal spike golf shoe has been redesigned, but shoe-ground biomechanical evaluations have utilised artificial grass surfaces. Twenty-four golfers wore three different golf shoe traction designs (traditional metal spikes, alternative spikes, and a flat-soled shoe with no additional traction when performing shots with a driver, 3 iron and 7 iron. Ground action forces were measured beneath the feet by two natural grass covered force platforms. The maximum vertical force recorded at the back foot with the 3 iron and 7 iron was 0.82 BW (body weight and at the front foot 1.1 BW approximately in both the metal spike and alternative spike golf shoe designs. When using the driver these maximal vertical values were 0.49 BW at the back foot and 0.84 BW at the front foot. Furthermore, as performance of the backswing and then downswing necessitates a change in movement direction the range of force generated during the complete swing was calculated. In the metal spike shoe the vertical force generated at the back foot with both irons was 0.67 BW and at the front foot 0.96 BW with the 3 iron and 0.92 BW with the 7 iron. The back foot vertical force generated with the driver was 0.33 BW and at the front foot 0.83 BW wearing the metal spike shoe. Results indicated the greater force generation with the irons. When using the driver the more horizontal swing plane associated with the longer club reduced vertical forces at the back and front foot. However, the mediolateral force generated across each foot in the metal and alternative spike shoes when using the driver was greater than when the irons were used. The coefficient of friction was 0. 62 at the back and front foot whichever shoe was worn or club used

  5. [The use of Saunders lumbar traction in physiotherapy of patients with chronic lower back pain].

    Science.gov (United States)

    Pingot, Julia; Pingot, Mariusz; Łabecka, Monika; Woldańska-Okońska, Marta

    2014-05-01

    Pain of the lower back is one of the most common ailments in modem society. Such frequent occurrence of back pain syndromes is a serious medical and social problem. Despite numerous attempts, there have not been comprehensive or decisive publications on the therapeutic standard for back pain syndromes that would cover all the aspects of the ailment. Partial report can change the attitude and shed new light on the treatment of these syndromes. The aim of this study was to evaluate the use of Saunders lumbar tractions in patients with chronic lower back pain in comparison with the group of patients undergoing pharmacological treatment. The study included 140 patients with chronic lower back pain who were divided into two groups. Each group consisted of 70 persons of mixed gender (the age mean value was 45). Group I were treated with the use of Saunders lumbar traction and Group II (control group) were treated pharmacologically. The following scales were used to assess pain and mobility of the lumbar part of the vertebral column (before treatment, in-treatment, right after treatment and 30 days after treatment): Laitinen, VAS, Rolland-Morris questionnaire and Schober functional test. The statistical analysis was performed with Greenhouse-Geisser test of within-subjects effects. In both the groups, a significant analgesic action and an improvement to spinal mobility were observed. Significantly better results were obtained in Group I where the patients had been treated with the use of Saunders lumbar traction. The pharmacological treatment applied in Group II showed an analgesic action and influenced positively the functional parameters of the patients. The effects, however, were much worse than in Group 1 where axial Saunders traction was applied to the lumbar part of the vertebral column.

  6. Lateral femoral traction pin entry: risk to the femoral artery and other medial neurovascular structures

    Directory of Open Access Journals (Sweden)

    Appleton Paul

    2010-01-01

    Full Text Available Abstract Background Femoral skeletal traction assists in the reduction and transient stabilization of pelvic, acetabular, hip, and femoral fractures when splinting is ineffective. Traditional teaching has recommended a medial entry site for insertion of the traction pin in order to minimize injury to the femoral artery as it passes through Hunter's canal. The present anatomical study evaluates the risk to the femoral artery and other medial neurovascular structures using a lateral entry approach. Methods Six embalmed cadavers (twelve femurs were obtained for dissection. Steinman pins were drilled from lateral to medial at the level of the superior pole of the patella, at 2 cm, and at 4 cm proximal to this point. Medial superficial dissection was then performed to identify the saphenous nerve, the superior medial geniculate artery, the adductor hiatus, the tendinous insertion of the adductor magnus and the femoral artery. Measurements localizing these anatomic structures relative to the pins were obtained. Results The femoral artery was relatively safe and was no closer than 29.6 mm (mean from any of the three Steinman pins. The superior medial geniculate artery was the medial structure at most risk. Conclusions Lateral femoral traction pin entry is a safe procedure with minimal risk to the saphenous nerve and femoral artery. Of the structures examined, only the superior medial geniculate artery is at a risk of iatrogenic injury due to its position. The incidence of such injury in clinical practice and its clinical significance is not known. Lateral insertion facilitates traction pin placement since it minimizes the need to move the contralateral extremity out of the way of the drilling equipment or the need to elevate or externally rotate the injured extremity relative to the contralateral extremity.

  7. A "Smart" Force-Limiting Instrument for Microsurgery: Laboratory and In Vivo Validation.

    Directory of Open Access Journals (Sweden)

    Hani J Marcus

    Full Text Available Residents are required to learn a multitude of skills during their microsurgical training. One such skill is the judicious application of force when handling delicate tissue. An instrument has been developed that indicates to the surgeon when a force threshold has been exceeded by providing vibrotactile feedback. The objective of this study was to validate the use of this "smart" force-limiting instrument for microsurgery. A laboratory and an in vivo experiment were performed to evaluate the force-limiting instrument. In the laboratory experiment, twelve novice surgeons were randomly allocated to use either the force-limiting instrument or a standard instrument. Surgeons were then asked to perform microsurgical dissection in a model. In the in vivo experiment, an intermediate surgeon performed microsurgical dissection in a stepwise fashion, alternating every 30 seconds between use of the force-limiting instrument and a standard instrument. The primary outcomes were the forces exerted and the OSATS scores. In the laboratory experiment, the maximal forces exerted by novices using the force-limiting instrument were significantly less than using a standard instrument, and were comparable to intermediate and expert surgeons (0.637N versus 4.576N; p = 0.007. In the in vivo experiment, the maximal forces exerted with the force-limiting instrument were also significantly less than with a standard instrument (0.441N versus 0.742N; p 0.1. In conclusion, the development and use of this force-limiting instrument in a clinical setting may improve patient safety.

  8. Usefulness of MR arthrography of the hip with leg traction in the evaluation of ligamentum teres injuries

    Energy Technology Data Exchange (ETDEWEB)

    Cerezal, Luis; Fernandez-Hernando, Moises [Department of Radiology, Diagnostico Medico Cantabria, Santander, Cantabria (Spain); Perez Carro, Luis [Learnig Trauma Med. Centro de Consultas Medicas CCM, Orthopedic Surgery department, Santander (Spain); Llorca, Javier [University of Cantabria - IDIVAL, Santander (Spain); CIBER Epidemiology and Public Health, Santander (Spain); Llopis, Eva [Alzira Hospital, Department of Radiology, Valencia (Spain); Montero, Juan Antonio [Cantabria University, Anatomy and Cell Biology, Santander (Spain); Canga, Ana [Cantabria University, Anatomy and Cell Biology, Santander (Spain); Department of Radiology Marques de Valdecilla University Hospital, Santander, Cantabria (Spain)

    2015-11-15

    To retrospectively evaluate the diagnostic accuracy of magnetic resonance (MR) arthrography of the hip with leg traction in the evaluation of ligamentum teres lesions and to evaluate whether there is increased articular distraction, possibly indicating secondary instability, in hips with ligamentum teres injuries. Institutional review board approval and informed consent were obtained for this retrospective study. MR arthrograms of the hip with leg traction of 184 consecutive patients, including 108 men (mean age, 32.6 years; range, 19-53 years) and 76 women (mean age, 38.5 years; range, 18-56 years), who underwent hip arthroscopy were assessed for the presence of ligamentum teres lesions. The MR arthrographic findings were independently assessed by two radiologists who were blinded to the arthroscopic results. The inclusion criteria stipulated no previous surgery, arthroscopy within 1 month after MR arthrography, and availability of a detailed surgical report with ligamentum teres findings. The arthroscopy findings served as the reference standard. Sensitivity, specificity, accuracy, and K statistics for interobserver and intraobserver agreement were calculated. At arthroscopy, 32 ligamentum teres injuries were found. The ligamentum teres was normal in 152 (82.6 %) patients and had suffered low-grade partial tears in 15 (8.1 %) patients, high-grade partial tears in 10 (5.4 %) patients, and complete ruptures in 7 (3.8 %) patients. MR arthrography with axial traction demonstrated moderate sensitivity and high specificity for both low-grade (62/93 %) and high-grade (66/96 %) partial tears. Grouping low- and high-grade partial tears increased the diagnostic performance of MR arthrography, yielding a sensitivity of 87 % and a specificity of 95 %. For complete ligamentum teres tears, MR arthrography with leg traction demonstrated high sensitivity (92 %) and specificity (98 %). Articular distraction was significantly increased in patients with complete ruptures of the

  9. Usefulness of MR arthrography of the hip with leg traction in the evaluation of ligamentum teres injuries

    International Nuclear Information System (INIS)

    Cerezal, Luis; Fernandez-Hernando, Moises; Perez Carro, Luis; Llorca, Javier; Llopis, Eva; Montero, Juan Antonio; Canga, Ana

    2015-01-01

    To retrospectively evaluate the diagnostic accuracy of magnetic resonance (MR) arthrography of the hip with leg traction in the evaluation of ligamentum teres lesions and to evaluate whether there is increased articular distraction, possibly indicating secondary instability, in hips with ligamentum teres injuries. Institutional review board approval and informed consent were obtained for this retrospective study. MR arthrograms of the hip with leg traction of 184 consecutive patients, including 108 men (mean age, 32.6 years; range, 19-53 years) and 76 women (mean age, 38.5 years; range, 18-56 years), who underwent hip arthroscopy were assessed for the presence of ligamentum teres lesions. The MR arthrographic findings were independently assessed by two radiologists who were blinded to the arthroscopic results. The inclusion criteria stipulated no previous surgery, arthroscopy within 1 month after MR arthrography, and availability of a detailed surgical report with ligamentum teres findings. The arthroscopy findings served as the reference standard. Sensitivity, specificity, accuracy, and K statistics for interobserver and intraobserver agreement were calculated. At arthroscopy, 32 ligamentum teres injuries were found. The ligamentum teres was normal in 152 (82.6 %) patients and had suffered low-grade partial tears in 15 (8.1 %) patients, high-grade partial tears in 10 (5.4 %) patients, and complete ruptures in 7 (3.8 %) patients. MR arthrography with axial traction demonstrated moderate sensitivity and high specificity for both low-grade (62/93 %) and high-grade (66/96 %) partial tears. Grouping low- and high-grade partial tears increased the diagnostic performance of MR arthrography, yielding a sensitivity of 87 % and a specificity of 95 %. For complete ligamentum teres tears, MR arthrography with leg traction demonstrated high sensitivity (92 %) and specificity (98 %). Articular distraction was significantly increased in patients with complete ruptures of the

  10. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers

    Science.gov (United States)

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin

    2018-03-01

    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  11. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merghni, Abderrahmen, E-mail: abderrahmen_merghni@yahoo.fr [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Kammoun, Dorra [Laboratoire de Biomatériaux et Biotechnologie, Faculté de Médecine Dentaire, Monastir (Tunisia); Hentati, Hajer [Laboratoire de Recherche en Santé Orale et Réhabilitation Bucco-Faciale (LR12ES11), Faculté de Médecine Dentaire de Monastir, Université de Monastir (Tunisia); Janel, Sébastien [BioImaging Center Lille-FR3642, Lille (France); Popoff, Michka [Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Lafont, Frank [BioImaging Center Lille-FR3642, Lille (France); Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Aouni, Mahjoub [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Mastouri, Maha [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Laboratoire de Microbiologie, CHU Fattouma Bourguiba de Monastir (Tunisia)

    2016-08-30

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  12. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    International Nuclear Information System (INIS)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-01-01

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  13. MR evaluation of the articular cartilage of the femoral head during traction. Correlation with resected femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, K. [Osaka Seamens Insurance Hospital (Japan). Dept. of Radiology; Tanaka, H.; Narumi, Y.; Nakamura, H. [Osaka Univ. Medical School (Japan). Dept. of Radiology; Nishii, T.; Masuhara, K. [Osaka Univ. Medical School (Japan). Dept. of Orthopedic Surgery

    1999-01-01

    Objective: The purpose was to evaluate the articular cartilage of the hip joint with MR during traction and compare the findings with the resected specimen or arthroscopic findings. Material and Methods: Eight healthy volunteers, 5 patients with osteonecrosis, 5 with acetabular dysplasia, and 5 with advanced osteoarthrosis underwent MR imaging to evaluate the articular cartilage of the hip joint. Coronal fat-suppressed 3D spoiled gradient-echo (SPGR) images were obtained during traction. Identical imaging was performed of all the resected femoral heads of the osteonecrosis and advanced osteoarthrosis patients, and was correlated with the macroscopic pathological findings. Results: The traction was effective and the femoral articular cartilage was clearly identified in all 8 control subjects, and in all cases of osteonecrosis and acetabular dysplasia. In 4 cases of osteonecrosis, chondral fracture was identified in the boundary between the necrosis and the normal area. In all cases of advanced osteoarthrosis, cartilage was identified only at the medial side. The MR images of osteonecrosis and advanced osteoarthrosis corresponded well with the MR images of the resected femoral heads and the macroscopic findings. (orig.)

  14. Method to Increase the Coupling Force in a Construction Machine

    Directory of Open Access Journals (Sweden)

    Tsipurskij Il’ja

    2017-01-01

    Full Text Available This paper discusses a possible method to increase the coupling tractive force track-wheel locomotion of construction machines. Sufficient tractive coupling force allows organizing translational displacement of the machine under above-medium load modes during operation of overburden chain excavators, tower cranes and gantry cranes in outdoors environments. A mechanism is examined to convert rotary motion into rectilinear motion using the example of a gear and rail, with kinematic calculations quoted. Analysis of the “force couple” system is proposed to identify free traction forces. Factors are established that influence the machine’s working movements. Equations to calculate tractive forces in track-wheel locomotion are described. A laboratory complex is presented where students of mechanical engineering gain practical skills in mastering the production process of soil excavation and the influence of the coupling tractive force during the machine’s operation. As practical recommendation, the paper describes a device made of a balancing lever, drive cogwheel and tractive chain to implement the required tractive force of the trolley in coupling; this solution’s efficiency is demonstrated for experimental works on hard soils with high coefficient of difficulty.

  15. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors

    Science.gov (United States)

    Tsukagoshi, Takuya; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2018-04-01

    Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.

  16. Intradiscal Pressure Changes during Manual Cervical Distraction: A Cadaveric Study

    Directory of Open Access Journals (Sweden)

    M. R. Gudavalli

    2013-01-01

    Full Text Available The objective of this study was to measure intradiscal pressure (IDP changes in the lower cervical spine during a manual cervical distraction (MCD procedure. Incisions were made anteriorly, and pressure transducers were inserted into each nucleus at lower cervical discs. Four skilled doctors of chiropractic (DCs performed MCD procedure on nine specimens in prone position with contacts at C5 or at C6 vertebrae with the headpiece in different positions. IDP changes, traction forces, and manually applied posterior-to-anterior forces were analyzed using descriptive statistics. IDP decreases were observed during MCD procedure at all lower cervical levels C4-C5, C5-C6, and C6-C7. The mean IDP decreases were as high as 168.7 KPa. Mean traction forces were as high as 119.2 N. Posterior-to-anterior forces applied during manual traction were as high as 82.6 N. Intraclinician reliability for IDP decrease was high for all four DCs. While two DCs had high intraclinician reliability for applied traction force, the other two DCs demonstrated only moderate reliability. IDP decreases were greatest during moving flexion and traction. They were progressevely less pronouced with neutral traction, fixed flexion and traction, and generalized traction.

  17. Harmonic analysis of traction power supply system based on wavelet decomposition

    Science.gov (United States)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, AC drive electric locomotive and EMU large-scale operation in the country on the ground, the electrified railway has become the main harmonic source of China's power grid. In response to this phenomenon, the need for timely monitoring of power quality problems of electrified railway, assessment and governance. Wavelet transform is developed on the basis of Fourier analysis, the basic idea comes from the harmonic analysis, with a rigorous theoretical model, which has inherited and developed the local thought of Garbor transformation, and has overcome the disadvantages such as window fixation and lack of discrete orthogonally, so as to become a more recently studied spectral analysis tool. The wavelet analysis takes the gradual and precise time domain step in the high frequency part so as to focus on any details of the signal being analyzed, thereby comprehensively analyzing the harmonics of the traction power supply system meanwhile use the pyramid algorithm to increase the speed of wavelet decomposition. The matlab simulation shows that the use of wavelet decomposition of the traction power supply system for harmonic spectrum analysis is effective.

  18. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    International Nuclear Information System (INIS)

    Jungmann, Pia M.; Baum, Thomas; Schaeffeler, Christoph; Sauerschnig, Martin; Brucker, Peter U.; Mann, Alexander; Ganter, Carl; Bieri, Oliver

    2015-01-01

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  19. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Pia M., E-mail: pia.jungmann@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Baum, Thomas, E-mail: thomas.baum@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Musculoskeletal Imaging, Kantonsspital Graubuenden, Loestrasse 170, CH-7000 Chur (Switzerland); Sauerschnig, Martin, E-mail: martin.sauerschnig@mri.tum.de [Department of Trauma Surgery, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Brucker, Peter U., E-mail: peter.brucker@lrz.tu-muenchen.de [Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Mann, Alexander, E-mail: abmann@onlinemed.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Ganter, Carl, E-mail: cganter@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Bieri, Oliver, E-mail: oliver.bieri@unibas.ch [Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031 Basel (Switzerland); and others

    2015-08-15

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  20. Development of an attention-touch control for manual cervical distraction: a pilot randomized clinical trial for patients with neck pain.

    Science.gov (United States)

    Gudavalli, M Ram; Salsbury, Stacie A; Vining, Robert D; Long, Cynthia R; Corber, Lance; Patwardhan, Avinash G; Goertz, Christine M

    2015-06-05

    Manual cervical distraction (MCD) is a traction-based therapy performed with a manual contact over the cervical region producing repeating cycles while patients lie prone. This study evaluated a traction force-based minimal intervention for use as an attention-touch control in clinical trials of MCD for patients with chronic neck pain. We conducted a mixed-methods, pilot randomized clinical trial in adults with chronic neck pain. Participants were allocated to three traction force ranges of MCD: low force/minimal intervention (0-20 N), medium force (21-50 N), or high force (51-100 N). Clinicians delivered five treatments over two weeks consisting of three sets of five cycles of MCD at the C5 vertebra and occiput. Traction forces were measured at each treatment. Patient-reported outcomes included a pain visual analogue scale (VAS), Neck Disability Index (NDI), Credibility and Expectancy Questionnaire (CEQ), and adverse effects. A qualitative interview evaluated treatment group allocation perceptions. We randomized 48 participants, allocating an average of five each month. Forty-five participants completed the trial with three participants lost to follow-up. Most participants were women (65%) and white (92%) with a mean (SD) age of 46.8 (12.5) years. Mean traction force values were within the prescribed force ranges for each group at the C5 and occiput levels. Neck pain VAS demonstrated a benefit for high traction force MCD compared to the low force group [adjusted mean difference 15.6; 95% confidence interval (CI) 1.6 to 29.7]. Participants in the medium traction force group demonstrated improvements in NDI compared to the low force group (adjusted mean difference 3.0; 95% CI 0.1 to 5.9), as did participants in the high traction force group (adjusted mean difference 2.7; 95% CI -0.1 to 5.6). CEQ favored the high force group. Most low force participants correctly identified their treatment allocation in the qualitative interview. No serious adverse events were

  1. Analysis of Electromagnetics Forces on Magnetically Suspended High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Daniel Mayer

    2004-01-01

    Full Text Available High-speed superexpresses (HSST developed by Japanese airlines (JAL are based on the electrodynamics principle of magnetic suspension. The track contains short-circuited coils and interaction between them and superconductive coils in the vehicle produces its suspension. The paper includes a mathematical model for traction electrodynamics suspension device HSST represented by a system of linear differential equations with coefficients varying in time. Numerical analysis of this model fields the velocity-dependent lift and drag forces acting on the system. The time distribution of the lift force exhibits certain oscillations that may be suppressed by suitable placement of several superconductive levitation wings in the vehicle. The results obtained are in a good agreement with the knowledge found by various authors on prototype vehicles.

  2. Spatial discretization methods for air gap permeance calculations in double salient traction motors

    NARCIS (Netherlands)

    Ilhan, E.; Kremers, M.F.J.; Motoasca, T.E.; Paulides, J.J.H.; Lomonova, E.

    2012-01-01

    Weight limitations in electric/hybrid cars demand the highest possible power-to-weight ratio from the traction motor, as in double salient permanent magnet (PM) machines. Their high flux densities in the air gap result in nonlinear analytical models, which need to be time optimized. The incorporated

  3. The Origins of Force--Misconceptions and Classroom Controversy.

    Science.gov (United States)

    Steinberg, Melvin S.

    Misconceptions associated with the origins of force and the effectiveness of a bridging strategy for developing correct conceptual models in mechanics are identified for high school physics teachers in this paper. The situation investigated was whether a table exerts an upward force on a book. Student misconceptions related to this phenomenon as…

  4. Gravitomagnetic field of the universe and Coriolis force on the rotating Earth

    International Nuclear Information System (INIS)

    Veto, B

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe-deduced from a simple model-exerts a gravitomagnetic Lorentz force on moving bodies, a force parallel to and with comparable strength to the Coriolis force observed on the rotating Earth. It seems after simple considerations that the Coriolis force happens to be the gravitomagnetic Lorentz force exerted by the mass of a black hole universe. The description of the phenomenon is simpler using the gravitomagnetic approach than the standard formulation of general relativity, so the method relying on gravitomagnetism is advisable in lectures intended for master's degree level physics students and advanced undergraduates.

  5. Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries

    Directory of Open Access Journals (Sweden)

    Sascha Koch

    2018-03-01

    Full Text Available Thermal runaway of single cells within a large scale lithium-ion battery is a well-known risk that can lead to critical situations if no counter measures are taken in today’s lithium-ion traction batteries for battery electric vehicles (BEVs, plug-in hybrid electric vehicles (PHEV and hybrid electric vehicles (HEVs. The United Nations have published a draft global technical regulation on electric vehicle safety (GTR EVS describing a safety feature to warn passengers in case of a thermal runaway. Fast and reliable detection of faulty cells undergoing thermal runaway within the lithium-ion battery is therefore a key factor in battery designs for comprehensive passenger safety. A set of various possible sensors has been chosen based on the determined cell thermal runaway impact. These sensors have been tested in different sized battery setups and compared with respect to their ability of fast and reliable thermal runaway detection and their feasibility for traction batteries.

  6. Measurements of the Exerted Pressure by Pelvic Circumferential Compression Devices

    Science.gov (United States)

    Knops, Simon P; van Riel, Marcel P.J.M; Goossens, Richard H.M; van Lieshout, Esther M.M; Patka, Peter; Schipper, Inger B

    2010-01-01

    Background: Data on the efficacy and safety of non-invasive Pelvic Circumferential Compression Devices (PCCDs) is limited. Tissue damage may occur if a continuous pressure on the skin exceeding 9.3 kPa is sustained for more than two or three hours. The aim of this study was to gain insight into the pressure build-up at the interface, by measuring the PCCD-induced pressure when applying pulling forces to three different PCCDs (Pelvic Binder® , SAM-Sling ® and T-POD® ) in a simplified model. Methods: The resulting exerted pressures were measured at four ‘anatomical’ locations (right, left, posterior and anterior) in a model using a pressure measurement system consisting of pressure cuffs. Results: The exerted pressure varied substantially between the locations as well as between the PCCDs. Maximum pressures ranged from 18.9-23.3 kPa and from 19.2-27.5 kPa at the right location and left location, respectively. Pressures at the posterior location stayed below 18 kPa. At the anterior location pressures varied markedly between the different PCCDs. Conclusion: The circumferential compression by the different PCCDs showed high pressures measured at the four locations using a simplified model. Difference in design and functional characteristics of the PCCDs resulted in different pressure build-up at the four locations. When following the manufacturer’s instructions, the exerted pressure of all three PCCDs tested exceeded the tissue damaging level (9.3 kPa). In case of prolonged use in a clinical situation this might put patients at risk for developing tissue damage. PMID:20361001

  7. Design Strategies for Balancing Exertion Games

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Grønbæk, Kaj

    2016-01-01

    In sports, if players' physical and technical abilities are mismatched, the competition is often uninteresting for them. With the emergence of exertion games, this could be changing. Player balancing, known from video games, allows players with different skill levels to compete, however, it is un......In sports, if players' physical and technical abilities are mismatched, the competition is often uninteresting for them. With the emergence of exertion games, this could be changing. Player balancing, known from video games, allows players with different skill levels to compete, however......, it is unclear how balancing mechanisms should be applied in exertion games, where physical and digital elements are fused. In this paper, we present an exertion game and three approaches for balancing it; a physical, an explicit-digital and an implicit-digital balancing approach. A user study that compares...... these three approaches is used to investigate the qualities and challenges within each approach and explore how the player experience is affected by them. Based on these findings, we suggest four design strategies for balancing exertion games, so that players will stay engaged in the game and contain...

  8. VITRECTOMY FOR INTERMEDIATE AGE-RELATED MACULAR DEGENERATION ASSOCIATED WITH TANGENTIAL VITREOMACULAR TRACTION: A CLINICOPATHOLOGIC CORRELATION.

    Science.gov (United States)

    Ziada, Jean; Hagenau, Felix; Compera, Denise; Wolf, Armin; Scheler, Renate; Schaumberger, Markus M; Priglinger, Siegfried G; Schumann, Ricarda G

    2018-03-01

    To describe the morphologic characteristics of the vitreomacular interface in intermediate age-related macular degeneration associated with tangential traction due to premacular membrane formation and to correlate with optical coherence tomography (OCT) findings and clinical data. Premacular membrane specimens were removed sequentially with the internal limiting membrane from 27 eyes of 26 patients with intermediate age-related macular degeneration during standard vitrectomy. Specimens were processed for immunocytochemical staining of epiretinal cells and extracellular matrix components. Ultrastructural analysis was performed using transmission electron microscopy. Spectral domain optical coherence tomography images and patient charts were evaluated in retrospect. Immunocytochemistry revealed hyalocytes and myofibroblasts as predominant cell types. Ultrastructural analysis demonstrated evidence of vitreoschisis in all eyes. Myofibroblasts with contractile properties were observed to span between folds of the internal limiting membrane and vitreous cortex collagen. Retinal pigment epithelial cells or inflammatory cells were not detected. Mean visual acuity (Snellen) showed significant improvement from 20/72 ± 20/36 to 20/41 ± 20/32 (P age-related macular degeneration predominantly consists of vitreous collagen, hyalocytes, and myofibroblasts with contractile properties. Vitreoschisis and vitreous-derived cells appear to play an important role in traction formation of this subgroup of eyes. In patients with intermediate age-related macular degeneration and contractile premacular membrane, release of traction by vitrectomy with internal limiting membrane peeling results in significantly functional and anatomical improvement.

  9. Skull traction for cervical spinal injury in Enugu: A 5‑year ...

    African Journals Online (AJOL)

    2015-11-05

    Nov 5, 2015 ... Background: Treatment of cervical spine injury is the most challenging of all the injuries of the spine, and there is yet no agreement on the best method of care. Objective: We studied the complications and outcome of two skull traction devices used to treat cases of cervical spine injury in three centers in ...

  10. Morphostructural characterization of soil conventionally tilled with mechanized and animal traction with and without cover crop

    Directory of Open Access Journals (Sweden)

    Ricardo Ralisch

    2010-12-01

    Full Text Available The structural stability and restructuring ability of a soil are related to the methods of crop management and soil preparation. A recommended strategy to reduce the effects of soil preparation is to use crop rotation and cover crops that help conserve and restore the soil structure. The aim of this study was to evaluate and quantify the homogeneous morphological units in soil under conventional mechanized tillage and animal traction, as well as to assess the effect on the soil structure of intercropping with jack bean (Canavalia ensiformis L.. Profiles were analyzed in April of 2006, in five counties in the Southern-Central region of Paraná State (Brazil, on family farms producing maize (Zea mays L., sometimes intercropped with jack bean. The current structures in the crop profile were analyzed using Geographic Information Systems (GIS and subsequently principal component analysis (PCA to generate statistics. Morphostructural soil analysis showed a predominance of compact units in areas of high-intensity cultivation under mechanized traction. The cover crop did not improve the structure of the soil with low porosity and compact units that hamper the root system growth. In areas exposed to animal traction, a predominance of cracked units was observed, where roots grew around the clods and along the gaps between them.

  11. Perfluorocarbon-perfused 23 gauge three-dimensional vitrectomy for complicated diabetic tractional retinal detachment

    Science.gov (United States)

    Velez-Montoya, Raul; Guerrero-Naranjo, Jose Luis; Garcia-Aguirre, Gerardo; Morales-Cantón, Virgilio; Fromow-Guerra, Jans; Quiroz-Mercado, Hugo

    2011-01-01

    Background Perfluorocarbon liquid (PCL)-perfused vitrectomy has been shown in previous studies to be feasible, safe, and to have advantages in managing complicated cases of tractional retinal detachment. The present study had the objectives of describing the anatomical results and measuring surgical time and PCL consumption when combining PCL-perfused techniques with modern vitrectomy equipment. Methods A prospective, interventional consecutive case series was investigated. We enrolled patients with diabetic tractional retinal detachment, complicated by proliferative vitreoretinopathy and poor vision. A 23 gauge PCL-perfused vitrectomy was done with three-dimensional settings. During the procedure, we assessed the degree of surgical bleeding, visualization quality, and difficulty of membrane dissections. Visual acuity, intraocular pressure, and anatomical success were assessed at one and 3 months of follow-up. Results Twelve patients were enrolled in this study. There were no statistical significant changes in intraocular pressure and visual acuity throughout the follow-up period. Surgery was performed in a hemorrhage-free environment in almost all cases, with good visualization and low technical difficulty. The mean complete surgical time was 94.92 ± 25.03 minutes. The mean effective vitrectomy time was 22.50 ± 19.04 minutes and the mean PCL consumption was 25.08 ± 9.76 mL, with a speed of 1.11 mL/minute. Anatomical success was 67% at 3 months. Conclusion Although the technique proved to have some advantages in managing complicated cases of diabetic tractional retinal detachment, there was a high consumption of PCL. A redesign of the entire system is needed in order to decrease the amount of PCL needed for the technique. PMID:22267907

  12. Force percolation of contractile active gels

    NARCIS (Netherlands)

    Alvarado, José; Sheinman, Michael; Sharma, Abhinav; MacKintosh, Fred C.; Koenderink, Gijsje H.

    2017-01-01

    Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and

  13. Degree of Fault Tolerance as a Comprehensive Parameter for Reliability Evaluation of Fault Tolerant Electric Traction Drives

    Directory of Open Access Journals (Sweden)

    Igor Bolvashenkov

    2016-09-01

    Full Text Available This paper describes a new approach and methodology of quantitative assessment of the fault tolerance of electric power drive consisting of the multi-phase traction electric motor and multilevel electric inverter. It is suggested to consider such traction drive as a system with several degraded states. As a comprehensive parameter for evaluating of the fault tolerance, it is proposed to use the criterion of degree of the fault tolerance. For the approbation of the proposed method, the authors carried out research and obtained results of its practical application for evaluating the fault tolerance of the power train of an electrical helicopter.

  14. Long-Life, Oil-Free Polymeric, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-roller traction drives have several advantages relative to geared units for aerospace and commercial drive applications. Among these are zero backlash, low...

  15. Optical force rectifiers based on PT-symmetric metasurfaces

    Science.gov (United States)

    Alaee, Rasoul; Gurlek, Burak; Christensen, Johan; Kadic, Muamer

    2018-05-01

    We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally.

  16. Characterizing components of the Saw Palmetto Berry Extract (SPBE) on prostate cancer cell growth and traction

    International Nuclear Information System (INIS)

    Scholtysek, Carina; Krukiewicz, Aleksandra A.; Alonso, Jose-Luis; Sharma, Karan P.; Sharma, Pal C.; Goldmann, Wolfgang H.

    2009-01-01

    Saw Palmetto Berry Extract (SPBE) is applied for prostate health and treatment of urinary tract infections, nonbacterial prostitis and Benign Prostatic Hyperplasia (BPH) in man. An assumption is that SPBE affects tumor cell progression and migration in breast and prostate tissue. In this work, DU-145 cells were used to demonstrate that SPBE and its sterol components, β-sitosterol and stigmasterol, inhibit prostate cancer growth by increasing p53 protein expression and also inhibit carcinoma development by decreasing p21 and p27 protein expression. In the presence of cholesterol, these features are not only reversed but increased significantly. The results show for the first time the potential of SPBE, β-sitosterol and stigmasterol as potential anti-tumor agents. Since the protein p53 is also regarded as nuclear matrix protein facilitating actin cytoskeletal binding, 2D tractions were measured. The cell adhesion strength in the presence of SPBE, β-sitosterol and cholesterol and the observation was that the increase in p53 expression triggered an increase in the intracellular force generation. The results suggest a dual function of p53 in cells.

  17. Characterizing components of the Saw Palmetto Berry Extract (SPBE) on prostate cancer cell growth and traction.

    Science.gov (United States)

    Scholtysek, Carina; Krukiewicz, Aleksandra A; Alonso, José-Luis; Sharma, Karan P; Sharma, Pal C; Goldmann, Wolfgang H

    2009-02-13

    Saw Palmetto Berry Extract (SPBE) is applied for prostate health and treatment of urinary tract infections, nonbacterial prostitis and Benign Prostatic Hyperplasia (BPH) in man. An assumption is that SPBE affects tumor cell progression and migration in breast and prostate tissue. In this work, DU-145 cells were used to demonstrate that SPBE and its sterol components, beta-sitosterol and stigmasterol, inhibit prostate cancer growth by increasing p53 protein expression and also inhibit carcinoma development by decreasing p21 and p27 protein expression. In the presence of cholesterol, these features are not only reversed but increased significantly. The results show for the first time the potential of SPBE, beta-sitosterol and stigmasterol as potential anti-tumor agents. Since the protein p53 is also regarded as nuclear matrix protein facilitating actin cytoskeletal binding, 2D tractions were measured. The cell adhesion strength in the presence of SPBE, beta-sitosterol and cholesterol and the observation was that the increase in p53 expression triggered an increase in the intracellular force generation. The results suggest a dual function of p53 in cells.

  18. Safety and efficacy of endoscopic submucosal dissection using IT knife nano with clip traction method for early esophageal squamous cell carcinoma.

    Science.gov (United States)

    Kitagawa, Yoshiyasu; Suzuki, Takuto; Hara, Taro; Yamaguchi, Taketo

    2018-01-01

    Although endoscopic submucosal dissection (ESD) is an accepted and established treatment for early esophageal squamous cell carcinoma (EESCC), it is technically difficult, time consuming, and less safe than endoscopic mucosal resection. To perform ESD safely and more efficiently, we proposed a new technique of esophageal ESD using an IT knife nano with the clip traction method. This study aimed to evaluate the efficacy and safety of ESD using this new technique. We retrospectively reviewed all consecutive cases of esophageal ESD performed using an IT knife nano with the clip traction method at our hospital between March 2013 and January 2017. Therapeutic efficacy and safety were also assessed. A total of 103 patients underwent esophageal ESD using the IT knife nano with the clip traction method. In all cases, we performed en bloc resection. Complete resection was achieved in 100 cases (97.1%). The median operating time was 40 (range 13-230) min. No cases of perforation or delayed bleeding occurred. Although two cases (2.0%) of mediastinal emphysema occurred without visible perforation at endoscopy, all were successfully managed conservatively. The new technique of esophageal ESD using the IT knife nano with the clip traction method appears to be feasible, effective, and safe for EESCC treatment.

  19. Evaluation of methods to assess push/pull forces in a construction task

    NARCIS (Netherlands)

    Hoozemans, M J; Van Der Beek, Allard J.; Frings-Dresena, M H; Van der Molen, Henk F.

    2001-01-01

    The objective of the present study was to determine the validity of methods to assess push/pull forces exerted in a construction task. Forces assessed using a hand-held digital force gauge were compared to those obtained using a highly accurate measuring frame. No significant differences were found

  20. Acute quadriplegia following closed traction reduction of a cervical facet dislocation in the setting of ossification of the posterior longitudinal ligament: case report.

    Science.gov (United States)

    Wimberley, David W; Vaccaro, Alexander R; Goyal, Nitin; Harrop, James S; Anderson, D Greg; Albert, Todd J; Hilibrand, Alan S

    2005-08-01

    A case report of acute quadriplegia resulting from closed traction reduction of traumatic bilateral cervical facet dislocation in a 54-year-old male with concomitant ossification of the posterior longitudinal ligament (OPLL). To report an unusual presentation of a spinal cord injury, examine the approach to reversal of the injury, and review the treatment and management controversies of acute cervical facet dislocations in specific patient subgroups. The treatment of acute cervical facet dislocations is an area of ongoing controversy, especially regarding the question of the necessity of advanced imaging studies before closed traction reduction of the dislocated cervical spine. The safety of an immediate closed, traction reduction of the cervical spine in awake, alert, cooperative, and appropriately select patients has been reported in several studies. To date, there have been no permanent neurologic deficits resulting from awake, closed reduction reported in the literature. A case of temporary, acute quadriplegia with complete neurologic recovery following successful closed traction reduction of a bilateral cervical facet dislocation in the setting of OPLL is presented. The clinical neurologic examination, radiographic, and advanced imaging studies before and after closed, traction reduction of a cervical facet dislocation are evaluated and discussed. A review of the literature regarding the treatment of acute cervical facet dislocations is presented. Radiographs showed approximately 50% subluxation of the fifth on the sixth cervical vertebrae, along with computerized tomography revealing extensive discontinuous OPLL. The cervical facet dislocation was successfully reduced with an awake, closed traction reduction, before magnetic resonance imaging (MRI) evaluation. The patient subsequently had acute quadriplegia develop, with the ensuing MRI study illustrating severe spinal stenosis at the C5, C6 level as a result of OPLL or a large extruded disc herniation

  1. Model-based efficiency evaluation of combine harvester traction drives

    Directory of Open Access Journals (Sweden)

    Steffen Häberle

    2015-08-01

    Full Text Available As part of the research the drive train of the combine harvesters is investigated in detail. The focus on load and power distribution, energy consumption and usage distribution are explicitly explored on two test machines. Based on the lessons learned during field operations, model-based studies of energy saving potential in the traction train of combine harvesters can now be quantified. Beyond that the virtual machine trial provides an opportunity to compare innovative drivetrain architectures and control solutions under reproducible conditions. As a result, an evaluation method is presented and generically used to draw comparisons under local representative operating conditions.

  2. Basilar impression in osteogenesis imperfecta: can it be treated with halo traction and posterior fusion?

    NARCIS (Netherlands)

    Noske, D. P.; van Royen, B. J.; Bron, J. L.; Vandertop, W. P.

    2006-01-01

    Basilar impression (BI) and hydrocephalus complicating osteogenesis imperfecta (OI) is usually treated by anterior transoral decompression and posterior fixation. Nevertheless, it may be questioned if posterior fusion following axial halo traction is adequate in patients with symptomatic BI

  3. Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Mats [Swedish National Road and Transport Research Institute (VTI), SE-581 95 Linkoeping (Sweden)], E-mail: mats.gustafsson@vti.se; Blomqvist, Goeran [Swedish National Road and Transport Research Institute (VTI), SE-581 95 Linkoeping (Sweden); Gudmundsson, Anders; Dahl, Andreas [Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Swietlicki, Erik [Division of Nuclear Physics, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Bohgard, Mats [Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Lindbom, John; Ljungman, Anders [Faculty of Health Sciences, Department of Molecular and Clinical Medicine, Division of Occupational and Environmental Medicine, SE-581 85 Linkoeping (Sweden)

    2008-04-15

    In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM{sub 10}) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, Particle Induced X-Ray Emission Analysis and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM{sub 10}, respectively. The results show that in the road simulator, where resuspension is minimized, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consist almost entirely of minerals from the pavement stone material, but also that Sulfur is enriched for the submicron particles and that Zink is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM{sub 10} emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results imply that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties.

  4. Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material

    International Nuclear Information System (INIS)

    Gustafsson, Mats; Blomqvist, Goeran; Gudmundsson, Anders; Dahl, Andreas; Swietlicki, Erik; Bohgard, Mats; Lindbom, John; Ljungman, Anders

    2008-01-01

    In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM 10 ) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, Particle Induced X-Ray Emission Analysis and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM 10 , respectively. The results show that in the road simulator, where resuspension is minimized, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consist almost entirely of minerals from the pavement stone material, but also that Sulfur is enriched for the submicron particles and that Zink is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM 10 emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results imply that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties

  5. When exercise causes exertional rhabdomyolysis.

    Science.gov (United States)

    Furman, Janet

    2015-04-01

    Exertional rhabdomyolysis is a clinical condition caused by intense, repetitive exercise or a sudden increase in exercise in an untrained person, although rhabdomyolysis can occur in trained athletes. In many cases, the presentation of early, uncomplicated rhabdomyolysis is subtle, but serious complications such as renal failure, compartment syndrome, and dysrhythmias may arise if severe exertional rhabdomyolysis is undiagnosed or untreated. Management is further complicated by the lack of concrete management guidelines for treating rhabdomyolysis and returning patients to activity.

  6. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  7. Timing and extent of finger force enslaving during a dynamic force task cannot be explained by EMG activity patterns.

    Directory of Open Access Journals (Sweden)

    Mojtaba Mirakhorlo

    Full Text Available Finger enslaving is defined as the inability of the fingers to move or to produce force independently. Such finger enslaving has predominantly been investigated for isometric force tasks. The aim of this study was to assess whether the extent of force enslaving is dependent on relative finger movements. Ten right-handed subjects (22-30 years flexed the index finger while counteracting constant resistance forces (4, 6 and 8 N orthogonal to the fingertip. The other, non-instructed fingers were held in extension. EMG activities of the mm. flexor digitorum superficialis (FDS and extensor digitorum (ED in the regions corresponding to the index, middle and ring fingers were measured. Forces exerted by the non-instructed fingers increased substantially (by 0.2 to 1.4 N with flexion of the index finger, increasing the enslaving effect with respect to the static, pre-movement phase. Such changes in force were found 260-370 ms after the initiation of index flexion. The estimated MCP joint angle of the index finger at which forces exerted by the non-instructed fingers started to increase varied between 4° and 6°. In contrast to the finger forces, no significant changes in EMG activity of the FDS regions corresponding to the non-instructed fingers upon index finger flexion were found. This mismatch between forces and EMG of the non-instructed fingers, as well as the delay in force development are in agreement with connective tissue linkages being slack when the positions of the fingers are similar, but pulled taut when one finger moves relative to the others. Although neural factors cannot be excluded, our results suggest that mechanical connections between muscle-tendon structures were (at least partly responsible for the observed increase in force enslaving during index finger flexion.

  8. Vibrations of a molecule in an external force field.

    Science.gov (United States)

    Okabayashi, Norio; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J

    2018-05-01

    The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.

  9. FMNL formins boost lamellipodial force generation

    DEFF Research Database (Denmark)

    Kage, Frieda; Winterhoff, Moritz; Dimchev, Vanessa

    2017-01-01

    , without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts...... reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching....

  10. MONITORING OF ELECTRICAL ENERGY QUALITY ON THE TRACTION SUBSTATION INPUT

    Directory of Open Access Journals (Sweden)

    O.G. Gryb

    2015-12-01

    Full Text Available For the implementation of measures to maintain the quality of the energy industrial enterprises have to spend a significant material and monetary assets. In this regard, significant is the feasibility study of the allocation of such funds and, primarily, the determination of the economic damage arising from low quality of electricity. The reliability of the electricity metering system, relay protection and automation of modern digital substations depends on the quality of electrical energy. At the present time to improve the reliability of the substation operation it is necessary to monitor indicators of quality of electric energy, allowing you to take organizational and technical solutions for their improvement. Monitoring the power quality at the input traction substation has shown that indicators such as the coefficient of the n-th harmonic component of the voltage does not meet the standards GOST 13109-97. The source of higher harmonics is a voltage Converter used on the locomotive. To eliminate higher harmonics in the supply network for traction substations will need to install power filters. Today, the USB-analyzer of power quality «Digital measurement system of power quality» type of CSICE of accuracy class 0.2. Work energy requires reliable and quality electricity supply to consumers. The new model of balancing energy market are bilateral contracts. The main task of this market, it ensure the stable and reliable operation of the unified energy system of Ukraine, that is, transmission and supply of electricity of appropriate quality.

  11. The determination of the pressure-viscosity coefficient of two traction oils using film thickness measurements

    NARCIS (Netherlands)

    Leeuwen, van H.J.

    2010-01-01

    The pressure-viscosity coefficients of two commercial traction fluids are determined by fitting calculation results on accurate film thickness measurements, obtained at a wide range of speeds, and different temperatures. Film thickness values are calculated using a numerical method and approximation

  12. Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing

    Directory of Open Access Journals (Sweden)

    J. E. Penner

    2009-02-01

    Full Text Available Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We use a version of the aerosol model that predicts sulfate number and mass concentrations in 3-modes and includes the formation of sulfate aerosol through homogeneous binary nucleation as well as a version that only predicts sulfate mass. The 3-mode version best represents the Aitken aerosol nuclei number concentrations in the upper troposphere which dominated ice crystal residues in the upper troposphere. Fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of −0.3 to −0.4 Wm−2 while anthropogenic sulfate aerosols and aircraft aerosols exert a forcing of −0.01 to 0.04 Wm−2 and −0.16 to −0.12 Wm−2, respectively, where the range represents the forcing from two parameterizations for ice nucleation. The sign of the forcing in the mass-only version of the model depends on which ice nucleation parameterization is used and can be either positive or negative. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  13. A dynamic traction splint for the management of extrinsic tendon tightness.

    Science.gov (United States)

    Dovelle, S; Heeter, P K; Phillips, P D

    1987-02-01

    The dynamic traction splint designed by therapists at Walter Reed Army Medical Center is used for the management of extrinsic extensor tendon tightness commonly seen in brachial plexus injuries and traumatic soft tissue injuries of the upper extremity. The two components of the splint allow for simultaneous maximum flexion of the MCP and IP joints. This simple and economical splint provides an additional modality to any occupational therapy service involved in the management of upper extremity disorders.

  14. Feasibility study on the interconnection of traction and other power line infrastructures; Machbarkeitsstudie zur Verknuepfung von Bahn- und Energieleitungsinfrastrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Lutz [Hannover Univ. (Germany). Inst. fuer Energieversorgung und Hochspannungstechnik; Stephan, Arnd [Technische Univ. Dresden (Germany). Professur Elektrische Bahnen; Weyer, Hartmut [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Deutsches und Internationales Berg- und Energierecht

    2013-06-15

    It was the purpose of the feasibility study to find out if and to what extent the existing transmission route potentials of the 16.7 Hz traction power network (DB Energie GmbH) can be used for the installation of new transmission lines of the standard 50 Hz power supply system. Of importance is here the question if and in which way the integration of new three-phase or DC overhead lines or cable systems in existing traction power routes is technically feasible, and to what extent such interconnection offers a potential for the acceleration of the planning and approval processes. (orig.)

  15. Effects of Adding Segmental Traction Therapy to Routine Physiotherapy on Pain and Functional Ability of Patients with Acute Low Back Pain

    Directory of Open Access Journals (Sweden)

    Parvin Akberov

    2015-06-01

    Full Text Available Background: Low back pain (LBP is one of the most common musculoskeletal complications of today’s societies which, poses a big portion of health expenses and work absentees. Lumbar disc herniation is claimed to be one of the several causes of LBP. Conservative therapies like physiotherapy are found to be beneficial for treatment in such a kind of LBP. However, there is low evidence proving traction therapy can be effective. Therefore, the aim of this study was to evaluate effects of a 7-day physiotherapy protocol along with segmental traction therapy on pain and range of motion in patients with acute LBP Methods: A total of 9 patients with acute LBP voluntarily participated in this study. They undertook a 7-day conventional physiotherapy along with segmental traction therapy. Pain, functional ability and lumbar flexion range of motion (ROM were measured before and after the therapeutic intervention. Results: A significant reduction in pain was observed after the intervention (P=0.006. In addition, patients’ functional ability increased significantly (P=0.03.However, there were no significant changes in lumbar in flexion ROM. Conclusion: According to results of the present study segmental traction therapy along with a physiotherapy protocol consisting of TENS, Ultrasound and Hot pack reduces pain and improves functional ability in patient with acute LBP. Although no effect on lumbar ROM is expected.

  16. Cutaneous mechanisms of isometric ankle force control

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Jesper Lundbye; Leukel, Christian

    2013-01-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force...... of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle...... joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases....

  17. Quantitative analysis of the orthodontic and orthopedic effects of maxillary traction.

    Science.gov (United States)

    Baumrind, S; Korn, E L; Isaacson, R J; West, E E; Molthen, R

    1983-11-01

    This article analyzes differences in displacement of ANS and of the upper first molar when different vectors of force are delivered to the maxilla in non-full-banded Phase I mixed-dentition treatment of Class II malocclusion. The sample is identical to that for which we have previously reported differences in change in several key measures of mandibular and facial shape. It includes a cervical-traction group, a high-pull-to-upper-molar group, a modified-activator group, and an untreated Class II control group. Using newly developed computer-conducted procedures, which are described, we have been able to partition the orthodontic and orthopedic components of upper molar displacement and also to isolate treatment effects from those attributable to spontaneous growth and development. In the region of ANS, small but statistically significant and clinically meaningful differences were noted between treatments. When the intercurrent effects of growth and development had been factored out (Table III), orthopedic distal displacement of ANS was significantly greater in the high-pull and cervical groups than in the activator group. Orthopedic downward displacement of ANS was seen to be significantly greater in the cervical group than in the high-pull and activator groups. In the region of the first molar cusp, mean distal displacement of the tooth as an orthopedic effect was found to be almost identical in the cervical and high-pull groups (although variability was greater in the cervical group), but the mean orthodontic effect was significantly greater in the high-pull group than in the cervical group. In the cervical group, where relatively light forces were used for relatively long treatment periods on average, more of the total distal displacement of the upper molar was of an orthopedic character than of an orthodontic character. Conversely, in the high-pull group, in which relatively heavier forces tended to be used for briefer treatment periods, most of the distal

  18. 3.0T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study.

    Science.gov (United States)

    Jungmann, Pia M; Baum, Thomas; Schaeffeler, Christoph; Sauerschnig, Martin; Brucker, Peter U; Mann, Alexander; Ganter, Carl; Bieri, Oliver; Rummeny, Ernst J; Woertler, Klaus; Bauer, Jan S

    2015-08-01

    To determine the impact of axial traction during high resolution 3.0T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. MR images of n=25 asymptomatic ankles were acquired with and without axial traction (6kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1=best, 4=worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n=8) T2 and SSFP diffusion-weighted imaging (DWI; n=8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (Pevaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P>0.05). T2 values were lower at the tibia than at the talus (P<0.001). Reproducibility was better for images with axial traction. Axial traction increased the joint space width, allowed for better visualization of cartilage surfaces and improved compartment discrimination and reproducibility of quantitative cartilage parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  20. Students’ understanding of forces: Force diagrams on horizontal and inclined plane

    Science.gov (United States)

    Sirait, J.; Hamdani; Mursyid, S.

    2018-03-01

    This study aims to analyse students’ difficulties in understanding force diagrams on horizontal surfaces and inclined planes. Physics education students (pre-service physics teachers) of Tanjungpura University, who had completed a Basic Physics course, took a Force concept test which has six questions covering three concepts: an object at rest, an object moving at constant speed, and an object moving at constant acceleration both on a horizontal surface and on an inclined plane. The test is in a multiple-choice format. It examines the ability of students to select appropriate force diagrams depending on the context. The results show that 44% of students have difficulties in solving the test (these students only could solve one or two items out of six items). About 50% of students faced difficulties finding the correct diagram of an object when it has constant speed and acceleration in both contexts. In general, students could only correctly identify 48% of the force diagrams on the test. The most difficult task for the students in terms was identifying the force diagram representing forces exerted on an object on in an inclined plane.

  1. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction.

    Science.gov (United States)

    Heck, T A M; Wilson, W; Foolen, J; Cilingir, A C; Ito, K; van Donkelaar, C C

    2015-03-18

    Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  3. Performance Availability Assessment of Combined Multi Power Source Traction Drive Considering Real Operational Conditions

    Directory of Open Access Journals (Sweden)

    Frenkel Ilia

    2016-09-01

    Full Text Available The present paper deals with the vehicle’s traction electric drive, consisting of several various electric power sources. One of the main requirements for such systems are the safety and sustainable operations, achieved largely the implementation of an uninterrupted supply of the vehicle’s propulsion system with an electric power.

  4. MATHEMATIC SIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC TRACTION NETWORK – LOCOMOTIVE” 1. SWITCH ON LOCOMOTIVE’S POWER CONVERTER IN “FREE PLAY” MODE; PARAMETERS ESTIMATION

    OpenAIRE

    T. M. Mishchenko; A. I. Kiiko

    2010-01-01

    In the article the electric circuit of substitution and mathematical model of the system of alternating current «traction substation − traction mains − electric locomotive DS 3» at switching its power transformer on in the idle mode are presented. Numerical determinations of parameters of traction substation, rails, contact network and transformer are executed; in so doing a special attention is paid to the estimation of dispersion inductance for the primary winding of transformer.

  5. Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics

    International Nuclear Information System (INIS)

    Loudon, Rodney

    2003-01-01

    The classical theory of the electromagnetic field associated with paraxial Laguerre-Gaussian light is generalized to apply to propagation in a bulk dielectric, and the theory is quantized to obtain expressions for the electric and magnetic field operators. The forms of the Poynting vector and angular momentum density operators are derived and their expectation values for a single-photon wave packet are obtained. The Lorentz force operator in the dielectric is resolved into longitudinal, radial, and azimuthal components. The theory is extended to apply to an interface between two semi-infinite dielectric media, one of which is transparent with an incident single-photon pulse, and the other of which is weakly attenuating. For a pulse that is much shorter than the attenuation length, the theory can separately identify the surface and bulk contributions to the Lorentz force on the attenuating dielectric. Particular attention is given to the transfer of longitudinal and angular momentum to the dielectric from light incident from free space. The resulting expressions for the shift and rotation of a transparent dielectric slab are shown to agree with those obtained from Einstein box theories

  6. Windowed SHE-PWM of Interleaved Four-Quadrant Converters for Resonance Suppression in Traction Power Supply Systems

    DEFF Research Database (Denmark)

    Song, Kejian; Konstantinou, Georgios; Mingli, Wu

    2017-01-01

    AC electric locomotives that use a number of interleaved four-quadrant converters generate high-frequency switching harmonics which may stimulate certain resonances in traction power supply systems (TPSSs). A windowed selective harmonic elimination pulse-width modulation (SHE-PWM) method...

  7. Brushless traction PM Machines using commercial drive technology, part I: Design methodology and motor design

    NARCIS (Netherlands)

    Kazmin, Evgeny; Lomonova, E.A.; Paulides, J.J.H.

    2008-01-01

    A concept design approach for the brushless PM traction motor, which has crucial constraints on volume envelope and on the drive, is presented. The considered motor drive is the three-phase DC/AC converter, which is commercially available on the modern market of the standard variable frequency

  8. Exertion Testing in Youth with Mild Traumatic Brain Injury/Concussion.

    Science.gov (United States)

    Dematteo, Carol; Volterman, Kimberly A; Breithaupt, Peter G; Claridge, Everett A; Adamich, John; Timmons, Brian W

    2015-11-01

    The decision regarding return to activity (RTA) after mild traumatic brain injuries/concussion is one of the most difficult and controversial areas in concussion management, particularly for youth. This study investigated how youth with postconcussion syndrome (PCS) are affected by exertion and whether standardized exertion testing using the McMaster All-Out Progressive Continuous Cycling Test can contribute to clinical decision making for safe RTA. Fifty-four youth (8.5-18.3 yr) with a previously confirmed concussion participated in the study. Each participant performed exertion testing on a cycle ergometer and completed a Postconcussion Symptom scale at the following time points: before exertion (baseline), 5 and 30 min, and 24 h after exertion. A modified Postconcussion Symptom scale was administered at 2-min intervals during exertion. Participants had a mean ± SD symptom duration of 6.3 ± 6.9 months after the most recent concussive injury, with a median of 4.1 months (range, 0.7-35 months). Sixty-three percent of participants had symptoms during exertion testing. Symptom profile (number and severity) significantly affected perception of exertion at 50% peak mechanical power. During acute assessment of symptoms (30-min after exertion), headache (P = 0.39), nausea (P = 0.63), and dizziness (P = 0.35) did not change. However, both the number and severity of symptoms significantly improved over 24 h, with 56.8% of youth showing improvements. The time from the most recent injury had a significant effect on the symptom score at baseline, 30 min after exertion, and 24 h after exertion. Exertion testing has an important role in the evaluation of symptoms and readiness to RTA, particularly in youth who are slow to recover. Overall, controlled exertion seemed to lesson symptoms for most youth.

  9. MR findings associated with positive distraction of the hip joint achieved by axial traction

    Energy Technology Data Exchange (ETDEWEB)

    Suter, Aline; Dietrich, Tobias J.; Maier, Matthias; Pfirrmann, Christian W.A. [Radiology, Orthopedic University Hospital Balgrist, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland); Dora, Claudio [Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland)

    2015-06-01

    To determine which MR-arthrography findings are associated with positive hip joint distraction. One hundred patients with MR arthrography of the hip using axial traction were included. Traction was applied during the MR examination with an 8 kg (females) or 10 kg (males) water bag, attached to the ankle over a deflection pulley. Fifty patients showing joint space distraction were compared to an age- and gender-matched control group of 50 patients that did not show a joint distraction under axial traction. Two radiologists assessed the neck-shaft angle, lateral and anterior center-edge (CE) angles, CE angles in the transverse plane, extrusion index of the femoral head, acetabular depth, alpha angle, acetabular version, ligamentum teres, joint capsule and ligaments, iliopsoas tendon and the labrum. Mean joint space distraction in the study group was 0.9 ± 0.6 mm. Patients with positive joint space distraction had significantly higher neck-shaft angles (control group 131.6 ± 5.4 /study group 134.1 ± 6.1 , p < 0.05), smaller lateral CE angles (38.1 ± 5.9 /34.6 ± 7.2 , p < 0.05), smaller overall transverse CE angles (161.4 ± 9.9 /153.6 ± 9.6 , p < 0.001), smaller acetabular depth (4.1 ± 2.4 mm/5.8 ± 2.5 mm, p < 0.01), higher alpha angles (53.5 ± 7.8 /59.2 ± 10.1 , p < 0.01) and a thicker ligamentum teres (4.7 ± 1.4 mm/5.4 ± 1.8 mm, p < 0.05). The other parameters revealed no significant differences. ICC values for interobserver agreement were 0.71-0.95 and kappa values 0.43-0.92. Increased neck-shaft angles, small CE angles, small acetabular depth, higher alpha angles and a thick ligamentum teres are associated with positive joint distraction. (orig.)

  10. MR findings associated with positive distraction of the hip joint achieved by axial traction

    International Nuclear Information System (INIS)

    Suter, Aline; Dietrich, Tobias J.; Maier, Matthias; Pfirrmann, Christian W.A.; Dora, Claudio

    2015-01-01

    To determine which MR-arthrography findings are associated with positive hip joint distraction. One hundred patients with MR arthrography of the hip using axial traction were included. Traction was applied during the MR examination with an 8 kg (females) or 10 kg (males) water bag, attached to the ankle over a deflection pulley. Fifty patients showing joint space distraction were compared to an age- and gender-matched control group of 50 patients that did not show a joint distraction under axial traction. Two radiologists assessed the neck-shaft angle, lateral and anterior center-edge (CE) angles, CE angles in the transverse plane, extrusion index of the femoral head, acetabular depth, alpha angle, acetabular version, ligamentum teres, joint capsule and ligaments, iliopsoas tendon and the labrum. Mean joint space distraction in the study group was 0.9 ± 0.6 mm. Patients with positive joint space distraction had significantly higher neck-shaft angles (control group 131.6 ± 5.4 /study group 134.1 ± 6.1 , p < 0.05), smaller lateral CE angles (38.1 ± 5.9 /34.6 ± 7.2 , p < 0.05), smaller overall transverse CE angles (161.4 ± 9.9 /153.6 ± 9.6 , p < 0.001), smaller acetabular depth (4.1 ± 2.4 mm/5.8 ± 2.5 mm, p < 0.01), higher alpha angles (53.5 ± 7.8 /59.2 ± 10.1 , p < 0.01) and a thicker ligamentum teres (4.7 ± 1.4 mm/5.4 ± 1.8 mm, p < 0.05). The other parameters revealed no significant differences. ICC values for interobserver agreement were 0.71-0.95 and kappa values 0.43-0.92. Increased neck-shaft angles, small CE angles, small acetabular depth, higher alpha angles and a thick ligamentum teres are associated with positive joint distraction. (orig.)

  11. Nonconservative current-induced forces: A physical interpretation

    Directory of Open Access Journals (Sweden)

    Tchavdar N. Todorov

    2011-10-01

    Full Text Available We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a nonconservative force, and thus do net work around closed paths, by a formal noninvasive test procedure. Second, we show that the gain in atomic kinetic energy over time, generated by nonconservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron–phonon interactions quantifies explicitly the intuitive notion that nonconservative forces work by angular momentum transfer.

  12. A mesenteric traction syndrome affects near-infrared spectroscopy evaluated cerebral oxygenation because skin blood flow increases

    DEFF Research Database (Denmark)

    Olesen, Niels D; Sørensen, Henrik; Ambrus, Rikard

    2018-01-01

    During abdominal surgery manipulation of internal organs may induce a "mesenteric traction syndrome" (MTS) including a triad of flushing, hypotension, and tachycardia that lasts for about 30 min. We evaluated whether MTS affects near-infrared spectroscopy (NIRS) assessed frontal lobe oxygenation ...

  13. Exertional Rhabdomyolysis after Spinning.

    Science.gov (United States)

    Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung

    2016-11-01

    Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24-48 hours after attending a spinning class at a local gymnasium. Paired with key laboratory findings, her symptoms were suggestive of rhabdomyolysis. She required hospital admission to sustain renal function through fluid resuscitation therapy and fluid balance monitoring. Because exertional rhabdomyolysis may occur in any unfit but otherwise healthy individual who indulges in stationary cycling, the potential health risks of this activity must be considered.

  14. MATHEMATIC SIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC TRACTION NETWORK – LOCOMOTIVE” 1. SWITCH ON LOCOMOTIVE’S POWER CONVERTER IN “FREE PLAY” MODE; PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    T. M. Mishchenko

    2010-11-01

    Full Text Available In the article the electric circuit of substitution and mathematical model of the system of alternating current «traction substation − traction mains − electric locomotive DS 3» at switching its power transformer on in the idle mode are presented. Numerical determinations of parameters of traction substation, rails, contact network and transformer are executed; in so doing a special attention is paid to the estimation of dispersion inductance for the primary winding of transformer.

  15. Electric vehicle traction motors - The development of an advanced motor concept

    Science.gov (United States)

    Campbell, P.

    1980-01-01

    An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.

  16. Electric traction motion power and energy supply : basics and practical experience

    CERN Document Server

    Steimel, Andreas

    2011-01-01

    This book has evolved from the lecture series ""Elektrische Bahnen" (""Electric railways") which has been held at Ruhr-Universität Bochum since 1996. Its primary audience are students of electrical energy technologies, control engineering and mechanical engineering as well as young engineers of electrical engineering, especially in the fields of power electronics, in railway industry and in railway-operating companies. The book intends to convey mechanical fundamentals of electric railway propulsion, which includes rail-bound guidance, transmission of traction effort from wheel to rail under t

  17. 20 CFR 404.1567 - Physical exertion requirements.

    Science.gov (United States)

    2010-04-01

    ... activities. If someone can do light work, we determine that he or she can also do sedentary work, unless... Physical exertion requirements. To determine the physical exertion requirements of work in the national... making disability determinations under this subpart, we use the following definitions: (a) Sedentary work...

  18. 20 CFR 416.967 - Physical exertion requirements.

    Science.gov (United States)

    2010-04-01

    ... activities. If someone can do light work, we determine that he or she can also do sedentary work, unless... Physical exertion requirements. To determine the physical exertion requirments of work in the national... making disability determinations under this subpart, we use the following definitions: (a) Sedentary work...

  19. Defining Strong State Accountability Systems: How Can Better Standards Gain Greater Traction? A First Look

    Science.gov (United States)

    Reed, Eileen; Scull, Janie; Slicker, Gerilyn; Winkler, Amber M.

    2012-01-01

    Rigorous standards and aligned assessments are vital tools for boosting education outcomes but they have little traction without strong accountability systems that attach consequences to performance. In this pilot study, Eileen Reed, Janie Scull, Gerilyn Slicker, and Amber Winkler lay out the essential features of such accountability systems,…

  20. An assessment of available measures to reduce traction energy use in railway networks

    International Nuclear Information System (INIS)

    Douglas, Heather; Roberts, Clive; Hillmansen, Stuart; Schmid, Felix

    2015-01-01

    Highlights: • Railway networks are defined in terms of their distinguishing features. • Current energy saving measures are reviewed and categorised by the energy use they target. • The achievable energy savings of different measures are compared dependent on the network type. • The success of a measure depends on the characteristics of the network, vehicle and service. • Measures should be evaluated at system level due to interdependencies. - Abstract: Rail is becoming an increasingly popular choice to satisfy transportation demands locally, nationally and internationally, due to its inherent efficiency and high capacity. Despite this, operators are facing pressure to reduce rail energy consumption to meet efficiency targets, whilst still maintaining service quality and managing increased demand. A number of individual measures have been proposed to reduce energy in the rail sector, often showing good results on specific case studies. It is generally agreed that the attainable savings of a given measure change dependant on the route, vehicle and service characteristics. However, there is little information in the literature specifically regarding which measures are most suitable for given network types, or how they interact. This paper therefore aims to begin evaluating the available measures in terms of their suitability for different systems. Firstly, networks are defined in terms of their distinguishing features. As traction accounts for the majority of all energy use in the rail sector, the traction flow through a vehicle is considered as the starting point for an evaluation of measures. Current technologies and procedures are reviewed and categorised based on which area of traction use they target. Thought is given to the factors that affect implementation and the networks where they are applied. A key output of this paper is a comparison of the achievable energy savings of different measures dependent on the network type. It is hoped that this will

  1. Micropillar displacements by cell traction forces are mechanically correlated with nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingsen; Makhija, Ekta; Hameed, F.M. [Mechanobiology Institute, National University of Singapore (Singapore); Shivashankar, G.V., E-mail: shiva.gvs@gmail.com [Mechanobiology Institute, National University of Singapore (Singapore); Department of Biological Sciences, National University of Singapore (Singapore)

    2015-05-29

    Cells sense physical cues at the level of focal adhesions and transduce them to the nucleus by biochemical and mechanical pathways. While the molecular intermediates in the mechanical links have been well studied, their dynamic coupling is poorly understood. In this study, fibroblast cells were adhered to micropillar arrays to probe correlations in the physical coupling between focal adhesions and nucleus. For this, we used novel imaging setup to simultaneously visualize micropillar deflections and EGFP labeled chromatin structure at high spatial and temporal resolution. We observed that micropillar deflections, depending on their relative positions, were positively or negatively correlated to nuclear and heterochromatin movements. Our results measuring the time scales between micropillar deflections and nucleus centroid displacement are suggestive of a strong elastic coupling that mediates differential force transmission to the nucleus. - Highlights: • Correlation between focal adhesions and nucleus studied using novel imaging setup. • Micropillar and nuclear displacements were measured at high resolution. • Correlation timescales show strong elastic coupling between cell edge and nucleus.

  2. Maintenance of working capacity of movement mechanism of load trolley with linear traction electric drive of bridge type crane.

    Science.gov (United States)

    Goncharov, K. A.; Denisov, I. A.

    2017-10-01

    The article considers the influence of the air gap size between the linear motor elements on the stability of the traction drive of the movement mechanism of the trolley of the bridge type crane. The main factors affecting the air gap size and the causes of their occurrence are described. The technique of calculating the magnitude of air gap variation is described in relation to the general deformation of the crane metal structure. Recommendations on the need for installation of additional equipment for load trolleys of various designs are given. The optimal values of the length of the trolley base are proposed. Observance of these values ensures normal operation of the traction drive.

  3. The outcomes of pars plana vitrectomy without endotamponade for tractional retinal detachment secondary to proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Rao Muhammad Rashad Qamar

    2013-10-01

    Full Text Available AIM: To evaluate the outcomes of pars plana vitrectomy (PPV without the use of an ocular tamponade in patients having tractional retinal detachment (TRD secondary to proliferative diabetic retinopathy (PDR.METHODS: It was an interventional study conducted at the Department of Ophthalmology, B.V. Hospital, Bahawalpur, Pakistan, from July 2011 to July 2012. A total of 75 patients (84 eyes having TRD secondary to PDR were treated by PPV without using an ocular tamponade. All patients included in the study had a tractional retinal detachment secondary to proliferative diabetic retinopathy but didn’t have or develop retinal breaks before or during the study period. The surgical procedure included a PPV combined with the removal of the tractional retinal membranes and the application of endolaser photocoagulation to the retina. The mean follow-up period was 12 months.RESULTS:Successful retinal reattachement was observed in 78 of the operated eyes (92.8%. In these patients, the retina remained attached till the end of the one year follow-up period. Improvement in best corrected visual acuity (BCVA was seen in 63 eyes (75%. The visual acuity remained unchanged in 9 eyes (10.7%. Mean improvement in BCVA was 2.00+1.24 at baseline to 1.24+1.22 (PCONCLUSION: In the absence of the retinal breaks, a TRD secondary to PDR can be successfully treated by pars plana vitrectomy without the use of an ocular tamponade.

  4. Traction esophageal diverticulum: a rare cause of gastro-intestinal bleeding.

    Science.gov (United States)

    Ballehaninna, Umashankar K; Shaw, Jason P; Brichkov, Igor

    2012-12-01

    Esophageal diverticula are uncommon lesions that are usually classified according to their location (cervical, thoracic, or epiphrenic), or underlying pathogenesis (pulsion or traction), and their morphology (true or false).The majority of esophageal diverticula are acquired lesions that occur predominantly in elderly adults. Pulsion, or false, diverticula are the most commonly encountered type of esophageal diverticula noticed at the level of cricopharyngeus muscle, occur as a localized outpouchings that lacks a muscular coat, and as such their wall is formed entirely by mucosa and submucosa. True, or traction, esophageal diverticulum (TED) is seen in the middle one third of the thoracic esophagus in a peribronchial location, occurs secondary to mediastinal inflammatory lesions such as tuberculosis or histoplasmosis. The resultant desmoplastic reaction in the paraesophageal tissue causes full thickness pinching on the esophageal wall, producing a conical, broad-mouthed true diverticulum. They often project to the right side because subcarinal lymph nodes in this area are closely associated with the right anterior wall of the esophagus. TED usually presents with symptoms such as dysphagia, postural regurgitation, belching, retrosternal pain, heartburn, and epigastric pain. As in patients with pharyngoesophageal (Zenker's) diverticula, pulmonary symptoms are often present but underestimated in TED patients. These symptoms range from mild nocturnal cough to life-threatening massive aspiration. In this particular report we describe a rare case of TED presenting as a symptomatic upper gastrointestinal bleeding. Diagnostic evaluation of TED includes chest X-ray, barium esophagogram and manometry. A significant proportion of lower esophageal diverticula are associated with motility disorders. Management of TED include treating the underlying cause sometimes a surgical resection of diverticulum along with esophageal myotomy is necessitated in symptomatic patients.

  5. Therapeutic effects of flurbiprofen axetil on mesenteric traction syndrome: randomized clinical trial.

    Science.gov (United States)

    Takahashi, Hidemasa; Shida, Dai; Tagawa, Kyoko; Iwamoto, Ryo; Arita, Makoto; Arai, Hiroyuki; Suzuki, Takeo

    2017-08-11

    This study aimed to reveal the appropriate timing for the intravenous administration of flurbiprofen axetil for preventing mesenteric traction syndrome (MTS), caused by prostacyclin release. In this prospective, randomized, clinical study, forty-five patients who were undergoing elective surgery for colorectal cancer via laparotomy were enrolled. Patients were randomly divided into 3 groups: a preoperative group (n = 16) receiving flurbiprofen axetil directly before surgery; a post-MTS group (n = 14) receiving following MTS onset; and a control group (n = 15) who were not administered flurbiprofen axetil. 6-keto-PGF1α, a stable metabolite of prostacyclin, levels were measured and mean blood pressures were recorded. In the preoperative group, 6-keto-PGF1α levels did not increase, blood pressure levels did not decrease, and no facial flushing was observed. In both the post-MTS and control groups, 6-keto-PGF1α levels increased markedly after mesenteric traction and blood pressure decreased significantly. The post-MTS group exhibited a faster decreasing trend in 6-keto-PGF1α levels and quick restore of the mean blood pressure, and the use of vasopressors and phenylephrine were lower than that in the control group. Even therapeutic administration of flurbiprofen axetil after the onset of MTS has also effects on MTS by suppressing prostacyclin production. Clinical trial number: UMIN000009111 . (Registered 14 October 2012).

  6. Investigation of control system of traction electric drive with feedbacks on load

    Science.gov (United States)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-03-01

    In the article, by the example of a walking excavator, the results of a study of a control system of traction electric drive with a rigid and flexible feedback on the load are mentioned. Based on the analysis of known works, the calculation scheme has been chosen; the equations of motion of the electromechanical system have been obtained, taking into account the elasticity of the rope and feedbacks on the load in the elastic element. A simulation model of this system has been developed and mathematical modeling of the transient processes to evaluate the influence of feedback on the dynamic characteristics of the mechanism and its efficiency of work was carried out. It is shown that the use of rigid and flexible feedbacks makes it possible to reduce dynamic loads in the traction mechanism and to limit the elastic oscillation of the executive mechanism in transient operating modes in comparison with the standard control system; however, there is some decrease in productivity. It has been also established that the sign-variable of the loading of the electric drive, connected with the opening of the backlashes in the gearbox due to the action of feedbacks on the load in the elastic element, under certain conditions, can lead to undesirable phenomena in the operation of the drive and a decrease in the reliability of its operation.

  7. Attentional Focusing Instructions and Force Production

    Directory of Open Access Journals (Sweden)

    David C Marchant

    2011-01-01

    Full Text Available Research progress assessing the role of attentional focusing instructions on skill acquisition and performance has lead researchers to apply this approach to force production tasks. Initial converging evidence indicates that force production tasks are sensitive to verbal instruction; externally focused instructions (onto movement outcomes, or onto the object force is being exerted against are shown to be more beneficial than internally focused instructions (focusing attention onto the movements being executed. These benefits are observed for maximal and accurate force production, as well as the maintenance of force production in prolonged tasks. A range of mechanisms are identified supporting the proposal that an external focus promotes movement efficiency in line with energy and effort conservation. Future research is required to assess how this developing body of work interacts with the broader understanding of psychological and physiological factors implicated in the effective production, maintenance and limitation of maximal or sub-maximal forces.

  8. Polymer translocation under a pulling force: Scaling arguments and threshold forces

    Science.gov (United States)

    Menais, Timothée

    2018-02-01

    DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .

  9. High performance control strategy for single-phase three-level neutral-point-clamped traction four-quadrant converters

    DEFF Research Database (Denmark)

    Kejian, Song; Konstantinou, Georgios; Jing, Li

    2017-01-01

    Operational data from Chinese railways indicate a number of challenges for traction four-quadrant converter (4QC) control including low-order voltage and current harmonics and reference tracking. A control strategy for a single-phase three-level neutral-point-clamped 4QC employed in the electric...

  10. The XXI century mountains: sustainable management of mountainous areas based on animal traction

    Directory of Open Access Journals (Sweden)

    Rodrigues J.B.

    2017-02-01

    Full Text Available According to the Food and Agriculture Organization of the United Nations (FAO, there are around 300 million working animals worldwide. They play a fundamental role in human livelihoods through their contribution to financial, human and social capital, supporting between 300 and 600 million people globally, particularly in poorer areas, where animal energy represents a huge and extremely important sustainable power resource. Yet their recognition remains largely neglected, with animal traction being largely ignored by decision and policy makers and even by civil society at all levels, which compromises a real development and improvement of this technology as well as animal welfare. On the other hand, a collective ecological and economical consciousness and an increasing awareness of public opinion about the need to reduce the excessive industrialization and mechanization of agriculture and forestry has led some sectors of society to consider the (reuse of animal traction as a valid modern source of energy. Indeed, working animals optimally transform the consumed biomass in energy and natural fertilizer, which avoids soil degradation and contributes to a sustainable management of arable lands, forests and sensitive areas. The need to maintain biodiversity, reduce carbon emissions, encourage self-reliance and reduce consumption of resources also contributes to this trend.

  11. Developing traction control strategy for a plug-in hybrid electric vehicle using innovative optimization based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Gu, J.; Dong, Z. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This paper described a traction control system designed for hybrid vehicles with multiple power plants and drive axles. Model-based design tools were used to develop the traction control system and plug-in hybrid vehicle models. Optimization studies were conducted in a finite number of operating states in order to maximize the electrical and mechanical energy conversion efficiency of an extended range electric vehicle. Four global optimization algorithms were then evaluated in relation to their CPU times. The studied algorithms included a genetic algorithm (GA), a particle swarm optimization (PSO) algorithm, a hybrid adaptive metamodel optimization (HAM) and space elimination and unimodal region reduction (SEUMRE) algorithm. A comparative evaluation of the algorithms demonstrated that the PSO algorithm obtained optimal results, while the HAM algorithm used significantly less computational time. Results of the optimization studies were then implemented in a controller model. Results of the study showed that the energy efficiency of the vehicle improved using the developed controller model. 4 refs., 2 tabs., 8 figs.

  12. Contact wire positions and contact forces. Measurements at high-speed lines in China; Fahrdrahtlage und Kontaktkraefte. Messungen an Hochgeschwindigkeitsstrecken in China

    Energy Technology Data Exchange (ETDEWEB)

    Heland, Joerg; Rick, Frank; Sarnes, Bernhard [DB Systemtechnik GmbH, Muenchen (Germany); Puschmann, Rainer [Siemens AG, Erlangen (Germany). Infrastructure and Cities

    2012-07-15

    The reliable energy transmission from overhead contact line to pantograph of traction units without interruption decides on the successful operation of high-speed railway lines. Measurements of contact wire position and contact forces are suited to assess interaction of overhead contact line and pantograph. Chinese Railways actually implement the biggest electrification program for high-speed lines worldwide. For these projects contact wire position and contact forces are monitored by procedures developed in Germany. The experience confirms that keeping the contact wire position within the specified limits lead to a superior energy transmission up to 350 km/h. (orig.)

  13. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix.

    Science.gov (United States)

    Kubow, Kristopher E; Vukmirovic, Radmila; Zhe, Lin; Klotzsch, Enrico; Smith, Michael L; Gourdon, Delphine; Luna, Sheila; Vogel, Viola

    2015-08-14

    Despite the crucial role of extracellular matrix (ECM) in directing cell fate in healthy and diseased tissues--particularly in development, wound healing, tissue regeneration and cancer--the mechanisms that direct the assembly and regulate hierarchical architectures of ECM are poorly understood. Collagen I matrix assembly in vivo requires active fibronectin (Fn) fibrillogenesis by cells. Here we exploit Fn-FRET probes as mechanical strain sensors and demonstrate that collagen I fibres preferentially co-localize with more-relaxed Fn fibrils in the ECM of fibroblasts in cell culture. Fibre stretch-assay studies reveal that collagen I's Fn-binding domain is responsible for the mechano-regulated interaction. Furthermore, we show that Fn-collagen interactions are reciprocal: relaxed Fn fibrils act as multivalent templates for collagen assembly, but once assembled, collagen fibres shield Fn fibres from being stretched by cellular traction forces. Thus, in addition to the well-recognized, force-regulated, cell-matrix interactions, forces also tune the interactions between different structural ECM components.

  14. MODELING OF THE CONTROLLED TRACTION POWER SUPPLY SYSTEM IN THE SPACE-TIME COORDINATES

    Directory of Open Access Journals (Sweden)

    Dmitry BOSYI

    2017-09-01

    Full Text Available The problems of the traction power supply system calculation are considered in the article. The authors proposed the space-time model, which is based on the analytical functions of the current- and voltage-drop distributions in the contact network. The usage of the proposed model is shown for the control law calculation both to stabilize the voltage at the pantographs of the electric rolling stocks and to reduce the power losses.

  15. Exertional Myopathy in a Juvenile Green Sea Turtle (Chelonia mydas Entangled in a Large Mesh Gillnet

    Directory of Open Access Journals (Sweden)

    Brianne E. Phillips

    2015-01-01

    Full Text Available A juvenile female green sea turtle (Chelonia mydas was found entangled in a large mesh gillnet in Pamlico Sound, NC, and was weak upon presentation for treatment. Blood gas analysis revealed severe metabolic acidosis and hyperlactatemia. Plasma biochemistry analysis showed elevated aspartate aminotransferase and creatine kinase, marked hypercalcemia, hyperphosphatemia, and hyperkalemia. Death occurred within 24 hours of presentation despite treatment with intravenous and subcutaneous fluids and sodium bicarbonate. Necropsy revealed multifocal to diffuse pallor of the superficial and deep pectoral muscles. Mild, multifocal, and acute myofiber necrosis was identified by histopathological examination. While histological changes in the examined muscle were modest, the acid-base, mineral, and electrolyte abnormalities were sufficiently severe to contribute to this animal’s mortality. Exertional myopathy in reptiles has not been well characterized. Sea turtle mortality resulting from forced submergence has been attributed to blood gas derangements and seawater aspiration; however, exertional myopathy may also be an important contributing factor. If possible, sea turtles subjected to incidental capture and entanglement that exhibit weakness or dull mentation should be clinically evaluated prior to release to minimize the risk of delayed mortality. Treatment with appropriate fluid therapy and supportive care may mitigate the effects of exertional myopathy in some cases.

  16. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  17. Climate forcing by anthropogenic aerosols.

    Science.gov (United States)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  18. Vinculin contributes to Cell Invasion by Regulating Contractile Activation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2008-07-01

    Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.

  19. Cohesive traction-separation relations for plate tearing under mixed mode loading

    DEFF Research Database (Denmark)

    Andersen, R. G.; Woelke, P. B.; Nielsen, K. L.

    2018-01-01

    The present study investigates a sequence of failure events related to steady-state tearing of large-scale ductile plates by employing the micro-mechanics based Gurson-Tvergaard-Needleman (GTN) model. The fracture process in front of an advancing crack is approximated by a series of 2D plane strain...... finite element models to facilitate a comprehensive study of mixed mode fracture behavior as well as a parameter study of the cohesive energy and tractions involved in the process. The results from the conducted GTN model simulations are used to define cohesive zone models suitable for plate tearing...

  20. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.

    Science.gov (United States)

    Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey

    2017-11-01

    The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Inverted Nipple Correction with Selective Dissection of Lactiferous Ducts Using an Operative Microscope and a Traction Technique.

    Science.gov (United States)

    Sowa, Yoshihiro; Itsukage, Sizu; Morita, Daiki; Numajiri, Toshiaki

    2017-10-01

    An inverted nipple is a common congenital condition in young women that may cause breastfeeding difficulty, psychological distress, repeated inflammation, and loss of sensation. Various surgical techniques have been reported for correction of inverted nipples, and all have advantages and disadvantages. Here, we report a new technique for correction of an inverted nipple using an operative microscope and traction that results in low recurrence and preserves lactation function and sensation. Between January 2010 and January 2013, we treated eight inverted nipples in seven patients with selective lactiferous duct dissection using an operative microscope. An opposite Z-plasty was added at the junction of the nipple and areola. Postoperatively, traction was applied through an apparatus made from a rubber gasket attached to a sterile syringe. Patients were followed up for 15-48 months. Adequate projection was achieved in all patients, and there was no wound dehiscence or complications such as infection. Three patients had successful pregnancies and subsequent breastfeeding that was not adversely affected by the treatment. There was no loss of sensation in any patient during the postoperative period. Our technique for treating an inverted nipple is effective and preserves lactation function and nipple sensation. The method maintains traction for a longer period, which we believe increases the success rate of the surgery for correction of severely inverted nipples. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  2. Surface stress mediated image force and torque on an edge dislocation

    Science.gov (United States)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  3. A tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel independent brake from moderate driving to limit handling

    Science.gov (United States)

    Joa, Eunhyek; Park, Kwanwoo; Koh, Youngil; Yi, Kyongsu; Kim, Kilsoo

    2018-04-01

    This paper presents a tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel braking for enhanced performance from moderate driving to limit handling. The proposed algorithm adopted hierarchical structure: supervisor - desired motion tracking controller - optimisation-based control allocation. In the supervisor, by considering transient cornering characteristics, desired vehicle motion is calculated. In the desired motion tracking controller, in order to track desired vehicle motion, virtual control input is determined in the manner of sliding mode control. In the control allocation, virtual control input is allocated to minimise cost function. The cost function consists of two major parts. First part is a slip-based tyre friction utilisation quantification, which does not need a tyre force estimation. Second part is an allocation guideline, which guides optimally allocated inputs to predefined solution. The proposed algorithm has been investigated via simulation from moderate driving to limit handling scenario. Compared to Base and direct yaw moment control system, the proposed algorithm can effectively reduce tyre dissipation energy in the moderate driving situation. Moreover, the proposed algorithm enhances limit handling performance compared to Base and direct yaw moment control system. In addition to comparison with Base and direct yaw moment control, comparison the proposed algorithm with the control algorithm based on the known tyre force information has been conducted. The results show that the performance of the proposed algorithm is similar with that of the control algorithm with the known tyre force information.

  4. Design of master control unit for laboratory prototype of traction converter for locomotives

    OpenAIRE

    Žák, Jan; Peroutka, Zdeněk; Ovaska, Seppo J.

    2008-01-01

    This paper deals with the prototype of a main traction converter with medium-frequency transformer for AC trolley wire-fed locomotives. The attention is paid to the new master control and diagnostic unit. The designed master control unit has been implemented in the LabVIEW environment. Our master control unit ensures an effective human interface between a user and the control hardware. In this case, the master unit makes possible both extensive control and diagnostic operations of the laborat...

  5. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  6. Recent Progress with the KWISP Force Sensor

    CERN Document Server

    Cantatore, G; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Zioutas, K.

    2015-01-01

    The KWISP opto-mechanical force sensor has been built and calibrated in the INFN Trieste optics laboratory and is now under off-beam commissioning at CAST. It is designed to detect the pressure exerted by a flux of solar Chameleons on a thin (100 nm) Si$_3$N$_4$ micromembrane thanks to their direct coupling to matter. A thermally-limited force sensitivity of $1.5 \\cdot 10^{-14}~\\mbox{N}/\\sqrt{\\mbox{Hz}}$, corresponding to $7.5 \\cdot 10^{-16}~\\mbox{m}/\\sqrt{\\mbox{Hz}}$ in terms of displacement, has been obtained. An originally developed prototype chameleon chopper has been used in combination with the KWISP force sensor to conduct preliminary searches for solar chamaleons.

  7. Increase of energy efficiency of testing of traction electric machines of direct and pulsating current

    Directory of Open Access Journals (Sweden)

    A.M. Afanasov

    2015-03-01

    Full Text Available The results of the analysis of the effect of the load current of traction electric machines when tested for heating on the total electricity consumption for the test are presented. It is shown that increase of load current at the heating test permits to significantly reduce the consumption of electrical energy, and reduce the testing time without reducing its quality.

  8. Effect of microscale protrusions on local fluid flow and mass transport in the presence of forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Gehard W. [Univ. of California, Berkeley, CA (United States)

    1997-01-01

    Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.

  9. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode

    DEFF Research Database (Denmark)

    Madeleine, Pascal; Jørgensen, Lars Vincents; Søgaard, Karen

    2002-01-01

    ) and proprioceptive (displacement control) feedback was investigated during intermittent (6 s contraction, 4 s rest) and continuous static contractions at 10% and 30% of the maximum voluntary contraction (MVC). Mean force, force fluctuation, rating of perceived exertion and root mean square (RMS) and mean power...... with the EMG, while the decrease in MPF values was more consistent for the EMG compared with the MMG signal. During the intermittent contractions, the main effect was on MPF for both EMG and MMG. Lower force fluctuation and larger rating of perceived exertion ( P

  10. Dynamics of cell area and force during spreading.

    Science.gov (United States)

    Brill-Karniely, Yifat; Nisenholz, Noam; Rajendran, Kavitha; Dang, Quynh; Krishnan, Ramaswamy; Zemel, Assaf

    2014-12-16

    Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. An in vitro quantification of pressures exerted by earlobe pulse oximeter probes following reports of device-related pressure ulcers in ICU patients .

    Science.gov (United States)

    Goodell, Teresa T

    2012-11-01

    The earlobe often is used to monitor perfusion when pulse oximeter signal quality is impaired in the fingers and toes. Prompted by intermittent occurrences of roughly circular earlobe pressure ulcers among patients in intensive care units, a convenience sample of seven calibrated pulse oximeter probes was used to quantify earlobe pressure exerted by these devices in vitro. All were tested twice with an electronic load cell, a strain gauge with a transducer that transforms the measured force into a readable numerical signal. The probe was clipped to the load cell just as it is clipped to the earlobe in the clinical setting. The probes exerted an average of 0.24 lb (SD 0.6) of force over an area of 0.3 square inches, equal to an average of 20.7 mm Hg (SD 0.6) pressure on tissue. This value exceeds some empirically derived values of capillary perfusion pressure. The occurrence of device-related pressure ulcers, as well pressure ulcers on the ears, has been documented, but little is known about device-related earlobe pressure ulcers or the actual pressure exerted by these devices. Additional in vitro studies are needed to quantify the pressures exerted by these and other probes, and future prevalence and incidence studies should include more detailed pressure ulcer location and device use documentation. Until more is known about the possible role of these devices in the development of pressure ulcers, clinicians should be cognizant of their potential for causing pressure ulcers, particularly in patients whose conditions can compromise skin integrity.

  12. Laboratory experiments inform iceberg-calving forces

    Science.gov (United States)

    Cathles, L. M.; Burton, J. C.

    2013-12-01

    Globally detected glacial earthquakes are produced during cubic-kilometer scale calving events. The mechanism producing these earthquakes and the dependence of the seismic moment on iceberg size and glacial calving front geometry are not well established. We use a laboratory-scale model of the post-fracture calving process to measure aspects of the calving process not observable in nature. In our experiments, buoyant plastic blocks rest against against a force plate (glacial terminus) which measures both the total force and the torque exerted during the calving process. The blocks are gravitationally unstable, so that they will spontaneously capsize and rotate away from the terminus. We find that hydrodynamics are crucial when considering the coupling between the calving process and the solid earth. There is both a pushing contact force and a simultaneous pulling hydrodynamic force created by a reduced pressure along the terminus face. This suggests that a single couple force mechanism is a more appropriate mode for glacial earthquakes than the commonly used centroid single force model.

  13. Disc-shaped LIM for levitation and traction force control powered by the source using the component synchronous with the motor speed

    Directory of Open Access Journals (Sweden)

    Morizane Toshimitsu

    2015-12-01

    Full Text Available It has been proposed that a novel maglev transport system uses both of the attractive force and thrust force of the Linear Induction Motor (LIM. In our proposal, these two forces will be controlled by two different frequency components. One of the frequency components is synchronous with the motor speed (fm. Another frequency component is drive frequency (fd. Our proposed system enables the independent and simultaneous control of the attractive and thrust force of LIM. Each value of the attractive and the thrust force generated by fm and fd must be identified in order to design that LIM control system. For these purpose, a disc-shaped LIM has been developed as an experimental equipment. The force profiles, especially around zero slip, have been analyzed under experimental conditions.

  14. Coulombian Model for 3D Analytical Calculation of the Torque Exerted on Cuboidal Permanent Magnets with Arbitrarly Oriented Polarizations

    OpenAIRE

    Allag , Hicham; Yonnet , Jean-Paul; Latreche , Mohamed E. H.; Bouchekara , Houssem

    2011-01-01

    International audience; The paper proposes improved analytical expressions of the torque on cuboidal permanent magnets. Expressions are valid for any relative magnet position and for any polarization direction. The analytical calculation is made by replacing polarizations by distributions of magnetic charges on the magnet poles (Coulombian approach). The torque exerted on the second magnet is calculated by Lorentz force formulas for any arbitrary position. The three components of the torque a...

  15. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    Science.gov (United States)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  16. Loss Characteristics of 6.5 kV RC-IGBT Applied to a Traction Converter

    Directory of Open Access Journals (Sweden)

    Xianjin Huang

    2017-07-01

    Full Text Available 6.5 kV level IGBT (Insulated Gate Bipolar Transistor modules are widely applied in megawatt locomotive (MCUs traction converters, to achieve an upper 3.5 kV DC link, which is beneficial for decreasing power losses and increasing the power density. Reverse Conducting IGBT (RC-IGBT constructs the conventional IGBT function and freewheel diode function in a single chip, which has a greater flow ability in the same package volume. In the same cooling conditions, RC-IGBT allows for a higher operating temperature. In this paper, a mathematic model is developed, referring to the datasheets and measurement data, to study the 6.5 kV/1000 A RC-IGBT switching features. The relationship among the gate desaturated pulse, conducting losses, and recovery losses is discussed. Simulations and tests were carried out to consider the influence of total losses on the different amplitudes and durations of the desaturated pulse. The RC-IGBT traction converter system with gate pulse desaturated control is built, and the simulation and measurements show that the total losses of RC-IGBT with desaturated control decreased comparing to the RC-IGBT without desaturated control or conventional IGBT. Finally, a proportional small power platform is developed, and the test results prove the correction of the theory analysis.

  17. Outcomes of microscope-integrated intraoperative optical coherence tomography-guided center-sparing internal limiting membrane peeling for myopic traction maculopathy: a novel technique.

    Science.gov (United States)

    Kumar, Atul; Ravani, Raghav; Mehta, Aditi; Simakurthy, Sriram; Dhull, Chirakshi

    2017-07-04

    To evaluate the outcomes of pars plana vitrectomy (PPV) with microscope-integrated intraoperative optical coherence tomography (I-OCT)-guided traction removal and center-sparing internal limiting membrane (cs-ILM) peeling. Nine eyes with myopic traction maculopathy as diagnosed on SD-OCT underwent PPV with I-OCT-guided cs-ILM peeling and were evaluated prospectively for resolution of central macular thickness (CMT) and improvement in best-corrected visual acuity (BCVA), and complications, if any, were noted. All patients were followed up for more than 9 months. Resolution of the macular retinoschisis was seen in all nine eyes on SD-OCT. At 36 weeks, there was a significant improvement in mean BCVA from the preoperative BCVA (P = 0.0089) along with a reduction in the CMT from 569.77 ± 263.19 to 166.0 ± 43.91 um (P = 0.0039). None of the eyes showed worsening of BCVA or development of full-thickness macular hole in the intraoperative or follow-up period. PPV with I-OCT-guided cs-ILM peeling helps in complete removal of traction, resolution of retinoschisis and good functional recovery with low intraoperative and postoperative complications.

  18. Equivalent model and power flow model for electric railway traction network

    Science.gov (United States)

    Wang, Feng

    2018-05-01

    An equivalent model of the Cable Traction Network (CTN) considering the distributed capacitance effect of the cable system is proposed. The model can be divided into 110kV side and 27.5kV side two kinds. The 110kV side equivalent model can be used to calculate the power supply capacity of the CTN. The 27.5kV side equivalent model can be used to solve the voltage of the catenary. Based on the equivalent simplified model of CTN, the power flow model of CTN which involves the reactive power compensation coefficient and the interaction of voltage and current, is derived.

  19. Evaluation of the shear force of single cancer cells by vertically aligned carbon nanotubes suitable for metastasis diagnosis.

    Science.gov (United States)

    Abdolahad, M; Mohajerzadeh, S; Janmaleki, M; Taghinejad, H; Taghinejad, M

    2013-03-01

    Vertically aligned carbon nanotube (VACNT) arrays have been demonstrated as probes for rapid quantifying of cancer cell deformability with high resolution. Through entrapment of various cancer cells on CNT arrays, the deflections of the nanotubes during cell deformation were used to derive the lateral cell shear force using a large deflection mode method. It is observed that VACNT beams act as sensitive and flexible agents, which transfer the shear force of cells trapped on them by an observable deflection. The metastatic cancer cells have significant deformable structures leading to a further cell traction force (CTF) than primary cancerous one on CNT arrays. The elasticity of different cells could be compared by their CTF measurement on CNT arrays. This study presents a nanotube-based methodology for quantifying the single cell mechanical behavior, which could be useful for understanding the metastatic behavior of cells.

  20. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    OpenAIRE

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the tw...

  1. Orthodontic Management with Traction and Asymmetric Extraction for Multiple Impacted Permanent Maxillary Teeth - A Case Report.

    Science.gov (United States)

    Niu, Qiannan; Zhang, Liang; Dai, Juan; Li, Feifei; Feng, Xue

    2016-01-01

    Multiple impacted teeth are a rare eruption disturbance that increases the case complexity. In this article, we described a 13-year-old boy whose 5 permanent maxillary teeth were not erupted although their root formation was complete. The orthodontic treatment with traction and asymmetric extraction was performed to achieve a significantly improved functional and esthetic result.

  2. Syntegra: complete integration of traction, bogie and brake systems

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, L.; Wangelin, F. von [Siemens AG, Transportation Systems, Erlangen (Germany). Group Technology TS GT; Teichmann, M.; Hoffmann, T. [Siemens TS, Graz (Austria); Joeckel, A. [Siemens Automation and Drives, Nuernberg (Germany)

    2007-07-01

    With Syntegra {sup registered} technology, Siemens has developed an approach to the complete integration of traction, bogie and brake systems, and this has initially been put into practice for metro, underground and S-Bahn (urban regional express) trains. Syntegra constitutes a fundamentally new approach, achieving a greater intensity of integration compared with the types of drive system that have been in use up until now. With Syntegra, the bogie, transmission and brake components are all brought together as part of one and the same system. The integration and, more especially, the technological advances within the three named areas bring about numerous synergies. The new generation of powered bogie features a combination of high efficiency, low dead weight and reduced emissions. A Syntegra drive system achieves a performance which is markedly better than that of conventional systems. (orig.)

  3. Do placebo expectations influence perceived exertion during physical exercise?

    Directory of Open Access Journals (Sweden)

    Hendrik Mothes

    Full Text Available This study investigates the role of placebo expectations in individuals' perception of exertion during acute physical exercise. Building upon findings from placebo and marketing research, we examined how perceived exertion is affected by expectations regarding a the effects of exercise and b the effects of the exercise product worn during the exercise. We also investigated whether these effects are moderated by physical self-concept. Seventy-eight participants conducted a moderate 30 min cycling exercise on an ergometer, with perceived exertion (RPE measured every 5 minutes. Beforehand, each participant was randomly assigned to 1 of 4 conditions and watched a corresponding film clip presenting "scientific evidence" that the exercise would or would not result in health benefits and that the exercise product they were wearing (compression garment would additionally enhance exercise benefits or would only be worn for control purposes. Participants' physical self-concept was assessed via questionnaire. Results partially demonstrated that participants with more positive expectations experienced reduced perceived exertion during the exercise. Furthermore, our results indicate a moderator effect of physical self-concept: Individuals with a high physical self-concept benefited (in terms of reduced perceived exertion levels in particular from an induction of generally positive expectations. In contrast, individuals with a low physical self-concept benefited when positive expectations were related to the exercise product they were wearing. In sum, these results suggest that placebo expectations may be a further, previously neglected class of psychological factors that influence the perception of exertion.

  4. [SCREW-BASED INTERMAXILLARY TRACTION COMBINED WITH OCCLUSAL SPLINT FOR TREATMENT OF PEDIATRIC MANDIBULAR CONDYLAR FRACTURE].

    Science.gov (United States)

    Wu, Yang; Long, Xing; Deng, Mohong; Cai, Hengxing; Meng, Qinggong; Li, Bo

    2015-04-01

    To evaluate the effectiveness of the screw-based intermaxillary traction combined with occlusal splint in the treatment of pediatric mandibular condylar fracture. Between June 2005 and December 2013, 35 pediatric patients with 49 mandibular condylar fractures were treated, and the clinical data were retrospectively reviewed. There were 25 boys and 10 girls, aged 3-13 years (mean, 7.3 years). The injury causes included falling (18 cases), traffic accident (14 cases), and violence (3 cases). The time between injury and treatment was 2-30 days (mean, 6.8 days). Restricted mouth opening was observed, and the maximal mouth opening was (22.74 +/- 7.22) mm except 3 patients who were too young to measure. Condylar fractures were located at the left (12 cases), at the right (9 cases), at bilateral (14 cases) based on the sites; and fractures were classified as intracapsular (35 fractures), neck (10 fractures), and subcondylar (4 fractures) based on the fracture line. Four self-drilling titanium screws were inserted into the alveolar bone of both maxilla and mandible. After screw inserting, an occlusal splint with a fulcrum was used on the affected side and elastic band was put to perform anterior intermaxillary traction. After 1 month, the screws and splint were removed. Follow-up examinations were carried out on schedule. All the patients were followed up from 6 months to 8 years and 10 months (median, 71 months). No screw-related complication occurred in the others except one case of screw loosening. The postoperative maximal mouth opening was (38.82 +/- 2.02) nim. Mild joint noise was found in 4 cases and opening deviation occurred in 6 cases. Radiographic results demonstrated complete condyle remodeling was achieved in 24 cases (32 fractures), and moderate remodeling in 11 cases (17 fractures) at last follow-up. The screw-based intermaxillary traction combined with occlusal splint might be an effective method for pediatric mandibular condylar fracture. The screw

  5. A Harmonic Resonance Suppression Strategy for a High-Speed Railway Traction Power Supply System with a SHE-PWM Four-Quadrant Converter Based on Active-Set Secondary Optimization

    Directory of Open Access Journals (Sweden)

    Runze Zhang

    2017-10-01

    Full Text Available Pulse width modulation (PWM technology is widely used in traction converters for high-speed railways. The harmonic distribution caused by PWM is quite extensive, and increases the possibility of grid–train coupling resonance in the traction power supply system (TPSS. This paper first analyzes the mechanism of resonance, when the characteristic harmonic frequency of a four-quadrant converter (4QC current that injects into the traction grid matches the resonant frequency of the traction grid, which may result in resonance in the system. To suppress resonance, this paper adopts specific harmonic elimination–pulse width modulation (SHE-PWM technology combined with a transient direct current control strategy to eliminate the harmonics in the resonant frequency, which may suppress the grid–train coupling resonance. Due to the fact that the SHE-PWM process with multiple switching angles contains complex transcendental equations, the initial value is difficult to provide, and is difficult to solve using ordinary iterative algorithms. In this paper, an active-set secondary optimization method is used to solve the equation. The algorithm has the benefits of low dependence on initial values, fast convergence and high solution accuracy. Finally, the feasibility of the resonant suppression algorithm is verified by means of Matlab simulation.

  6. Effects of segmental traction therapy on lumbar disc herniation in patients with acute low back pain measured by magnetic resonance imaging: A single arm clinical trial.

    Science.gov (United States)

    Karimi, Noureddin; Akbarov, Parvin; Rahnama, Leila

    2017-01-01

    Low Back Pain (LBP) is considered as one of the most frequent disorders, which about 80% of adults experience in their lives. Lumbar disc herniation (LDH) is a cause for acute LBP. Among conservative treatments, traction is frequently used by clinicians to manage LBP resulting from LDH. However, there is still a lack of consensus about its efficacy. The purpose of this study was to evaluate the effects of segmental traction therapy on lumbar discs herniation, pain, lumbar range of motion (ROM), and back extensor muscles endurance in patients with acute LBP induced by LDH. Fifteen patients with acute LBP diagnosed by LDH participated in the present study. Participants undertook 15 sessions of segmental traction therapy along with conventional physiotherapy, 5 times a week for 3 weeks. Lumbar herniated mass size was measured before and after the treatment protocol using magnetic resonance imaging. Furthermore, pain, lumbar ROM and back muscle endurance were evaluated before and after the procedure using clinical outcome measures. Following the treatment protocol, herniated mass size and patients' pain were reduced significantly. In addition, lumbar flexion ROM showed a significant improvement. However, no significant change was observed for back extensor muscle endurance after the treatment procedure. The result of the present study showed segmental traction therapy might play an important role in the treatment of acute LBP stimulated by LDH.

  7. Non-canonical spectral decomposition of random functions of the traction voltage and current in electric transportation systems

    Directory of Open Access Journals (Sweden)

    N.A. Kostin

    2015-03-01

    Full Text Available The paper proposes the non-canonical spectral decomposition of random functions of the traction voltages and currents. This decomposition is adapted for the electric transportation systems. The numerical representation is carried out for the random function of voltage on the pantograph of electric locomotives VL8 and DE1.

  8. Enhancing Optical Forces in InP-Based Waveguides

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Semenova, Elizaveta; Lavrinenko, Andrei

    2017-01-01

    Cantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other...... materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP: Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons...... excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above...

  9. Neonatal Brachial Plexus Palsy and Causation

    LENUS (Irish Health Repository)

    Turner, M J

    2016-07-01

    A vaginal childbirth is the result of the internal (endogenous) expulsive forces of uterine contractions, usually supplemented by active maternal pushing1. Depending on the clinical circumstances, additional external (exogenous) traction forces may be required from the birth attendant. This blend of internal and external forces varies from birth to birth. Women who have had a previous vaginal delivery, for example, may deliver successfully with uterine contractions alone and the role of the birth attendant may be simply to control and slow the delivery so that trauma to the maternal perineum from stretching by the fetal head is minimised. In contrast, additional traction may be required by an obstetrician at the time of an operative vaginal delivery for fetal distress or dystocia. The strength of the traction required may be increased by clinical factors, for example, fetal macrosomia or malposition. The traction should be axial in the direction of the birth canal, which is a vector combining horizontal and vertical traction at 25-45 degrees below the horizontal when the woman is in the lithotomy position.

  10. Rotor Design of IPMSM Traction Motor Based on Multi- Objective Optimization using BFGS Method and Train Motion Equations

    Directory of Open Access Journals (Sweden)

    S. Ahmadi

    2015-09-01

    Full Text Available In this paper a multiobjective optimal design method of interior permanent magnet synchronous motor ( IPMSM for traction applications so as to maximize average torque and to minimize torque ripple has been presented. Based on train motion equations and physical properties of train, desired specifications such as steady state speed, rated output power, acceleration time and rated speed of traction motor are related to each other. By considering the same output power, steady state speed, rated voltage, rated current and different acceleration time for a specified train, multiobjective optimal design has been performed by Broyden–Fletcher–Goldfarb–Shanno (BFGS method and finite element method (FEM has been chosen as an analysis tool. BFGS method is one of Quasi Newton methods and is counted in classic approaches. Classic optimization methods are appropriate when FEM is applied as an analysis tool and objective function isn’t expressed in closed form in terms of optimization variables.

  11. Innovative multi system traction equipment for modern rail vehicles; Innovative Mehrsystem-Antriebsausruestung fuer moderne Triebzuege

    Energy Technology Data Exchange (ETDEWEB)

    Guggisberg, B.; Daehler, P. [ABB Schweiz AG, Turgi (Switzerland)

    2007-07-01

    The BORDLINE-Compact Converter consists of a main traction converter with integrated auxiliary converter. The converters are equipped with low voltage semiconductors and are intended to be used in DMUs as well as in EMUs with overhead voltages of 15 kV or 25 kV. For the operation with 3 kV DC an additional DC to AC converter using a separate main transformer winding is installed. (orig.)

  12. Magnetic force micropiston: An integrated force/microfluidic device for the application of compressive forces in a confined environment

    Science.gov (United States)

    Fisher, J. K.; Kleckner, N.

    2014-02-01

    Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.

  13. Physical Exertion and Immediate Classroom Mental Performance Among Elementary School Children.

    Science.gov (United States)

    Gabbard, Carl

    This study was designed (1) to investigate the relationship between physical exertion and mental performance in elementary school children and (2) to determine if male or female mental performances are more affected by physical exertion. A total of 95 second graders participated in six treatments of induced physical exertion during their regularly…

  14. Análise radiográfica da coluna cervical em indivíduos assintomáticos submetidos a tração manual Radiographic analysis of the cervical spine in healthy individuals submitted to manual traction

    Directory of Open Access Journals (Sweden)

    Roger Burgo de Souza

    2008-08-01

    Full Text Available OBJETIVO: Avaliar, radiograficamente, o efeito da tração manual sobre o comprimento da coluna cervical. MATERIAIS E MÉTODOS: Cinqüenta e cinco participantes de ambos os gêneros - 12 masculinos (22% e 43 femininos (78% - sem história de distúrbios cervicais contituíram a amostra deste estudo. Eles foram submetidos a dois procedimentos radiológicos, um antes e outro durante a tração manual sustentada por 120 segundos. As distâncias entre as bordas anteriores e posteriores da segunda à sétima vértebras cervicais foram mensuradas e comparadas antes e durante a tração manual. RESULTADOS: A mediana da distância anterior antes da tração foi de 8,40 cm e durante a tração aumentou para 8,50 cm (p=0,002. A mediana da distância posterior antes da tração foi de 8,35 cm e durante a tração aumentou para 8,50 cm (pOBJECTIVE: To evaluate radiographically the effect of manual traction on the length of the cervical spine in healthy individuals. MATERIALS AND METHODS: The sample of the present study included 55 individuals - 12 men (22% and 43 women (78% - with no previous history of cervical disorders, submitted to two radiological procedures previously and during manual traction sustained for 120 seconds. Distances between the anterior and posterior edges from the second to the seventh cervical vertebrae were measured and compared before and during manual traction. RESULTS: The median of pre-traction anterior length was 8.40 cm, increasing to 8.50 cm during the traction (p=0.002; and the median of pre-traction posterior length was 8.35 cm, increasing to 8.50 cm during traction (p<0.001. CONCLUSION: Application of manual traction resulted in a statistically significant increase in the length the cervical spine in healthy individuals.

  15. Exertional heat stroke management strategies in United States high school football.

    Science.gov (United States)

    Kerr, Zachary Y; Marshall, Stephen W; Comstock, R Dawn; Casa, Douglas J

    2014-01-01

    The 5-year period of 2005-2009 saw more exertional heat stroke-related deaths in organized sports than any other 5-year period in the past 35 years. The risk of exertional heat stroke appears highest in football, particularly during the preseason. To estimate the incidence of exertional heat stroke events and assess the utilization of exertional heat stroke management strategies during the 2011 preseason in United States high school football programs. Cross-sectional study; Level of evidence, 3. A self-administered online questionnaire addressing the incidence of exertional heat stroke events and utilization of exertional heat stroke management strategies (eg, removing athlete's football equipment, calling Emergency Medical Services [EMS]) was completed in May to June 2012 by 1142 (18.0%) athletic trainers providing care to high school football athletes during the 2011 preseason. Among all respondents, 20.3% reported treating at least 1 exertional heat stroke event. An average of 0.50 ± 1.37 preseason exertional heat stroke events were treated per program. Athletic trainers responding to exertional heat stroke reported using an average of 6.6 ± 1.8 management strategies. The most common management strategies were low-level therapeutic interventions such as removing the athlete's football equipment (98.2%) and clothing (77.8%) and moving the athlete to a shaded area (91.6%). Few athletic trainers reported active management strategies such as calling EMS (29.3%) or using a rectal thermometer to check core body temperature (0.9%). Athletic trainers in states with mandated preseason heat acclimatization guidelines reported a higher utilization of management strategies such as cooling the athlete through air conditioning (90.1% vs 65.0%, respectively; P football programs. The standard of care is (and should be) to treat proactively; therefore, treatment is not a perfect proxy for incidence. Nevertheless, there is an urgent need for improved education and awareness of

  16. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  17. Tangential vitreous traction: a possible mechanism of development of cystoid macular edema in retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Mikiko Takezawa

    2011-02-01

    Full Text Available Mikiko Takezawa, Soichi Tetsuka, Akihiro KakehashiDepartment of Ophthalmology, Jichi Medical University, Saitama Medical Center, Saitama, Saitama, JapanAbstract: We report the possible mechanism of development of cystoid macular edema (CME in retinitis pigmentosa (RP in the case of a 68-year-old woman with RP and CME in the right eye and resolving CME in the left eye. Spectral domain optical coherence tomography showed CME and posterior vitreoschisis in the nasal quadrant of the fundus without a posterior vitreous detachment (PVD. This vitreous pathology suggested bilateral thickening and shrinkage of the posterior vitreous cortex. In the right eye, CME was evident with no vitreofoveal separation. However, in the left eye, minimal change was seen in the CME associated with a focal shallow PVD over the fovea. The best-corrected visual acuity (BCVA in the left eye increased to 0.3 from 0.15 7 years after the first visit. Tangential vitreous traction on the macula may have caused the CME in the right eye. The shallow PVD over the fovea might have released the tangential vitreous traction from the fovea, induced spontaneous resolution of the CME, and improved the BCVA in the left eye.Keywords: retinitis pigmentosa, cystoid macular edema, posterior vitreous detachment, posterior vitreoschisis, optical coherence tomography

  18. CT imaging techniques for describing motions of the cervicothoracic junction and cervical spine during flexion, extension, and cervical traction.

    Science.gov (United States)

    Simon, Scott; Davis, Martin; Odhner, Dewey; Udupa, Jayaram; Winkelstein, Beth

    2006-01-01

    Computerized tomographic study of human cadavers undergoing traction and flexion-extension bending. To investigate the feasibility of using computerized tomography techniques to quantify relative vertebral motions of the cervical spine and cervicothoracic junction (CTJ), and to define normative CTJ kinematics. Despite developing an understanding of the mechanical behavior of the cervical spine, little remains known about the cervicothoracic junction. The CTJ is more difficult to image than other cervical regions given the anatomic features of the surrounding bones obstructing CTJ visualization. As such, limited data have been reported describing the responses of the CTJ for motions and loading in the sagittal plane, confounding the clinical assessment of its injuries and surgical treatments used at this region. Helical CT images of the cervical spine and CTJ were acquired incrementally during each of flexion, extension, and cervical traction. Vertebral surfaces were reconstructed using the specialized image analysis software, 3DVIEWNIX. A mathematical description of relative vertebral motions was derived by computing rigid transformations. Euler angles and translations were calculated. Regional spine stiffness was defined for traction. The CTJ was found to be much stiffer (779 N/mm) than the cervical spine (317 N/mm) in tension. In flexion-extension bending, the CTJ was similar to the lower cervical spine. The CTJ demonstrated significantly less coupled motion than the cervical spine. The CTJ, as a transition region between the cervical and thoracic spines, has unique kinematic characteristics. This application of kinematic CT methods is useful for quantifying unreported normative ranges of motion for the CTJ, difficult by other conventional radiologic means.

  19. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation

    International Nuclear Information System (INIS)

    Korayem, Moharam Habibnejad; Saraie, Maniya B.; Saraee, Mahdieh B.

    2017-01-01

    An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry exerts the

  20. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.

    Science.gov (United States)

    Weston, Eric B; Aurand, Alexander; Dufour, Jonathan S; Knapik, Gregory G; Marras, William S

    2018-06-01

    Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushing and pulling tasks in a laboratory setting. An electromyography-assisted biomechanical model estimated spinal loads, while hand force and turning torque were measured via hand transducers. Mixed modelling techniques correlated spinal load with hand force or torque throughout a wide range of exposures in order to develop biomechanically determined hand force and torque limits. Exertion type, exertion direction, handle height and their interactions significantly influenced dependent measures of spinal load, hand force and turning torque. The biomechanically determined guidelines presented herein are up to 30% lower than comparable psychophysically derived limits and particularly more protective for straight pushing. Practitioner Summary: This study utilises a biomechanical model to develop objective biomechanically determined push/pull risk limits assessed via hand forces and turning torque. These limits can be up to 30% lower than existing psychophysically determined pushing and pulling recommendations. Practitioners should consider implementing these guidelines in both risk assessment and workplace design moving forward.

  1. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan David Kijlstra

    2015-12-01

    Full Text Available The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

  2. Cryotherapy, Sensation, and Isometric-Force Variability

    Science.gov (United States)

    Denegar, Craig R.; Buckley, William E.; Newell, Karl M.

    2003-01-01

    Objective: To determine the changes in sensation of pressure, 2-point discrimination, and submaximal isometric-force production variability due to cryotherapy. Design and Setting: Sensation was assessed using a 2 × 2 × 2 × 3 repeated-measures factorial design, with treatment (ice immersion or control), limb (right or left), digit (finger or thumb), and sensation test time (baseline, posttreatment, or postisometric-force trials) as independent variables. Dependent variables were changes in sensation of pressure and 2-point discrimination. Isometric-force variability was tested with a 2 × 2 × 3 repeated-measures factorial design. Treatment condition (ice immersion or control), limb (right or left), and percentage (10, 25, or 40) of maximal voluntary isometric contraction (MVIC) were the independent variables. The dependent variables were the precision or variability (the standard deviation of mean isometric force) and the accuracy or targeting error (the root mean square error) of the isometric force for each percentage of MVIC. Subjects: Fifteen volunteer college students (8 men, 7 women; age = 22 ± 3 years; mass = 72 ± 21.9 kg; height = 183.4 ± 11.6 cm). Measurements: We measured sensation in the distal palmar aspect of the index finger and thumb. Sensation of pressure and 2-point discrimination were measured before treatment (baseline), after treatment (15 minutes of ice immersion or control), and at the completion of isometric testing (final). Variability (standard deviation of mean isometric force) of the submaximal isometric finger forces was measured by having the subjects exert a pinching force with the thumb and index finger for 30 seconds. Subjects performed the pinching task at the 3 submaximal levels of MVIC (10%, 25%, and 40%), with the order of trials assigned randomly. The subjects were given a target representing the submaximal percentage of MVIC and visual feedback of the force produced as they pinched the testing device. The force exerted

  3. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    Science.gov (United States)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  4. Loss minimization control and efficiency determination of electric drives in traction applications

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Thomas; Hofmann, Wilfried [Technische Univ. Dresden (Germany). Lehrstuhl fuer Elektrische Maschinen und Antriebe

    2012-11-01

    High-power electric drives in automotive traction applications consume a large part of the disposable electric energy. For this reason the energy efficiency of the drives is of great importance for range and fuel consumption of the hybrid electric vehicle. The paper describes two possible drives with different electric motors from a control point of view. The electric power losses in the drive system are determined depending on the operating point of the machine. With these loss characteristics the control of the drives is optimized to produce minimal losses. Finally the energy efficiency for a realistic urban bus drive cycle is calculated to compare the two types. (orig.)

  5. Impact of cell shape on cell migration behavior on elastic substrate

    International Nuclear Information System (INIS)

    Zhong Yuan; Ji Baohua

    2013-01-01

    Cell shape is known to have profound effects on a number of cell behaviors. In this paper we have studied its role in cell migration through modeling the effect of cell shape on the cell traction force distribution, the traction force dependent stability of cell adhesion and the matrix rigidity dependent traction force formation. To quantify the driving force of cell migration, a new parameter called the motility factor, that takes account of the effect of cell shape, matrix rigidity and dynamic stability of cell adhesion, is proposed. We showed that the motility factor depends on the matrix rigidity in a biphasic manner, which is consistent with the experimental observations of the biphasic dependence of cell migration speed on the matrix rigidity. We showed that the cell shape plays a pivotal role in the cell migration behavior by regulating the traction force at the cell front and rear. The larger the cell polarity, the larger the motility factor is. The keratocyte-like shape has a larger motility factor than the fibroblast-like shape, which explains why keratocyte has a much higher migration speed. The motility factor might be an appropriate parameter for a quantitative description of the driving force of cell migration. (paper)

  6. Factors associated with high physical exertion during manual lifting

    DEFF Research Database (Denmark)

    Andersen, Lars L.; Sundstrup, Emil; Brandt, Mikkel

    2018-01-01

    BACKGROUND: High physical exertion during work is a risk factor for back pain and long-term sickness absence. OBJECTIVE: To investigate which factors are associated with physical exertion during manual lifting. METHODS: From 14 workplaces across Denmark, 200 blue-collar workers reported perceived...... physical exertion (Borg-CR10) during manual lifting from floor to table height of 5, 10, 20 and 30 kg at the beginning and end of the working day. The workers also responded to a questionnaire and went through testing of isometric back muscle strength. Associations were modelled using logistic regression...... during manual lifting in blue-collar workers. These factors should be considered when planning work with manual lifting for individual workers....

  7. Exertional Rhabdomyolysis after Spinning

    OpenAIRE

    Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung

    2016-01-01

    Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24?48 hours after attending a spi...

  8. Traction suture modification to tongue-in-groove caudal septoplasty.

    Science.gov (United States)

    Indeyeva, Y A; Lee, T S; Gordin, E; Chan, D; Ducic, Y

    2018-02-01

    Caudal septal deviation leads to unfavorable esthetic as well as functional effects on the nasal airway. A modification to the tongue-in-groove (TIG) technique to correct these caudal septal deformities is described. With placement of a temporary suspension suture to the caudal septum, manual traction is applied, assuring that the caudal septum remains in the midline position while it is being secured with multiple through-and-through, trans-columellar and trans-septal sutures. From 2003 to 2016, 148 patients underwent endonasal septoplasty using this modified technique, with excellent functional and cosmetic outcomes and a revision rate of 1.4%. This modified TIG technique replaces the periosteal suture that secures the caudal septum to the midline nasal crest in the original TIG technique. This simplifies the procedure and minimizes the risk of securing the caudal septum off-midline when used in endonasal septoplasty. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Online Open Circuit Fault Diagnosis for Rail Transit Traction Converter Based on Object-Oriented Colored Petri Net Topology Reasoning

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-01-01

    Full Text Available For online open circuit fault diagnosis of the traction converter in rail transit vehicles, conventional approaches depend heavily on component parameters and circuit layouts. For better universality and less parameter sensitivity during the diagnosis, this paper proposes a novel topology analysis approach to diagnose switching device open circuit failures. During the diagnosis, the topology is analyzed with fault reasoning mechanism, which is based on object-oriented Petri net (OOCPN. The OOCPN model takes in digitalized current inputs as fault signatures, and dynamical transitions between discrete switching states of a circuit with broken device are symbolized with the dynamical transitions of colored tokens in OOCPN. Such transitions simulate natural reasoning process of an expert’s brain during diagnosis. The dependence on component parameters and on circuit layouts is finally eliminated by such circuit topology reasoning process. In the last part, the proposed online reasoning and diagnosis process is exemplified with the case of a certain switching device failure in the power circuit of traction converter.

  10. Teleoperator comfort and psychometric stability: Criteria for limiting master-controller forces of operation and feedback during telemanipulation

    Science.gov (United States)

    Wiker, Steven F.; Hershkowitz, Elaine; Zik, John

    1989-01-01

    The following question is addressed: How much force should operators exert, or experience, when operating a telemanipulator master-controller for sustained periods without encountering significant fatigue and discomfort, and without loss of stability in psychometric perception of force. The need to minimize exertion demands to avoid fatigue is diametrically opposed by the need to present a wide range of force stimuli to enhance perception of applied or reflected forces. For 104 minutes subjects repetitiously performed a series of 15 s isometric pinch grasps; controlled at 5, 15, and 25 percent of their maximum voluntary strength. Cyclic pinch grasps were separated by rest intervals of 7.5 and 15 s. Upon completion of every 10 minute period, subjects interrupted grasping activities to gage the intensity of fatigue and discomfort in the hand and forearm using a cross-modal matching technique. A series of psychometric tests were then conducted to determine accuracy and stability in the subject's perception of force experienced. Results showed that onset of sensations of discomfort and fatigue were dependent upon the magnitude of grasp force, work/rest ratio, and progression of task. Declines in force magnitude estimation slopes, indicating a reduction in force perception sensitivity, occurred with increased grasp force when work/rest ratios were greater than 1.0. Specific recommendations for avoiding discomfort and shifts in force perception, by limiting pinch grasp force required for master-controller operation and range of force reflection or work/rest ratios, are provided.

  11. Ponderomotive force of a uniform electromagnetic wave in a time varying dielectric medium

    International Nuclear Information System (INIS)

    Mori, W.B.; Katsouleas, T.

    1992-01-01

    A ponderomotive force associated with a uniform electromagnetic wave propagating in a medium with time varying dielectric properties [e.g., ε=ε(x-v 0 t)] is identified. In particular, when a laser ionizes a gas through which it propagates, a force is exerted on the medium at the ionization front that is proportional to (∇ε)E 2 rather than the usual (ε-1)∇E 2 . This force excites a wake in the plasma medium behind the ionization front. The ponderomotive force and wake amplitude are derived and tested with 1D particle-in-cell simulations

  12. Hydrodynamic Forces on Spillway Torque-Tube Gates

    Science.gov (United States)

    2010-10-01

    damping coefficient associated with that of an equivalent viscous damper representing the energy dissipation mechanism from the structure itself plus the...in the figure the viscous damper with coef- ficient CD that exerts the drag force on the gate. The degree of freedom is defined as the rotation of...the following simplifying as- sumptions are postulated. Water is assumed an incompressible, inviscid, and homogeneous fluid , and its flow is taken as

  13. Air microjet system for non-contact force application and the actuation of micro-structures

    International Nuclear Information System (INIS)

    Khare, S M; Venkataraman, V

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s −1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable. (technical note)

  14. Air microjet system for non-contact force application and the actuation of micro-structures

    Science.gov (United States)

    Khare, S. M.; Venkataraman, V.

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s-1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.

  15. Force-free field model of ball lightning

    International Nuclear Information System (INIS)

    Tsui, K.H.

    2001-01-01

    Due to the nature that the force-free magnetic field, whose current carried by the conducting plasma is everywhere parallel to the magnetic field it generates, is the minimum energy configuration under the constraint of magnetic helicity conservation, ball lightning is considered as a self-organized phenomenon with a plasma fireball immersed in a spherical force-free magnetic field. Since this field does not exert force on the plasma, the plasma pressure, by itself, is in equilibrium with the surrounding environment, and the force-free magnetic field can take on any value without affecting the plasma. Due to this second feature, singular solutions of the magnetic field that are otherwise excluded are allowed, which enable a large amount of energy to be stored to sustain the ball lightning. The singularity is truncated only by the physical limit of current density that a plasma can carry. Scaling the customary soccer-size fireball to larger dimensions could account for day and night sightings of luminous objects in the sky

  16. Exertional headache and coronary ischemia despite normal electrocardiographic stress testing.

    Science.gov (United States)

    Cutrer, F Michael; Huerter, Karina

    2006-01-01

    Exertional headaches may under certain conditions reflect coronary ischemia. We report the case of a patient seen in a neurology referral practice whose exertional headaches, even in the face of two normal electrocardiographic stress tests and in the absence of underlying chest pain were the sole symptoms of coronary ischemia as detected by Tc-99m Sestamibi testing SPECT stress testing. Stent placement resulted in complete resolution of headaches. Exertional headache in the absence of chest pain may reflect underlying symptomatic coronary artery disease (CAD) even when conventional electrocardiographic stress testing does not indicate ischemia.

  17. FDTD approach to optical forces of tightly focused vector beams on metal particles.

    Science.gov (United States)

    Qin, Jian-Qi; Wang, Xi-Lin; Jia, Ding; Chen, Jing; Fan, Ya-Xian; Ding, Jianping; Wang, Hui-Tian

    2009-05-11

    We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

  18. Operation analysis of AC traction motors in terms of electromagnetic torque capability on sustainable railway vehicles

    OpenAIRE

    Bulucea Cornelia A.; Nicola Doru A.; Rosen Marc A.; Mastorakis Nikos E.; Bulucea Carmen A.

    2016-01-01

    Sustainable operation of electric railway systems represents a significant purpose nowadays in the development of high power and high speed locomotives and trains. At present, high speed electric vehicles mostly work with three-phase induction motors or three-phase synchronous motors as traction motors. The two electric machine types have different efficiencies at different operation points, and experience differences with respect to safety, speed and power, energy use and exergy efficiency. ...

  19. Electric force on plasma ions and the momentum of the ion-neutrals flow

    Science.gov (United States)

    Makrinich, G.; Fruchtman, A.; Zoler, D.; Boxman, R. L.

    2018-05-01

    The electric force on ions in plasma and the momentum flux carried by the mixed ion-neutral flow were measured and found to be equal. The experiment was performed in a direct-current gas discharge of cylindrical geometry with applied radial electric field and axial magnetic field. The unmagnetized plasma ions, neutralized by magnetized electrons, were accelerated radially outward transferring part of the gained momentum to neutrals. Measurements were taken for various argon gas flow rates between 13 and 100 Standard Cubic Centimeter per Minute, for a discharge current of 1.9 A and a magnetic field intensity of 136 G. The plasma density, electron temperature, and plasma potential were measured at various locations along the flow. These measurements were used to determine the local electric force on the ions. The total electric force on the plasma ions was then determined by integrating radially the local electric force. In parallel, the momentum flux of the mixed ion-neutral flow was determined by measuring the force exerted by the flow on a balance force meter (BFM). The maximal plasma density was between 6 × 1010 cm-3 and 5 × 1011 cm-3, the maximal electron temperature was between 8 eV and 25 eV, and the deduced maximal electric field was between 2200 V/m and 5800 V/m. The force exerted by the mixed ion-neutral flow on the BFM agreed with the total electric force on the plasma ions. This agreement showed that it is the electric force on the plasma ions that is the source of the momentum acquired by the mixed ion-neutral flow.

  20. Effects of strong bite force on the facial vertical dimension of pembarong performers

    Directory of Open Access Journals (Sweden)

    C. Christina

    2017-06-01

    Full Text Available Background: A pembarong performer is a reog dancer who bites on a piece of wood inserted into his/her mouth in order to support a 60 kg Barongan or Dadak Merak mask. The teeth supporting this large and heavy mask are directly affected, as the strong bite force exerted during a dance could affect their vertical and sagital facial dimensions. Purpose: This study aimed to examine the influence of the bite force of pembarong performers due to their vertical and sagital facial dimensions. Methods: The study reported here involved fifteen pembarong performers and thirteen individuals with normal occlusion (with specific criteria. The bite force of these subjects was measured with a dental prescale sensor during its centric occlusion. A cephalometric variation measurement was subsequently performed on all subjects with its effects on their vertical and sagital facial dimensions being measured. Results: The bite force value of the pembarong performers was 394.3816 ± 7.68787 Newtons, while the normal occlusion was 371.7784 ± 4.77791 Newtons. There was no correlation between the bite force and the facial sagital dimension of these subjects. However, a significant correlation did exist between bite force and lower facial height/total facial height (LFH/TFH ratio (p = 0.013. Conversely, no significant correlation between bite force and posterior facial height/total facial height (PFH/TFH ratio (p = 0.785 was detected. There was an inverse correlation between bite force and LFH/TFH ratio (r = -.464. Conclusion: Bite force is directly related to the decrease in LFH/TFH ratio. Occlusal pressure exerted by the posterior teeth on the alveolar bone may increase bone density at the endosteal surface of cortical bone.

  1. EEG signatures of arm isometric exertions in preparation, planning and execution.

    Science.gov (United States)

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction

  2. The influence of battery degradation level on the selected traction parameters of a light-duty electric vehicle

    Science.gov (United States)

    Juda, Z.; Noga, M.

    2016-09-01

    The article describes results of an analysis of the impact of degradation level of battery made in lead-acid technology on selected traction parameters of an electric light duty vehicle. Lead-acid batteries are still used in these types of vehicles. They do not require complex systems of performance management and monitoring and are easy to maintaining. Despite the basic disadvantage, which is the low value of energy density, low price is a decisive factor for their use in low-speed electric vehicles. The process of aging of the battery related with an increase in internal resistance of the cells and the loss of electric capacity of the battery was considered. A simplified model of cooperation of the DC electric motor with the battery assuming increased internal resistance was presented. In the paper the results of comparative traction research of the light-duty vehicle equipped with a set of new batteries and set of batteries having a significant degradation level were showed. The analysis of obtained results showed that the correct exploitation of the battery can slow down the processes of degradation and, thus, extend battery life cycle.

  3. System design of the traction power supply for the high-speed line Beijing - Tianjin

    Energy Technology Data Exchange (ETDEWEB)

    Altmann, Martin; Fischer, Andreas; Tornow, Torsten [Siemens AG, Erlangen (Germany)

    2011-11-15

    The high-speed line Beijing - Tianjin connecting the Capital Beijing with the harbour city Tianjin is the first high-speed line in China dedicated only to passenger traffic and is operated at 300 km/h. The commercial service started in due time for the Olympic games in 2008. For the system design and a reliable traction power supply the simulation software Sitras {sup registered} Sidytrac was used. The program incorporates all modules necessary for the overall system design and relating detailed investigations. Measurements during system integration test validated the simulation results. (orig.)

  4. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Korayem, Moharam Habibnejad, E-mail: hkorayem@iust.ac.ir; Saraie, Maniya B.; Saraee, Mahdieh B.

    2017-04-15

    An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry

  5. On the axioms of the forces in the mechanics of rigid bodies

    Directory of Open Access Journals (Sweden)

    Lámer Géza

    2017-01-01

    Full Text Available Newton summarised knowledge related to forces in three axioms. The first and second ones define the mechanical state and motion of the examined body when there is no force or when force is exerted on the body. The third defines the law of action and reaction. Newton did not define it as separate axiom but assumed that forces are completely independent from each other. The statics applies four axioms. The first applies to the balance of two forces while the second one applies of three forces. The third axiom defines the relationships inside an equilibrium force system. The fourth one is the axiom of action and reaction. The two axiom systems are independent from each other. Further the independent axioms are applied in case of constraint forces: frictionless reaction force orthogonal on the forced surface, friction force acts in the direction of the motion, the deformation can be elastic, plastic and viscous.

  6. A new image correction method for live cell atomic force microscopy

    International Nuclear Information System (INIS)

    Shen, Y; Sun, J L; Zhang, A; Hu, J; Xu, L X

    2007-01-01

    During live cell imaging via atomic force microscopy (AFM), the interactions between the AFM probe and the membrane yield distorted cell images. In this work, an image correction method was developed based on the force-distance curve and the modified Hertzian model. The normal loading and lateral forces exerted on the cell membrane by the AFM tip were both accounted for during the scanning. Two assumptions were made in modelling based on the experimental measurements: (1) the lateral force on the endothelial cells was linear to the height; (2) the cell membrane Young's modulus could be derived from the displacement measurement of a normal force curve. Results have shown that the model could be used to recover up to 30% of the actual cell height depending on the loading force. The accuracy of the model was also investigated with respect to the loading force and mechanical property of the cell membrane

  7. Development of theory of spectra and its adaptation to the tasks of analysis of transient emergency regimes for electric traction systems

    Directory of Open Access Journals (Sweden)

    P.Ye. Mikhalichenko

    2012-04-01

    Full Text Available In the article the notion of current and instantaneous spectrum is introduced for the analysis of the deterministic functions of electric values of the system of DC electric traction supply in the case of its emergency operation regimes.

  8. THE MATHEMATIC STIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC-TRACTION NETWORK – LOCOMOTIVE” 3. SWITCHING ON MAIN POWER CONVERTER IN “FREE PLAY” MODE; THE ANALYSIS OF VOLTS AND CURRENTS IN THE POWER SUPPLY INPUT SYSTEM

    OpenAIRE

    T. M. Mischenko

    2011-01-01

    The article is a continuation of analysis of the electric equivalent AC circuit «traction substation − device of transversal compensation − electric-traction network − electric locomotive DS 3» and the influence on a power transformer in the idle mode, depending on the feeder voltage and the distance of an electric locomotive from a traction substation. The numeral calculations are performed and the voltage and current values in the electric power supply system are analyzed.

  9. Composite adaptive control of belt polishing force for aero-engine blade

    Science.gov (United States)

    Zhsao, Pengbing; Shi, Yaoyao

    2013-09-01

    The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and

  10. The effects of infrared laser therapy and weightbath traction hydrotherapy as components of complex physical treatment in disorders of the lumbar spine: a controlled pilot study with follow-up

    Science.gov (United States)

    Oláh, Csaba; Oláh, Mihály; Demeter, Béla; Jancsó, Zoltán; Páll, Valéria; Bender, Tamás

    2010-02-01

    Introduction: The therapeutic modalities available for the conservative management of chronic lumbar pain included infrared laser therapy and underwater traction, which usefulness is not universally acknowledged. This study was intended to ascertain any beneficial impact of infrared laser therapy and weightbath treatment on the clinical parameters and quality of life of patients with lumbar discopathy. Material and methods: The study population comprised 54 randomised subjects. I. group of 18 patents received only infrared laser therapy to lumbar region and painful Valley points. II. group of 18 subjects each received underwater traction therapy of lumbar spine with add-on McKenzie exercise and iontophoresis. The remaining III. group treated with exercise and iontophoresis, served as control. VAS, Oswestry index, SF36 scores, range of motion, neurological findings and thermography were monitored to appraise therapeutic afficacy in lumbar discopathy. A CT or MRI scan was done at baseline and after 3 months follow-up. Result:Infrared laser therapy and underwater traction for discopathy achieved significant improvement of all study parameters, which was evident 3 months later. Among the controls, significant improvement of only a single parameter was seen in patients with lumbar discopathy. Conclusions: Infrared laser therapy and underwater traction treatment effectively mitigate pain, muscle spasms, enhance joint flexibility, and improve the quality of life of patients with lumbar discopathy.

  11. ANALYSIS OF CUTTING FORCES ON CNC LATHES EXPERIMENTAL APPROACH

    Directory of Open Access Journals (Sweden)

    Erdem Koç

    1996-01-01

    Full Text Available Objective of this study is to make use easy programming of CNC lathes and to achieve the optimization of part program prepared considering the limiting parameters of the machine. In the present study, a BOXFORD 250 B CNC lathe has been used for experiment and optimization process. The measurement of cutting forces exerted on the cutting tool of CNC lathe has been performed. The cutting forces occurring during the turning operation have been determined for different depth of" cut, feed rate and cutting speed as well as different cutting tools and related data base has been obtained.

  12. Exertional Rhabdomyolysis: What Is It and Why Should We Care?

    Science.gov (United States)

    Thomas, David Q.; Carlson, Kelli A.; Marzano, Amy; Garrahy, Deborah

    2012-01-01

    Exertional rhabdomyolysis gained increased attention recently when 13 football players from the University of Iowa developed this condition after an especially demanding practice session and were hospitalized. Exertional rhabdomyolysis may lead to severe kidney stress, kidney failure, and even sudden death. Anyone who does physical exercise at a…

  13. The transmission of masticatory forces and nasal septum: structural comparison of the human skull and Gothic cathedral.

    Science.gov (United States)

    Hilloowala, Rumy; Kanth, Hrishi

    2007-07-01

    This study extrapolates the transmission of masticatory forces to the cranium based on the architectural principles of Gothic cathedrals. The most significant finding of the study, obtained by analysis of coronal CT scans, is the role of the hard palate, and especially the vomer and the perpendicular plate of the ethmoid in masticatory force transmission. The study also confirms, experimentally, the paths of masticatory forces, cited in literature but based purely on morphological observations. Human skulls and Gothic cathedrals have similar morphological and functional characteristics. The load exerted by the roof of the cathedral is transmitted to the ground by piers and buttresses. These structures also resist the shearing forces exerted by high winds. Similarly, the mid-facial bones of the skull transmit the vertical as well as the lateral masticatory forces from the maxillary dentition to the skull base. The nonload bearing walls and stained glass windows of the cathedral correspond to the translucent wall of the maxilla. The passageway between the aisle and the nave of the cathedral is equivalent to the meatal openings in the lateral wall of the nasal cavity.

  14. Theory and numerical calculation of the acoustic field exerted by eddy-current forces

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, K.

    1976-01-01

    The equations for calculating the acoustic field produced within a nonmagnetic metal by interaction of eddy currents with a static magnetic field were obtained on the assumptions (1) an ultrasonic wave is generated by the electromagentic force through classical and macroscopic phenomena; (2) the electric, magnetic, and elastic properties of the metal are linear, isotropic, and homogeneous throughout the metal, which occupies semi-infinite space; (3) the whole system is axially symmetric; and (4) eddy currents and elastic waves show a steady-state sinusoidal variation. The acoustic field produced by a specific electromagnetic ultrasonic transducer with axial symmetry was calculated numerically, and the results showed a well-defined ultrasonic wave beam, which was narrower than had been expected from the size of the transducer. (auth)

  15. Analysis on the resistive force in penetration of a rigid projectile

    Directory of Open Access Journals (Sweden)

    Xiao-wei Chen

    2014-09-01

    Full Text Available According to the dimensionless formulae of DOP (depth of penetration of a rigid projectile into different targets, the resistive force which a target exerts on the projectile during the penetration of rigid projectile is theoretically analyzed. In particular, the threshold Vc of impact velocity applicable for the assumption of constant resistive force is formulated through impulse analysis. The various values of Vc corresponding to different pairs of projectile-target are calculated, and the consistency of the relative test data and numerical results is observed.

  16. THE MATHEMATIC STIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC-TRACTION NETWORK – LOCOMOTIVE” 3. SWITCHING ON MAIN POWER CONVERTER IN “FREE PLAY” MODE; THE ANALYSIS OF VOLTS AND CURRENTS IN THE POWER SUPPLY INPUT SYSTEM

    Directory of Open Access Journals (Sweden)

    T. M. Mischenko

    2011-05-01

    Full Text Available The article is a continuation of analysis of the electric equivalent AC circuit «traction substation − device of transversal compensation − electric-traction network − electric locomotive DS 3» and the influence on a power transformer in the idle mode, depending on the feeder voltage and the distance of an electric locomotive from a traction substation. The numeral calculations are performed and the voltage and current values in the electric power supply system are analyzed.

  17. Oesophageal elongation with traction sutures (FOKER procedure in a newborn baby with long-gap oesophageal atresia (LGEA: Maybe too early, maybe too dangerous?

    Directory of Open Access Journals (Sweden)

    Holger Till

    2013-01-01

    Full Text Available In children with long gap oesophageal atresia (LGEA, the FOKER technique (oesophageal elongation with traction sutures has been criticized for its high complication rate. We advocate analysing such problems to increase the safety in the future. The present case report will focus on timing. A female newborn (3000 g with LGEA (gap of 5 cm was delivered in an outward hospital. On day two of life, she received traction sutures on both pouches. By day five, all sutures had torn out, and a primary anastomosis was attempted. However, it leaked severely. Thus, on day ten, the oesophagus was approached from the neck converting the proximal end into a spit fistula and closing the distal end blindly. Furthermore, the gastro-oesophageal (GE- junction was wrapped with a Teflon sling. When the baby arrived in our institution, she suffered from cavernous oesophageal masses extending from the thoracic inlet down to the diaphragm and fistulas draining them into the neck as well as into the right lung. Moreover, the Teflon sling had dislodged allowing for GE-reflux. In several stages, the oesophageal remnants were resected without any complications. Finally, Prof. Alaa Hamza performed a colonic interposition, which is working well today. In conclusion, the present case aims to caution paediatric surgeons to apply traction sutures for oesophageal elongation in newborns with LGEA.

  18. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    Science.gov (United States)

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed.

  19. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    Science.gov (United States)

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed. PMID:27900193

  20. Two sensory channels mediate perception of fingertip force.

    Science.gov (United States)

    Brothers, Trevor; Hollins, Mark

    2014-01-01

    In two experiments we examined the ability of humans to exert forces accurately with the fingertips, and to perceive those forces. In experiment 1 participants used visual feedback to apply a range of fingertip forces with the distal pad of the thumb. Participants made magnitude discriminations regarding these forces, and their just noticeable differences were calculated at a series of standards by means of a two-interval, forced-choice tracking paradigm. As the standard increased, participants demonstrated a relative improvement in force discrimination; and the presence of a possible inflection point, at approximately 400 g, suggested that two sensory channels may contribute to performance. If this is the case, the operative channel at low forces is almost certainly the slowly adapting type I (SA-I) channel, while another mechanoreceptor class, the SA-II nail unit, is a plausible mediator of the more accurate performance seen at high force levels. To test this two-channel hypothesis in experiment 2, we hydrated participants' thumbnails in order to reduce nail rigidity and thus prevent stimulation of underlying SA-II mechanoreceptors. This technique was found to reduce sensory accuracy in a force-matching task at high forces (1000 g) while leaving low force matching (100 g) unimpaired. Taken together, these results suggest that two sensory channels mediate the perception of fingertip forces in humans: one channel predominating at low forces (below approximately 400 g) and another responsible for perceiving high forces which is likely mediated by the SA-II nail unit.

  1. Mode of the short circuit in the direct current electric traction network with different feed charts of fyder area

    Directory of Open Access Journals (Sweden)

    P. Mihalichenko

    2012-12-01

    Full Text Available In the article the results of mathematical design of the system of electric traction of direct current are represented in the mode of short circuit and different feed charts of fyder area: two-sided; one-sided. Comparison of transitional electric sizes which characterize electromagnetic processes during these malfunctions is analysed and executed.

  2. Micromechanical Resonator Driven by Radiation Pressure Force.

    Science.gov (United States)

    Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj

    2017-11-22

    Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.

  3. Device for lengthening of a musculotendinous unit by direct continuous traction in the sheep

    Directory of Open Access Journals (Sweden)

    Zumstein Matthias A

    2012-05-01

    Full Text Available Abstract Background Retraction, atrophy and fatty infiltration are signs subsequent to chronic rotator cuff tendon tears. They are associated with an increased pennation angle and a shortening of the muscle fibers in series. These deleterious changes of the muscular architecture are not reversible with current repair techniques and are the main factors for failed rotator cuff tendon repair. Whereas fast stretching of the retracted musculotendinous unit results in proliferation of non-contractile fibrous tissue, slow stretching may lead to muscle regeneration in terms of sarcomerogenesis. To slowly stretch the retracted musculotendinous unit in a sheep model, two here described tensioning devices have been developed and mounted on the scapular spine of the sheep using an expandable threaded rod, which has been interposed between the retracted tendon end and the original insertion site at the humeral head. Traction is transmitted in line with the musculotendinous unit by sutures knotted on the expandable threaded rod. The threaded rod of the tensioner is driven within the body through a rotating axis, which enters the body on the opposite side. The tendon end, which was previously released (16 weeks prior from its insertion site with a bone chip, was elongated with a velocity of 1 mm/day. Results After several steps of technical improvements, the tensioner proved to be capable of actively stretching the retracted and degenerated muscle back to the original length and to withstand the external forces acting on it. Conclusion This technical report describes the experimental technique for continuous elongation of the musculotendinous unit and reversion of the length of chronically shortened muscle.

  4. Traction batteries for industrial trucks. Technical aspects, selection criteria, operation. Antriebsbatterien fuer Flurfoerderzeuge. Technik, Auswahlkriterien und Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, W

    1987-01-01

    This lavishly illustrated booklet presents an introduction to the technology of the lead battery, which is commonly used as traction battery for industrial trucks. Technical specifications and standards, selection criteria for batteries and the novel CSM battery technology are mentioned. Most of the book deals with the practical aspects of batteries, e.g. installation, starting, maintenance, servicing, battery change, battery charging, monitoring, measurement, etc.). Battery recycling is briefly gone into.

  5. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    Science.gov (United States)

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  6. Bite force measurement based on fiber Bragg grating sensor

    Science.gov (United States)

    Padma, Srivani; Umesh, Sharath; Asokan, Sundarrajan; Srinivas, Talabattula

    2017-10-01

    The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system. Measurement of voluntary bite force provides useful data for the jaw muscle function and activity along with assessment of prosthetics. This study proposes an in vivo methodology for the dynamic measurement of bite force employing a fiber Bragg grating (FBG) sensor known as bite force measurement device (BFMD). The BFMD developed is a noninvasive intraoral device, which transduces the bite force exerted at the occlusal surface into strain variations on a metal plate. These strain variations are acquired by the FBG sensor bonded over it. The BFMD developed facilitates adjustment of the distance between the biting platform, which is essential to capture the maximum voluntary bite force at three different positions of teeth, namely incisor, premolar, and molar sites. The clinically relevant bite forces are measured at incisor, molar, and premolar position and have been compared against each other. Furthermore, the bite forces measured with all subjects are segregated according to gender and also compared against each other.

  7. A new image correction method for live cell atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y; Sun, J L; Zhang, A; Hu, J; Xu, L X [College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2007-04-21

    During live cell imaging via atomic force microscopy (AFM), the interactions between the AFM probe and the membrane yield distorted cell images. In this work, an image correction method was developed based on the force-distance curve and the modified Hertzian model. The normal loading and lateral forces exerted on the cell membrane by the AFM tip were both accounted for during the scanning. Two assumptions were made in modelling based on the experimental measurements: (1) the lateral force on the endothelial cells was linear to the height; (2) the cell membrane Young's modulus could be derived from the displacement measurement of a normal force curve. Results have shown that the model could be used to recover up to 30% of the actual cell height depending on the loading force. The accuracy of the model was also investigated with respect to the loading force and mechanical property of the cell membrane.

  8. Exertional Heat Illness and Human Gene Expression

    National Research Council Canada - National Science Library

    Sonna, L.A; Sawka, M. N; Lilly, C. M

    2007-01-01

    Microarray analysis of gene expression at the level of RNA has generated new insights into the relationship between cellular responses to acute heat shock in vitro, exercise, and exertional heat illness...

  9. Exertional heat illness: emerging concepts and advances in prehospital care.

    Science.gov (United States)

    Pryor, Riana R; Roth, Ronald N; Suyama, Joe; Hostler, David

    2015-06-01

    Exertional heat illness is a classification of disease with clinical presentations that are not always diagnosed easily. Exertional heat stroke is a significant cause of death in competitive sports, and the increasing popularity of marathons races and ultra-endurance competitions will make treating many heat illnesses more common for Emergency Medical Services (EMS) providers. Although evidence is available primarily from case series and healthy volunteer studies, the consensus for treating exertional heat illness, coupled with altered mental status, is whole body rapid cooling. Cold or ice water immersion remains the most effective treatment to achieve this goal. External thermometry is unreliable in the context of heat stress and direct internal temperature measurement by rectal or esophageal probes must be used when diagnosing heat illness and during cooling. With rapid recognition and implementation of effective cooling, most patients suffering from exertional heat stroke will recover quickly and can be discharged home with instructions to rest and to avoid heat stress and exercise for a minimum of 48 hours; although, further research pertaining to return to activity is warranted.

  10. The improvement of maintenance service for traction networks equipment on the base of process approach

    Directory of Open Access Journals (Sweden)

    D. V. Mironov

    2014-12-01

    Full Text Available Purpose. The new methods development for improving the maintenance service for equipment of traction networks in order to increase its efficiency and quality. Methodology. In world practice of solving problems related to the quality of products and services is usually achieved by introducing quality management system in to the enterprises. The provisions of quality management system were used for solving the problem. The technologies of process engineering were used for describing the main stages of maintenance service. Findings. The development of high-speed movement and growth of its intensity, the use of electric rolling stock of a new generation require the introduction of new methods diagnostics of equipment technical state and improvement of the existing maintenance system and repair of power supply. Developing a model of business-processes, their optimization with using techniques of process engineering and system management is needed for the transition to the management system based on the process approach. From the standpoint of the process approach and in accordance with the requirements of the quality management system (ISO 9001-2009, the operation of the E (Department of electrification and power supply infrastructure sector is represented as a scheme of business-processes in which the guaranteed supply with electricity of railway and third-party consumers is defined as the main business-process of management. Each of the sub-process of power supply for consumers is described in details. The use methods and main stages of process approach for sample management system reorganization were investigated. The methodology and the application method of PDCA (Plan-Do-Check-Act closed loop to the equipment maintenance system were described. The monitoring process of traction networks maintenance using the process approach was divided into components after investigations. The technical documentation of maintenance service was investigated in

  11. Coupled electromagnetic acoustic and thermal-flow modeling of an induction motor of railway traction

    International Nuclear Information System (INIS)

    Fasquelle, A.; Le Besnerais, J.; Harmand, S.; Hecquet, M.; Brisset, S.; Brochet, P.; Randria, A.

    2010-01-01

    In order to optimize the design of an enclosed induction machine of railway traction, a multi-physical model is developed taking into account electromagnetic, mechanical and thermal-flow phenomena. The electromagnetic model is based on analytical formulations and allows calculating the losses. The thermal-flow modeling is based on an equivalent thermal circuit which has the feature to consider the flow structure inside the machine. In this way, a numerical study has been carried out to evaluate this internal flow structure depending on the rotational speed. The results of the multi-physical model are confronted with experimental results.

  12. The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force

    Science.gov (United States)

    Trushko, Anastasiya; Schäffer, Erik; Howard, Jonathon

    2013-01-01

    The generation of pulling and pushing forces is one of the important functions of microtubules, which are dynamic and polarized structures. The ends of dynamic microtubules are able to form relatively stable links to cellular structures, so that when a microtubule grows it can exert a pushing force and when it shrinks it can exert a pulling force. Microtubule growth and shrinkage are tightly regulated by microtubule-associated proteins (MAPs) that bind to microtubule ends. Given their localization, MAPs may be exposed to compressive and tensile forces. The effect of such forces on MAP function, however, is poorly understood. Here we show that beads coated with the microtubule polymerizing protein XMAP215, the Xenopus homolog of Dis1 and chTOG, are able to link stably to the plus ends of microtubules, even when the ends are growing or shrinking; at growing ends, the beads increase the polymerization rate. Using optical tweezers, we found that tensile force further increased the microtubule polymerization rate. These results show that physical forces can regulate the activity of MAPs. Furthermore, our results show that XMAP215 can be used as a handle to sense and mechanically manipulate the dynamics of the microtubule tip. PMID:23964126

  13. Investigation of force, contact area, and dwell time in finger-tapping tasks on membrane touch interface.

    Science.gov (United States)

    Liu, Na; Yu, Ruifeng

    2018-06-01

    This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.

  14. Long-Term Valuation of Oral Mavacoxib in Osteoarthrosic Dogs Using Force Platform Analysis

    Directory of Open Access Journals (Sweden)

    J.M. Vilar*, M. Morales, A. Santana, M. Batista, F. Miró1 and G. Spinella2

    2013-04-01

    Full Text Available The aim of this study was to assess the efficacy of mavacoxib, a cox-2 inhibitor, to improve the peak vertical force (PVF and vertical impulse (VI of lame client-owned dogs with severe coxofemoral osteoarthrosis (OA by using a force platform. A group of ten canarian presa dogs with lameness and pain for a severe osteoarthrosis due to hip dysplasia were used for this study. Five additional sound dogs of the same breed were used as control groups. A single force platform used to register vertical forces was mounted in a 7 m runway. Mean (± SD values for speed of dogs were 1.6±0.5 m/s. Data corresponding with 5 valid trials were recorded at walk at day 0, 7, 60 and 180 after starting treatment procedure. The dosing regimen consisted of a loading oral dose of 2 mg⁄ kg to be repeated after 14 days, thereafter the dosing interval was 1 month. OA dogs showed a significant improvement of PVF after two months of about 7% bm in the force exerted by diseased limbs and a significant VI improvement after two months of about 1.6% bm in the VI exerted by diseased limbs. This study clearly showed that dogs treated with mavacoxib increased PVF over time, as soon as seven days after medical therapy, demonstrating a high potential for clinical use in the treatment of lameness associated with OA of hip joint.

  15. Effect of immobilization on urine calcium excretion in orthopedic patients with pelvic fracture treated by skin traction.

    Science.gov (United States)

    Derakhshan, Ali; Derakhshan, Nima; Namazi, Hamid; Ghaffarpasand, Fariborz

    2015-03-31

    To determine the effects on urine calcium excretion of immobilization by skin traction in patients with pelvic fracture. In a prospective study, a consecutive series of patients with pelvic fracture treated by skin traction were enrolled. Serum (calcium, phosphorous, alkaline phosphatase, sodium, potassium, uric acid, BUN, creatinine) and fasting urine calcium, creatinine, sodium, potassium and uric acid were checked within 48 hours of hospitalization and at 7, 14 and 21 days of immobilization and then after 3 months of mobilization. Trends in changes of variables were recorded. Fifty five patients were enrolled in this study; they were 45 (81.8%) males and 10 (18.2%) females with a mean age 19.4 ± 12.7 years. We found that serum levels of calcium (p = 0.004), phosphorous (p = 0.047) and alkaline phosphatase (p = 0.001) increased significantly during the 3 weeks of immobilization. In the same way, urine calcium/ urine creatinine ratio increased significantly in the study period (p = 0.004). No symptomatic renal stone formation was observed during the study period. Immobilization even in short term causes hypercalciuria in orthopedic patients. Although it is transient and improves with subsequent mobilization, it is needed to be considered specifically by the team caring for this group of patients.

  16. THE CALCULATION OF THE ENERGY RECOVERY ELECTRIFIED URBAN TRANSPORT DURING THE INSTALLATION DRIVE FOR TRACTION SUBSTATION

    Directory of Open Access Journals (Sweden)

    A. A. Sulim

    2014-01-01

    Full Text Available At present a great attention is paid to increasing of energy efficiency at operated electrified urban transport. Perspective direction for increasing energy efficiency at that type of transport is the application of regenerative braking. For additional increasing of energy efficiency there were suggested the use of capacitive drive on tires of traction substation. One of the main task is the analysis of energy recovery application  with drive and without it.These analysis demonstrated that the calculation algorithms don’t allow in the full volume to carry out calculations of amount and cost of energy recovery without drive and with it. That is why we see the current interest to this topic. The purpose of work is to create methods of algorithms calculation for definite amount and cost of consumed, redundant and recovery energy of electrified urban transport due to definite regime of motion on wayside. There is algorithm developed, which allow to calculate amount and cost of consumed, redundant and recovery energy of electrified urban transport on wayside during the installation capacitive drive at traction substation. On the basis of developed algorithm for the definite regime of wagon motion of subway there were fulfilled the example of energy recovery amount and its cost calculation, among them with limited energy intensity drive, when there are 4 trains on wayside simultaneously.

  17. Condensins Exert Force on Chromatin-Nuclear Envelope Tethers to Mediate Nucleoplasmic Reticulum Formation in Drosophila melanogaster

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q.; Rogers, Gregory C.; Bosco, Giovanni

    2014-01-01

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. PMID:25552604

  18. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster.

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q; Rogers, Gregory C; Bosco, Giovanni

    2014-12-30

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. Copyright © 2015 Bozler et al.

  19. Plasmonic micropillars for precision cell force measurement across a large field-of-view

    Science.gov (United States)

    Xiao, Fan; Wen, Ximiao; Tan, Xing Haw Marvin; Chiou, Pei-Yu

    2018-01-01

    A plasmonic micropillar platform with self-organized gold nanospheres is reported for the precision cell traction force measurement across a large field-of-view (FOV). Gold nanospheres were implanted into the tips of polymer micropillars by annealing gold microdisks with nanosecond laser pulses. Each gold nanosphere is physically anchored in the center of a pillar tip and serves as a strong, point-source-like light scattering center for each micropillar. This allows a micropillar to be clearly observed and precisely tracked even under a low magnification objective lens for the concurrent and precision measurement across a large FOV. A spatial resolution of 30 nm for the pillar deflection measurement has been accomplished on this platform with a 20× objective lens.

  20. Forces on particles in microstreaming flows

    Science.gov (United States)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Thameem, Raqeeb

    2015-11-01

    In various microfluidic applications, vortical steady streaming from ultrasonically driven microbubbles is used in concert with a pressure-driven channel flow to manipulate objects. While a quantitative theory of this boundary-induced streaming is available, little work has been devoted to a fundamental understanding of the forces exerted on microparticles in boundary streaming flows, even though the differential action of such forces is central to applications like size-sensitive sorting. Contrary to other microfluidic sorting devices, the forces in bubble microstreaming act over millisecond times and micron length scales, without the need for accumulated deflections over long distances. Accordingly, we develop a theory of hydrodynamic forces on the fast time scale of bubble oscillation using the lubrication approximation, showing for the first time how particle displacements are rectified near moving boundaries over multiple oscillations in parallel with the generation of the steady streaming flow. The dependence of particle migration on particle size and the flow parameters is compared with experimental data. The theory is applicable to boundary streaming phenomena in general and demonstrates how particles can be sorted very quickly and without compromising device throughput. We acknowledge support by the National Science Foundation under grant number CBET-1236141.